P-05-78

Forsmark site investigation

Hydraulic interference tests

Boreholes HFM16, HFM19 and KFM02A

Kristoffer Gokall-Norman, Jan-Erik Ludvigson Geosigma AB

February 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-05-78

Forsmark site investigation Hydraulic interference tests Boreholes HFM16, HFM19 and KFM02A

Kristoffer Gokall-Norman, Jan-Erik Ludvigson Geosigma AB

February 2005

Keywords: Forsmark, Hydrogeology, Hydraulic tests, Pumping tests, Interference tests, Hydraulic parameters, Transmissivity, Storativity, AP PF 400-04-74.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Three short interference tests have been conducted to verify a possible hydraulic connection between the percussion boreholes HFM16 and HFM19 as well as between HFM16 and the cored borehole KFM02A. The hypothesis was that the boreholes should be connected via the highly conductive fracture zone, reflector A2, which is believed to intersect HFM16 at about 60 m along the borehole and KFM02A somewhere between 400 and 520 m along the borehole.

On three separate occasions, interference was generated by means of short-time pumping in the open borehole HFM16. At each pumping occasion the expected pressure responses were registered in three isolated sections in KFM02A. During the last two tests the pressure was also registered in three sections in HFM19. The sections in KFM02A were moved to a new position before the following test, but in HFM19 the sections were unchanged throughout the entire testing period.

The results indicate a clear response in the cored borehole KFM02A. The analyses of the results from the three different interference tests, together with results from previously conducted tests, show that the most important hydraulic connections between the boreholes are found at 416–431 m and at 511–516 m along the borehole. In the observation sections containing these conductive zones, the drawdown was about 0.2 to 0.4 m during the tests which lasted for approximately four to five hours. The response time lag in KFM02A from the start of pumping varied between 40 and 65 min.

In HFM19, a clear response was also obtained, but much weaker than that in KFM02A. All sections in HFM19 shared a very similar drawdown response. Therefore, neither of the previously located anomalies in this borehole seems to have better hydraulic contact with reflector A2 than any of the others. The response time lag for the sections in HFM19 was c 155 min after start of pumping. The total drawdown varied between 0.03 and 0.05 m in these sections.

Sammanfattning

Tre korta interferenstester har genomförts för att verifiera en möjlig hydraulisk förbindelse mellan hammarborrhålen HFM16 och HFM19 samt mellan HFM16 och kärnborrhål KFM02A. Hypotesen var att hålen skulle vara konnekterade via den högkonduktiva sprickzonen, reflektor A2, som tros skära HFM16 vid ca 60 m borrhålslängd och KFM02A vid mellan ca 400 och 520 m borrhålslängd.

Vid tre tillfällen genererades en interferens genom korttidspumpning av det öppna borrhålet HFM16. Vid varje pumpning registrerades de förväntade tryckresponserna i tre avgränsade sektioner i KFM02A. Under de två sista testerna registrerades trycket även i tre sektioner i HFM19. Sektionerna i KFM02A flyttades inför varje ny test medan sektionerna var oförändrade under hela testperioden i HFM19.

Resultaten påvisar en tydlig respons i kärnborrhål KFM02A. Analysen av resultatet från de tre olika interferenstesterna, tillsammans med resultat från tidigare utförda tester, visar att den viktigaste kontakten mellan hålen återfinns vid 416–431 m samt 511–516 m borrhålslängd. I observationssektionerna som inneslöt dessa intervall var avsänkningen ca 0,2 till 0,4 m under testerna som varade i ungefär fyra till fem timmar. Tidsfördröjningen av responserna varierade mellan 40 och 65 minuter från pumpstart.

I HFM19 erhölls också en tydlig respons, men mycket svagare än den i KFM02A. Alla sektioner i HFM19 hade en mycket likartad avsänkningsrespons. Därför tycks ingen av de tidigare lokaliserade anomalierna i borrhålet ha bättre hydraulisk kontakt med reflektor A2 än någon annan. En tidsfördröjning av responsen på omkring 155 minuter uppmättes i de olika sektionerna i HFM19. Den totala avsänkningen i dessa sektioner varierade mellan 0,03 och 0,05 m.

Contents

1	Introduction	7
2	Objectives	9
3 3.1 3.2 3.3	Scope Boreholes tested Tests performed Equipment check	11 11 11 13
4 4.1 4.2	Description of equipment Overview Measurement sensors	15 15 15
5 5.1 5.2 5.3 5.4	Execution Preparations Procedure Data handling Analyses and interpretation	19 19 19 20 21
6 6.1 6.2 6.3	Results Nomenclature and symbols General information Interference test 1 in HFM16 6.3.1 Pumping borehole HFM16: 12–132 m 6.3.2 Observation section KFM02A: 102–400 m 6.3.3 Observation section KFM02A: 401–521 m	23 23 23 23 23 24 25 26
6.4	 6.3.4 Observation section KFM02A: 522–1,002 m Interference test 2 in HFM16 6.4.1 Pumping borehole HFM16: 12–132 m. 6.4.2 Observation section KFM02A: 102–459 m 6.4.3 Observation section KFM02A: 460–580 m 6.4.4 Observation section KFM02A: 581–1,002 m 6.4.5 Observation section HFM19: 12–110 m 6.4.6 Observation section HFM19: 111–150 m 	26 27 29 30 30 31 32
6.5	 6.4.7 Observation section HFM19: 151–185 m Interference test 3 in HFM16 6.5.1 Pumping section HFM16: 12–132 m 6.5.2 Observation section KFM02A: 102–339 m 6.5.3 Observation section KFM02A: 340–460 m 6.5.4 Observation section KFM02A: 461–1,002 m 6.5.5 Observation section HFM19: 12–110 m 6.5.6 Observation section HFM19: 111–150 m 6.5.7 Observation section HFM19: 151–185 m 	32 33 33 34 35 36 37 37 37 38
6.7	Summary of interference tests	38 41
7	References	47

Appendix 1	List of data files	49
Appendix 2	Test diagrams	51
Appendix 3	Result table to SICADA	59

1 Introduction

The main purpose of hydraulic interference tests is to get support for interpretations of hydraulic structures in regard to their hydraulic and geometric properties. Furthermore, interference tests may provide information about the hydraulic connectivity and hydraulic boundary conditions for the tested area. Finally, interference tests make up the basis for calibration of numerical models over the tested area.

A series of interference tests were carried out by pumping in the percussion borehole HFM16 and monitoring the pressure response in the cored borehole KFM02A and the percussion borehole HFM19 in order to verify an assumed hydraulic connection between the boreholes. The location of the boreholes within the Forsmark site investigation area is shown in Figure 1-1 together with the seismic reflector A2. This reflector is assumed to have a gentle slope towards south-east and connect the actual boreholes hydraulically. This document reports the results from the interference tests.

Figure 1-1. The investigation area at Forsmark including the candidate area selected for more detailed investigations together with the location of boreholes involved in the interference test, as well as the seismic reflector A2.

From pumping tests and flow logging performed prior to the interference tests, the total transmissivity of the pumping borehole, HFM16, was estimated at 5.3×10^{-4} m²/s according to /1/. Four separate flow anomalies were identified, at 41.0–41.5 m, 56.0–56.5 m, 58.5–59.5 m and 69.0–69.5 m.

The interference tests were carried out at the end of September to the beginning of October, 2004. The commission was conducted by Geosigma AB within the Forsmark site investigation project.

2 Objectives

The main objectives of the interference tests between HFM16, HFM19 and KFM02A were to verify the assumed hydraulic connections between the three boreholes and to roughly estimate the transmissivities of the zone(s) connecting the boreholes. From previous investigations there are reasons to believe that the seismic reflector A2, shown in Figure 2-1, which has turned out to be a highly conductive fracture zone intersecting the percussion borehole HFM16 at c 60 m along the borehole, also intersects KFM02A somewhere in the interval 400–520 m. Furthermore, it is believed that reflector A2 intersects the percussion boreholes HFM13 and HFM19 as well.

In Figure 2-1 the assumed responding boreholes to pumping in HFM16 are shown.

Figure 2-1. Key map showing the area around percussion borehole HFM16. Arrows indicate the assumed responding boreholes.

3 Scope

3.1 Boreholes tested

Technical data of the boreholes tested are shown in Table 3-1. The reference point in the boreholes is always top of casing (ToC). The Swedish National coordinate system (RT90 2.5 gon V 0:–15) is used in the x-y-direction together with RHB70 in the z-direction. The reported borehole diameter in Table 3-1 refers to the final diameter of the borehole after drilling to full depth. The borehole diameter (measured as the diameter of the drill bit) may decrease along the borehole due to wearing of the drill bit.

The coordinates of the boreholes at ground surface are shown in Table 3-2.

Borehole data											
Bh ID	Elevation of top of casing (ToC) (m a s l)	Borehole interval from ToC (m)	Casing/ Bh- diam. (m)	Inclination- top of bh (from horizon- tal plane) (°)	Dip-direction- top of borehole (from local N) (°)	Remarks	Drilling finished Date (YYYY-MM-DD)				
HFM16	3.21	0.00–12.02	0.160	-84.22	327.96	Casing ID	2003-11-10				
33		12.02–132.50	0.139			Borehole					
HFM19	3.66	0.00–12.04	0.160	-58.10	280.91	Casing ID	2003-12-18				
"		12.04–185.20	0.137			Borehole					
KFM02A	7.353	0.000–100.140	0.200	-85.385	275.764	Casing ID	2003-03-12				
"		102.000-1,002.440	0.077			Borehole					

Table 3-1. Pertinent technical data of the tested boreholes. (From SICADA).

Table 3-2. Coordinates of the tested boreholes. (From SICADA).

Borehole data									
Bh ID	Northing (m)	Easting (m)							
HFM16	6,699,721.10	1,632,466.18							
HFM19	6,699,257.59	1,631,626.93							
KFM02A	6,698,712.501	1,633,182.863							

3.2 Tests performed

Three consecutive interference tests (1–3), were generated by a series of short flow periods in HFM16. In KFM02A, the observation sections were moved between the tests in order to identify the most distinct responses in this borehole. The observation sections in HFM19 were not moved between the tests and responses were registered in the same borehole sections during two consecutive tests (test 2 and 3).

The borehole sections involved in the different interference tests are listed in Table 3-3. The times referred to in Table 3-3 are the start and stop times of data logging for the various sections.

The test performance was according to the Geosigma quality plan ("Kvalitetsplan för SKB uppdrag – Undersökning av hydraulisk kontakt mellan Borrhålen HFM16 och KFM02A, Stig Jönsson, 2004-09-23." Geosigma and SKB internal controlling document) and in compliance with the methodology description for interference tests, SKB MD 330.003, Metodbeskrivning för interferenstester (SKB internal controlling document).

The distances between the pumping borehole and the observation borehole sections are shown in Table 3-4. The distances are measured between the hydraulic points of application in the observation borehole sections. In HFM16, the point of application was selected from a point of balance calculation considering the contribution from four different flow anomalies detected in previous single-hole hydraulic tests and flow logging. In the observation boreholes, the points of application were based on the flow anomalies in the sections and their associated transmissivities. The points of application together with the length and transmissivities of the sections from previous tests are presented in Table 3-5. The transmissivities are estimated from previous hydraulic tests in the boreholes, /1, 2, 3, 4/.

Table 3-3. Configuration of borehole sections during the different interference testsperformed in HFM16.

Interfer	Interference tests in HFM16									
Test #	Bh ID	Test section (m)	Test type¹	Test config	Test start date and time (YYYY-MM-DD tt:mm)	Test stop date and time (YYYY-MM-DD tt:mm)				
1–3	HFM16	12.02-132.50	1B	Open borehole	2004-09-29 12:00	2004-10-26 09:30				
1	KFM02A	102–400	2	Above packer	2004-10-04 13:34	2004-10-05 12:29				
"	"	401–521	2	Between packers	2004-10-04 13:27	2004-10-05 12:22				
"	"	522-1,002	2	Below packer	2004-10-04 13:30	2004-10-05 12:25				
2	KFM02A	102–459	2	Above packer	2004-10-05 15:55	2004-10-06 08:20				
"	"	460–580	2	Between packers	2004-10-05 15:46	2004-10-06 08:16				
"	"	581–1,002	2	Below packer	2004-10-05 15:49	2004-10-06 08:19				
3	KFM02A	102–339	2	Above packer	2004-10-06 11:24	2004-10-07 08:32				
"	33	340–460	2	Between packers	2004-10-06 11:16	2004-10-07 08:26				
"	"	461–1,002	2	Below packer	2004-10-06 11:19	2004-10-07 08:29				
2	HFM19	12–110	2	Above packer	2004-10-05 12:00	2004-10-06 11:59				
"	"	111–150	2	Between packers	2004-10-05 12:00	2004-10-06 11:48				
"	"	151–185.2	2	Below packer	2004-10-05 12:00	2004-10-06 11:55				
3	HFM19	12–110	2	Above packer	2004-10-06 12:00	2004-10-07 09:21				
"	"	111–150	2	Between packers	2004-10-06 11:51	2004-10-07 09:15				
"	"	151–185.2	2	Below packer	2004-10-06 11:58	2004-10-07 09:11				

¹⁾ 1B: Pumping test-submersible pump, 2: Interference test

Pumping interval in HFM16	Distance to the point of application in the observation sections during the interference tests.							
	Bh ID	Bh ID Section		Test #				
12–132 m	KFM02A	102–400 m	1,236	1				
33	KFM02A	401–521 m	1,298	1				
33	KFM02A	522–1,002 m	1,299	1				
33	KFM02A	102–459 m	1,236	2				
33	KFM02A	460–580 m	1,287	2				
"	KFM02A	581–1,002 m	1,406	2				
"	KFM02A	102–339 m	1,236	3				
"	KFM02A	340–460 m	1,267	3				
"	KFM02A	461–1,002 m	1,287	3				
33	HFM19	12–110 m	1,010	2–3				
33	HFM19	111–150 m	1,035	2–3				
³³	HFM19	151–185 m	1,050	2–3				

 Table 3-4. Calculated distances to the observation borehole sections involved in the interference tests in HFM16.

Table 3-5.	Point of applicati	on in the bo	orehole sections,	together	with length and
estimated	transmissivities of	of the section	ons from previou	s tests.	-

Bh ID	Section	Point of application (m below TOC)	Length of section (m)	Transmissivity (m²/s)
HFM16	12–132	56	120	5.3×10 ⁻⁴
KFM02A	102–400 m	122	298	6.0×10 ⁻⁴
KFM02A	401–521 m	555	120	4.7×10 ⁻⁶
KFM02A	522–1,002 m	558	480	5.4×10 ⁻⁹
KFM02A	102–459 m	122	357	3.2×10 ⁻⁴
KFM02A	460–580 m	513	120	2.5×10 ⁻⁶
KFM02A	581–1,002 m	850	421	3.8×10-9
KFM02A	102–339 m	122	237	6.0×10 ⁻⁴
KFM02A	340–460 m	428	120	2.5×10 ⁻⁶
KFM02A	461–1,002 m	513	541	2.4×10 ⁻⁶
HFM19	12–110 m	101	98	4.0×10 ⁻⁵
HFM19	111–150 m	149	39	1.6×10⁻⁵
HFM19	151–185 m	176	34	2.8×10-4

3.3 Equipment check

An equipment check was performed before going to the field and at the site as a simple and fast test to establish the operating status of sensors and other equipment. In addition, calibration constants were implemented and checked.

