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Abstract

The large faults of northern Scandinavia, hundreds of kilometres long and with offsets of 
more than 10 m, are inferred to be the result of major earthquakes triggered by the retreating 
ice sheet some 9,000 years ago. In this report we have studied a number of parameters 
involved in quantitative modelling of glacial isostatic adjustment (GIA) in order to illustrate 
how they affect stress, displacement and fault stability during deglaciation.

Using a variety of reference models, we have verified that our modelling approach, a finite 
element analysis scheme with proper adjustments for the requirements of GIA modelling, 
performs satisfactory. The size of the model and the density of the grid have been 
investigated in order to be able to perform high resolution modelling in reasonable time.

This report includes studies of both the ice and earth models. We have seen that the steeper 
the ice edge is, the more concentrated is the deformation around the edge and consequently 
shear stress localizes with high magnitudes around the ice edge. The temporal evolution 
of height and basal extent of the ice is very important for the response of the earth model, 
and we have shown that the last stages of ice retreat can cause fault instability over a large 
lateral region.

The effect on shear stress and vertical displacement by variations in Earth model parameters 
such as stiffness, viscosity, density, compressibility and layer thickness was investigated. 
More complicated geometries, such as multiple layers and lateral layer thickness variations, 
were also studied. We generally find that these variations have more effect on the shear 
stress distributions than on the vertical displacement distributions. We also note that shear 
stress magnitude is affected more than the spatial shape of the shear stress distribution.

Fault stability during glaciation/deglaciation was investigated by two different variations on 
the Mohr-Coulomb failure criterion. The stability of a fault in a stress field is assessed by 
the Instability measure, simply the difference between the shear stress magnitude on a fault 
plane and the normal stress times the coefficient of friction. The differential Fault Stability 
Measure, dFSM, /Wu and Hasegawa, 1996a/ is a relative measure which assesses whether 
or not a fault becomes more unstable when the stress state changes. We show that dFSM 
must be cautiously interpreted with respect to the initial state whereas Instability has a more 
direct interpretation. We also show that the initial state of stress is very important for the 
assessment of fault stability during glacial rebound and has to be chosen with care.



List of important variables and abbreviations:

Sij, σij, σn Stress tensor, effective stress tensor, normal stress.
σ1, σ2, σ3, S1, S2, S3 Maximum, intermediate and minimum principal stress.
SH, Sh, SV Maximum and minimum horizontal stress, vertical stress.
τ, S0 Shear stress, cohesion.
ui Displacement.
ρ Density.
g Gravitational acceleration.
p, P, Pf Pressure, pressure, pore fluid pressure.
µ Coefficient of friction, except in section 2.2.1 where it is the  

shear modulus.
ν Poisson’s ratio.
η Viscosity.
E Young’s modulus.
GIA Glacial isostatic adjustment.
LGM Last glacial maximum.
EOG End of glaciation.
dFSM Differential fault stability margin.
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1 Introduction

The identification of large neotectonic faults in northern Scandinavia as endglacial 
features /Kujansuu, 1964; Lagerbäck, 1979; Olesen, 1988/, most likely the result of very 
large earthquakes at the time of deglaciation, has prompted an increasing number of 
investigations into the mechanisms responsible for these events. The primary component 
of any such investigation is Glacial Isostatic Adjustment (GIA) theory, which describes the 
response of the Earth to loading events such as a glaciation/deglaciation sequence. Modern 
GIA investigations initiated with /Peltier, 1974/ and /Farrell and Clarke, 1976/ and GIA 
theory has evolved to include the effects of sea-level change, Earth rotation etc /e.g. Wu and 
Peltier, 1982; Mitrovica et al. 1994a; Milne et al. 1999; Mitrovica et al. 2001/. The three 
dimensional effects of the ice sheet is usually included in these model /e.g. Tushingham 
and Peltier, 1991; Mitrovica et al. 1994b; Lambeck et al. 1998a/ whereas the Earth models 
generally only vary in the radial direction. Fully three dimensional formulations of the 
theory is still only starting to evolve, e.g. /Cadek, 2003/.

The models above are all analytical or semi-analytical. In order to study the fully three 
dimensional problem, i.e. 3D Earth models, it is currently necessary to utilize fully 
numerical procedures, such as finite element analysis, FEA. Early, rather coarse, FE models 
such as those by /Gasperini and Sabadini, 1989/ and /Wu, 1992/ have now evolved into full 
fledged 3D analyzes /e.g. Wu et al. 1998; Kaufmann et al. 2000; Kaufmann and Wu, 2002/. 
These models are all flat-earth approximations, excluding all gravitational contributions to 
the GIA problem. Much effort has lately been directed toward the development of spherical 
FE models including the gravitational effects, e.g. /Latychev et al. 2003/ and /Wu and van 
der Wal, 2003/.

The processes underlying the stress accumulation necessary to create the large endglacial 
faults of northern Scandinavia has been studied by a large number of authors. As this report 
only considers the response of generic GIA models and not specific, northern Scandinavian 
models, we will concentrate here on studies of faulting based crustal stresses from 
quantitative GIA models. Early investigations /Walcott, 1970; Stein et al. 1979/ found that 
postglacial rebound stresses alone could be responsible for the mode of earthquake failure 
in eastern Canada. /Quinlan, 1984/ pointed out that the rebound stress probably rather acts 
a triggering mechanism for faults close to failure in the ambient tectonic stress field. The 
models used in these studies were elastic plates on fluid mantles, neglecting the effect of 
stress relaxation in a viscoelastic medium. /Johnston, 1987, 1989/ showed that earthquakes 
are suppressed by large ice sheets and discussed strain accumulation under the ice sheets but 
did not consider rebound stresses. /James and Bent, 1994/ calculated rebound strain rates 
in a viscoelastic model and found that they were greater than current seismic strain rates in 
Canada, implying that rebound alone could cause the earthquakes. During the last decade, 
Wu with others has presented a number of studies on fault stability during glaciation and 
deglaciation, both basic, generic models /Wu and Hasegawa, 1996a; Johnston et al. 1998/ 
as well as applied to Canada /Wu and Hasegawa, 1996b; Wu, 1997; Wu and Johnston, 
2000/ and Fennoscandia /Johnston et al. 1998; Wu et al. 1999/. These are all viscoelastic 
models which use the difference in Fault Stability Margin, dFSM, /Quinlan, 1984/ to infer 
increased/decreased fault stability, see below for details. dFSM was also used by /Klemann 
and Wolf, 1999/ as one of a number of parameters in their study of the implications of 
a ductile layer in the crust for the deformation caused by the Fennoscandian ice sheet. 
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These studies generally find that earthquake activity is suppressed by the emplacement 
of the ice sheet but greatly enhanced at the end of deglaciation. The onset and location of 
increased fault instability, however, varies with ice sheet dimension and temporal evolution, 
lithospheric and mantle structure and the initial state of stress.

The purpose of this report is to set the stage for an in-depth investigation of the mechanisms 
responsible for the large endglacial faults in northern Scandinavia. In order to achieve this, 
we will;
• Set up and validate a generic, finite element, GIA model (chapter 2).
• Study the influence of element size and model extent on the resulting stress and 

displacement fields (chapter 3).
• Vary the physical properties of the Earth model, in order to gain insight into the relative 

importance of these parameters on the crustal stress state (chapter 4).
• Investigate large scale Earth model variations, such as multiple layering and lateral 

variation in elastic and viscous properties (chapters 5 and 6).
• Study various ice models (chapter 7).
• Introduce an absolute fault stability measure and study how this and the dFSM fault 

stability measure are affected by variations in initial stress state and pore pressure 
(chapter 8).
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2 Modelling glacial isostatic adjustment

This section describes the assumptions we make in order to simplify the equations 
governing the loading of a viscoelastic Earth, and the implementation of these equations  
in a finite element context. We also present the results of benchmark tests.

