Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase, test campaign 4, single hole tests

Torbjörn Forsmark Ingvar Rhén

SWECO AB

January 2005

International Progress Report

IPR-05-02

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Äspö Hard Rock Laboratory

Report no.	No.
IPR-05-02	F63K
Author	Date
Torbjörn Forsmark	2005-01-11
Ingvar Rhén	
Checked by	Date
Ingvar Rhén	2005-01-12
Approved	Date
Anders Sjöland	2005-04-05

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase, test campaign 4, single hole tests

Torbjörn Forsmark Ingvar Rhén SWECO AB

January 2005

Keywords: Äspö HRL, Prototype Repository, Hydrogeology, Hydraulic tests, Pressure build-up tests, Hydraulic parameters, Transmissivity, Storage coefficient

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Abstract

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects.

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

Single hole tests were done in 8 boreholes of the Prototype Repository tunnel. In some of the holes several tests were made. The maximal pressure change (dp_p) was limited to approximately 100 metres, 200 metres and maximum possible pressure change respectively.

There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The results are shown in the table below.

Section	HM section	dp _p (m)	Specific capacity (m²/s)	T _{MOYE} (m²/s)	T _{eval} (m²/s)	Skinfactor (-)
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	х	max	5.8 · 10 ⁻⁹	3.8 · 10 ⁻⁹	2.2 · 10 ⁻⁹	-2.5
KA3554G01:2	х	~100	1.0 · 10 ⁻⁷	6.5 · 10 ⁻⁸	4.9 · 10 ⁻⁷	22
KA3554G01:2	х	~200	8.8 · 10 ⁻⁸	5.6 · 10 ⁻⁸	4.7 · 10 ⁻⁷	26
KA3554G01:2	х	max	7.9 · 10 ⁻⁸	5.1 · 10 ⁻⁸	4.7 · 10 ⁻⁷	30
KA3554G02:4	х	~100	1.2 · 10 ⁻⁹	8.2 · 10 ⁻¹⁰	-	-
KA3554G02:4	х	max	1.2 · 10 ⁻⁹	7.5 · 10 ⁻¹⁰	-	-
KA3548A01:3	х	max	9.8 · 10 ⁻⁸	6.6 · 10 ⁻⁸	8.2 · 10 ⁻⁸	-1.2
KA3542G01:3	х	~100	5.8 · 10 ⁻⁸	3.8 · 10 ⁻⁸	6.9 · 10 ⁻⁸	1.1
KA3542G01:3	х	~200	4.9 · 10 ⁻⁸	3.3 · 10 ⁻⁸	6.6 · 10 ⁻⁸	2.1
KA3542G01:3	х	max	4.5 · 10 ⁻⁸	3.1 · 10 ⁻⁸	6.4 · 10 ⁻⁸	2.7
KA3544G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	х	max	9.8 · 10 ⁻¹⁰	6.3 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰	-1.2

Table 1 Results from the test campaign 4. ⁽¹⁾ Indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Specific capacity (m²/s)	T _{MOYE} (m²/s)	T _{eval} (m²/s)	Skinfactor (-)
KA3563G:4	-	(2)	(2)	(2)	(2)	(2)
KA3546G01:2	х	max	5.7 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰	-	-
KA3566G01:2	-	(2)	(2)	(2)	(2)	(2)
KA3572G01:2	-	(2)	(2)	(2)	(2)	(2)
KA3574G01:3	-	(2)	(2)	(2)	(2)	(2)
KA3539G:2	х	~100	2.3 · 10 ⁻⁷	1.5 · 10 ⁻⁷	5.5 · 10 ⁻⁷	-1.5
KA3539G:2	х	max	2.3 · 10 ⁻⁷	1.5 · 10 ⁻⁷	5.4 · 10 ⁻⁷	-1.2

Sammanfattning

Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB: s djupförvarssystem. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototyp förvaret men även i andra projekt.

Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer.

Enhålstester gjordes i totalt 8 stycken borrhål. Ett nionde och tionde borrhål är utrustad med HM-sensorer men har ej kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM-sensorer installerade. Det hålet är tänkt att användas såsom referenshål. Resultaten från denna testomgång presenteras i tabellen nedan.

Sektion	HM sektion	dp _p (m)	Specifik kapacitet (m²/s)	T _{MOYE} (m ² /s)	T _{eval} (m²/s)	Skinfaktor (-)
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	х	max	5.8 · 10 ⁻⁹	3.8 · 10 ⁻⁹	2.2 · 10 ⁻⁹	-2.5
KA3554G01:2	х	~100	1.0 · 10 ⁻⁷	6.5 · 10 ⁻⁸	4.9 · 10 ⁻⁷	22
KA3554G01:2	х	~200	8.8 · 10 ⁻⁸	5.6 · 10 ⁻⁸	4.7 · 10 ⁻⁷	26
KA3554G01:2	х	max	7.9 · 10 ⁻⁸	5.1 · 10 ⁻⁸	4.7 · 10 ⁻⁷	30
KA3554G02:4	х	~100	1.2 · 10 ⁻⁹	8.2 · 10 ⁻¹⁰	-	-
KA3554G02:4	х	max	1.2 · 10 ⁻⁹	7.5 · 10 ⁻¹⁰	-	-
KA3548A01:3	х	max	9.8 · 10 ⁻⁸	6.6 · 10 ⁻⁸	8.2 · 10 ⁻⁸	-1.2
KA3542G01:3	х	~100	5.8 · 10 ⁻⁸	3.8 · 10 ⁻⁸	6.9 · 10 ⁻⁸	1.1
KA3542G01:3	х	~200	4.9 · 10 ⁻⁸	3.3 · 10 ⁻⁸	6.6 · 10 ⁻⁸	2.1
KA3542G01:3	х	max	4.5 · 10 ⁻⁸	3.1 · 10 ⁻⁸	6.4 · 10 ⁻⁸	2.7
KA3544G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	х	max	9.8 · 10 ⁻¹⁰	6.3 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰	-1.2

Tabell 1 Resultat från testomgång 4. ⁽¹⁾ indikerar läckageproblem med manschetterna, ⁽²⁾ indikerar att inga tester gjordes i dessa sektioner denna testomgång, "-" indikerar att inget värde kunnat beräknas med valt utvärderingsmetod.

Sektion	HM sektion	dp _p (m)	Specifik kapacitet (m²/s)	T _{MOYE} (m ² /s)	T _{eval} (m ² /s)	Skinfaktor (-)
KA3563G:4	-	(2)	(2)	(2)	(2)	(2)
KA3546G01:2	х	max	5.7 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰	-	-
KA3566G01:2	-	(2)	(2)	(2)	(2)	(2)
KA3572G01:2	-	(2)	(2)	(2)	(2)	(2)
KA3574G01:3	-	(2)	(2)	(2)	(2)	(2)
KA3539G:2	х	~100	2.3 · 10 ⁻⁷	1.5 · 10 ⁻⁷	5.5 · 10 ⁻⁷	-1.5
KA3539G:2	х	max	2.3 · 10 ⁻⁷	1.5 · 10 ⁻⁷	5.4 · 10 ⁻⁷	-1.2

Executive Summary

In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on.

Table 1: Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m ² /s)	Test campaign 2 (-166 days) (m ² /s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5	Test campaign 6
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)		
KA3552G01:2	х	max	9.4 · 10 ⁻⁹	1.6 · 10 ⁻⁹	1.4 · 10 ⁻⁹	5.8 · 10 ⁻⁹		
KA3554G01:2	х	~100	(2)	(2)	(2)	1.0 · 10 ⁻⁷		
KA3554G01:2	х	~200	(2)	(2)	(2)	8.8 · 10 ⁻⁸		
KA3554G01:2	х	max	8.2 · 10 ⁻⁸	8.3 · 10 ⁻⁸	7.8 · 10 ⁻⁸	7.9 · 10 ⁻⁸		
KA3554G02:4	х	~100	(2)	(2)	(2)	1.2 · 10 ⁻⁹		
KA3554G02:4	х	max	1.3 · 10 ⁻⁹	1.2 · 10 ⁻⁹	1.2 · 10 ⁻⁹	1.2 · 10 ⁻⁹		
KA3548A01:3	х	max	1.1 · 10 ⁻⁷	1.0 · 10 ⁻⁷	1.1 · 10 ⁻⁷	9.8 · 10 ⁻⁸		
KA3542G01:3	х	~100	(2)	(2)	(2)	5.8 · 10 ⁻⁸		
KA3542G01:3	х	~200	(2)	(2)	(2)	4.9 · 10 ⁻⁸		
KA3542G01:3	х	max	5.4 · 10 ⁻⁸	4.9 · 10 ⁻⁸	4.7 · 10 ⁻⁸	4.5 · 10 ⁻⁸		
KA3544G01:2	х	(1)	7.8 · 10 ⁻¹⁰	5.9 · 10 ⁻¹⁰	(1)	(1)		
KA3542G02:2	х	max	5.4 · 10 ⁻¹⁰	4.9 · 10 ⁻¹⁰	1.0 · 10 ⁻⁹	9.8 · 10 ⁻¹⁰		
KA3563G:4	-	(2)	1.7 · 10 ⁻⁸	(2)	(2)	(2)		
KA3546G01:2	х	max	6.1 · 10 ⁻¹⁰	6.0 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	5.7 · 10 ⁻¹⁰		
KA3566G01:2	-	(2)	6.8 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3572G01:2	-	(2)	1.9 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3574G01:3	-	(2)	8.7 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3539G:2	х	~100	(2)	(2)	(2)	2.3 · 10 ⁻⁷		
KA3539G:2	х	max	1.9 · 10 ⁻⁷	3.0 · 10 ⁻⁷	2.2 · 10 ⁻⁷	2.3 · 10 ⁻⁷		

Table 2: T_{MOYE} . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m ² /s)	Test campaign 2 (-166 days) (m ² /s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5	Test campaign 6
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)		
KA3552G01:2	х	max	8.8 · 10 ⁻⁹	1.0 · 10 ⁻⁹	8.8 · 10 ⁻¹⁰	3.8 · 10 ⁻⁹		
KA3554G01:2	х	~100	(2)	(2)	(2)	6.5 · 10 ⁻⁸		
KA3554G01:2	х	~200	(2)	(2)	(2)	5.6 · 10 ⁻⁸		
KA3554G01:2	х	max	5.2 · 10 ⁻⁸	5.3 · 10 ⁻⁸	5.0 · 10 ⁻⁸	5.1 · 10 ⁻⁸		
KA3554G02:4	х	~100	(2)	(2)	(2)	8.2 · 10 ⁻¹⁰		
KA3554G02:4	х	max	8.2 · 10 ⁻¹⁰	7.9 · 10 ⁻¹⁰	7.9 · 10 ⁻¹⁰	7.5 · 10 ⁻¹⁰		
KA3548A01:3	х	max	7.1 · 10 ⁻⁸	6.9 · 10 ⁻⁸	6.9 · 10 ⁻⁸	6.6 · 10 ⁻⁸		
KA3542G01:3	х	~100	(2)	(2)	(2)	3.8 · 10 ⁻⁸		
KA3542G01:3	х	~200	(2)	(2)	(2)	3.3 · 10 ⁻⁸		
KA3542G01:3	х	max	3.6 · 10 ⁻⁸	3.2 · 10 ⁻⁸	3.1 · 10 ⁻⁸	3.1 · 10 ⁻⁸		
KA3544G01:2	х	(1)	5.1 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰	(1)	(1)		
KA3542G02:2	х	max	3.5 · 10 ⁻¹⁰	3.1 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	6.3 · 10 ⁻¹⁰		
KA3563G:4	-	(2)	5.6 · 10 ⁻⁹	(2)	(2)	(2)		
KA3546G01:2	х	max	3.9 · 10 ⁻¹⁰	3.9 · 10 ⁻¹⁰	4.1 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰		
KA3566G01:2	-	(2)	4.4 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3572G01:2	-	(2)	1.3 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3574G01:3	-	(2)	6.1 · 10 ⁻¹⁰	(2)	(2)	(2)		
KA3539G:2	х	~100	(2)	(2)	(2)	1.5 · 10 ⁻⁷		
KA3539G:2	х	max	1.3 · 10 ⁻⁷	2.0 · 10 ⁻⁷	1.5 · 10 ⁻⁷	1.5 · 10 ⁻⁷		

