P-05-93

Oskarshamn site investigation

Drill hole KLX03A

Thermal properties: heat conductivity and heat capacity determined using the TPS method

Bijan Adl-Zarrabi SP Swedish National Testing and Research Institute

March 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864

SE-102 40 Stockholm Sweden

Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Oskarshamn site investigation

Drill hole KLX03A

Thermal properties: heat conductivity and heat capacity determined using the TPS method

Bijan Adl-Zarrabi SP Swedish National Testing and Research Institute

March 2005

Keywords: Thermal properties, Rock mechanics, Thermal conductivity, Thermal diffusivity, Heat capacity, Transient Plane Source method.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Thermal properties on fifteen specimens of drill hole KLX03A, Laxemar, were measured at ambient temperature (20°C). The specimens were sampled on three levels in the drill hole at depth of approximately 320 m, 520 m and 695 m. The investigated rock type is mapped as Ävrö granite for level 1 and 2 (320 and 520 m) and Quartz monzodiorite for level 3 (695 m).

The determination of the thermal properties are based on a direct measurement method, the so called "Transient Plane Source Method (TPS), Gustafsson, 1991 /1/.

Thermal conductivity and thermal diffusivity of specimens at different depths at 20°C were in the range of 2.01–2.98 W/(m, K) and 0.86–1.29 mm²/s respectively.

Sammanfattning

Termiska egenskaper hos femton provkroppar från borrhål KLX03A, Laxemar, bestämdes vid rumstemperatur (20 °C). Proverna har tagits från tre nivåer i borrhålet vid cirka 320 m, 520 m och 695 m. De karterade bergarterna är Ävrögranit för nivå 1 och 2 (320 och 520 m) och kvartsmonzodiorit för nivå 3 (695 m)

TPS metoden, "Transient Plane Source", användes för bestämning av de termiska egenskaperna, Gustafsson 1991 /1/.

Den termiska konduktiviteten och den termiska diffusiviteten hos provkropparna vid 20 °C och vid olika djup var 2,01–2,98 W/(m, K) respektive 0,86–1,29 mm²/s.

Contents

1	Introduction	7
2	Objective and scope	9
3	Equipment	11
4	Execution	13
4.1	Description of the samples	13
4.2	Test Procedure	14
	4.2.1 Thermal properties	14
5	Results	15
5.1	Thermal properties	15
	5.1.1 Test results, sample by sample	15
	5.1.3. Results for the entire test series	30
5.2	Discussion	31
6	References	33
App	oendix A	35
App	endix B	37
Ann	endix C	39

1 Introduction

The objective of this investigation was to measure thermal properties of borehole KLX03A, Laxemar, see Figure 1-1, at ambient temperature (20°C) by using the TPS-method /1/. The thermal properties were determined for water-saturated specimens. The specimens, in form of circular discs, were cut from rock cores. The samples were selected based on the preliminary core logging, and with the strategy to primarily investigate the properties of the dominant rock properties. The principle of the TPS method is to place a sensor between two rock samples. The sensor consists of a thin metal double spiral, embedded in an insulation material. During the measurement the sensor works both as a heat emitter and a heat receptor. The input data and results of the direct measurement are registered and analysed by the same software and electronics that govern the measurement. The method gives information on the heat conductivity and diffusivity of a material and from this the volumetric heat capacity can be determined, if the density is known.

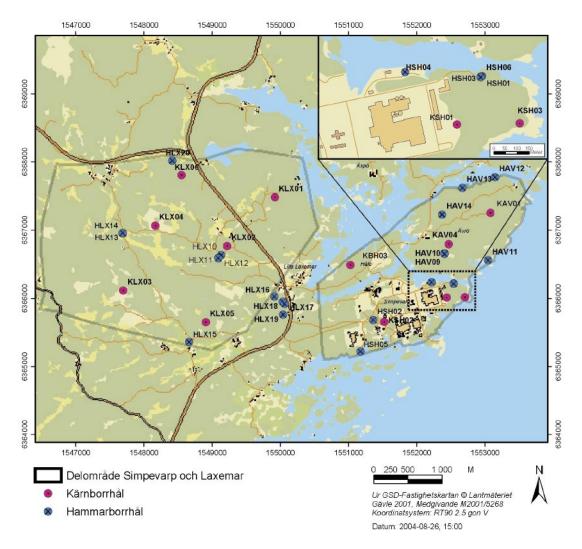


Figure 1-1. Location of borehole KLX03A at the Oskarshamn site investigation area.