2.1 Governing equations and finite element analysis
Due to the presence of an initial stress field in the Earth, the equations governing stress 
and displacement in a viscoelastic, layered medium, in response to a surface load are 
usually expressed as perturbations from a pre-existing equilibrium state. The necessary 
equations are the incremental momentum balance, the incremental continuity equation and 
the incremental constitutive equation. Most finite element packages correctly handle the 
continuity and constitutive equations and we will therefore not consider these here.

The material incremental momentum equation for quasi-static, infinitesimal perturbations 
of a stratified, compressible, fluid Earth initially in hydrostatic equilibrium subject to 
gravitational forces but neglecting inertial forces is /e.g. Wolf, 1991; Johnston et al. 1998/:

0),( 000
, =+++ ∆∆

iiijjjij ggup, ρρσ δ        (1)

where σ is the Cauchy stress tensor defined as positive in tension, p = –σkk/3 is the pressure, 
ρ the density, g the gravitational acceleration and u the displacement. The superscripts 0, δ 
and ∆ denote the initial, material incremental and local incremental fields respectively. The 
usual summation and differentiation conventions apply to the index notation. The first term 
in Eq 1 describes the force from spatial gradients in stress. The second term concerns the 
incremental stress resulting from a particle's displacement in the initial stress field, parallel 
to the stress gradient. This term is commonly referred to as “pre-stress advection”. The third 
and fourth term describe perturbations to the gravitational forces due to changes in density 
and gravitational acceleration, respectively. The third term is sometimes referred to as the 
buoyancy term, which, together with the second term, accounts for isostacy.

The momentum equation is frequently simplified by ignoring the change in the gravitational 
field within the material, i.e. neglecting the fourth term in Eq 1. This term is only significant 
at the very longest wavelengths and models which ignore this incremental gravitational 
force, IGF, are usually described as non-self-gravitating. The effect of this approximation 
was discussed by /Amelung and Wolf, 1994/, who showed that the two approximations of 
ignoring the IGF term and the sphericity of the Earth, i.e. using a flat-earth model, largely 
compensate each other.

Further simplification is obtained for layers that are uniform in density and incompressible. 
In such layers there is no change in density with deformation and therefore the third term in 
Eq 1 vanishes. For a non-self-gravitating incompressible Earth the momentum equation can 
be rewritten in terms of the local incremental stress as:

ij, j 0, ij p ,k
0 u k ij ij

0 g 0 u k ij 0σ σ σ +∆ δ∆ .    (2)

We will use this simplified equation for the finite element modelling.
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The viscoelastic materials in our models are implemented using linear Maxwell 
viscoelasticity, which, although very simple, has provided a reasonable fit to a variety  
of GIA data.

2.1.1 Implementation of the viscoelastodynamic equations into finite 
element codes

We are indebted to Prof Wu for invaluable help on the implementation of the simplified 
viscoelastodynamic momentum equation into Abaqus, our commercial finite element 
analysis package. The following paragraphs are based on discussions with Prof Wu, and  
an early manuscript of /Wu, 2004/.

Most commercial finite element packages are mainly designed for engineering applications 
where only the divergence of the stress tensor is included in the momentum equation, 
Sij, j = 0, ignoring isostacy and self-gravitation. This makes the modelling codes unsuitable 
for geophysical applications involving long wavelengths and non-elastic deformation /Wu, 
1992/. If we, however, consider our model as non-self-gravitating and the elements as 
incompressible and uniform in density, we can utilize Eq 2 to define a new, finite element 
stress tensor as

S FE S 0 g 0 u z I         (3)

where uz is the displacement in the vertical direction, parallel to the gravity field, and I is 
the identity matrix. Differentiation gives us

S ij, j
FE S ij , j

0 g 0 u z , j ij 0        (4)

which is the momentum equation we desire, expressed in terms of the new stress. Due to 
the transformation in Eq 3, new boundary conditions must be applied to the finite elements. 
In the following, P is the surface load, the index h signifies a horizontal coordinate and 
F Z

Z lim 0 F Z F Z .

1. At the Earth’s surface: S zz
FE 0 g 0 u z z 0 P, assuming the density of air to be zero, 

and S hz
FE

z 0 0.

2. At solid-solid interfaces at depth Z: S zz
FE

Z
Z

Z
0

Z
0 g 0 u z and 

S hz
FE

Z
Z u h Z

Z u z Z
Z 0.

These boundary conditions are easily implemented in finite element packages as Winkler, 
or elastic, foundations with spring constants 0 g 0ρ  or Z

0
Z

0 g 0ρ ρ+ , respectively. All 
non-vertical material interfaces where density is changing should have these foundations 
attached.

Finally, due to the transformation in Eq 3, the stress output after a finite element model run 
has to be converted back to the “correct” stress through S S FE 0 g 0 u z I . This conversion 
is crucial since stress magnitudes otherwise will be much too low. Displacements in 
the finite element model are not affected by the transformation and, therefore, need no 
postprocessing.
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2.2 Validation of the finite element implementation
We implemented the Winkler foundation formalism discussed above in our finite element 
package Abaqus and performed a number of benchmark tests. It is surprisingly difficult 
to find good benchmark tests where there is data available on both displacements and 
stress. We will discuss four benchmarks below, all varying in earth and ice models as well 
as presented output. We divide our validation process into two classes of models, two-
dimensional models (the ice sheet as a loaf of bread) and axisymmetric models (a hockey 
puck ice cap). Our models below all have an interior area of high resolution approximately 
4,000×900 km, horizontally×vertically, increasing element size away from the interior out 
to 10,000×5,000 km (usually 10 and 5 times the ice load radius/lateral extent) and infinite 
elements to the sides and at the bottom.

2.2.1 Two-dimensional models

Viscoelastic half-space in 2D with an impulsive boxcar load

The solution for the response of a Maxwell viscoelastic half-space to an impulsive boxcar 
load with uniform amplitude is well known /e.g. Wolf, 1985/. The vertical displacement at 
the surface is given in the wave-number domain by

PL k
g 2 k

1
2 k

g
1 e t e ik x dk     (5)

where P is the amplitude of the boxcar load and L(k) its wave-number k domain 
representation. µ is the shear modulus, t is time and x horizontal distance. α is the  
relaxation time given by

g
g 2 k

.         (6)

We evaluated Eq 5 numerically using a Fast Fourier Transform (FFT) and compared our 
finite element calculations to the FFT result. Figure 2-1 shows the comparison of the 
two methods for a 15 MPa 2D boxcar load with 1,000 km half-length applied to a 2D, 
incompressible, non-self-gravitating viscoelastic half-space with the following parameters:

Density: 5,000 kg/m3.
Young’s modulus: 113 GPa.
Viscosity: 1.45×1021 Pa s.
Poisson’s ratio: 0.5.

As Figure 2-1 shows, the two methods agree extremely well for the vertical surface 
displacements. The largest discrepancies are at the ice edge at longer times when the stress 
gradient becomes too steep for the used finite element grid. As pointed out by /Wu, 1992/, 
this is not a problem in realistic calculations since there will always be an elastic layer 
on top of the viscoelastic half-space that removes the discontinuity. A similar viscoelastic 
half-space model with impulsive boxcar loading is presented by /Wu, 1992/ where he plots 
both vertical displacements and Mises stress. Implementing that model in our finite element 
scheme we obtain results that agree very well with those of /Wu, 1992/ for both variables.
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2.2.2 Axisymmetric models

Axisymmetric viscoelastic half-space with a boxcar Heaviside load

Using a very similar setup as in the 2D case above, we compared our finite element model 
of an axisymmetric Maxwell viscoelastic half-space subject to an impulsive boxcar load 
with that of /Wu, 1993/. The results for vertical surface displacements again agree very 
well. This comparison is strictly visual from the results in /Wu, 1993/.