Table 3: Transmissivity – transient evaluation. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m ² /s)	Test campaign 2 (-166 days) (m ² /s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5	Test campaign 6
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)		
KA3552G01:2	х	max	-	6.5 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰	2.2 · 10 ⁻⁹		
KA3554G01:2	х	~100	(2)	(2)	(2)	4.9 · 10 ⁻⁷		
KA3554G01:2	х	~200	(2)	(2)	(2)	4.7 · 10 ⁻⁷		
KA3554G01:2	х	max	6.4 · 10 ⁻⁷	5.3 · 10 ⁻⁷	5.1 · 10 ⁻⁷	4.7 · 10 ⁻⁷		
KA3554G02:4	х	~100	(2)	(2)	(2)	-		
KA3554G02:4	х	max	1.1 · 10 ⁻⁸	2.5 · 10 ⁻⁸	-	-		
KA3548A01:3	х	max	8.1 · 10 ⁻⁸	9.8 · 10 ⁻⁸	8.9 · 10 ⁻⁸	8.2 · 10 ⁻⁸		
KA3542G01:3	х	~100	(2)	(2)	(2)	6.9 · 10 ⁻⁸		
KA3542G01:3	х	~200	(2)	(2)	(2)	6.6 · 10 ⁻⁸		
KA3542G01:3	х	max	9.5 · 10 ⁻⁸	9.7 · 10 ⁻⁸	8.3 · 10 ⁻⁸	6.4 · 10 ⁻⁸		
KA3544G01:2	х	(1)	-	-	(1)	(1)		
KA3542G02:2	х	max	2.2 · 10 ⁻¹⁰	1.9 · 10 ⁻¹⁰	5.4 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰		
KA3563G:4	-	(2)	-	(2)	(2)	(2)		
KA3546G01:2	х	max	7.8 · 10 ⁻¹¹	-	-	-		
KA3566G01:2	-	(2)	-	(2)	(2)	(2)		
KA3572G01:2	-	(2)	-	(2)	(2)	(2)		
KA3574G01:3	-	(2)	-	(2)	(2)	(2)		
KA3539G:2	х	~100	(2)	(2)	(2)	5.5 · 10 ⁻⁷		
KA3539G:2	х	max	7.0 · 10 ⁻⁷	8.6 · 10 ⁻⁷	6.2 · 10 ⁻⁷	5.4 · 10 ⁻⁷		

Table 4: Skinfactor. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (-)	Test campaign 2 (-166 days) (-)	Test campaign 3 (-270 days) (-)	Test campaign 4 (-461 days) (-)	Test campaign 5	Test campaign 6
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)		
KA3552G01:2	х	max	-	-1.8	-1.7	-2.5		
KA3554G01:2	х	~100	(2)	(2)	(2)	22		
KA3554G01:2	х	~200	(2)	(2)	(2)	26		
KA3554G01:2	х	max	43	34	34	30		
KA3554G02:4	х	~100	(2)	(2)	(2)	-		
KA3554G02:4	х	max	51	120	-	-		
KA3548A01:3	х	max	-2	-0.3	-1.2	-1.2		
KA3542G01:3	х	~100	(2)	(2)	(2)	1.1		
KA3542G01:3	х	~200	(2)	(2)	(2)	2.1		
KA3542G01:3	х	max	5	6	4.9	2.7		
KA3544G01:2	х	(1)	-	-	(1)	(1)		
KA3542G02:2	х	max	-0.3	-1.3	-1.1	-1.2		
KA3563G:4	-	(2)	-	(2)	(2)	(2)		
KA3546G01:2	х	max	-2	-	-	-		
KA3566G01:2	-	(2)	-	(2)	(2)	(2)		
KA3572G01:2	-	(2)	-	(2)	(2)	(2)		
KA3574G01:3	-	(2)	-	(2)	(2)	(2)		
KA3539G:2	х	~100	(2)	(2)	(2)	-1.5		
KA3539G:2	х	max	1.5	1.6	-0.2	-1.2		

Contents

1	Background	17
1.1	Åspö Hard Rock Laboratory	17
1.2	Prototype repository	18
	1.2.1 General objectives	18
2	Objective	19
3	Scope	21
4	Equipment	22
4.1	Description of equipment	23
4.2	Pressure sensors	24
	Flowmeter equipment	25
4.4	Deformation measurements	26
	4.4.1 Measurement equipment	26
5	Execution	31
	Preparations	31
5.2	Execution of tests/measurements	31
	5.2.1 Test principle	31
	5.2.2 Test procedure	31
	Data handling	32
5.4	Analyses and interpretation	32
	5.4.1 Single hole tests	32
6	Results	35
6.1	Single hole tests	35
	6.1.1 KA3552G01:2, test No 4:1	35
	6.1.2 KA3554G01:2, test No 4:2a	39
	6.1.3 KA3554G01:2, test No 4:2b	43
	6.1.4 KA3554G01:2, test No 4:2c	47
	6.1.5 KA3554G02:4, test No 4:3a	51
	6.1.6 KA3554G02:4, test No 4:3b	55 50
	6.1.7 KA3548A01:3 , test No 4:4 6.1.8 KA3542G01:3 , test No 4:5a	59 62
	6.1.8 KA3542G01:3 , test No 4:5a 6.1.9 KA3542G01:3 , test No 4:5b	63 67
	6.1.10 KA3542G01:3, test No 4:5c	71
	6.1.11 KA3542G02:2, test No 4:7	75
	6.1.12 KA3546G01:2, test No 4:9	79
	6.1.13 KA3539G:2, test No 4:13a	83
	6.1.14 KA3539G:2, test No 4:13b	87
6.2	Deformation measurements	91
Ref	erences	93

List of Tables

Table 3-1	Single hole tests during the campaign in August 2004. ⁽¹⁾ indicates packer system failure, "X" indicates that section is equipped with HM sensors.	21
Table 4-1	Data of the measurement sections (sensors, length, number of fractures etc).	28
Table 6-1	General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01	35
Table 6-2	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	39
Table 6-3	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	43
Table 6-4	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	47
Table 6-5	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	51
Table 6-6	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	55
Table 6-7	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	59
Table 6-8	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	63
Table 6-9	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	67
Table 6-10	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	71
Table 6-11	General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02	75
Table 6-12	General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01	79
Table 6-13	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	83
Table 6-14	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	87

List of Figures

Figure 1-1.	Äspö Hard Rock Laboratory	17
Figure 4-1.	All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.	23
Figure 4-2.	Pressure transducers connections	24
Figure 4-3.	The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system	25
Figure 4-4.	A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.	27
Figure 4-5.	A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.	29
Figure 6-1.	Flow rates during draw down in KA3552G01:2.	36
Figure 6-2.	Flow rates during draw down in KA3554G01:2.	40
Figure 6-3.	Flow rates during draw down in KA3554G01:2.	44
Figure 6-4.	Flow rates during draw down in KA3554G01:2.	48
Figure 6-5.	Flow rates during draw down in KA3554G02:4.	52
Figure 6-6.	Flow rates during draw down in KA3554G02:4.	56
Figure 6-7.	Flow rates during draw down in KA3548A01:3.	60
Figure 6-8.	Flow rate during draw down in KA3542G01:3.	64
Figure 6-9.	Flow rate during draw down in KA3542G01:3.	68
Figure 6-10.	Flow rate during draw down in KA3542G01:3.	72
Figure 6-11.	Flow rate during draw down in KA3542G02:2.	76
Figure 6-12.	Flow rate during draw down in KA3546G01:2.	80
Figure 6-13.	Flow rate during draw down in KA3539G:2.	84
Figure 6-14.	Flow rate during draw down in KA3539G:2.	88

1 Background

1.1 Äspö Hard Rock Laboratory

In order to prepare for the siting and licensing of a spent fuel repository SKB has constructed an underground research laboratory.

In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see Figure 1-1, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m.

The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out.

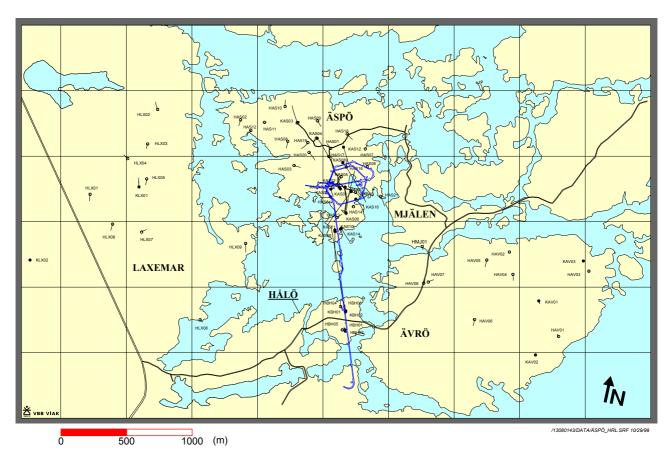


Figure 1-1. Äspö Hard Rock Laboratory

1.2 Prototype repository

The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation "Prototype Repository Test". The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment.

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test.

1.2.1 General objectives

The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity.

The major objectives for the Prototype Repository are:

- To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions.
- To develop, test and demonstrate appropriate engineering standards and quality assurance methods.
- To simulate appropriate parts of the repository design and construction process.

The objective for the operation phase program is:

• To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass

2 Objective

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors, *(Rhén et al, 2005)*.

3 Scope

Single hole tests were done in 8 boreholes of the Prototype Repository tunnel. There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in Table 3-1. The first figure in the test number indicates this being the third single hole test campaign, while the second number indicates the chronological order of the single hole tests. The same numbering of the tests as used during test campaign 1 is used *(Forsmark et al, 2004), (Forsmark, Rhén, 2004a, 2004b, 2004c)*. Therefore no test number 4:8, 4:10, 4:11 and 4:12 exist as no tests were done in those boreholes during this campaign. Also indicated in the table are the sections where Hydro Mechanical (HM) measurements are done. In chapter 6 the results of the tests are presented.

In some of the holes several tests were made. The maximal pressure change (dp_p) was limited to approximately 100 metres, 200 metres and maximum possible pressure change respectively.

