P-05-82

# **Oskarshamn site investigation**

# **RAMAC and BIPS logging in boreholes KLX05 and HLX32**

Jaana Gustafsson, Christer Gustafsson Malå Geoscience AB/RAYCON

April 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19



ISSN 1651-4416 SKB P-05-82

### **Oskarshamn site investigation**

# RAMAC and BIPS logging in boreholes KLX05 and HLX32

Jaana Gustafsson, Christer Gustafsson Malå Geoscience AB/RAYCON

April 2005

Keywords: BIPS, RAMAC, Radar, TV.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

### Abstract

This report includes the data gained in geophysical logging operations performed within the site investigation at Oskarshamn. The logging operations presented here includes borehole radar (RAMAC) and BIPS logging in the core drilled borehole KLX05 and percussion drilled borehole HLX32. All measurements were conducted by Malå Geoscience AB/RAYCON during March 2005.

The objective of the radar surveys is to achieve information on the rock mass around the borehole. Borehole radar is used to investigate the nature and the structure of the rock mass enclosing the boreholes.

The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation.

This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and the identified reflectors are listed.

The borehole radar data quality from KLX05 and HLX32 was relatively satisfying, but in large parts of lower quality due to more conductive conditions (especially in HLX32). This conductive environment of course reduces the possibility to distinguish and interpret possible structures in the rock mass which otherwise could give a reflection. However, the borehole radar measurements resulted in a number of identified radar reflectors and over 200 radar reflectors were identified in KLX05, and almost 40 in HLX32.

The BIPS images shows a medium quality due to discoloring, mud covering (in KLX05) and dirty water (HLX32), which can make the geological mapping more difficult, especially in the lower parts of the boreholes.

### Sammanfattning

Denna rapport omfattar geofysiska loggningar inom platsundersökningsprogrammet för Oskarshamn. Mätningarna som presenteras här omfattar borrhålsradarmätningar (RAMAC) och BIPS-loggningar i kärnborrhål KLX05 och hammarborrhål HLX32. Alla mätningar är utförda av Malå Geoscience AB / RAYCON under mars 2005.

Syftet med radarmätningarna är att samla information om bergmassan runt borrhålet. Borrhålsradar används till att karakterisera bergets egenskaper och strukturer i bergmassan närmast borrhålet.

Syftet med BIPS loggningen är att skaffa information om borrhålet inkluderande förekommande bergarter och bestämning av sprickors fördelning och deras orientering.

Rapporten beskriver utrustningen som använts liksom mätprocedurer och en beskrivning och tolkning av data som erhållits. För BIPS loggningen presenteras data som plottar längs med borrhålet. Radardata presenteras i radargram och en lista över tolkade radarreflektorer ges.

Borrhålsradardata från KLX05 och HLX32 var relativt tillfredställande, men tidvis av sämre kvalité troligen till stor del beroende på en konduktiv miljö (framförallt i HLX32). En konduktiv miljö minskar möjligheterna att identifiera strukturer från borrhålsradardata. Dock har drygt 200 radarreflektorer identifierats i KLX05 och nästan 40 i HLX32.

BIPS bilderna uppvisar en jämförelsevis låg kvalité på grund av missfärgning och borrkax på borrhålsväggarna (KLX05) och smutsigt vatten (HLX32). Detta kan försvåra den geologiska kartläggningen, speciellt i borrhålens djupare delar.

# Contents

| 1                             | Introd                                                                            | uction                                                                                                          | 7                                                  |
|-------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 2                             | Objective and scope                                                               |                                                                                                                 |                                                    |
| <b>3</b><br>3.1<br>3.2        | Equipment<br>Radar measurements RAMAC<br>V-Camera, BIPS                           |                                                                                                                 |                                                    |
| <b>4</b><br>4.1<br>4.2<br>4.3 | Execut<br>Genera<br>4.1.1<br>4.1.2<br>4.1.3<br>Analys<br>4.2.1<br>4.2.2<br>Noncor | tion<br>I<br>RAMAC Radar<br>BIPS<br>Length measurements<br>es and Interpretation<br>Radar<br>BIPS<br>nformities | 13<br>13<br>13<br>14<br>15<br>16<br>16<br>17<br>18 |
| <b>5</b><br>5.1<br>5.2        | <b>Result</b><br>RAMA<br>BIPS 1                                                   | <b>s</b><br>AC logging<br>ogging                                                                                | 19<br>19<br>28                                     |
| Refe                          | rences                                                                            |                                                                                                                 | 31                                                 |
| Appendix 1 Rac<br>100         |                                                                                   | Radar logging in KLX05, 100 to 990 m, dipole antennas 250, 100 and 20 MHz                                       | 33                                                 |
| Арре                          | endix 2                                                                           | Radar logging in HLX32, 10 to 155 m, dipole antennas 250, 100 and 20 MHz                                        | 43                                                 |
| Appe                          | endix 3                                                                           | BIPS logging in KLX05, 108 to 991 m                                                                             | 45                                                 |
| Арре                          | endix 4                                                                           | BIPS logging in HLX32, 12 to 161 m                                                                              | 67                                                 |

# 1 Introduction

This document reports the data gained in geophysical logging operations, which is one of the activities performed within the site investigation at Oskarshamn. The logging operations presented here includes borehole radar (RAMAC) and TV-logging (BIPS) in the core drilled borehole KLX05 and percussion drilled borehole HLX32. The work was carried out in accordance with activity plan AP PS 400-05-004. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents.

This report includes measurements from 100 to 990 m in KLX05 and from 0 to 160 m in HLX32. The borehole KLX05 has a diameter of 76 mm, and HLX32 a diameter of 140 mm. All measurements were conducted by Malå Geoscience AB / RAYCON during March 2005. The location of the boreholes is shown in Figure 1-1.

The used investigation techniques comprised:

- Borehole radar measurements (Malå Geoscience AB:s RAMAC system) with dipole radar antennas.
- Borehole TV logging with the so-called BIP-system (Borehole Image Processing System), which is a high resolution, side viewing, colour borehole TV system.

The delivered raw and processed data have been inserted in the database of SKB (SICADA) and data are traceable by the activity plan number.

# Table 1-1. Controlling documents for the performance of the activity (SKB internal controlling documents).

| Activity plan                              | Number                        | Version |
|--------------------------------------------|-------------------------------|---------|
| Borrhålsradar och BIPS i KLX05             | AP PS 400-05-004 plus tillägg | 1.0     |
| Method descriptions                        | Number                        | Version |
| Metodbeskrivning för TV- loggning med BIPS | SKB MD 222.006                | 1.0     |
| Metodbeskrivning för borrhålsradar         | SKB MD 252.020                | 1.0     |



*Figure 1-1.* General overview over the Simpevarp and Laxemar subareas in Oskarshamn with the location of the borehole KLX05 and HLX32 in Laxemar.

