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Abstract (English) 

An underground nuclear waste repository produces heat that will induce a buoyancy 
flow of groundwater in fractures and other permeable regions in the surrounding rock. 
The radioactive material may then, in case of penetrated canisters, possibly reach the 
biosphere. Measurements of ground water in crystalline rock show an increasing salt 
content with depth. The resulting increase of water density counteracts the thermal 
buoyancy, and it may create a natural barrier for the groundwater flow between the 
repository and the biosphere. 

The aim of the study is to analyse this barrier effect and to assess the maximum 
upward displacement of water starting from the vicinity of the repository. The coupled 
flow process for groundwater, salt and heat with buoyancy due to temperature and salt 
concentration differences is studied. The equations have been analysed in great detail, 
and a numerical model has been developed for the case of groundwater flow in a fracture 
plane. 

The largest upward displacement from the repository has been determined with the 
model for any heat release. Approximate formulas, which are shown to be sufficiently 
accurate for assessments, have been derived. The main formula concerns the case, when 
the canisters are stacked on top of each other in a very deep borehole. There are no 
restrictions on the position of the fracture plane. The borehole may even lie directly in 
the fracture plane. 

We find a strong barrier effect. In a reference case with a salt concentration increase 
of 2% per km downwards and with 300 canisters placed over a length of 2000 m in the 
borehole (the total amount of released heat is 0.32 TWh), the largest upward displacement 
from the top of canisters becomes, according to the formula, 60 m. The case, when 
the fractured rock is considered as a homogeneous porous medium, is also dealt with. 
The groundwater flow is then three-dimensional. The largest upward displacement now 
becomes 67 m for the reference case. 

The main formula shows that the barrier effect is remarkably insensitive to variations 
of the involved parameters. A change of salt gradient, or total amount of released heat, 
by a factor 10 causes a change by y'lO = 3.2 of the upward displacement. 

The parameters that do not enter into the formulas are noteworthy. The hydraulic 
conductivity of the flow plane, which is the most uncertain of all parameters, does not 
matter in the balance between thermal buoyancy and counteracting salt buoyancy. 



Abstract (Swedish) 

Ett djupforvar for anvant karnbriinsie avger varme, vilket genom paverkan av vattnets 

densitet ger upphov till egenkonvektion i grundvattnet i sprickor och andra permeabla 

omrci.den i omgivande berg. De radioaktiva amnena kan da, vid lackage fran defekta kaps­

lar, mojligen na biosfii.ren. Miitningar i kristallint berg visar att grundvattnets salthalt 

okar med djupet. Den resulterande okningen av vattnets densitet motverkar densitets­

minskningen p.g.a. okande temperatur, och kan darigenom skapa en naturlig barriar for 

grundvattenflodet mellan djupforvaret och biosfaren. 
A vsikten med denna studie ar att analysera barriareffekten och att ange den maximala 

uppatriktade forflyttningen for vatten som startar fran djupforvarets na.rornrade. Den 

kopplade fl.odesprocessen for grundvatten, salt och varme med egenkonvektion p.g.a. skill­

nader i temperatur och salthalt studeras. De styrande ekvationerna har detaljgranskats, 

och en numerisk modell har utvecklats for fallet med grundvattenflode i ett sprickplan. 

Den storsta uppatriktade forflyttningen fran ett djupforvar har bestamts med mod­

ellen for olika stor varmeutveckling. Approximativa formler, vilka visas vara tillrackligt 

noggranna for gocia uppskattningar, har ha.rletts. Huvudformeln avser fallet da kapslarna 

har placerats ovanpa varandra i ett borrha.l med stort djup. Det finns inga restriktioner 

vad avser sprickplanets lage. Borrhalet kan saledes ligga direkt i sprickplanet. 

Vi finner en stark barriii.reffekt. For referensfallet med en salthaltsokning av 2% per 

km nedat och med 300 kapslar placerade over langd av 2000 m i borrhalet ( totalt avgiven 

varmemangd ar 0.32 TWh), blir den storsta uppa.tgaende forflyttningen fran den hogst 

belagna kapseln 60 m enligt formeln. Fallet da det sprickiga berget behandlas som ett 

homogent porost medium har ocksa studerats. Grundvattenflodet ar da. tredimensionellt. 

Den storsta uppatgaende forflyttningen blir nu 67 m for referensfallet. 

Huvudformlerna visar att barriareffekten ar anmarkingsvart okanslig for variationer 

av de ingaende parametrarna. En andring av salthaltsgradienten, eller totalt avgiven 

varmema.ngd, med en faktor 10 medfor en a.ndring pa .Jio = 3.2 i uppatgaende forflytt­

nmg. 
Det ar aven vii.rt att notera att nagra viktiga parametrar inte ingar i formlerna. Den 

hydrauliska konduktiviteten i sprickplanet, vilken ar den mest osa.kra av alla paramet­

rar, ar betydelselos for balansen mellan termiskt inducerad konvektion och motverkande 

saltinducerad egenkonvektion. 
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Summary of first and second study 

Nuclear waste, encapsulated in canisters in rock, produces heat that will induce a buoy­
ancy flow of groundwater in fractures and other permeable regions in the surrounding 
rock. The radioactive material may then, in case of penetrated canisters, possibly reach 
the biosphere. Measurements of groundwater in crystalline rock show an increasing salt 
content with depth. The resulting increase in water density counteracts the thermal buoy­
ancy, and it may create a natural barrier for the groundwater flow between the repository 

and the biosphere. 
The aim of the study is to analyse this barrier effect and to assess the extent of 

upward displacement of wtaer starting from the vicinity of the repository. The coupled 
flow process for groundwater, salt and heat with buoyancy due to temperature and salt 
concentration differences is studied. The equations have been analysed in great detail, 

and a numerical model has been developed for the case of groundwater flow in a fracture 
or crack plane. 

The largest upward displacement from the repository has been determined with the 
model for any heat release. Approximate formulas, which are shown to be sufficiently 
accurate for assessments, have been derived. 

The main formula concerns the case, when the canisters are stacked on top of each 
other in a very deep borehole over a length H0 • The total amount of released heat is 

E0 ( J), and the main decay time for the heat release is td. There are no restrictions on 
the position of the fracture plane. The borehole may even lie directly in the fracture 
plane. An assessment of the largest upward displacement, at any time, from the top of 

the canisters is: 

zlmax upward~ 0.3l · 
- Ci.T 
Ci.= ---

Ci.cc';_C 
(0.1) 

Here, a is the thermal diffusivity and C the volumetric heat capacity of the rock. The 
buoyancy parameter a contains the salt gradient ~ and the relative density change of 
groundwater with temperature, ar, and of salt concentration, ac. 

There is a strong barrier effect. In a re:,., ,;cc case with a salt concentration increase 

of 2% per km downwards and with 300 can ' ,,laced in the borehole ( E0 = 0.32 TWh, 

H0 = 2000 m, td = 46 years), the largest upwa.rd displacement from the top of canisters 
becomes, according to the formula, 60 m. 

The case, when the fractured rock is considered as a homogeneous porous medium, is 
also dealt with. The groundwater flow is then three-dimensional. The main formula for 

the largest upward displacement is: 

I ef iiEo 
z max upward ~ 41r Ho (0.2) 

The reference case gives 67 m. The formula does not take into account the exponential 
decay of the heat release. A smaller value is obtained, if the more co: plicated formula 

for exponentially decreasing heat release were used. 
There are two main limitations in the study this far. The fracture plane is assumed to 

have infinite extension in all directions. The second limitation concerns the water-filled 

pore volume of around 0.5% in the rock outside the fracture plane. The salt in the water­

filled pores is initially in equilibrium with the downwards increasing salt concentration in 

lll 



the fracture plane. The upward flow results in a difference in salt concentration between 
the fracture and the pores, which causes salt to diffuse from the fracture plane. This 
diffusion reduces the salt concentration in the region of upward flow in the fracture and 
will therefore diminish the barrier effect. 

The main formula (0.1) shows that the barrier effect is remarkably insensitive to 
variations of the involved parameters. A change of salt gradient ~ ( or Ea, o:T, ../[;J. and 
so on) by a factor 10 causes a change by 00 = 3.2 of the upward displacement. 

The parameters that do not enter into the formulas are noteworthy. The hydraulic 
conductivity of the flow plane, which is the most uncertain of all parameters, does not 
matter in the balance between thermal buoyancy and counteracting salt buoyancy. The 
position of the fracture plane, which is the other main uncertainty, is arbitrary. The 
formulas are valid as an upper estimate for radioactive migration at any time. The 
influence between the boreholes of the repository is shown to be negligible for the design 
spacing of 500 m. 

lV 



Chapter 1 

Introduction 

This study is a direct sequel of the first report [1], which should be read before this one. 
The same notations are used. The problem and, in particular, the different approximations 
of [l] are not restated in detail here. 

The heat released from the canisters buried deep down in the rock induce an upward 
thermal buoyancy flow of groundwater in cracks and fissure zones. By assumption there is 
an increasing salt concentration and, hence, an increasing water density downwards. This 
will counteract the thermal buoyancy. The aim of [1] and this study is to analyse and 
quantify the potential barrier effect from the salt gradient. We have, in particular, en­
deavored to obtain simple formulas to assess the largest upward movement of groundwater 
from the repository region. 

Figure 1.1 shows the studied SKB concept for final storage of nuclear waste. A number 
of very deep boreholes are to be used. The canisters are put in the boreholes over a vertical 
extension of some 2000 rn starting at a depth of some 4000 rn. The thermal process is 
driven by line heat sources from the canisters in the boreholes. The effect of the ground 
surface may here be neglected. The line sources may be considered to lie in an infinite 
surrounding rock region. 

The first study [l] deals with the simplified case, when the heat is released at a single 
point. The exponential decrease of heat release is also neglected. "] heat E0 is released 
at the initial time. (This is a worst case.) The groundwater flow was assumed to take 
place in a fracture plane (y = 0) at a distance y0 from the point heat source. 

The time-scale of the groundwater flow due to differences in salt concentration is 
shown in Section 3.6 of [1] to be much smaller than the time-scale of the three-dimensional 
thermal process. Because of this, the temperature field is considered at a time t0 • This 
time-independent temperature field T(:z:, 0, z, t0 ) in the groundwater flow plane y = 0 
causes a thermal buoyancy flow VT( :z:, z ), which is calculated analytically. The time­
dependent buoyancy flow due to salt concentration differences is calculated by a numerical 
model. The formulas for the upward movement are obtained from an approximate balance 
between the upward thermal buoyancy and the downward force from water with a higher 
salt density. 

The temperature and the strength of the thermal buoyancy will increase with t0 during 
a first period. Then it will decrease due to decreasing heat release and heat flow away from 
the warm fracture region. The upward displacement attains a maximum for a certain t 0 • 

The formulas for largest upward displacement refer to this maximum. We do not solve 
the real problem with a slowly changing temperature field and a nearly steady-state 
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salt concentration field, which changes slowly with the temperature field. Instead, we 
consider the much simpler problem of a time-independent temperature field and the salt 
flow process starting with the undisturbed salt concentration (c = c0 (z)). This means 
that we consider a worse case, in which the 'strongest' temperature field is used at all 
times. 
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/ / 

/ 
/ 

/ 
/ 

2000 m 
/ 

/ ----
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/ / 
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----

----
/ 

...__ / 
/ ...__ 
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Figure 1.1. Repository using very deep boreholes. The canisters 
lie along the lower part of the holes. 

In this second study, the case of a line heat source with all heat released at t = 0 is 
first considered in Chapter 2. This worst case is studied numerically in Chapter 3. The 
previous computer model for the point heat source is modified for the case of a line heat 
source. The case when the heat release rate decreases exponentially is studied in Chapter 
4. Only the approximate formulas for the largest upward movement are dealt with. 

An important assumption in the studies is that the groundwater flow is confined to 
the two-dimensional case of a fracture plane. Another extreme case is to consider the 
fractured rock as a homogeneous porous medium. The groundwater flow becomes three­
dimensional. This case is dealt with in Chapter 5. This three-dimensional case without 
any salt effects has previously been studied by Hodgkinson [3] and Robinson [4]. The 
problem is then that there is no limit on the upward displacement. 

A survey of formulas for the largest upward displacement and the application to the 
SKB concept are presented in Chapter 6. A reader who is mostly interested in the results 
and their application should read this chapter first. 

This study and the first one contain quite a lot of material, and many different tools 
of analysis are used. Therefore, there is a rather detailed survey of the line of thought 
and the main results in the last chapter 7. The reader is advised to read this chapter first. 
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Chapter 2 

Line heat source 

The first study (1] considered the simplified case with the heat source concentrated to 
a single point (0, y 0 , 0). In the SKB concept considered here, the canisters are to be 
deposited in deep boreholes. They are put on top of each other over a length H0 along 
the borehole. See Figure 1.1. 

The heat release from the canisters decreases exponentially with time. This was ne­
glected in the first study [1 ], where all heat E0 ( J) was released at t = 0. We will in 
this chapter consider this simplified case for the single finite line source, while the more 
complicated case of exponentially decreasing heat release is dealt with in Chapter 4. 

We have a line heat source with the instantaneous heat release E0 / H0 ( J /m) at t = 0: 

E0 /H0 (J/m) released along (O,y0 ,z), 0 > z > -H0 , at t = 0 (2.1) 

The ground surface lies far (2000 m) above the top (0, y0 , 0) of the line source, so we can 
consider the ground around the heat source as infinite in all directions. 

The case of more than one line source, i.e. a repository consisting of several boreholes 
as in Figure 1.1, will also be considered. 

2.1 Temperature field 

The excess temperature above the undisturbed ground temperature T0 (z) is denoted 
T"( x, y, z, t ). It is obtained from the point heat source, formula ( 4.4) in [1] on page 
22, by integration along the line heat source: 

(2.2) 

With the substitution ( + z = s · J4at, we get 

Here erfc(z') denotes the complementary error function: 

2 100 
2 erfc(z') = r,;;. e-• ds 

y7f z' 
(2.4) 
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The vertical extension of the line source, H0 , is typically 2000 m, while we are interested 

in the process in a region of some hundreds of meters around the top of the line source. It 

is then a good approximation to consider the line source as semi-infinite:. H0 = oo. (The 

heat release per meter, E0 / H 0 , is kept constant.) The temperature field is then: 

(2.5) 

This corresponds to an instantaneous line heat source along (0, y0 , z ), 0 > z > -oo. 

The finite line heat source along (O,y0 ,z), 0 > z > -H0 , is obtained by superposition 

of two semi-infinite line sources: 

(2.6) 

This type of superposition is also valid for the ensuing groundwater flow field. Therefore, 

we can focus our attention on the case of a semi-infinite line source. 

