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1 Background

The Swedish Nuclear Fuel and Waste Management Company is responsible for the
management and disposal of Sweden’s radioactive waste. The combined bulk of total
radioactivity and long-lived isotopes originate from spent nuclear fuel. It is intended to
deposit the spent nuclear fuel in a deep geological repository. This repository shall keep the
radiotoxic material separated from humans and the environment for extended periods, from
decades to millennia and possibly to geological timescales. During this time perspective
climate induced changes such as shore-level displacement and evolution of permafrost and
ice sheets are expected to occur which may affect the repository. The possible occurrence,
extent and duration of these long-term changes, are therefore of interest when considering
the assessment of repository performance and safety.

The main climate parameters determining both surface and subsurface conditions are
temperature and precipitation. As a result of the last advance of the Weichselian ice sheet
only few geological archives exist, which contain information on past climatic conditions
in Sweden before ¢ 16,000 years BP. The purpose of this literature review is to compile
and evaluate available information from Scandinavian, Northern and Central European
geological archives, which record climatic conditions during the Weichselian time period.
The compilation provides paleotemperature data sets, which may be used to explore the
possible evolution of periglacial permafrost in Sweden.



2 Compilation of climate archives

2.1 Method

This report is a synopsis of 22 publications detailing climatic and environmental changes
during the Weichselian time period in Northwestern Europe based on quantified paleo-
temperature records. The publications are listed in Table 2-1and the inferred temperature
series are summarised in Table 4-1, Table 5-1 and in Appendix 1. Some of the data is
presented as temperature curves which were digitised specifically for this report.

The time range covered by the different publications varies considerably. Only few authors
dealt with the whole Weichselian period and the majority cover only a few thousand years.
This however is not considered to influence the reliability of the archives. The reason

for the varying time ranges is that some authors focused on a certain time interval, while
others, especially those dealing with sites that had been affected by glaciation only present
fragmented sediment sequences. Studies of the flora and climate of the region for the time
period before the Last Glacial Maximum (LGM) in Europe have been limited due to the low
number of Late Pleniglacial botanical records /Bos et al. 2001/. The geographical range of
this investigation covers North Western Europe from ¢ 47°N /Ponel, 1995/ to ¢ 78°N /Birks
et al. 1994/ and ¢ 10°W /Coope et al. 1998/ to ¢ 30°E /Coope et al. 1998/ (Figure 2-1).

Additional publications, to those detailed in were also reviewed, but were excluded

where the chronologies were considered unreliable. The various proxy data used to derive
paleotemperatures are primarily: coleoptera, chironomids, pollen, plant macrofossils and
periglacial features. In seven of the publications reviewed here a multiproxy approach had
been applied.
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Figure 2-1. Map over geographical range of literature review. Investigated sites has been
tentative marked, site from Svalbard is not marked.
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2.2 Biological proxies
2.21 Fossil Coleoptera assemblages

Insects make up more than half of our planet’s animals and plants. Coleoptera, i.e. beetles,
contain about 350,000 species and are thus the largest group of insects with greater richness
in species than plants. They inhabit almost all terrestrial- and freshwater habitats and are
most frequently adapted to limited environmental niches. Coleoptera are abundant as
fossils in sediments and give the possibility to provide a detailed paleoenvironmental and
paleoclimatic record /Coope, 1986/. Furthermore, their extreme diversity, the possibility
to identify individual species and the fact that they have undergone very few extinctions
and almost no change in morphology during the past several hundred thousands of years,
makes beetles very suitable for past climate reconstructions /Atkinson et al. 1986/. It has
been shown that beetles can migrate very rapidly when climatic conditions no longer

suite them. Climatic conditions are however not the only factor controlling the habitat of
beetles, competition within species, predators and the available host-plants also have an
influence. Therefore, it is important to make an adequate selection of species involved in
the reconstruction of climate /Guiot et al. 1993/.

There is now extensive evidence that fossil species had the same or analogous environmen-
tal requirements as their present day assemblages /Coope, 1986/. This enables researchers to
reconstruct a picture of the local thermal conditions at various stages in a sediment sequence
/Atkinson et al. 1986; Coope, 1986/.

Currently one of the most important environmental factors to determine the geographical
distribution of insects is climate; i.e. temperature and humidity being the most critical. In
Europe aridity is not a concern and humidity is mostly of local significance. It is therefore
feasible to assume that Coleopteran assemblages are widespread over both moist and

dry habitats and that the thermal environment has regional significance /Coope, 1986/.
Following the present-day distribution of beetles they can be organised according to their
preference for warm, temperate or cool summers and oceanic or continental climates
/Atkinson et al. 1986/.

There are two potential difficulties in determining the temperature range derived from
fossil beetle assemblages. Firstly, transfer functions between modern beetle assemblage
and associated climate have to be established by comparing modern beetle assemblages to
temperature data from meteorological stations. These are then used to derive past climate
conditions from the fossil assemblages. The temperature conditions affecting a living
assemblage may however be controlled by a microenvironment-climate that deviates
greatly from the temperature measured at a nearby meteorological station. Conversely
the microenvironment is, to a large extent, set by macroenvironmental factors. Secondly
meteorological stations deal with temperature averages, which have minor impact on

the life style of the beetle, since their geographical range is decided by maximum and
minimum temperatures /Coope, 1986/.

The Mutual Climatic Range (MCR) method is a technique which has been used to quantify
assemblages of Coleoptera in terms of temperature. The geographical distribution and
temperature range (minimum and maximum temperatures) are known for a number of
modern beetle species. This data is applied to the fossil beetle assemblage, where different
species have different, but overlapping temperature ranges. The overlapping area is the
mutual climatic range (MCR) of the fossil assemblage (Figure 2-2). The precision of

the reconstruction increases with the number of species included, and thus the mutual
climatic range can be narrowed down. The MCR method reconstructs the temperature

of the warmest (Tmax) and coldest (Tmin) month, as well as the temperature difference
(Trange) between Tmax and Tmin /Atkinson et al. 1987/.

12
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Figure 2-2. Principle of the Mutual Climatic Range Method, with climatic requirements of an
assemblage consisting of the taxa A, B and C with given parameters (mean temperature of the
coldest month (MTC) and mean temperature of warmest month (MTW)). From /Pross and Klotz,
2002/.

The MCR method has been validated through a reconstruction of present climate based
on modern Coleoptera faunas, which was compared to mean temperatures recorded at
meteorological stations. There is however a tendency to overestimate the median of
reconstructed Tmax in cooler climates and to underestimate Tmin. This is important when
interpreting the mutual temperature range of a fossil assemblage and what the temperature
range most likely would have been in reality /Atkinson et al. 1986/. By using regression
equations on the present-day temperature against the reconstructed temperatures derived
from Coleoptera from the same site, these deviations can be corrected. The precision will
then be in the order of = 2°C for Tmax and + 5°C for Tmin /Atkinson et al. 1987/.

A total of ten articles dealing with Coleopteran were included in this report (Table 2-1).

2.2.2 Fossil pollen assemblages

Pollen grains and spores are dispersed from plants in large quantities and assembled on the
ground or in water. Some of these pollen grains will accumulate and be preserved as fossils
in the sediments. A pollen grain consists of three components: the living cell, the intine that
surrounds the cell and the exine. Only the latter survives in fossil form and can survive in
the sediment for hundred of thousands of years, due to the resistant waxy cover called the
sporopollenin. The exine of pollen and spores is characterised by a variety of morphological
and structural features. This together with the size, number, shape and distribution of
apertures of the grains forms the basis for pollen and spore identification, or palynology
/Lowe and Walker, 1997 and references therein/.