To check the function of the pressure sensors, the pressure in air was recorded and found to be as expected. Submerged in water, the pressure coincided well, while lowering, with the total head of water.

4 Description of equipment

4.1 Overview

In the pumping borehole HFM16, a specially designed equipment system, described in Section 5.2, was used. This equipment was installed by personnel from PLU-Forsmark In the observation borehole KFM02A, the PSS (Pipe String System), described in SKB MD 345.101, was employed to lower and install the 120 m long test section at three different positions in the borehole (see Table 3-3). The equipment installed and facilities used to lower the test section in HFM19 consisted of the following parts:

- Packers for isolating the test section.
- Wire to anchor the packers.
- Manual winch for hoisting the packers, mounted on the casing.
- Aluminium rods connected to the packers.
- Nitrogen gas bottle and pressure regulator.
- Tecalan hose for packer pressurizing and pressure distribution to transducers.
- PEM hose connected to Tecalan hose.
- Mini-Troll pressure transducers.

Most of the equipment used in HFM19 is very similar to the compound test system normally referred to as HTHB (Swedish abbreviation for Hydraulic Test System for Percussion Boreholes), described in SKB MD 326.001 (SKB internal controlling document). The HTHB unit is designed for percussion boreholes to perform pumping tests in open boreholes, below a single packer or between double packers in isolated sections of the boreholes, down to a total depth of 200 m. A number of other hydraulic tests can be performed with the HTHB system although not described here. Pumping tests can be conducted, either at a constant hydraulic head or, alternatively, with a constant flow rate.

4.2 Measurement sensors

Technical data of the sensors used and estimated data specifications of the test system for pumping tests are given in Table 4-1.

Table 4-1. Technical data of measurement sensors and estimated specifications of the test system for pumping tests (based on current laboratory and field experiences).

Technical spe Parameter	cification	Unit	Sensor	Test system	Comments	
p-relative	Output signal	mA	Digital	Same as for the sensor	Mini-Troll is a combined	
(Mini-Troll)	Meas. range	kPa	0 –206.8		sensor and data logger unit	
	Resolution	kPa	0.01			
	Accuracy	kPa	±0.2 *			

*Includes hysteresis, linearity and repeatability

The Mini-Troll pressure loggers used in the observations sections have a measuring range of 0-206.8 kPa and are supplied with a 16-bit A-D converter, cf Table 4-1.

Table 4-2 presents the type and position of pressure sensors in the borehole and the position of the measurement point for each transducer used in the test. Positions are given in metre from the reference point, i.e. top of casing (ToC).

Equipment affecting the wellbore storage coefficient is given in terms of diameter of the submerged item. Position is given as "in section" or "above section" where "section" refers to an isolated test section.

Table 4-2.	Type and pos	sition of sensors	(from ToC)	and equipment	that may affect
wellbore s	torage in the	pumping sectio	n during the	different interfe	erence tests.

Borehole information			Sensors		Equipment in test section affecting wellbore storage (WBS)				
Test #	Bh ID	Test interval (m)	Test configu- ration	Test type¹	Туре	Position ²⁾ (m b ToC)	Function	Position ³ relative test section	Outer diam (mm)
1–3	HFM16	12–132	Open	1B	Absolute	13	Transducer wire	In section	5
			borehole		pressure	9	Pump hose	Above section	60
						9–11.5	Pump	Above section	170
1	KFM02A	102–400	Above	2	Absolute	13.0	Transducer cable	Above section	9.1
			packers		pressure		2xTecalan hose	Above section	6
							Aluminium pipe	Above section	33
							2xHydraulic hose	Above section	11.7
1	KFM02A	401–521	Between	2	Relative	16.7 (401)	Transducer cable	In section	9.1
			packers		pressure	ire	2xTecalan hose	In section	6
							Aluminium pipe	In section	33
1	KFM02A	522–1,002	Below packers	2	Relative pressure	16.3 (522)		In borehole	
2 1	KFM02A	102–459	02–459 Above packers	2	Absolute pressure	e 13.0 e	Transducer cable	Above section	9.1
							2xTecalan hose	Above section	6
							Aluminium pipe	Above section	33
								2xHydraulic hose	Above section
2	KFM02A	460–580	–580 Between packers	2	Relative	18.53	Transducer cable	In section	9.1
					pressure	(460)	2xTecalan hose	In section	6
							Aluminium pipe	In section	33
2	KFM02A	581–1,002	Below packers	2	Relative pressure	19.5 (581)		In borehole	
3	KFM02A	102–339	Above	2	Absolute	13.0	Transducer cable	Above section	9.1
			packers		pressure		2xTecalan hose	Above section	6
							Aluminium pipe	Above section	33
							2xHydraulic hose	Above section	11.7
3	KFM02A	340–460	Between	2	Relative	19.4 (340)	Transducer cable	In section	9.1
			packers	pressure	pressure	е	2xTecalan hose	In section	6
							Aluminium pipe	In section	33
3	KFM02A	461–1,002	Below packers	2	Relative pressure	18.52 (461)		In borehole	

Borehole information			Sensors		Equipment in test section affecting wellbore storage (WBS)				
Test #	Bh ID	Test interval (m)	Test configu- ration	Test type¹	Туре	Position ²⁾ (m b ToC)	Function	Position ³ relative test section	Outer diam (mm)
2–3	HFM19	12–110	Above	2	Absolute	10.4	2xPEM hose c	Above section	32
			packers		pressure		10m	Above section	8
		2xTecalan hose	Above section	6					
							Tecalan hose	Above section	20
							Aluminium rod Steel wire	Above section	4
2–3	HFM19	111–150	Between	2	Absolute	10.5 (111)	Tecalan hose	In section	6
			packers		pressure	ressure	Tecalan hose	In section	8
							Aluminium rod	In section	20
							Steel wire	In section	4
2–3	HFM19	151–185.2	Below packers	2	Absolute pressure	13.1 (151)		In borehole	

¹⁾ 1B: Pumping test-submersible pump, 2: Interference test (observation borehole during pumping in another borehole).

²⁾ Distances within parenthesis refer to the distances to the actual pressure measurement point. Pressure changes are then distributed to the transducer via a water-filled tecalan hose.

³⁾ Position of equipment that can affect wellbore storage. Position given as "In Section" or "Above Section" or "In borehole".

5 Execution

The interference test was performed according to Activity Plan AP PF 400-04-74 (SKB internal controlling document) and Geosigma quality plan ("Kvalitetsplan för SKB uppdrag – Undersökning av hydraulisk kontakt mellan Borrhålen HFM16 och KFM02A, Stig Jönsson, 2004-09-23.", Geosigma and SKB internal controlling document). The test was performed in accordance with the methodology description for interference tests, SKB MD 330.003, (Metodbeskrivning för interferenstester). A simplified response analysis was also made. However, no response matrix was prepared due to the few observation sections available. For the same reason, only one response diagram, (for the third test) was prepared.

The extent of this commission was somewhat limited. For example, the quantitative evaluation only involved the most important sections in KFM02A based on a reduced variety of diagrams and evaluation methods.

5.1 Preparations

All sensors included in the test system are calibrated at the Geosigma engineering workshop in Librobäck, Uppsala. Calibration is performed on a yearly basis, or more often if needed. The Mini-Troll transducers employed in the observation boreholes are using the manufacturer's calibration constants that were installed by the manufacturer. Before the tests, function checks and cleaning of equipment were conducted according to the Activity Plan.

5.2 Procedure

The interference tests in HFM16 were carried out as a series of short constant flow rate tests followed by pressure recovery periods. The flow periods were approximately 3–5 h long and the subsequent recovery period was measured over-night, see Figures A2-13, A2-14 and A2-15 in Appendix 2. The pressure interference was recorded in three sections in KFM02A and HFM19, respectively (below, above and between packers), during both the flow- and recovery period of the interference tests, see Table 4-2.

The installation of pumping equipment in HFM16 was conducted by personnel from Forsmark site investigation. A large 6" submersible pump was used to provide maximum drawdown. At the top of the borehole the flow rate could be manually adjusted by a control valve, in case the pumping would introduce a too large drawdown. The pump diameter set restrictions to the placement of the pump. It would only fit within the cased part of the borehole which limited the maximum possible drawdown of the groundwater level to c 6–8 m, cf Table 3-1. Because of the flow restriction a flow meter would introduce, the flow rate was measured manually using a 100 L bucket and a stop watch. The flow rate was c 400 L/min. The water intake of the pump was located 11 m below ToC, see Table 4-2.

In HFM19 the packers were lowered using the winch and wire. In addition, aluminium rods were connecting the packers to each other and the upper packer to the surface. This was done as a precaution, in case the section should get stuck and would have to be pulled out with a major force. Two water-filled Tecalan hoses distributed the pressure from the interval below the test section as well as within the test section to the transducers. The Tecalan hoses were connected to a 32 mm diameter PEM-hose approximately 15 m below top of casing. Mini-Troll transducers, a combined pressure transducer and data logger, were then lowered into the PEM-hoses for pressure registration. The Mini-Troll transducers are connected to internal loggers and they were regularly withdrawn from the borehole to download the data into a computer.

In observation borehole KFM02A the monitoring of pressure/water level was carried out using Mini-Troll pressure transducers. For the isolated test section and the section below the packers, the pressure changes were transmitted via water-filled Tecalan hoses to the transducers attached to the pipe string approximately 15 m below top of casing. These transducers were measuring the relative pressure. In the top section, between the water surface and upper packer, an absolute pressure transducer was used.

The Mini-Troll pressure loggers in the observation borehole KFM02A were logging pressure with an interval of 300 s with an extra condition to log as frequently as every 10 s for a pressure difference of at least 0.1 kPa between two consecutive scans. The Mini-Troll transducers are fitted with cables leading up to the surface, where transferring of data into a laptop PC can be conveniently executed at any time. As a backup, the pressure transducers normally used together with the PSS were also installed and connected to the data acquisition system built into the PSS. In the pumping borehole, the logging intervals were similar to the ones in KFM02A. The shortest possible logging frequency was once every 30 seconds. In observation borehole HFM19 the pressure logging was done at a constant rate of once every two minutes. All transducers and logging intervals are summarized in Table 5-1.

Prior to and after the interference tests, manual measurements of groundwater levels were performed in the observation boreholes KFM02A and HFM19 as well as in the pumping borehole HFM16.

Bh ID	Test section	Transducer	Logging interval (s)	condition	Conditional interval (s)
HFM16	-	Mini-Troll, absolute	300	dP > 0.1 kPa	30
KFM02A	Top section	Mini-Troll, absolute	300	dP > 0.1 kPa	10
KFM02A	Other sections	Mini-Troll, relative	300	dP > 0.1 kPa	10
HFM19	All sections	Mini-Troll, absolute	300	-	-

Table 5-1. Logging intervals of the pressure sensors used in the interference tests.

5.3 Data handling

Pressure data from both the pumping borehole, HFM16, and the observation boreholes KFM02A and HFM19 were registered and stored by the Mini-Troll transducers. The pressure data were then downloaded to a laptop computer. The software handling the interface between the logger and computer is called Win-Situ. The data files produced by the logger are binary files which are converted by Win-Situ to ordinary text files.

The produced logger files from the boreholes are imported into the evaluation software AQTESOLV and plotted in different diagrams listed in the Instruction for analysis of injection- and single-hole pumping tests (SKB MD 320.004, SKB internal controlling document) and the methodology description for interference tests.

A list of the data files from the data loggers is shown in Appendix 1.

5.4 Analyses and interpretation

As mentioned in Section 5.2, the interference tests were performed as constant flow rate tests. Methods for constant-flow tests in an equivalent porous medium were used by the analyses and interpretation of the tests.

The main objective of the interference tests was to verify the assumed hydraulic connectivity between the pumping borehole, HFM16, and the observation boreholes, KFM02A and HFM19. This could firstly be done by a qualitative evaluation of pressure versus time data from the tests. A secondary task was to evaluate selected data from the observation section in KFM02A and make quantitative analyses with regard to transmissivity and storativity.

All available data were used for the primary qualitative analyses. The qualitative analysis is primarily based on time versus pressure diagrams and a response diagram. The qualitative evaluation was made from analyses of log-log diagrams of drawdown data together with the corresponding pressure derivatives versus time. In particular, pseudo-radial flow is reflected by a constant (horizontal) derivative in the diagrams, whereas no-flow- and constant head boundaries are characterized by an increase and decrease of the derivative, respectively. Pressure versus time diagrams are presented for all test sections in Appendix 2.

Quantitative evaluation was only undertaken for the responses in the pumping borehole HFM16 according to the methods described in /5/ and for the mid- and lower sections of KFM02A during interference test 3. The transient analysis was performed applying a special version of the test analysis software AQTESOLV that enables both visual and automatic type curve matching. Thus, the quantitative transient evaluation is carried out as an iterative process of type curve matching and automatic non-linear regression.

The transient evaluation in the selected observation sections started by identifying flow regimes (pseudo-linear, pseudo-radial and pseudo-spherical flow, respectively) and possible outer boundary conditions. Different values were applied on the filter coefficient (step length) by the calculation of the pressure derivative to investigate the effect of this coefficient on the derivative. It is desired to achieve maximum smoothing of the derivative without altering the original shape of data.

The quantitative, transient interpretation of the hydraulic parameters (transmissivity and storativity) is normally based on the identified pseudo-radial flow regime during the tests in log-log and lin-log data diagrams. In the tests presented in this report, the pumping time was however too short to reach a pseudo-radial flow regime. A preliminary transient interpretation could still be made. Transient analysis from the observation boreholes was only made for two sections in KFM02A. The sections were chosen based on the results from the preliminary qualitative analyses (response analysis). Furthermore, only the flow period was utilized for transient evaluation.

From the transient analysis of the tests, the different estimates of transmissivity for the actual test were checked and one of them was assessed to be the best representative transmissivity and storativity of the formation.

6 Results

6.1 Nomenclature and symbols

The nomenclature and symbols used for the results of the interference tests are in agreement with the Instruction for analysis of single-hole injection- and pumping tests (SKB MD 320.004), Version 1.0 (Metodinstruktion för analys av injektions- och enhålspumptester) and the methodology description for interference tests (SKB MD 330.003). Additional symbols used are explained in the text. The nomenclature applied in the AQTESOLV software is explained in the beginning of Appendix 2.