The test programme follows the activity plan AP PS 400-04-106 (SKB internal controlling document) and is controlled by SP-QD 13.1 (SP quality document).

The samples were water saturated and stored in this condition for 7 days. This yields complete water saturation whereupon the density and the thermal properties were determined. The specimens were photographed before testing.

The rock cores arrived to SP in December 2004. The testing was performed during February 2005.

Determination of thermal properties was made in accordance to SKB's method description SKB MD 191.001 (SKB internal controlling document) at SP Fire Technology. Density was determined in accordance to SKB MD 160.002, (SKB internal controlling document) at SP Building Technology and Mechanics.

2 Objective and scope

The purpose of the testing is to determine the thermal properties of rock specimens. The results shall be used for the site descriptive modelling of thermal properties, which will be established for the candidate area selected for site investigations at Oskarshamn.

The samples are from the borehole KLX03A in Laxemar. The specimens were sampled on three levels in the drill hole: 320 m, 520 m and 695 m. The investigated rock types are mapped as Ävrö granite and Quartz monzodiorite.

3 Equipment

Technical devices for determination of thermal properties used were:

- Kapton sensor 5501, radius of the sensor was 6.403 mm, and output of power was 0.7 W. The sensor 5501 fulfils the recommended relation between the radius of sensor and geometry of the samples in /2/.
- TPS-apparatus, Source meter Keithley 2400, Multi-meter Keithley 2000 and bridge, see Figure 3-1.
- PC + Microsoft Office and Hot Disk version 5.4.
- Stainless Sample holder.

Specimen mounting is shown in Figure 3-2.

Figure 3-1. TPS-apparatus with source meter, multi-meter, bridge, and computer

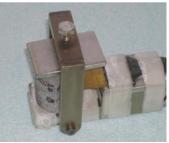


Figure 3-2. Specimens prior to mounting (left), mounted in stainless sample holder (middle), and sample holder with mounted specimens wrapped in plastic (right).

4 Execution

Determination of thermal properties was made in accordance to SKB's method description SKB MD 191.001 (SKB internal controlling document) and Hot Disc Instruction Manual /2/ at SP Fire Technology.

Density was determined in accordance to SKB MD 160.002 (SKB internal controlling document) and ISRM /3/.

4.1 Description of the samples

Fifteen pairs of cores were sampled from three levels of drill hole KLX03A, Laxemar, Sweden. The first level was between 315 m and 318 m, the second level was between 519 m and 520 m, and the third between 695 m and 696 m. The thirty specimens with a thickness of 25 mm each were selected from the samples at SP, see Figure 3-2. The diameter of the specimens was about 50 mm. The rock types, identification marks and depth of the specimens are presented in Table 4-1. Detailed geological description of the rock is given in SKB's BOREMAP of KLX03A and in the SICADA database at SKB.

Table 4-1. Rock types and identification marks (Rock-type classification according to the overview mapping).

Identification	Rock type	Sampling depth (Adj Sec low)
KLX03A-90V-01	Ävrö granite	315.53
KLX03A-90V-02	Ävrö granite	315.59
KLX03A-90V-03	Ävrö granite	315.65
KLX03A-90V-04	Ävrö granite	318.07
KLX03A-90V-05	Ävrö granite	318.13
KLX03A-90V-07	Ävrö granite	519.76
KLX03A-90V-08	Ävrö granite	519.82
KLX03A-90V-09	Ävrö granite	519.88
KLX03A-90V-10	Ävrö granite	519.94
KLX03A-90V-11	Ävrö granite	520.00
KLX03A-90V-13	Quartz monzodiorite	695.34
KLX03A-90V-14	Quartz monzodiorite	695.39
KLX03A-90V-15	Quartz monzodiorite	695.45
KLX03A-90V-16	Quartz monzodiorite	695.51
KLX03A-90V-17	Quartz monzodiorite	695.57

4.2 Test Procedure

4.2.1 Thermal properties

The following steps were performed:

- 1. Samples were cut and polished by SP Building Technology and Mechanics.
- 2. Samples were photographed by SP Building Technology and Mechanics.
- 3. Samples were water saturated and wet density was determined by SP Building Technology and Mechanics.
- 4. Samples were sent from SP Building Technology and Mechanics to SP Fire Technology.
- 5. Thermal properties were determined.
- 6. Samples were sent from SP Fire Technology to SP Building Technology and Mechanics.
- 7. Dry density of samples determined at SP Building Technology and Mechanics.