Elastic plate overlying a viscoelastic half-space

The papers by /Klemann and Wolf, 1998, 1999/ present shear stress and stress state results 
of their spectral GIA models. These models are ideal validation models for our finite 
element implementation since they are also incompressible, non-self-gravitating models. 
We tested our technique against the results of /Klemann and Wolf, 1998/. The tested model 
is an axisymmetric model with an elastic plate overlying a Maxwell viscoelastic half-space. 
The model is subjected to an ice load of elliptic cross-section, 2.8 km high at the center 
with radius 900 km and a density of 0.91 kg/m3, giving a maximum pressure of 25 MPa 
below the center of the ice. The loading history is a simplified representation of the final 
Weichselian glaciation in Fennoscandia, the load is linearly increased over 90 kyr to its 
maximum, referred to as the Last Glacial Maximum (LGM), and then linearly decreased 
to zero over 10 kyr, End of Glaciation (EoG). The model is run for an additional 8 kyr up 
to the present time. Note that the ice sheet all through its history occupies the full 900 km 
radius, it is only the height of the ice that varies with time. Parameters of the model are 
shown in Table 2-1.

Figure 2-1. Vertical surface displacement of a viscoelastic half-space subject to a 1,000 km 
impulsive boxcar load. Lines are finite element modelling results and circles are results from 
the transform method. Times are years after the application of the load. The right plot show the 
difference between the transform method and the FE method.
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Table 2-1. Parameters for model tested agaist /Klemann and Wolf, 1998/.

Elastic plate Half-space

Thickness 100 km ∞

Density 3,380 kg/m3 3,380 kg/m3

Young’s modulus 192 GPa 435 GPa

Viscosity ∞ 1.0E+21 Pa s

Poisson’s ratio 0.5 0.5

Gravity 9.81 m/s2 9.81 m/s2

Figure 2-2 shows the result of our modelling, in terms of the maximum shear stress 
(σ1–σ3)/2 and the state of stress, calculated using only the modelled incremental rebound 
stresses without overburden or other additional stresses. Comparing to the figures in 
/Klemann and Wolf, 1998/, see Figure 2-3, the results are remarkably similar. We were 
unfortunately unable to obtain the numerical values /Klemann, personal communication 
2004/ for the model for a quantitative comparison. Maximum shear stress contours agree 
both in shape and numerically and the stress states are very similar. The slight differences 
in the results could depend on the relative grid spacing of the models and the averaging 
procedures used in the presentation of the data. In order to obtain the best resolution 
possible, our test model had a very dense grid with a total of 721,731 elements, requiring 
almost 3.5 GB of computer memory and 7 hours of computing time on a HP zx6000 with 
dual Itanium2 1.5 GHz processors.

Figure 2-2. Maximum shear stress and the state of stress in the model after /Klemann and Wolf, 
1998/ at three different times. At LGM the full ice load is on the model, 10 kyr later at EoG 
the ice has melted and Present is additionally 8 kyr later. The extent of the ice load at LGM is 
indicated by a black bar on top of the plots. Maximum shear stress contours in MPa, stress states 
are coloured as; extension (blue), strike-slip (green) and thrust (red).
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Radially variable Earth model

The Geodynamics group at the Research School of Earth Sciences, Australian National 
University (ANU), Canberra, Australia, maintains a web site with a number of benchmark 
tests /Kaufmann and Johnston, 1997/ for models of glacial isostatic adjustment. The 
benchmarks are intended for spherical, self-gravitating, Earth models, computed by spectral 
methods, but we have adopted the simplest model for testing with our flat-earth, non-self-
gravitating, finite element method. The presented outputs of the benchmarks, relevant to 
us, are vertical and horizontal displacements at the model surface. There are, unfortunately, 
no stress results available. The Earth model we adopt, Earth 2a /Kaufmann and Johnston, 
1997/, is a layered, incompressible model with a 70 km elastic “lithosphere” overlying a 
three-layered, viscoelastic mantle on top of a fluid core. The model uses elastic parameters 
from the Preliminary Reference Earth Model (PREM) /Dziewonski and Anderson, 1981/, 
volume-averaged over each of the four layers, and a simple viscosity distribution, see 
Table 2-2.

Table 2-2. Parameters used in the PREM model.

Depth, km 0–70 70–420 420–670 670–2,891

Density, kg/m3 3,037 3,438 3,871 4,978

Shear modulus, GPa 50.61 70.36 105.49 228.34

Viscosity, Pa s ∞ 7.00E+020 7.00E+020 7.00E+021

Figure 2-3. /Klemann and Wolf, 1998/ results for the model discussed above. Parameters as 
in Figure 2-2, except that the stress regimes here are indicated as; extension (black), strike-slip 
(white) and thrust (grey).
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The ice model is a simple disc with rectangular cross-section, 800 km radius, 1 km height 
and a density of 1,000 kg/m3. It is a Heaviside loading history and the model is evaluated 
after 0, 1, 2, 5, 10, and 110 kyr (simulating infinity) after loading. We implement a flat, 
axisymmetric model in order to come as close as possible to the spherical case. Our results 
for the vertical displacements agree very well with the spectral results, see Figure 2-4, 
allowing for the fact that we used 110 kyr instead of infinite time. The horizontal displace-
ments, however, are less in agreement. It seems that our horizontals evolve faster in time 
than the benchmarks, and do not reach the same positive distance but instead decline to 
larger negative distances. The overall shapes of the distributions agree rather well, however, 
with a minimum at the edge of the ice sheet and an asymmetric distribution. It is currently 
unclear to us what the discrepancy is due to, it could be that our implementation ignores the 
fluid outer core below 2,891 km depth, or it is perhaps a result of the non-self-gravitating, 
flat-earth approximations. It is interesting to note that /Inovecky, 2003/ experienced exactly 
the same problems with a self-made finite element implementation of GIA. In his ANU 
benchmark test, testing against earth model 2 c /Kaufmann and Johnston, 1997/, he also 
ignored the fluid mantle, as we have here. We will pursue this matter further.

Figure 2-4. Results of ANU benchmark test Earth 2a for GIA modelling /Kaufmann and 
Johnston, 1997/. Top: the ANU benchmark results for vertical displacements, left, and horizontal 
displacements, right. Bottom: Our results of the ANU benchmark test, vertical, left, and horizontal, 
right, displacements.
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2.3 Two dimensional reference model
In this report we will be testing the response of two dimensional earth models to glacial 
loading and unloading. As our reference model we will adopt the 2D version of the 
/Klemann and Wolf, 1998/ earth model, see Figure 2-2 and Table 2-1. We will also be 
using a 2D version of the elliptic ice model of /Klemann and Wolf, 1998/, with the linear 
time history described in section 2.2.2. All parameter variations presented below will 
be variations of this reference model. In Figure 2-5 we show the maximum horizontal 
and vertical stresses and in Figure 2-6 the maximum shear stress and stress state for the 
2D model corresponding to the axisymmetric model above. Again, only the incremental 
rebound stresses are shown.

We see in Figure 2-5 the variations in horizontal stresses typical for these loading problems, 
with compressional horizontal stress under the load and tensional horizontal stress beyond 
the load margin at the surface. At depth in the elastic plate the situation is reversed, 
sometime after LGM, with tensional horizontal stress below the ice sheet and compression 
beyond. The vertical stress follow closely the ice load, but we note the viscoelastic 
relaxation of the mantle reloading the elastic plate from below. The principal stresses are 
horizontal and vertical in most of the model, but there is a region of increased shear stress 
central in the model, below the edge of the ice sheet, where the principal stress do not 
follow the horizontal and vertical. Figure 2-6 shows, as the axisymmetric Figure 2-2, the 
symmetry of the maximum shear stresses at LGM and the slow migration downward of 
the central, neutral surface as the rebound process progresses. Comparing to Figure 2-2, 
we note that the 2D implementation produces less shear stress under the ice at LGM than 
the axisymmetric model, but that outside the edge of the ice the shear stress is higher. The 
shape of the isolines has also changed. As seen in Figure 2-6, these differences remain 
throughout the deglaciation. We also note that the two-dimensionality of the model prohibits 
the existence of strike-slip stress states. The earth model used to produce Figure 2-6 was of 
equally high resolution as the axisymmetric model above. After the section on variation of 
element size, we will use a model with significantly fewer elements, and correspondingly 
faster computation times, as our 2D reference model.
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Figure 2-5. Maximum horizontal (left) and vertical (right) incremental rebound stresses at three 
different times: LGM, end of glaciation and present.The model is the 2D reference model based on 
the /Klemann and Wolf, 1998/, axisymmetric earth and ice models.