6.2 General information

Below, the results from the three interference tests in HFM16 are presented. Each test has its own chapter in the text. Within each chapter the different borehole sections involved in the test and the pertinent results are lined out. Test data diagrams are found in Appendix 2. For tests 1 and 2, only linear overview test data diagrams for the actual borehole sections are presented since no quantitative evaluation was made for these tests. For test 3, linear overview diagrams are firstly presented together with log-log and lin-log diagrams of the responses. In the latter diagrams the evaluation of the tests are displayed.

The type of pressure sensors used in the different observation sections is shown in Table 4-2. The pressure in test section presented in the tables below is calculated based on the actual location of the pressure transducers and the distance to the top of the test section.

The barometric pressure during the interference test period is shown in Figure A2-12 in Appendix 2. Since pressure differences were used and the test periods were short, corrections for variations of the barometric pressure may not be necessary. For absolute pressure sensors, the barometric pressure changes have been subtracted from the absolute pressure when judged necessary and are in such cases described in the text.

No corrections of measured data for changes of tidal fluctuations have been made by the analysis of the data. The precipitation was less than 1 mm per day during the interference test period and was not considered in the analysis.

6.3 Interference test 1 in HFM16

The barometric pressure decreased c 1.5 kPa between noon and midnight during the day of the test. Section 401–521 m in KFM02A was open to the atmosphere because the test valve was left open and the gauge pressure (pressure relative to atmospheric pressure) was thus calculated by subtracting the barometric pressure in this section. The top section (102–400 m) in KFM02A and the pumping borehole HFM16 were also open to the atmosphere, and the relative pressure was calculated for these sections as well. Pressure data from the deepest section in KFM02A (522–1,002 m) have not been corrected for changes in barometric pressure because a relative sensor was used in this section, cf Table 4-2.

6.3.1 Pumping borehole HFM16: 12–132 m

General test data for the pumping borehole HFM16 (12–132 m), are presented in Tables 6-1, 6-2 and 6-3. An overview of the pressure and flow rate in the pumping borehole HFM16 during interference test 1 is presented in Figure A2-1 in Appendix 2.

General test data					
Pumping borehole	HFM16 (12–132 m)				
Test type ¹	Constant Rate w	Constant Rate withdrawal and recovery test			
Test section (open borehole/packed-off section):	Open borehole				
Test No	1				
Field crew	K. Gokall-Norma	n, P-T Tammela (GE0	OSIGMA AB)		
Test equipment system	-				
General comment	Interference test				
	Nomenclature	Unit	Value		
Borehole length	L	m	132.50		
Casing length	L _c	m	12.02		
Test section- secup	Secup	m	12.02		
Test section- seclow	Seclow	m	132.50		
Test section length	L _w	m	120.48		
Test section diameter ²	2×r _w	mm	139		
Test start (start of pressure registration)		yymmdd hh:mm	040929 12:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	041004 14:46		
Stop of flow period		yymmdd hh:mm:ss	041004 19:16		
Test stop (stop of pressure registration)		yymmdd hh:mm	041026 09:30		
Total flow time	t _p	min	270		
Total recovery time	t _F	min	1,025		

Table 6-1. General test data for interference test 1 in borehole HFM16: 12–132 m.

¹⁾ Constant Head injection and recovery or Constant Rate withdrawal and recovery.

²⁾ Nominal diameter.

Table 6-2. Pressure and groundwater level data during interference test 1 in HFM16.

Pressure data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Relative pressure in borehole before start of flow period	p _i	kPa	88.1
Relative pressure in borehole before stop of flow period	p _p	kPa	42.0
Relative pressure in borehole at stop of recovery period	p _F	kPa	85.1
Maximum pressure change during flow period	dpp	kPa	45.9

Manual groundwa	GW level			
Date YYYY-MM-DD	Time tt:mm	Time (min)	(m b. ToC)	(m a s l)
2004-10-04	14:32	-14	2.56	0.66
2004-10-04	19:14	268	7.32	-4.07

Flow data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Flow rate from test section just before stop of flow period	Q _p	m³/s	6.7×10⁻³
Mean (arithmetic) flow rate during flow period	Q _m	m³/s	6.7×10⁻³
Total volume discharged during flow period	Vp	m³	109

Table 6-3. Flow rate data during interference test 1 in HFM16.

Comments on the test

The test was performed as a constant-flow rate pumping test, see Figure A2-1. The flow rate was c 400 L/min and the duration of the flow period was c 4.5 h. The final drawdown was 4.76 m. Pressure recovery was measured for c 17 h.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.3.2 Observation section KFM02A: 102–400 m

General test data from the observation section KFM02A, 102–400 m, is presented in Table 6-4. In Figure A2-2 an overview of the pressure responses in observation borehole KFM02A is shown.

Table 6-4. Pressure and groundwater level data for observation section KFM02A: 102–400 m.

Pressure data, KFM02A (102–400 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	931.8
Relative pressure in test section before stop of flow period	p _p	kPa	931.8
Relative pressure in test section at stop of recovery period	p _F	kPa	931.8
Maximal pressure change during flow period	dpp	kPa	0.05

Manual groundwater level measurements, KFM02A (102–400 m) GW level						
Date YYYY-MM-DD	Time tt:mm	Time (min)	(m b. ToC)	(m a s l)		
2004-10-04	13:13	-93	6.75	0.62		
2004-10-04	17:37	171	6.76	0.61		

Comments on the test

No significant response to the pumping in HFM16 can be detected in this observation section, cf Figure A2-2. The potential drawdown during the flow period is less than 0.01 m. The original pressure data gave an impression of an apparent response from pumping. However, this could be fully explained by the change of barometric pressure, cf Figure A2-15.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.3.3 Observation section KFM02A: 401–521 m

Selected pressure data from the observation section KFM02A, 401–521 m, is presented in Table 6-5. An overview of the pressure responses in observation borehole KFM02A is shown in Figure A2-2.

Table 6-5. Pressure data for observation section KFM02A: 401–521 m.

Pressure data, KFM02A (401–521 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	3,856.4
Relative pressure in test section before stop of flow period	p _p	kPa	3,852.3
Relative pressure in test section at stop of recovery period	p _F	kPa	3,853.8
Maximal pressure change during flow period	dpp	kPa	4.1

Comments to the test

The total drawdown during the flow period was c 0.41 m, cf Figure A2-2. A drawdown of c 0.01 m in this section was reached c 50 min after start of pumping in HFM16. Drawdown continued to increase c 150 min after the end of the flow period and there is a total recovery of only c 0.26 m during the entire recovery period of about 17 h. This fact may be due to a natural decreasing trend of the pressure during the test period.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.3.4 Observation section KFM02A: 522–1,002 m

Pressure data from the observation section KFM02A, 522–1,002 m, are presented in Table 6-6. An overview of the pressure responses in observation borehole KFM02A is shown in Figure A2-2.

Pressure data, KFM02A (522–1,002 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	5,040.6
Relative pressure in test section before stop of flow period	p _p	kPa	5,040.7
Relative pressure in test section at stop of recovery period	p _F	kPa	5,041.0
Maximal pressure change during flow period	dpp	kPa	-0.13

Table 6-6. Pressure data for observation section KFM02A: 522–1,002 m.

Comments on the test

No significant response to pumping in HFM16 occurred in this section, cf Figure A2-2. An apparent pressure increase occurred in the section during the flow period, but this is due to the fact that a gauge transducer was used. Since the atmospheric pressure fell during the test period, a virtual rise of pressure was introduced in the section which was not in direct contact with the atmosphere and was thus not affected by the change in the atmospheric pressure.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4 Interference test 2 in HFM16

The barometric pressure was relatively constant during the test and has thus not been corrected for in the observation sections in HFM19 and KFM02A, see Figure A2-15. On the other hand, pressure data from the observation sections are corrected to give values representing the pressure at the top of each test section, depending on the individual transducers. All data from the pumping borehole, HFM16, have though been corrected for changes in the atmospheric pressure to obtain the relative pressure.

6.4.1 Pumping borehole HFM16: 12–132 m.

General test data for the open-hole pumping test in HFM16, 12–132 m, is presented in Tables 6-7, 6-8 and 6-9. An overview of the pressure and flow rate in the pumping borehole HFM16 during interference test 2 is presented in Figure A2-3 in Appendix 2.

General test data					
Pumping borehole	HFM16 (12–132 m)				
Test type ¹	Constant Rate v	Constant Rate withdrawal and recovery test			
Test section (open borehole/packed-off section):	Open borehole				
Test No	2				
Field crew	K Gokall-Norma	n, P-T Tammela (GEC	SIGMA AB)		
Test equipment system	-				
General comment	Interference tes	t			
	Nomenclature	Unit	Value		
Borehole length	L	m	132.50		
Casing length	L _c	m	12.02		
Test section- secup	Secup	m	12.02		
Test section- seclow	Seclow	m	132.50		
Test section length	L _w	m	120.48		
Test section diameter ²	2×r _w	mm	139		
Test start (start of pressure registration)		yymmdd hh:mm	040929 12:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	041005 16:48		
Stop of flow period		yymmdd hh:mm:ss	041005 19:31		
Test stop (stop of pressure registration)		yymmdd hh:mm	041026 09:30		
Total flow time	t _p	min	163		
Total recovery time	t _F	min	765		

Table 6-7. General test data for interference test 2 in borehole HFM16: 12–132 m.

¹⁾ Constant Head injection and recovery or Constant Rate withdrawal and recovery.

²⁾ Nominal diameter.

Table 6-8. Pressure ar	d groundwater	level data during	interference	test 2 in HFM16.
------------------------	---------------	-------------------	--------------	------------------

Pressure data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Relative pressure in borehole before start of flow period	pi	kPa	85.6
Relative pressure in borehole before stop of flow period	pp	kPa	44.7
Relative pressure in borehole at stop of recovery period	p _F	kPa	84.1
Maximal pressure change during flow period	dpp	kPa	40.9

Manual groundwater level measurements, HFM16 (12-132 m)					
Date	Time	Time (min)		(m b. To	C) (masl)
2004-10-05	16:46	2		2.82	0.40
2004-10-05	19:29	161		7.07	-3.82

Table 6-9. Flow data during interference test 2 in HFM16.

Flow data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Flow rate from test section just before stop of flow period	Q _p	m³/s	6.7×10⁻³
Mean (arithmetic) flow rate during flow period	Q _m	m³/s	6.7×10⁻³
Total volume discharged during flow period	V _p	m ³	66

Comments on the test

The test was performed as a constant-flow rate pumping test, see Figure A2-3. The flow rate was c 400 L/min and the duration of the flow period was c 2.5 h. The pressure recovery was measured for almost 13 h.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.2 Observation section KFM02A: 102–459 m

General test data from the observation section KFM02A, 102–459 m, during interference test 2 in HFM16 are presented in Table 6-10 and in Figure A2-4 in Appendix 2.

Table 6-10. Pressure and groundwater level data for observation section KFM02A:102-459 m.

Pressure data, KFM02A (102–459 m)	Nomenclature	Unit	Value
Absolute pressure in test secion before start of flow period	pi	kPa	1,032.5
Absolute pressure in test section before stop of flow period	p _p	kPa	1,032.5
Absolute pressure in test section at stop of recovery period	p _F	kPa	1,032.0
Maximal pressure change during flow period	dpp	kPa	0.03

Manual groundwa	GW level			
Date	Time	Time	(m b. ToC)	(masl)
YYYY-MM-DD	tt:mm	(min)		
2004-10-05	12:19	-269	6.77	0.60
2004-10-05	15:31	-77	6.75	0.62
2004-10-05	15:37	-71	6.75	0.62

Comments on the test

There is no indication of hydraulic connectivity between section 102–459 m in borehole KFM02A and borehole HFM16. The pressure drawdown continues to decrease throughout the recovery period, see Figure A2-4.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.3 Observation section KFM02A: 460-580 m

Pressure data from the observation section KFM02A, 460–580 m, are presented in Table 6-11 and in Figure A2-4 in Appendix 2.

Table 0-11. Thessule data for observation section in $M0ZA$. $400-300$ m	Table 6-11.	Pressure	data for	observation	section	KFM02A:	460–580 m.
---	-------------	----------	----------	-------------	---------	---------	------------

Pressure data, KFM02A (460–580 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	4,452.9
Relative pressure in test section before stop of flow period	pp	kPa	4,450.7
Relative pressure in test section at stop of recovery period	p _F	kPa	4,451.5
Maximal pressure change during flow period	dpp	kPa	2.16

Comments on the test

A clear response to pumping was detected in this section, see Figure A2-4. The total drawdown during the flow period was c 0.21 m. A drawdown of c 0.01 m was reached c 50 min after the pumping started in HFM16. The drawdown continued to increase c 100 min after the end of the flow period and there was a total recovery of only c 0.08 m during the recovery period of c 13 h duration. This fact may be due to a natural decreasing trend of the pressure during the test period.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.4 Observation section KFM02A: 581–1,002 m

Pressure data from the observation section KFM02A, 581–1,002 m, during interference test 2 in HFM16 are presented in Table 6-12 and in Figure A2-4 in Appendix 2.

Table 6-12.	Pressure	data for	observation	section	KFM02A:	581-1,002 m.
-------------	----------	----------	-------------	---------	---------	--------------

Pressure data, KFM02A (581–1,002 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	5,621.4
Relative pressure in test section before stop of flow period	pp	kPa	5,620.4
Relative pressure in test section at stop of recovery period	p _F	kPa	5,620.0
Maximal pressure change during flow period	dpp	kPa	0.95

Comments on the test

No indication of hydraulic response in this section can be found. The pressure decreased before the start of the flow period and continued to decrease throughout most of the recovery period. This behaviour is interpreted to be caused primarily by factors other than the pumping in HFM16, probably by natural trends.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.5 Observation section HFM19: 12–110 m

Pressure- and groundwater level data from the observation section HFM19, 12–110 m, are presented in Table 6-13. An overview of the pressure is presented in Figure A2-5 in Appendix 2.

Table 6-13. Pressure and groundwater level data for observation section HFM19:12–110 m.

Pressure data, HFM19 (12–110 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	p _i	kPa	170.7
Absolute pressure in test section before stop of flow period	p _p	kPa	171.0
Absolute pressure in test section at stop of recovery period	p _F	kPa	170.5
Maximal pressure change during flow period	dpp	kPa	-0.32

Manual groundwater I	GW level			
Date YYYY-MM-DD	Time tt:mm	Time (min)	(m b. ToC)	(m a s l)
2004-10-05	18:21	93	3.48	0.71

Comments on the test

A weak initial response was detected, but c 30 min after start of pumping an unexpected peak in pressure appeared, and the pressure was not back to normal background levels until the end of the flow period. There was no precipitation or sudden change in barometric pressure during the test period that could explain the increased pressure. The drawdown reached a maximum of ca 0.06 m some five hours before the end of the recovery period (total recovery time was c 16 h). After this time, the pressure slowly increased again. The borehole section was probably unaffected by the pumping in HFM16.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.6 Observation section HFM19: 111-150 m

Pressure data from the observation section HFM19, 111–150 m, are presented in Table 6-14. An overview of the pressure is presented in Figure A2-5 in Appendix 2.