The groundwater flow in the fracture plane y = 0 is driven by the temperature field 

T"(x, 0, z, t). As in [1], we consider this temperature field at any fixed time t 0 : 

(2.7) 

We use the same dimensionless formulation as in [1]. We have (see Sections 6.1 and 

2.6 in [1]): 

(2.8) 

(2.9) 

This gives: 

T'(x', z') = A1 · e-(%')2 
• f erfc(z') (2.10) 

The dimensionless temperature amplitude A1 is given by 

(2.11) 

We have, as an important first result of the analysis, that the dimensionless temperature 

field is determined by a single parameter A1 (as in [1]). The dimensionless temperature 

amplitude A0 for the corresponding point source of [1], Eq. (1:6.5), is related to A 1 by: 

A - A . v'4at: 1 - 0 

Ho 
(2.12) 
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The temperature field T'(x', z'), (2.10), has a rather simple structure. Below the top, 
z' less than, say, -2, it behaves as A1 .Ji· exp [-(x')2], and it decreases strongly as erfc(z') 
for positive z'. In the calculation of the groundwater flow we need the derivative of T' 
with respect to z'. We get from (2.10) and (2.4) the remarkably simple expression: 

(2.13) 

For the finite line source along 0 > z > -H0 we have with the superposition (2.6): 

T(x',z') = A1 · e-(:r:')2 
• f [erfc(z') - erfc(z' + H;)] 

where H; is the dimensionless length of the line source: 

The derivative with respect to z' becomes: 

2.2 Temperature-induced groundwater flow 

(2.14) 

(2.15) 

(2.16) 

The groundwater flow, which by assumption is confined to the plane y = 0, is driven 
by the buoyancy force of the water density :,(T, c), with one component VT from the 
temperature and another component Ve from the salt concentration. 

The dimensionless, temperature-induced groundwater flow vfr is according to section 
2.6 in [1] given by: 

The dimensionless flow is determined by (1:3.40): 

(v'')2 P.' _ oT' = O 
T OZ1 

17;, = -v''Pf + T'z 

(2.17) 

(2.18) 

(2.19) 

The source term oT' / oz' in the Poisson equation for the dimensionless pressure PT is 
given by (2.13). 

We will in the remaining part of this chapter, until Eq. (2.61), and in the whole next 
chr.pter consider the dimensionless problem only. Therefore, we drop the cumbersome 
prime (') for all dimensionless variables. 
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2.2.1 Calculation of flow field 
The dimensionless problem for the pressure Pf or, dropping the prime, Pr is from (2.18) 
and (2.13): 

(2.20) 

The dimensionless velocity iJT = VT is from (2.19) and (2.10): 

(2.21) 

The source term of (2.20), and hence the pressure Pr, depends on the radial distance 
only. This gives: 

Pr= Pr(r) r = Jx 2 + z 2 

The solution is straightforward: 

dPr A1 -r2 B1 
--=-e +-
dr 2r r 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The integration constant B1 is determined by the condition that the flow from r = 0 
vanishes: 

1. 0 dPr 
lffi ..,7rr-- = 0 

r-•O dr (2.26) 

The pressure becomes: 

A 1 Ai 100 1 _11 Pr(r) = B2 - - ln(r) - - -e ds 2 4 r2 S 
(2.27) 

Here, B2 is an integration constant. The integral in the third term to the right is the 
so-called exponential integral E 1(r2). See [2A]. It behaves as - 1 -ln(r2), 'Y = 0.5772, for 
small r. This means that the pressure Pr( r) is finite at r = 0. 

The gradient of the pressure PT becomes: 

A X, Z, 
r = -x +-z 

r r 
(2.28) 

This gives with (2.21) the dimensionless velocity: 

- 1 -e A 2 A 
A [ 1 -r2 l 

VT= 2 r r + ,J-ie-x · erfc(z)z (2.29) 
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2.2.2 Stream function and character of flow field 

The temperature-induced, dimensionless groundwater flow field is given by (2.29) for the 
semi-infinite line source. We will in this section discuss this field and the field from the 
finite line source. 

The velocity field VT is of the same character for all parameter values, since it is 
directly proportional to A1 . We have 

2 1 -r2 

... 1 ➔ - e A '- :r2 rf ( ) A 

vr = -A ·VT= r + v 1re- • e c z z 
1 r 

(2.30) 

The two components are: 

1 2 (1 -x2-z2) X 
VTx = -A VTx = - e 2 + 2 

1 X Z 
(2.31) 

1 2 ( 2 2 ) z 2 1= 2 
VTz = -A VTz = 1 - e-:r -z --- + 2e-:r · e-• ds 

1 x 2 + z 2 z 
(2.32) 

The flow field (2.30) consists of two parts. The first part is a radial, outward flow from 
r = 0, which behaves as i- /r for large r: 

1 - e-r2 
A 1 A 

--- ·r-+ -r 
r r 

r-+ oo (2.33) 

This flow is zero for r = 0. The second part is a vertical upward flow. For large negative 
z, we have 

(2.34) 

This is an upward flow along the negative z-axis. As this flow reaches the region near 

r = 0, around the top of the line source, ,, is spread out radially by the first radial part. 
The flow field may be represented by a stream function -rp(x, z) defined by: 

87P 1 

Bx = VTz 

8-rp 1 
8z = -VTx 

(2.35) 

The flow is perpendicular to the gradient of -rp, which means that the flow follows curves 
of constant -rp. The mathematical condition for the existence of a stream function is: 

(2.36) 

This is automatically fulfilled since the divergence of the water flow fields is zero. 
By solving (2.35), using (2.31-32), we ob , n the following stream function: 
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The last expression is only valid for positive x-values. The stream function is an odd 
function of x. It is zero on the z-axis. The values of x lie between 0 and 7r for x > 0. The 
calculations to get -zp( x, y) from (2.31-32) and (2.35) are somewhat lengthy, but it is quite 
straightforward to verify that the above expression for -zp indeed satisfies (2.35). 

Figure 2.1 shows the stream function (2.37) for the semi-infinite line heat source. The 
curves are obtained by the numerical model used in Chapter 3. The formulas (2.31-32) 
are used for the moving particles, while the salt-concentration part is suppressed. (The 
small circle in the center indicates (0, 0) and the circle above represents the point (0, 1).) 

The flow follows the curves of constant -zp, which means that the velocity v} is a tangent 
to -zp = constant. The magnitude of the velocity is from (2.35) given by the absolute value 
of the gradient of the stream function: lv}I = jv7-zpj. The velocity is inversely proportional 
to the distance between the -zp-curves. The highest velocities occur near the negative 
z-axis, which is the warmest region. 

Figure 2.1. The stream function (2.37) for the semi-infinite line source. 

Each curve -zp = constant has two asymptotes. For z = -oo, and for x -+ oo with 
z/x = tan(rp), fixed we have: 

l oo X ( 2 2) -zp(x, -oo) = 2 2 1 - e-r -• ds = 1r • erf(x) 
-oo X + S 

l oo dt 1r (z) 1PI{ ; fixed _ } = (1 - 0) · --2 = - - arctan -
z r ,r-oo z/r 1 + t 2 X 

(x > 0) (2.38) 

Let x_ denote the asymptotic x-value for z -+ -oo for a certain -zp, and 'P+ denote the 
angle of the radial asymptote. Then we have from the above two equations: 

7r -zp = 1r · erf ( x ) = - - <p + - 2 (x > 0) (2.39) 
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A few values are: 

7P 0 1r/4 7r /2 31r/4 7r 

<p+ 7r /2 7r /4 0 -1r/4 -1r/2 
erfc( x_) 0 1/4 1/2 3/4 1 

x_ 0 0.22 0.48 0.81 00 

The above results concern the semi-infinite line heat source. The corresponding results 
for a finite line heat source are directly obtained from a superposition of the type (2.6). 
From the solution with the coordinates x and z, we just subtract the same solution with 
the coordinates x and z+H~. (Note that x and z are dimensionless, and that H~ = H0 / L1 

is the dimensionless length of the line heat source.) 
The dimensionless temperature-induced groundwater flow is then in accordance with 

(2.31-32): 

VT:z: = A1 . [(1 - e-:z:2-z2) X - (1 - e-:z:2-(z+H;)2) X l 
2 x 2 +z2 x 2 +(z+H~)2 

(2.40) 

(2.41) 

The stream function for the finite line heat source hac: :,tea simple form (compare 
with (2.37)): 

'ljJ(x, z) = r+H; X (1 - e-:z:2-•2) ds = r<z+H~)/:z: (1 - e-:z:2(l+t2>) _!!__ (2.42) 
lz x 2 + s2 lz/:z: 1 + t 2 

The last integral is only valid for positive x-values. 

2.2.3 Upward flow along the z'-axis 

The upward displacement is analysed in section 6.4 in [l]. An analytical solution is 
obtained, when the pressure field Pc due to the salt is neglected, Eq. (1:6.13). The 
analysis in (1] is directly applicable. The only change is that the velocity field VT for the 
line source, Eq. (2.29), is used instead. 

Let Zm(t', z0 ) denote the motion along the z'-axis of a salt-water 'particle' that starts 
at (0, z0 ) at t' = 0. Here, Zm, z0 and t' are dimensionless quantities. Eq. (1:6.16) is valid. 
The dimensionless velocity along the z-axis is according to (2.32): 

( ) A1 1 ( ) A1 [ 1 - e-z
2 r:::. , , '] 

VTz O,z = -vTz O,z = - --- + y7r. enc~::; 
2 2 z 

(2.43) 

Eq. (1:6.16) for zm(t', z0 ) becomes: 

dz A1 [ 1 - e-z~ l 
~ = - --- + Ii• erfc(z ) - z + z dt' 2 Zm V /I m m o 

(2.44) 
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This equation may be integrated directly to give t' as a function of Zm, The integral 

(1:6.19) is here replaced by: 

r"' ds 
t'= Jz 0 A1 [(1-e-•2 )/s+.fir·erfc(s)]/2-s+zo 

(2.45) 

For the finite line heat source, the velocity field (2.41) is to be used instead of (2.43). The 

integral (2.45) is quite easy to calculate numerically. 
In our application A1 is quite small (A1 ~ 0.2). A particle that starts at z = z0 will 

then move upwards only a short distance. The linear approximation (2.49) for v}z(0, z) 
may be used as long as z = Zm is smaller than 0. 75. The integral becomes then for z0 = 0: 

1zm ds 
t' ~ 

- o Ai[y',r - s] /2 - s 
(zo = 0, Zm < 0.75) (2.46) 

The solution is simple. The time t' depends on a logarithm in Zm• This means that Zm 

depends exponentially on time. We get: 

(2.4 7) 

This approximate solution is valid for Zm < 3/4, which is satisfied for all Zm when A1 < 1.5. 

2.2.4 Largest upward displacement 

The largest upward displacement, which is of particular interest to us, is obtained for 

t' = oo. This occurs, when the velocity VTz(0, zm) becomes equal to the counteracting 

weight Zm - z0 • See Eq. (2.44). The denominator of the integrand of (2.45) is then 

zero. We have in analogy with (1:6.23) for the largest dimensionless upward displacement 

z:nax(z0 ): 

This formula concerns the semi-infinite line heat source. The equation is illustrated 

in Figure 2.2. The right-hand side, which gives the velocity, intersects the straight line 

with the slope 2/ A1 at Zm = z:nax· The straight lines start at the initial position z0 • The 

two dashed lines show the approximation (2.49) and (2.50). 

The velocity v:}z(0, z) is with good approximation linear for small lzj. We have: 

lzl < 0.15 (2.49) 

The error in the given interval is less than 6%. For lzl < 0.5 the error is less than 2%. 

The approximation is shown by the dashed straight line in Figure 2.2. For large (positive) 

z, the following approximation is valid: 

z > l (2.50) 
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The error for z > 1 is at most 9%. For z > 1.5 the error is below 2%. The approximation 

lies above the velocity v}z(O, z) for all z. See Figure 2.2. It may therefore be used as a 
conservative approximation for all positive z-values. 

- - - - - - - - - - - - - - - 2'/ff 

3 

2 z,, 

Figure 2.2. Figure to illustrate Eq. (2.48), which gives z:nax for given z0 and A1 • 

Our main interest is z:nax for z0 = 0. The balance equation (2.48) gives with the 

approximation (2.50): 

(2.51) 

This gives our main formula for the largest upward displacement from a semi-infinite line 

heat source: 

(2.52) 

The approximation (2.50) gives an error of at most 9% for z:nax(O) > 1, i.e. for A1 > 2. 
For z:nax(O) > 1.5, i.e. for A1 > 4.5, the error is less than 2%. The formula always 
overestimates the upward flow. 

The overestimation is larger for small A1• In this case, approximation (2.49) is to be 

used. The balance equation (2.48) is then: 

(2.53) 

or 

(A1 < 1.5) (2.54) 

This formula also follows directly from Eq. (2.4 7). The validity of the formula is tested 

against the numerical model in Chapter 3. A conservative estimate is to neglect A1 in 

the denominator. Then we get the simple estimate 
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(2.55) 

A comparison of this formula with the general estimate (2.52) shows that the general 
formula overestimates z:nax(0) by 20% for A1 = 1 and by 96% for A1 = 0.2. 

The above formulas concern the infinite line source. The upward velocity VTz(0, z) for 
the case of a finite line heat source is given by (2.41 ). The dimensionless length H~ of the 
line source is for our application around 20. We can neglect the exponential term and the 
erfc term with the argument z + H~. Then we have: 

(2.56) 

The approximation (2.50) becomes: 

(2.57) 

Equation (2.51) for the largest upward displacement for z0 = 0 is then: 

2 1 1 
-z ~-----
A1 m - Zm Zm + H~ 

(2.58) 

This is a cubic equation in Zm. We have: 

A H' z2 = _1 ___ o_ 

m 2 Zm + H~ 
(2.59) 

A good approximation is: 

H' 
0 (2.60) 

This correction for the finite length of the line heat source decreases z:nax(0). In our 
applications the correction is quite small. We can safely use the infinite line source to 
estimate the largest upward displacement. 

The above results concern the dimensionless variables. Let Zmax(z0 ) denote the real 
upward displacement. We have in accordance with (2.8): 

(2.61) 

Eqs. (2.52) and (2.11) give 

Zmax(0) = (2.62) 

The above formula overestimates Zmax(D) for small values of A1 . The estimate (2.55), 
which is valid for A1 < 0.5, then gives: 
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(A1 < 0.5) (2.63) 

Formula (2.62) corresponds to (1:6.34). The time t0 , at which the temperature field 
was taken, may be chosen at will. As in section 6.5 of [1], we will consider the largest 
upward displacement, when t0 varies. In formula (2.62), the following function is to be 
maximized: 

(2.64) 

The maximum occurs for T = 2. Then .J4cit: is replaced by y 0 ./2 in (2.62). This gives 
the following largest upward displacement for any chosen time t0 : 

The numerical factor is: 

1 
ffe . (21r )3/4 = 0.20 

--·-- (2.65) 

(2.66) 

The corresponding maximum for formula (2.63) is obtained from the maximum of 

1 -1/..­-e 
T 

The maximum occurs for r = 1. Insertion of 4at0 = y~ in (2.63) gives 

1 CiT E0 

Zma:(0)lmu to= -2 • -nC • H 2 
?re Cic<-.i: oYo 

(A1 < 0.5) 

The condition A1 < 0.5 is equivalent to: 

2.2.5 Several line heat sources 

(2.67) 

(2.68) 

(2.69) 

We have until now considered a single line heat source. In the SKB-concept, the canisters 
are to be deposited in some twenty boreholes (rod consolidation case). The canisters lie 
over a length H0 of some 2000 meters, with the top at a depth of some 2000 meters. See 
Figure 1.1. 