### 2 Objective and scope

The objective of the radar and BIPS surveys is to achieve information on the borehole conditions (borehole wall) as well as on the rock mass around the borehole. Borehole radar is engaged to investigate the nature and the structure of the rock mass enclosing the boreholes, and borehole TV for geological surveying of the borehole including determination of rock types as well as fracture distribution and orientation.

This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and the identified reflectors are listed.

### 3 Equipment

### 3.1 Radar measurements RAMAC

The RAMAC GPR system owned by SKB is a fully digital GPR system where emphasis has been laid on fast survey speed and easy field operation. The system operates dipole and directional antennas (see Figure 3-1). A system description is given in the SKB internal controlling document MD 252.021.

The borehole radar system consists of a transmitter and a receiver antenna. During operation an electromagnetic pulse, within the frequency range of 20 MHz up to 250 MHz, is emitted into the bedrock. Once a feature, e.g. a water-filled fracture, with sufficiently different electrical properties is encountered, the pulse is reflected back to the receiver and recorded.



Figure 3-1. Example of a borehole radar antenna.

### 3.2 TV-Camera, BIPS

The BIPS 1500 system used is owned by SKB and described in SKB internal controlling document MD 222.005. The BIPS method for borehole logging produces a digital scan of the borehole wall. In principle, a standard CCD video camera is installed in the probe in front of a conical mirror (see Figure 3-2). An acrylic window covers the mirror part and the borehole image is reflected through the window and displayed on the cone, from where it is recorded. During the measuring operation, pixel circles are grabbed with a resolution of 360 pixels/circle. The speed of the logging is 1.5 m/minute.

The system orientates the BIPS images according to two alternative methods, either using a compass (vertical boreholes) or with a gravity sensor (inclined boreholes).



Figure 3-2. Illustration of the conical mirror scanning.

# 4 Execution

### 4.1 General

### 4.1.1 RAMAC Radar

The measurements in KLX05 and HLX32 were carried out with dipole radar antennas, with frequencies of 250, 100 and 20 MHz.

During logging the dipole antennas (transmitter and receiver) were lowered continuously into the borehole and data were recorded on a field PC along the measured interval. The antennas (transmitter and receiver) are kept at a fixed separation by glass fiber rods according to Table 4-1. See also Figure 3-1 and 4-1.

All measurements were performed in accordance with the instructions and guidelines from SKB (internal document MD 252.020). All cleaning of the antennas and cable was performed according to the internal document SKB MD 600.004 before the logging operation.

For more information on system settings used in the investigation of KLX05 and HLX32, see Table 4-1 and 4-2 below.



Figure 4-1. The principle of radar borehole reflection survey and an example of result.

| Site: Oskarshamn Logging company: RAYCON |        |               | A.C.     |          |
|------------------------------------------|--------|---------------|----------|----------|
| Бп.<br>Type:<br>Operator:                | Dipole | Manufacturer: | MALÂ Ge  | oScience |
| Operator.                                | 00     | 250 MHz       | 100 MHz  | 20 MHz   |
| Logging da                               | ite:   | 05-03-30      | 05-03-31 | 05-03-31 |
| Reference:                               |        | T.O.C.        | T.O.C.   | T.O.C.   |
| Sampling frequency (MHz):                |        | 2,424         | 891      | 238      |
| Number of samples:                       |        | 619           | 518      | 518      |
| Number of stacks:                        |        | Auto          | Auto     | Auto     |
| Signal posi                              | tion:  | -0.37         | -0.37    | -1.40    |
| Logging from (m):                        |        | 1.5           | 2.6      | 6.25     |
| Logging to (m):                          |        | 994.7         | 993.8    | 989.8    |
| Trace interval (m):                      |        | 0.1           | 0.2      | 0.25     |
| Antenna separation (m):                  |        | 2.4           | 3.9      | 10.05    |

 Table 4-1. Radar logging information from KLX05.

 Table 4-2. Radar logging information from HLX32.

| Site: Oskarshamn<br>BH: HLX32 |                         | Logging comp<br>Equipment: | any: RAYCON<br>SKB RAI | N<br>MAC  |
|-------------------------------|-------------------------|----------------------------|------------------------|-----------|
| Туре:                         | Dipole                  | Manufacturer:              | MALÅ G                 | eoScience |
| Operator:                     | CG                      | Antenna<br>250 MHz         | 100 MHz                | 20 MHz    |
| Logging da                    | ite:                    | 05-03-21                   | 05-03-21               | 05-03-21  |
| Reference:                    |                         | T.O.C.                     | T.O.C.                 | T.O.C.    |
| Sampling frequency (MHz):     |                         | 2,424                      | 891                    | 238       |
| Number of samples:            |                         | 619                        | 518                    | 518       |
| Number of stacks:             |                         | Auto                       | Auto                   | Auto      |
| Signal position:              |                         | -0.30                      | -0.32                  | -1.40     |
| Logging from (m):             |                         | 1.5                        | 2.6                    | 6.25      |
| Logging to (m):               |                         | 161.3                      | 160.2                  | 155.95    |
| Trace interval (m):           |                         | 0.1                        | 0.2                    | 0.25      |
| Antenna se                    | Antenna separation (m): |                            | 3.9                    | 10.05     |

#### 4.1.2 BIPS

All measurements were performed in accordance with the instructions and guidelines from SKB (internal document MD 222.006). All cleaning of the probe and cable was performed according to the internal document SKB MD 600.004 before the logging operation.

During the measurement, a pixel circle with a resolution of 360 pixels/circle was used and the digital circles were stored at every 1 mm on a MO-disc in the surface unit. The maximum speed during data collection was 1.5 m/minute.

A gravity sensor was used to measure the orientation of the images in the boreholes KLX05 and HLX32.

In order to control the quality of the system, calibration measurements were performed in a test pipe before logging the first borehole and after logging the last one. Figure 4-2 corresponds to the test logging performed before and after the logging in HLX32 and KLX05. The results showed no difference regarding the colours and focus of the images. Results of the test loggings were included in the delivery of the raw data.

The BIPS logging information is found in the header for every single borehole presented in Appendix 3 and 4 in this report.

#### 4.1.3 Length measurements

During logging the length recording for the RAMAC and BIPS systems is taken care of by a measuring wheel mounted on the cable winch.