Figure 2-6. Maximum shear stress and stress state response of the 2D two dimensional /Klemann 
and Wolf, 1998/ earth and ice models. All other features as in Figure 2-2.
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2.4 Summary
The validation of the finite element implementation, in the commercial Abaqus finite 
element analysis software, of glacial isostatic adjustment modelling has shown that the 
technique works well. The relative abundance of published result for axisymmetric models 
makes benchmarking axisymmetry easier than the 2D case, which is shown in the number 
of test cases above. Frequently, the presentations of results of GIA model are present as 
vertical surface displacement, or uplift rate. It is difficult to find good comparisons for the 
horizontal displacements and stress distributions, especially in two dimensions.

In the two dimensional case we find excellent agreement between our finite element model 
and the analytical expression for the vertical displacements due to a Heaviside load on a 
viscoelastic half-space. Our model also agrees very well with the 2D finite element models 
of /Wu, 1992/, both for Mises stress and vertical displacements of a viscoelastic half-space 
subject to a Heaviside load. /Wu, 1992/ also show results for the vertical displacements of 
a 2D model of an elastic plate on a viscoelastic half-space, subject to a Heaviside load, and 
our model agrees very well with that.

In order to validate the axisymmetric version of our finite element approach, we tested it 
using the viscoelastic half-space loaded by a Heaviside ice sheet of /Wu, 1993/. The results 
for vertical displacements agree very well with Wu’s finite element model. Comparison with 
the results of /Klemann and Wolf, 1998/, who used the spectral technique to study an elastic 
plate overlying a viscoelastic half-space subject to an elliptical ice sheet, shows remarkably 
good agreement in maximum shear stress and stress state results. Finally, we tested one of 
the benchmark models, a radially variable , incompressible model having elastic proper-
ties derived from the PREM model /Dziewonski and Anderson, 1981/, of /Kaufmann and 
Johnston, 1997/. Our vertical displacements agree very well with the benchmark result, but 
the horizontal displacements decay significantly faster than those of the benchmark. We are 
currently investigating the cause of this discrepancy further, it may be due to the non-self-
gravitating, flat-earth approximations.

As our reference model for the parameter variations discussed in the remaining sections 
of this report, we use a two dimensional implementation of the /Klemann and Wolf, 1998/ 
model discussed above. The earth model has a 100 km elastic plate overlying a viscoelastic 
mantle and the ice model is an elliptical cross-section ice with height varying linearly in 
time but constant covered area.



19

3 Element size and model extent

In this section we will explore how variations in the size of the finite elements, i.e. the 
density of the computational grid, and the overall size of the model affects the outcome of 
the computations. We will be using the two dimensional reference model discussed above, 
i.e. a 100 km thick elastic plate over a viscoelastic half-space. The reference model, ref3 
in the figures below, has a basic element size of 1.5×0.5 km in the region 1,500×200 km, 
horizontally×vertically, and a total extent of 9,000×4,500 km. This extent is chosen as 
10×5 times the ice sheet radius. The size of the elements is linearly increased in the 
horizontal direction from 1,500 km to 4,000 km by a factor of 1.01, and then from 4,000 km 
to 9,000 km by a factor of 1.5. Similarly in the vertical direction, the factor is 1.01 from 
200 km to 900 km and then a factor of 1.5 from 900 km to 4,500 km. The model has a total 
of 721,731 elements and required 6 hours and 59 minutes of computing time. We have 
chosen to display shear stress and vertical displacement at the surface below since the shear 
stress relates directly to fault stability, and vertical displacement is a good observable. In the 
difference plots below we show the tested model minus the reference model.

3.1 Element size
We first study how increases in the basic element size in the horizontal and vertical 
directions, respectively, influence the near surface shear stress and the vertical displacement 
at the surface. Since the shear stress is evaluated at the centroid of each element, we picked 
a depth of 2.5 km for the shear stress comparisons. This is because our favoured vertical 
element size will be 5 km below. It implies, however, that the shear stress from other 
element sizes are acquired from different element rows, and sometimes by interpolation 
between two rows.

In Figure 3-1 we show the result of increasing the horizontal element size by a factor of 
four, i.e. the basic element size is now 6×0.5 km in model el40 which has 261,521 elements. 
We see that there is very little difference between the two models, both in shear stress and  
in displacement.

If we instead increase the vertical size of the basic elements with the same factor four, 
model el41 has 1.5×2 km elements, we see in Figure 3-2 that the shear stress is more sensi-
tive to the vertical element size than the horizontal. The displacement response is  
more ambiguous. This model has 249,479 elements.

In order to reduce the number of elements significantly, we test a model with 12×5 km  
basic element size, el43 with 24,063 elements, in Figure 3-3. We see that the error in the 
shear stress is now becoming significant, specially for the shear stress distribution at present 
time. This is an unfortunate feature of all the element size tests, that the error in the shear 
stress distribution at present time is of the same size as the errors at LGM or EoG, although 
the absolute level of stress is significantly less. The error in vertical displacements is still 
very small.

We finally show a model, el30 in Figure 3-4, with basic element size 6×5 km but with a 
more rapid increase in element size outside of the core area. el30 has 27,666 elements, 
slightly more than el43, which gives an improvement in the shear stress components at EoG 
and at present time.
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Figure 3-1. A) Left: Maximum shear stress at 2.5 km depth along the first 2,500 km in the 
reference model ref3, solid lines, and in the test model el40, circles. Times are: LGM (red), end 
of glaciation (green) and present (blue). Test model el40 has 6×0.5 km large elements. Right: 
Difference between the shear stresses in model, el40, and the reference model. B) Vertical 
displacement at the surface in the reference model, solid lines, and the test model el40, circles, 
times as above. Right: Differences in the vertical displacements between el40 and ref3.

Figure 3-2. As Figure 3-1 but using test model el41, with 1.5×2 km elements.
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Figure 3-3. As Figure 3-1 but using test model el43, with 12×5 km elements.

Figure 3-4 . As Figure 3-1 but using test model el30, with 6×5 km element size.
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The run time for this model is 16 minutes, which is acceptable for this type of 2D study. We 
note, however, that going from 2D/axisymmetric models to 3D will require yet an increase 
in the element size. The model el30, with an element size of 6×5 km in the core area and a 
rapid increase in element size outside the core area, will be our reference model for the rest 
of this report.

3.2 Spatial extent of the model
Finite element analysis is sensitive to the spatial extent of the model, specially when use is 
made of infinite elements as model boundaries. Here we investigate how maximum shear 
stress and vertical displacements are affected as the model size changes. The reference 
model is now el30 from above, with the original 900 km radius ice sheet.

We first investigate the horizontal dimension of the model, using models with half, 4,500 
km, and one fourth, 2,250 km, of the original size. Reducing the model length by 50% does 
not affect the results very much, we show instead the results from the 25% model, size2, in 
Figure 3-5.

Obviously, having the model end at 2.5 ice radii has a large effect on the results, specially 
at the edge of the model, but we see from Figure 3-5 that the effect on the displacements 
and the shear stress after deglaciation, up to approximately 1,500 km, is surprisingly small. 
Comparing to Figure 3-4 we also note that the effect of reducing the model length to some 
extent counteracts the effects of increasing the coarseness of the model on the EoG results. 
However, the model size reduction has a large effect on the shear stress at LGM , an effect 
which adds to the error from the increase in element size, Figure 3-4 and Figure 3-5. The 
50% model similarly has largest errors in the LGM shear stress, increasing the effect of 
coarsening.