	Table 6-14.	Pressure data	for observation	section	HFM19: 1	111–150 m.
--	-------------	---------------	-----------------	---------	----------	------------

Pressure data, HFM19 (111–150 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	p _i	kPa	994.5
Absolute pressure in test section before stop of flow period	p _p	kPa	994.5
Absolute pressure in test section at stop of recovery period	p _F	kPa	993.8
Maximal pressure change during flow period	dpp	kPa	

Comments on the test

Test results are very similar to the ones described above from HFM19, 12–110 m.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.4.7 Observation section HFM19: 151–185 m

Pressure data from the observation section HFM19, 151–185 m, are presented in Table 6-15. An overview of the pressure is presented in Figure A2-5 in Appendix 2.

Table 6-15.	Pressure data	for observation	section HFM1	9: 151-185 m.
-------------	---------------	-----------------	--------------	---------------

Pressure data, HFM19 (151–185 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	p _i	kPa	1,327.4
Absolute pressure in test section before stop of flow period	p _p	kPa	1,327.5
Absolute pressure in test section at stop of recovery period	p _F	kPa	1,326.9
Maximal pressure change during flow period	dpp	kPa	

Comments on the test

Test results are very similar to the ones described above from HFM19, 12–110 m and HFM19, 111–150.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.5 Interference test 3 in HFM16

The barometric pressure was relatively constant during the test and has thus not been corrected for in any of the observation sections in HFM19 or KFM02A, see Figure A2-15. On the other hand, the pressure data from the observation sections are corrected to give values representing the pressure at the top of each test section, relative or absolute, depending on the individual transducers. All data from the pumping borehole, HFM16, have though been corrected for changes in the atmospheric pressure.

6.5.1 Pumping section HFM16: 12–132 m

General test data for the open-hole pumping test in section HFM16, 12–132 m, are presented in Tables 6-16, 6-17 and 6-18. An overview of the pressure and flow rate in the pumping borehole HFM16 during interference test 3 is presented in Figure A2-6 in Appendix 2.

General test data				
Pumping borehole	HFM16 (12–132 m)			
Test type ¹	Constant Rate withdrawal and recovery test			
Test section (open borehole/packed-off section):	Open borehole			
Test No	3			
Field crew	K. Gokall-Norm	an, C. Hjerne (GEOS	IGMA AB)	
Test equipment system	-			
General comment	Interference tes	st		
	Nomenclature	Unit	Value	
Borehole length	L	m	132.50	
Casing length	L _c	m	12.02	
Test section- secup	Secup	m	12.02	
Test section- seclow	Seclow	m	132.50	
Test section length	L _w	m	120.48	
Test section diameter ²	2×r _w	mm	139	
Test start (start of pressure registration)		vvmmdd hh:mm	040929 12:00	
Packer expanded		vymmdd hh:mm:ss	_	
Start of flow period		yymmdd hh:mm:ss	041006 13:03	
Stop of flow period		yymmdd hh:mm:ss	041006 17:31	
Test stop (stop of pressure registration)		yymmdd hh:mm	041026 09:30	
Total flow time	t _p	min	268	
Total recovery time	t _F	min	894	

Table 6-16. General test data for interference test 3 in borehole HFM16: 12–132 m.

¹⁾ Constant Head injection and recovery or Constant Rate withdrawal and recovery.

²⁾ Nominal diameter.

Pressure data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Relative pressure in borehole before start of flow period	p _i	kPa	84.7
Relative pressure in borehole before stop of flow period	p _p	kPa	39.2
Relative pressure in borehole at stop of recovery period	p _F	kPa	82.9
Maximal pressure change during flow period	dpp	kPa	45.6

Table 6-17. Pressure and groundwater level data during interference test 3 in HFM16.

Manual groundwater level measurements, HFM16 (12–132 m)				GW level		
Date	Time	Time		(m b. To	oC) (masl)	
	tt:mm	(min)				
2004-10-06	13:01	-2		2.91	0.32	
2004-10-06	17:30	267		7.61	-4.36	

Table 6-18. Flow data during interference test 3 in HFM16.

Flow data, HFM16 (12–132 m)	Nomenclature	Unit	Value
Flow rate from test section just before stop of flow period	Q _p	m³/s	6.7×10⁻³
Mean (arithmetic) flow rate during flow period	Q _m	m³/s	6.7×10⁻³
Total volume discharged during flow period	V _p	m³	108

Comments on the test

The test was performed as a constant-flow rate pumping test, see Figure A2-6. The flow rate was c 400 L/min and the flow period lasted c 4.5 h. Recovery was measured for c 15 h, although only 4.5 h was used for the transient analyses.

Interpreted flow regimes

No clear interpretation of flow regimes was possible. Nevertheless, a transition to pseudo-radial flow is indicated after c 500 s, both during the flow- and recovery period.

Interpreted parameters

Transient, quantitative interpretation of the flow period of the test is shown in log-log and lin-log diagrams in Figures A2-9 and A2-10. Although no clear pseudo-radial flow regime developed during the test, the interpretation according to the methods described in Section 5.4 is considered fairly unambiguous. The results are shown in the Test Summary Sheet and in Table 6-27 and 6-28 in Section 6.7.

6.5.2 Observation section KFM02A: 102-339 m

General test data from the observation section KFM02A, 102–339 m, are presented in Table 6-19.

Table 6-19. Pressure and groundwater level data for observation section KFM02A:102–339 m.

Pressure data, KFM02A (102–339 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	pi	kPa	1,031.7
Absolute pressure in test section before stop of flow period	p _p	kPa	1,031.7
Absolute pressure in test section at stop of recovery period	p _F	kPa	1,031.5
Maximal pressure change during flow period	dpp	kPa	0.08

Manual groundwa	GW leve	əl		
Date YYYY-MM-DD	Time tt:mm	Time (min)	(m b. To	oC) (masl)
2004-10-06	10:57	-126	6.75	0.62

Comments on the test

No clear indication of hydraulic connectivity between section 102–339 m in borehole KFM02A and the pumping borehole HFM16 was observed. The maximal drawdown during the flow period was less than 0.01 m and cannot be distinctively associated with the test activity, see Figure A2-7 in Appendix 2.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.5.3 Observation section KFM02A: 340–460 m

Pressure data from the observation section KFM02A, 340–460 m, are presented in Table 6-20 and in Figure A2-7 in Appendix 2.

Table 6-20. Pressure data for observation section KFM02A: 340-460 m.

Pressure data, KFM02A (340–460 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	3,254.9
Relative pressure in test section before stop of flow period	pp	kPa	3,252.2
Relative pressure in test section at stop of recovery period	р _F	kPa	3,253.0
Maximal pressure change during flow period	dpp	kPa	2.8

Comments on the test

A clear response to pumping was detected in this section. The total drawdown during the flow period was almost 0.30 m. A drawdown of c 0.01 m was reached approximately 65 min after start of pumping in HFM16. Drawdown continued to increase until c 175 min after the end of the flow period and there was a total recovery of c 0.23 m during the recovery period of c15 h duration.

Interpreted flow regimes

No clear interpretation of flow regimes was possible. The test responses weakly indicated a transition to a possible pseudo-radial flow regime.

Interpreted parameters

An approximate transient interpretation of the short flow period of the test is shown in a log-log diagram in Figure A2-13. Quantitative analysis was only made on the flow period according to the methods described in Section 5.4. Although the flow period was not long enough to obtain a pseudo-radial flow regime the interpretation is considered as approximate. The results are summarized in Table 6-27 and 6-28 in Section 6.7.

6.5.4 Observation section KFM02A: 461–1,002 m

Pressure data from the observation section KFM02A, 461–1,002 m, are presented in Table 6-21 and in Figure A2-7 in Appendix 2.

Table 6-21.	Pressure	data for	observation	section	KFM02A:	461–1,002 m.
-------------	----------	----------	-------------	---------	---------	--------------

Pressure data, KFM02A (461–1,002 m)	Nomenclature	Unit	Value
Relative pressure in test section before start of flow period	p _i	kPa	4,436.4
Relative pressure in test section before stop of flow period	pp	kPa	4,432.4
Relative pressure in test section at stop of recovery period	p _F	kPa	4,434.5
Maximal pressure change during flow period	dpp	kPa	4.0

Comments on the test

A clear response to pumping was detected in this section. The response is only marginally larger than the one in section 340–460 m and very similar in shape. The maximum drawdown during the flow period was c 0.40 m. A drawdown of c 0.01 m was reached approximately 40 min after the pumping started in HFM16. Drawdown continued to increase c 90 min after the end of the flow period, and there was a total recovery of c 0.31 m during the recovery period of c 15 h duration.

Interpreted flow regimes

No clear interpretation of flow regimes was possible, see previous section.

Interpreted parameters

An approximate transient interpretation of the short flow period of the test is shown in a log-log diagram in Figure A2-14. Quantitative analysis was only made on the flow period. Although the flow period was not long enough to obtain a pseudo-radial flow regime, the interpretation according to the methods described in Section 5.4 is considered approximate. The results are shown in Tables 6-27 and 6-28 in Section 6.7.

6.5.5 Observation section HFM19: 12–110 m

General test data from the observation section HFM19, 12–110 m, are presented in Table 6-22 and in Figure A2-8 in Appendix 2.

Table 6-22. Pressure and groundwater level data for observation section HFM19:12–110 m.

Pressure data, HFM19 (12–110 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	Pi	kPa	170.6
Absolute pressure in test section before stop of flow period	P _p	kPa	170.2
Absolute pressure in test section at stop of recovery period	p _F	kPa	169.9
Maximal pressure change during flow period	dpp	kPa	0.37

Manual groundwa	m) GW leve]		
Date YYYY-MM-DD	Time tt:mm	Time (min)	(m b. To	C) (m a s l)
2004-10-06	11:43	-80	3.53	0.66

Comments on the test

A weak but clear response was detected in this section in HFM19. The total drawdown was about 0.04 m. The recovery was very slow.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.5.6 Observation section HFM19: 111–150 m

Pressure data from the observation section HFM19, 111–150 m, are presented in Table 6-23. An overview diagram of the pressure is shown in Figure A2-8 in Appendix 2.

Pressure data, HFM19 (111–150 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	p _i	kPa	993.9
Absolute pressure in test section before stop of flow period	pp	kPa	993.6
Absolute pressure in test section at stop of recovery period	p _F	kPa	993.3
Maximal pressure change during flow period	dpp	kPa	0.54

Comments on the test

The response was very similar to the one in section HFM19 12–110. A weak but clear response was detected. The total drawdown was about 0.05 m. The recovery was very slow.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.5.7 Observation section HFM19: 151-185 m

Pressure data from the observation section HFM19, 151–185 m, are presented in Table 6-24. An overview diagram of the pressure is shown in Figure A2-8 in Appendix 2.

Table 6-24. Pressure data for observation section HFM19: 151–185 m.

Pressure data, HFM19 (151–185 m)	Nomenclature	Unit	Value
Absolute pressure in test section before start of flow period	p _i	kPa	1,326.9
Absolute pressure in test section before stop of flow period	p _p	kPa	1,326.5
Absolute pressure in test section at stop of recovery period	p _F	kPa	1,326.2
Maximal pressure change during flow period	dpp	kPa	0.45

Comments on the test

The response was very similar to the ones in the other sections of HFM19. A weak but clear response was detected. The total drawdown was c 0.05 m. The recovery was very slow.

Interpreted flow regimes

No interpretation of flow regimes has been made for this section.

Interpreted parameters

No transient parameter interpretation has been made for this section.

6.6 Response analysis

A simplified response analysis according to the methodology description for interference tests (SKB MD 330.003) was made in this case due to the few observation boreholes. A response diagram from all three interference tests is shown in Figure 6-1 below. The response time lags (dt_L) in the observation boreholes during the interference tests in HFM16 are shown in Table 6-25a. The time lags were in this case derived from drawdown curves from the observation boreholes at an actual drawdown of 0.01 m.

Only sections that showed a significant response to the pumping have been included in the response analysis and are presented in the response diagram in Figure 6-1. As discussed above, the responses in HFM19 are uncertain. The normalised response time with respect to the distance to the pumping borehole (Index 1), which is inversely related to the hydraulic

Figure 6-1. Response diagram for interference tests 1–3 in HFM16.

diffusivity (T/S) of the formation was calculated. The distances between the boreholes are shown in Table 3-4. In addition, the normalized drawdown with respect to the flow rate (Index 2) was calculated and is presented in Table 6-25b.

By the preparation of Figure 6-1 and Tables 6-25a–b, the parameter definitions described below were used. The responses in HFM19 have been considered only for the third interference test due to the disturbances that occurred in this borehole during the other two tests.

dt _L [dp=0.01 m]	= time after start of pumping (s) at a drawdown $dp = 0.01$ m in the
	observation section

 $dt_{L}[dp=0.01 \text{ m}] / r_{s}^{2}$ = normalised response time with respect to the distance r_{s} (Index 1)

 r_s = 3D-distance between the hydraulic points of application (hydr. p.a.) in the pumping borehole and observation section (m)

 dp_p/Q_p = normalized drawdown with respect to the flow rate (Index 2)

- dp_p = drawdown at stop of pumping in the actual observation section (m)
- Q_p = flow rate by the end of the flow period (m³/s)

Test #	Pumping borehole	Observation borehole	Section (m)	hydr. p.a. (m)	dt _∟ [dp=0.01 m] (s)	r _s (m)	dt _∟ [dp=0.01 m]/r _s ² (s/m²)
1	HFM16 12–132 m	KFM02A	401–521	461	3,500	1,274	2.16×10⁻³
2	HFM16 12–132 m	KFM02A	460–580	520	3,000	1,289	1.81×10⁻³
3	HFM16 12–132 m	KFM02A	340–460	428	4,000	1,265	2.50×10⁻³
3	HFM16 12–132 m	KFM02A	461–1,002	513	2,500	1,287	1.51×10⁻³
3	HFM16 12–132 m	HFM19	12–110	101	9,500	1,010	9.31×10⁻³
3	HFM16 12–132 m	HFM19	11–150	149	9,250	1,035	8.63×10 ⁻³
3	HFM16 12–132 m	HFM19	151–185	176	9,000	1,050	8.16×10 ⁻³

Table 6-25a. Calculated response time lags and normalized response times (Index 1)for the observation borehole sections during the interference tests in HFM16.