During the BIPS logging in coredrilled boreholes, where the reference marks in the borehole wall is visible on the image, the position where the depth mark is visible is marked with scotch tape on the logging cable. During BIPS logging the measured length was adjusted to true length according to depth mark visible in the BIPS image. The adjusted true length is marked with red in the image plot together with the non adjusted measured length which is marked with black as seen in Appendices 3 and 4. The tape marks on the logging cable are then used for controlling the RAMAC measurement.

The experience we have from earlier measurements with dipole antennas in the core-drilled boreholes in Forsmark and Oskarshamn for the radar logging is that the length divergence is less than 50 cm in the deepest parts of the boreholes.

The length divergence is taken into account in the resulting tables in Chapter 5.



*Figure 4-2. Results from logging in the test pipe before and after the logging campaign in March 2005.* 

### 4.2 Analyses and Interpretation

#### 4.2.1 Radar

The result from radar measurements is most often presented in the form of a radargram where the position of the probes is shown along one axis and the propagation is shown along the other axis. The amplitude of the received signal is shown in the radargram with a grey scale where black colour corresponds to the large positive signals and white colour to large negative signals. Grey colour corresponds to no reflected signals.

The presented data in this report is adjusted for the measurement point of the antennas. The measurement point is defined to be the central point between the transmitter and the receiver antenna.

The two basic patterns to interpret in borehole measurements are point and plane reflectors. In the reflection mode, borehole radar essentially gives a high-resolution image of the rock mass, showing the geometry of plane structures which may or may not, intersect the borehole (contact between layers, thin marker beds, fractures) or showing the presence of local features around the borehole (cavities, lenses etc).

The distance to a reflecting object or plane is determined by measuring the difference in arrival time between the direct and the reflected pulse. The basic assumption is that the speed of propagation is the same everywhere.

There are several ways to determine the radar wave propagation velocity. Each of them has its advantages and its disadvantages. In this project the velocity determination was performed by keeping the transmitter fixed in the borehole while moving the receiver downwards in the borehole. The result is plotted in Figure 4-3 and the calculation shows a velocity of 120 m/micro seconds. The velocity measurement was performed in borehole KSH01B with the 100 MHz antennas /1/.



Figure 4-3. Results from velocity measurements in KSH01B with 100 MHz dipole antennas /1/.

The visualization of data in Appendix 1 and 2 is made with ReflexWin, a Windows based processing software for filtering and analysis of borehole radar data. The processing steps are shown in Table 4-3 and 4-4. It should be observed that the processing steps below refer to the Appendix 1 and 2. The filters applied affect the whole borehole length and are not always suitable in all parts, depending on the geological conditions and conductivity of the borehole fluid. During interpretation further processing can be done, most often in form of band-pass filtering. This filtering can be applied just in parts of the borehole, where needed.

For the interpretation of the intersection angle between the borehole axis and the planes visible on the radargrams the RadinterSKB software has been used. The interpreted intersection points and intersection angles of the detected structures are presented in Tables 5-3 and 5-4 and are also visible on the radargrams in Appendix 1 and 2.

| Site: Oskarshamn<br>BH: KLX05<br>Type: Dipole<br>Interpret: JA |     | Logging company:<br>Equipment:<br>Manufacturer:<br>Antenna | RAYCON<br>SKB RAMAC<br>MALÅ GeoScience  |                                          |
|----------------------------------------------------------------|-----|------------------------------------------------------------|-----------------------------------------|------------------------------------------|
|                                                                |     | 250 MHz                                                    | 100 MHz                                 | 20 MHz                                   |
| Processir                                                      | ng: | DC removal (190-240)                                       | DC removal (450–550)                    | DC removal (1,700–2,000)                 |
|                                                                |     | Move start time (-17)                                      | Move start time (-29)                   | Move start time (-116)                   |
|                                                                |     | Gain (start 16/linear<br>1.2/exp 0.96)                     | Gain (start 38/linear<br>1.44/exp 0.64) | Gain (start 121/linear<br>2.98/exp 0.17) |

Table 4-3. Processing steps for borehole radar data from KLX05.

| Table 4-4. | Processing steps | for borehole | radar data | from HLX32. |
|------------|------------------|--------------|------------|-------------|
|------------|------------------|--------------|------------|-------------|

| Site:<br>BH:<br>Type:<br>Interpret: | Oskarshamn<br>HLX32<br>Dipole<br>JA | Logging company:<br>Equipment:<br>Manufacturer:<br>Antenna | RAYCON<br>SKB RAMAC<br>MALÂ GeoScience   | ON<br>AMAC<br>GeoScience                |  |
|-------------------------------------|-------------------------------------|------------------------------------------------------------|------------------------------------------|-----------------------------------------|--|
| •                                   |                                     | 250 MHz                                                    | 100 MHz                                  | 20 MHz                                  |  |
| Processing:                         |                                     | DC removal (190–240)                                       | DC removal (450–550)                     | DC removal (1,700–2,000)                |  |
|                                     |                                     | Move start time (-19)                                      | Move start time (-43)                    | Move start time (-115)                  |  |
|                                     |                                     | Gain (start 18/linear<br>0.96/exp 1)                       | Gain (start 60/linear 3.12/<br>exp 0.21) | Gain (start 135/linear 1.7/<br>exp 0.2) |  |
|                                     |                                     |                                                            | Median (3x3)                             | Median (3x3)                            |  |

#### 4.2.2 BIPS

The visualization of data is made with BDPP, a Windows based processing software for filtering, presentation and analysis of BIPS data. As no fracture mapping of the BIPS image is performed, the raw data was delivered on a CD-ROM together with printable pictures in \*.pdf format before the field crew left the investigation site.

The printed results were delivered with measured length, together with adjusted length according to the length marks visible in the BIPS image. For printing of the BIPS images the printing software BIPP from RaaX was used.

### 4.3 Nonconformities

During this logging activity also radar measurements with the directional antennas was supposed to be carried out. However, some error occurred during the start up, so the system was sent for service, and the measurements will be carried out and reported at a later occasion.

There were no nonconformities during the BIPS logging.

The start of the logging and hence the reporting according to the time table was delayed due to trouble with drilling operations in KLX05 which was not expected when the activity was planned to be performed.

The percussion drilled borehole HLX20 could not be accessed due to transport to the borehole was not possible due to bad conditions for transportation in the forest.

### 5 Results

The results from the BIPS measurements were delivered as raw data (\*.bip-files) on CD-ROM:s to SKB together with printable BIPS pictures in \*.pdf format before the field crew left the investigation site. The information of the measurements was registered in SICADA, and the CD-ROM:s stored by SKB.