Pollen analysis or palynology is consequently one of the most widely used methods in
Quaternary paleoecology. Fossil spores and pollen can be found in large quantities in a
variety of deposits. Their abundance makes them suitable for numerical and statistical

analysis /MacDonald, 1990/.

The indicator species method is applied to derive paleotemperatures from fossil pollen

and plant macrofossils (see 2.2.3). To enable this it is necessary to have knowledge of the
geographical and climatic limits of plants. The temperature requirements of individual

13



plant species and their geographical limit are then used to deduce paleotemperatures from a
fossil pollen assemblage, e.g. the minimum summer temperature required for flowering and
reproduction /e.g. Kolstrup, 1980; Bos et al. 2001/. The method is based on the assumption
that the specific plant species used is in equilibrium with the physical environment /e.g.
Aalbersberg and Litt, 1998; Bos, 2001/. When the climatic range of the different indicator
species in an assemblage has been established they are combined to determine a common
climatic field and thus the climate conditions at the time when the identified species

grew together, are characterised. It is important to include an adequate number of species
otherwise the reconstruction will be less precise. When using this method it is important

to only use indicator species that have a narrow ecological extent and a distinct correlation
to climate /Grichuk et al. 1984/.

Some of the problems in using vegetation as a proxy for climate change are that vegetation
responds relative slowly to rapid climate changes and that there is a lack in modern
analogues for some extreme climates of the past. This can however be solved by using a
multi-proxy approach and also by analysing insect remains in the same sediment sample,
since especially beetles migrate very rapidly in comparison with plants /Guiot et al. 1993/.

Three publications on pollen analysis are included in this report (Table 2-1). All publica-
tions also include plant macrofossil investigations to derive more secure estimates of
paleotemperatures.

2.2.3 Plant macrofossils

Fossil plant remains have been studied since the 1840s and are thus one of the earliest
methods used in Quaternary studies. Plant macrofossils can be found in a variety of
environments and are most abundant in lacustrine and fluvial sediments and in peatlands.
They include remains of vascular plants, such as fruits, seeds, stamens, buds, and scales.
The majority of macrofossils encountered in sediments and peat are derived from the
close surroundings, which limits the reconstruction of regional vegetation patterns.

They do however have an important value in determining the local composition of plant
communities. Pollen are usually dispersed over long distances from the source plant, while
macrofossils found in the sediment can help to determine if the plant was growing at the
site /Guiot et al. 1993; Lowe and Walker, 1997 and references therein/. Another important
advantage of plant macrofossil remains over pollen is when problems in differentiating
within species arise. This might be the case when distinguishing pollen of tree birch from
dwarf birch /Lowe and Walker, 1997 and references therein/. Ecological reconstructions
based on macroscopic plant remains agree well with result derived from fossil Coleoptera
assemblages /Coope, 1986/.

One publication based solely on plant macrofossil analysis is referenced in this report
/Hoffmann et al. 1998/.

2.2.4 Chironomidae

Chironomidae are non-biting midges and constitute an important tool for reconstructions
of Quaternary paleoenvironments. Their species abundance and composition are linked

to pH, salinity, trophic status and temperature conditions. Chironomidae produce larvae

on the bottom of most freshwater environments. The larvae develop into a mature form,
which consists of a robust head capsule and a body that resembles a maggot. The head
capsules of these larvae are often well preserved and are abundant in freshwater sediments.
Most genera have complex forms of the head capsules with structures or surface markings,
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enabling easy identification. There is a great advantage with analysing chironomid head
capsules in comparison to other quantitative paleotemperature methods: because of

their abundance in sediments, relatively small samples are necessary. This enables high-
resolution investigations, while for example Coleoptera analysis requires far larger sample
size /Lowe and Walker, 1997 and references therein/.

One paper on chironomid analysis is included in this report /Brooks and Birks, 2000/.

2.3 Multi-proxy approach

Scientists in Quaternary paleoecology often use a multi-proxy approach to analyse
paleobiological data. This is because i) paleoenvironmental reconstructions derived from
one single biological proxy might be ambiguous and ii) a multi-proxy approach renders
paleoenvironmental reconstructions more confident /Lowe and Walker, 1997/.

Coleoptera are rare in sediments, compared to pollen, and their analysis requires large
quantities of sediment, which in turn often leads to low-resolution studies. Consequently the
temporal resolution of pollen and coleoptera samples is often not compatible /Guiot et al.
1993/. On the other hand (as discussed above) /Guiot et al. 1993/ conclud that the use of
pollen alone for reconstructing climate during extreme cold events during a glacial period is
not sufficient and that it is more effective to combine several climate proxies from a number
of archives.

Seven papers based on a multi-proxy approach are included in this report (Table 2-1).

2.4 Periglacial features

Geomorphologic phenomena including frost wedge casts, remnants of frost mounds and
certain aeolian and fluviatile deposits are considered to be characteristic of a cold climate.
The main groups of frost wedge casts are sand wedges, ice-wedge casts, composite wedges
and soil wedges. The former are mainly formed in seasonal frozen ground while the three
latter groups are almost exclusively related to environments of continuous permafrost. The
depth of the soil wedges depends on how deep the seasonal freezing occurs, which is in
turn dependent on vegetation, climate, snow cover, moisture conditions and ground type.
The other three groups of wedges penetrate rather deep into the ground since they extend
from the active layer into the permanently frozen ground. The wedges are results of thermal
contraction in the active layer and the permafrost /Kolstrup, 1980 and references therein/.

Conditions that enable ice-wedges to form and grow are a sudden drop in temperature

and ground temperature at the top of the permafrost of —15°C or lower. These temperature
conditions are almost exclusively found in the tundra and in the continuous permafrost
zone. A mean annual air temperature of —6°C to —8°C is necessary for the development

of wedges, but temperatures might be slightly higher depending on the character of the
sediments. To tentatively calculate paleotemperatures, present periglacial conditions at high
latitudes are used as an analogue for paleoconditions at middle latitudes /Kolstrup, 1980 and
references therein/.
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2.5 Ice core data

Glacier ice provides a detailed record of past environmental changes. Successive, annual
accumulation of snow leads to glacier ice with a high temporal resolution. The Greenland
ice core record (GRIP) has such a high resolution and allows to reconstruct long- and
short-term environmental events back to more than 100,000 years BP /Johnsen et al. 2001/.

It is possible to infer past ice-surface temperatures by analysing the stable oxygen isotope
record in the incremental ice layers. The ratios of stable oxygen isotopes in the water
molecule reflect the temperature of the cloud vapour at the time of snow formation and
hence to a certain degree the ambient air temperature /Johnsen et al. 1992; Johnsen et al.
2001/. However the transformation of the ratio of stable oxygen isotopes to absolute
temperatures depends on empirical observations under present-day conditions /Johnsen

et al. 1989/, which is not a perfect analogue to conditions during the last glaciation
/Charles et al. 1994/.

Therefore, deviations of the oxygen isotope ratio are mainly been published, rather

than absolute temperatures. However /Johnsen et al. 1995/ published calculated central
Greenland temperature deviations from present and in 2004 Johnsen and others published
past temperature changes for Summit, Greenland, based on GRIP "0 and borehole
calibrations (Figure 2-3). The reconstructed temperatures from Greenland probably have

a large error range of 5-10°C /Hansson, 2004/ and therefore these will not be presented
here.
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Figure 2-3. Past temperature changes from Summit, Greenland based on GRIP 630 and borehole
thermometry calibrations. The Last Glacial Maximum (LGM) temperatures are about 20°C colder
than today and the amplitude of the rapid temperatures shifts of the Dansgaard-Oeschger cycles
between ¢ 80 and 15 ka possible as high as 12 to 15°C. The age-scale is based on the standard
GRIP 5509 age model. From /Johnsen et al. 2001/.
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2.6 Chronology

Age assignments of the different sequences detailed in this report were obtained by
radiocarbon dating, Optically Stimulated Luminescence (OSL), tephrochronology and/or
pollen-stratigraphic correlations.