Thermal properties of water-saturated specimens were measured in ambient air (20°C). In order to remain water saturation and obtain desired temperature, the samples and the sensor were kept in a plastic bag during the measurement, see Figure 3-2.

Each core pair was measured five times. The time lag between two repeated measurements was at least 20 minutes. The result of each measurement was evaluated separately. The average value of these five measurements was calculated.

Function control of TPS instrumentation was performed according to BRk-QB-M26-02 (SP quality document), see Appendix A.

Measured raw data were saved as text files. Analysed data were saved as Excel files. These files were stored on the hard disc of the measurement computer. These stored files were sent to SKB catalogue at SP network. Further calculations of mean values and standard deviations were performed in the same catalogue.

Thermal properties, density and porosity measurements were performed during February 2005.

Dry weight was measured after the specimens had been dried to constant mass according to ISMR /3/ at 105°C. The drying procedure took seven days.

5 Results

5.1 Thermal properties

Mean values of measured data, five repeated measurements, are reported in 5.1.1 and 5.1.2 and in the SICADA database at SKB. Values of each separate measurement as described in 4.2 are reported in Appendix B. Furthermore, the total measuring time, the ratio between total measuring time and characteristic time, and the number of analysed points is presented in Appendix C. In a correct measurement the ratio between the total measuring time and the characteristic time should be between 0.4 and 1.

5.1.1 Test results, sample by sample

Figure 5-1. Specimens KLX03A-90V-01.

Table 5-1. Porosity, wet and dry density of specimens KLX03A-90V-01, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-01 Sec low: 315.53	2,780	2,770	0.2

Table 5-2. Thermal properties of sample KLX03A-90V-01 at ambient temperature.

KLX03A-90V-01 Sec low: 315.53	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³. K))		
Mean value	2.20	0.95	2.32		
Standard deviation	0.004	0.007	0.021		

Figure 5-2. Specimens KLX03A-90V-02.

Table 5-3. Porosity, wet and dry density of specimens KLX03A-90V-02, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-02 Sec low: 315.59	2,770	2,760	0.2

Table 5-4. Thermal properties of sample KLX03A-90V-02 at ambient temperature.

KLX03A-90V-02 Sec low: 315.59	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
	20°C		
Mean value	2.15	0.91	2.36
Standard deviation	0.004	0.003	0.013

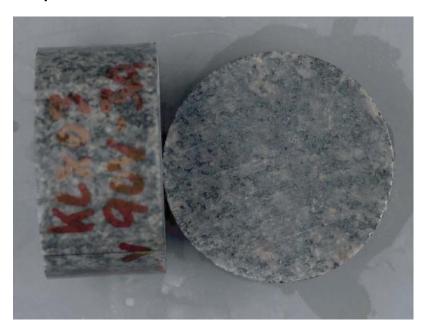


Figure 5-3. Specimens KLX03A-90V-03.

Table 5-5. Porosity, wet and dry density of specimens KLX03A-90V-03, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-03 Sec low: 315.65	2,770	2,770	0.2

Table 5-6. Thermal properties of sample KLX03A-90V-03 at ambient temperature.

KLX03A-90V-03 Sec low: 315.65	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))		
20°C					
Mean value	2.07	0.94	2.21		
Standard deviation	0.004	0.004	0.009		

Figure 5-4. Specimens KLX03A-90V-04.

Table 5-7. Porosity, wet and dry density of specimens KLX03A-90V-04, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-04 Sec low: 318.07	2,760	2,760	0.2

Table 5-8. Thermal properties of sample KLX03A-90V-04 at ambient temperature.

KLX03A-90V-04 Sec low: 318.07	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
	20°C		
Mean value	2.17	0.96	2.26
Standard deviation	0.003	0.002	0.007

Figure 5-5. Specimens KLX03A-90V-05.

Table 5-9. Porosity, wet and dry density of specimens KLX03A-90V-05, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-05 Sec low: 318.13	2,770	2,770	0.2

Table 5-10. Thermal properties of sample KLX03A-90V-05 at ambient temperature.