Figure 3-5. Comparing the horizontal size of the model. Model size2 has 25% of the horizontal 
extent of model el30, i.e. 2,250 km. Lines and colours as in Figure 3-1.
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Varying instead the vertical size of the model, i.e. decreasing the depth, has a much larger 
impact on the results, as was indicated already in the element size study. We ran models 
with 50%, 25% and 12.5% of the reference depth of 4,500 km, and show the results for the 
25%, 1,125 km deep, model size4 in Figure 3-6. Shear stresses and displacements, specially 
under the ice sheet, are now severely distorted and this model size is clearly unsatisfactory. 
The model with 50% of the reference depth also introduces errors in the results that are 
larger than what we can accept, larger in fact than the model size2 discussed above.

The models shown here, size2 and size4, have 22,994 and 24,634 elements, respectively, 
as compared to the 27,666 elements of the reference el30. The reduction in number of 
elements is clearly insufficient with respect to the large errors these models introduce.

We conclude by showing a model, size7, where we have increased both spatial dimensions 
to 20 by 10 ice radii, instead of the 10 by 5 of the reference el30, see Figure 3-7.

Comparing Figure 3-7 and Figure 3-4, we see that enlarging the model extent counteracts 
the errors in el30 compared to ref3, and significantly improves the model. Model size7 has 
32,237 elements, 17% more than el30 and runs in 19 minutes instead of 16 minutes of el30. 
This difference is of no importance and if high resolution modelling is required, a large 
spatial extent is well spent computer resources.

Figure 3-6. Comparing the vertical size of the model. Model size4 has 25% of the vertical extent 
of model el30, i.e. 1,125 km. Lines and colours as in Figure 3-1.
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3.3 Summary
The size of the finite elements can be increased significantly from the very high resolution 
used in the reference models without incurring large errors in the results. As shown above, 
the shear stress distribution is more sensitive to coarsening of the grid than the vertical 
displacement. We need also be aware that if high resolution studies of stresses close to the 
surface at present time is to be undertaken, these will require a dense grid. Increasing the 
element size from 1.5×0.5 km to 6×5 km, a factor of 40 in terms of square km, and coarsen-
ing the grid outside of the core area, still allows us to model the GIA process in sufficient 
detail. The modelling results are sensitive to changes in the total extent of the model, we 
have shown that 10×5 ice sheet radii is probably the smallest size advisable, and 20×10 
should be used for high resolution studies.

Figure 3-7. Enlarging the model by a factor 2 in both dimensions, making it 20×10 ice radii.. 
Lines and colours as in Figure 3-1.
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4 Rheological parameters

This section is concerned with the rheological parameters of the Earth model, more 
specifically Young’s modulus, viscosity, density, compressibility and the thickness of the 
elastic plate. These parameters can, obviously, be varied and combined in numerous ways. 
We shall limit this section to a few simple test cases in order to illustrate the effect the 
parameters have on the results of the modelling. As earlier, we shall restrict our attention to 
the output variables maximum shear stress, for its importance to fault stability, and vertical 
displacement, which is one of the primary observables. The performed variations and 
parameter values are listed in Table 4-1.

Table 4-1. Performed variations and corresponding parameter values. Empty cells 
indicate reference values and comma separated values refer to elastic plate and  
half-space, respectively.

Case Young’s  
modulus  
[GPa]

Half-space 
viscosity  
[Pa s]

Density  
[kg/m3]

Poisson’s  
ratio

Elastic plate 
thickness  
[km]

Reference: 
el30

 
192, 435

 
1.0E+21

 
3,380, 3,380

 
0.5

 
100

Stiffness: 
par1 
par2 
par3 
par4

 
96, 435  
384, 435  
192, 217.5  
192, 870

Half-space viscosity 
par51 
par6

 
1.0E+20  
1.0E+22

Density 
par8

 
2,730, 3,380

Material compressability 
compr1

 
0.25

Elastic plate thickness 
lay1 
lay2 
lay3 
lay4

 
20 
50 
150 
200

4.1 Stiffness
The stiffness of different regions in the Earth is readily available from investigations of 
P- and S-wave velocities. The precise number to use, e.g. for Young’s modulus, is, however, 
associated with some uncertainty, both due to the techniques used to measure and analyze 
the data, but also due to how the rock is modelled, e.g. including fluid effects or not. We 
vary Young’s modulus in the elastic plate and in the underlying half-space separately 
in order to study the effect on our reference variables. Figure 4-1 shows the result of 
decreasing Young’s modulus in the elastic plate by a factor of two, to 96 GPa in model par1, 
and in Figure 4-2 we increase the modulus by a factor of two, to 384 GPa in model par2.
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We see, as expected, that by decreasing the stiffness, Figure 4-1, we obtain smaller stress 
magnitudes when the plate bends. We also note that the stress is more concentrated around 
the plate’s inner inflection point. The opposite is true for the case of increased stiffness in 
Figure 4-2. The displacements show that the inner inflection point is not very much affected 
by the stiffness variations but that the outer inflection point moves outward, i.e. the fore-
bulge is widened, as the stiffness is increased. We also note that decreased stiffness slightly 
increases the magnitude of the maximum displacement, and increases the height of the 
forebulge, whereas the opposite is true for increased stiffness.

Varying the stiffness in the viscoelastic half-space in the same manner, i.e. a factor of two 
decrease and increase, see Figure 4-3 where we only show the differences, we note that the 
half-space stiffness has a much smaller influence on the surface variables than the stiffness 
of the elastic plate.

Again, the effect of decreasing the stiffness is the opposite of the effect of increasing the 
stiffness, although now there is a slight offset in the “mirror” effect. This is perhaps an 
effect of the elastic plate.

Figure 4-1. Young’s modulus decreased by a factor 2, to 96 GPa, in the elastic plate. Solid lines 
are the reference model, dashed lines the test model par1. Colours as in Figure 3-1.
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Figure 4-2. Young’s modulus increased by a factor 2, to 384 GPa, in the elastic plate. Lines and 
colours as in Figure 4-1.

Figure 4-3. A) Young’s modulus decreased by a factor 2, to 217.5 GPa, in the half-space. Left: 
Difference in maximum shear stress. Right: Difference in vertical displacement. B) As in A, but 
with Young’s modulus increased by a factor 2, to 870 GPa, in the half-space. Lines and colours as 
in Figure 3-1.
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4.2 Viscosity of the half-space
The viscosity of the half-space determines the deformation rate of the GIA process and 
therefore both the stress and displacement distributions. Since our model is evaluated at 
specific times, without respect to the half-space relaxation time, the results for different 
viscosities will vary significantly, as shown below. We show results for model par51 in 
Figure 4-4, with viscosity 10^20 Pas, and for model par6 in Figure 4-5, with viscosity 
10^22 Pas, compared to model el30 with viscosity 10^21 Pas. Relaxation times are 
49.5 years for model par51, 495 years for el30 and 4,951 years for par6.

Figure 4-4 shows how the low viscosity half-space responds quicker to the unloading of 
the ice sheet than the reference model, and has almost completed its rebound as the ice 
disappears at EoG. At LGM, there is less difference between the models, indicating that 
both models are close to the viscous limit. The high viscosity model in Figure 4-5, on the 
contrary, shows a slower response to the loading/unloading events, as expected. At LGM, 
model par6 has not deformed as much as model el30, the bending of the plate is much less, 
producing smaller shear stresses. Some of the difference between the vertical displacements 
at LGM and EoG is due to the elastic rebound as the ice is melted, we see that the bend in 
the overlying plate is very similar between the two times. The slow relaxation is striking 
at present time, where the high viscosity model has more then 250 m of residual rebound 
compared to the reference model.

These large effects of the viscosity on the vertical displacements are, of course, what  
makes glacial rebound studies such an excellent tool for inferences of mantle viscosity.  
We have not shown the horizontal displacements here, the effect on these are also large  
and provides additional constraints on viscosity structure, as discussed at length in e.g. 
/Milne et al. 2004/.