The RAMAC radar data was delivered as raw data (file format \*.rd3 or \*.rd5) for KLX05 and HLX32 with corresponding information files (file format \*.rad) whereas the data processing steps and results are presented in this report. Relevant information, including the interpretation presented in this report, was inserted into the SKB database SICADA.

The delivered raw and processed data have been inserted in the database of SKB (SICADA) and data are traceable by the activity plan number.

### 5.1 RAMAC logging

The results of the interpretation of the radar measurements are presented in Table 5-1 to 5-6. Radar data is also visualized in Appendix 1 and 2. It should be remembered that the images in Appendix 1 and 2 is only a composite picture of all events 360 degrees around the borehole, and do not reflect the orientation of the structures. An overview of KLX05 (20 MHz data) is given in Figure 5-1 below, showing several large-scale structures between 300 and 800 m length.

Only the larger clearly visible structures are interpreted in RadinterSKB. A number of minor structures also exist, indicated in Appendix 1 and 2. See for instance, HLX32 between 40 and 50 m, 250 MHz data, where a number of structures can be noticed, but most probably lying so close to each other it is impossible to distinguish one from the other. It should also be pointed out that reflections interpreted will always get an intersection point with the borehole, but being located further away. They may in some cases not reach the borehole.



Figure 5-1. Results from KLX05, 20 MHz data.

The data quality from KLX05 and HLX32, (as seen in Appendix 1 and 2) is relatively satisfying, but in parts of lower quality due to more conductive conditions. This is true especially for HLX32. A conductive environment makes the radar wave to attenuate, which decreases the penetration. This is for instance seen very clearly in the 250 MHz data from HLX32, but also in parts in the KLX05 data. This conductive environment of course also reduces the possibility to distinguish and interpret possibly structures in the rock which otherwise could give a reflection.

Further on, depending on the size of the borehole, the conductivity and the antenna frequency, so called ringing can be achieved, which again makes the interpretation of single structures quite complicated. This is seen for instance on data from the 250 MHz antenna in HLX32 (Appendix 2).

As also seen in Appendix 1 and 2 the resolution and penetration of radar waves depend on the antenna frequency used. Low antenna frequency gives less resolution but higher penetration rate compared to a higher frequency. If structures can be identified with all three antenna-frequencies, it can probably be explained by that the structure is quite significant.

In Tables 5-1 and 5-2 below the distribution of identified structures along the borehole are listed for KLX05 and HLX32.

| Length (m) | No of<br>structures |
|------------|---------------------|
| -100       | 3                   |
| 100–50     | 11                  |
| 150–200    | 17                  |
| 200–250    | 13                  |
| 250–300    | 11                  |
| 300–350    | 12                  |
| 350–400    | 8                   |
| 400–450    | 9                   |
| 450–500    | 10                  |
| 500–550    | 12                  |
| 550–600    | 17                  |
| 600–650    | 13                  |
| 650–700    | 17                  |
| 700–750    | 9                   |
| 750–800    | 14                  |
| 800–850    | 13                  |
| 850–900    | 10                  |
| 900–950    | 13                  |
| 950–       | 10                  |

#### Table 5-1. Identified structures as a function of length in KLX05.

| Length (m) | No of<br>structures |
|------------|---------------------|
| -20        | _                   |
| 20–40      | 5                   |
| 40–60      | 10                  |
| 60–80      | 2                   |
| 80–100     | 5                   |
| 100–120    | 4                   |
| 120–140    | 6                   |
| 140–160    | 3                   |
| 160–180    | 2                   |
| 180–200    | -                   |
| 200–       | 1                   |
|            |                     |

 Table 5-2. Identified structures as a function of length in HLX32.

Tables 5-3 and 5-4 summarises the interpretation of radar data from KLX05 and HLX32. Observe that a structure can have several different angles, if the structure is undulating, and thereby also different intersection depths. This is seen for structure 176 in Table 5-3. To this structure, most likely, also structure 176 belongs.

# Table 5-3. Interpretation of radar reflectors from dipole antennas 20, 100 and 250 MHz borehole KLX05.

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |                      |                                 |                    |  |  |
|---------------------------------------------------------------------|----------------------|---------------------------------|--------------------|--|--|
| Site:<br>Borehole na<br>Nominal velo                                | me:<br>ocity (m/µs): | Oskarshamn<br>KLX05<br>: 120.00 |                    |  |  |
| Object type                                                         | Name                 | Intersection length             | Intersection angle |  |  |
| PLANE                                                               | 42                   | 36.5                            | 2                  |  |  |
| PLANE                                                               | 1                    | 98.4                            | 39                 |  |  |
| PLANE                                                               | 7                    | 100.8                           | 15                 |  |  |
| PLANE                                                               | 2                    | 102.3                           | 50                 |  |  |
| PLANE                                                               | 3                    | 106.6                           | 56                 |  |  |
| PLANE                                                               | 6                    | 113.9                           | 35                 |  |  |
| PLANE                                                               | 4                    | 116.0                           | 50                 |  |  |
| PLANE                                                               | 5                    | 116.9                           | 52                 |  |  |
| PLANE                                                               | 8                    | 121.4                           | 70                 |  |  |
| PLANE                                                               | 9                    | 122.4                           | 41                 |  |  |
| PLANE                                                               | 10                   | 125.7                           | 59                 |  |  |
| PLANE                                                               | 11                   | 129.5                           | 53                 |  |  |
| PLANE                                                               | 13                   | 138.8                           | 41                 |  |  |
| PLANE                                                               | 12                   | 136.1                           | 46                 |  |  |
| PLANE                                                               | 15                   | 154.1                           | 42                 |  |  |
| PLANE                                                               | 14                   | 154.6                           | 47                 |  |  |
| PLANE                                                               | 17                   | 157.2                           | 39                 |  |  |
| PLANE                                                               | 16                   | 159.6                           | 50                 |  |  |
| PLANE                                                               | 19                   | 162.8                           | 46                 |  |  |