Bore hole	Section (m)	HM sectio n	Single hole test no.	Date of test	Start of test	Flow start	Flow stop	Test stop
KA3550G01:2 ⁽¹⁾	5.20-7.30	х	- ⁽¹⁾	-	-	-	-	-
KA3552G01:2	4.35-6.05	х	4:1	2004-08-11	17:00:00	17:20:00	19:20:00	22:30:00
KA3554G01:2	22.60-24.15	х	4:2a	2004-08-17	08:00:00	08:50:00	10:50:00	13:10:00
KA3554G01:2	22.60-24.15	х	4:2b	2004-08-17	13:10:00	13:10:00	15:10:00	16:10:00
KA3554G01:2	22.60-24.15	х	4:2c	2004-08-17	16:10:00	16:10:00	18:10:00	20:30:00
KA3554G02:4	10.50-12.20	х	4:3a	2004-08-12	12:30:00	14:10:00	16:10:00	17:10:00
KA3554G02:4	10.50-12.20	х	4:3b	2004-08-12	17:10:00	17:10:00	19:10:00	20:10:00
KA3548A01:3	8.80-10.75	х	4:4	2004-08-18	06:00:00	07:35:00	08:35:00	10:00:00
KA3542G01:3	18.60-20.30	Х	4:5a	2004-08-16	09:00:00	11:05:00	12:05:00	14:35:00
KA3542G01:3	18.60-20.30	Х	4:5b	2004-08-16	14:00:00	14:35:00	15:35:00	17:35:00
KA3542G01:3	18.60-20.30	х	4:5c	2004-08-16	17:00:00	17:35:00	18:35:00	20:00:00
KA3544G01:2 ⁽¹⁾	8.90-10.65	х	- ⁽¹⁾	-	-	-	-	-
KA3542G02:2	25.60-27.20	х	4:7	2004-08-13	06:00:00	06:50:00	09:50:00	13:50:00
KA3546G01:2	6.75-8.30	х	4:9	2004-08-12	08:00:00	09:05:00	12:05:00	15:05:00
KA3539G:2	15.85-17.6	Х	4:13a	2004-08-18	09:00:00	10:00:00	11:00:00	12:30:00
KA3539G:2	15.85-17.6	Х	4:13b	2004-08-18	12:30:00	12:30:00	13:30:00	15:30:00

Table 3-1 Single hole tests during the campaign in August 2004. ⁽¹⁾ indicates packer system failure, "X" indicates that section is equipped with HM sensors.

4 Equipment

4.1 Description of equipment

A large number of boreholes were instrumented with one or several packers. In all packed-off sections, the water pressure will be measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency (Figure 4-1). The maximum scan frequency is every 3rd second. During periods with no hydraulic tests, preliminary the sampling (storing a value in the data base) frequency will be every 2nd hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to 3rd second.

Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.

4.2 Pressure sensors

The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, see Figure 4-2.

The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 - 50 bar (absolute).

According to the manufacturer the uncertainty for these transducers is \pm -0.2 % (type500) and \pm -0.08 % (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max. 0.05 % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every two seconds. If the change since the latest stored value exceeds a "change value" of approximately 2 kPa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes.

Figure 4-2. Pressure transducers connections

4.3 Flowmeter equipment

A new kind of flowmeter, see Figure 4-3, was used in order to obtain continously flow measurements during the tests. The equipment system used was originally developed by Micro Motion, Inc. in USA, and is comprised of a sensor and a signal processing transmitter. It is called a Coriolis mass flowmeter and measures mass flow directly. The volume flow can be obtained when knowing the temperature, the pressure and finally the density of the fluid (water).

The fluid enters the sensor and travels through the sensor's flow tubes, which vibrate and twist. The twisting characteristic is called the Coriolis effect. According to Newton's Second Law of Motion, the amount of sensor tube twist is directly proportional to the mass flow rate of the fluid flowing through the tube.

The equipment unit consist of two flowmeters with different measurement ranges. The measurement range for the large flowmeter is 0 - appr. 36 kg/min and for the small flowmeter is 0 - approx. 1.8 kg/min.

Figure 4-3. The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system

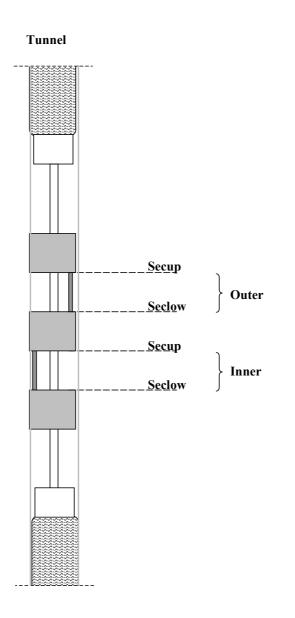
4.4 Deformation measurements

During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will close, (*Rhen et al, 2005*).

It is of great interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment.

In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered.

The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures.


The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Hydro tests will be performed in the same sections as the mechanical measurements are made, see Table 3-1.

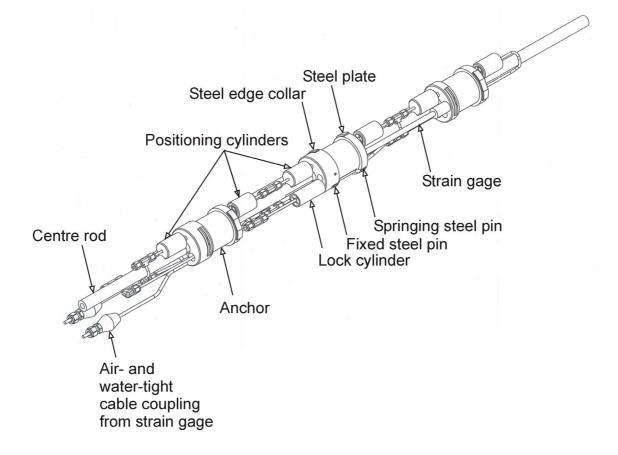
Displacement measurements will be made continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. Most tests will be made during the first years of operation when the largest displacements are expected to be measured.

4.4.1 Measurement equipment

In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature a measurement equipment has been developed.

The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors, see Figure 4-4 and 4-5. The temperature is also measured in each sensor by a thermistor.

Figure 4-4. A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.


The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock.

Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two-six fractures, see Table 4-1.

Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections.

Label	Cable mark	Sensor S/N	Position	Secup	Seclow	Section length (m)	Number of fractures
KA3539G-2-1	HRA 1121	3511	Inner	16.77	16.97	0.20	2
KA3539G-2-2	HRA 1122	3510	Outer	16.47	16.67	0.20	0
KA3542G01-3-1	HRA 1231	3513	Inner	19.47	19.67	0.20	0
KA3542G01-3-2	HRA 1232	3512	Outer	19.17	19.37	0.20	1
KA3542G02-2-1	HRA 1321	3515	Inner	26.50	26.70	0.20	1
KA3542G02-2-2	HRA 1322	3514	Outer	26.20	26.40	0.20	0
KA3544G01-2-1	HRA 1621	3509	Inner	9.82	10.02	0.20	1
KA3544G01-2-2	HRA 1622	3508	Outer	9.52	9.72	0.20	0
KA3546G01-2-1	HRA 1721	3517	Inner	7.67	7.87	0.20	1
KA3546G01-2-2	HRA 1722	3516	Outer	7.37	7.57	0.20	0
KA3548A01-3-1	HRA 1831	3526	Inner	9.70	10.15	0.45	2
KA3548A01-3-2	HRA 1832	3518	Outer	9.40	9.60	0.20	0
KA3550G01-2-1	HRA 2121	3527	Inner	6.10	6.70	0.60	6
KA3550G01-2-2	HRA 2122	3519	Outer	5.80	6.00	0.20	0
KA3552G01-2-1	HRA 2521	3521	Inner	5.25	5.45	0.20	0
KA3552G01-2-2	HRA 2522	3520	Outer	4.95	5.15	0.20	2
KA3554G01-2-1	HRA 2821	3525	Inner	23.54	23.80	0.26	2
KA3554G01-2-2	HRA 2822	3522	Outer	23.24	23.44	0.20	0
KA3554G02-4-1	HRA 2941	3524	Inner	11.40	11.60	0.20	0
KA3554G02-4-2	HRA 2942	3523	Outer	11.10	11.30	0.20	1
KG0010B01-1-1	-	3238	Inner	3.66	3.86	0.20	-
KG0010B01-1-2	-	3507	Outer	3.36	3.56	0.20	-

 Table 4-1
 Data of the measurement sections (sensors, length, number of fractures etc).

Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.

5 Execution

5.1 Preparations

Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes.

Preparations also include checking of equipment to be used in the tests. The equipment included

- measuring glasses of various sizes
- synchronizing watches with the HMS system (only normal time)
- protocols for flow measurements
- water sampling bottles
- hand calculator
- flow rate measurement equipment with Micro Motion flowmeter system

5.2 Execution of tests/measurements

5.2.1 Test principle

The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section.

5.2.2 Test procedure

The following measurement cycle was used for manual flow measurements:

- Initialising of the HMS system 30 minutes before flow start with logger frequency 5 minutes
- A couple of minutes before flow start and until 5 minutes after flow start the highest logging frequency of 3 seconds was used. Thereafter the logging frequency was 30 seconds, which was used until 30 minutes after flow start. Then a logging frequency of 5 minutes was used
- From shortly before flow stop until 5 minutes after flow stop the highest logging frequency of 2 seconds were used. Thereafter the logging frequency was 30 seconds which was used until 30 minutes after flow start and a logging frequency of 5 minutes was used
- The flow was measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop
- The valve shutting was done as swiftly as possible

5.3 Data handling

The test operator was keeping a diary during the test period. Data from the hydro tests includes:

- daily logs in accordance with Äspö Hard Rock Laboratory routines
- Protocols from flow measurements

The test coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling.

5.4 Analyses and interpretation

5.4.1 Single hole tests

When plotting the data, three different kinds of graphs can be produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change, Δp , is plotted versus the equivalent time, dt_e, in minutes. The equivalent time, dt_e, is defined as

$$dt_e = (t_p \cdot dt) / (t_p + dt)$$
 where

$t_p =$	the flowing time of the borehole before shutting the valve
dt =	the time after shutting the valve

The pressure change $\triangle p$ is calculated as

$\Delta \mathbf{p}$	=	p(dt) - p(tp)
p(dt)	=	measured pressure after shutting the valve
p(tp)	=	measured pressure just before shutting the valve

The third plot is made in a logarithmic diagram, where the change of pressure, Δp , is plotted versus the equivalent time, dt_e , in minutes. The derivative of the pressure is also plotted in this diagram.

The pressure normally is signed using the p and a change of pressure using a Δp . In the diagrams the pressure can be expressed in bar, kPa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and Δs for the difference of pressure over one decade in a logarithmic diagram. The s or Δs values shall be expressed in metres before used in the formulas.

Hydrogeologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests). The improvement in hydrogeologic test analysis is attributed

to the sensitivity of the derivative response to small variations in the rate of pressure change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to:

- diagnostically determine formation response (homogeneous vs. heterogeneous) and boundary conditions (impermeable or constant head) that are evident during the test,
- determine when radial flow conditions are established and, therefore, when straight-line solution analysis of draw down data is valid, and
- assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects.

The software DERIV is used to produce the derivative. DERIV is a software for converting slug and constant-rate discharge test data and type curves to derivative format. The software has features that permit the smoothing of noisy test data, accounts for pressure derivative end-effects, and can be used to convert slug test data to equivalent constant-rate test responses.

Two different geohydrological parameters of the borehole can easily be evaluated. These parameters are:

- the specific capacity, Q/s (m²/s)
- the transmissivity, T (m^2/s)

The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test.

To evaluate the transmissivity, T, the following methodology should be used:

The flow regime can be estimated from the logarithmic plot. In most cases the flow can be said to be radial to the borehole approximately 1.0-1.5 decades after the time the curve has left the 1:1 curve. The 1:1 curve indicates the well bore storage, WBS. The transmissivity is then calculated with Jacob's semi logarithmic approximation of Theis well function,

 $T = 0.183 \cdot Q / \Delta s$

- Q = the average flow rate before shutting the valve (m³/s)
- $\Delta s =$ the pressure change in metres during a decade along <u>the straight line</u> (radial flow period) in the semi logarithmic diagram (m).

Sometimes both the logarithmic and the semi logarithmic diagrams indicate a more complicated flow regime than described above (WBS, transition, radial flow) and in these cases it is necessary to decide what part of the curve and what evaluation method that is appropriate for estimating the hydraulic properties.