Deposits younger than ¢ 40,000 years BP can be dated with the radiocarbon technique. For
older sediments other methods have to be applied. The '*C production in the atmosphere
and the distribution of *C within the global carbon reservoirs varies in time due to different
processes. This affects the precision of the radiocarbon dating technique so that radiocarbon
ages deviate from calendar ages. To correct for this offset radiocarbon ages are calibrated
against independent calendar-years estimates. /Hughen et al. 2004/ recently provided a data
set, which now allows extending the calibration period back to ¢ 50,000 years BP. This data
set was used here to convert radiocarbon ages older than 14,000 years BP into calibrated
ages. For radiocarbon ages younger than 14,000 years BP, /Hughen et al. 2004/ for ages
older than 14,000 years BP and the GRIP event stratigraphy was used for ages younger than
¢ 14,000 years BP /Bjorck et al. 1998; Walker et al. 1999/.

Optically Stimulated Luminescence (OSL) is of particular use for dating sediments that
have been exposed to light prior to burial. This technique is used on specific minerals,
especially quartz and feldspar, where the luminescence emitted from the most light sensitive
electron traps is measured. This dating technique is applicable on a wide range of ages,

the lower limit however appears to be around 1,000 years /Lowe and Walker, 1997 and
references therein/.

Tephra from volcanic eruptions is spread rapidly over relatively large areas and deposits as
time-synchronous layers over e.g. peat surfaces, lake sediments and ice sheets /Haflidason
et al. 2000; Lowe and Walker, 1997/. An age for the tephra layer can be obtained by
radiocarbon dating the associated organic material above and below the tephra layer, or
for older deposits by K-Ar/*°Ar-*Ar, fission track, thermoluminescence (TL, OSL) or
electron spin resonance (ERS) dating some of the tephra shards. Tephra layers found in

ice cores can be dated by counting annual layers in the ice. Other methods for determining
the age of tephras are their stratigraphical position in relation to already dated tephra
layers, paleomagnetic correlations, annual laminated sediments (e.g. varved clays),
biostratigraphical methods (e.g. pollenstratigraphy) and in relation to oxygen isotope

stage boundaries in deep ocean sediments /Lowe and Walker, 1997 and references therein/.

Establishing a chronostratigraphy by correlating different pollenstratigraphies to each other
is an important method. By using pollen for age assignments the assumption is made that
changes seen in fossil pollen spectra are regionally synchronous, hence that vegetation
changes have occurred more or less at the same time over the same region. Age assignments
derived from fossil pollen necessitate a regional master stratigraphy. To enable absolute
dates to be derived from a pollen assemblage, it is essential that the regional stratigraphy
has been dated with other dating techniques /MacDonald, 1990/.

Table 2-2 present a chronostratigraphical subdivision over NW Europe and Sweden.
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Table 2-2. Chronostratigraphical subdivision over NW Europe and Sweden, modified
after /Lagerback and Robertsson, 1988; Mangerud, 1991; Guiter et al. 2003/.

Isotope Chronostratigraphy Age ka BP
stage NW Europe Sweden

1 o 11.5-0

2 i c.29-11.5

3 EE c.59-¢.29

4 2= c.74-¢c.59
S5a = Odderade  Tirendo Interstadial c. 85 - c. 74
5b = 2 |Rederstall Stadial c.93-¢.85
5¢ & Brorup Jamtland and Peridpohjola Interstadial c. 105 - c. 93
5d Herning Stadial c. 117 -c. 105
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3 Investigated time intervals

3.1 The last glacial — interglacial transition

The last glacial-interglacial transition is one of the most intensively studied episodes during
the Quaternary. During this time it is possible to conduct investigations with much higher
resolution than earlier in the Quaternary and with more precise age determination /Lowe
and Walker, 1997/.

/Coope and Lemdahl, 1995/ used previously investigated fossil coleoptera sequences from
four regions (British Isles, Western Norway, Southern Sweden and Central Poland) to study
the relative influence of Lateglacial climate variations on three variables: 1) variations in
the position of North Atlantic surface currents, ii) the waning Fennoscandian ice sheet and
ii1) the ice-free continent.

The climatic events are grouped into four distinct episodes:

1) ¢ 14,700—c 13,900 BP. The climatic reconstructions from the four regions deviate
considerable and all curves have their own characteristics. Hence there must have been
distinct climatic gradients across Northwest Europe both from north to south and east to
west,

2) ¢ 13,900—c 12,700 BP. The reconstructed curves from the British Isles, southern Sweden
and central Poland correspond well and the climatic gradients were less steep at this
time. The Norwegian temperature curve on the other hand remains low in comparison
with the three other curves,

3) ¢ 12,700— 11,500 BP. All curves are remarkable similar and the temperature gradient
across Northwest Europe shows a slight difference in that the temperatures in the west
were a few degrees colder than in the east,

4) at ¢ 11,500 BP. Across the whole area there was a sudden and intense rise in temperatures
to levels as high or higher than today /Coope and Lemdahl, 1995/.

During the last glacial — interglacial transition there is a remarkable similarity between

the climatic reconstruction derived from GRIP /Johnsen et al. 1995/ and the mean annual
temperature reconstruction from fossil coleoptera in Britain /Atkinson et al. 1987/. As
shown in Table 3-1 the temperatures vary in correspondence with each other /Coope and
Lemdahl, 1995; Johnsen et al. 1995/. Furthermore the climatic reconstruction from GRIP
and Britain also have a good resemblance with the deep ocean isotopic stratigraphy, the
biostratigraphy of North Atlantic ocean sediments and the oxygen isotope stratigraphy from
Swiss lake sediments /Coope and Lemdahl, 1995 and references therein/. The similarities
between the archives indicate that there is a link between North Atlantic surface water and
the climatic conditions on the near-by continent.
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Table 3-1. Temperature deviations during the last glacial climatic oscillation,
from GRIP and Britain.

Oldest Bolling Younger Boreal

Dryas Dryas
-15 -1 -15 3 GRIP, temperature
deviation from present
(Johnsen et al., 1995)
-9 8 -7 9 Britain, mean annual

temperature
(Atkinson et al., 1987)

3.2 Dansgaard-Oeschger events during MIS 3-4

Numerous high-frequency climatic oscillations, so called Dansgaard-Oeschger (D-O),

are seen in ice cores, e.g2. GRIP, GISP2 and Dye 3, from Greenland between 80,000

and 20,000 years BP /Lowe and Walker, 1997/. D-O events are relatively short-lived
temperature oscillations lasting for about 500-2,000 years. They start with an abrupt
warming probably within a few decades and terminate with a more stepwise and gradual
cooling /Johnsen et al. 1992; Wilson et al. 2000/, see Figure 2-3. During D-O interstadials
temperatures increased by about 7°C. The cause of these events are believed to relate to the
North Atlantic Current changing direction and/or intensity, changing sea ice cover and deep
water formation /Johnsen et al. 1992/.