Figure 4-4. Viscosity of the half-space decreased by a factor 10 to 10^20 Pas. Lines and colours 
as in Figure 4-1
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4.3 Density
Estimates of Earth densities come from both velocity studies and gravimetry, and e.g. 
crustal models from large scale geophysical investigations frequently show high resolution 
in the density profiles. Incorporating density structure in GIA models is a longstanding 
topic of discussion /e.g. Wu and Peltier, 1982; Wu and Ni, 1996/, especially for models 
with density gradients, such as PREM /Dziewonski and Anderson, 1981/. Replacing density 
gradients with artificial density boundaries gives rise to extra buoyancy modes of relaxation, 
which may be undesirable. If, on the other hand, all density contrast is concentrated to 
an existing boundary, e.g. the Moho, then that boundary would have excessively large 
buoyancy forces. Different approaches to this problem exist in the literature, some use 
artificial boundaries, others average over a layer and concentrate the increase to an existing 
boundary and some studies use a “correct” density in the upper layer and then keep the 
density contrasts at the existing boundaries to the values obtained from the density models, 
resulting in lower than observed densities in all layers below the first.

Here we will only show a simple example of introducing density variations in the model. 
The elastic plate in model el30 has a density of 3,380 kg/m3 and for model par8 we instead 
assign the plate a density of 2,730 kg/m3. The underlying half-space retains the same 
density, 3,380 kg/m3. Results are showed in Figure 4-6, and we see that the lower density 
plate produces considerably less shear stress under the load at LGM. There is very little 
effect on the vertical displacements. The “discontinuity” in the plot of difference in shear 
stress occurs at the inflection point, when we cross from a compressive regime under the 
load to a tensile regime, starting at approximately 750 km. This is where the horizontal 
stress increases above the vertical stress. The cause of the sudden decrease in horizontal 
stress for model par8, and how/if that is related to the difference in the buoyancy forces 
discussed above, is still being investigated. 

Figure 4-5. Viscosity of the half-space increased by a factor 10 to 10^22 Pas. Lines and colours 
as in Figure 4-1.
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4.4 Material compressibility
Despite the fact that we, in the derivation of the simplified momentum equation above, 
explicitly had to refrain from including compressibility in our models in order for the finite 
element scheme to work, we can never the less incorporate material compressibility. 
The third term in Eq 1 above, i.e. the buoyancy term g i

0ρ ∆ , can be artificially separated 
into two terms, one containing material compressibility, i.e. Poisson’s ratio is less than 
0.5 so that the bulk modulus is finite, and one containing internal buoyancy, i.e. the 
dilatation of material that causes buoyancy. This separation is not possible physically, 
having compressibility will cause dilatancy, but a number of authors have shown that it 
effectively removes instabilities associated with internal buoyancy while allowing for 
material compressibility, see review in /Klemann et al. 2003/. In terms of the finite element 
modelling, incorporating material compressibility is trivial since it is already an integral part 
of the software package.

In Figure 4-7 we show the result of including material compressibility in the model. The 
model compr1 has Poisson’s ratio ν = 0.25 in the entire model, a reasonable value for 
crustal rocks. We see that compressibility has a relatively large effect on the shear stress, 
specially at maximum load, which is generally decreased when the material can compress. 
The effect on the vertical displacements is smaller, we see, however, that the bend in the 
plate is slightly increased by compressibility. The overall effect of introducing material 
compressibility is, therefore, similar to a softening of the material, compare Figure 4-1 and 
Figure 4-7.

Figure 4-6. Density in the elastic plate is reduced from 3,380 kg/m3 in model el30 to 2,730 kg/m3 
in model par8. Lines and colours as in Figure 4-1.
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4.5 Elastic plate thickness
Estimates of the thickness of the elastic lithosphere from GIA models range from 
approximately 50 km to 150 km /e.g. Milne et al. 2004; Lambeck et al. 1998a,1998b; 
review in Wolf, 1993/. We have studied how variations in the thickness of the elastic plate 
affects the shear stress and vertical displacements, using plate thicknesses of 20 km, 50 km, 
150 km and 200 km. The results are presented in Figure 4-8 to Figure 4-10. The vertical 
displacements in Figure 4-8 and Figure 4-9 show, as expected, that the thinner plates have 
steeper ends and more pronounced forebulges than the thicker plates. Also, the inflection 
points move further away from the ice edge and there is less and less remaining rebound 
as the plate thickens. There is, however, very little difference in the maximum vertical 
displacements below the ice load center.

Turning to the maximum shear stresses in Figure 4-10, where we present the results for 
50 km and 150 km elastic plates, we again see the effect of concentration of deformation 
at the ice edge for the thinner plate and the broadening of deformation for the thicker plate. 
At LGM, the thinner plate has higher stress levels outside and lower stresses inside the ice 
edge, than the reference model, and the thicker plate conversely higher stress levels below 
the plate and lower outside. At present time, the thinner plate has overall higher, and the 
thicker plate lower, shear stress magnitudes than the reference model.

Our results agree very well with those of /Klemann and Wolf, 1998/, who studied the 
same layer thicknesses using an axisymmetric model. The results here also conforms to 
general results for an elastic lithosphere on an inviscid/viscoelastic mantle, i.e. the effect 
of the lithosphere on stress and displacements increases with lithosphere thickness and the 
relaxation time decreases with increasing thickness. /Johnston et al. 1998/ showed that there 
is a critical wavelength of the load compared to the thickness of the elastic plate, which for 

Figure 4-7. Compressibility in the model. el30 is incompressible, compr1 has Poisson’s ratio 0.25. 
Lines and colours as in Figure 3-1.
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a spherical model with viscoelastic mantle was twice the load diameter equals 11.6 times 
the plate thickness. At the critical wavelength the glacially induced stresses are maximized. 
Our model has a critical wavelength of 4×900 km = 3,600 km and the corresponding plate 
thickness thus 310 km. Our results show increasing horizontal stresses under the ice load as 
the plate thickness is increased from 20 km to 200 km, in agreement with /Johnston et al. 
1998/.

Figure 4-8. A) Vertical displacements and displacement differences for the reference model and 
model lay1 with a 20 km thick elastic plate. B) Model lay2 with a 50 km thick elastic plate. Lines 
and colours as in Figure 4-1.
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Figure 4-9. A) Vertical displacements and displacement differences for the reference model and 
model lay3 with a 150 km thick elastic plate. B) Model lay4 with a 200 km thick elastic plate. 
Lines and colours as in Figure 4-1.

Figure 4-10. Contour plots of maximum shear stress for the model lay2, left, with a 50 km thick 
elastic plate, and model lay3, right, with a 150 km thick elastic plate. Lateral distance from the 
center of the ice load versus depth. Three different times are shown, LGM at the top, end of 
glaciation in the middle and present time, bottom. The black bar on top of the plots indicate the 
extent of the ice at LGM.
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4.6 Summary
This section has studied the response of the reference earth model to variations in the 
rheological model parameters. Specifically, the effect on maximum shear stress and vertical 
displacement at the surface have been investigated. 
• Varying the stiffness, represented by Young's modulus, of the elastic plate has a sig-

nificant effect on the shear stress. Increased stiffness increases stress magnitudes and 
the size of the region of high stress, decreased stiffness conversely decreases stress 
magnitudes and the high stress region size. The stiffness has less effect on the vertical 
displacements.

• Stiffness variations in the viscoelastic half-space has almost no effect on the surface 
variables.

• The viscosity of the half-space governs the temporal evolution of the model and, 
therefore, evaluating the model response at specific times will show large variations 
in both shear stress and vertical displacement with viscosity. Low viscosity implies 
fast response to variations in the load and, thus, small deglaciation stresses and 
displacements, whereas the opposite is true for a high viscosity half-space.

• Density variations need to be carefully implemented in the model not to produce 
unwanted buoyancy effects and mainly affect the region of the model under the load, 
which has the largest vertical displacements. Lowering the density of the elastic plate 
produces less shear stress under the load, but does not significantly affect the vertical 
displacements.