The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity

$$T_{Moye} = Q \cdot (1 + \ln(L/(2 \cdot r_w))) / (2 \cdot \pi \cdot \Delta h) \text{ where }$$

$$\Delta \mathbf{h} = (\mathbf{p}_0 - \mathbf{p}_p) / (\boldsymbol{\rho}_w \cdot \mathbf{g})$$
[m]

L = test section length [m]

 p_0 = absolute pressure in test section before start of flow period [Pa]

 p_p = absolute pressure in test section before stop of flow period [Pa]

$$\rho_w$$
 = water density
[kg/m³]

g = acceleration of gravity [m/s²]

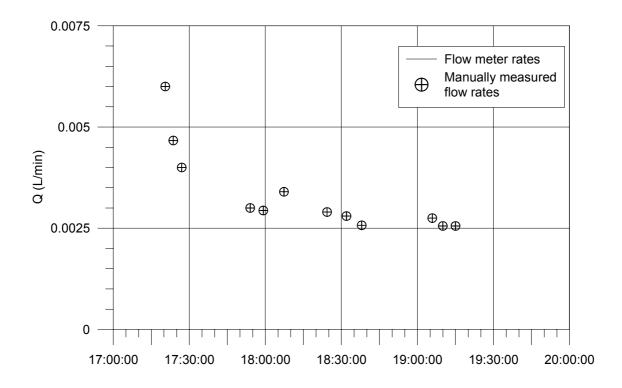
6 Results

6.1 Single hole tests

6.1.1 KA3552G01:2 , test No 4:1

General test data for the pressure build-up test in the interval 4.35-6.05 m of borehole KA3552G01 are presented in Table 6-1.

Table 6-1 General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01


General test data							
Borehole section	KA3552G	KA3552G01:2					
Test No	4:1	4:1					
Field crew	A. Blom (S	SWECO VIAK)					
Test equipment system	HMS						
General comment	Single hol	e test (dp _p = max)					
	Nomencl ature	Unit	Value				
Test section- secup	Secup	m	4.35				
Test section- seclow	Seclow	m	6.05				
Test section length	Lw	m	1.70				
Test section diameter	2·r _w	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20040811 17:00:00				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20040811 17:20:00				
Stop of flow period		yymmdd hh:mm:ss	20040811 19:20:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20040202 22:30:00				
Total flow time	tp	min	120				
Total recovery time	t _F	min	190				

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	433.3	
Absolute pressure in test section before stop of flow	p _p	kPa	101.8	
Absolute pressure in test section at stop of recovery period	Pf	kPa	418.7	
Maximal pressure change during flow period	dpp	kPa	331.5	

Flow data

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.91 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

Figure 6-1. Flow rates during draw down in KA3552G01:2.

Comments to the test

The test was successful in regard of pressure responses, but the recovery was too short for a final recovery.

Interpreted flow regimes

0 - 1.5 minutes	Well Bore Storage (WBS)
1.5 - 6 minutes	Transition period
6-8 minutes	Radial flow period
8 - 80 minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 4.35-6.05 m in KA3552G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	mmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:1		
Borehole ID:	KA3552G01	Test start:	2004-08-11	17:00	
Test section (m):	4.35-6.05	Responsible for test performance:			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:			
Linear plot Head		Flow period		Recovery perio	d
-410		Indata		Indata	
		p ₀ (kPa)	433.3		
-420		p _i (kPa)			
1430		p _p (kPa)	101.8	p _F (kPa)	418.7
		Q _p (m ³ /s)	$4.33\cdot 10^{\text{-8}}$		
<u> </u>		tp (min)	120	t _F (min)	190
-450		S*	1 · 10 ⁻⁶	S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
12:00:00 15:00:00 18:00	0:00 21:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2

Lin-Log plot		Results		Results	
		Q/s (m²/s)	5.8 · 10 ⁻⁹	Flow regime:	Radial
0		T _{Moye} (m ² /s)	3.8 · 10 ⁻⁹	dt _{e1} (min)	6
		Flow regime:		dt _{e2} (min)	8
		dt ₁ (min)		T (m ² /s)	$2.2 \cdot 10^{-9}$
Le contra de la co		dt ₂ (min)		S (-)	
		T (m ² /s)		K _s (m/s)	
Kec		S (-)		S _s (1/m)	
30		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
0.1 1 10 100		C (m³/Pa)		ξ(-)	-2.5
Time (min)		C _D (-)			
		ξ(-)			
Log-Log plot incl. derivative- recovery period	d	Interpreted form	nation and we	Il parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
100		dt ₁ (min)	6	C _D (-)	
		dt ₂ (min)	8	ξ(-)	-2.5
		T _T (m ² /s)	2.2 · 10 ⁻⁹		
		S (-)			
OVER 1		K _s (m/s)			
		S _s (1/m)			
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1000			essful in regard o as too short for a t	

6.1.2 KA3554G01:2, test No 4:2a

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-2.

General test data							
Borehole section	KA3554G	KA3554G01:2					
Test No	4:2a	4:2a					
Field crew	A. Blom (S	SWECO VIAK)					
Test equipment system	HMS						
General comment	Single hol	e test (dp _p = approx.	100 m)				
	Nomencl ature	Unit	Value				
Test section- secup	Secup	m	22.60				
Test section- seclow	Seclow	m	24.15				
Test section length	L _w	m	1.55				
Test section diameter	2·r _w	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20040817 08:00:00				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20040817 08:50:00				
Stop of flow period		yymmdd hh:mm:ss	20040817 10:50:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20040817 13:10:00				
Total flow time	tp	min	120				
Total recovery time	t _F	min	140				

Table 6-2 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3642.5	
Absolute pressure in test section before stop of flow	p _p	kPa	2360.8	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3636.2	
Maximal pressure change during flow period	dpp	kPa	1281.7	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.30 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	$1.34\cdot 10^{\text{-5}}$
Total volume discharged during flow period	V _p	m ³	-

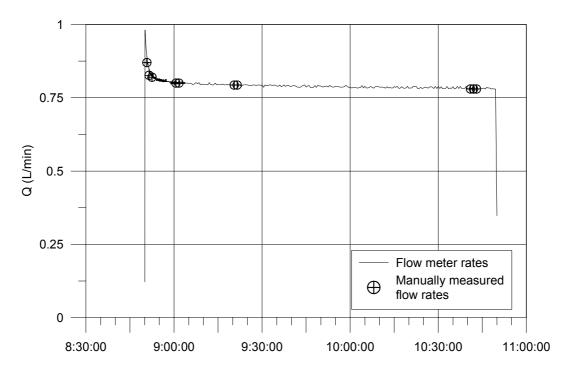


Figure 6-2. Flow rates during draw down in KA3554G01:2.

Comments to the test

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3 minutes	Well Bore Storage (WBS)
0.3 - 9 minutes	Transition period
9 – 14 minutes	Radial flow period
14 – 35 minutes	Transition period
35 -	Possible larger scale radial flow

Calculated parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	nmary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ		4:2a			
Borehole ID:	KA3554G01	Test start:	2004-08-1	7 08:00		
Test section (m):	22.60-24.15	Responsible for test performance:	SWECO V A. Blom	IAK AB		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO V T. Forsma			
Linear plot Head		Flow period		Recovery period		
0		Indata		Indata		
		p₀ (kPa)	3642.5			
-100		p _i (kPa)				
		p _p (kPa)	2360.8	p _F (kPa)	3636.2	
-200		Q _p (m ³ /s)	1.3 · 10 ⁻⁵			
en -300		tp (min)	120	t _F (min)	140	
-400		S*		S*	1 · 10 ⁻⁶	
		EC _w (mS/m)				
-500		Te _w (gr C)				
6:00:00 12:00:00	18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		Q/s (m²/s)	1.0 · 10 ⁻⁷	Flow regime:	Radial	
0		T _{Moye} (m ² /s)	6.5 · 10 ⁻⁸	dt _{e1} (min)	9	
		Flow regime:		dt _{e2} (min)	14	
ε 50 · ·		dt ₁ (min)		T (m ² /s)	4.9 10 ⁻⁷	
		dt ₂ (min)		S (-)		
		T (m ² /s)		K _s (m/s)		
й 100		S (-)		S _s (1/m)		
		K _s (m/s)		C (m³/Pa)		
		S _s (1/m)		C _D (-)		
150 	0 100 1000	C (m ³ /Pa)		ξ(-)	22	
Time	(min)	C _D (-)				
		ξ(-)				
Log-Log plot incl. derivative-	recovery period	Interpreted forma	tion and w	ell parameters.		

Log	g-Log plot incl. derivative- recovery period	Interpreted forma	tion and we	II parameters.	
		Flow regime:	Radial	C (m³/Pa)	
	1000	dt ₁ (min)	9	C _D (-)	
		dt ₂ (min)	14	ξ(-)	22
-		T⊤ (m²/s)	4.9 · 10 ⁻⁷		
y (m		S (-)			
over		K _s (m/s)			
Rec		S _s (1/m)			
	$\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{100}$ $\frac{1000}{1000}$ Time (min)	Comments: The te response.	est was succ	essful in regard to p	ressure

6.1.3 KA3554G01:2 , test No 4:2b

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-3.

General test data					
Borehole section	KA3554G	KA3554G01:2			
Test No	4:2b				
Field crew	A. Blom (S	SWECO VIAK)			
Test equipment system	HMS				
General comment	Single hole	e test (dp _p = approx. 2	200 m)		
	Nomencl ature				
Test section- secup	Secup	m	22.60		
Test section- seclow	Seclow	m	24.15		
Test section length	Lw	m	1.55		
Test section diameter	2·r _w	2·r _w mm 76			
Test start (start of pressure registration)		yymmdd hh:mm	20040817 13:10:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040817 13:10:00		
Stop of flow period		yymmdd hh:mm:ss 20040817 15:10			
Test stop (stop of pressure registration)		yymmdd hh:mm 20040817 16:10:0			
Total flow time	tp	min	120		
Total recovery time	t _F	min	60		

Table 6-3 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3636.2	
Absolute pressure in test section before stop of flow	p _p	kPa	1541.1	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3614.5	
Maximal pressure change during flow period	dpp	kPa	2095.1	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.85 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.95 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	-

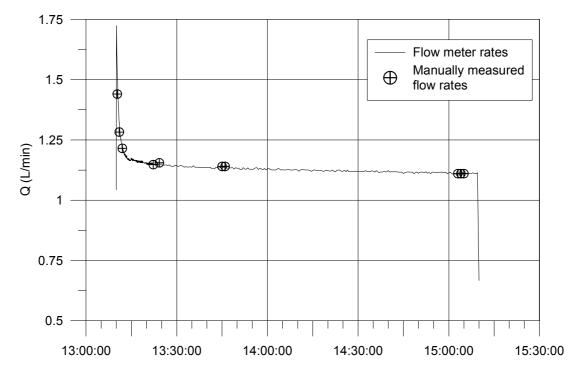
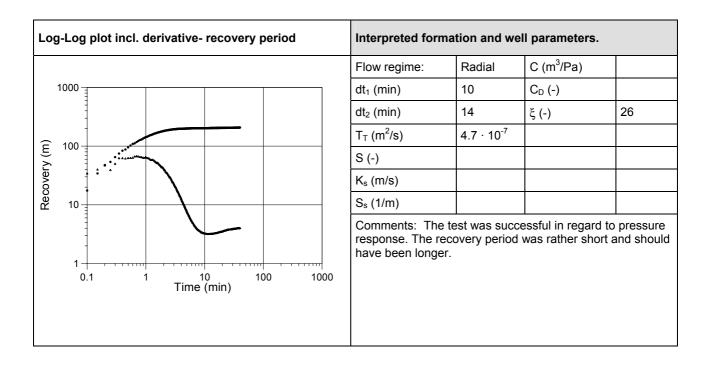


Figure 6-3. Flow rates during draw down in KA3554G01:2.