We now consider N line heat sources. Source j lies along (x;,Y;,z), 0 > z > -H0 • 

Here, z = 0 is the plane of the top of the heat sources. The ground surface lies far above 
(z ~ +2000 m). 

The temperature-induced groundwater flow field is obtained by superposition of the 
flow field for each line source. The dimensionless flow field for a single source is given 
by (2.29). It refers to a line source with x; = 0 and Y; = y0 • In the formula, x is to be 
replaced by x' - xi and z by z'. In formula (2.11) for A1 , Yo is to be replaced by Yi· We 
have from (2.11) for the case of semi-infinite line sources: 
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(2.70) 

(2. 71) 

(2.72) 

In the case of finite line sources, the solution consists of two terms of the above type. 
The first term is exactly the same as (2. 70-72). From this, the same expression but with 
z' = z' + H~ is to be subtracted: 

(2.73) 

The largest dimensionless upward displacement was given by the solution Zm = z:na:r(z0 ) 

of (2.48) for the single line heat source. For several line sources, the z-component of the 
velocity (2. 70-72) is to be used on the right-hand side of (2.48). This gives the equation: 

(2.74) 

{ [1 - -(:r'-:r5)2-z!.] Zm + '- -(:r'-:r5)2 rf ( )} 
X e ( 1 ) 2 2 y 1re e c Zm 

X 1 - X · + Z 3 m 

The solution Zm = z:na:r(zo) will depend on the choice of x'. The equation must be 
solved for different x'. The largest upward displacement z:na:r(zo) is given by the maximum: 

(2.75) 

Equation (2. 74) will be solved numerically in Section 6.4. For simplicity we will con­
sider cases with symmetry with respect to x' = 0, which means that the maximum (2. 75) 
must occur for x' = 0. 
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Chapter 3 

Numerical model and calculations 

The numerical model for the groundwater flow and the development of the salt concen­
tration distribution with heating from a point source is presented in Chapter 5 of [1]. 
Results of calculations are presented in Chapter 6 of [1]. The corresponding studies for 
the semi-infinite line heat source will be reported in this chapter. A user's manual for the 
model is given in [5]. 

The dimensionless formulation is used throughout this chapter. The dimensionless 
problem contains one parameter A1 only. The flow process will be calculated for different 
A1-values. We are interested in the largest upward displacement, in particular near the top 
of the line heat source. The motion along the z-axis will be compared to the approximate 
analytical formulas of Section 2.2.3-4. 

3.1 Governing equations 

The time-dependent groundwater and salt flow process takes place in the (x, z)-plane with 
y = 0. The dimensionless excess salt concentration is denoted d = c(x, z, t). The total 
dimensionless salt concentration with a linear component -z is: 

c(x, z, t) = -z + c'(x, z, t) (3.1) 

It satisfies the salt balance equation (1:5.1 ): 

8c " [_(.... .... )] at + v • C VT + Ve = 0 (3.2) 

The initial excess salt concentration d is zero: 

c(x, z, 0) = -z (3.3) 

The temperature-induced groundwater flow field from the semi-infinite line heat source 
VT is given by (2.29): 

iJT(x,z)= ~ 1 · [ 1 -;-r2 ·r+ ✓,re-:r2 erfc(z)·z] (3.4) 

r = Jx 2 + z2 
,. X ,.. Z ,.. 
r=-·x+-·z 

r r 
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This flow field is time-independent, since the temperature field is taken at a time t 0 • 

The dimensionless flow intensity factor A1 is given by (2.11 ). 
The groundwater flow Ve due to the salt distribution is given by (1:5.3): 

.... ( ) ( ) , 1 loo d , loo d , ( x' - x, z, - z) 8c ( , , ) ( ) 
Ve X, z, t = -C X, z, t Z - - X Z ( ) ( ) · -0 X, Z, t 3.5 

21r -co -co x 1 - x 2 + z 1 - z 2 z' 

The solution of Eqs. (3.2) and (3.5) with VT given by (3.4) involves moving 'salt 

particles' and a particular technique to evaluate the double integral at each time-step. 

This is described in Sections 5.1-3 in [1]. 

3.2 Numerical results 

The flow process for the salt, Eqs. (3.1-5), has been calculated with the numerical model 

for values of A1 from 0.1 to 30. The model is described in Chapter 5 in [1]. 
The dimensionless temperature amplitude A1 , (2.11 ), depends on the chosen time t0 : 

4at 0 

T=--
yJ 

(3.6) 

Derivation with respect for T gives the maximum, which occurs for T = 2/3 or y0 = ~: 

For the data (1:3.55) and (1:6.53-55) we have: 

6.43 · 10-6 · 1.16 · 1015 

Al,max to = 0.074. 2000. 1003 = 0.27 

(3.7) 

(3.8) 

So in the SKB applications, we are interested in the solution for rather small values of 

A1. 

3.2.1 Temperature flow component vr 
The dimensionless groundwater flow has two components VT and Ve. The process (3.2) is 

initiated by the temperature component (3.4), which is at work all the time, while the 

salt component Ve changes as the salt distribution changes, Eq. (3.5). 

There is an option in the program to completely suppress Ve• Then the moving particles 

follows VT. This is not our physical situation but the flow pattern provides a good insight 

into the character of the driving flow. 
Figure 2.1 shows the stream.lines. The small circle in the center is the point x = 0, z = 

0, where the top of the line heat source lies. The stream lines follow the line source along 

the negative z-axis. They are deflected as they approach the top, and they end following 

a radial asymptote. See Section 2.2.2. 
Figures 3.1 and 3.2 show the particle motions in greater detail. The value of A1 is 1. 

The considered particles start at t = 0 on the line z = -4 with a spacing of 0.1 in the 

x-direction. See Figure 3.1. The particles near the z-axis move upwards, while particles 
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further out will move downwards out of sight. The time between two consecutive positions 
of the same particle is flt' = 0.1. The positions are joined to a full curve, an isochrone, 
for flt'= 1. The six isochrones fort = 1, 2, ... 6 show the position of particles that started 
on z = -4 at t = 0. Figure 3.2 shows the motion of the same particles during a much 
longer time. The shown region is -4 < x < 4 and -4 < z < 2. The distance between 
isochrones is here flt'= 0.5. 

/ --:x-+ 7:, ' 
\. \ ; ' .. __ ..,ffi':·, 

;.---.:, 
. 0. 
: . : ... . . ... . . . .. . .. . . . ..... .. .. . . .. . .. . .. . 

,;,:-:-:-" . ' ... . .. . .. . 
' ..... . : ... : ... . . . 

.. • ♦ ..... 

: : : : : : : : : .. =~~~:::~~~= .. . . : . : ' ... : . : .. . ' ... • ........ • ... '. 
:::•:.·•·.:•::: ::•: ............. :•:: : .. : ................ : .. : 

.... : ............. : .. .. 
: : .... ' ............... : : 

Figure 3.1. Motion of particles due to VT only for A 1 = 1. 
The time between two isochrones is 1. 

.....-.....- ,.:::::::-1!___ '-
....- .....- '-

'-
.....- '-

....-H---J 
...... , i : 

: : . .. : 
~ 0: ... . . . :-:-:, ... .. . .. .. .. . .. . -· ... . . . . .. . .. . 

.. . .. . 
J':..:::· ....... .. . . . . . . . . 

:: -~ ~ ?tf t:: . . . ... . . . .. . .. . . . .. . 
)~~?:\) 

::::::::::::::::; 

Figure 3.2. Motion of particles due to VT only for A1 = 1. 
The time between two isochrones is 0.5. 

Figures 3.1 and 3.2 correspond to Figure 6.1 in [1]. The isochrones are curves of 
constant salt concentration c, since the particles all start at the same z-level. There 
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is a considerable difference between the point source of [1] and the line source. The 
circular motion around two stagnation points in Figure 6.1 in [1] does not occur for the 
semi-infinite line heat source. The temperature-induced flow VT has a somewhat simpler 
structure for the line source. 

It should be noted that there are two stagnation points for the finite line heat source. 
These points (one on each side) lie at middepth (z = -H~/2) at a certain distance from 
the line source. The circular motion around the stagnation points will occur far away 
from the top of the line source, and this motion will not influence the upward flow near 
the top region. 

3.2.2 Results for different A1 

Figures 3.3 to 3.6 show the results for A1 = 0.1, 1, 10 and 30. Curves of constant 
dimensionless total salt concentration care shown for different dimensionless times t'. The 
c-curves are horizontal lines at t' = 0 in accordance with (3.3). The point (x', z') = (0, 0), 
where the top of the line source lies, is indicated in all figures by a full dot. The point 
( x', z') = ( 0, 1) is also indicated by a full dot. The shown region is -4 :$ x' $ 4 and 
-1.5 :$ z' $ 4. 

Figure 3.3 shows for A1 = 0.1 the c-curves for the times t' = 0.4, 0.8, 1.6, 3.2, 6.4 and 
12.8. The displacements after t' = 0.8 are quite small. The largest upward displacement 

for (0, 0), z:nax(0), is equal to 0.08. The calculations are continued to t' = 12.8. Nothing 
happens in the central region, but errors from the boundaries become visible in particular 

at the top of the shown region for t' = 12.8. This is discussed in Section 3.3. 

Figure 3.4 shows the c-curves for A1 = 1 for the times t' = 0.2, 0.6, 1.0, 1.4, 1.8 and 
2.6. The largest upward displacement z:nax(0) becomes 0.55. 

Figure 3.5 shows the c-curves for A1 = 10 for the times t' = 0.1, 0.2, 0.4, 0. 7, 1.1 
and 1.2. The largest upward displacement z:nax(0) becomes 1.7. The flow is now much 
stronger and the numerical problems increase. The c-curves lie very close to each other 
above the center for t' > 0. 7, and a numerical instability makes itself noticeable at the 
bottom for t' = 1.2. The numerical problems are discussed in Section 3.3. 

Figure 3.6 shows the c-curves for A1 = 30 for the times t' = 0.05, 0.1, 0.15, 0.25, 0.35 

and 0.45. The largest upward displacement z:nax(0) becomes 2.6. The same numerical 
instability as in Figure 3.5 is seen at the bottom for t' = 0.45. 
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t' = 0.4 t' = 0.8 

• 

t' = 1.6 t' = 3.2 

• 

t' = 6.4 t' = 12.8 

• • 

Figure 3.3. Curves of constant c for A1 = 0.1 for different times t'. 
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t' = 0.2 t' = 0.6 

----- ----------------------------------------------------- --~-

t' = 1.0 t' = 1.4 

t' = 1.8 t' = 2.6 

Figure 3.4. Curves of constant c for Ai = 1. 
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t' = 0.1 t' = 0.2 

t' = 0.4 t' = 0.7 

t' = 1.1 t' = 1.2 

. . urves of constant c for A1 = 10. Figure 3 5 C 
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t' = 0.05 t' = 0.10 

~ 

t' = 0.15 t' = 0.25 

~ 

~~., 

t' = 0.35 t' = 0.45 

Figure 3.6. Curves of constant c for A1 = 30. 
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3.2.3 Largest upward displacement 

One of the main goals in this study is to estimate the largest upward displacement, in 

particular for a particle that starts at the top of the line source. Table 3.1 gives z:nax(0) 
from the above calculations for different A 1 • 

0.1 
0.08 

(0.22) 
0.084 

0.2 
0.14 

(0.32) 
0.16 

0.5 
0.31 

(0.50) 
0.35 

1 
0.55 

(0.71) 
0.59 

3 10 30 
1.0 1.7 2.6 

1.2 2.2 3.9 

Table 3.1. Numerically calculated z:nax(0) and the two approxima­
tions (3.9) and (3.10). 

It is of great interest to compare the numerical values with the values from the ap­

proximate analytical formulas (2.52) and (2.54): 

( A 1 not too small) (3.9) 

z' (0) = A1..fi 
max 2 + A1 (A1 < 1.5) (3.10) 

The first formula may be used for any A1 , but it will overestimate z:nax(0) for small A1 

(i.e. for A1 < 1.5). 
The numerically calculated values of z:nax(0) are somewhat uncertain for small A1 • 

See Section 3.3. But the agreement between the numerical values and the approximate 

analytical formulas in Table 3.1 is quite satisfactory and certainly sufficient for our pur­

pose. 

3.2.4 Further comparison with analytical formulas 

We have seen that the analytical formulas to estimate the largest flow from the top of 

the line source give quite acceptable results. The value of A1 is rather small in our SKB 

application. Then the approximate formula (2.4 7) gives the whole upward motion for a 

particle that starts from x = 0, z = 0: 

(3.11) 

This upward motion is shown in Figure 3.7 for a few small values of A1 . The result for 

A 1 = 3 is also included although it exceeds the limit A1 = 1.5. We see again that there 

is a good agreement between the numerical results and the analytical formula (3.11 ). 
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Zm (f', 0) 

1.0 

0.5 

0 
0 

Zm U; 0) 

A 1 = 0.1 0.12 Ai= 0.2 

Num. j 0.08 

0.04 

0 
0.5 1.0 1.5 r 0 0.5 1.0 

Zm ((, 0) 
0.6 

A1 = 0.5 Ai= 1 

0.4 

0.2 

0 
0.5 1.0 1.5 f 0 0.5 1.0 

0.5 1.0 1.5 /' 

Figure 3. 7. Comparison of analytical (Eq. 3.11) and numerical result 
for the upward motion z-m(t', 0) along the z'-axis. 
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3.2.5 Accuracy of Riemann sums 

A method for numerically evaluating the concentration-flow integral (Eq. 3.5) was pre­
sented in Section 5.2 of the first study. Riemann sums were used to calculate both integrals 
in ( 1 :5.11) even though the second integral had an analytical solution. In this section we 

will derive this analytical solution and compare it with the corresponding numerical Rie­
mann sum in order to test the accuracy of the numerical procedure. 

The second integral in (1:5.11) with its x and z components is: 

1 1x+ lz+ ( x' - X z' - z) 
(Ix, Iz) = --2 dx' dz' ( )2 ' ( ) 2 

7r x- z_ X 1 - X + Z 1 - Z 
(3.12) 

It can be calculated analytically as stated above. (It should be noted that in this section x' 

and z' are variables of integration, while the dimensionless coordinates are x and z. This 
notational inconsistency is a heritage from the previous study.) The second component 
of this integral is: 

1 lx+ lz+ z' - z Iz = -- dx' dz'--------
21r x_ z_ ( x' - x )2 + ( z' - z )2 

(3.13) 

By substituting x' with x + x and z' with z + z, the integral is transformed into: 

l lx+-x lz+-z z 
Iz = -- dx dz 2 2 21r x_-x z_-z X + Z 

(3.14) 

It is then easy to verify that: 

z 2 = !:lx~:z_ (F(x, z)) x2 + Z u u 
F(x, z) = ~ ln(x2 + z2 ) + z arctan (~) (3.15) 

By using this primitive function F( x, z) the integral becomes: 

(3.16) 

-F(x_ - x,z+ - z) + F(x_ - x,z_ - z)] 

The first component Ix can be calculated in a similar way. 
The double integral is evaluated numerically by using simple Riemann sums as dis­

cussed in Section 5.2 of the first study. A comparison of the analytical values with the 

approximate values of Iz is made for some points in Table 3.2. The constants x+ and x_ 
define the right and left boundary of the initial mesh. Furthermore the constants z+ and 

z_ define the upper and lower boundary of the initial mesh. The initial mesh used here is 

the initial mesh that is used in all our , ,,lculations. It is described in the last paragraph 

of Section 3.3 and shown in Figure 3.9. In Table 3.2 we find that the larger discrepancies 

are found along the mesh boundary as is expected. The largest errors are found a',>ng the 
lower boundary, where the largest initial particle spacings are situated. We see that the 
numerical Riemann sums give sufficiently accurate results. 
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X = -:4 X = -0.8 x=O 
z = 8.1 Num. 3.2814 4.0129 4.0380 

Anal. 3.4011 4.2526 4.2780 
z = 2.0 Num. 2.0310 2.1956 2.2032 

Anal. 2.0213 2.1812 2.1885 
z = 0.0 Num. 1.6931 1.8079 1.8128 

Anal. 1.6807 1.7838 1.7885 
z = -18.2 Num. -0.5975 -0.6153 -0.6166 

Anal. -0.6024 -0.6237 -0.6246 
z = -34.2 Num. -2.9258 -3.3669 -3.3869 

Anal. -3.4011 -4.2526 -4.2780 

Table 3.2. The numerical Riemann sum for Ir. compared with its 
analytical value, Eqs. (3.15) and (3.16), for some (x, z)­
values. 