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |                      |                    |                    |  |  |
|---------------------------------------------------------------------|----------------------|--------------------|--------------------|--|--|
| Site:                                                               |                      | Oskarshamn         |                    |  |  |
| Nominal velo                                                        | me:<br>ocity (m/µs): | KLX05<br>120.00    |                    |  |  |
| Object type                                                         | Name I               | ntersection length | Intersection angle |  |  |
| PLANE                                                               | 18                   | 167.6              | 42                 |  |  |
| PLANE                                                               | 20                   | 171.8              | 56                 |  |  |
| PLANE                                                               | 21                   | 176.4              | 58                 |  |  |
| PLANE                                                               | 22                   | 177.9              | 62                 |  |  |
| PLANE                                                               | 23                   | 179.5              | 43                 |  |  |
| PLANE                                                               | 24                   | 180.0              | 49                 |  |  |
| PLANE                                                               | 30                   | 184.9              | 60                 |  |  |
| PLANE                                                               | 25                   | 185.7              | 49                 |  |  |
| PLANE                                                               | 26                   | 190.5              | 43                 |  |  |
| PLANE                                                               | 27                   | 193.2              | 43                 |  |  |
| PLANE                                                               | 28                   | 196.8              | 51                 |  |  |
| PLANE                                                               | 35                   | 197.3              | 42                 |  |  |
| PLANE                                                               | 203                  | 200.5              | 31                 |  |  |
| PLANE                                                               | 29                   | 206.3              | 36                 |  |  |
| PLANE                                                               | 31                   | 212.6              | 46                 |  |  |
| PLANE                                                               | 42x                  | 213.5              | 10                 |  |  |
| PLANE                                                               | 32                   | 218.7              | 41                 |  |  |
| PLANE                                                               | 215                  | 226.3              | 27                 |  |  |
| PLANE                                                               | 33                   | 227.7              | 51                 |  |  |
| PLANE                                                               | 34                   | 231.9              | 72                 |  |  |
| PLANE                                                               | 204                  | 236.1              | 57                 |  |  |
| PLANE                                                               | 37                   | 241.7              | 38                 |  |  |
| PLANE                                                               | 36                   | 242.1              | 58                 |  |  |
| PLANE                                                               | 41                   | 245.8              | 49                 |  |  |
| PLANE                                                               | 38                   | 246.8              | 43                 |  |  |
| PLANE                                                               | 40                   | 252.9              | 52                 |  |  |
| PLANE                                                               | 39                   | 259.2              | 21                 |  |  |
| PLANE                                                               | 43                   | 254.6              | 43                 |  |  |
| PLANE                                                               | 44                   | 261.3              | 35                 |  |  |
| PLANE                                                               | 45                   | 272.0              | 43                 |  |  |
| PLANE                                                               | 46                   | 281.2              | 38                 |  |  |
| PLANE                                                               | 188                  | 286.1              | 17                 |  |  |
| PLANE                                                               | 47                   | 287.7              | 40                 |  |  |
| PLANE                                                               | 48x                  | 290.2              | 32                 |  |  |
| PLANE                                                               | 49                   | 293.4              | 32                 |  |  |
| PLANE                                                               | 48                   | 294.9              | 21                 |  |  |
| PLANE                                                               | 187                  | 304.4              | 42                 |  |  |
| PLANE                                                               | 50                   | 304.7              | 49                 |  |  |
| PLANE                                                               | 51                   | 305.8              | 68                 |  |  |
| PLANE                                                               | 54                   | 310.7              | 64                 |  |  |
| PLANE                                                               | 52                   | 312.1              | 52                 |  |  |
| PLANE                                                               | 53                   | 317.5              | 64                 |  |  |

| (20, 100 and<br>Site:<br>Borehole na | 250 MHz Dip<br>me: | Oole Antennas)<br>Oskarshamn<br>KLX05 |                    |
|--------------------------------------|--------------------|---------------------------------------|--------------------|
| Nominal velocity (m/µs):             |                    | 120.00                                |                    |
| Object type                          | Name I             | ntersection length                    | Intersection angle |
| PLANE                                | 205                | 323.1                                 | 21                 |
| PLANE                                | 56                 | 324.0                                 | 37                 |
| PLANE                                | 57                 | 323.6                                 | 57                 |
| PLANE                                | 55                 | 325.1                                 | 49                 |
| PLANE                                | 58                 | 337.6                                 | 49                 |
| PLANE                                | 60                 | 348.5                                 | 40                 |
| PLANE                                | 61                 | 351.2                                 | 68                 |
| PLANE                                | 206                | 351.4                                 | 46                 |
| PLANE                                | 59                 | 355.1                                 | 81                 |
| PLANE                                | 62                 | 359.4                                 | 73                 |
| PLANE                                | 63                 | 376.4                                 | 66                 |
| PLANE                                | 189                | 383.3                                 | 60                 |
| PLANE                                | 64                 | 387.6                                 | 66                 |
| PLANE                                | 65                 | 393.5                                 | 51                 |
| PLANE                                | 67                 | 403.7                                 | 53                 |
| PLANE                                | 66                 | 408.0                                 | 70                 |
| PLANE                                | 68                 | 419.4                                 | 65                 |
| PLANE                                | 216                | 431.5                                 | 70                 |
| PLANE                                | 69                 | 433.1                                 | 40                 |
| PLANE                                | 69x                | 433.6                                 | 43                 |
| PLANE                                | 190                | 435.5                                 | 43                 |
| PLANE                                | 191                | 438.6                                 | 40                 |
| PLANE                                | 192                | 442.7                                 | 51                 |
| PLANE                                | 70                 | 455.2                                 | 80                 |
| PLANE                                | 208                | 456.5                                 | 36                 |
| PLANE                                | 193                | 460.0                                 | 64                 |
| PLANE                                | 71                 | 463.5                                 | 68                 |
| PLANE                                | 73                 | 466.6                                 | 59                 |
| PLANE                                | 72                 | 471.8                                 | 66                 |
| PLANE                                | 74                 | 478.7                                 | 72                 |
| PLANE                                | 75                 | 482.0                                 | 61                 |
| PLANE                                | 207                | 489.1                                 | 18                 |
| PLANE                                | 77                 | 490.3                                 | 30                 |
| PLANE                                | 78                 | 502.3                                 | 44                 |
| PLANE                                | 79                 | 506.3                                 | 46                 |
| PLANE                                | 80                 | 510.4                                 | 78                 |
| PLANE                                | 81                 | 513.3                                 | 40                 |
| PLANE                                | 82                 | 515.3                                 | 50                 |
| PLANE                                | 83                 | 517.9                                 | 65                 |
| PLANE                                | 84                 | 519.5                                 | 44                 |
| PLANE                                | 86                 | 523.9                                 | 39                 |
| PLANE                                | 85                 | 524.7                                 | 49                 |