Dansgaard-Oeschger events have been observed in ice cores from different locations in
Greenland and identified as e.g. paleooceanographic changes in the North Atlantic and
tropical Atlantic and vegetation changes on the Iberian Peninsula. However, oscillations
older than the last glacial maximum (LGM) are hard to document in North western Europe
due to the ice sheet eroding and removing deposits during the LGM. Correlations of D-O
events are also difficult since sediments originating from before the LGM are difficult to
date with accuracy sufficient for correlation of the short D-O events.
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4 Investigated sites in Northwestern Europe

4.1 Marine Isotope Stage 2 (¢ 11,500-24,000 BP)

Three articles /Coope et al. 1998; Lemdahl, 1988; Lemdahl, 1991/ (Table 2-1 and Table 4-1)
dealing with sites from southern Sweden are included in the report, partly covering MIS 2.
At ¢ 15,000 years BP the reconstructed mean temperature of the warmest month (Tmax) is
about 11°C and continental arctic conditions prevailed /Lemdahl, 1988/. A slight warming
commenced and around 14,700 years BP temperatures were 1-2°C warmer with a Tmax

of ¢ 11-13°C. However /Coope et al. 1998/ reconstruct a minor temperature increase, from
10.5°C to 11°C (Figure 4-1). Temperatures remain the same until ¢ 13,900 BP, but increase
subsequently by 2—5°C to 13—-16.5°C. Sub-arctic conditions might have prevailed from
14,700—-14,050 BP and thereafter cool temperate, dry conditions until 13,900 BP. During the
period between 13,900—-12,700 BP a gradual change towards sub-arctic conditions occurred
/Lemdahl, 1988/, and temperatures may have decreased by ¢ 1-5°C to Tmax of 9—11°C at

¢ 12,700 years BP /Coope et al. 1998; Lemdahl, 1988/ (Figure 4-1).Temperatures remained
stable until the start of a marked and rapid climatic amelioration at 11,500 BP, when Tmax
increased to ¢ 15°C.

The same time period in Norway is covered by three papers /Birks et al. 1994; Coope et al.
1998; Lemdahl, 2000/ (Table 2-1 and Table 4-1), with one site in northern Norway, one

in Svalbard and sites in western Norway. The temperature record from western Norway
starts at 17,000 years BP with data from one site, showing a Tmax of ¢ 9°C (Figure 4-2).
Temperatures remained stable until 14,700 BP with Tmax of ca 7-9°C, but may have
increased further until 14,050 years BP when Tmax reach ¢ 11°C. At 13,900 years BP
temperatures decreased again to 8—10°C. Between 13,900-12,700 years BP temperatures
dropped by 1-2°C to Tmax of 6-9°C (Figure 4-2 and Figure 4-3) and remained low until
11,700 BP. Around 11,500 years BP there is a distinct raise in temperature to 11-14°C.
Reconstructed temperatures for northern Norway and Svalbard are cooler as compared to
western Norway and indicate a 1-2°C cooling from 13,900 years BP until 11,500 years BP,
from when on the mean temperature of the warmest month increased by 4-6°C (Figure 4-4).

/Kolstrup, 1979/, /Walker et al. 1994/ and /Coope et al. 1998/ reconstructed the mean
temperature of the warmest month in the Netherlands, Belgium and surroundings, the two
latter reconstructions were based on coleoptera records and the first is mainly based on
pollen records. The three reconstructions show more or less the same pattern of temperature
development and there is a very good correlation of temperature values between /Walker

et al. 1994/ and /Coope et al. 1998/. Kolstrup’s reconstruction /Kolstrup, 1979/ however
differs slightly from the two other reconstructions and indicates lower temperatures

(Table 4-1). Between ¢ 16,000—14,700 years BP the temperature reconstruction indicates
Tmax of 17-19°C. Around c 14,700-13,900 BP a short cooling occurs and temperature drop
to 15—-18°C. This cooling continues further to Tmax around 13°C from 13,900-12,700 BP.
Around 12,700-11,500 years BP the temperatures drop by another 3—4°C, but increase
considerably again by ¢ 8-7°C at ¢ 11,500 years BP to Tmax of 16—-18°C (Figure 4-1).
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Figure 4-1. Reconstructed Tmax values derived from Mutual Climatic Range calculations
based on fossil coleopteran assemblages. Thick hatched lines represent tentative glacial ice
margins. All ages on the maps are in radiocarbon years, these was calibrated by using the
radiocarbon calibration curve of /Hughen et al, 2004/. Map A: ¢ 17,500—16,000 cal. yrs BP,
Map B: ¢ 16,000-14,700 cal. yrs BP, Map C: ¢ 14,700-14,100 cal. yrs BP, Map D: ¢ 14,100-
13,900 cal. yrs BP, Map E: ¢ 13,900—-13,200 cal. yrs BP, Map F: ¢ 13,200-12,700 cal. yrs BP,

Map G: ¢ 12,700-11,500 cal. yrs BP and Map H: ¢ 11,500-9,000 cal. yrs BP. From /Coope et al.
1998/
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Figure 4-2. Summery chart for Rogaland, southern part of west Norway. From /Birks et al.
1994/.
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Figure 4-3. Summery chart for Bergen and Sunnmore areas of western Norway. From /Birks et al.
1994/,

Mean summer temp. °C
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Figure 4-4. Summery chart for Andoya, north Norway. From /Birks et al. 1994/.

The temperature reconstruction for western and north-western Germany /Bos, 2001; Walker
et al. 1994/ indicate a similar temperature development as in the Netherlands and Belgium
with some slight differences (Figure 4-5). The records start at ¢ 16,000 years BP with Tmax
of 15°C, then the temperature reconstruction of /Walker et al. 1994/ remains more or less
the same between ¢ 14,700—13,900 years BP. The record published by /Bos, 2001/ shows
some smaller temperature deviations during this period and reconstructs Tmax of between
13-16°C. The next period, between 13,900-12,700 years BP starts a bit warmer in the
record of /Bos, 2001/ with Tmax of 13—15°C and a bit colder in the record of /Walker et al.
1994/ with Tmax ¢ 12°C. Toward the end of this period both records indicate temperatures
of 13°C. From 12,700-11,500 BP /Bos, 2001/ reconstructs Tmax of around 12-13°C and
during the last 350 years of the period a minor increase of 2°C. The other record /Walker

et al. 1994/ indicates 10°C for the same period. After 11,500 BP there is another small
increase again of ¢ 1°C.
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Figure 4-5. Estimated minimum mean July temperatures and a tentative correlation between the

oxygen isotope curve of GRIP ss08c ice core record and the regional Oppershofen pollen diagram.
From /Bos, 2001/.

/Walker et al. 1994/, /Coope et al. 1998/ and /Brooks and Birks, 2000/ reconstructed
temperatures for England, Wales, southern Scotland and Ireland (Figure 4-3). The
temperature reconstructions from the different sites deviate from each other, but the
general trend is similar. The reconstruction of /Coope et al. 1998/ starts already at

¢ 17,500 years BP with Tmax of 9—11°C until ¢ 16,000 years BP (Figure 4-1). Thereafter
the temperature increases to 17-20°C, while a reconstruction from Ireland /Walker et al.
1994/ gives Tmax value of ¢ 13°C between 16,000 and 14,700 years BP and of indicates
13-16°C between 14,700—13,900 years BP. The reconstruction of /Brooks and Birks, 2000/
however starts with a gradual warming between 14,500—14,300 years BP from ¢ 6-12°C
and thereafter fairly constant temperatures of around 11-12°C (Figure 4-6). At the same
time temperatures in Ireland /Walker et al. 1994/ were ¢ 12°C. During the following period
¢ 13,900-12,700 years BP there is a gradual cooling of ¢ 2-4°C to Tmax of ¢ 11-12°C,
with a similar cooling on Ireland. /Brooks and Birks, 2000/ Tmax reconstruction starts the
first 100 years with a cooling of ¢ 2°C and after that the temperature is fairly constant on
10-11°C. During the last period ¢ 12,700-11,500 years BP temperatures drop by ¢ 3°C in
all the investigated sites and after 11,500 years BP a warming commenced /Brooks and
Birks, 2000; Coope et al. 1998/.
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Figure 4-6. Mean July air temperature reconstruction inferred from chironomids at Whitrig Bog
(a) compared with GRIP oxygen isotope data (b) /from Johnsen et al. 1992; Dansgaard et al.
1993/. The GRIP time-scale is in GRIP ice-core years BP. From /Brooks and Birks, 2000/.