3.3 Numerical problems 

In the first study we had a number of problems with the numerical model. These problems 
were solved there (in Section 6.3.3) and since we are more or less using the same numerical 
model, these initial problems are still present and they are solved in the same manner as 
before. 

Some new problems arise when we use the temperature velocity VT of the line source. 
The particles near the line source will move much faster than before and this results in 
new problems. 

We specify the time-step l:it' as an input variable instead of the largest displacement 
( = (A0 /2) • l:it') as stated in the second last paragraph of Section 6.3.3 in the first study. 
This is the only alteration in the numerical model. 

Our main interest is focused on the upward motion of particles that start in the area 
around the top of the line source, where the potentially defect canisters are assumed to be 
situated. We are particularly interested in the particle that starts right at the top of the 
line source (at (x, z) = (0, 0)) since this particle is the one that attains the highest z-value 
(for all times t'). We also want to look at curves of constant c in an area around the top 
of the line source. This area of interest is roughly from z = -1 to z = 3. The width of 
this area is about 8 (lxl < 4). This area should be kept free of numerical instabilities. 

Numerical instabilities occur mainly in three different forms. The first form is a 
boundary effect and it is always present at the mesh boundary though its influence isn't 
noticed at first in the area of interest. This effect makes itself noticeable after the process 
has reached quasi steady-state. This error is visible at the top of the region shown for 
t' = 12.8 in Figure 3.3. Notice how the curves of constant c curve downwards. Large 
initial particle spacings in the z-direction at the upper and lower boundary of the mesh 
diminish this form of instability. 

The second form is caused by large changes in initial particle spacing ( a relative change 
of 40 percent or more). This disorder causes something that resembles convection. The 
first stages of this instability are shown in Figure 3.10. Notice how the curves of constant 
c move around (x', z') = (0, 0), and how they gradually fold back onto themselves from 
below. Different curves of constant c cross each other fort' = l. 7. This is an error but the 
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particle tracking method does not break down. To remedy this problem one has to choose 
the mesh with care, avoiding large relative changes in particle spacing. It is suitable to 
use a mesh with expansive particle spacing. 

The third form of numerical instability is oscillations where a certain point in the mesh 
starts to move back and forth perpendicular to the c-curves. These oscillations are shown 
in Figure 3.8 for A1 = 0.1. The upward motion zm(t', 0) along the z'-axis, calculated 
for different .6.t', is compared to the analytical solution given by Eq. (3.11). As can be 
seen in Figure 3.8 the oscillations in the upward motion zm(t', 0) are damped by choosing 
a smaller time-step. This phenomenon occurs when the prr ::s approaches a virtual 
steady-state though it can be present much earlier. These oscillations can be damped by 
choosing shorter time-steps which in turn prolongs execution times, unfortunately. 

These instabilities may be suppressed at the time when they start to occur by applying 
the above recipes. But they always seem to occur sooner or later. We have not pursued 
this further since our main interest is the process up to the time for virtual steady-state 
above the centre. 

Another problem, that did not exist in the first study, is the rapid motion of the 
particles, which lie on or near the line source (x = 0 and z < 0), due to the large 
temperature velocity in the z-direction. This causes a large upward displacement which 
is especially pronounced for particles that pass close to the line source. Either the lower 
boundary of the mesh interferes with the area of interest (boundary effect) or, more severe, 
the particles that start at the lower boundary of the initial mesh pass the area of interest 
leaving it empty of particles. To avoid this problem, the initial mesh must extend down 
to at least z = -20 (for A1 ~ 30). This gives the salt concentration enough time to stop 
the upward motion before the area of interest is influenced. 

The initial particle spacings in the z-direction may be expanded from say 0.5 in the 
area of interest to 4.0 at the lower boundary. It is then more appropriate for the initial 
mesh to go down to z = -30 instead of z = -20, in order to avoid numerical instabilities 
caused by too large relative changes in the spacings of adjacent particles. 

It is sufficient to use one initial mesh for all the different Ai-values when a large 
A1-value is compensated by a small .6.t'-value. The mesh must at least cover the area 
-4 ~ x ~ 4 and -20 ~ z ~ 8. The left and right boundaries lie sufficiently far out to 
ascertain that contributions to the displacement velocity from the temperature field are 
small. The initial particle spacing at the top of the mesh must be about 1 to 2, and at 
the bottom 3 to 4. The area of interest ,:.iust have a resolution (high resolution-small 
spacing, low resolution-large spacing) th.it is able to properly represent the movement of 
the particles. If the resolution is too low, then information is lost, and on the other hand, 
if the resolution is too high, execution times will be unnecessarily long. A very small 
A1-value (less than 0.1) requires high resolution in order to see the finer details of the 
movement. The particle spacing in the x-direction is of lesser importance but it is kept at 
around 0.3 to 2. The smaller values ( even values less than 0.3) should be used for small 
.41-values, and the larger values should be used at the left and right boundaries. 
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Figure 3.8. Oscillating behavior when the time-step 1s too large. 
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Figure 3.9. The initial mesh that 1s used m all calculations. 
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Figure 3.10. The initial stages of numerical instability called 'convec­
tion' (A 1 = 10). 

29 



The above considerations have led to the use of the following initial mesh. The initial 
mesh used in all the calculations presented in this study covers an area defined by -4 ~ 

x ~ 4 and -34.2 ~ z ~ 8.1. The number of initial particles is 21 x 29 = 609. The 
particle spacings in the z-direction vary from 1.0 at the upper boundary down to 0.4 at 

z = 3.2, and from 0.4 at z = -0.8 to 4.0 at the lower boundary. The particle spacings 

in the central region ( -0.8 ~ z ~ 3.2) have the height 0.4. The particle spacings in the 

x-direction is kept at 0.4 (constant). The initial particle spacings used in the area of 
interest is 0.4 x 0.4. The initial mesh is shown in Figure 3.9. The small circles represent 
the initial positions of the particles at t' = 0. The initial mesh structure is deformed for 
t' > 0, when the particles move. The removal and insertion of particles during execution 

(see Section 6.3.3 in the first study) also deforms the initial mesh structure. The positions 

of the particles change with time, but we still refer to these as a mesh. 
The choice of !:1t' needs consideration. This time-step !:1t' along with the initial mesh 

are the only means we have to control the numerical model in terms of tolerances and 

sensitivity. Some trial and error has been used to find appropriate /:1t'-values. A value 

that is too small results in very long execution times whereas a value that is too large 

leads to numerical instabilities. One rule of thumb that is valid for this mesh is to keep 

the product A1 · !:1t' in the interval 0.005 ~ A1 · !:1t ~ 0.01. 
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Chapter 4 

Exponentially decreasing heat 
release 

The heat release from the canisters decreases exponentially. The point heat source in [1 ·• 
and the line heat source in Chapters 2 and 3 were assumed to release all heat instanta­

neously at t = 0. This simplification means that the solutions are not valid during an 

initial time period. We will now remove this limitation. 
A main interest in this study is the largest upward displacement from the canister 

region. The formulas for Zma:r(O) are of particular interest. We will here confine ourselves 

to extend the previous formulas to the case of exponentially decreasing heat release. 

In section 4.1, the formulas to determine the largest upward displacement are estab­

lished. The point source case of [1) is treated in Section 4.2, and the line heat source with 

exponentially decreasing heat release in Section 4.3. 

4.1 Largest upward displacement 

The largest upward displacement will in the considered symmetrical cases occur along the 

z-axis. The case of an instantaneous point heat source is dealt with in Section 6.4 of [l]. 

The motion of a salt-water 'particle' is determined by the two velocity components from 

temperature and salt COE. r,tration. The largest upward displacement is determined by 

the point on the z-axis, w.tlere these two velocities balance each other. 

4.1.1 Superposition 

The velocity component VT from the temperature field may be obtained from the previous 

solution by superposition. Let Q(t) (W), 0 < t < oo, be any time-dependent heat release, 

and let VT(x, z)/Eo=l be the groundwater flow field at the considered time t 0 for a unit 
point heat source, E0 = 1 ( J), released t = 0. 

The time-dependent heat source releases the heat Q( t')dt' ( J) in the small interval 

t' < t < t' + dt'. (Here, t' is an integration variable with the dimension oft, i.e. seconds.) 

This instantaneous heat source at t = t' causes the flow field vT( x, z) with E0 replaced 

by Q(t')dt' and t 0 by t 0 - t'. The total flow field at the considered time t 0 is obtained by 

superposition, i.e. by integration in t': 

( 4.1) 
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The velocity along the z-axis at the considered time t0 is then: 

( 4.2) 

4.1.2 Flow along the z-axis 

The water flow is driven by VT + Ve. The temperature component VT is treated as time­
independent, since the salt-induced flow has a much shorter time-scale than the change 
of the temperature T and the flow VT. See Section 3.6 in [1]. The basic assumption in 
order to get analytical formulas was to neglect the contribution from 'v Pc in expression 
(1:6.13) for Ve: 

~ = - 'v I Pc - c' z c::::'. -c' z (4.3) 

The equation for the motion of a salt-water particle along the z'-axis is then according 
to (1:6.16): 

( 4.4) 

Here z' = z:.n is the position of a particle that starts at z~ at t' = 0. The formula is in 
dimensionless form. The length scale L1 was equal to .J4a'io. The corresponding formula 
with dimensions becomes (z:.n = Zm/L1, z~ = z0 /L1, t' = t/tc, VTz = VTz/VJ1 = tcVTz/L1): 

dzm _ (O ) Zm - Z0 -- VT Z -di - z ' m tc ( 4.5) 

We must use this form since the superposition involves a time-dependent scale length 

L1 = J4a (t 0 - t'). The characteristic time tc is given by (2.17). The considered particle 
starts at (0, z 0 ): 

( 4.6) 

Eq. ( 4.5) with the above initial condition is a nonlinear first order differential equation. 
It should be noted that we are using two time concepts here. The flow field from the 

time-dependent heat release Q( t'), 0 < t' < t 0 , is considered at a time t 0 , while the time 
t in the equation above concerns the much faster process of salt-induced motion. 

The velocity VTz(0, z) depends on the considered heat source. We will have one ex­
pression for the exponentially decreasing point source in Section 4.2, and another one for 
the line source in Section 4.3. The differential equation may be integrated directly, when 
t is considered as a function of Zm. We have, as in (1:6.19), from ( 4.5-6): 

t = tc . fz.,,,.. ____ d_s ___ _ 
Jz0 tc · VTz(0, s) - S + Z0 

( 4. 7) 

It is straightforward to perform this integration numerically for any function VTz(0, s ). 
The time becomes infinite for a certain Zm > z0 , at which the denominator is zero. This 
Zm gives the largest upward displacement Zmax(z0 ). 
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4.1.3 Buoyancy balance formula 

The differential equation ( 4.4) describes the motion of a salt-water particle along the 

z-axis. There is a time-independent upward flow vT(0, z) due to the thermal buoyancy. 

The salt-water particle retains its original salt concentration at z = z0 • The downward 

salt-density force is given by (zm - z0 ) /tc. It increases as the particle moves upwards. 

The two buoyancy forces from temperature and salt concentration will balance each other 
at a certain Zm - z0 : 

( 4.8) 

The particle velocity dzm/ dt is then zero according to ( 4.5). 
This position gives the largest upward displacement Zma:r:(z0 ) for a particle that starts 

at z = z 0 on the z-axis. We have the following general buoyancy balance formula, which 

gives for the largest upward displacement: 

Zm = Zma:r: (zo) ( 4.9) 

4.2 Point heat source 

The point heat source considered in [1] released all heat E 0 ( J) instantaneously at t = 0. 

We now have an exponentially decreasing heat release at the point (0, y0 , 0) with the decay 

time td: 

(W) ( 4.10) 

The total amount of released heat is still E0 : 

(J) ( 4.11) 

The case with several components with different decay times tdi will also be considered: 

( 4.12) 

Here, fliEo denotes the total release with the decay time tdi· The fractions fJ; are positive 

and their sum is +1: 

fli > 0 , ( 4.13) 

The total amount of released heat is then E0 • 
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4.2.1 Temperature-induced flow 

The temperature flow component VTz(x, z) for the instantaneous point source is given by 
(1:6.8) in [l]. The scale length L1 will now depend on the integration variable t': 

(4.14) 

We have from (1:6.8) with x' = 0: 

A 1 - -(z')2 
/ ( ') o e 

vTz O,z = 2. (z')2 z' 
z 

( 4.15) 

The dimensionless flow intensity factor A0 , taken for E0 

t 0 - t', is given by (1:6.5): 
1 and with t0 replaced by 

( 4.16) 

Here we have introduced the notation: 

( 4.17) 

This is a buoyancy parameter that is related to the balance between temperature and salt 
concentration buoyancy. The quantity aE0 has the dimension m4, i.e. ifa]!J;, = l0 is a 
length. We have for this length: 

( 4.18) 

The right-hand side represents a thermal buoyancy force for the temperature E0 / ( C · l~), 
and the left-hand side the buoyancy from a salt gradient c~ over the length l 0 • 

The dimensionless velocity is to be multiplied by the velocity scale factor v11 : 

( 4.19) 

The total velocity is obtained with the superposition formula ( 4.2): 

(4.20) 

Insertion of (4.15) and (4.16) gives: 

VTz(O z) = _!:_ . _1_ ro aEo . e-y;/[4a(to-t')]. 