KLX03A-90V-05 Sec low: 318.13	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))		
Mean value	2.19	1.00	2.20		
Standard deviation	0.003	0.003	0.009		

Figure 5-6. Specimens KLX03A-90V-07.

Table 5-11. Porosity, wet and dry density of specimens KLX03A-90V-07, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-07 Sec low: 519.76	2,810	2,800	0.2

Table 5-12. Thermal properties of sample KLX03A-90V-07 at ambient temperature.

KLX03A-90V-07 Sec low: 519.76	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))	
20°C				
Mean value	2.07	0.92	2.25	
Standard deviation	0.003	0.002	0.008	

Figure 5-7. Specimens KLX03A-90V-08.

Table 5-13. Porosity, wet and dry density of specimens KLX03A-90V-08, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-08 Sec low: 519.82	2,810	2,810	0.3

Table 5-14. Thermal properties of sample KLX03A-90V-08 at ambient temperature.

KLX03A-90V-08 Sec low: 519.82	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))		
20°C					
Mean value	2.08	0.98	2.12		
Standard deviation	0.002	0.004	0.009		

Figure 5-8. Specimens KLX03A-90V-09.

Table 5-15. Porosity, wet and dry density of specimens KLX03A-90V-09, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-09 Sec low: 519.88	2,810	2,810	0.2

Table 5-16. Thermal properties of sample KLX03A-90V-09 at ambient temperature.

KLX03A-90V-09 Sec low: 519.88	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))		
20°C					
Mean value	2.24	0.94	2.38		
Standard deviation	0.002	0.004	0.009		

Figure 5-9. Specimens KLX03A-90V-10.

Table 5-17. Porosity, wet and dry density of specimens KLX03A-90V-10, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-10	2,810	2,810	0.3
Sec low: 519.94			

Table 5-18. Thermal properties of sample KLX03A-90V-10 at ambient temperature.

KLX03A-90V-10 Sec low: 519.94	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))	
20°C				
Mean value	2.15	0.86	2.49	
Standard deviation	0.002	0.004	0.012	

Figure 5-10. Specimens KLX03A-90V-11.

Table 5-19. Porosity, wet and dry density of specimens KLX03A-90V-11, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-11 Sec low: 520.00	2,800	2,790	0.3

Table 5-20. Thermal properties of sample KLX03A-90V-11 at ambient temperature.

KLX03A-90V-11 Sec low: 520.00	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
	20°C		
Mean value	2.01	0.91	2.22
Standard deviation	0.001	0.002	0.006

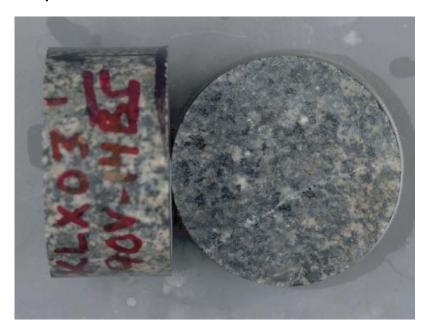

Figure 5-11. Specimens KLX03A-90V-13.

Table 5-21. Porosity, wet and dry density of specimens KLX03A-90V-13, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-13 Sec low: 695.34	2,800	2,800	0.2

Table 5-22. Thermal properties of sample KLX03A-90V-13 at ambient temperature.

KLX03A-90V-13 Sec low: 695.34	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))	
Mean value	2.76	1.18	2.35	
Standard deviation	0.006	0.004	0.005	

Figure 5-12. Specimens KLX03A-90V-14.

Table 5-23. Porosity, wet and dry density of specimens KLX03A-90V-14, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-14 Sec low: 695.39	2,810	2,810	0.2

Table 5-24. Thermal properties of sample KLX03A-90V-14 at ambient temperature.

KLX03A-90V-14 Sec low: 695.39	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
	20°C		
Mean value	2.69	1.20	2.25
Standard deviation	0.007	0.009	0.022

Figure 5-13. Specimens KLX03A-90V-15.

Table 5-25. Porosity, wet and dry density of specimens KLX03A-90V-15, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-15 Sec low: 695.45	2,820	2,810	0.2

Table 5-26. Thermal properties of sample KLX03A-90V-15 at ambient temperature.