Table 4-1 also includes temperature reconstructions from Poland between

17,500-9,000 years BP. The main difference between those and the reconstructions

from other areas in Europe is that temperatures were generally higher in Poland and that
the cooling at ¢ 13,700 BP seems to have been more severe in Poland with a temperature
decrease of ¢ 8°C, compared to ¢ 1-4°C cooling in the other areas /Coope et al. 1998/.

/Isarin et al. 1998/ reconstructed the Younger Dryas (c 12,700-11,500 years BP) climate
for north-western and central Europe (minimum mean temperature of the warmest month,
maximum mean temperature of the coldest month and maximum mean annual temperature)
(Figure 4-7, Figure 4-8 and Figure 4-9). The reconstructed minimum mean temperature of
the warmest month for southern Sweden correlates well with the reconstruction of /Coope
et al. 1998/ and /Lemdahl, 1988, 1991/. For the Netherlands and surroundings the best
correlation is with /Kolstrup, 1979/, while the records of /Coope et al. 1998/ and /Walker

et al. 1994/ indicate temperatures ¢ 2—3°C colder than those inferred by /Isarin et al.

1998/. The reconstruction by /Bos, 2001/ for central-west Germany correlates however
well, although temperatures of 1-3°C higher than those inferred by /Isarin et al. 1998/
were reconstructed for the end of the Younger Dryas (11,850—11,500 BP). Reconstructed
temperatures for England, Wales, southern Scotland and Ireland range from 10°C in

the north to 13°C in the south /Isarin et al. 1998/, which is slightly higher than other
reconstructed temperatures for the area /Brooks and Birks, 2000; Coope et al. 1998; Walker
et al. 1994/.
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Figure 4-7. Reconstructed minimum mean warmest month isotherms for the coldest part of the
Younger Dryas, ¢ 12,700-11,500 BP, (°C, bold) and differences from the present (°C, italic). From
/Isarin et al. 1998/.
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Figure 4-8. Maximum mean coldest month isotherms for the coldest part of the Younger Dryas,
¢ 12,700-11,500 BP, (°C, bold) and differences from the present (°C, italic). From /Isarin et al.
1998/
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Figure 4-9. Maximum mean annual isotherms for the coldest part of the Younger Dryas,
¢ 12,700-11,500 BP, (°C, bold) and differences from the present (°C, italic). From /Isarin et al.
1998/
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4.2 Marine Isotope Stage 3 (c 24,000-59,000 BP)

/Kolstrup, 1979/ reconstructed July temperatures for the Netherlands and surroundings
between ¢ 50,000 and ¢ 34,000 years BP. According to these reconstructions, tempe-
ratures varied between ¢ 10—13°C, with possible July temperature rising to 15°C at
42,000 years BP. These data are in accordance with July temperature reconstruction in
eastern Germany by /Bos et al. 2001/.

Temperature reconstructions for eastern Germany for the same time period show similar
fluctuations as in the Netherlands and surroundings. Here temperatures range from 8—15°C,
with colder temperatures at ¢ 48,000 years BP of 8—10°C. From 43,000—40,000 years BP
the temperature increases to 12—15°C. After this period the temperature decreases again to
8—10°C between 40,000 and 29,000 years BP /Bos et al. 2001/ (Figure 4-10).

In England two records cover this period /Coope, 2002; Coope, 2000/. The chronology of
/Coope, 2000/ is not reliable since only two out of four samples have been dated. However
the temperature development is in accordance with the other record from England and that
of /Bos et al. 2001; Kolstrup, 1979/. The first two samples from /Coope, 2000/ indicate

an age older than 45,000 years BP with Tmax of 8°C and Tmin of —22 to —23°C. At c
43,500 years BP a marked climatic amelioration occurred with Tmax of 16°C and Tmin

of —5°C (Figure 4-11). Similar to the German record /Bos et al. 2001/, Coope’s record
/Coope, 2002/ indicates a deterioration of temperatures in the following time period,
between 43,000-24,000 years BP with a decline in Tmax from 8 to 12.5°C and Tmin

from —5 to —30°C.

| ; Inter- | “C Age Unit| Regional Character | Taxa of TJuly| Climate Snow
Chronostratigraphy|stagial| ka BP vegetation elements climatic interest | °C cover
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| < g —
|
| W 1w
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[ = a]
I3]0
0wz
- -
(Lt
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‘ EARLY =
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T o oL Y 21 e 11 R AR THI L i i
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Figure 4-10. Palaeoenvironmental and palaeoclimatic synthesis. From /Bos et al. 2001/.
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Figure 4-11. Mutual Climatic Range reconstructions based on coleopteran assemblages from
27 localities in central and southern England. Ages are in radiocarbon years. From /Coope, 2002/.

/Huijzer and Vandenberghe, 1998/ compiled information from sites in northwestern and
northcentral Europe between 50,000 and 43,000 years BP. Their compilation indicates Tw
(temperature of the warmest month) of 7 to 10°C, Tc (temperature of the coldest month)
of —20 to —13°C and Tma (mean annual temperature) of —4 to —1°C. Between 44,000
and 43,500 years BP temperatures increased (Tw = 16 to 18°C, Tc =—7.5 to 0.5°C and
Tma = 4 to 9°C). From 43,000 years BP until 23,000 BP, Tw decreases from 10-11°C to
4-8°C, while the temperature of the coldest month and mean annual temperatures do not
show the same decrease. Between 43,000 and 41,000 years BP Tc is —27 to —20°C and
Tma -9 to —4°C. The next period 40,000-36,000 years BP there is a small amelioration
of the temperature record with Tc —20 to —16°C and T- —7 to —2°C and finally from
30,000-23,000 years BP there is again a decline in temperature to Tc —25 to —20°C and
Tma —8 to —4°C. This temperature record correlates well with the other temperature
records for this time period, although the temperature decline at 43,000 years BP
commenced earlier than compared to /Bos et al. 2001/ and /Kolstrup, 1979/.

4.3 Marine Isotope Stage 4 (c 59,000-74,000 years BP)

Only one paper covers MIS 4 in the report /Huijzer and Vandenberghe, 1998/. The
temperature reconstruction indicates temperatures of the warmest month of 10 to 13°C,
temperatures of the coldest month being around —26 to —20°C and a mean annual
temperature of —8 to —4°C. It is however important to consider that these temperatures
encompass 15,000 years and that the Dansgaard-Oeschger events, which appear in

MIS 4 and which were characterised by great shifts in climate, experienced temperature
differences of about 7°C.
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4.4 Marine Isotope Stage 5a to 5d (c 74,000-117,000 BP)

The compilation from northern Sweden by /Lemdahl, 1997/ indicates similar temperatures
during MIS 5a and 5c, with Tmax of 8.1 to 12.3°C, althoughe most assemblages yielded
estimates below 10°C. The reconstruction of Tmin implies winter temperatures of —37 to
—12°C. However winter temperatures during MIS 5¢ may have been somewhat higher than
—20°C and lower than —20°C during MIS 5a. The temperature reconstruction by /Moseley,
1982/ for five sites in Sweden correlates well with /Lemdahl, 1997/, with Tmax at 8.5 to
12.5°C and Tmin at —40 to —10°C during MIS 5Sc.