' tc 27rft Jo z2)4a (t 0 - t') · td 

(4.21) 
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With the substitution t 0 - t' = td · s2, we get the following expression for the velocity: 

V (0 z) - ~ . aEo 
Tz ' - t r,;; 2 t'f=Tt 

c 7r v 7r z v '±aid 

( 4.22) 

The distance from the point source to the flow plane y = 0 is y0 • The highest velocities 
are obtained for Yo = 0: 

4.2.2 Largest upward displacement 

The largest upward displacement is given by the solution of ( 4.9). With the velocity 
( 4.22), this gives the equation for Zma2:(z0 ): 

( 4.24) 

The dimensionless solution zm/ ~ depends on the dimensionless parameters z0 / ~' 

aEo/(4atd)2 , to/td and Yo/~-
We are in particular interested in the case z0 = 0. The largest upward displacement 

is obtained for y 0 = 0. We have in this case: 

Zm = Zma2:(0) (zo = 0, Yo= 0) (4.25) 

The second factor of the integrand lies between O and 1: 

( 4.26) 

This gives an upper limit on Zma2:(0): 

( 4.27) 

This expression is our final formula to assess the largest upward displacement for a given 

to: 

(4.28) 

Here, the so-called Dawson integral, [2B], is introduced: 
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(4.29) 

The integral is given in tables and diagrams in (2B]. 
The above formulas use the upper limit +1 of ( 4.26). For small Zm = Zmax(0) ( com­

pared to~), we can expect that the factor (4.26) in (4.25) gives a distinctly lower 
estimate than ( 4.28). But this result will be sufficient for our purposes, so we do not 
investigate this further. 

The formula in [1] for Zmax(0), (1:6.38), contained the distance y 0 to the flow plane in 
the denominator. It could not be used for small y 0 • There was a singularity when the heat 

source lies in the flow plane y = 0. The singularity occurred, when all heat was released 

instantaneously. The singularity is removed, when the heat is released continuously. This 
is a gratifying improvement as we do not know, where a potential fracture plane lies. 

With this improved formula, it does not matter any more, where a fracture plane lies! 

The formula considers the worst case with the canisters lying directly in the fracture 
plane. 

4.2.3 Dependence on t0 

The time t 0 , at which the temperature field and the ensuing flow component vr is taken, 

may be chosen at will. The t 0 -dependence of Zmax(0) is determined by the Dawson integral 

F(T), (4.28-29). A few values of F(T) from [2B] are: 

T 0 0.2 0.5 0.75 0.924 1 1.25 1.5 2 3 5 

0 0.195 0.424 0.523 0.541 0.538 0.496 0.428 0.301 0.178 0.102 

We have for small and large T: 

0 :ST < 0.5 ( 4.30) 

T>3 ( 4.31) 

The function has a maximum, [2B]: 

Fmax = 0.541 for Tmax = 0.924 ( 4.32) 

The largest upward displacement for variable t0 occurs for T = Tmax or t 0 = (0.924)2td = 

0.854td. We get from ( 4.28): 

(O) I 1 3 o:Eo . F, 
Zmax maxt 0 '.S -.j'ir · ~ max ( 4.33) 

This gives our final formula to assess the largest upward displacement from z0 = 0: 

( ) I ~ 3 o:Eo 
Zmax O maxto '.S -.j'ir · ~ 7 =0.46 ( 4.34) 

The formula is valid for any t0 and y 0 • 

36 



From the expansion ( 4.30) we have for small t 0 : 

(4.35) 

For large t 0 , Eqs. ( 4.31) and ( 4.28) give: 

(4.36) 

The largest upward displacement decreases as 1/ .:/[;, as t0 increases. The decrease is slow. 

When the time t 0 is increased by a factor hundred, then the displacement decreases by a 

factor two ( {/f6o ~ 2.2). 

4.2.4 Several decay components 

The heat release with several decay components is given by ( 4.12). The decay time of 

component j is tdi and its fraction of the total heat release is /3i- The solution for this case 

is obtained by a super~-0sition, i.e. a sum over j. In the expression ( 4.22) for VTz(O, z ), E 0 

is replaced by E 0 /3i an, td by tdj, and the sum over the components j is performed. This 

summation is straightf"•~ w-ard to perform for all formulas. 
The formula ( 4.28) for the largest displacement for a given t0 (y0 = 0) becomes: 

( 4.37) 

The largest value of F for variable t 0 will be different for the different components. But 

an upper limit is: 

(o)l < ~ 
Zmax maxt 0 _ fo ( 4.38) 

4.3 Line heat source 

The line heat source with all heat released instantaneously is dealt with in Chapter 2. We 

will now consider an exponentially decreasing heat release. The release of heat per unit 

length of the line source is q(t) (W /m): 

(4.39) 

The total amount of released heat per unit length is E0 / H0 : 

(4.40) 
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4.3.1 Temperature-induced flow 

The temperature-induced flow component vr( x, z) for the instantaneous line heat source is 
given by (2.29). The dimensionless flow v:rz(0, z') is given by (2.43) and the flow intensity 
A1 by (2.11 ). Insertion in formula ( 4.2) gives in the same way as in Section 4.2.1: 

(z > 0) ( 4.41) 

Here, the function v0 (z'), which is related to v}z(0, z'), (2.48), is introduced: 

v0 (z') = 1 - e-(z1
)

2 + .jiz'erfc(z') = z' · v}z(0, z') (z' > 0) ( 4.42) 

Formulas (4.41) and (4.42) are only valid for positive z-values. 
The above formula concerns the semi-infinite line heat source. The flow for the line 

heat source along O > z > -H0 is obtained by the superposition (2.6). The expression 
with z replaced by z + H0 is to be subtracted from the above expression. 

With the substitution t 0 - t' = ta · s 2 , we get the following expression for the velocity: 

The highest velocities are obtained for y0 = 0, i.e. when the line heat source lies in flow 
plane y =: 0. 

4.3 .2 Largest upward displacement 

The largest upward displacement Zmax(z0 ) is given by the solution Zm of ( 4.9) with Vrz(0, z) 
given by the above expression for the semi-infinite line heat source: 

( 4.44) 

The dimensionless solution zm/ J4ala depends on the dimensionless variables z0 / ~' 

a.Ea/ [ Ho · ( 4ata)312 ], to/ta and Yo/~-
In the important case y 0 = 0 and z0 = 0 we have: 

Zm = Zmax(O) ( 4.45) 

The behaviour of the function v0 (z') for positive z' is of interest. We have from ( 4.42): 
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v0 (oo)=l 

dv 0 r.::. ( ') -d = v 7l" • erfc z 
z' 

The function increases monotonously with decreasing derivative from v0 (0) = 0 to 

v0 ( oo) = 1. A series expansion gives for small z': 

va(z') ~ -./iz' - (z')2 lz'I < o.5 

An asymptotic expansion of erfc(z') for large z' gives, [2C): 

v (z') ~ 1 - _l_ e-(z')2 

a 2(z')2 z' > 1.5 

A few values of va( z') and the two approximations are: 

z' 0 0.25 0.5 0. 75 1 1.25 1.5 1. 75 2 

v0 (z 1) 0 0.381 0.646 0.814 0.911 0.961 0.985 0.995 0.998 
( 4.48) 0 0.381 0.636 0. 767 
( 4.49) - 0.933 0.977 0.992 0.998 

( 4.46) 

( 4.4 7) 

( 4.48) 

( 4.49) 

The function v0 (z') in Eq. ( 4.45), which gives Zmax(0), lies between 0 and 1. We get 

an upper limit for Zmax(0), if v0 (z') is replaced by its largest value +l. This gives: 

(4.50) 

Here, F( T) is Dawson's integral ( 4.29): 

( 4.51) 

4.3.3 Dependence on t0 

The dependence of Zmax(0) on t 0 is, as in the very similar formulas in Section 4.2.3 for 

the point heat source, determined by F( M). 
The largest upward displacement for variable t 0 occurs for M = Tmax, Eq. ( 4.32), 

or t 0 = 0.854td. We have as in ( 4.33): 

(0)1 ~ 
Zmax maxt 0 ~ 7rJ/4 • 

This important formula is valid for any t0 and y 0 • 

From the expansion ( 4.30) we have for small t 0 : 

1 
z (0) < - · max _ 7rJ/4 
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For large t 0 , we have with equation ( 4.31 ): 

1 
Zmax(0) S 7r 3/ 4 ( 4.54) 

The largest upward displacement decreases quite slowly as 1/ 0o as t0 increases. When t0 

is increased by a factor hundred, then the displacement decreases by a factor 3 ( 000 '.::::::'. 
3.2). 

4.3.4 Several decay components 

In the case of several decay components, we have as in Section ( 4.2.4) from ( 4.50) by 
superposition: 

(4.55) 

An upper limit for variable t0 is as in ( 4.38): 

( o) I < p;;;;;, 
Zmax maxto - 7r3/4 . ( 4.56) 

4.3.5 Inclined fracture plane 

As in [1), we have considered a vertical fracture plane. The necessary modifications, when 
the plane is inclined an angle c/>c, are discussed briefly in Section 3.1 in [1]. 

The gravity force is reduced by the factor cos( c/>c): 

g -> g · cos( c/>c) ( 4.57) 

Let Zv denote the vertical z-axis, while z is the vertical coordinate along the inclined 
plane. Then we have 

Zv = z · cos( c/>c) (4.58) 

The salt gradient along z is reduced by the factor cos( c/>c): 

( 4.59) 

It should be kept in mind that c~ is the vertical salt gradient. The buoyancy factor ( 4.17) 
contains c~, so it is modified in the following way: 

- - 1 a -, a · ---
cos ( c/>c) 

For the time-scale tc, (2.17), we get with the substitutions ( 4.57) and ( 4.59): 

1 
tc -----+ tc · 2 ( ,I.. ) 

COS 'f'c 
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fo the basic formula ( 4.52 ), we get a factor cos( </>c) from ( 4.58) and a factor 1 / J cos( </>c) 
from (4.60). For an inclined fracture plane formula (4.52) becomes: 

( 4.62) 

The formula ( 4.52) concerns the case when the borehole lies in the fracture plane. When 
the plane is inclined, the distances between the vertical line heat source and the plane will 
increase, which means that the driving temperature decreases. This will further diminish 
the largest upward flow. 

Thus, the vertical plane will always give the largest upward displacement. It is the 
worst case. 
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Chapter 5 

Three-dimensional groundwater 
flow 

The studies have this far concerned two-dimensional groundwater flow in a fracture plane 
surrounded by impermeable rock. We will now consider another idealized case. The rock 
is considered as a homogeneous porous medium. The groundwater flow becomes three­
dimensional. We will only study the analytical formulas, which give the largest upward 
displacement. The heat release is from the repository is as before modelled by a point 
source or a line source, which is either instantaneous or exponentially decreasing with 
time. The three-dimensional case of this chapter without any salt effects, i.e. the thermal 
part, has been studied by Hodgkinson [3] and Robinson [4]. 

5 .1 Instantaneous point source 

We first consider the simplest case of an instantaneous point source. The heat E 0 ( J) is 

released at (0,0,0) at t = 0. 

5.1.1 Temperature field 

The excess temperature field is given by (1:4.4): 

(5.1) 

This temperature field is considered at a time t0 • The scale length L1 is as usual equal 
to~- The dimensionless excess temperature is, following Section 2.6 in [1]: 

r' = J ( x')2 + (y')2 + ( z')2 

I X 
X =--
~ 

I y 
y =--
~ 

z' 
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The dimensionless temperature amplitude becomes: 

or 

A2 = _1_. a.Eo 
1r.jir ( 4at0 ) 2 

Here, a is given by ( 4.17). 

(5.5) 

(5.6) 

The dimensionless pressure Pf(x,y,z) satisfies equation (1:3.40). Dropping primes, 
we have: 

(5.7) 

Here, \72 is the Laplace operator in three dimensions. The dimensionless temperature­
induced flow is, (1:3.40): 

'VT = - \7 PT + T z (5.8) 

5.1.2 Flow for p = p(r) 

The temperature (5.2) depends on the radius r only: T = T(r). As in Section 3.2 in [1], 
we first consider the general case with a density that only depends on r: p = p( r ). 

Let P be the pressure and iJ the ensuing groundwater flow. Then we have the equations 
( 1:3.9-10 ): 

\72 p + :: :.. 'j 

iJ = -\7 p - pi 

p = p(r) 

As in Section 3.2.2 in [1], we consider first the simpler equation: 

The pressure P is obtained by derivation with respect to z: 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

In the case p = p(r), the solution U of (5.11) depends on r only. We have for U = U(r): 

1 d ( 2 dU) -- r - + p(r) = 0 
r 2 dr dr 

(5.13) 

(5.14) 

The integration constant B1 is zero, since the solution does not have any singularity at 
r = 0. So we have: 

dU 1 lr - = -- s2 p(s)ds 
dr r 2 o 

(5.15) 
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The pressure P becomes: 

p = _Q_[U(r)] = dU. Br = dU. ~ 
Bz dr Bz dr r 

(5.16) 

or 

r = ✓ x2 + y2 + z2 (5.17) 

The dimensionless groundwater flow vis given by (5.10): 

(5.18) 

For the x-component we have: 

B ( z lr ) (-3 lr 1 ) B(r) v., = - - s2 p(s)ds = z • - · s 2p(s)ds + - · r 2 p(r) · - = 
Bx r 3 o r 4 o r 3 Bx 

( 1 [ 3 ] r 1 1r 3 dp p( r)) X = z · - -s p(s) + - s -ds + - • -
r4 o r4 o ds r r 

(5.19) 

or 

(5.20) 

There is an analogue expression for Vy. The expression for Vz may after similar calculations 

involving partial integration be written in the following way: 

2 3z2 - r2 lr 3 dp 
Vz = --p(r) + --- · s -ds 

3 3r5 o ds 
(5.21) 

The general expression for the flow from a density distribution p = p(r) is now: 

... 2 ( ) A ( 2 2 2) 1 1 !or 3 dp v=--prz+ 3xz,3yz,2z -x -y -·- s-ds 
3 r 5 3 o ds 

(5.22) 

This expression is the three-dimensional analogue of (1:3.23-25). 

The flow v consists of a downward component 2p(r)/3 in the (-i)-direction. The first 

factor of the second part is actually a three-dimensional dipole field: 

( 3xz, 3yz, 2z2 - x 2 - y2 ) = 'iJ (-z) 
r5 r5 r5 r3 

(5.23) 

The two-dimensional analogue is discussed in Section 3.2.3 in [1]. The dipole field (5.23) 

is multiplied by the last factor, i.e. by the integral of s3 /3 · dp / ds. 
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5.1.3 Temperature-induced flow 

For the dimensionless temperature-induced flow we have from (5. 7), (5.9) and (5.2): 

p(r) = -A2 · e-r2 (5.24) 

The general formula (5.22) gives: 

.... A [2 -r2 , ( 3 2 2 2) 1 2 r 4 -•2d ] VT= 2 3e · z + 3xz, yz, 2z - x - y rs · 310 s · e s 

The integral is determined by partial integrations: 

r s4e-•2 ds = 3y0r erf(r) - (r3 + 3r) e-r2 
lo s 2 4 

Here, erf( r) is the error function: 

erf(r) = 1 - erfc(r) =]:; !or e-•2 ds 

From the above equations we have: 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

The flow along the z-axis is of particular interest. We have for x = 0 and y = 0 ( VT:r = 
VTy = 0): 

A2 (✓-ir z2) VTz(0, 0, z) = - · - erf(z) - z e-
z3 2 

(5.30) 

The above formulas are in dimensionless form. In order to get the real velocity, we 

must multiply by the velocity scale factor v fl = -/4oI;,/tc and replace z by z /-/4oI;,. The 
velocity along the z-axis is then: 

(0 0 ) _ -/4oI;, . aEo 
VTz ' 'z - 2 tc 7ry'?r ( 4at0 ) 

or 

VTz(0,0,z) = ~ · 2aE~ ·Vb (z/\1'4at:) 
tc 7rZ 

Here, the function vb( z') is given by: 

( ') f( ') 2z' -(z')2 Vb z = er z - -e 
fa 

For vb( z') we have: 

0 S vb( z') < l z' ~ 0 

4 
vb(z') '.:::::'. ;;;;:(z')3 Jz'I S 0.5 

3y7r 
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5.1.4 Largest upward displacement 

The largest upward displacement is, with the approximation ( 4.3), given by the buoyancy 
balance ( 4.8): 

(5.37) 

or, inserting (5.32): 

z! (zm - Zo) = ~!0 
• Vb (zmf~) (5.38) 

Eqs.(5.34) and (5.35) show that the function vb(z') is smaller than +l. So we have for 
Z 0 = 0: 

(5.39) 

This estimate is valid for any t 0 ( and for any y0 ). 