• Introducing material compressibility into the model produces an effect similar to a 
softening of the material.

• The thickness of the elastic plate has a large effect on the distribution and magnitude of 
both shear stress and vertical displacement. For a thinner plate, the bending at the ice 
edge increases and, consequently, shear stress localizes at the ice edge with relatively 
high magnitudes. Conversely, a thicker elastic plate produces less bending, more evenly 
distributed shear stress with lower magnitude at the ice edge and higher shear stress at 
the center of the load.

These model parameter variations show that, in general, the maximum shear stress is more 
sensitive to parameter changes than is the vertical displacements. This is a little unfortunate, 
as vertical displacement is one of the very few observables readily available to us in 
studying glacial isostatic adjustment. The modelling result show that it can be very difficult 
to discern which model parameter is responsible for a change in the model response, as 
an increase in e.g. compressibility can be obscured by a decrease in stiffness. However, 
the results of this section are very useful to understand the contributions of the various 
parameters to the GIA response.
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5 Multiple layers on a half-space

In this section we investigate the implications of dividing the elastic plate into an upper, 
elastic layer and a lower ductile layer. This is not primarily an effort to model a more 
realistic lithosphere, as that would probably be better modelled by a three-layer structure 
with a lower viscosity middle layer, but rather a visualization of the effects of a second, 
ductile layer.

The models shown in Figure 5-1 and Figure 5-2 have a 50 km elastic plate on a 50 km 
viscoelastic layer, overlying a viscoelastic half-space, with model mlay5 having viscosity 
10^20 Pa.s and model mlay1 10^22 Pa.s. All other parameters are as for the reference 
model, e.g. Young’s modulus is 192 GPa down to 100 km. The vertical displacements in 
Figure 5-1 behave as expected, the replacement of the lower 50 km of the reference plate 
with a ductile material thins the plate, c.f. Figure 4-8, and thus makes the plate bend more 
and accentuates the forebulge.

Figure 5-1. A) Vertical displacements and displacement differences for the reference model 
and model mlay5 with a 50 km thick elastic plate overlying a 50 km thick viscoelastic plate 
with viscosity 10^20. B) Model mlay1 with a 50 km thick elastic plate overlying a 50 km thick 
viscoelastic plate with viscosity 10^22. Lines and colours as in Figure 4-1.
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The shear stress distributions in Figure 5-2 show how stress is relaxed differently in the two 
models. The short relaxation time of the ductile layer in mlay5 instantly relaxes stresses in 
the second layer and there is very little stress transfer between the upper plate and the half-
space. Conversely, the higher viscosity layer in model mlay1is slower to relax shear stresses 
and stress is transferred to and from the half-space.

The shear stress distribution in the upper plate for the mlay1 model is similar to the 
distribution for the model with only a 50 km thick elastic plate on the half-space, model 
lay2 in Figure 4-10, except for the larger magnitudes as present time for mlay1. This is a 
result of the stress transfer from below. Model mlay5, however, is very different to model 
lay2 due to the quick stress relaxation.

Figure 5-2. Contour plots of maximum shear stress for the model mlay5, left, with a 50 km thick 
elastic plate overlying a 50 km thick viscoelastic plate with viscosity 10^20, and model mlay1, 
right, with a 50 km thick elastic plate overlying a 50 km thick viscoelastic plate with viscosity 
10^22. Lateral distance from the center of the ice load versus depth. Three different times are 
shown, LGM at the top, end of glaciation in the middle and present time, bottom. The black bar 
on top of the plots indicate the extent of the ice at LGM.
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6 Lateral heterogeneity

The introduction of lateral heterogeneities in Earth models evaluated by spectral GIA 
techniques is rather difficult and, therefore, finite element analysis is generally used instead. 
There has until recently been very few studies published on the effects of lateral variations 
on the results of GIA modelling, notable exceptions being the early studies by Sabadini and 
coworkers /e.g. Sabadini et al. 1986; Gasperini and Sabadini, 1989/ and later by Kaufmann 
and Wu and coworkers /e.g. Kaufmann et al. 1997; Kaufmann and Wu, 2002/.

Here we show three simple examples of the introduction of lateral variations in the 
reference model. The 100 km thick elastic plate of the reference model is abruptly thinned 
to 50 km in the models below. In model lat1 the thinning occurs halfway between the 
center of the ice and the edge, i.e. at 450 km. In model lat2 the thinning is at the ice edge, 
at 900 km, and in model lat3 the discontinuity is at 1,350 km, i.e. 1.5 ice radii. The material 
properties of the thinned plate are everywhere identical to the plate of the reference model, 
and the underlying half-space properties are used for the infill where the plate has thinned. 
These models simulate the thinning of the lithosphere at a plate margin, such as off the coast 
of Norway.

Studying first the vertical displacements, we see in Figure 6-1B to Figure 6-3B that when 
only the central section of the plate is 100 km thick the displacements are more similar to 
the displacements of a 50 km thick plate, c.f. Figure 4-8B, than a 100 km thick plate. As 
the discontinuity in plate thickness moves further away from the center of the load, the 
displacements grow more similar to the reference model. These results agree very well with 
a similar study in /Kaufmann et al. 1997/, who show results for vertical displacements and 
land uplift.

The lateral heterogeneity has a much more profound influence on the shear stress. We  
see in Figure 6-1A and Figure 6-3A that there are a “kinks” in the shear stress distributions 
at the location of the discontinuity. For model lat1, shear stress under the ice is rapidly 
varying, and the shear stress diminishes quicker away from the ice edge compared to 
the reference model. As the thickness discontinuity moves away from the ice center, the 
shear stress distributions become more similar to the reference model, although there are 
variations in the locations of the inflections points, model lat2, and the kink in model lat3.

We conclude that lateral variations in the Earth model may have significant impact on 
the stability of faults, depending on their spatial distribution with respect to the material 
discontinuities.
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Figure 6-1. Maximum shear stress and vertical displacement, and differences, for the reference 
model and model lat1, which has a 100 km thick elastic plate to 450 km laterally, and then a 
50 km thick elastic plate. Lines and colours as in Figure 4-1.

Figure 6-2. Maximum shear stress and vertical displacement, and differences, for the reference 
model and model lat2, which has a 100 km thick elastick plate to 900 km laterally, and then a 
50 km thick elastic plate. Lines and colours as in Figure 4-1.
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Figure 6-3. Maximum shear stress and vertical displacement, and differences, for the reference 
model and model lat3, which has a 100 km thick elastick plate to 1,350 km laterally, and then a 
50  km thick elastic plate. Lines and colours as in Figure 4-1.
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7 Ice models

The ice model is of paramount importance for the response of any Earth model. In this 
section we investigate how various ice models change the Earth response, using our usual 
variables of shear stress and vertical displacement. The reference model has been using 
an elliptical cross-section ice model, with lateral extent 900 km from center to edge, and 
a central height of approximately 2.8 km to produce a central load of 25 MPa. The ice has 
been stationary at 0–900 km, only the height of the ice has varied as the ice grows and 
shrinks. Below we will study ice models with a parabolic and a rectangular cross-section, 
and also a non-stationary elliptic ice model.

7.1 Stationary ice models
Here we will study the response of parabolic and rectangular ice sheets which occupy the 
same area during the modelling and only change their height, as with the reference ice 
model. Apart from the cross-sections, the ice models will be using the same parameters  
as the elliptic reference ice. Ice volumes, or rather areas as we model in 2D, in the three 
cases are related as 1:π/4:2/3 for the rectangular, elliptic and parabolic cases, respectively. 
The rectangular ice has a pressure discontinuity of 25 MPa at the ice margin, whereas the 
elliptic and parabolic ice sheets decrease continuously toward the margin. The elliptic ice 
has an infinite pressure gradient at the margin, where the parabolic ice, conversely, has a 
finite gradient.