KLX03A-90V-15 Sec low: 695.45	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
	20°C		
Mean value	2.92	1.29	2.26
Standard deviation	0.011	0.004	0.007

Figure 5-14. Specimens KLX03A-90V-16.

Table 5-27. Porosity, wet and dry density of specimens KLX03A-90V-16, average values.

Sample	Density, wet (kg/m³]	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-16 Sec low: 695.51	2,820	2,810	0.3

Table 5-28. Thermal properties of sample KLX03A-90V-16 at ambient temperature.

Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
20°C		
2.86	1.25	2.29
0.003	0.004	0.006
	(W/(m, K)) 20°C 2.86	(W/(m, K)) (mm²/s) 20°C 2.86 1.25

Figure 5-15. Specimens KLX03A-90V-17.

Table 5-29. Porosity, wet and dry density of specimens KLX03A-90V-17, average values.

Sample	Density, wet (kg/m³)	Density, dry (kg/m³)	Porosity (%)
KLX03A-90V-17 Sec low: 695.57	2,810	2,800	0.4

Table 5-30. Thermal properties of sample KLX03A-90V-17 at ambient temperature.

KLX03A-90V-17 Sec low: 695.57	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))	
20°C				
Mean value	2.98	1.27	2.34	
Standard deviation	0.007	0.012	0.026	

5.1.3. Results for the entire test series

Table 5-31 shows the mean value of five repeated measurements of the thermal properties. Standard deviation is shown in Table 5-32.

Thermal conductivity and thermal diffusivity of specimens at different depth at 20° C were in the range of 2.01-2.98 W/(m, K) and 0.98-1.29 mm²/s respectively.

Table 5-31. Mean value of thermal properties of samples at 20°C.

Sample identification	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
KLX03A-90V-01	2.20	0.95	2.32
KLX03A-90V-02	2.15	0.91	2.36
KLX03A-90V-03	2.07	0.94	2.21
KLX03A-90V-04	2.17	0.96	2.26
KLX03A-90V-05	2.19	1.00	2.20
Mean value, level 320	2.16	0.95	2.27
KLX03A-90V-07	2.07	0.92	2.25
KLX03A-90V-08	2.08	0.98	2.12
KLX03A-90V-09	2.24	0.94	2.38
KLX03A-90V-10	2.15	0.86	2.49
KLX03A-90V-11	2.01	0.91	2.22
Mean value, level 520	2.11	0.92	2.29
KLX03A-90V-13	2.76	1.18	2.35
KLX03A-90V-14	2.69	1.20	2.25
KLX03A-90V-15	2.92	1.29	2.26
KLX03A-90V-16	2.86	1.25	2.29
KLX03A-90V-17	2.98	1.27	2.34
Mean value, level 695	2.84	1.24	2.30

Table 5-32. Standard deviation of measured values at 20°C.

Sample identification	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
KLX03A-90V-01	0.004	0.007	0.021
KLX03A-90V-02	0.004	0.003	0.013
KLX03A-90V-03	0.004	0.004	0.009
KLX03A-90V-04	0.003	0.002	0.007
KLX03A-90V-05	0.003	0.003	0.009
KLX03A-90V-07	0.003	0.002	0.008
KLX03A-90V-08	0.002	0.004	0.009
KLX03A-90V-09	0.002	0.004	0.009
KLX03A-90V-10	0.002	0.004	0.012
KLX03A-90V-11	0.001	0.002	0.006
KLX03A-90V-13	0.006	0.004	0.005
KLX03A-90V-14	0.007	0.009	0.022
KLX03A-90V-15	0.011	0.004	0.007
KLX03A-90V-16	0.003	0.004	0.006
KLX03A-90V-17	0.007	0.012	0.026

5.1.3.1 Graphical presentation of results

Variation of the thermal conductivity and heat capacity in relation to depth of the sampling at different temperatures are shown in Figure 5-16.