Comments to the test

The test was successful in regard to pressure response.


Interpreted flow regimes

0 - 0.3 minutes	Well Bore Storage (WBS)
0.3 – 10 minutes	Transition period
10 - 14 minutes	Radial flow period
14 – minutes	Transition period

Calculated parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:2b		
Borehole ID:	KA3554G01	Test start:	2004-08-17	13:10	
Test section (m):	22.60-24.15	Responsible for test performance:	SWECO VI A. Blom	AK AB	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO VI T. Forsmarl		
Linear plot Head		Flow period		Recovery perio	od
0		Indata		Indata	
		p₀ (kPa)	3636.2		
-100		p _i (kPa)			
		p _p (kPa)	1541.1	p _F (kPa)	3614.5
Time -		Q _p (m ³ /s)	$1.85\cdot 10^{\text{-}5}$		
-300		tp (min)	120	t _F (min)	60
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-500	$+ \cdot \cdot + \cdot $	Te _w (gr C)			
6:00:00 12:00:00	18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	8.8 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	5.6 · 10 ⁻⁸	dt _{e1} (min)	10
50		Flow regime:		dt _{e2} (min)	14
		dt ₁ (min)		T (m ² /s)	4.7 · 10 ⁻⁷
E 100 $\frac{1}{2}$ $\frac{1}{2}$		dt ₂ (min)		S (-)	
L) 100		T (m ² /s)		K _s (m/s)	
		S (-)		S _s (1/m)	
200		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
250 	10 100 1000	C (m³/Pa)		ξ(-)	26
Time	10 100 1000 e (min)	C _D (-)			
		ξ(-)			

6.1.4 KA3554G01:2 , test No 4:2c

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-4.

General test data					
Borehole section	KA3554G	KA3554G01:2			
Test No	4:2c				
Field crew	A. Blom (S	SWECO VIAK)			
Test equipment system	HMS				
General comment	Single hol	e test (dp _p = max)			
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	22.60		
Test section- seclow	Seclow	m	24.15		
Test section length	L _w	m	1.55		
Test section diameter	2·r _w	2·r _w mm 76			
Test start (start of pressure registration)		yymmdd hh:mm	20040817 16:10:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040817 16:10:00		
Stop of flow period		yymmdd hh:mm:ss	20040817 18:10:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040817 20:30:00		
Total flow time	tp	min	120		
Total recovery time	t _F	min	140		

Table 6-4 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3614.5	
Absolute pressure in test section before stop of flow	p _p	kPa	542.9	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3631.5	
Maximal pressure change during flow period	dpp	kPa	3071.6	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	2.43 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.70 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	-

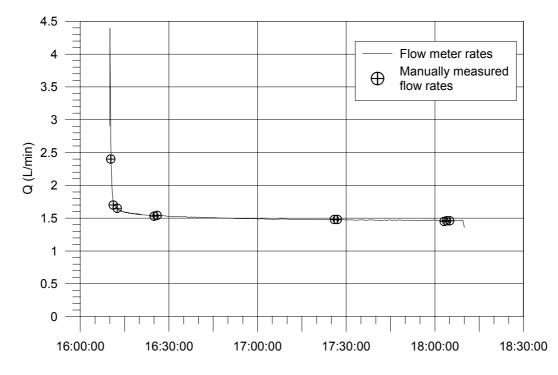


Figure 6-4. Flow rates during draw down in KA3554G01:2.

Comments to the test

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3 minutes	Well Bore Storage (WBS)
0.3 – 10 minutes	Transition period
10 – 14 minutes	Radial flow period
14 – 40 minutes	Transition period
40 -	Possible larger scale radial flow

Calculated parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project: F	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:2c		
Borehole ID:	KA3554G01	Test start:	2004-08-17	16:10	
Test section (m): 2	22.60-24.15	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	ĸ	
Linear plot Head		Flow period		Recovery perio	bd
0		Indata		Indata	
		p ₀ (kPa)	3614.5		
		p _i (kPa)			
Image: 200 Image:		p _p (kPa)	542.9	p _F (kPa)	3631.5
Image: Second		Q _p (m ³ /s)	$2.43\cdot 10^{\text{-5}}$		
≝ -300		tp (min)	120	t _F (min)	140
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-500 + + + + +	18:00:00 0:00:00	Te _w (gr C)			
0.00.00 12.00.00	10.00.00 0.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	7.9 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	5.1 · 10 ⁻⁸	dt _{e1} (min)	10
50		Flow regime:		dt _{e2} (min)	14
		dt ₁ (min)		T (m ² /s)	4.7 · 10 ⁻⁷
$\stackrel{L}{>}$ 150		dt ₂ (min)		S (-)	
E 100		T (m²/s)		K _s (m/s)	
ar 250		S (-)		S _s (1/m)	
300		K _s (m/s)		C (m³/Pa)	
		S _s (1/m)		C _D (-)	
350 0.1 1 10		C (m ³ /Pa)		ξ(-)	30
Time (mi	n)	C _D (-)			
		ξ (-)			

Log	g-Log plot incl. derivative- recovery period	Interpreted forma	ation and we	ll parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
	1000	dt ₁ (min)	10	C _D (-)	
		dt ₂ (min)	14	ξ(-)	30
		T _T (m ² /s)	4.9 · 10 ⁻⁷		
y (m		S (-)			
over		K _s (m/s)			
Rec		S _s (1/m)			
	1 0.1 1 1 0.1 1 1 1 10 100 100 1000 Time (min)	Comments: The tresponse.	est was succe	essful in regard to	pressure

6.1.5 KA3554G02:4 , test No 4:3a

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-5.

General test data					
Borehole section	KA3554G	KA3554G02:4			
Test No	4:3a				
Field crew	A. Blom (S	SWECO VIAK)			
Test equipment system	HMS				
General comment	Single hole	e test (dp _p = approx. 1	00 m)		
	Nomencl ature				
Test section- secup	Secup	m	10.50		
Test section- seclow	Seclow	m	12.20		
Test section length	Lw	m	1.70		
Test section diameter	2∙r _w	2·r _w mm 76			
Test start (start of pressure registration)		yymmdd hh:mm	20040812 12:30:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040812 14:10:00		
Stop of flow period		yymmdd hh:mm:ss	20040812 16:10:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040812 17:10:00		
Total flow time	tp	min	120		
Total recovery time	t _F	min	60		

Table 6-5 General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1990.6	
Absolute pressure in test section before stop of flow	p _p	kPa	973.1	
Absolute pressure in test section at stop of recovery period	Pf	kPa	2004.5	
Maximal pressure change during flow period	dpp	kPa	1017.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.27 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.28 · 10 ⁻⁷
Total volume discharged during flow period	Vp	m ³	-

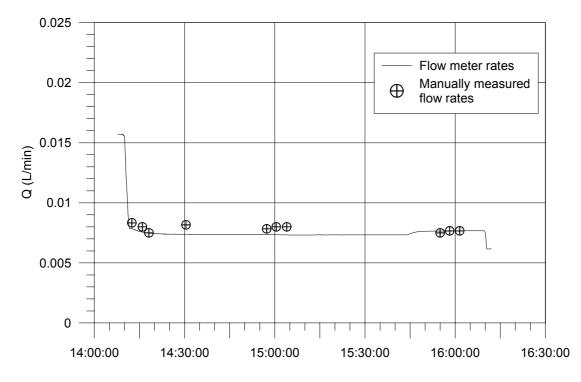


Figure 6-5. Flow rates during draw down in KA3554G02:4.

Comments to the test

The test was successful in regard to pressure response, but no radial flow occurred.

Interpreted flow regimes

- 0 1 minutesWell Bore Storage (WBS)
- 1 minutes Transition period

Calculated parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:3a		
Borehole ID:	KA3554G02	Test start:	2004-08-12	12:30	
Test section (m):	10.50-12.20	Responsible for test performance:	SWECO VI A. Blom	AK AB	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO VI T. Forsmark		
Linear plot Head	·	Flow period		Recovery perio	od
-240		Indata		Indata	
-280		p₀ (kPa)	1990.6		
		p _i (kPa)			
		p _p (kPa)	973.1	p _F (kPa)	2004.5
		Q _p (m ³ /s)	1.27 · 10 ⁻⁷		
₽° -400		tp (min)	120	t _F (min)	60
-440		S*		S*	1 · 10 ⁻⁶
-++0		EC _w (mS/m)			
		Te _w (gr C)			
12:00:00 15:00:00 18:00	1:00 21:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.2 · 10 ⁻⁹	Flow regime:	-
0		T _{Moye} (m ² /s)	8.2 · 10 ⁻¹⁰	dt _{e1} (min)	
		Flow regime:		dt _{e2} (min)	
- 4.		dt ₁ (min)		T (m ² /s)	
		dt ₂ (min)		S (-)	
		T (m ² /s)		K _s (m/s)	
80 80		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
120) 100 1000	C (m³/Pa)		ξ(-)	
0.1 1 10 Time (min)	C _D (-)			
		ξ(-)			

Log	g-Log plot incl. derivative- recovery period	Interpreted formation and well parameters.			
		Flow regime: -	C (m ³ /Pa)		
	KA3554G02:4	dt ₁ (min)	C _D (-)		
	1000	dt ₂ (min)	ξ(-)		
		T _T (m ² /s)			
Ê	100	S (-)			
Recovery (m)		K _s (m/s)			
SCOV		S _s (1/m)			
Ř	10	Comments: No radial	flow phase occurred during the test.		

6.1.6 KA3554G02:4 , test No 4:3b

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-6.

General test data					
Borehole section	KA3554G	02:4			
Test No	4:3b				
Field crew	A. Blom (S	A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single hol	Single hole test (dpp = max)			
	Nomencl ature				
Test section- secup	Secup	m	10.50		
Test section- seclow	Seclow	m	12.20		
Test section length	Lw	L _w m 1.70			
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040812 17:10:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040812 17:10:00		
Stop of flow period		yymmdd hh:mm:ss	20040812 19:10:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040812 20:10:00		
Total flow time	tp	min	120		
Total recovery time	t _F	min	60		

Table 6-6 General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2004.5	
Absolute pressure in test section before stop of flow	p _p	kPa	96.0	
Absolute pressure in test section at stop of recovery period	Pf	kPa	2003.2	
Maximal pressure change during flow period	dpp	kPa	1908.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	2.20 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.22 · 10 ⁻⁷
Total volume discharged during flow period	Vp	m ³	-

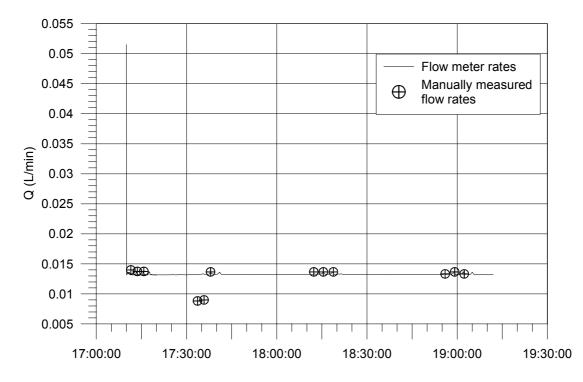


Figure 6-6. Flow rates during draw down in KA3554G02:4.

Comments to the test

The test was successful in regard to pressure response, but no radial flow occurred.