/Walkling and Coope, 1996/, /Hoffman et al. 1998/ and /Bos et al. 2001/ reconstructed
temperatures for MIS 5a to 5d from sites in Germany. Their results correlate well with each
other, although the reconstructions are based on different proxies, Coleoptera /Walkling
and Coope, 1996/ and macrofossil and pollen /Bos et al. 2001; Hoffmann et al. 1998/. For
MIS 5a Tmax varied between 13 and 15°C. Tmin, which was only reconstructed for one
site /Hoffmann et al. 1998/ ranged at —14 to —12°C (Figure 4-12). Temperatures of the
warmest month during MIS 5b were reconstructed based on two sites /Hoffmann et al.
1998; Walkling and Coope, 1996/ to < 10 and 12°C and Tmin at —15°C or below /Walkling
and Coope, 1996/ (Figure 4-13). The Tmax reconstruction for MIS 5c¢ was varied between

Annual temperature course of the
Heming stadial

Temperature in °C

154 Month

Annual emperature course of the
o Rederstall stadial

Temperature in °C
f iy 8 :
-
B

Month

Annual temperature course of the

154 Brorup inferstadial
104
e
£ s
&
g T 1 : ; i 2
=
o 4
B .10
| —
RCE Month

Figure 4-12. Annual temperature course of the Herning stadial, the Rederstall stadial and the
Brérup interstadial from Gréobern, Germany. From /Hoffmann et al. 1998/.
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Figure 4-13. Mutual Climatic Range calibrated mean July temperatures (Tmax) for Grobern
based on coleoptera analysis. (Dashed line: insufficient data for MCR, curve based on qualitative
faunal data.) From /Walkling and Coope, 1996/.

13 and 15°C and Tmin between —14 and —12°C /Hoffman et al. 1998/. During MIS 5d
Tmax was 10°C or lower /Walkling and Coope, 1996/ or between 13 and 14°C /Hoffmann
et al. 1998/ and Tmin was —15°C or lower /Walkling and Coope, 1996/ or around —7°C
/Hoffmann et al. 1998/.

/Aalbersberg and Litt, 1998/ and /Caspers and Freund, 2001/ reconstructed temperatures for
MIS 5a to 5b for 106 sites in north-western Europe and for 27 sites in north-central Europe.
Their reconstructions give mean July temperatures (TJuly) during MIS 5a of 13—15°C

and temperature differences between western and eastern Europe of 1.5°C. For the same
period reconstructed mean January temperatures (TJan) were —13°C for eastern Europe
/Aalbersberg and Litt, 1998/ and considerable lower than —10 to —8°C, by how much is

not known /Caspers and Freund, 2001/ (Figure 4-14). During MIS 5b the reconstructions
indicate similar temperatures in the west and east, TJuly 7-10°C and TJan —17 to —12°C and
during MIS 5c TJuly may have been around 15-16°C. Mean January temperature however
deviate greatly from 5°C in the west to —13°C in the east /Aalbersberg and Litt, 1998/, to
—10 to —8°C in the compilation of /Caspers and Freund, 2001/. Also in MIS 5d the summer
conditions are similar in both compilations with July temperature 10°C. Mean January
temperatures however deviate slightly for the same period with TJan —23 to —15°C in the
west and = —12°C in the east /Aalbersberg and Litt, 1998/ and —15°C /Caspers and Freund,

2001/.
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Figure 4-14. Reconstruction of palaeotemperatures for the Early and Pleni-Weichselian glaciation
in northwest Germany, based on palynological data, botanical macrofossils and fossil coleoptera.
Extrapolated values are marked by a dotted line. Temperatures marked by an asterisk are modified
after /van der Hammen et al. 1967: p 92/ and refer to the Netherlands. From /Caspers and

Freund, 2001/.
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5 Implications for the Swedish climate

/Aronsson et al. 1993/ investigated plant and animal remains from sediments in eastern
Norrbotten during the Perdpohjola Interstadial (¢ 93,000 to 105,000 BP). Several of the
species found are not present in the area today and only exist further north or above the tree
line and some of the species do not even exist in Scandinavia today. The climate during
this period most likely fluctuated between arctic and sub-arctic conditions, which would
imply summer temperatures around 8§ to 12°C. Climatic conditions were probably more
continental than today, with more severe winters. /Lagerbéck and Robertsson, 1988/ drew
similar conclusions regarding the climatic conditions during the Perédpohjola Interstadial,
which is tentatively correlated to the Brorup Interstadial. They investigated pollen from
eastern Norrbotten, which showed a closed vegetation cover of sub-arctic tundra-type with
a cool temperate climatic optimum. Coleopteran assemblages from sediments in Jimtland,
associated with the Brorup Interstadial /Garcia Ambrosiani and Robertsson, 1992/,
indicate an open tundra environment with cold, more continental climate than today and
average July temperatures of 10—11°C. The corresponding flora and fauna do not indicate
a temperate climatic optimum at this period /Garcia Ambrosiani and Robertsson, 1992/.

The temperature reconstructions by /Moseley, 1982/ and /Lemdahl, 1997/ for the same
period correlate well with the reconstructions of /Lagerbéack and Robertsson, 1988/, /Garcia
Ambrosiani and Robertsson, 1992/ and /Aronsson et al. 1993/ for northern Sweden with
summer temperatures of around 8—12°C, since most assemblages yielded temperature
estimates below 10°C /Lemdahl, 1997/. Mean temperatures of the coldest month were
reconstructed to —37 to —12°C, with the most likely temperatures slightly higher than
—20°C, and mean annual temperatures of —5°C /Lemdahl, 1997/. For southern Sweden the
reconstructed mean July temperature ranges from 10—-12.5°C and mean January temperature
from —16.5 to —12.5°C /Moseley, 1982/.

Reconstructed summer temperatures for Sweden are in general 3—6°C lower than those
reconstructed for the same time period elsewhere /Aalbersberg and Litt, 1998; Bos et al.
2001; Caspers and Freund, 2001; Hoffmann et al. 1998; Walkling and Coope, 1996/, while
reconstructed winter temperatures differ by 2—20°C for southern Sweden and by 6-25°C for
northern Sweden.

The second Interstadial during the Early Weichselian, the Térend6 Interstadial (¢ 74,000
to 85,000 years BP), had likely a more continental climate as compared to the Perdpohjola
Interstadial in the same area in northern Sweden. During this period periglacial condi-
tions and strong winds prevailed /Garcia Ambrosiani, 1991/. Reconstructions of mean
temperature of the warmest month indicate similar temperatures as during the Perdpohjola
Interstadial (¢ 93,000 to 105,000 BP), where most assemblages yielded estimates below
10°C. The mean temperature of the coldest month however indicates values slightly lower
than —20°C and mean annual temperature of —8°C /Lemdahl, 1997/.

The temperature differences between the reconstructions in Sweden and the other archives
in Europe during this time period are slightly smaller. Temperatures in Sweden are in
general 3—5°C colder in summer and about 8—6°C colder during the winter (Table 5-1).

/Lemdahl, 1988/ and /Coope et al. 1998/ reconstructed late glacial climatic conditions

for southern Sweden based on coleopteran remains. Before 14,700 years BP continental
arctic conditions prevailed with mean July temperatures of 10—12°C. Between 14,700 and
14,050 years BP sub-arctic conditions and slightly higher mean July temperatures were

39



v obed pue g ‘614 wouy
panuep sainjesadwa |
‘dwa) Arenuep uesw = uel]
‘dwey} Ainp ueaw = Anl.