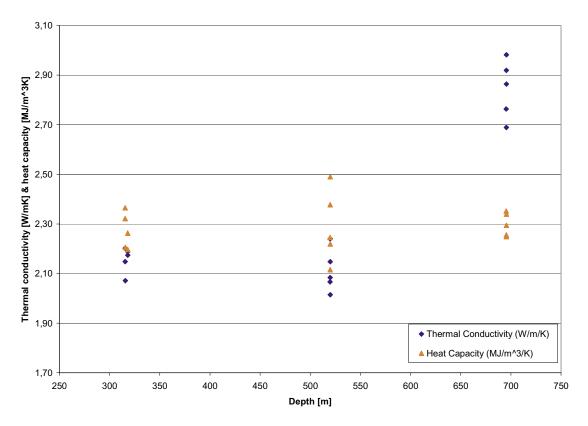


Figure 5-16. Thermal conductivity and heat capacity at different depth at 20°C.

5.2 Discussion

Samples KLX03A-90V-16 and KLX03A-90V-17 were cracked. Measurements on these samples were performed to gain knowledge about the influence of cracks on the results. The specimens were held together with screw clamps. There were no significant deviation from the rest of the specimens at level 3 (695m), but the result can still be inaccurate.

6 References

- /1/ **Gustafsson S E, 1991.** "Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials". Rev. Sci. Instrum. 62 (3), March 1991, American Institute of Physics.
- /2/ Instruction Manual Hot Disc Thermal Constants Analyser Windows 95 Version 5.0, 2001.
- /3/ **ISRM, 1979.** Commission on Testing Methods, ISRM.

Appendix A

Calibration protocol for Hot Disk Bridge System

Electronics: Keithley 2400 Serial No 0925167

Keithley 2000 Serial No 0921454

Hot Disk Bridge: Serial No 2003-0004

Computation Device: Serial No 2003-0003, ver 1.5

Computer: Hot Disk computer Serial No 2003-0003

Test sample: SIS2343, mild steel Serial No 3.52

Sensor for testing: C5501

Test measurement: 10 repeated measurements on the test sample at room temperature.

Conditions: Power 1 W, Measurement time 10 s

Results

Thermal Conductivity: 13.47 W/(m, K) $\pm 0.05\%$

Thermal Diffusivity: $3.511 \text{ mm}^2/\text{s}$ $\pm 0.22\%$

Heat Capacity: $3.837 \text{ MJ/(m}^3, \text{ K)} \pm 0.22\%$

This instrument has proved to behave according to specifications described in BRk-QB-M26-02.

Borås 24/01 2005

Patrik Nilsson

Appendix B

Table B-1. Thermal properties of samples at 20°C.

Measurement number	Conductivity	Diffusivity	Heat capacity
KLX03A-90V-01	(W/(m, K))	(mm²/s)	(MJ/(m³, K))
1	2.21	0.94	2.35
2	2.20	0.95	2.32
3	2.21	0.95	2.33
4	2.20	0.96	2.30
5	2.20	0.95	2.31
KLX03A-90V-02			
1	2.14	0.91	2.35
2	2.15	0.91	2.37
3	2.14	0.91	2.36
4	2.15	0.91	2.36
5	2.15	0.90	2.38
KLX03A-90V-03			
1	2.07	0.94	2.21
2	2.07	0.93	2.21
3	2.07	0.94	2.20
4	2.08	0.94	2.21
5	2.07	0.95	2.19
KLX03A-90V-04			
1	2.17	0.96	2.26
2	2.18	0.96	2.27
3	2.18	0.96	2.27
4	2.17	0.96	2.26
5	2.17	0.96	2.26
KLX03A-90V-05			
1	2.19	0.99	2.20
2	2.19	1.00	2.20
3	2.19	1.00	2.19
4	2.19	1.00	2.19
5	2.19	0.99	2.21
KLX03A-90V-07			
1	2.06	0.92	2.24
2	2.07	0.92	2.25
3	2.07	0.92	2.25
4	2.06	0.92	2.24
5	2.07	0.92	2.25
KLX03A-90V-08			
1	2.08	0.98	2.12
2	2.08	0.98	2.12
3	2.08	0.98	2.12
4	2.08	0.99	2.10
5	2.09	0.98	2.12