Table 6-25b. Drawdown and normalized drawdown (Index 2) for the observation borehole sections during the interference tests in HFM16.

Test #	Pumping borehole	Q _p (m³/s)	Observation borehole	Section (m)	dp _p (m)	dp _p /Q _p (s/m²)
1	HFM16 12–132 m	6.67×10 ⁻³	KFM02A	401–521	0.419	62.95
2	HFM16 12–132 m	6.67×10⁻³	KFM02A	460–580	0.220	32.98
3	HFM16 12–132 m	6.67×10⁻³	KFM02A	340–460	0.288	43.31
3	HFM16 12–132 m	6.67×10⁻³	KFM02A	461–1,002	0.407	61.04
3	HFM16 12–132 m	6.67×10⁻³	HFM19	12–110	0.038	5.71
3	HFM16 12–132 m	6.67×10⁻³	HFM19	11–150	0.054	8.21
3	HFM16 12–132 m	6.67×10⁻³	HFM19	151–185	0.046	6.90

The linear pressure versus time diagrams showing responses to pumping in HFM16 in the different observation sections indicate two different zones or flow anomalies along KFM02A, which are connected to HFM16. This fact is also supported by Figure 6-1. One zone is located in section 401–460 m, and the other one between 460 m and 521 m. This fact also corresponds well to the results from previous tests in KFM02A where conductive sections were found primarily at 416–431 m and 511–516 m, /3, 4/. Other highly conductive zones have been located at more shallow depths, but since there are no clear pressure responses in those parts of the borehole, they are probably not connected to the same fracture zone as in HFM16.

Tables 6-25a and 6-25b are the basis for the response diagram shown in Figure 6-1. In a response diagram, observation sections that are well connected to the pumping section, for instance via fracture zones, are expected to be located in the upper left part of the diagram, i. e. distinct and fast responses. An analysis of this diagram and previous knowledge from KFM02A indicates that the flow anomaly at c 513 m contributes to the largest response in KFM02A. It is likely that this flow anomaly is involved in all of the responding sections in which it is included, i.e. sections 401–521 (test 1), 460–580 (test 2) and 461–1,002 (test 3).

The responses in HFM19 are significant and very similar in all sections, but not as strong as in KFM02A. From previous tests, four different flow anomalies were identified in HFM19. Two anomalies are located in the deepest section (151–185 m) and one in each of the other sections. The weak indication in the response diagram that the deepest section had the strongest response is consistent with the transmissivity data from previous tests, cf Table 3-5.

6.7 Summary of interference tests

A compilation of measured test data from the interference tests in HFM16, 12–132 m, is shown in Table 6-26. In Tables 6-27 and 6-28 calculated hydraulic parameters of the formation and borehole from the tests, respectively, are presented. The calculated T-values for HFM16 in Table 6-28 from the transient evaluation correspond well to those from the previous flow logging and pumping tests in this borehole, /1/.

The responses in the observation borehole sections were mainly evaluated qualitatively. For KFM02A, an approximate transient evaluation was though performed for sections 340–460 m and 461–1,002 m from the flow period during interference test 3.

The evaluated, approximate transmissivity from observation sections 340–460 m and 461–1,002 m in KFM02A are significantly higher than the T-values obtained from the injection tests /3/ performed earlier in KFM02A, cf Table 3-5. This fact may possibly be due to that the calculated T-values from the interference tests are more weighted on the hydraulic properties close to the pumping borehole HFM16 because of the long distances between the boreholes and the short test time. Furthermore, the calculated T-values for these sections are uncertain, since no pseudo-radial flow regime developed during the short tests. The calculated T-values for HFM16 and KFM02A are fairly similar.

The lower and upper practical measurement limit for transmissivity for the equipment used, expressed in terms of specific flow (Q/s), is $Q/s-L = 3 \times 10^{-6} \text{ m}^2/\text{s}$ and $Q/s-U = 1 \times 10^{-2} \text{ m}^2/\text{s}$ for pumping tests.

Test #	Pumping borehole ID	Borehole ID	Section (m)	Test Type ¹⁾	p _i (kPa)	p _p (kPa)	p _⊧ (kPa)	Q _p (m³/s)	Q _m (m³/s)	V _p (m³)
1	HFM16	HFM16	12–132	1B	88.1	42.0	85.1	6.7×10 ⁻³	6.7×10⁻³	109
1		KFM02A	102–400	2	931.8	931.8	931.8			
1		KFM02A	401–521	2	3,856.4	3,852.3	3,853.8			
1		KFM02A	522-1,002	2	5,040.6	5,040.7	5,041.0			
2	HFM16	HFM16	12–132	1B	85.6	44.7	84.1	6.7×10⁻³	6.7×10⁻³	66
2		KFM02A	102–459	2	1,032.5	1,032.5	1,032.0			
2		KFM02A	460–580	2	4,452.9	4,450.7	4,451.5			
2		KFM02A	580-1,002	2	5,621.4	5,620.4	5,620.0			
2		HFM19	12–110	2	170.7	171.0	170.5			
2		HFM19	111–150	2	994.5	994.5	993.8			
2		HFM19	151–185	2	1,327.4	1,327.5	1,326.9			
3	HFM16	HFM16	12–132	1B	84.7	39.2	82.9	6.7×10⁻³	6.7×10⁻³	108
3		KFM02A	102–339	2	1,031.7	1,031.7	1,031.5			
3		KFM02A	340–460	2	3,254.9	3,252.2	3,253.0			
3		KFM02A	461–1,002	2	4,436.4	4,432.4	4,434.5			
3		HFM19	12–110	2	170.6	170.2	169.9			
3		HFM19	111–150	2	993.9	993.6	993.3			
3		HFM19	151–185	2	1,326.9	1,326.5	1,326.2			

Table 6-26. Summary of test data from the interference tests performed between borehole HFM16 and the observation boreholes KFM02A and HFM19 in the Forsmark area.

¹⁾ 1B: Pumping test-submersible pump, 2: Interference test (observation borehole during pumping in another borehole).

Table 6-27. Summary of calculated hydraulic parameters from the single-hole test in HFM16 in the Forsmark area.

Pumping	Section	Test type	Q/s	T _м	T⊤	ζ	C	S*
borehole ID	(m)		(m²/s)	(m²/s)	(m²/s)	(–)	(m³/Pa)	(–)
HFM16	12–132	1B	1.44×10⁻³	1.77×10⁻³	4.78×10 ⁻⁴	-6.97	_	5×10⁻⁵

Table 6-28. Summary of calculated hydraulic parameters from the interference test between HFM16 and KFM02A respectively HFM19 in the Forsmark area.

Pumping borehole ID	Observation borehole ID	Section (m)	Test type	T _o (m²/s)	S _° (–)
HFM16	KFM02A	340-460	2	5.52×10-4	1.84×10-⁵
HFM16	KFM02A	461–1,002	2	6.41×10-4	1.41×10-⁵

Q/s = specific flow for the pumping/injection borehole,

 T_M = steady state transmissivity from Moye's equation,

 T_T = transmissivity from transient evaluation of single-hole test,

T_o = transmissivity from transient evaluation of interference test,

 S_{o} = storativity from transient evaluation of interference test,

 S^* = assumed storativity by the estimation of the skin factor in single hole tests,

C = wellbore storage coefficient,

 ζ = skin factor.

Test Summary Sheet - Pumping section HFM16: 12-132 m							
Project: PLU		Test type:	est type: 1B				
Area:	Forsmark	Test no:	3				
Borehole ID:	HFM16	Test start:	2004-09-29 12:00				
Test section (m):	12-132	Responsible for	GEOSIGN	FOSIGMA AB			
()	-	test performance:	K Gokall-N	Norman, C Hjerne			
Section diameter, 2·rw (m):	0.139 (nominal)	Responsible for	GEOSIGN	/A AB			
		test evaluation:	J-E Ludvid	ason			
				,			
Linear plot pressure – Entire test p	period	Flow period		Recovery period			
-2Interferenstest HFM16 - KFM02A, HFM19	Ohe Wells	Indata		Indata			
	HFM16	p ₀ (kPa)					
-1.		p _i (kPa)	84.7				
a		p _p (kPa)	39.2	p _F (kPa)	82.9		
		Q_p (m ³ /s)	6.7·10 ⁻³				
		tp (s)	16080	t _F (s)	53640		
Ê 2		S*	5.0·10 ⁻⁵	S*	5.0·10 ⁻⁵		
1 5 3		EC _w (mS/m)					
		Te _w (gr C)					
5.		Derivative fact.	0.2	Derivative fact.	0.2		
6.							
7							
		Results		Results			
8. 0. 1.6E+4 3.2E+4 4.8E+4 6.4	E+4 8.0E+4	Q/s (m²/s)	1.44·10 ⁻³				
Log-Log plot incl. derivate - Flow i	period	$T_{Mayo}(m^2/s)$	1 77·10 ⁻³	+			
Interferenstest HFM16 - KFM02A, HFM	19	Flow regime:	1	Flow regime:			
	Obs. Wells • HFM16	t ₁ (s)	1020	dt _{e1} (s)	300		
	Aquifer Model Confined	$t_1(\mathbf{s})$	10200	$dt_{e2}(s)$	6000		
	<u>Solution</u> Dougherty-Babu	$T_{\rm m}$ (m ² /s)	4 78.10-4	$T_{w}(m^{2}/s)$	5 50·10 ⁻⁴		
101	Parameters T = 0.0004770 m ² /con	S (-)	4.70 10	S. (-)	0.00 10		
	S = 5.0E-5 Kz/Kr = 1.	K _w (m/s)		K _w (m/s)			
	Sw = -6.975 r(w) = 0.07 m	$S_{\rm sw}(11/3)$		S (1/m)			
Ê '·		$C (m^3/Pa)$		$C (m^3/Pa)$			
		$C_{\rm D}(-)$		$C_{\rm D}(-)$			
		۲ <u>(</u>)	-6.97	ξ(-)	-6.7		
	-	<u> </u>	0.07		0.1		
		$T_{opr}(m^2/s)$		$T_{opr}(m^2/s)$			
10''		Sope(-)		Sopr(-)			
		DGRF (-)		DGRF (-)			
m ⁻²							
10^{-1} 10^{2} 10^{3}	10 ⁴ 10 ⁵						
Log-Log plot incl. derivative - Rec	overy period	Interpreted formatio	n and well pa	arameters.			
2 Interferenstest HFM16 - KFM02A, HFM 10 F		Flow regime:	· ·	C (m ³ /Pa)			
	• HFM16	t ₁ (s)	1020	C _D (-)			
	Confined	$t_2(s)$	10200	ξ(-)	-6.97		
	<u>Solution</u> Dougherty-Babu	T_{T} (m ² /s)	4.78·10 ⁻⁴				
101	T = 0.0005504 m ² /sec	S (-)		1			
I E I I	S = 5.0E-5 Kz/Kr = 1. Sw = .67	K. (m/s)					
	r(w) = 0.07 m r(c) = 0.08 m	$\Gamma_{s}(11/3)$					
E Para	- C = 0. sec ² /m ⁵	S _s (1/11)					
		Comments: All pre	essure data a	are relative pressu	ire.		
* + + + + + + + + + + + + + + + + + + +							
		Q was considered	to be consta	nt throughout the	flow period		
		(400 L/min).					
10							
10 ¹ 10 ² 10 ³	10 ⁴ 10 ⁵						

Test Summary Sheet - Observation section KFM02A: 340-460 m							
Project:	PLU	Test type:	2				
Area:	Forsmark	Test no:	3	3			
Borehole ID:	KFM02A	Test start:	2004-09-29 12:00				
Test section (m):	340-460	Responsible for	GEOSIGMA AB				
		test performance:	K Gokall-N	K Gokall-Norman, C Hierne			
Section diameter, 2·rw (m):	0.076 (nominal)	Responsible for	GEOSIGN	GEOSIGMA AB			
		test evaluation:	J-E Ludvig	jsonP			
Linear plot pressure – Flow period		Flow period	1	Recovery period			
Interference test HFM16-KFM02.		Indata		Indata			
	• KFM02A 340-460	p ₀ (kPa)					
	Aquifer Model	p _i (kPa)	3254.9				
	Leaky	p _p (kPa)	3252.2	p _F (kPa)	3253.0		
0.4	Hantush-Jacob	Q _p (m ³ /s)	6.7·10 ⁻³				
	$\frac{Parameters}{T} = 0.000552 \text{ m}^{2}(\text{sec})$	tp (s)	16080	t _F (s)	53640		
Ê	- S = 1.839E-5	S*	-	S*	-		
₩ 0.2	KZ/Kr = 1.	EC _w (mS/m)					
DA PARTIE	- = 120. m	Te _w (gr C)					
" I Juir meneral							
- And a second second	-	Derivative fact.	0.2	Derivative fact.	0.2		
0							
	-						
	-	Results	1	Results	1		
-0.2		Q/s (m²/s)	-				
0. 5.0E+3 1.0E+4 1	5E+4 2.0E+4						
Log-Log plot incl. derivate - Flow r	period	$T_{Mayo}(m^2/s)$	-				
Interference test HFM16-KFM02	A	Flow regime		Flow regime:			
	Obs. Wells	t ₄ (s)	-	dt.4 (s)	-		
E I I	Aquifer Model	$t_1(\mathbf{S})$		$dt_{e1}(s)$			
	_ Leaky	$T_{\rm m}^{2}$ (s)	5.52.10-4	$T_{m^{2}/s}$			
	Solution Hantush-Jacob	S ₂ (-)	1.84.10 ⁻⁵	S (-)			
	Parameters	K (m/s)	1.04 10	K(m/s)			
e -	T = 0.000552 m ² /sec S = 1.839E-5	S (1/m)		S (1/m)			
5	r/B = 1.0E-5 Kz/Kr = 1.	C_{sw} (1/11)		C_{sw} (1/11)			
awdo	b = 120. m	$C_{\rm D}(-)$		$C_{\rm D}(-)$			
		ξ (_)	-	E (-)	-		
		5 (-)		5 (-)			
10 ⁻²		$T_{opr}(m^2/\epsilon)$		$T_{opr}(m^2/s)$			
E		$S_{a=-}(-)$		Sam=(-)			
				$D_{GRF}(-)$			
10-3		DGRF (-)		DGRF (-)			
10 ² 10 ³ 10 ⁴	10 ⁵ 10 ⁶						
Lin-Log plot incl. derivative - Flow	period	Interpreted formatio	n and well pa	arameters.	1		
Interference test HFM16-KFM02	• •	Flow regime:	P	C (m ³ /Pa)			
	Obs. Wells • KFM02A 340-460	t ₁ (s)	-	C _D (-)			
	Aquifer Model	t ₂ (s)	-	٤ (-)	-		
0.8	Leaky	T_{o} (m ² /s)	5.52·10 ⁻⁴	2 (/	1		
	- Hantush-Jacob	S. (-)	1.84.10 ⁻⁵				
0.6	Parameters	$V_0(-)$	1.04 10				
l∈ [//	S = 1.839E-5	$\Gamma_{S}(11/5)$					
	r/B = 1.0E-5 Kz/Kr = 1.	S _s (1/m)					
a di contra di c	b = 120. m	Comments: All pre	essure data a	are relative pressu	ire.		
0.2	-	No pseudo-radial fl	ow regime w	as developed dur	ring the flow		
		period due to the lo	ong distance	to the pumping b	orehole		
0. [HFM16.					
]]	An approximate eva	aluation was	made on the first	part of the		
	سلي سلي المسالي	response during the	e flow period	 No evaluation w 	as made on		
10^2 10^3 10^4	10 [°] 10 [°]	the recovery period	l.				
Time (sec)							