"JBaJ0 J0U S| yonw moy Aq
‘dnigug Buunp uay}
Jamo| A|gesapIsuod | 0} g} "0
uer) Anpy
[elpe]lsiaiul 8peIsppO

L-70 L0
uery]  Anpy
[EIPE]S |[eisiapay

8-010}-"0 9}-GI 0
uery]  Anpy
[eipeisio dnigug

G}-0 (0]}
uer) Anpy
[elpess BuluieH

adoing
[esjuad
ulayuoN
1002 ‘punaig
pue siadsen

'€ pue g a|qe . "ayewl|o Jejiwis AlaA pey Auewian
wouj pauap Aurew “dws | dnigig pue apessppO ¢k chk-oyl- 4 L yLOIEL ‘ueqoIn
‘dwae) Aenuep uesw = uel] uery Anpy uery]  Anpy uery]  Anpy uer Anpy 8661 “le1d
‘dway Ainp ueaw = ANl [elpe)sIaul |pelappO lelpess |[eisiopay [eipeisiaw dnigig [eipe)s BuluieH uuewyoH
"GS- | obed woly
paAusp ‘dwa] “yuow Jamo| lamo| Auewian
1s9p|02 8y} jo ‘dwa} ueaw Gl isea|le G|- mojaq 1001 Gl 0 G- mojaq o0} ‘ulaqoln
= UlW] "Yluow jsawiiem uw g xew uwg  xewj uwg  xewj uwy o xewj 9661 ‘@doon
8y} Jo ‘dwa} uesw = xew | [elpe)sIaul |pelappO [elpess |[eisiopay [eipeisia dnigig [eipe)s BuiuieH pue Buipjiep
'Sals 90| Jo
uonejidwod
‘G 8|qe L wou) paAliep eh- Sk 2l-< 0l xew €l- G'GlL ¢k-F 0} xew e ‘edoing
‘dwa] ‘dws} Arenuep ‘sl 2l-< 0l xew [ 9] Gl-01€2- O} xew ula)}semMypuoN
ueaw ‘ulw = uel] dws} uery Anpy uery  Anpy uery]  Anpy uery Anpy 8661 ‘W pue
Anp uesw "ujw = ANl [elpe)sIaul |pelappO [elpess |[eisiopay [eipeisiaw dnigig [eipes BuluieH Biagsiagey
1-0102- SLo1gt
90l LL- 2oyl
0k-010%- ZLO1Z
¢-01GL- viLolgl
2-01GL- €LO0l}}
G-010¥- <2Lo1Z
b1- 0l |- Y1016 0k-019}- gLo10L 90lyL- 6} 016G}
2L Bi4 wony|  g-o1 Lg- €Lo18 001GL- gLolL} cLO1/L- 92016
paAuap sanjesadwsa | g- 0l |g- 1 018 00}/L- €LO10L 901¢Zl- 610161
‘Yiuow 1sepjod 8yl Jo|  6- 01 ¥g- LLOl9 001G- 91016} 0LOlEL- vCcOoigEl
ainjesodwe} ueaw=o| | €|- 0} Op- GLO1ZL 001/L- €LOo10} 9010 610191 8OIYyL- €2O01G) 801€l- Ggoigl ald
‘yjuow jsewem ayy jof  2-01GL-  pLOIEL goigL- 6L01¢t buissjw sajdwes G| 0} gL- 02019L 801GL- 0CoiI€ElL 80lyL- GZOlLL 601GL- 601G} apueln e
aineladwae) uesw=m | 2] My 2] My 2] My 2] My 2] My 2] My o] my G661 ‘|ouod
da ey §Li-ve dd ) ¥¢ - 69 dde165-v. dd el v -G8 dd©) 68 - €6 dde41€6-S0L dd®BXS0L-LLE
¢ SIN € SIN ¥ SIN eg SIN qs SIN 26 SIN PS SIN
uoljewoju| uelasydiap ale uel|asyodiap dIPPIN uejjasyaiom Ajieg IS
ainjesadwa) ejep ainjeiadwajosjed @oualajey

‘(dg s1eah 000°ZL 2—000°ZLL) WNwixep [eloe|s jse] — ueljasydiapg Aldea ‘ejep ainjeradwajosjed -L-G ajqel

40



"¥002 /e Jo usybnH yum Y- 016 - Bwj
uosuedwod uj parelqieo 02- 0} /2- 2]
aue [ejoe|blusid ajeT L1010} mj
® 8|PPIN 8y} woyy sebe ||y I Ly-ep
'€ 9|qeL woiy 601 v Bwj
paAuep sainjesadwa | G'001G /- 2]
‘ainjesadway 81 01 9] my adoing
[enuue ueaw = ew | N G Ep-bh |eJjuad pue
"Yluow }s8p|oo $- 0] - ew ) 1-S 01 -5 ew ) - 0} 8- ew ) ul8}SeMyuoN
8y} Jo aunjesedwsl =01 | 0z- 01 92- 9] €l-50102-5 9] 02-019¢- o] 8661
"Yluow }sawiiem 1101/ m] 0L20123 m] €1 010l my ‘aybiaquapuep
8y} jo ainjesadwal = M| 1 91-€2 1 €v-0S 1 6512 pue Jazliny
"¥00g “*[e jo uaybnH yum
uosuedwod uj parelqieo 1KY 22-6'62 (0]
aJe sabe njosqe ||y M ez-0F 01018 Auewian
g "614 woyy I op-LY GLolEl uJaises
paAusp sainjesadws | ) ggp-ev €L o1zl zZ)IsnelispaIN
ainjeladwal gy 0108 gL < gL < 1002
Jawns ueaw = Anf. Anpy snjeiH Anpy Anpy “|e jo sog
S91- o] 1l Hun 1ebiequals
obe [epeisisul dnigig ¢, S2ch- gcl 1 hun jebiaquels
‘€6 pue x9|dwod puejiWwer 8y} Ulyim ayewlo pljod jo aseyd e Juasaidas Jybiw aus ay] ¢ 0l "0 sow e uayoeqeA
99 ‘09 ‘Ge ‘Gz ebed wouy [elpejsisiul puejwer 0L-" LEO peiswubid
paAuep sainjesadwa | [elpeisiaul puejwer ) G'g o slasbue uspems
‘dwsa} Arenuer uesw = uel| [elpelsiajul puejwer op- 0 0L 0 olse| 2861
‘dway Ainp ueaw = ANl uerl Ainrg ‘Rejoso
'2/-1/ abed wouy panusp
sainjesadwa] dws} 'sealbap 0z- sels /L1
enuue uesw = ew] "yuow Uy} JOMO| [elpelsIalul Qpuale ] pue sealbap 0g- uey} 8- ew] S-  ew] uspams
189p|00 8y} Jo "dwe} ueaw JaybBiy Apybiis [eipessialul ejolyodelad 1oy ainjeladwa] ,2l-01/¢- uw gy ,2l-01/¢- uw gy ulayponN
= UlW] "Yluow jsauiiem ‘sealbap 0| mojaq sajewse papalA sebejquiasse 1Sop L£21-1'8 xew £21011'g  xew] /661
ay} Jo "dwae} uesw = xew | “Jejiwis Ao aJe s[eipelsiajul OM} 8y} 1o} sainjeledwa] lelpelsiajul gpuale | |eipelsiaul ejolyodelad ‘lyepwan]
daeisti-ve dg X ¥¢ - 65 dge)6s-v. dgeiv/. -G8 dge) 68 -¢€6 dgeqe6-590L dde)Sok-LEE
¢ SIN € SIN v SIN eg SIN qs SIN 96 SIN PS SIN
uonewJojuj| uedsyYdIdM 91k uelasyaIa M 3IPPIN ueljasyaid Appeg als
ainmesadwa] ejep ainjesadwalosjed ERIIEYET R