Measurement number	Conductivity (W/(m, K))	Diffusivity (mm²/s)	Heat capacity (MJ/(m³, K))
KLX03A-90V-09			
1	2.24	0.94	2.39
2	2.24	0.94	2.38
3	2.24	0.95	2.37
4	2.24	0.94	2.38
5	2.24	0.95	2.37
KLX03A-90V-10			
1	2.15	0.86	2.50
2	2.15	0.86	2.50
3	2.15	0.87	2.47
4	2.15	0.86	2.49
5	2.15	0.86	2.49
KLX03A-90V-11			
1	2.01	0.91	2.21
2	2.01	0.91	2.22
3	2.01	0.91	2.22
4	2.01	0.91	2.22
5	2.02	0.91	2.22
KLX03A-90V-13			
1	2.77	1.18	2.35
2	2.77	1.18	2.35
3	2.76	1.18	2.35
4	2.76	1.18	2.34
5	2.75	1.17	2.36
KLX03A-90V-14			
1	2.70	1.18	2.28
2	2.69	1.19	2.25
3	2.68	1.21	2.22
4	2.69	1.20	2.24
5	2.68	1.19	2.25
KLX03A-90V-15			
1	2.92	1.30	2.25
2	2.92	1.30	2.25
3	2.93	1.29	2.27
4	2.93	1.30	2.26
5	2.90	1.29	2.25
KLX03A-90V-16	2.00	1.20	2.20
1	2.87	1.25	2.29
2	2.86	1.25	2.29
3	2.86	1.24	2.30
4	2.86	1.25	2.29
5	2.87	1.25	2.29
KLX03A-90V-17	2.01	1.20	2.20
1	2.97	1.29	2.31
2	2.99	1.29	2.38
3			
4	2.98	1.28	2.34
	2.98	1.28	2.32
5	2.98	1.27	2.35

Appendix C

Table C-1. Total time of measurement, ratio of total time and characteristic time, and number of analysed points at 20° C.

Measurement number	Total time (s)	Total/Char Time	Points
KLX03A-90V-01			
1	20	0.45	44–200
2	20	0.46	44–200
3	20	0.46	44–200
4	20	0.46	44–200
5	20	0.46	44–200
KLX03A-90V-02			
1	20	0.44	62–200
2	20	0.43	66–197
3	20	0.44	62–200
4	20	0.44	69–199
5	20	0.44	62–200
KLX03A-90V-03			
1	20	0.45	68–200
2	20	0.45	71–200
3	20	0.45	90–198
4	20	0.46	92–200
5	20	0.46	84–200
KLX03A-90V-04			
1	20	0.47	33–200
2	20	0.47	36–200
3	20	0.46	33–200
1	20	0.47	45–200
5	20	0.46	33–199
KLX03A-90V-05			
1	20	0.48	72–199
2	20	0.48	72–200
3	20	0.49	81–200
4	20	0.48	74–200
5	20	0.48	88–200
KLX03A-90V-07			
1	20	0.45	38–200
2	20	0.45	38–200
3	20	0.45	38–200
1	20	0.45	38–200
5	20	0.45	38–200
KLX03A-90V-08			
1	20	0.46	71–193
2	20	0.47	73–196
3	20	0.46	71–194
4	20	0.47	73–196
5	20	0.48	73–200

Measurement number	Total time (s)	Total/Char Time	Points
KLX03A-90V-09			
1	20	0.45	53–200
2	20	0.46	53–200
3	20	0.46	53–200
4	20	0.46	53–200
5	20	0.46	53–200
KLX03A-90V-10			
1	20	0.42	44–200
2	20	0.42	44–200
3	20	0.42	44–200
4	20	0.42	44–200
5	20	0.42	44–200
KLX03A-90V-11			
1	20	0.44	42–200
2	20	0.44	42–200
3	20	0.44	42–200
4	20	0.44	42–200
5	20	0.44	50–200
KLX03A-90V-13			
1	20	0.57	83–200
2	20	0.55	79–192
3	20	0.57	79–200
4	20	0.57	80–200
5	20	0.56	80–197
KLX03A-90V-14			
1	20	0.57	35–200
2	20	0.58	49–200
3	20	0.59	35–200
4	20	0.58	35–200
5	20	0.58	38–199
KLX03A-90V-15			
1	20	0.63	60–200
2	20	0.63	62–199
3	20	0.63	63–200
4	20	0.63	60–200
5	20	0.62	60–198
KLX03A-90V-16			
1	20	0.61	40–200
2	20	0.57	38–188
3	20	0.60	38–200
4	20	0.61	57–200
5	20	0.61	38–200
KLX03A-90V-17			
1	20	0.62	28–200
2	20	0.61	28–200
3	20	0.62	34–200
4	20	0.62	34–200
5	20	0.62	34–200
- -			