Interpreted flow regimes

- 0 1 minutesWell Bore Storage (WBS)
- 1 minutes Transition period

Calculated parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:3b		
Borehole ID:	KA3554G02	Test start:	2004-08-12	17:10	
Test section (m):	10.50-12.20	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076		SWECO VI	AK AB	
		test evaluation:	T. Forsmark	K	
Linear plot Head		Flow period		Recovery perio	od
-240		Indata		Indata	
-280		p₀ (kPa)	2004.5		
		p _i (kPa)			
se		p _p (kPa)	96.0	p _F (kPa)	2003.3
		Q _p (m ³ /s)	$2.20\cdot 10^{7}$		
<u>-400</u>		tp (min)	120	t _F (min)	60
-440		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
12:00:00 15:00:00 18:00:0	00 21:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	1.2 · 10 ⁻⁹	Flow regime:	-
0		T _{Moye} (m ² /s)	7.5 · 10 ⁻¹⁰	dt _{e1} (min)	
		Flow regime:		dt _{e2} (min)	
- 14		dt₁ (min)		T (m²/s)	
		dt ₂ (min)		S (-)	
E 80 120 120		T (m²/s)		K _s (m/s)	
		S (-)		S _s (1/m)	
160		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
200		C (m ³ /Pa)		ξ(-)	
0.1 1 10 Time (m	nin)	C _D (-)			
		ξ (-)			

Log	g-Log plot incl. derivative- recovery period	Interpreted formation and well parameters.			
		Flow regime:	-	C (m³/Pa)	
	KA3554G02:4	dt ₁ (min)		C _D (-)	
	1000	dt ₂ (min)		ξ (-)	
		T _⊤ (m²/s)			
ε.	100	S (-)			
Recovery (m)		K _s (m/s)			
ecov		S _s (1/m)			
Ÿ	10 1 1 0.1 1 1 10 10 100 100 1		radial flow	phase occurred du	ring the test.

6.1.7 KA3548A01:3, test No 4:4

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-7.

General test data					
Borehole section	KA3548A0	01:3			
Test No	4:4	4:4			
Field crew	A. Blom (S	A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single hol	Single hole test (dpp = max)			
	Nomencl ature				
Test section- secup	Secup	m	8.80		
Test section- seclow	Seclow	m	10.75		
Test section length	L _w	m	1.95		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040818 06:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040818 07:35:00		
Stop of flow period		yymmdd hh:mm:ss	20040818 08:35:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040203 10:00:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	85		

Table 6-7 General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3390.0	
Absolute pressure in test section before stop of flow	p _p	kPa	576.0	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3297.8	
Maximal pressure change during flow period	dpp	kPa	2814.0	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	2.75 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	3.15 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m³	-

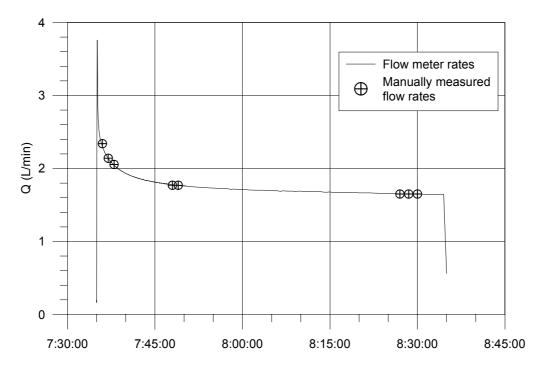


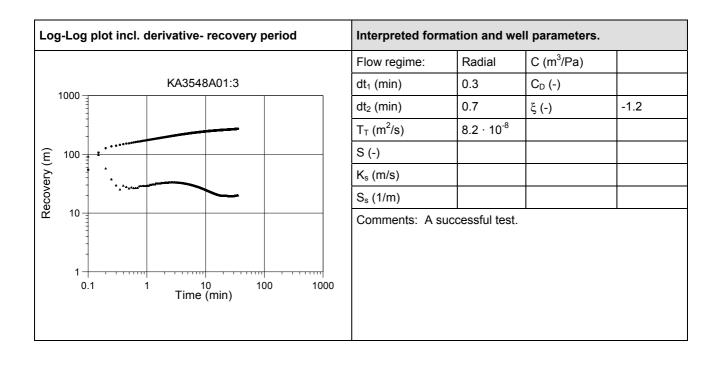
Figure 6-7. Flow rates during draw down in KA3548A01:3.

Comments to the test

The test was successful in regard to pressure response.

Interpreted flow regimes

Well Bore Storage (WBS)
Transition period
Radial flow period
Transition period
Spherical flow period
Transition period
Radial flow period
Transition period


Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:4		
Borehole ID:	KA3548A01	Test start:	2004-08-18	06:00	
Test section (m):	8.80-10.75	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	κ	
₋inear plot Head		Flow period		Recovery perio	bd
-100		Indata		Indata	
		p₀ (kPa)	3390.0		
		p _i (kPa)			
<u>g</u> -200		p _p (kPa)	576.0	p _F (kPa)	3297.8
		Q _p (m ³ /s)	$2.75\cdot 10^{\text{-5}}$		
-300		tp (min)	60	t _F (min)	85
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
		Derivative fact.		Derivative fact.	0.2
.in-Log plot		Results		Results	
		Q/s (m²/s)	9.8 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	6.6 · 10 ⁻⁸	dt _{e1} (min)	0.3
- - -		Flow regime:		dt _{e2} (min)	0.7
		dt ₁ (min)		T (m ² /s)	8.2 · 10 ⁻⁸
		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
200		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
300) 100 1000	C (m³/Pa)		ξ(-)	-1.2
0.1 1 10 Time (min)	C _D (-)			
		ξ(-)			

6.1.8 KA3542G01:3, test No 4:5a

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-8.

General test data					
Borehole section	KA3542G	KA3542G01:3			
Test No	4:5a	4:5a			
Field crew	A. Blom (S	A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single hole	e test (dp _p = approx. 1	00 m)		
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	18.60		
Test section- seclow	Seclow	m	20.30		
Test section length	Lw	m	1.70		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040816 09:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040816 11:05:00		
Stop of flow period		yymmdd hh:mm:ss	20040816 12:05:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040203 14:35:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	150		

Table 6-8 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3279.0	
Absolute pressure in test section before stop of flow	p _p	kPa	1849.0	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3270.3	
Maximal pressure change during flow period	dpp	kPa	1430.0	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	8.25 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	8.48 · 10 ⁻⁶
Total volume discharged during flow period	V _p	m ³	-

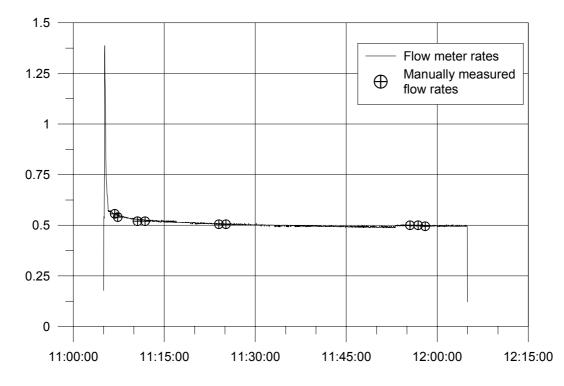


Figure 6-8. Flow rate during draw down in KA3542G01:3.

Comments to the test

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.2 minutes	Well Bore Storage (WBS)
0.2 - 2 minutes	Transition period
2-3 minutes	Spherical flow period
3-4 minutes	Transition period
4 – 7 minutes	Possible radial flow
7-25 minutes	Transition period
25 – minutes	Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:5a		
Borehole ID:	KA3542G01	Test start:	2004-08-16	09:00	
Test section (m):	18.60-20.30	Responsible for test performance:	SWECO VI A. Blom	AK AB	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO VI T. Forsmar		
Linear plot Head		Flow period		Recovery period	
0		Indata		Indata	
		p ₀ (kPa)	3279.0		
		p _i (kPa)			
<u> <u> </u></u>		p _p (kPa)	1849.0	p _F (kPa)	3270.3
(amiliar and a second s		Q _p (m ³ /s)	$8.25\cdot 10^{\text{-}6}$		
[™] -300		tp (min)	60	t _F (min)	150
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
6:00:00 12:00:00	18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	5.8 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	3.8 · 10 ⁻⁸	dt _{e1} (min)	25
		Flow regime:		dt _{e2} (min)	40
		dt ₁ (min)		T (m ² /s)	6.9 · 10 ⁻⁸
ocery (m)		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
Rec		S (-)		S _s (1/m)	
120		K _s (m/s)		C (m³/Pa)	
		S _s (1/m)		C _D (-)	
160 		C (m³/Pa)		ξ(-)	1.1
Time (n	in)	C _D (-)			
		ξ(-)			

KA354	2G01:3	Flow regime:	Radial	C (m ³ /Pa)	
KA354	2G01:3	dt (min)		· · · /	
		dt ₁ (min)	25	C _D (-)	
		dt ₂ (min)	40	ξ(-)	1.1
		T _⊤ (m ² /s)	6.9 · 10 ⁻⁸		
		S (-)			
• • • • • • • • • • • • • • • • • • •		K _s (m/s)			
		S _s (1/m)			
	10 100 • (min)		successful test.		
	1 Time	1 10 100 Time (min)	K _s (m/s) S _s (1/m) Comments: A	$\begin{array}{c c} & \\ \hline \\$	K _s (m/s) S _s (1/m) Comments: A successful test.

6.1.9 KA3542G01:3 , test No 4:5b

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-9.

General test data					
Borehole section	KA3542G	KA3542G01:3			
Test No	4:5b	4:5b			
Field crew	A. Blom (S	A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single hole	e test (dp _p = approx. 2	200 m)		
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	18.60		
Test section- seclow	Seclow	m	20.30		
Test section length	Lw	m	1.70		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040816 14:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040816 14:35:00		
Stop of flow period		yymmdd hh:mm:ss	20040816 15:35:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040816 17:35:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	120		

Table 6-9 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3270.0	
Absolute pressure in test section before stop of flow	p _p	kPa	838.1	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3244.3	
Maximal pressure change during flow period	dpp	kPa	2431.9	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.2 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

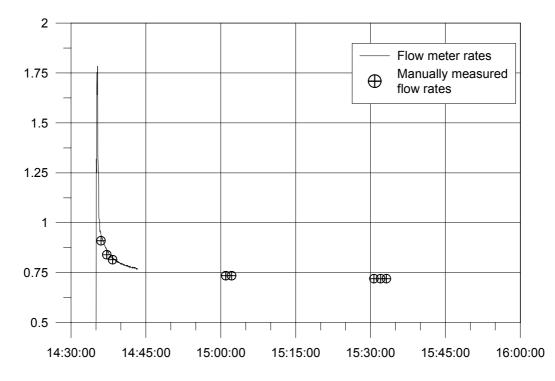


Figure 6-9. Flow rate during draw down in KA3542G01:3.