\_\_\_\_

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |         |                    |                    |
|---------------------------------------------------------------------|---------|--------------------|--------------------|
| Site:                                                               |         | Oskarshamn         |                    |
| Borehole name:<br>Nominal velocity (m/us):                          |         | KLX05<br>120.00    |                    |
| Object type                                                         | Name li | ntersection length | Intersection angle |
| PLANE                                                               | 87      | 529.1              | 43                 |
| PLANE                                                               | 88      | 536.8              | 51                 |
| PLANE                                                               | 195     | 546.6              | 47                 |
| PLANE                                                               | 89      | 551.9              | 43                 |
| PLANE                                                               | 90      | 553.4              | 41                 |
| PLANE                                                               | 91      | 554.7              | 46                 |
| PLANE                                                               | 92      | 562.4              | 35                 |
| PLANE                                                               | 94      | 566.2              | 51                 |
| PLANE                                                               | 96      | 570.3              | 37                 |
| PLANE                                                               | 196     | 572.8              | 33                 |
| PLANE                                                               | 98      | 576.2              | 54                 |
| PLANE                                                               | 93      | 578.4              | 47                 |
| PLANE                                                               | 197     | 579.9              | 47                 |
| PLANE                                                               | 95      | 581.4              | 52                 |
| PLANE                                                               | 97      | 584.3              | 60                 |
| PLANE                                                               | 104     | 587.4              | 52                 |
| PLANE                                                               | 200     | 588.6              | 31                 |
| PLANE                                                               | 99      | 590.2              | 65                 |
| PLANE                                                               | 103     | 591.4              | 42                 |
| PLANE                                                               | 217     | 599.1              | 55                 |
| PLANE                                                               | 102     | 600.6              | 56                 |
| PLANE                                                               | 100     | 615.0              | 22                 |
| PLANE                                                               | 101     | 615.7              | 56                 |
| PLANE                                                               | 105     | 627.1              | 43                 |
| PLANE                                                               | 110     | 628.9              | 37                 |
| PLANE                                                               | 106     | 629.6              | 44                 |
| PLANE                                                               | 107     | 631.5              | 43                 |
| PLANE                                                               | 109     | 632.9              | 25                 |
| PLANE                                                               | 108     | 634.3              | 42                 |
| PLANE                                                               | 111     | 634.3              | 35                 |
| PLANE                                                               | 219     | 640.0              | 57                 |
| PLANE                                                               | 117     | 647.1              | 47                 |
| PLANE                                                               | 116     | 648.1              | 28                 |
| PLANE                                                               | 112     | 649.3              | 61                 |
| PLANE                                                               | 114     | 650.8              | 64                 |
| PLANE                                                               | 113     | 652.7              | 56                 |
| PLANE                                                               | 119     | 656.2              | 23                 |
| PLANE                                                               | 115     | 657.1              | 65                 |
| PLANE                                                               | 119x    | 657.8              | 21                 |
| PLANE                                                               | 209     | 658.3              | 32                 |
| PLANE                                                               | 118     | 659.4              | 72                 |
| PLANE                                                               | 120     | 663.5              | 51                 |

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |        |                               |                    |
|---------------------------------------------------------------------|--------|-------------------------------|--------------------|
| Site:<br>Borehole name:<br>Nominal velocity (m/us):                 |        | Oskarshamn<br>KLX05<br>120.00 |                    |
| Object type                                                         | Name I | ntersection length            | Intersection angle |
| PLANE                                                               | 121    | 677.4                         | 79                 |
| PLANE                                                               | 128    | 681.5                         | 77                 |
| PLANE                                                               | 127    | 687.1                         | 81                 |
| PLANE                                                               | 122    | 688.6                         | 70                 |
| PLANE                                                               | 125    | 690.0                         | 74                 |
| PLANE                                                               | 123    | 690.8                         | 72                 |
| PLANE                                                               | 124    | 692.9                         | 67                 |
| PLANE                                                               | 102    | 695.6                         | 6                  |
| PLANE                                                               | 126    | 697.0                         | 40                 |
| PLANE                                                               | 133    | 703.9                         | 52                 |
| PLANE                                                               | 129    | 711.1                         | 50                 |
| PLANE                                                               | 130    | 714.4                         | 35                 |
| PLANE                                                               | 131    | 719.6                         | 34                 |
| PLANE                                                               | 134    | 726.9                         | 38                 |
| PLANE                                                               | 139    | 727.9                         | 18                 |
| PLANE                                                               | 132    | 730.4                         | 28                 |
| PLANE                                                               | 135    | 741.4                         | 48                 |
| PLANE                                                               | 138x   | 744.0                         | 29                 |
| PLANE                                                               | 137    | 751.0                         | 37                 |
| PLANE                                                               | 138    | 752.4                         | 23                 |
| PLANE                                                               | 202    | 753.4                         | 44                 |
| PLANE                                                               | 140    | 754.5                         | 63                 |
| PLANE                                                               | 141    | 757.7                         | 54                 |
| PLANE                                                               | 142    | 760.9                         | 60                 |
| PLANE                                                               | 143    | 765.1                         | 53                 |
| PLANE                                                               | 145    | 767.3                         | 30                 |
| PLANE                                                               | 144    | 771.3                         | 65                 |
| PLANE                                                               | 145x   | 775.6                         | 71                 |
| PLANE                                                               | 146    | 777.9                         | 59                 |
| PLANE                                                               | 147    | 781.0                         | 56                 |
| PLANE                                                               | 148    | 796.3                         | 36                 |
| PLANE                                                               | 150    | 798.9                         | 47                 |
| PLANE                                                               | 151    | 801.9                         | 47                 |
| PLANE                                                               | 148x   | 802.2                         | 19                 |
| PLANE                                                               | 152    | 806.3                         | 44                 |
| PLANE                                                               | 149    | 808.5                         | 34                 |
| PLANE                                                               | 154    | 811.3                         | 53                 |
| PLANE                                                               | 153    | 816.7                         | 56                 |
| PLANE                                                               | 218    | 819.1                         | 60                 |
| PLANE                                                               | 155    | 827.1                         | 44                 |
| PLANE                                                               | 201    | 835.7                         | 39                 |
| PLANE                                                               | 156    | 841.4                         | 23                 |