Test Su	mmary Sheet ·	 Observat 	ion section KFM0)2A: 461-1	002 m	
Project:	PLU		Test type:	2		
Area:	Forsmark		Test no:	3		
Borehole ID:	KFM02A		Test start:	2004-09-2	9 12:00	
Test section (m):	461-1002		Responsible for	GEOSIGN	1A AB	
			test performance:	K Gokall-N	lorman, C Hjerne	
Section diameter, 2 rw (m):	0.076 (nominal))	Responsible for	GEOSIGN	1A AB	
			test evaluation:	J-E Ludvic	Ison	
				<u> </u>		
Linear plot pressure – Flow period			Flow period	1	Recovery period	
Interference test HFM16-KFM02A			Indata		Indata	
	Obs. W	Vells 4024 461-1002 m	p₀ (kPa)			
	Aquifer	r Model	p _i (kPa)	4436.4		
0.8	Leaky	y.	p _p (kPa)	4432.4	p _F (kPa)	4434.5
	- Solution - Hantu	ush-Jacob	Q_{p} (m ³ /s)	$6.7 \cdot 10^{-3}$		
0.6	Parame	eters	tp (s)	16080	t⊨ (s)	53640
2	- T S	= 0.0006411 m ² /sec = 1.407E-5	\$*(5) S*	-	S*	-
5	r/B Kz/Kr	= 1.0E-5 r = 1.	EC _w (mS/m)			1
OP 0.4	b b	= 120. m				
S .]]		i cw(gi C)			
0.2			Derivative fact	0.2	Derivative fact	0.2
- transferrer			201110110100	0.2	Dennaurenaeu	
	-					+
			Results		Results	
			Q/s (m ² /s)	-		
-0.2 0. 5.0E+3 1.0E+4 1.4	iE+4 2.0E+4					
Time (sec)	<u></u>					
Log-Log plot incl. derivate - Flow p	eriod		T _{Moye} (m ⁻ /s)	-		
	Obs.V	Wells	Flow regime:		Flow regime:	
	• KFI	M02A 340-460	t ₁ (s)	-	dt _{e1} (s)	-
	Aquife	er Model kv	t ₂ (s)	-	dt _{e2} (s)	-
	Solutio	on	T₀ (m²/s)	6.41·10 ⁻⁴	T _w (m²/s)	-
	Hant	tush-Jacob	S _o (-)	1.41·10 ⁻⁵	S _w (-)	
	- <u>Param</u> T	= 0.000552 m ² /sec	K _{sw} (m/s)		K _{sw} (m/s)	
€ - I	S r/B	= 1.839E-5 = 1.0E-5	S _{sw} (1/m)		S _{sw} (1/m)	
	Kz/K	Kr = 1. = 120 m	C (m³/Pa)		C (m ³ /Pa)	
		120.111	C _D (-)		C _D (-)	
F //	-		ξ (-)	-	ξ(-)	-
10			$T_{GRF}(m^2/s)$		$T_{GRF}(m^2/s)$	
	-		S _{GRF} (-)		S _{GRF} (-)	1
	-		D _{GRE} (-)		D _{GRF} (-)	
	س					
10 10 10 Time (sec)	10 10					
Lin-Log plot incl. derivative - Flow	period		Interpreted formation	n and well pa	arameters.	
Interference test HFM16-KFM02A			Flow regime:		C (m ³ /Pa)	
	- <u>Obs. W</u> • KFM	<u>Vells</u> W02A 461-1002 m	t ₁ (s)	-	C _D (-)	
	Aquifer	r Model	t ₂ (s)	-	ξ(-)	-
0.8	Leaky	y -	T_{o} (m ² /s)	6 41·10 ⁻⁴	3()	
	- Hantu	ush-Jacob	S ₂ (-)	1 41.10-5		
0.6	Parame	eters	$U_0(-)$	1.41 10		
le [s	= 0.0008411 m-/sec = 1.407E-5	R_{s} (III/S)			
	r/B Kz/Kr	= 1.0E-5 r = 1.	S₅ (1/m)			
	b	= 120. m	Comments: All pre	ssure data a	are relative pressu	re.
			•		•	
0.2	-		No pseudo-radial flo	ow regime w	as developed dur	ing the flow
			period due to the lo	ng distance	to the pumping bo	orehole
0.	1		HFM16.	-		
	1		An approximate eva	aluation was	made on the first	part of the
	1		response during the	e flow period	I. No evaluation w	as made on
$10^{-0.2}$ 10^{2} 10^{3} 10^{4}	10 ⁵ 10 ⁶		the recovery period	•		
Time (sec)						

7 References

- /1/ Ludvigson J-E, Jönsson S, Hjerne C, 2004. Forsmark site investigation. Pumping tests and flow logging Boreholes KFM06A (0–100 m) and HFM16. SKB P-04-65, Svensk Kärnbränslehantering AB.
- /2/ Ludvigson J-E, Källgården J, Hjerne C, 2004. Forsmark site investigation. Pumping tests and flow logging – Boreholes HFM17, HFM18 and HFM19. SKB P-04-72, Svensk Kärnbränslehantering AB.
- /3/ Källgården J, Ludvigson J-E, Jönsson J, 2004. Forsmark site investigation. Single-hole injection tests in borehole KFM02A. SKB P-04-100, Svensk Kärnbränslehantering AB.
- /4/ Rouhiainen P, Pöllänen J, 2004. Forsmark site investigation. Difference flow logging in borehole KFM02A. SKB P-04-188, Svensk Kärnbränslehantering AB.
- /5/ Almén K-E, Andersson J-E, Carlsson L, Hansson K, Larsson N-Å, 1986. Hydraulic testing in crystalline rock. A comparative study of single-hole test methods. SKB TR 86-27, Svensk Kärnbränslehantering AB.
- /6/ Dougherty D E, Babu D K, 1984. Flow to a partially penetrating well in a double-porosity reservoir. Water Resour. Res, 20 (8), 1116–1122.

Υ_
<u>×</u>
σ
Q
Q
Q
<

List of data files

Files are named "logger S/N" Interferens "BhID" "secup" "'seclow" "YYYYMMDD" "hhmmss". Interferens is just an internal marker, "logger S/N" is the loggers unique serial number, "BhID" is the name of the borehole, "secup" and "seclow" are the top and bottom of the measured section and last in the file name the datafile start time is given. The data file from the pumping borehole is a little different where only serial number, date of data file start time and BhID are given.

Bh ID	Test section (m)	n Test type ¹	Test no	Test start Date, time YYYY-MM-DD tt:mm:ss	Test stop Date, time YYYY-MM-DD tt:mm:ss	Datafile, start Date, time YYYY-MM-DD tt: mm:ss	Datafile, stop Date, time YYYY-MM-DD tt:mm:ss	Data files of raw and primary data	Content (parame- ters) ²	Comments
HFM16	12–132	1 B		2004-09-29 12:00:00	2004-10-26 09:30:00	2004-09-29 12:00:00	2004-10-26 09:30:00	SN10894 2004-09-29 120000 HFM16.bin	<u>م</u>	Pressure registration in HFM16, 12-132 m for interference
KFM02A	102–400	7		2004-10-04 13:34:13	2004-10-05 12:21:52	2004-10-04 13:34:13	2004-10-05 12:29:13	SN09981_Interferens_KFM02A_ 102_400_20041004_133413.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	401–521	2		2004-10-04 13:34:13	2004-10-05 12:21:52	2004-10-04 13:26:52	2004-10-05 12:21:52	SN12572_Interferens_KFM02A_ 401_521_20041004_132652.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	522-1,002	2		2004-10-04 13:34:13	2004-10-05 12:21:52	2004-10-04 13:30:29	2004-10-05 12:25:29	SN12115_Interferens_KFM02A_ 522_1002_20041004_133029.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	102–459	2		2004-10-05 15:55:11	2004-10-06 08:18:13	2004-10-05 15:55:11	2004-10-06 08:23:23	SN09981_Interferens_KFM02A_ 102_459_20041005_155511.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	460–580	2		2004-10-05 15:55:11	2004-10-06 08:18:13	2004-10-05 15:45:41	2004-10-06 08:18:13	SN12572_Interferens_KFM02A_ 460_580_20041005_154541.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	581–1,002	2		2004-10-05 15:55:11	2004-10-06 08:18:13	2004-10-05 15:48:42	2004-10-06 08:21:08	SN12115_Interferens_KFM02A_ 581_1002_20041005_154842.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	102–339	2		2004-10-06 11:23:33	2004-10-07 08:26:52	2004-10-06 11:23:33	2004-10-07 08:32:16	SN09981_Interferens_KFM02A_ 102_339_20041006_112333.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	340-460	2		2004-10-06 11:23:33	2004-10-07 08:26:52	2004-10-06 11:15:52	2004-10-07 08:26:52	SN12572_Interferens_KFM02A_ 340_460_20041006_111552.bin	с.	Pressure response to pumping in HFM16 12–132 m.
KFM02A	461–1,002	7		2004-10-06 11:23:33	2004-10-07 08:26:52	2004-10-06 11:19:03	2004-10-07 08:29:48	SN12115_Interferens_KFM02A_ 461_1002_20041006_111903.bin	<u>م</u>	Pressure response to pumping in HFM16 12–132 m.

Bh ID	Test section (m)	Test type¹	Test no	Test start Date, time YYYY-MM-DD tt:mm:ss	Test stop Date, time ҮҮҮҮ-MM-DD tt:mm:ss	Datafile, start Date, time ҮҮҮҮ-MM-DD tt: mm:ss	Datafile, stop Date, time ҮҮҮҮ-MM-DD tt:mm:ss	Data files of raw and primary data	Content (parame- ters)²	Comments
HFM19	12–110	7		2004-10-05 12:00:00	2004-10-06 11:48:00	2004-10-05 12:00:00	2004-10-06 11:58:51	SN13784_Interferens_HFM19_ 12_110_20041005_120000.bin	<u>م</u>	Pressure response to pumping in HFM16 12–132 m.
HFM19	111–150	2		2004-10-05 12:00:00	2004-10-06 11:48:00	2004-10-05 12:00:00	2004-10-06 11:48:00	SN13661_Interferens_HFM19_ 111_150_20041005_120000.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
HFM19	151–185	2		2004-10-05 12:00:00	2004-10-06 11:48:00	2004-10-05 12:00:00	2004-10-06 11:54:35	SN13787_Interferens_HFM19_ 151_185_20041005_120000.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
HFM19	12–110	2		2004-10-06 12:00:15	2004-10-07 09:10:45	2004-10-06 12:00:15	2004-10-07 09:20:41	SN13784_Interferens_HFM19_ 12_110_20041006_120015.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
HFM19	111–150	2		2004-10-06 12:00:15	2004-10-07 09:10:45	2004-10-06 11:51:00	2004-10-07 09:15:02	SN13661_Interferens_HFM19_ 111_150_20041006_115100.bin	۵.	Pressure response to pumping in HFM16 12–132 m.
HFM19	151–185	2		2004-10-06 12:00:15	2004-10-07 09:10:45	2004-10-06 11:57:31	2004-10-07 09:10:45	SN13787_Interferens_HFM19_ 151_185_20041006_115731.bin	с.	Pressure response to pumping in HFM16 12–132 m.
1) 1R. Dun	uning test-sub	mareih		in 2. Interference	tect (ohservatio	in horehole during		thar horahola)		

¹⁰ 1B: Pumping test-submersible pump, 2: Interference test (observation borehole during pumping in another borehole) ²⁾ P = Pressure, Q = Flow, Te = Tem □

Test diagrams

Nomenclature for AQTESOLV:

- T = transmissivity (m^2/s),
- S = storativity (-),
- K_Z/K_r = ratio of hydraulic conductivities in the vertical and radial direction (set to 1),
- Sw = skin factor,
- r(w) = borehole radius (m),
- r(c) = effective casing radius (m),
- C = well loss constant (set to 0).

Interference test 1

Figure A2-1. Pressure and flow in HFM16 during interference test 1.

Figure A2-2. Linear plot of pressure versus time in the observation sections in KFM02A during interference test 1.

Interference test 2

Figure A2-3. Pressure and flow in HFM16 during interference test 2.

Figure A2-4. Linear plot of pressure versus time in the observation sections in KFM02A during interference test 2.

Figure A2-5. Linear plot of pressure versus time in the observation sections in HFM19 during interference test 2.

Interference test 3

Figure A2-6. Pressure and flow in HFM16 during interference test 3.

Figure A2-7. Linear plot of pressure versus time in the observation sections in KFM02A during interference test 3.

Figure A2-8. Linear plot of pressure versus time in the observation sections of HFM19 during interference test 3.

Figure A2-9. Log-log plot of drawdown ($^{\circ}$) and drawdown derivative, ds/d(ln t) (+), versus time in HFM16, during interference test 3.

Figure A2-10. Lin-log plot of drawdown ($^{\circ}$) and drawdown derivative, ds/d(ln t) (+), versus time in HFM16 during interference test 3.

Figure A2-11. Log-log plot of pressure recovery (•) and derivative, dsp/d(ln dte) (+), versus equivalent time in HFM16 during interference test 3.

Figure A2-12. Lin-log plot of pressure recovery (•) and derivative, dsp/d(ln dte) (+), versus equivalent time in HFM16 during interference test 3.

Figure A2-13. Log-log plot of drawdown ($^{\circ}$) and drawdown derivative, ds/d(ln t) (+), versus time in observation section KFM02A: 340–460 m during interference test 3.

Figure A2-14. Log-log plot of drawdown ($^{\circ}$) and drawdown derivative, ds/d(ln t) (+), versus time in observation section KFM02A: 461–1,002 m during interference test 3.

Figure A2-15. Barometric pressure in the Forsmark area during the test period.