For small z', expansion (5.36) is valid. Then we get for z0 = 0: 

4 aE0 4 ( Zm ) 
3 

( Zm ) z '.::::: - · r,;; · ~ ~ ~ 0.5 
m 21r 3y 7r y 4at0 y 4at0 

(5.40) 

or 

( ) 2 aEo 
Zmax O = 3 r,;; · ( ) 3 / 2 

7ry 1r 4ato 
(5.41) 

5.2 Instantaneous line source 

We consider a semi-infinite line heat source along the negative z-axis (0, 0, z ), 0 > z > 
-oo. The heat release at t = 0 is E0 /H0 (J/m). 

5.2.1 Temperature field 

The excess temperature is given by (2.5) with y0 = 0: 

T"(x, Y, z, t) = Eo · e-(x2+i2)/(4at) · erfc (-z-) 
CH0 81rat y4at 

(5.42) 

The dimensionless temperature at the chosen time t0 becomes, in analogy with the similar 
two-dimensional case of Section 2.1, Eqs. (2.8-12): 

T'(x', y', z') = A3 • e-(x')2-(i/)2 
• f erfc(z') (5.43) 

The dimensionless temperature amplitude A3 is: 

A _ 1 aEo 
3 --· 

- 7r ./i HO ( 4at 0 ) 312 
(5.44) 

The derivative of T' with respect to z' becomes: 

BT' _ A -(x')2-(y')2-(z')2 --- 3·e 
8z' 
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5.2.2 Groundwater flow 

The dimensionless pressure Pf = Pr satisfies equation ( 5. 7). Insertion of ( 5.45) gives: 

(5.46) 

This turns out to be our equation for U in Section 5.1.2. The pressure depends on r only: 

Pr= Pr(r). So we have: 

~~ (r2dPr) + A3 e_r2 = 0 
r2 dr dr 

(5.47) 

We have as in (5.15): 

dPr = - A3 r s2e-•2 ds = 
dr r2 lo 

A3ft [ f( ) _ ~ -r2] 
4r2 er r fte (5.48) 

The dimensionless, temperature-induced groundwater flow becomes: 

vr = - "v Pr + T z = A:f [ erf( r) - ~ e-r2
] • "v ( r) + T z (5.49) 

or 

... A3 ft [ f( ) 2r r2 l A A x2 y2 ft f ( ) A vr = er r - r,;;. e- · r + 3 • e- - · - er c z z 
4r2 y7r 2 

(5.50) 

The upward flow along the z-axis becomes (x = O)y = 0): 

Vrz(0, 0, z) = A3 · ft [erf(z) - 2~e-z2 + 2z2 erfc(z)] 
4z2 V 7r 

(5.51) 

The above equations are all in dimensionless form. The real velocity becomes as in 
: 5.31 ): 

.J4at: 1 aEo .fi 4ato ( ~) 
Vrz(0,0,z) = -- · r,;;. • 312 • - • - 2- ·Ve z/y4at0 

te 7ry7r H0 (4at 0 ) 4 Z 

or 

1 1 aEo ( ) 
Vrz(0,0,z) = - · - · H 2 ·Ve z/~ 

te 41r 0 Z 

Here, the following function is introduced: 

2z' ( 'f 2 ve(z') = erf(z') - fte- z + 2(z') erfc(z') 

liave for ve(z'): 

Ve( 00) = 1 

ddve = 4z' erfc( z') > 0 z' > 0 
z' 

0 :::; vc(z') :::; 1 for O :::; z' :::; oo 
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5.2.3 Largest upward displacement 

The buoyancy balance equation ( 4.8) with the velocity ( 5.53) gives the largest upward 
displacement Zma:i:(z0 ) as the solution of: 

(5.58) 

We are in particular interested in the solution for z0 = 0: 

(5.59) 

The function vc(z') is smaller than +1 for positive z', Eq.(5.57). We have the following 
final formula to assess the largest upward displacement from an instantaneous line heat 
source in a homogeneous porous medium: 

(5.60) 

The formula does not contain the time t 0 , so it is valid for any t 0 • In the two-dimensional 
case, there is a singularity for t0 = 0, Eq. (2.63). This problem does not occur for three­
dimensional groundwater flow. The formula concerns a semi-infinite line source, but it is 
of course also valid for any line source of finite length. 

5.3 Exponentially decreasing point source 

The largest upward displacement is obtained, when all heat is released instantaneously at 
t = 0 and y = 0. In the case of two-dimensional groundwater flow in a fracture plane, the 
maximum became infinite for t 0 = 0. This singularity was removed, when exponentially 
decreasing heat release was considered. 

Formulas (5.39) and (5.60) show that this singularity problem with respect to t0 does 
not exist in the case of three-dimensional groundwater flow in a homogeneous porous 
medium. There is not the same need to consider exponentially decreasing heat release. 
But for the sake of completeness, we will give the formulas in these cases also for the point 
and line heat sources. 

We consider an exponentially decreasing point heat source at (0, 0, 0). The rate of 
heat release Q(t) is given by (4.10): 

Q(t) = Eo . e-t/td. 
td 

(W) 

5.3.1 Groundwater flow 

(5.61) 

The corresponding case for two-dimensional groundwater flow is dealt with in Section 
4.2.1. The solution is obtained by integration over 0 ~ t' ~ t 0 of the flow from the 
instantaneous point heat source. Here, the three-dimensional solution (5.32) is to be 
used. The time t 0 is to be replaced by t 0 - t' and E0 by Q(t')dt'. We get by integration 
of (5.32) multiplied Q(t')dt': 
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VTz(0,0,z) = ~ · ~ · to Vb (z/)4a(t 0 -t')) · Eoe-t'/tddt' 
ic 21r z3 Jo id 

(5.62) 

With the substitution t0 - t' = td · s2 we get: 

(5.63) 

5.3.2 Largest upward displacement 

The largest upward displacement is given by the solution of the buoyancy balance ( 4.8): 

(5.64) 

Zm = Zmax(zo) 

This equation has to be solved numerically. 
The function vb(z') is smaller than +1, (5.35). For z0 = 0, this gives the following 

estimate for Zm = Zmax(O): 

(5.65) 

or 

(5.66) 

In the limit t 0 = oo, we recover the basic formula (5.39). 

5 .4 Exponentially decreasing line source 

The heat release of the exponentially decreasing line heat source is given by ( 4.39 ): 

q(t) = Eo e-t/td 
H0 td 

W/m 

5.4.1 Groundwater flow 

(5.67) 

The corresponding two-dimensional case is dealt with in Section 4.3.1. The velocity (5.53) 
is to be used. The time t0 is replaced by t0 - t' and E0 / H0 by q(t') dt'. Integration in t' 
gives: 

l a t 0 
( ✓ ) E0 'I VTz(0,O,z) = tc · 47rz2 "Jo Ve z/ 4a(t0 - t') · Hotd e-t tddt' (5.68) 

With the substitution t 0 - t' = td · s2 , we get 

(5.69) 

The function vc(z') is given by (5.54). 
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5.4.2 Largest upward displacement 

The largest upward displacement is determined from the buoyancy balance ( 4.8): 

(5. 70) 

This equation has to be solved numerically. 
The function vc(z') is smaller than +1, Eq. (5.57). For z0 = 0, this gives the following 

estimate for Z,n = Z,nax(0): 

(5.71) 

or 

(5.72) 

In the limit t 0 = oo, we obtain the basic formula (5.60). 
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Chapter 6 

Largest upward displacement 

A number of formulas for the largest upward displacement of groundwater from the top 
of the nuclear waste repository has been derived. In Section 6.1, a survey of formulas is 
given. In Section 6.2, the formulas are applied to the SKB concept shown in Figure 1.1. 

The important question of sensitivity of the parameters is discussed in Sectio1, 6.3. 
The formulas concern a single borehole or a single point heat source. The effect of 

ini'.nence between boreholes is studied in Section 6.4. It is shown that the influence may 
be neglected for the planned spacing D = 500 m between the boreholes. 

6.1 Survey of formulas 

A number of formulas for the largest upward displacement Zmax(0) have been derived. 
They always give an upper limit under the stated conditions. The formulas are normally 
more correct for laTge values of Zmax(0), while they often overestimate the upward dis­
placement for small Zmax(0). But the formulas are always on the safe side. 

All formulas contain the buoyancy parameter o:, ( 4.17): 

(6.1) 

The total heat release of the poin.t or line source is E0 (J). The quantity o:E0 , which occurs 
in all formulas, has the dimension m 4 • 

The first study [1] and Chaptera 2 to 4 deal with the case of two-dimensional ground­
water flow in a fracture plane. 

For an instantaneous: point heat source, Eqs. (6.38-39) in ll} 1ead: 

() ~
o:Eo 

Zmax O = 0.34 · --
Yo 

(6.2) 

This is the largest upward displacement (for any time t 0 ), when the distance to the flow 
plane is y 0 • For an instantaneous line heat source. Eqs. (2.65-66) read: 

(6.3) 
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For an exponentially decreasing point heat source, Eq. ( 4.34) reads: 

(0) 0 3 aEo 
Z,nax = .46 · ~ 

y4aid 
(6.4) 

The formula concerns the worst case y0 = 0, but it is also valid as an upper estimate for 
any value of the distance y0 to the fracture plane. Here, id ( s) is the decay t1me, and a 
(m2/s) the thermal diffusivity. The quantity~ has the dimension of a length. 

For an exponentially decreasing line heat source, Eq. ( 4.52) reads: 

Z,nax(0) = 0.31 · (6.5) 

The formula concerns the worst case y0 = 0, but it is as (6.4) valid for any y0 • Formula 
(6.5) concerns a semi-infinite line source. It gives an upper limit for any line source of 
finite length H0 • The semi-infinite approximation gives a negligible overestimation in our 
applications (H0 '.::::'. 2000 m). The exponential decay may involve several decay times, idj• 

Eq. ( 4.56) reads: 

Z,nax(0) = 0.31 · (6.6) 

Here, {3jEo is the total amount of released heat with the decay time tdj• 
In Chapter 5, the ground is treated as a homogeneous porous medium. The ground­

water flow is three-dimensional. 
For an instantaneous point heat source, Eq.(5.39) reads: 

(6.7) 

For an instantaneous line heat source, Eq.(5.60) reads: 

( ) ef aEo 
Z,nax O = 47r Ho (6.8) 

The above two formulas for the three-dimensional case concern the instantaneous heat 
source with all heat released at t = 0. This is the worst case, so the formulas are also 
valid ( as an upper estimate) for any exponentially decreasing heat release. 

6.2 Application to SKB repository 

In the numerical application of the formulas to the SKB repository, the same data as in 

[1] are used. The data (1:3.55) concern granitic rock with a salt concentration gradient 
of 2% per 1000 m. The data of Section 6.6 are also used. The considered 300 canisters 
release totally the heat E0 = 0.32 TWh with a main decay component id= 46 years. We 
have from (1:6.52-55) and (1:3.55): 

Eo = 1.16 · 1015 J H0 = 2000 m (6.9) 
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Yo= 100 m td = 46 years a= 1.62 · 10-6 m 2 /s (6.10) 

This gives: 

a· Eo = 7.46 · 109 m4 ~=97m (6.11) 

Formula (6.2) for the instantaneous point heat source with flow in a fracture plane 
lying 100 m away gives: 

Zmax(0) = 0.34 · 3 7.46 · 109 = 143 m 
100 

(6.12) 

This was given in [1], (1:6.56). Formula (6.3) for the instantaneous line heat source gives: 

Zmax(0) = 0.20 · 
7.46. 109 

2000 · 100 = 39 m 
(6.13) 

The spreading of the heat release along the borehole over 2000 m reduces the largest 

upward displacement from the top of the line heat source considerably (39/143 = 0.27). 
Formula ( 6.4) for an exponentially decreasing point heat source gives: 

3 7.46. 109 

Zmax(0) = 0.46 · 97 = 196 m (6.14) 

Here, the fracture plane may go directly through the point source (y0 = 0). Formula (6.5) 
for an exponentially decreasing line heat source gives: 

Zmax(0) = 0.31 · 
7.46. 109 
---=61 m 
2000 · 97 

(6.15) 

We see again that line source gives a considerably red 11ction of Zmax(0) compared to the 

point source (61/196=0.31). The value 61 m concerns the worst case, when the line source 
lies directly in the fracture plane (y,, = 0). 

The exponentially decreasing heat release contains in reality different decay times. 
The two main components are according to (1:6.52-53): 

td1 = 46 years {31 = 0. 75 

td2 = 780 years {32 = 0.25 

Formula (6.6) gives for this case: 

Zmax(0) = 0.31 · ---- · + --=== = 55 m 7.46 · 109 (0.75 0.25 ) 

2000 97 97. J780/46 

(6.16) 

(6.17) 

(6.18) 

The use of two decay components reduces the value by 10%. It is for our purpose sufficient 
to use the main decay time ( 46 years). 

The last two formulas (6.7) and (6.8) concern the case, when the rock is treated as 

a homogeneous porous medium with three-dimensional groundwater flow. Formula ( 6. 7) 
for the point heat source gives: 
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4 7.46 . 109 
Zmax(0) = --- = 186 m 

21r 

Formula (6.8) for the line heat source gives: 

z (0) = 3 7.46 . 109 = 67 
max 41r . 2000 m 

(6.19) 

(6.20) 

These two values concern the instantaneous heat source. An exponential decrease would 
give smaller values. The values are to be compared with (6.12) and (6.13). But the values 
are not directly comparable, since the values 143 and 39 m concern a fracture at a distance 
of 100 m, while the values 186 and 67 m concern the three-dimensional porous medium 
with direct contact between the heat sources and the groundwater. 

The SKB concept concerns a line heat source with an exponentially decreasing heat 
release. Formula (6.5) is therefore the one to use. The final assessment for the largest 
upward displacement from the top of the canisters in a borehole is then for the assumed 
data: 

I Zmax(0) ~ 60 m I (6.21) 

This value concerns a single borehole. The influence between boreholes is discussed in 
Section 6.4. 