Comments to the test

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.2 minutes	Well Bore Storage (WBS)
0.2 - 2 minutes	Transition period
2-4 minutes	Spherical flow period
45 – 20 minutes	Transition period
20 – 40 minutes	Radial flow period

Calculated parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project: PROTOTYPE		Test type:	РВТ		
Area: ÄSPÖ		Test no:	4:5b		
Borehole ID: KA3542G01		Test start:	2004-08-16 14:00		
Test section (m): 18.60-20.30		Responsible for	SWECO VIAK AB		
		test performance:	A. Blom		
Section diameter, 2·r _w (m): 0.076		Responsible for	SWECO VIAK AB		
		test evaluation:	T. Forsmark		
Linear plot Head	Flow period	Recovery period		bd	
0		Indata		Indata	
-100		p ₀ (kPa)	3270.0		
		p _i (kPa)			
Image: region of the second		p _p (kPa)	838.1	p _F (kPa)	3244.3
-200		Q _p (m ³ /s)	$8.25\cdot 10^{\text{-}6}$		
≝ -300		tp (min)	60	t _F (min)	120
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-500 + + + + + + +	18:00:00 0:00:00	Te _w (gr C)			
0.00.00 12.00.00	10.00.00 0.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	4.9 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	3.3 · 10 ⁻⁸	dt _{e1} (min)	25
50		Flow regime:		dt _{e2} (min)	40
		dt ₁ (min)		T (m²/s)	6.6 · 10 ⁻⁸
		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
		S (-)		S _s (1/m)	
200		K _s (m/s)		C (m ³ /Pa)	
	`	S _s (1/m)		C _D (-)	
250 <u> </u>		C (m³/Pa)		ξ(-)	2.1
Time (mi	C _D (-)				
		ξ(-)			

Log-Log plot incl. derivative- recovery period		Interpreted for	Interpreted formation and well parameters.				
		Flow regime:	Radial	C (m ³ /Pa)			
KA3542G01:3		dt ₁ (min)	25	C _D (-)			
ecovery (m)	1000	dt ₂ (min)	40	ξ(-)	2.1		
		T _⊤ (m²/s)	6.6 · 10 ⁻⁸				
	100	S (-)					
		K _s (m/s)					
		S _s (1/m)					
	10 1 1 0.1 1 1 10 100 100 1000 Time (min)	Comments: A s	successful test.				

6.1.10 KA3542G01:3, test No 4:5c

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-10.

General test data					
Borehole section	KA3542G	01:3			
Test No	4:5c				
Field crew	A. Blom (A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single ho	Single hole test (dp _p = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	18.60		
Test section- seclow	Seclow	m	20.30		
Test section length	L _w	m	1.70		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040816 17:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040816 17:35:00		
Stop of flow period		yymmdd hh:mm:ss	20040816 18:35:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040816 22:35:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	240		

Table 6-10 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3244.0	
Absolute pressure in test section before stop of flow	p _p	kPa	251.6	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3279.9	
Maximal pressure change during flow period	dpp	kPa	2992.4	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.36 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

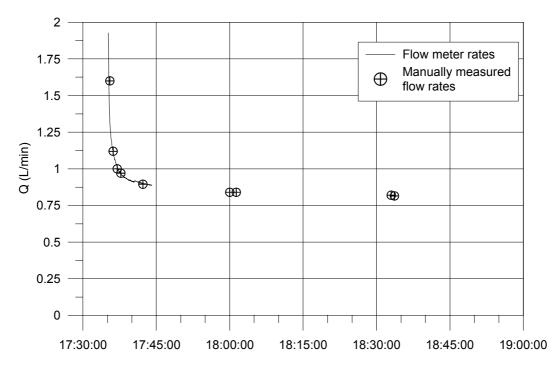
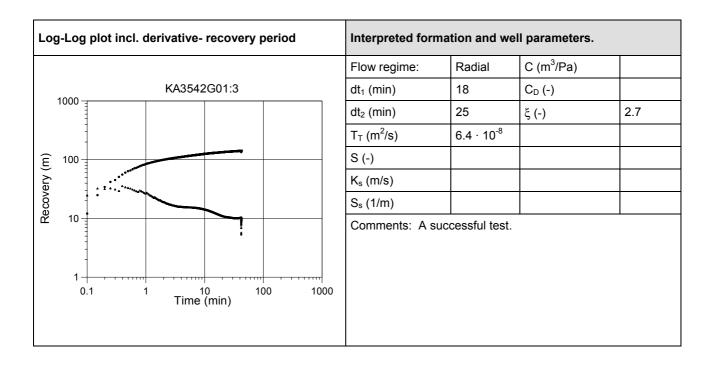


Figure 6-10. Flow rate during draw down in KA3542G01:3.

Comments to the test

The test was successful in regard to pressure response.


Interpreted flow regimes

0 - 0.2 minutesWell Bore Storage (WBS)0.2 - 2 minutesTransition period2 - 4 minutesSpherical flow period4 - 25 minutesTransition period18 - 25 minutesRadial flow period25 - minutesTransition period

Calculated parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	mmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:5c		
Borehole ID:	KA3542G01	Test start:	2004-08-16	17:00	
Test section (m):	18.60-20.30	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	<	
Linear plot Head		Flow period		Recovery period	ł
0		Indata		Indata	
-100		p ₀ (kPa)	3244.0		
		p _i (kPa)			
<u> <u> </u></u>		p _p (kPa)	251.6	p _F (kPa)	3279.9
image: second		Q _p (m ³ /s)	$8.25\cdot 10^{\text{-}6}$		
± -300 <u> </u>		tp (min)	60	t _F (min)	240
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-500 +	18:00:00 0:00:00	Te _w (gr C)			
0.00.00 12.00.00	18.00.00 0.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	4.5 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	3.1 · 10 ⁻⁸	dt _{e1} (min)	18
		Flow regime:		dt _{e2} (min)	25
		dt ₁ (min)		T (m ² /s)	6.4 · 10 ⁻⁸
ery (m)		dt ₂ (min)		S (-)	
Recovery (m)		T (m²/s)		K _s (m/s)	
		S (-)		S _s (1/m)	
120		K _s (m/s)		C (m³/Pa)	
		S _s (1/m)		C _D (-)	
160 + · · · · · · · · · · · · · · · · · ·	100 1000	C (m³/Pa)		ξ(-)	2.7
Time (mi	n)	C _D (-)			
		ξ(-)			

6.1.11 KA3542G02:2, test No 4:7

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-11.

General test data					
Borehole section	KA3542G	02:2			
Test No	4:7				
Field crew	A. Blom (A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single ho	Single hole test (dpp = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	25.60		
Test section- seclow	Seclow	m	27.20		
Test section length	L _w	m	1.60		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040813 06:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040813 06:50:00		
Stop of flow period		yymmdd hh:mm:ss	20040813 09:50:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040813 13:50:00		
Total flow time	tp	min	180		
Total recovery time	t _F	min	240		

Table 6-11 General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2346.0	
Absolute pressure in test section before stop of flow	p _p	kPa	100.5	
Absolute pressure in test section at stop of recovery period	Pf	kPa	2212.1	
Maximal pressure change during flow period	dpp	kPa	2245.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.19 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

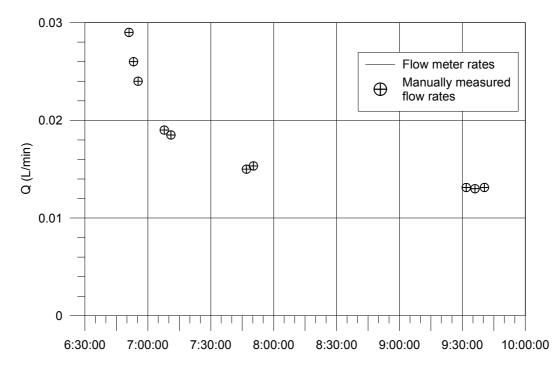


Figure 6-11. Flow rate during draw down in KA3542G02:2.

Comments to the test

The test was successful in regard to pressure response. No radial flow regime period could however be evaluated.

Interpreted flow regimes

0 - 0.6 minutes	Well Bore Storage (WBS)
0.6 – 14 minutes	Transition period
14 - 25 minutes	Radial flow
25 – 70 minutes	Transition period
70 - minutes	Larger scale radial flow

Calculated parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:7		
Borehole ID:	KA3542G02	Test start:	2004-08-13	06:00	
Test section (m):	25.60-27.20	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	κ	
Linear plot Head		Flow period		Recovery perio	bd
-150		Indata		Indata	
-200		p ₀ (kPa)	2346.0		
		p _i (kPa)			
		p _p (kPa)	100.5	p _F (kPa)	2212.1
(jse _ 200		Q _p (m ³ /s)	$2.19\cdot 10^{7}$		
± -350 −		tp (min)	180	t _F (min)	240
-400		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-450	.00 15:00:00 18:00:00	Te _w (gr C)			
0.00.00 9.00.00 12.00	.00 15.00.00 18.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	9.8 · 10 ⁻¹⁰	Flow regime:	Radial
		T _{Moye} (m ² /s)	$6.3 \cdot 10^{-10}$	dt _{e1} (min)	14
50		Flow regime:		dt _{e2} (min)	25
		dt ₁ (min)		T (m ² /s)	5.3 · 10 ⁻¹⁰
		dt ₂ (min)		S (-)	
		T (m ² /s)		K _s (m/s)	
Še iso		S (-)		S _s (1/m)	
200		K _s (m/s)		C (m³/Pa)	
		S _s (1/m)		C _D (-)	
250	100 1000	C (m ³ /Pa)		ξ(-)	-1.2
0.1 1 10 Time (mi	n)	C _D (-)			
		ξ(-)			

Log-Lo	Log-Log plot incl. derivative- recovery period		Interpreted for	Interpreted formation and well parameters.			
		Flow regime:	Radial	C (m ³ /Pa)			
4000		2G02:2	dt ₁ (min)	14	C _D (-)		
1000			dt ₂ (min)	25	ξ(-)	-1.2	
		T _T (m ² /s)	$5.3\cdot 10^{10}$				
Ê 100		S (-)					
Gecovery (m)		K _s (m/s)					
ecov	- · · · · · · · · · · · · · · · · · · ·		S _s (1/m)				
		10 100 100 (min)	Comments: A s	uccessful test.			

6.1.12 KA3546G01:2, test No 4:9

General test data for the pressure build-up test in the interval 6.75-8.30 m of borehole KA3546G01 are presented in Table 6-12.

General test data					
Borehole section	KA3546G	601:2			
Test No	4:9				
Field crew	A. Blom (A. Blom (SWECO VIAK)			
Test equipment system	HMS	HMS			
General comment	Single ho	Single hole test (dp _p = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	6.75		
Test section- seclow	Seclow	m	8.30		
Test section length	L _w	m	1.55		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040812 08:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040812 09:05:00		
Stop of flow period		yymmdd hh:mm:ss	20040812 12:05:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040812 15:05:00		
Total flow time	tp	min	180		
Total recovery time	t _F	min	180		

Table 6-12 General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	355.8	
Absolute pressure in test section before stop of flow	p _p	kPa	92.5	
Absolute pressure in test section at stop of recovery period	Pf	kPa	347.4	
Maximal pressure change during flow period	dpp	kPa	263.3	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.5 · 10 ⁻⁸
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

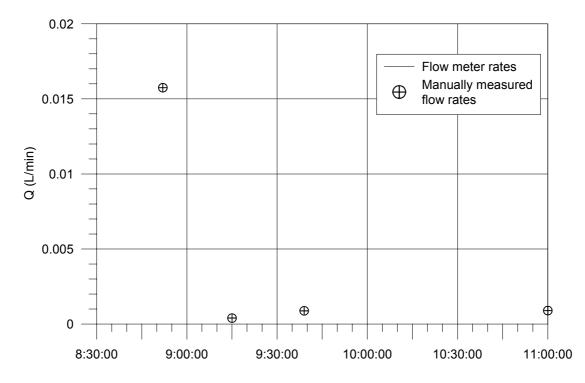


Figure 6-12. Flow rate during draw down in KA3546G01:2.

Comments to the test

The test only generated a pressure drop and following recovery of 26.3 metres, which is a larger pressure response than in test 1:9, 2:9 and 3:9.

Interpreted flow regimes

- 0 30 minutes Well Bore Storage (WBS)
- 30 minutes Transition period

No radial flow regime period was established.