Result table to SICADA

Result table to SICADA for the single-hole test in HFM16

plu_s_hole_test_d

idcode	start_date	stop_date	secup	seclow	section_no 1	test_type	formation_ type	start_flow_ period	stop_flow_ period	reference	comments	q
HFM16	2004-10-06 11:23	2004-10-07 08:26	12.02	132.50		18	~	2004-10-06 13:03	2004-10-06 17:31		Pressure values are relative air pressure.	
cont												

cont.

flow_rate_ end_qp	value_ type_qp	mean_flow_ rate_qm	q_measl_ _I	q_measl_ _u	tot_volume_vp	dur_flow_ phase_tp	dur_rec_ phase_tf	initial_ head_hi
6.6700E-03		6.6700E-03			1.0700E+02	16,080.00	53,700.00	

cont.

head_at_flow_	final_head_hf ini	itial_press_pi	press_at_flow_	final_press_pf	fluid_temp_tew fl	luid_elcond_	fluid_salinity_
end_hp			end_pp		e	CW	tdsw
	84	.70	39.20	82.90			

cont.

fluid_salinity_tdswm	reference	comments	þ
		Pressure values are rela-	
		tive air pressure.	

SICADA – descript	ion of plu	s_hole_test_d	
SICADA Header	Header	Unit	Explanation
Idcode	Borehole		ID for borehole
Secup	Borehole secup	(m)	Length coordinate along the borehole for the upper limit of the test section
Seclow	Borehole seclow	(m)	Length coordinate along the borehole for the lower limit of the test section
Test_type	Test type (1–7)	Ĵ	 1A: Pumping test – wireline eq, 1B: Pumping test-submersible pump, 1C: Pumpingtest-airlift pumping, 2: Interference test, 3□ DIFF-overtapping, 6: Flow logging_Impeller,7: Grain size analysis
start_date	Date for test start	ҮҮҮҮ- MM-DD hh::mm	Date for the start of the pumping or injection test (YYYY-MM-DD hh:mm)
start_flow_period	Start flow / injection	ҮҮҮҮ- MM-DD hh::mm:ss	Date and time for the start of the pumping or injection period (YYYY-MM-DD hh:mm:ss)
stop_flow_period	Start flow / injection	YYYY- MM-DD hh::mm:ss	Date and time for the end of the pumping or injection period (YYYY-M-M DD hh:mm:ss)
mean_flow_rate_qm	Q m	(m³/s)	Arithmetric mean flow rate during flow (pumping/injection) period.
flow_rate_end_qp	Q	(m³/s)	Flow rate at the end of the flow (pumping/injection) period.
value_type_qp			Code for Q_p -value; -1 means Q_p < lower measurement limit, 0 means measured value, 1 means Q_p > upper measurement value of flowrate
q_measl_l	Qmeasl_L	(m³/s)	Estimated lower measurement limit for flow rate
q_measl_u	Qmeasl_U	(m³/s)	Estimated upper measurement limit for flow rate
total_volume_vp	م م	(m³)	Total volume pumped or injected water during the flow period.
dur_flow_phase_tp	t.	(s)	Duration of the flow period.
dur_rec_phase_tf	ţ.	(s)	Duration of the recovery period.
initial_head_hi	ŗ	(m)	Hydraulic head in test section at start of the flow period.
head_at_flow_end_hp	μ	(m)	Hydraulic head in test section at stop of the flow period.
final_head_hf	h⊧	(m)	Hydraulic head in test section at stop of the recovery period.
initial_press_pi	ū	(kPa)	Ground water pressure in test section at start of the flow period.
press_at_flow_end_pp	pp	(kPa)	Ground water pressure in test section at stop of the flow period.

σ.
s'
Ë.
<u> </u>
P P
<mark>ر</mark> ا
зI
d
ę
n
otic
Ľ,
€SC
ŏ
1
ð
₹.

SICADA Header	Header	Unit	Ê	xplanation					
final_press_pf	p⊧	(kPa)	Ū	round water	oressure in	test section s	at stop of the re	ecovery period.	
fluid_temp_tew	Te	(C°)	M >	e □ alue)					
fluid_elcond_ecw	ЕC	(mS/n	n) A M	e □ st EC value)					
fluid_salinity_tdsw	TDS_w	(mg/L)	°C (alculated tota	Il dissolved	solids of the	borehole fluid	in the test sectior	, based on EC-measurement
fluid_salinity_tdswn	TDSwn	(mg/L)	(W	easured total	dissolved	solids of the l	borehole fluid i	n the test section	, based on water sampling and chemical a
reference	referenci	es	ß	KB report No	for reports	describing d	ata and evalua	tion	
comments	commen	ıts	S	hort commen	t to data				
idcode start_date	stop_dat	e secup	seclow	section_ 1 no	type	formation_	lp secle class	enspec_ca	pa- value_type_
HFM16 2004-10-0 11-23)6 2004-10- 08·26	07 12.02	132.50	2	1B	1	56.00	1.44E-0	3 0
cont.									
transmissivity_ val tq tq	ue_type_ bc	tq trai	nsmissivity_	bc_tm	/alue_type_	_ hydr_cond moye	formation_ width_b	width_of_ tt channel_b	
		1.7	7E-03	0		1.47E-05	120.00		
cont.									
l_measl_tb u_meas	sl_tb sb	assumed	sb leakage_ factor_lf	transmiss vity_tt	i- value_t	ype_tt bc_tt	l_measl_q_s	u_measl_q_s	storativity_s assumed_s

5.00E-05

3.30E-06 1.30E-02

-

4.78E-04 0

61

cont.

leakage_ coeff	hydr_cond_ ksf	value_type_ ksf	l_measl_ksf	u_measl_ksf	spec_storage_ ssf	assumed_ssf_c	cq	skin	dt1	dt2
								-6.97E+00		

cont.

Ŧ	12	dte1	dte2	p_horner	transmissivity_ t_nlr	storativity_ s_nlr	value_type_ t_nlr	bc_t_nlr	c_nlr	cd_nlr	skin_nlr
1,020.00	10,200.00										

cont.

transmissivity__ value_type_t_grf_bc_t_grf_storativity_s_grf_flow_dim_grf_comment t_grf

SICADA Header	Header	Unit	Explanation
idcode	Borehole		ID for borehole.
secup	Borehole secup	E	Length coordinate along the borehole for the upper limit of the test section.
seclow	Borehole seclow	(m)	Length coordinate along the borehole for the lower limit of the test section.
test_type	Test type (1–7)	<u>(</u>	 Pumpingtest-wireline eq, 1B: Pumpingtest-submersible pump, 1C: Pumpingtest-airlift pumping, 2: Interference test, Injection test, 4: Slug test, 4B: Pulse Test, 5A: Flowlogging-PFL-DIFF_sequential, 5B: Flowlogging-PFL-DIFF_overlapping, Flowlogging-Impeller, 7: Grain size analysis.
formation_type	Formation type	Ĵ	1: Rock, 2: Soil (Superficial deposits).
seclen_class		(m)	differ due to border conditions (e.g borehole end) but is still considdered to be included in the same section length class.
start_date		ҮҮҮҮ-MM-DD hh:mm	Date for the start of the test (YYYY-MM-DD hh:mm).
þ	L	(m)	Hydraulic point of application for a test section, based on the geometric midpoint of test section or the main point of transmissivity distribution in test section.
spec_capacity_q_s	Q/s	m²/s	Specific capacity, generally estimated from \mathbb{Q}_{p}, s_{p} or dh
value_type_q_s			Code for Q/s; -1 means Q/s < lower measurement limit, 0 means measured value,-1 means Q/s > upper measurement limit.
transmissivity_tq	Τ _α	m²/s	Transmissivity, based on Q /s and a function T = f(Q/s), see e.g. Rhén et al (1997) s. 190. The function used should be refered to in "Comments".
transmissivity_moye	Τ _M	m²/s	Transmissivity (T_M) based on Moye (1967).
value_type_tm			Code for T_M ; -1 means T_M < lower measurement limit, 0 means measured value,-1 means T_M > upper measurement limit.
formation_width_b	q	E	Representative aquifer thickness for inferred transmissivity, generally estimated as test section length L _w .
width_of_channel_b	В	E	Inferred width of formation for evaluated TB.
tb	TB	m³/s	Flow capacity in 1D formation of width B and transmissivity T based on transient evaluation. Considered best estimate from transient evaluation of flow period or recovery period.
I_measl_tb	TB-measl-L	m³/s	Estimated lower measurement limit for evaluated TB.
u_measl_tb	TB-measl-L	m³/s	Estimated upper measurement limit for evaluated TB.
sb	SB	E	Storage capacity of 1D formation of width B and storativity S based on transient evaluation. Considered best estimate from transient evaluation of flow period or recovery period.
assumed_sb	SB*	E	Assumed storage capacity of 1D formation of width B and storativity S based on transient evaluation.

~
~
Š.
e e
- I
` بد
in i
~
e e
÷.
- I
<i>ф</i> .
<u> </u>
~
<u> </u>
_
w.
- I
<u> </u>
_
0
*
0
_
2
0
<u> </u>
7
<u> </u>
÷.
0
S
ă
<u> </u>
σ
-
∢
2
-
ς.
15
ທ

SICADA Header	Header	Unit	Explanation
leakage_factor_lf	ت	ε	Leakage factor. $L_f = (K \times b \times c_f)^{0.5}$ where K represents the aquifer conditions. $c_f = b'/K'$ based on 1D linear flow model. Considered best estimate from transient evaluation of flow period or recovery period.
transmissivity_tt	Τ	m²/s	Transmissivity (T) of formation, based on 2D radial flow model. Considered best estimate from transient evaluation of flow period or recovery period.
value_type_tt			Code for T_{T_i} –1 means T_T < lower measurement limit, 0 means measured value, –1 means T_T > upper measurement limit.
l_measl_q_s	Q/s-measl-L	m²/s	Estimated measurement limit for evaluated T (T_{T} , T_{α} , T_{M}). If estimated T equals Q/s-measl in the table actual T is considered to be equal or less than Q/s-measl.
u_measl_q_s	Q/s-measl-U	m²/s	Estimated measurement limit for evaluated T (T_T , T_{α} , T_{M}). If estimated T equals Q/s-measl in the table actual T is considered to be equal or grater than Q/s-measl.
storativity_s	S	(-)	Storativity (Storage coefficient) of formation based on 2D radial flow model. Considered best estimate from transient evaluation of flow period or recovery period.
assumed_s	*۵		Assumed storativity of formation based on 2D radial flow model.
leakage_koeff	K /b'	(1/s)	Leakage coefficient evaluated from 2D radial flow model. K' = hydraulic conductivity across the aquitard, b' = water saturated thickness of aquitard (leaky formation). Considered best estimate from transient evaluation of flow period or recovery period.
hydr_kond_ksf	K_{sf}	s/m	Hydraulic conductivity of formation, based on 3D spherical flow model. Considered best estimate from transient evaluation of flow period or recovery period.
value_type_ksf			Code for K_{si} –1 means K_{si} < lower measurement limit, 0 means measured value, –1 means K_{si} > upper measurement limit.
I_measl_ksf	K _s -measl-L	m/s	Estimated lower measurement limit for evaluated K_{sit}
u_measl_ksf	K _s -measl-U	m/s	Estimated upper measurement limit for evaluated ${\sf K}_{{ m s}{ m t}}$
spec_storage_ss	S.	1/m	Specific storage of formation based on 3D spherical flow model. Considered best estimate from transient evaluation of flow period or recovery period.
assumed_ss	Ssf *	1/m	Assumed specific storage of formation based on 3D spherical flow model.
O	U	(m³/Pa)	Wellbore storage coefficient. Considered best estimate from transient evaluation of flow period or recovery period.
cd	CD	(-)	Dimensionless wellbore storage coefficient, $C_{D} = C \times \rho_{w} \times g/(2\pi \times S \times r_{w}^{2})$.
skin	۶		Skin factor. Considered best estimate from transient evaluation of flow period or recovery period.
dt1	dt,	S	Estimated start time after pump/injection start OR recovery start, for the period used for the evaluated parameter.
dt1	dt_2	S	Estimated stop time after pump/injection start OR recovery start, for the period used for the evaluated parameter.

SICADA Header	Header	Unit	Explanation
dte1	dt _{e1}		Start time for evaluated parameter from start of recovery period.
dte2	dt_{e2}		Stop time for evaluated parameter from start of recovery period.
t1	t,		Start time for evaluated parameter from start of flow period.
12	t_2		Stop time for evaluated parameter from start of flow period.
p_horner	b*		Horner extrapolated pressure (used as an estimation of natural pressure of the test section).
transmissivity_t_nlr	T _{ILR}	m²/s	Transmissivity, based on Non Linear Regression of the entire test sequence.
storativity_s_nlr	SILR	(-)	Storativity, based on Non Linear Regression of the entire test sequence.
c_nlr	CILR	(m³/Pa)	Wellbore storage coefficient, based on Non Linear Regression of entire test sequence.
cd_nlr	C _{D,ILR}		Dimensionless wellbore storage coefficient, based on Non Linear Regression of entire test sequence.
skin_nlr	GNLR		Skin factor, based on Non Linear Regression of entire test sequence.
transmissivity_t_grf	T _{GRF}	m²/s	Transmissivity, based on the Generalized Radial Flow model (Baker, 1988). Considered best estimate from transient evaluation of flow period or recovery period.
storativity_s_grf	S _{GRF}	(-)	Storativity, based on Generalised Radial Flow model. Considered best estimate from transient evaluation of flow period or recovery period.
flow_dim_grf	D _{GRF}	(-)	Inferred flow dimension, based on the Generalized Radial Flow model (Barker, 1988). Considered best estimate from transient evaluation of flow period or recovery period.
comment	comment		Comments on the test.