\_\_\_\_

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |      |                                    |                    |
|---------------------------------------------------------------------|------|------------------------------------|--------------------|
| Site:<br>Borehole name:<br>Nominal velocity (m/µs):                 |      | Oskarshamn<br>KLX05<br>is): 120.00 |                    |
| Object type                                                         | Name | Intersection length                | Intersection angle |
| PLANE                                                               | 157  | 844.4                              | 28                 |
| PLANE                                                               | 160  | 844.7                              | 43                 |
| PLANE                                                               | 158  | 846.5                              | 29                 |
| PLANE                                                               | 159  | 855.5                              | 40                 |
| PLANE                                                               | 213  | 855.9                              | 28                 |
| PLANE                                                               | 212  | 857.0                              | 34                 |
| PLANE                                                               | 211  | 857.1                              | 17                 |
| PLANE                                                               | 161  | 858.3                              | 55                 |
| PLANE                                                               | 209x | 869.4                              | 9                  |
| PLANE                                                               | 162  | 874.0                              | 32                 |
| PLANE                                                               | 163  | 887.9                              | 50                 |
| PLANE                                                               | 164  | 890.6                              | 50                 |
| PLANE                                                               | 165  | 898.4                              | 39                 |
| PLANE                                                               | 174  | 907.6                              | 20                 |
| PLANE                                                               | 166  | 908.9                              | 48                 |
| PLANE                                                               | 167  | 910.9                              | 62                 |
| PLANE                                                               | 168  | 917.8                              | 71                 |
| PLANE                                                               | 169  | 921.8                              | 51                 |
| PLANE                                                               | 170  | 926.3                              | 39                 |
| PLANE                                                               | 171  | 936.7                              | 33                 |
| PLANE                                                               | 172  | 937.3                              | 57                 |
| PLANE                                                               | 176x | 938.6                              | 26                 |
| PLANE                                                               | 173  | 940.2                              | 40                 |
| PLANE                                                               | 176  | 940.3                              | 32                 |
| PLANE                                                               | 175  | 944.2                              | 44                 |
| PLANE                                                               | 214  | 940.4                              | 33                 |
| PLANE                                                               | 177  | 955.3                              | 39                 |
| PLANE                                                               | 178  | 962.0                              | 38                 |
| PLANE                                                               | 179  | 966.3                              | 38                 |
| PLANE                                                               | 180  | 968.4                              | 51                 |
| PLANE                                                               | 182  | 973.4                              | 37                 |
| PLANE                                                               | 181  | 979.2                              | 52                 |
| PLANE                                                               | 183  | 984.2                              | 38                 |
| PLANE                                                               | 186  | 997.2                              | 56                 |
| PLANE                                                               | 185  | 998.4                              | 33                 |
| PLANE                                                               | 184  | 1,000.0                            | 52                 |

| RADINTER MODEL INFORMATION<br>(20, 100 and 250 MHz Dipole Antennas) |      |                               |                    |
|---------------------------------------------------------------------|------|-------------------------------|--------------------|
| Site:<br>Borehole name:<br>Nominal velocity (m/µs):                 |      | Oskarshamn<br>HLX32<br>120.00 |                    |
| Object type                                                         | Name | Intersection length           | Intersection angle |
| PLANE                                                               | 37   | 20.4                          | 69                 |
| PLANE                                                               | 1    | 23.3                          | 68                 |
| PLANE                                                               | 2    | 23.7                          | 46                 |
| PLANE                                                               | 3    | 25.7                          | 57                 |
| PLANE                                                               | 4    | 32.2                          | 57                 |
| PLANE                                                               | 5    | 42.7                          | 56                 |
| PLANE                                                               | 6    | 42.8                          | 41                 |
| PLANE                                                               | 33   | 44.9                          | 55                 |
| PLANE                                                               | 7    | 46.0                          | 51                 |
| PLANE                                                               | 8    | 49.0                          | 69                 |
| PLANE                                                               | 38   | 49.0                          | 38                 |
| PLANE                                                               | 35   | 50.8                          | 33                 |
| PLANE                                                               | 10   | 52.9                          | 63                 |
| PLANE                                                               | 9    | 55.3                          | 59                 |
| PLANE                                                               | 11   | 57.6                          | 49                 |
| PLANE                                                               | 12   | 67.6                          | 55                 |
| PLANE                                                               | 13   | 76.2                          | 49                 |
| PLANE                                                               | 14   | 80.4                          | 49                 |
| PLANE                                                               | 15   | 84.3                          | 58                 |
| PLANE                                                               | 16   | 87.6                          | 56                 |
| PLANE                                                               | 17   | 91.9                          | 54                 |
| PLANE                                                               | 19   | 95.8                          | 65                 |
| PLANE                                                               | 20   | 101.0                         | 81                 |
| PLANE                                                               | 36   | 102.1                         | 58                 |
| PLANE                                                               | 34   | 105.3                         | 77                 |
| PLANE                                                               | 21   | 115.2                         | 66                 |
| PLANE                                                               | 25   | 121.2                         | 13                 |
| PLANE                                                               | 23   | 121.5                         | 69                 |
| PLANE                                                               | 24   | 125.9                         | 62                 |
| PLANE                                                               | 32   | 132.4                         | 56                 |
| PLANE                                                               | 27   | 132.6                         | 57                 |
| PLANE                                                               | 28   | 138.2                         | 56                 |
| PLANE                                                               | 26   | 141.4                         | 50                 |
| PLANE                                                               | 29   | 144.2                         | 58                 |
| PLANE                                                               | 40   | 154.3                         | 41                 |
| PLANE                                                               | 30   | 161.1                         | 50                 |
| PLANE                                                               | 31   | 163.6                         | 48                 |
| PLANE                                                               | 39   | 1,231.0                       | 2                  |

Table 5-4. Interpretation of radar reflectors from dipole antennas 20, 100 and 250 MHz borehole HLX32.

In Appendix 1 and 2, the amplitude of the first arrival is plotted against the length, for the 250 MHz dipole antennas. The amplitude variation along the borehole indicates changes of the electrical conductivity of the volume of rock surrounding the borehole. A decrease in this amplitude may indicate fracture zones, clay or rock volumes with increases in water content, i.e. increases in electric conductivity. The decrease in amplitude is shown in Table 5-5 and 5-6.

| Length (m) | Length (m) |
|------------|------------|
| 155–165    | 500–505    |
| 180–190    | 545        |
| 210–215    | 590        |
| 225–230    | 680–695    |
| 240–260    | 745        |
| 295–310    | 755        |
| 320–325    | 830        |
| 340–375    | 845        |
| 385–400    | 860–870    |
| 420        | 875        |
| 435–440    | 940–945    |
| 485        | 960        |
| 495        |            |

| Table 5-5. | <b>Borehole length</b> | intervals in KLX05 | 5 with decreased | amplitude for the |
|------------|------------------------|--------------------|------------------|-------------------|
| 250 MHz a  | ntenna.                |                    |                  | -                 |

# Table 5-6. Borehole length intervals in HLX32 with decreased amplitude for the 250 MHz antenna.

| Length (m) | Length (m) |
|------------|------------|
| 25–35      | 80–110     |
| 45–55      | 110–125    |

### 5.2 BIPS logging

The BIPS pictures are presented in Appendix 3 and 4.