6.3 Sensitivity to parameter variations 

The main formula for the largest upward displacement is (6.5). We have, inserting (6.1): 

Zmax(0) = 0.31 · (6.22) 

The formula contains the following quantities: 

• Total amount of released heat E0 ( J) 

• Main decay time td (s) 

• Thermal diffusivity a (m2/s) and volumetric heat capacity C (J/m3K) of the rock 

• Salt concentration gradient~ ((kg./kgw)/m) 

• Thermal expansion coefficient a.T (1/°C) and relative density increase with salt 
concentration ac (1/(kg./kgw)) 

The sensitivity to parameter variations is reasonably modest due to the square root: 

v'2 = 1.4 v'10 = 3.2 (6.23) 
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So a change of aT, E0 , Cic, c~, C, H 0 , Ja or 0d by a factor 2 will change Zmax(O), by 

some 40%, while a change by a factor 10 changes Zmax(O) by a factor 3. 

The quantities that do not enter into the formula are quite noteworthy. The formula 

is valid as an upper estimate for any position of the fracture plane. The hydraulic conduc­

tivity of the fracture plane does not enter. So this very uncertain ( and spatially variable) 

quantity does not matter either. We believe that the formula gives the order of magnitude 

of the largest upward flow for any system of fracture planes of large extensions in all 

directions. 
The time t0 , at which the temperature field is used, does not enter either, since we 

have considered the largest value for variable t0 • 

6.4 Influence between boreholes 

The formulas ar 'he above figures concern a single line heat source. The SKB repository 

consists of somt ,,enty boreholes drilled in a quadratic pattern with a spacing D. See 

Figure 1.1. The distance D is in the reference case: 

D = 500 m (6.24) 

This is a rather large distance compared to the range of the buoyancy flow, so we expect 

that the influence between the line heat sources is modest. 

In order to investigate this, we consider the case of Chapter 2. The line sources release 

all heat at t = 0. The case of several boreholes is dealt with in Section 2.2.5. There are 

N boreholes, where borehole j lies along (x;, Yi, z). The groundwater flow plane lies as 

usual at y = 0 (Case A in Figure 6.1). 
The formula to determine the largest upward displacement is given by the largest 

solution Zm of (2. 74) for different x'-values. We consider the case of 5x4 (N = 20) 

boreholes. See Figure 6.1. 

D 
-al'-----------

0 0 

0 0 
B ->-----► -->-

y 

0 0 

0 0 
.... --► --->-- ..... 

0 0 

0 0 

X 

Figure 6.1. Considered 5x4 boreholes with the fracture plane 

at y = 0 (case A) or at y = 2D (case B). 

The data (6.9-10'., and (6.24) are used. The largest upward flow of the single line source 

occurs for v14aI: = y0 ./2 in (2.65) and for ~ = y0 in (2.67). We will here calculate 

the solution for some different values of v'4al:. 
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Eq. (2.74) is to be solved for the borehole configuration of Figure 6.1. We have chosen 
the configuration so that it is symmetrical with respect to x = 0. The maximum (2. 75) 
will occur for x' = 0. The case N = 1 is the reference case of a single borehole. The result 
is given in Table 6.1 and Figure 6.2. 

~(m) 50 100 200 500 1000 10000 
t 0 (years) 12 49 195 1200 4900 490000 
Zmax(0) N = 1 4.15 19.45 11.19 2.28 0.59 0.006 
Zmax(0) N = 5 X 4 4.15 19.67 11.38 5.06 4.03 0.12 

Table 6.1. Numerically calculated Zmax(0) for the case of a single 
borehole and a configuration of 5 x 4 boreholes. Case A 
with fracture plane at y = 0. 
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::'.2: 0 ..._.___._......__...,___L.....J.__._......__...,___L.....J.__.___.__..L......JL........L--l....--'--..___,_--'--'-_.__ ......... 

0 500 1000 1500 2000 2500 
Time t0 (years) 

Figure 6.2. Maximum upward displacement for a single borehole 
and the considered case with 5x4 boreholes (D=500 m). 
Data according to (6.9-10). Fracture position A. 

We can see from figure 6.2 that the maximum upward displacement in the fracture 
reaches a maximum of about 20 m for t0 ~ 50 years, after which it gradually decreases to 
a value of about 5 m after 2500 years. During the first few hundred years there is little 
difference between the 5x4 configuration and the single borehole. This is just what we 
can expect, since the single borehole and the closest borehole of the 5x4 configuration 
are located at the same distance (100 m) from the point x' = 0 in the fracture. Other 
boreholes in the 5x4 configuration are found at a distance of at least 510 m from the 
point of maximum upward displacement in the fracture. The heat from these boreholes 
will start to influence the considered point after about 400 years. 

It may be noted that formula (6.3) gives Zmax(0) = 39 m, Eq. (6.13), and not 20 m. 
This discrepancy is due to the fact that A1 is quite small here (A1 = 0.25). Formula 
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(2.63), which gives a smaller value, is applicable. Eq. (6.3) overestimates Zmax(0) in this 
case. 

The maximum upward displacement will depend on the distance D between the bore­
holes, since this also determine::; the distance between the boreholes and the considered 
point in the fracture. See Figure 6.3 where some different borehole spacings are consid­
ered. 
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• I ·, 

~ 0 "'--'--'-------'-___,__,____.___._....,__...,__...._....__.,__....._.____..___,____.___,___, 
0 100 200 300 400 500 

Time t0 (years) 

Figure 6.3. Maximum upward displacement for the considered case 
with 5x4 boreholes as a function of the chosen time t0 

for some different borehole spacings D. Data according 
to (6.9-10). Fracture position A. 

The worst case is obtained for a borehole spacing D equal to zero, which practically 
means that all canisters are placed in the same enlarged borehole. The maximum upward 
displacement is then 165 m. For larger values of the borehole spacing, the maximum up­
ward displacement rapidly becomes smaller, until reaches the value of the single borehole 
at D ~ 200 - 300 m. We see that the distance between the boreholes does not matter at 
all as long as it exceeds, say, 200 m. 

Finally, let us consider a case where the fracture plane cuts through the center of the 
repository with a minimum of 100 m between the fracture and a row of boreholes. The 
position of the fracture is shown as case B in Figure 6.1. Figure 6.4 shows the result of 
the calculation. 
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Figure 6.4. Maximum upward displacement for a single borehole 
and the borehole configuration with 5x4 boreholes ( D 
= 500 m). The two positions of the fracture plane are 
shown as case A and B in Figure 6.1. Other data ac­
cording to (6.9-10). 

The behavior is the same as for the original case of Figure 6.1 for the first 500 years. 
The maximum value of the upward displacement attained after about 50 years is not 
changed. 
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Chapter 7 

Survey of the analyses in the study 

This study and the preceding one, Ref. 1, contain quite a lot of material, and many 
different tools of analyses are used. A survey of the line of thought and the main analyses 
and results is therefore presented in this chapter. The result of the first study, which is 
presented in a similar survey in Chapter 7 of Ref. 1, are included in a somewhat condensed 
form. 

The study has two objectives. The first one is to gain understanding and insight into 
the coupled processes for heat, salt and groundwater with buoyancy due to both temper­
ature and salt density variations. The second objective is to assess the largest upward 
displacement of groundwater from the canister region. In particular, we have endeavored 
to establish explicit formulas for the largest upward displacement of groundwater from 
the top of the canister row in a borehole. The released heat and the location of the 
canisters deep below the ground surface are given. By assumption, there is an increase 
downwards of the salt concentration in the undisturbed groundwater. The groundwater 
flow is analysed for two extreme cases. In the first case, the groundwater flow is confined 
to a single vertical crack or fracture plane. In the second case, the rock is considered as 
a homogeneous porous medium. The temperature process is three-dimensional, while the 
groundwater and salt flow processes are two-dimensional in the first case. In the second 
case, all three processes are three-dimensional. 

The general governing equations for water, salt and heat are discussed in Chapter 
2 in the first study, Ref. 1. The convective heat flow can be neglected in the present 
application with very small groundwater flows. The thermal process is then governed by 
pure heat conduction and by the prescribed heat sources from the canisters. This leads to 
the important simplification that the thermal process is independent of the groundwater 
and salt process. 

A major assumption is the use of Boussinesq's approximation with constant water 
viscosity µwo and constant water density Pwo except in the buoyancy term, for which 
the density Pw(T, c) in linearized using a constant thermal expansion coefficient <XT and 
a corresponding coefficient ac for the variation with salt concentration. Salt dispersion 
and diffusion are neglected. This means that the salt is just displaced convectively with 
the moving groundwater. The processes take place far below the ground surface, which 
lies some 2 km above, so the upper boundary lies virtually at infinity. All quantities -
temperature T, pressure P and salt concentration c - tend to undisturbed values far away 
from the canister region. 

The undisturbed salt concentration eo(z) and water density increase downwards. A 
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constant salt gradient c~ (kg 6 /kgwm) is used. There is an undisturbed situation with 
a temperature T0 (z) and a pressure P0 (z). The deviations from equilibrium, or excess 
variables, for temperature, salt concentration and pressure are denoted T", d' and P", 
respectively. The equations are transformed to a dimensionless form in Section 2.6 in 
Ref. 1 using scale factors L1 , t 1 = tc, T1 , c1 and Pi. The governing equations for the 
dimensionless excess variables T', d and P' become, (2.46-51) in Ref. 1: 

(V')2 P' + 8c' - 8T' = 0 
8z' 8z' 

~ = - V 'P' - c' z + T' z 

c' lt=O = 0 T' given independently 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

The first equation (7.1) determines the pressure P' due to the dimensionless excess 
density distribution p' = d - T'. The third equation gives, according to Darcy's law, the 
filtration velocity with which the salt is moved convectively in accordance with equation 
(7.2). The dimensionless salt concentration, c = -z' + c', contains an undisturbed part 
-z', with unit gradient in the dimensionless formulation, and an excess part c'. The value 
of c is constant for a salt-groundwater 'particle' when it moves around with the velocity 
field v't. 

An important result, which is a consequence of the previous assumptions, is that the 
dimensionless equations (7.1-4) do not contain any intrinsic parameters. The only param­
eters to occur in our total process come from the scale factors and the parameters of the 
dimensionless temperature T'. Another important result of the dimensionless formulation 
is the scale factor for the time tc ( t' = t / tc): 

tc = ½,µwo 
kg Pwoacc~ 

(7.5) 

In the two-dimensional case, k/½, is replaced by kc/V,,C, Eq. (3.4) in Ref. 1. This time 
gives a characteristic time-scale for flow induced by salt variations. It is noteworthy that 
tc depends on salt parameters ( ac, c~) and intrinsic permeability k, but it is independent 
of the thermal properties. 

The dimensionless groundwater flow, (7.3), is according to (7.1) driven by the density 
p' = d - T', i.e. by one salt and one temperature component. These two parts will be 
calculated separately: 

(V')2 P.' - 8T' = 0 
T 8z' 

(V')2 P' + 8c' = 0 
C azl iJ' = -V'P' - c'z C C 
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Equations (7.6) and (7.7) are of Poisson's type. The pressures PT and P; at any particular 

time t are determined by the source term, i.e. by the temperature field T' and the salt 

concentration field c' at that time. From the solutions we get the total groundwater flow 

v1 according to (7.8) and (7.6-7). This flow field displaces the salt according to Eq. (7.2). 

The salt process will be solved numerically with calculations in a sequence of time­

steps. At each time-step, equations (7.6) and (7.7) are solved. The salt is then displaced 

to new positions at next time-step, and so on. 
The temperature field T' is the primary driving force for the groundwater and salt 

processes. As the salt concentration field is displaced from its original stable values at 

t = 0, it induces a salt buoyancy component Ve, which adds to VT, The intrinsic time­

scales of these two processes are very different. It is shown in section 3.6 of Ref. 1 that the 

time-scale of the salt-induced buoyancy, tc, lies in the range 16 hours '. :, 90 days, while a 

characteristic time for variations of the thermal process is many year , This means that 

the salt-buoyancy process is virtually a steady-state one, which will change to new virtual 

steady-state conditions following the slowly varying temperature field. 

We are interested in the largest upward displacement of groundwater from the canister 

region during a very long period (say 10 000 years), until all heat has been released and 

the driving excess temperature field has disappeared through thermal diffusion. It is a 

very cumbersome computational task to follow this whole process. However, our aim is 

only to assess the largest upward displacement, which should occur for some intermediate 

time, when the temperature field has so to speak its stronge;;t effect. A considerable 

simplification is to use this particular temperature field only. Then we have to calculate 

the process for a time period of, say, 5 · tc only. 
We proceed as follows. The temperature field is considered at a time t0 • We use 

this 'frozen' temperature field T(x,y,z,t0 ), and calculate the process (7.1-7.4) for this 

time-independent temperature. The salt concentration starts with the undisturbed linear 

values at t = 0. For each choice of t0 , we will or,tain a largest upward displacement. Then 

we calculate the maximum of this largest displacement, when t0 is varied. This maximum 

gives our largest upward displacement valid for any time. The difference between this 

assessment and the value from a more elaborate solution of the original problem should 

be insignificant. 
The heat from the canisters is released with an exponentially decreasing effect. The 

main decay time, td = 46 years, accounts for 75% of the total heat E0 • A reasonable 

simplification, valid after say 100 years, is to release all heat instantaneously at t = 0. 

This simplification was made in the first study. The finite extension of the line heat source 

was also neglected. All heat E0 was released at t = 0 at a single p,jnt. Thus, the case 

of an instantaneous point heat source was considered. The groundwater and salt flow 

process was confined to a fracture plane which lay at the distance y 0 from the point heat 

source. The final formula to assess the largest upward flow from the center became: 

I ffaEo 
Z max upward = 0.34 · -­

Yo 
(7.9) 

Here, a is the important buoyancy flow parameter, which accounts for coupled thermal 

and salt buoyancy: 

(7.10) 
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This formula gave with SKB-data an upward displacement of 143 m for Yo = 100. 
The distance y0 is unknown. A considerable flaw for the otherwise quite handy formula 

(7.9) is that the displacement becomes infinite for Yo= 0. This problem is removed when 
we consider the exponentially decreasing heat release with its 'softer' driving temperature 

field. 
The first extension of the previous study is to consider a line heat source, Chapter 

2. The heat release is still instantaneous, and the groundwater and salt process is two­

dimensional in a vertical fracture plane at a distance y0 from the line heat source, which 

lies along the negative z-axis. The line heat source is quite long: Ho = 2000 m. It may 

be considered as semi-infinite (Ho= oo), since we are interested in the process in a region 

of a few hundred meters around the top of the canister row. 
The temperature field, which is considered at a time t0 , is discussed in Section 2.1. The 

scale length for the coordinates is L1 = y'4ato, Eq. (2.8). The dimensionless temperature 

field becomes, (2.10): 

T'(x', z') = A1 . e-(:r')2 . 100 e-u2 du 
lz, (7.11) 

The last factor is essentially the complementary error function. The dimensionless tem­

perature amplitude A1 , (2.11 ), involves a.E0 / H, 4ato and y0 • Our problem is defined by 

equation (7.1-4) and (7.11). A gratifying fact, which is a consequence of the previous 

assumptions and analyses, is that the problem contains a single dimensionless parameter 

A 1 only. 
Eq. (7.1) is, as in the first study, divided into the two parts (7.6) and (7.7). The 

temperature-induced flow, Eq. (7.6) with T' given by (7.11), is solved analytically in 

Section 2.2. The dimensionless velocity vT is given by (2.29). 
The remaining problem for the salt and groundwater is defined by Eqs. (7.7), (7.8), 

(7.2) and the initial condition c' = 0 for t' = 0, (7.4). This part is solved numerically, 

Ch. 3. 
A particular numerical technique has been developed. See Ch. 5 in Ref. 1. The 

numerical problem is solved for time-step after time-step. A particle-tracking technique 

is used. The particle (i,j) with a constant salt concentration Cij = -z:j + c;j is displaced 

during the time-step in accordance with the total velocity vT + v~. We obtain the salt 

concentration at the next time-step. 
The main problem is to calculate v~ at each time-step. We have to solve the Poisson 

equation (7. 7). The solution to a Poisson equation is analytically given by certain integrals 

of the source term (8c'/8z in (7.7)). The integral for V:: is given by (5.3) in Ref. 1. The 

main problem in the model is to evaluate the double integral for U::, when d is known 

numerically for the moving particles (xi;(t), zi;(t)). The integral is transformed from the 

( x', z')-plane to the ( x', c)-plane. This very particular method facilitates the calculations 

considerably. The double-sum is approximated by a Riemann sum based on the positions 

and salt concentrations of the particles. 
Problems for the modelling technique are discussed in Section 3.3. The particles 

accumulate in certain areas and separate in others. This problem is solved by insertion 

and removal of particles. The c-curves may lie very close to each other in certain areas. 