Result table to SICADA from the interference test in HFM16

plu_inf_test_obs_d

idcode	start_date	stop_date	secup	seclow	section_no	test_type	formation_type	start_flow_period	stop_flow_period
KFM02A	2004-10-06 11:23	2004-10-07 08:26	340.00	460.00		2	1	2004-10-06 13:03	2004-10-06 17:31
KFM02A	2004-10-06 11:23	2004-10-07 08:26	461.00	1,002.44		2	1	2004-10-06 13:03	2004-10-06 17:31

cont.

test_ borehole	test_secup	test_seclow	q	radial_ distance_rs	shortest_ distance_rt	time_lag_ press_dtl	initial_head_hi
HFM16	12.02	132.50	428.00	1,267.00		4,000.00	
HFM16	12.02	132.50	513.00	1,287.00		2,500.00	

cont.

head_at_flow_	final_head_hf	initial_press_pi	press_at_flow_	final_press_pf	fluid_temp_teo	fluid_elcond_
end_hp			end_pp			есо
		3,254.90	3,252.20	3,253.00		
		4,436.40	4,432.40	4,434.50		

cont.

fluid_salinity_	fluid_salinity_	reference	comment
tdso	tdsom		
	-		Relative pressure Time lag

Relative pressure. Time lag for 0.01 m

Relative pressure. Time lag for 0.01 m

SICADA Header	Header	Unit	Explanation
idcode	ID Obs Borehole		ID for observation borehole.
secup	Borehole secup	(m)	Length coordinate along the borehole for the upper limit of observation section.
seclow	Borehole seclow	(m)	Length coordinate along the borehole for the lower limit of observation section.
start_date	Date for test start	ҮҮҮҮ-М M-DD hh:mm	Date for the start of the pumping/injection test (YYYY-MM-DD hh:mm).
stop_date	Date for test stop	ҮҮҮҮ-М M-DD hh:mm	Date for the stop of the pumping/injection test (YYYY-MM-DD hh:mm).
test_type	Test type (1–7)	Ĵ	 Pumping test-wireline eq,1B: Pumping test-submersible pump, 1C: Pumping test-airlift pumping. 2: Interference test. Injection test. 4: Slug test, 4B: Pulse test. 5A: Flowlogging-PFL-DIFF_sequential. 5B Flowlogging-PFL-DIFF_overlapping. Flowlogging Impeller. 7: Grain size analysis.
test_borehole	ID. pumped Borehole	(-)	ID for pumped or injected borehole.
test_secup	Test secup	(m)	Length coordinate along the borehole for the upper limit of pumped or injected section.
test_seclow	Test seclow	(m)	Length coordinate along the borehole for the lower limit of pumped or injected section.
start_flow_period	Start flow	ҮҮҮҮ-MM-DD hh:mm:ss	Time for the start of the pumping/injection period (YYYY-MM-DD hh:mm:ss).
stop_flow_period	Stop flow	ҮҮҮҮ-MM-DD hh:mm:ss	Time for the stop of the pumping/injection period (YYYY-MM-DD hh:mm:ss).
þ	Ļ	(m)	Hydraulic point of application for a test section, based on the geometric midpoint of test section or the main point of transmissivity distribution in test section.
radial_distance_rs	rs S	(m)	Geometrical distance from point of application in test section to point of application in observation section.
shortest_distance_rt	ت	(m)	Representative hydraulic distance from point of application in test section to point of application in observation section via inferred major conductive features. The actual structural model version shall be reported.
time_lag_press_dtl	dt _L	(s)	Time lag for pressure response to reach observation section after start/stop of pumping or injection, based on the first significant response in the observation section.
initial_head_hi	Ĩ	(m)	Hydraulic head in observation section at start of flow period.
head_at_flow_end_hp	h	(m)	Hydraulic head in observation section at stop of flow period.
final_head_hf	μĒ	(m)	Hydraulic head in observation section at stop of recovery period.

<pre>SICADA - description of plu_inf_test_obs_</pre>	ס
<pre>SICADA - description of plu_inf_test_</pre>	obs_
SICADA – description of plu_inf_	test
SICADA – description of plu	Ē
SICADA – description o	f plu
SICADA – descripti	o uo
SICADA – deso	cripti
SICADA -	desc
SICAD/	 1
	ð
	20

initial_press_pip.(kPa)Groundwater pressure in observation section at start of flow period.press_at_flow_end_ppp.(kPa)Groundwater pressure in observation section at stop of flow period.final_press_pfp.(kPa)Groundwater pressure in observation section at stop of recovery period.fluid_temp_teoTe.(C°)Measured borehole fluid temperature in the observation section (representative for evaluated parameters).fluid_elcond_ecoECo(mS/m)Measured electric conductivity of the borehole fluid in the observation section (representative for evaluated parameters).fluid_salinity_tdsoTDSo(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSo(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSoSKB report No for reports describing data and evaluationreferenceReferencesSKB report No for reports describing data and evaluation.commentCommentComment to the evaluated parameters (Optional).	SICADA He	ader	Header	Unit		Explanat	tion			
press_at_flow_end_ppp,(kPa)Groundwater pressure in observation section at stop of flow period.final_press_pfp;(kPa)Groundwater pressure in observation section at stop of recovery period.final_temp_teoTe,(C°)Measured borehole fluid temperature in the observation section (representative for evaluated parameters).fluid_temp_teoEC,(mS/m)Measured electric conductivity of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS,(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS,(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS,(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS,Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis.referenceReferenceSKB report No for reports describing data and evaluation.commentCommentCommentcommentCommentComment to the evaluated parameters (Optional).	initial_press	iq	ā	(kPe	(E	Groundw	vater pressur	e in observ	/ation sectio	n at start of flow period.
final_press_pfpr(kPa)Groundwater pressure in observation section at stop of recovery period.fluid_temp_teoTe,(C°)Measured borehole fluid temperature in the observation section (representative for evaluated parameters).fluid_elcond_ecoEC,(mS/m)Measured electric conductivity of the borehole fluid in the observation section, inseed on EC-measurement.fluid_salinity_tdsoTDS,(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS,(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis.referenceReferenceSKB report No for reports describing data and evaluation.commentCommentComment to the evaluated parameters (Optional).	press_at_flc	ow_end_pp	p _p	(kPé	(E	Groundw	vater pressur	e in observ	/ation sectio	n at stop of flow period.
fluid_temp_teoTe,(C°)Measured borehole fluid temperature in the observation section (representative for evaluated parameters).fluid_elcond_ecoECo(mS/m)Measured electric conductivity of the borehole fluid in the observation section (representative for evaluated parameters).fluid_elcond_ecoECo(mS/m)Measured electric conductivity of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSo(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSom(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis.freferenceReferenceReferencesSKB report No for reports describing data and evaluation.commentCommentsShort comment to the evaluated parameters (Optional).	final_press_	pf	p⊧	(kPé	(E	Groundw	vater pressur	e in observ	/ation sectio	n at stop of recovery period.
fluid_elcond_ecoECo(mS/m)Measured electric conductivity of the borehole fluid in the observation section (representative for evaluated parameters).fluid_salinity_tdsoTDSo(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSon(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDSon(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis.referenceReferencesReferencesSKB report No for reports describing data and evaluation.commentCommentsShort comment to the evaluated parameters (Optional).	fluid_temp_i	teo	Te。	(c°)	_	Measure	d borehole fi	luid temper	ature in the	observation section (representative for evaluated parameters).
fluid_salinity_tdsoTDS_o(mg/L)Calculated total dissolved solids of the borehole fluid in the observation section, based on EC-measurement.fluid_salinity_tdsoTDS_om(mg/L)Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis.referenceReferencesSKB report No for reports describing data and evaluation.commentCommentsShort comment to the evaluated parameters (Optional).	fluid_elcond	eco	EC。	(mS	(m)	Measure	d electric co	nductivity o	of the boreho	le fluid in the observation section (representative for evaluated parameters).
fluid_salinity_tdso TDS _{on} (mg/L) Measured total dissolved solids of the borehole fluid in the observation section, based on water sampling and chemical analysis. reference References SKB report No for reports describing data and evaluation. comment Comments Short comment to the evaluated parameters (Optional).	fluid_salinity	/_tdso	TDS _o	(mg	/L)	Calculate	ed total dissc	olved solids	of the borel	nole fluid in the observation section, based on EC-measurement.
reference References SKB report No for reports describing data and evaluation. comment Comments Short comment to the evaluated parameters (Optional).	fluid_salinity	/_tdso	TDSom	ɓm)	/L)	Measure analysis.	d total disso	lved solids	of the boreh	ole fluid in the observation section, based on water sampling and chemical
comment Comments Short comment to the evaluated parameters (Optional).	reference		References			SKB rep	ort No for re	oorts descri	ibing data aı	nd evaluation.
	comment		Comments			Short col	mment to the	evaluated	parameters	(Optional).
	plu_inf_t(est_obs_6	þ							
plu_inf_test_obs_ed	idcode s	tart_date	stop_date	secup	seclow	section_ no	test_ borehole	test_ secup	test_ seclow	formation width_b
plu_inf_test_obs_ed idcode start_date secup seclow section_ test test formation no borehole secup seclow width_b	KFM02A 2	004-10-06 1:23	2004-10-07 08:26	340.00	460.00		HFM16	12.02	132.50	120.00
plu_inf_test_obs_ed blu_inf_test_obs_ed scop_date sectov section_ test formation idcode start_date stop_date sectov section test formation KFM02A 2004-10-06 2004-10-07 340.00 460.00 HFM16 12.02 132.50 120.00 11:23 08:26 08:26 12.02 132.50 120.00 120.00	KFM02A 2	.004-10-06 1:23	2004-10-07 08:26	461.00	1,002.44		HFM16	12.02	132.50	120.00
plu_inf_test_obs_ed secup section_ test_ test_ test_ test_ formation_ idcode start_date stop_date section section test_ test_ </th <td>cont.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	cont.									

transmissivity_ value_type_ I_measl_to u_measl_to to to

leakage_ factor_lof

tbo I_measl_tbo u_measl_tbo sbo

width_of_ channel_b

þ

428.00 513.00

0 0

5.52E-04 6.41E-04

storativity_ leal so coe	kage	hydr_cond I_ «osf k	_measlu_me osfkosf	aslspec storage_so	dt1 sf	dt2	Ξ	12	dte1 d1	te2
1.84E-05							3,000.00	10,000.00		
1.41E-05							4,000.00	10,000.00		
SICADA – des	scriptio	n of plu_inf_	test_obs_ed							
SICADA Header	Ť	eader	Unit	Explanation						
idcode		Obs. Borehole		ID for obsevation	borehole					
secup	ğ	orehole secup	E	Length coordinat	e along the	e boreho	ole for the u	upper limit of t	he observ	/ation section
seclow	ĕ	orehole seclow	(m)	Length coordinat	e along the	e boreho	ole for the lo	ower limit of th	ne observ	ation section
start_date	Ő	ate for test start	ҮҮҮҮ-MM-DD hh:mm	Date for the start	of the inte	rference	e test (YYY	ү-ММ-DD hh	(mm:	
stop_date	Ő	ate for test stop	ҮҮҮҮ-MM-DD hh:mm	Date for the stop	of the inte	rference	e test (YYY	Y-MM-DD hh:	(mm	
test_borehole	Цğ)- Pumped vrehole	(-)	ID for pumped or	injected b	orehole				
test_secup			(m)	Length coordinat	e along the	e boreho	ole for the u	upper limit of β	o padmno	r injected section
test_seclow			(m)	Length coordinat	e along the	e boreho	ole for the lo	ower limit of p	umped oi	r injected section
formation_width_t	q q		E	b: Representative	e aquifer th	ickness	tor inferre	d transmissivi	ty, genera	ally estimated as observation section length L $_{\circ}$
width_of_channel	B آ		E	B: Inferred width	of formatic	on for ev	aluated TB			
d	Ļ			Hydraulic point o transmissivity dis	f applicatic tribution in	in for a t test se	test section ction	, based on th	e geomet	ric midpoint of test section or the main point of
tbo	F	°	m³/s	Flow capacity in Considered best	1D formati estimate fi	on of wi rom trar	dth B and t isient evalu	ransmissivity ation of flow p	T based o	on transient evaluation in observation section. recovery period.
I_meas_limit_tbo	Ξ	3-measl-L	m³/s	Estimated lower	neasurem	ent limit	for evalua	ted TB in obs	ervation s	.ection.
u_meas_limit_tbo	LE LE	3-measl-U	m³/s	Estimated upper	measuren	ient limi	t for evalua	ted TB in obs	ervation s	section.
sbo	S	å	ε	SB _o : Storage cap Considered best	acity of 1[estimate fi) format rom trar	ion of width isient evalu	B and storati ation of flow p	ivity S bas period or 1	sed on transient evaluation in observation section. recovery period.

69

cont.

SICADA Header	Header	Unit	Explanation
leakage_factor_lof	Ļ	ε	Leakage coefficient in observation section evaluated from 2D radial flow model. K' = hydraulic conductivity across the aquitard, b' = water saturated thickness of aquitard (leaky formation). Considered best estimate from transient evaluation of flow period or recovery period.
transmissivity_to	Т°	m²/s	Transmissivity of formation in observation section, based on 2D radial flow model. Considered best estimate from transient evaluation of flow period or recovery period.
l_measl_to	T _{o-measl-L}	m²/s	Estimated lower measurement limit for evaluated T _o in observation section
u_measl_to	T _{o-measl-U}	m²/s	Estimated upper measurement limit for evaluated $T_{ m o}$ in observation section
storativity_so	Š	(-)	Storativity (Storage coefficient) of formation in observation section based on 2D radial flow model. Considered best estimate from transient evaluation of flow period or recovery period.
leakage_coeff_o	(K′/b′) _o	(s/l)	Leakage coefficient in observation section evaluated from 2D radial flow model. K' = hydraulic conductivity across the aquitard, b' = water saturated thickness of aquitard (leaky formation). Considered best estimate from transient evaluation of flow period or recovery period.
hydr_kond_kosf	K_{osf}	s/m	Hydraulic conductivity of formation in observation section, based on 3D spherical flow model. Considered best estimate from transient evaluation of flow period or recovery period.
l_measl_kosf	$K_{osf-measl-L}$	m/s	Estimated lower measurement limit for evaluated K_{ost} in observation section.
u_measl_kosf	$K_{osf-measl-U}$	m/s	Estimated upper measurement limit for evaluated Kost in observation section.
spec_storage_sosf	S _{osf}	1/m	Specific Storage of formation in observation section, based on 3D spherical flow. Considered best estimate from transient evaluation of flow period or recovery period.
dt1	dt ₁	S	Estimated start time after pump/injection start OR recovery start, for the period used for the evaluated parameter
dt2	dt ₂	S	Estimated stop time after pump/injection start OR recovery start, for the period used for the evaluated parameter
11	ţ	S	Start time for evaluated parameter from start of flow period.
12	t2	S	Stop time for evaluated parameter from start of flow period.
dte1	dt _{e1}	S	Start time for evaluated parameter from start of recovery period.
dte2	dt_{e2}	S	Stop time for evaluated parameter from start of recovery period.
transmissivity_to_nlr	Tonlr	m²/s	Transmissivity in observation section, based on Non Linear Regression of the entire test sequence.
storativity_so_nlr	Sonlr	(-)	Storativity in observation section, based on Non Linear Regression of the entire test sequence.
transmissivity_to_grf	T _{ogr} e	m²/s	Transmissivity in observation section, based on the Generalised Radial Flow model (Baker, 1988). Considered best estimate from transient evaluation of flow period or recovery period.
storativity_so_grf	Sogre	(–)	Storativity in observation section, based on Generalised Radial Flow model. Considered best estimate from transient evaluation of flow period or recovery period.
flow_dim_grf_o	D _{oGRF}	(–)	Inferred flow dimension in observation section, based on the Generalised Radial Flow model (Barker, 1988). Considered best estimate from transient evaluation of flow period or recovery period.
Comments	Comments		Short comment to the evaluated parameters (Optional)