In order to control the quality of the system, calibration measurements were performed in a test pipe before and after the logging. The resulting images displayed with no difference regarding the colours and focus of the images. Results of the test loggings were included in the delivery of the field data and are also presented in Figure 4-2 in this report.

Data for the inclination and azimuth presented in Appendix 3 and 4 are preliminary for the BIPS images.

The images in KLX05 are affected to some extent by the drilling discolouring of the borehole. What really limits the visibility of the borehole wall is mud covering the deeper parts of the boreholes.

In borehole HLX32, 30 m is more or less impossible to see and get any information from the images. This is due to very dirty water. This problem may be overcome if the borehole can rest for a couple of weeks before logging.

# References

/1/ Aaltonen J, Gustafsson C, Nilsson P, 2003. Oskarshamn site investigation. RAMAC and BIPS logging and deviation measurements in boreholes KSH01A, KSH01B and the upper part of KSH02. SKB P-03-73. Appendix 1



20 MHz

100 MHz

250 MHz

Radar logging in KLX05, 100 to 990 m, dipole antennas 250, 100 and 20 MHz













Į





Appendix 2



20 MHz

100 MHz

250 MHz

Radar logging in HLX32, 10 to 155 m, dipole antennas 250, 100 and 20 MHz



# Appendix 3

# BIPS logging in KLX05, 108 to 991 m

### Project name: Laxemar

| Image file           | : c:\work\apps40~1\klx5\klx05_a.bip            |
|----------------------|------------------------------------------------|
| BDT file             | : c:\work\apps40~1\klx5\klx05_a.bdt            |
| Locality             | : LAXEMAR                                      |
| Bore hole number     | : KLX05                                        |
| Date                 | : 05/03/23                                     |
| Time                 | : 09:02:00                                     |
| Depth range          | : 108.000 - 991.529m                           |
| Azimuth              | : 190                                          |
| Inclination          | : -65                                          |
| Diameter             | : 76.0 mm                                      |
| Magnetic declination | : 0.0                                          |
| Span                 | : 4                                            |
| Scan interval        | : 0.25                                         |
| Scan direction       | : To bottom                                    |
| Scale                | : 1/25                                         |
| Aspect ratio         | : 175 %                                        |
| Pages                | : 20                                           |
| Color                | : <b>•••</b> ••••••••••••••••••••••••••••••••• |
|                      | +0 +0 +0                                       |

Azimuth: 190



#### Depth range: 108.000 - 128.000 m

(1/20)

Scale: 1/25 A

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 128.000 - 148.000 m

Aspect ratio: 175 %

Scale: 1/25

(2/20)

Azimuth: 190

Inclination: -65



#### Depth range: 148.000 - 168.000 m

(3/20)

Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 168.000 - 188.000 m

Scale: 1/25

Aspect ratio: 175 %

(4/20)

Azimuth: 190



#### Depth range: 188.000 - 208.000 m

(5/20)

Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 208.000 - 228.000 m

Scale: 1/25 Asj

(6/20)

Azimuth: 190

Inclination: -65



#### Depth range: 228.000 - 248.000 m

(7/20)

Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 248.000 - 268.000 m

(8/20) Scale: 1/25

Azimuth: 190



#### Depth range: 268.000 - 288.000 m

(9/20)

Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 288.000 - 308.000 m

(10/20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190

Inclination: -65



#### Depth range: 308.000 - 328.000 m

(11 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 328.000 - 348.000 m

(12/20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190

Inclination: -65



#### Depth range: 348.000 - 368.000 m

(13 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 368.000 - 388.000 m

(14 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190



#### Depth range: 388.000 - 408.000 m

#### (15 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 408.000 - 428.000 m

(16 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190



#### Depth range: 428.000 - 448.000 m

(17 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190 Inclination: -65



#### Depth range: 448.000 - 468.000 m

Aspect ratio: 175 %

Azimuth: 190

Inclination: -65



#### Depth range: 468.000 - 488.000 m

(19 / 20) Scale: 1/25

Aspect ratio: 175 %

Azimuth: 190



#### Depth range: 488.000 - 500.015 m

(20 / 20) Scale: 1/25 Aspect ratio: 175 %

# Appendix 4

# BIPS logging in HLX32, 12 to 161 m

### Project name: Laxemar

| Image file           | : c:\work\apps40~1\hlx32\hlx32.bip |  |  |
|----------------------|------------------------------------|--|--|
| BDT file             | : c:\work\apps40~1\hlx32\hlx32.bdt |  |  |
| Locality             | : LAXEMAR                          |  |  |
| Bore hole number     | : HLX32                            |  |  |
| Date                 | : 05/03/21                         |  |  |
| Time                 | : 14:22:00                         |  |  |
| Depth range          | : 12.000 - 161.013 m               |  |  |
| Azimuth              | : 29                               |  |  |
| Inclination          | : -59                              |  |  |
| Diameter             | : 140.0 mm                         |  |  |
| Magnetic declination | : 0.0                              |  |  |
| Span                 | : 4                                |  |  |
| Scan interval        | : 0.25                             |  |  |
| Scan direction       | : To bottom                        |  |  |
| Scale                | : 1/25                             |  |  |
| Aspect ratio         | : 100 %                            |  |  |
| Pages                | : 8                                |  |  |
| Color                | : <b></b> +0 +0                    |  |  |

Azimuth: 29



#### Depth range: 10.000 - 30.000 m

(1/8)

Scale: 1/25

Aspect ratio: 100 %

Azimuth: 29 Inclination: -59



#### Depth range: 30.000 - 50.000 m

(2/8) Scale: 1/25

Aspect ratio: 100 %

Azimuth: 29



#### Depth range: 50.000 - 70.000 m

(3/8)

Scale: 1/25

Azimuth: 29 Inclination: -59



#### Depth range: 70.000 - 90.000 m

(4/8)

Scale: 1/25

Aspect ratio: 100 %

Azimuth: 29



#### Depth range: 90.000 - 110.000 m

(5/8)

Scale: 1/25

Aspect ratio: 100 %

Azimuth: 29 Inclination: -59



#### Depth range: 110.000 - 130.000 m

(6/8) Scale: 1/25

Aspect ratio: 100 %

Azimuth: 29

Inclination: -59



#### Depth range: 130.000 - 150.000 m

(7/8)

Scale: 1/25

Azimuth: 29



#### Depth range: 150.000 - 161.013 m

(8/8) Scale: 1/25 Aspect ratio: 100 %