A particle may then be removed, if two curves come too close to each other at a point. A 

new problem compared to the previous case in Ref. 1 is that the flow velocity v!_r is quite 

large in the vicinity of the line heat source. 
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The computed groundwater and salt process is shown in Figs. 3.3-6 for A1 = 0.1, 1, 10 
and 30, respectively. The largest upward displacement for different A1 is given in Table 
3.1. These numerical values are compared with values from our approximate formulas, 
which are discussed below. 

The largest upward displacement occurs due to symmetry for the particles (water + 
salt) that flow along the z-axis. Let zm(t', z0) denote the particle that starts at Zm = z0 
at t = 0 (zm and z0 are dimensionless). We have the following equation for Zm, Eq. (7.8): 

dzm 1 ( ) , ( ') dt' = VTz 0, Zm + Vcz 0, Zm, t (7.12) 

The temperature-induced velocity is known analytically, Eq. (2.43). For the salt-induced 
velocity we have for the z-component, Eq. (7.7): 

v' = - a p; - (z - zo) 
cz oz' m 

(7.13) 

Here we have used the fact that c = -z' + c' is constant for a given particle: 

~ 1 ~1 / 0 I C t = C t=O {:} - Zm + C = - Zo + <=} C = Zm - Zo (7.14) 

Equations (7.12-13) are exact. The problem is that we do not know P;, since the salt 
pressure component is obtained in the numerical calculation. 

The approximate formulas are all based on the assumption that the salt pressure term 
-BP;/ oz' is not strongly dominating in (7.12-13). An approximation is then to neglect 
this term. The temperature-induced velocity vTz(0, zm) decreases, when Zm > 0 increases, 
while the salt-concentration term v~z '.:::::'. - (zm - z0 ) increases in magnitude. At a certain 
point, which is approached asymptotically, when t' tends to infinity, they will balance 
each other. This buoyancy balance with upward thermal buoyancy and counteracting 
salt-density buoyancy determines the largest upward displacement z:,.ax(z0 ). We have in 
dimensionless form: 

(7.15) 

The corresponding equation in dimensional form is, ( 4.8): 

Zm = Zmax (zo) (7.16) 

We are in particular interested in the largest UF\,0 ard displacement Zmax(O) for the particle 
that starts at z0 = 0. All formulas to assess t.ne largest upward displacement originate 
from the solution of (7.15) or (7.16) with the appropriate temperature-induced. velocity. 

Formula (7.15) is applied for the instantaneous line heat source in Section 2.2.3. The 
velocity vTz(0, Zm) is given by (2.43). The solution is illustrated graphically in Fig. 2.2 
for different z0 and A1 . The main result is, (2.52): 

(7.17) 

This approximation and another one valid for small A1 are compared to result from the 
numerical model in Table 3.1. The agreement is quite good. The corresponding formula 
for Zmax(O) (m) is Eq. (2.62). The value depends on the chosen time t0. The final step 
is to con.side· the maximum with respect to t0 • This gives the following formula for the 
instantaneous line heat source, (2.65-66): 
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I If§,-Ea 
z max upward '.::.:'. 0.20 . -H 

aYa 
(7.18) 

The formulas (7.9) and (7.18) for the largest upward displacement for a point and 
a line heat source are tested against the numerical model in the first study and in this 

study, respectively. The agreement is quite satisfactory for our purpose of ~sessment. 
The approximation to obtain assessment formulas is used in the rest of the study without 
further tests against numerical calculations. 

In order to remove the flaw with the distance to the fracture plane, y0 , in the denom­
inator of (7.17), we have to consider the exponentially decaying heat release. All heat 
cannot be released instantaneously. 

The flow component ih for any time-dependent heat release is obtained by a super­
position integral from the solution for an instantaneous heat source. See Eq. ( 4.1 ). 

The case of a point heat source with exponentially decaying heat release, (4.10), is 
considered in Section 4.2. We need the flow VTz(O, z). The expression in dimensional form 

is given by ( 4.21 ). The equation for Zm = Zmax(z0 ) is then given by (7.16) or ( 4.24). The 
equation involves z0 , &.E0 , t 0 , td and y 0 . The worst case occurs when the heat source lies 
directly in the fracture plane: y 0 = 0. The equation for Zma2:(0) is then given by ( 4.25). 
Eq. ( 4.28) is an upper estimate. Finally, the maximum with respect to t0 is determined. 
Eq. ( 4.34) gives the largest upward displacement for an exponentially decaying point heat 
source: 

zl '.::.:'. 0.46 . 3 a.Ea 
max upward ~ 

(7.19) 

The corresponding analysis for the line heat source is presented in Section 4.3. Eq. ( 4.52) 
is our main formula (0.1) for the largest upward displacement from an exponentially de­
caying line heat source: 

zlmaxupward '.::.:'. 0.31 · (7.20) 

The fracture plane may lie anywhere. 
The case, when the rock is considered as a homogeneous porous medium is treated 

in Chapter 5. The groundwater and salt flow process is now three-dimensional. (The 
problem with an unknown distance y0 to a fracture plane disappears.) 

The case with an instantaneous point heat source is discussed in Section 5.1. The 
dimensionless temperature field is given by (5.2). The corresponding temperature-flow 

VT is calculated in Sections 5.1.2-3. The expression for vTz(0, 0, Zm) is given by (5.32-33). 
Insertion of this in Eq. (7.16) gives Zmax(0) and, with a few estimates, the largest upward 

displacement, (5.39): 

I ~ &.Ea 
z ~ --

ma x upward - 27r (7.21) 

The corresponding analysis for the instantaneous line heat source is given in Section 
5.2. The dimensionless temperature field is given by (5.43), and the temperature flow 
VT, Eq. (5.50), is calculated in Section 5.2.2. The flow along the z-axis VTz (0, 0, zm) to 
be used in Eq. (7.16) is here given by (5.51 ). The final formula for the largest upward 
displacement is, (5.60): 
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I i aEo z ~ --
max upward - 471" Ho (7.22) 

This is our main formula, (0.2), for the case of homogeneous porous rock. 
The expressions for exponentially decaying point and line heat sources are indicated 

in Section 5.3 and 5.4. The formulas become more complicated. However, the formulas 
(7.22) and (7.21) are sufficient for our purpose. 

Section 6.1 gives a survey of the formulas for largest upward displacement, and these 
are applied to the SKB repository in Section 6.2. It is shown that the effect of the second 
decay component ( td2 = 780 years) is quite small. 

The important question of sensitivity to parameter variations is discussed in Section 
6.3. 

All formulas concern a single line heat source or borehole. The question of influence 
between the boreholes is discussed in Section 6.4. It is shown that, for the SKB data, this 
influence can be neglected, since the largest upward displace due to a certain borehole 
occurs before the influence from adjacent boreholes becomes significant. 

The analyses and final formulas of this study are based on a number of assumptions. 
A few of these are not fulfilled for the real process, but the discussion below will show 
that the results still are valid. The unfulfilled assumptions are: 

• constant increase c~ of salt concentration 

• constant aT 

• constant viscosity 

• constant permeability of fracture plane and of homogeneous rock in the case of 
three-dimensional ground water flow 

The assumption of a constant salt increase is a simplification, but we see from the 
sensitive analysis in Section 6.3, that a change by a factor 10, results in a change of 
v'f5 '.:::'. 3.2 only for Zrna:r(0). This assumption is therefore not a critical one, as long as 
there is a clear increase downwards. 

The thermal expansivity aT varies a factor 5 from T = 15°0 to T = 100°0. See 
Section 3.5 in Ref. 1. The use of an intermediate value gives a variation of some 50% in 
the main formula (0.1), but the real error in an assessment should be even smaller. The 
use of a constant, intermediate aT will certainly deform the flow pattern somewhat but 
the error should only be some 25% or less. 

The viscosity of groundwater varies a factor 4 between 15 °C and 100 °C. Here, the 
argument used for aT is valid. But the water viscosity does not enter into the formulas 
(0.1) and (0.2). Therefore, it should not matter much, if it is variable. 

The permeability of a fracture plane or a more or less homogeneously fractured rock 
is certainly not constant in any real case. But the permeability does not enter into the 
formulas for largest upward displacement. This factor cancels in the buoyancy balance 
formula between VT and Ve. The permeability enters into the time tc, (7.5), so it influences 
the time-scale to attain steady-state conditions for the salt-induced process. 
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Nomenclature 

The nomenclature of [1], pp. 66-67, is used. A few new notations have been added. An 
equation in the initial study [1] is referenced by putting 1: before the equation number. 
As an example, a reference to Eq. (2.13) of the initial study will be written as Eq. (1:2.13). 

a= ).jC thermal diffusivity of the ground (m2/s) 
Ao dimensionless temperature amplitude, 

Eq. (1:6.5) (-) 
A1 dimensionless temperature amplitude for the line 

heat source, Eq. (2.11) (-) 
A2 dimensionless temperature amplitude for the point 

heat source with 3-dimensional groundwater flow, Eq. (5.6) (-) 
A3 dimensionless temperature amplitude for the line 

heat source with 3-dimensional groundwater flow, Eq. (5.44) 
B width of fracture zone (m) 
C salt concentration (kg./kgw) 
d dimensionless excess salt concentration (-) 
c" excess salt concentration (kg./kgw) 
c = -z' + d dimensionless total salt concentration (-) 
c0 (z) undisturbed salt concentration (kg./kgw) 
~ = -dc0 /dz salt concentration gradient ( kg. /kgwm) 
C1 scale factor for salt concentration (kg./kgw) 
C volumetric heat capacity of the ground (J/m3K) 
d fracture width (m) 
D spacing between boreholes (m) 

Ecan total heat release from a canister (J) 
Eo total heat release from the point source (J) 
fp radial density function, Eq. (1:3.25) (-) 
F Dawson's integral, Eq. ( 4.29) (-) 
g = 9.81 standard gravity (m/s2) 
h heat source (W/m3) 
Ho length of line heat source (m) 

H~ = Ho/L1 dimensionless length of line heat source (-) 
k intrinsic permeability (m2) 
kc intrinsic permeability of fracture zone (m3) 

L1 scale factor for length coordinates (m) 
p groundwater pressure (Pa) 
P' dimensionless excess pressure (-) 
P" excess pressure (Pa) 

A scale factor for pressure (Pa) 
Pc,PT dimensionless salt and temperature 

components of the pressure (-) 
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iiw = (qwx, qwy, qwz) volumetric groundwater flow (m!/m2s) 
-e qw volumetric groundwater flow in fracture plane 

or fracture zone (m!/ms) 
q( t) heat release rate per unit length of line heat source (W/m) 
Q(t) heat release rate from a point source (W) 
Qo rate of heat release (W) 

Qo,can initial rate of heat rele;v, from a canister (W) 
r = Jx2 + z2 radial distance in flow pL . e (m) 
r' dimensionless radial distance (m) 

T1 radial length (m) 
t time (s) 
t' dimensionless time (-) 
io time at which the temperature field is taken, 

see Section 1:6.1 (s) 
ie characteristic time-scale, scale factor for time (s) 
id decay time for heat source, Eq. (1:4.11) (s) 
tdj decay time of heat release component j (s) 
tT characteristic time-scale for temperature 

field, Eq. (1:3.60) (s) 
T temperature in the ground (oC) 

T' dimensionless excess temperature (-) 
T,, excess temperature (oC) 

Ta undisturbed ground temperature (oC) 

T1 scale factor for temperature (oC) 
re temperature in fracture plane (oC) 

Ti~t integral of the temperature over the fracture 
plane, Eq. (1:4.3) (m2oC) 

u solution to Eq. (1:3.14) (-) 
- filtration velocity (m/s) VJ .... , 
VJ dimensionless filtration velocity (-) 
-1 VT flow field for line heat source, Eq. (2.30) (-) 
Va(z 1 ) Eq. ( 4.42) (-) 
V&( z') Eq. (5.33) (-) 
Ve( z') Eq. (5.54) (-) 
VJ1 scale factor for filtration velocity (m/s) 
Ve, VT dimensionless salt and temperature components 

of filtration velocity (-) 
½, pore volume (m!/m3) 

ve 
p pore volume of fracture zone (m!/m2) 

x,y horizontal coordinates (m) 
x',y' dimensionless horizontal coordinates (-) 
Yo distance from heat source to flow plane (m) 
z vertical coordinate (m) 
z vertical unit vector pointing upwards (-) 
z' dimensionless vertical coordinate (-) 
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Zm(t', z0 ) 

z:,,ax(zo) 
Zmax(zo) 
Zo 
ac 

ar 
a= ar/ (ac~C) 
{3j 
). 

µw 
Pw 
p' = d -T' 
p" 

<Pc 
1/J 
V = (:X, ;11 , tz) 
V' = (a!,, a~,, a~,) 

particle motion along the z'-axis 
maximal dimensionless upward displacement 
maximal upward displacement 
dimensionless starting point on the z'-axis 
relative density increase with salt concentration, 
Eq. (1:2.30) 
thermal expansion coefficient, Eq. (1:2.30) 
buoyancy parameter 
fraction of total heat release by component i 
thermal conductivity of the ground 
dynamic viscosity of water 
density of water 
dimensionless excess density 
excess water density, Eq. (1:2.26) 
angle between the z-axis and fracture plane 
stream function, Eqs. (2.35, 2.37) 

gradient operator 

dimensionless gradient operator 

(-) 
(-) 
(m) 
(-) 

(-1 / (kg. /kgw)) 
(1/°C) 
m4/J 
(-) 
(W/mK) 
(kg/ms) 
(kg/m3 ) 

(-) 
(kg/m3 ) 

(rad) 
(-) 
(m-1) 

(-) 

Here, m! denotes cubic meter of water; kg., kilogram of dissolved salt and kgw kilogram 
of water including the dissolved salt. The prime', which denotes dimensionless excess 
variables, is sometimes suppressed for convenience. In particular, it should be noted that 
the following variables are dimensionless: 
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