Calculated parameters

The selected representative parameters from the test in the interval 6.75-8.30 m in KA3546G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:9		
Borehole ID:	KA3546G01	Test start:	2004-08-12	08:00	
Test section (m):	6.75-8.30	Responsible for	SWECO VI	AK AB	
		test performance:	A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	(
Linear plot Head		Flow period		Recovery perio	od
-420		Indata		Indata	
-425		p ₀ (kPa)	355.8		
		p _i (kPa)			
		p _p (kPa)	92.5	p _F (kPa)	347.4
(is -430 -435 -435 -435		Q _p (m ³ /s)	1.5 · 10 ⁻⁸		
[♥] -440 ⁼		tp (min)	180	t _F (min)	180
-445		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
-450 + + + + + + + + + + + + + + + + + + +	:00 15:00:00 18:00:00	Te _w (gr C)			
0.00.00 9.00.00 12.00	.00 13.00.00 18.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	5.7 · 10 ⁻¹⁰	Flow regime:	Radial
		T _{Moye} (m ² /s)	3.6 · 10 ⁻¹⁰	dt _{e1} (min)	-
		Flow regime:		dt _{e2} (min)	-
		dt ₁ (min)		T (m ² /s)	-
		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
₫ 20	-\ − −	S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
20		S _s (1/m)		C _D (-)	
30 	100 1000	C (m³/Pa)		ξ(-)	
Time (mi	ר)	C _D (-)			
		ξ(-)			

Log-	Log plot incl. derivative- recovery period	Interpreted format	ion and well parameters.
		Flow regime:	C (m³/Pa)
10	KA3546G01:2	dt ₁ (min)	C _D (-)
		dt ₂ (min)	ξ (-)
		T _T (m ² /s)	
Ê 1		S (-)	
ery (K _s (m/s)	
SCOV		S _s (1/m)	
	1 .1 0.1 0.1 1 0.1 1 1 0.1 1 1 10 100 10	Comments: No rac period.	lial flow regime occurred during the test

6.1.13 KA3539G:2, test No 4:13a

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-13.

General test data					
Borehole section	KA3539G	KA3539G:2			
Test No	4:13a				
Field crew	A. Blom (S	SWECO VIAK)			
Test equipment system	HMS				
General comment	Single hol	e test (dp _p = approx. 1	100 m)		
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	15.85		
Test section- seclow	Seclow	m	17.60		
Test section length	L _w	m	1.75		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040818 09:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040818 10:00:00		
Stop of flow period		yymmdd hh:mm:ss	20040818 11:00:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040818 12:30:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	90		

Table 6-13 General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2045.0	
Absolute pressure in test section before stop of flow	p _p	kPa	1010.0	
Absolute pressure in test section at stop of recovery period	Pf	kPa	1886.3	
Maximal pressure change during flow period	dpp	kPa	1035.0	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	2.35 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.73 · 10 ⁻⁵
Total volume discharged during flow period	V _p	m ³	-

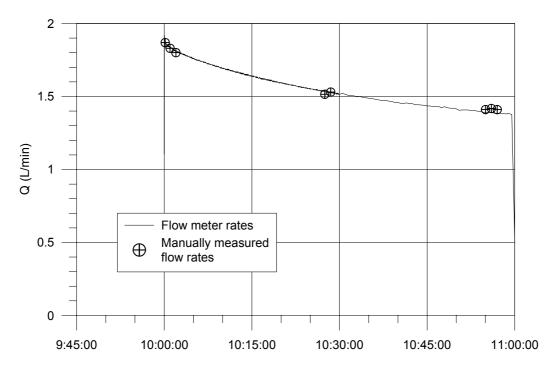
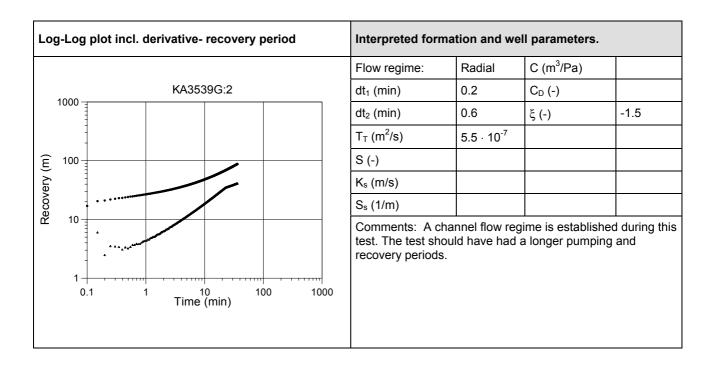


Figure 6-13. Flow rate during draw down in KA3539G:2.

Comments to the test

The test was successful in regard to pressure response. A linear channel flow period occurs during this test.


Interpreted flow regimes

0 - 0.05 minutes	Well Bore Storage (WBS)
0.05 – 0.2 minutes	Transition period
0.2 - 0.6 minutes	Radial flow period
0.6 - 1 minutes	Transition period
1-2 minutes	Linear channel flow period
4 – minutes	Transition period

Calculated parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	4:13a		
Borehole ID:	KA3539G	Test start:	2004-08-18	09:00	
Test section (m):	15.85-17.60	Responsible for SWECO VIAK AB			
		test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076	Responsible for	SWECO VI	AK AB	
		test evaluation:	T. Forsmark	K	
Linear plot Head		Flow period		Recovery perio	od
-200		Indata		Indata	
240		p ₀ (kPa)	2045.0		
-240		p _i (kPa)			
Image: 280 Image:		p _p (kPa)	1010.0	p _F (kPa)	1886.8
Image: Size - 280		Q _p (m ³ /s)	$3.24\cdot 10^{\text{-5}}$		
		tp (min)	60	t _F (min)	90
-360		S*		S*	1 · 10 ⁻⁶
-	-				
-400 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	+ + + + + + + + + + + + + + + + + + + 	Te _w (gr C)			
0.00.00 0.00.00 12.00.00	10.00.00 10.00.00 21.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m²/s)	2.3 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	1.5 · 10 ⁻⁷	dt _{e1} (min)	0.2
40		Flow regime:		dt _{e2} (min)	0.6
		dt ₁ (min)		T (m ² /s)	$5.5\cdot10^{7}$
		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
å ^{**}		S (-)		S _s (1/m)	
160		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
200	100 1000	C (m ³ /Pa)		ξ(-)	-1.5
Time (m	in)	C _D (-)			
		ξ (-)			

6.1.14 KA3539G:2, test No 4:13b

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-14.

General test data					
Borehole section	KA3539G	KA3539G:2			
Test No	4:13b				
Field crew	A. Blom (S	SWECO VIAK)			
Test equipment system	HMS				
General comment	Single hol	e test (dp _p = max)			
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	15.85		
Test section- seclow	Seclow	m	17.60		
Test section length	L _w	m	1.75		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20040818 12:30:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20040818 12:30:00		
Stop of flow period		yymmdd hh:mm:ss	20040818 13:30:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20040818 15:30:00		
Total flow time	tp	min	60		
Total recovery time	t _F	min	120		

Table 6-14 General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1886.0	
Absolute pressure in test section before stop of flow	p _p	kPa	644.5	
Absolute pressure in test section at stop of recovery period	Pf	kPa	1891.0	
Maximal pressure change during flow period	dpp	kPa	1241.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.85 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	3.85 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m³	-

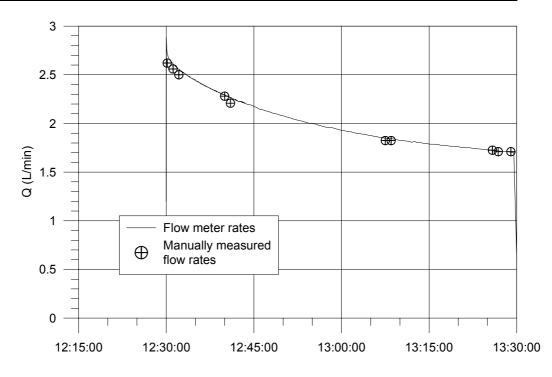


Figure 6-14. Flow rate during draw down in KA3539G:2.

Comments to the test

The test was successful in regard to pressure response. A linear channel flow period during this test.

Interpreted flow regimes

0 - 0.05 minutes	Well Bore Storage (WBS)
0.05 – 0.2 minutes	Transition period
0.2 - 0.5 minutes	Radial flow period
0.5 - 0.8 minutes	Transition period
0.8 - 2 minutes	Linear channel flow period
2 – minutes	Transition period

Calculated parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area: ÄSPÖ		Test no:	4:13b		
Borehole ID: KA3539G		Test start:	2004-08-18 12:30		
Test section (m): 15.85-17.60		Responsible for	SWECO VIAK AB		
		test performance:	A. Blom		
Section diameter, 2·r _w (m): 0.076		Responsible for test evaluation:	SWECO VIAK AB		
			T. Forsmark		
Linear plot Head	Flow period	Recovery period		od	
-200	Indata		Indata		
240		p ₀ (kPa)	1886.0		
-240		p _i (kPa)			
Image: 280 Image: 280		p _p (kPa)	644.5	p _F (kPa)	1891.0
Image: 1 -280 - <td< td=""><td></td><td>Q_p (m³/s)</td><td>$2.85\cdot 10^{\text{-5}}$</td><td></td><td></td></td<>		Q _p (m ³ /s)	$2.85\cdot 10^{\text{-5}}$		
		tp (min)	60	t _F (min)	120
-360		S*		S*	1 · 10 ⁻⁶
-		EC _w (mS/m)			
-400 + + - + - + - +	5:00:00 18:00:00 21:00:00	Te _w (gr C)			
0.00.00 0.00.00 12.00.00	0.00.00 10.00.00 21.00.00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot	Results		Results		
		Q/s (m²/s)	2.3 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	1.5 · 10 ⁻⁷	dt _{e1} (min)	0.2
40		Flow regime:		dt _{e2} (min)	0.7
		dt ₁ (min)		T (m ² /s)	$5.4 \cdot 10^{-7}$
		dt ₂ (min)		S (-)	
		T (m²/s)		K _s (m/s)	
Š Š	\	S (-)		S _s (1/m)	
160		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
200 	100 1000	C (m³/Pa)		ξ(-)	-1.2
Time (mi	C _D (-)				
		ξ(-)			

Log-Log plot incl. derivative- recovery period		Interpreted formation and well parameters.					
				Flow regime:	Radial	C (m ³ /Pa)	
KA3539G:2		dt ₁ (min)	0.2	C _D (-)			
Recovery (r	1000			dt ₂ (min)	0.7	ξ(-)	-1.2
			T _⊤ (m²/s)	$5.4\cdot 10^{\text{-7}}$			
	100 -			S (-)			
				K _s (m/s)			
				S _s (1/m)			
	10 - - 1 - 0		1000	Comments: A c test.	hannel flow reલ્	gime is establish	ned during this
		Time (min)					

6.2 Deformation measurements

Deformation measurements started 2003-05-06. Evaluation of the deformations will be made in a separate report.

References

Forsmark T, Forsman I, Rhén I, 2004. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Interference tests. SKB IPR-04-16.

Forsmark T, Rhén I, 2004a. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Single hole tests. SKB IPR-04-17.

Forsmark T, Rhén I, 2004b. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 2 – Single hole tests. SKB IPR-04-18.

Forsmark T, Rhén I, 2004c. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 3 – Single hole tests. SKB IPR-04-19.

Rhen I, Alm P, Forsmark T, 2005. Äspö HRL – Prototype repository – Installations for measurements of flow into tunnels, water pressure in the rock and hydro mechanical responses in boreholes during operation phase. SKB IPR-05-04.