41



oLorghigissod 20 Ainp dg 1Ay 62 0
‘sysodep
196unoA ‘sjjaddexanlip
oLoreo  Ainpp dg 1M og o
‘susodep
‘urepaoun J8p|o ‘ajjeddexanlip
JeYMaWOs UoISN|ou0d 8y} oL Anpp dg 1M pe o
sJapuai usjjod Arepuodss ‘leipessiaiul dweyauaqg
Jo Junowe jealb ay] , €10 Anpy dg M Ly o
‘Y002 /e Jo g1 Aqissod ‘leipelsisul ojebusH
uaybnH yum uosuedwod €10 Anpy dg Mgy o sBuipunolins
u| payelqied aie sabe ||y ‘lelpelsiajul ojpbusH pue
"08¢-8.€ obed wouy oLo  Anrp dg 1Ay 6y o spuejiayieN
paAuep sainjelsadwa | oL 0 Ainp ‘x9|dwod [eIpe}sialul PJOOYSIBON ayl
‘ainjesadwal Ainp dg Mgz o €10 Anpy dg 18 06 0
ueaw wnuwiuiw = Anl , susodap 1sioydels ‘xa]dwod |eIpe)SIalul PJOOYSISON 6/61 ‘dnnsjoy
Y- 018- Bwj
0¢- 01 G¢- o]
801 Y mj
1Ky €2-08
2-01/- ew ) ®Q0‘_3m
91- 0} 02- o] |eJiusd pue
oL mj UJI81SOMYLUION
1K 9g-0 S0}
daeisLi-ve dg 81 ve-69 dae46S-v. daeiv.-a68 dg9 8468 - €6 dge4€6-90F dI®BYG0t-LLHE
¢ SIN € SIN v SIN eg SIN qs SIN 96 SIN PS SIN
uonewJojuj| uedsyYdIdM 91k uelasyaia M 3IPPIN uejjasyaidm Aeg als
ainmesadwa] ejep ainjesadwajosjed ERIIEYETE

42



‘Y002 “/B 1o
uaybnH yum uosuedwod
u| payelqied aie sabe ||y

‘¢ 9|qe L wol}
paAusp sainjeladwa | d€g 00S € "2 g- 9l /3
"ypuow }s8p|od 8y} Jo 9l G3 MN ‘@lys
ainjessdwe) uesw = ulw 1 49 000 St uey Jepjo €e- 8 63 -abpuqwe)
"Yluow 1seuiiem ay} Jo ge- 8 ¥3 ‘Uiieg
ainjeladwsa) uesw = xew | uwj  xewj ‘ou s|dwes 000z ‘@doo)
‘Y002 /B 1o
uaybnH yum uosuedwod
u| payelqied aie sabe ||y
"1 "B woyy G- 01 0¢- ulw
paAlep sainjesadwa | GzZLolg  xewj
*(S)yuow 1s8p|02 BUY} JO I pe-sp pue|bug
ainjesadwa) uesw = ujw | GO}GL- ulw gy ulayinos
"yuow }sawiem ay} Jo 020Gl xewj pue |esjua)
ainjesadwa) uBaW = Xew | K ep-vv 2002 ‘@doon
da®eig'Li-ve dd 83 ¥¢ - 69 da ey 6S-v. da el v/ -8 dg 83 68 - €6 dae4€6-G0F d9BASG0L-LIHL
¢ SIN € SIN v SIN eg SIN qs SN 96 SIN PS SIN
uonewojuj| uedsSYdIdM 93e uelasyaIa M 3IPPIN ueljasyaid Apeg als
ainmesadwa] ejep ainjesadwalosjed ERIIEYET R

43



reconstructed. From 14,050 to 13,900 years BP cool temperate conditions dominated
with indications of dry conditions during part of the interval. Mean July temperature
rised slightly again to 11-16°C. A gradual climatic deterioration or a period of unstable
conditions with minor climatic cooling started at 13,900 years BP. Sub-arctic conditions
probably dominated during this interval until 12,700 year BP, including indications for
wetter conditions. During this period mean July temperatures decreased to 12—14°C
/Lemdahl, 1988/. In the compilation of /Coope et al. 1998/ and /Lemdahl, 1991/ this
temperature decrease is not indicated until ¢ 13,200—13,000 years BP with reconstructed
temperatures of 9-13°C. Arctic conditions prevailed between 12,700 and 11,500 BP and
mean July temperatures decreased further to 8—12°C. The earlier part of this period might
have been characterised by dry conditions. Finally at the beginning of the Holocene at
11,500 years BP temperatures increased rapidly to 12—19°C /Coope et al. 1998; Lemdahl,
1991/.

A distinct climate change, can be seen in many pollen diagrams from southern Sweden
before 13,900 years BP. This change has been interpreted as a short period of colder and/or
drought conditions, possibly with cold winters and warm and dry summers. During this
period there is no trace of temperate beetle species in the sediment. This indicates the start
of a gradual cooling or unstable climate conditions, but it is not until the Younger Dryas
that the main cooling started /Berglund et al. 1994/.

Reconstructed temperatures for western Norway /Birks et al. 1994; Coope et al. 1998;
Lemdahl, 2000/ are in general 2—4°C lower than temperatures in Sweden, while
temperatures reconstructed for northern Norway and Svalbard are considerable lower
/Birks et al. 1994/ (Table 4-1).

Before 14,700 years BP years reconstructed temperatures for Sweden are about 7°C lower
than those in the records from the Netherlands, Belgium and Germany. Between 14,700
and 13,900 years BP the difference decreases, but increases again between 13,900 and
12,700 years BP. However in the period from 12,700 to 11,500 years BP the temperature
records indicate very similar temperatures and possibly ¢ 2°C higher in the Swedish record
(Table 4-1).

Before 14,700 BP the record from Poland indicates ¢ 8—12°C higher temperatures than
the Swedish records. Between 14,700 to 13,900 BP the difference is somewhat smaller
with 5-10°C higher temperatures from Poland. However from 13,900 to 11,500 BP the
temperature reconstructions are very similar and at times ¢ 1-3°C higher for Sweden. The
marked temperature increase at 11,500 BP indicate 18.5°C for Poland and for the Swedish
records a range from 12—-19°C (Table 4-1).

Reconstructed temperatures from United Kingdom /Coope et al. 1998; Walker et al. 1994/
indicate 7-8°C higher temperature than in Sweden before 14,700 BP. The reconstructed
temperature from 14,700 to 12,700 BP are very similar in the two areas, the records

from United Kingdom however may indicate 2°C higher temperatures. From 12,700 to
11,500 BP the records are still very similar with possibly 2°C higher temperatures in the
Swedish records. The temperature range at 11,500 and onwards are 12—-19°C in Sweden
and 16-18°C in United Kingdom, possibly indicating generally higher temperatures in the
latter. Reconstructed temperatures for Ireland /Walker et al. 1994/ indicate slightly higher
temperatures before 14,700 than the reconstruction for Sweden. However from 14,700 to
11,500 BP the reconstructions are higher in Sweden than Ireland (Table 4-1). /Brooks and
Birks, 2000/ is difficult to compare to the Swedish reconstructions since the reconstructed
time periods for southeast Scotland are different from the Swedish records. /Brooks and
Birks, 2000/ reconstructed temperatures with chironomids which allows for a higher
resolution than that of coleoptera.
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Appendix 1

Paleotemperature data, Weichselian ¢ 117,000-11,500 BP
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