The vertical displacements in Figure 7-1 show, as expected, that the ice sheets produce 
approximately the same vertical displacement under the center of the ice, but that the 
parabolic ice produces less bending and the rectangular ice more bending than the reference 
elliptical ice. 

Shear stress distributions in Figure 7-2 show that the location of the inner maximum, under 
the ice sheet, is localized close to the ice edge for the rectangular ice and is much broader, 
with the maximum at the center of the load, for the parabolic ice. This is in agreement with 
the variation in bending observed in Figure 7-1. Comparing with Figure 2-6, we see that 
the response to an elliptic ice is an intermediate between the rectangular and parabolic ice 
sheet responses. The shear stress maxima of the rectangular ice at LGM are of the same 
magnitude as the load pressure, whereas the maxima of the elliptic and parabolic ice sheets 
are smaller. The large differences in the locations of the inner maxima are not reflected 
in the outer maxima, the rectangular ice outer maximum is slightly further away from the 
ice margin than those of the elliptic and parabolic ice sheets, but the difference is small. 
There is a unique area of high shear stress located at mid-depth below the ice margin in the 
rectangular ice sheet model at LGM. Here the shear stress is of similar magnitude as the 
other stresses, causing a region of very unstable stress state.
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Figure 7-1. A) Vertical displacement, and differences, of the reference model and model P with a 
parabolic cross-section ice load. B) Vertical displacements and differences of the reference model 
and model R with a rectangular cross-section ice load. Lines and colours as in Figure 4-1.

Figure 7-2. Contour plots of maximum shear stress for the model P, left, with a parabolic cross-
section ice load, and model R, right, with a rectangular cross-section ice load. Lateral distance 
from the center of the ice load versus depth. Three different times are shown, LGM at the top, end 
of glaciation in the middle and present time, bottom. The black bar on top of the plots indicate the 
extent of the ice at LGM.
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7.2 Non-stationary, elliptic ice model
In order to investigate how the Earth response changes if we model the deglaciation process 
more realistically than by just letting the height decrease over a constant area, we construct 
an ice model which decrease both in height and lateral extent during deglaciation. This 
is an elliptic ice model, which at the start of the glaciation occupies the entire 900 km of 
lateral extent and grows linearly in height until the LGM. During deglaciation, however, 
the ice volume (or area) is decreased linearly from its LGM value to zero over 10 kyr in 
0.5 kyr intervals. At each 0.5 kyr point, the ratio of maximum height to lateral extent is 
kept constant and in the 0.5 kyr intervals the pressure amplitude is linearly interpolated. We 
show in Figure 7-3 the extent of the ice at 10 time intervals between LGM and EoG.

In Figure 7-4 we show the resulting shear stress distributions and vertical displacements at 
the surface. Since the ice loading is identical for the two ice models there is no difference 
in the LGM responses. However, at EoG and present time, we see that the retracting ice 
model produces a very different response than the stationary ice model. The location of 
maximum shear stress migrates toward the center of the ice and the magnitude is higher 
than for the reference model. There is significantly more vertical displacement below the 
center of the (former) ice sheet and the forebulge has also moved toward the center. The 
non-stationary ice model also leaves more residual rebound at present time. Comparing the 
shear stress distributions in the entire elastic plate in Figure 7-5 and Figure 2-6, we, again, 
observe the marked shift of the inner maxima toward the center of the ice at EoG and at 
present time. The maximum magnitude is higher for the non-stationary ice and the location 
of the maximum has shifted from the outer maximum to the inner maximum. There is less 
difference in the stress states, using the non-stationary ice moves the border between thrust 
and normal faulting further toward the center at EoG and at present.

Figure 7-3. Evolution of the non-stationary, elliptic cross-section ice model. At LGM the ice is 
identical to that of the reference model ice sheet. Ice cross-sections with 1 kyr intervals are shown 
in the figure, from the maximum at LGM, 18 kyr BP, to 9 kyr, BP. At 8 kyr the ice has disappeared.
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Figure 7-4. A) Maximum shear stress and B) vertical displacements for the reference model and 
the model ell_N with the non-stationary, elliptical ice model. Lines and colours as in Figure 4-1.

Figure 7-5. Contour plots of maximum shear stress, left, and state of stress, right, for the model 
with a non-stationary ice model (Figure 7-3). Stress states are coloured as; extension (blue), 
strike-slip (green) and thrust (red). Lateral distance from the center of the ice load versus depth. 
Three different times are shown, LGM at the top, end of glaciation in the middle and present time, 
bottom. The black bar on top of the plots indicate the extent of the ice at LGM.
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8 Glacial rebound and fault stability 

In the preceding sections we have investigated the Earth’s response, in terms of stress and 
displacements, to variations in the earth and ice models. In order to understand how these 
variations affect the possible reactivation of faults we need a fault stability criterion, and we 
will concentrate on the criterion most widely used in Earth Science applications, the Mohr-
Coulomb criterion. This section will briefly describe the Mohr-Coulomb criterion and two 
variations in its application to endglacial faulting. Fault stability will be then be investigated 
for three different variations of earth and ice models and the importance of initial stress and 
pore pressure will be discussed. The section closes with a brief discussion on the inclusion 
of Mohr-Coulomb plasticity as a material property in the models.

8.1 Mohr-Coulomb frictional failure theory
The Mohr-Coulomb (or Coulomb or Coulomb-Navier) criterion relates the maximum 
shear stress, τ, and the normal stress, σn, on a fault plane in a brittle material through the 
coefficient of friction, µ, and the cohesion S0:

n P f S 0         (7)

where Pf is the pore fluid pressure. The Coulomb criterion is an empirical relationship 
which only involves the maximum and minimum principal stresses and, thus, disregards  
any influence of the intermediate principal stress on the initiation of faulting. When 
considering pre-existing faults at depth in the crust, the cohesion term is insignificant and 
usually ignored. For a fault whose normal is at an angle θ to the maximum principal stress, 
S1, the shear and normal stresses on the fault is given by:

S 1 S 3

2
sin 2 θτ          (8)

and

n

S 1 S 3

2

S 1 S 3

2
cos 2 θσ        (9)

where S3 is the minimum principal stress. The coefficient of friction can be written as 
µ = tan(φ), where φ is the angle of friction. If the plane has the orientation θ = φ/2+π/4, it 
will be the first plane on the Mohr-circle to reach the failure envelope and is, consequently, 
referred to as optimally oriented. Combining Equations 7–9 gives:
S 1 Pf
S 3 Pf

2 1
2

        (10)

/Jaeger and Cook, 1979/. This equation is convenient for predicting the differential stress 
necessary to cause fault instability at depth.
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Relationships between the shear and normal stress on a fault, fault orientation and the 
principal stresses are straightforwardly illustrated by a Mohr diagram, see Figure 8-1, where 
stresses are denoted σ but we will use S below. We can clearly see how the semi-circle 
defined by the maximum and minimum principal stresses approach the failure envelope as 
differential stress, S1 – S3, is increased and how the circle recedes from failure as the mean 
stress, S1 + S3, is increased. Pore fluid pressure reduces the mean stress, which in the Mohr 
diagram moves the circle to the left and, thus, again approach failure. In the Mohr diagram 
we have also illustrated the two fault stability measures used in this study. The fault stability 
margin, FSM, /Quinlan, 1984; Johnston, 1987/ is the distance in Mohr-space from a fault’s 
position on the Mohr-circle to failure, orthogonal to the failure envelope, see Figure 8-1:

FSM = β S 1 3 2 P f 0
1
2

S 1 S 3+ 2 τµ + S      (11)

where β = sin(atan(µ))/2µ. The instability measure, used e.g. by /Lund and Slunga, 1999/, is 
similar but simply the vertical distance to the failure envelope from a fault's position on the 
circle, see Figure 8-1:
Instab = n Pf S 0τ σµ         (12)

We note that the FSM is calculated for an optimally oriented fault whereas the Instab 
measure is applicable to any fault. We also see that for a fault to become unstable, the FSM 
path requires a decrease in fault normal stress as well as an increase in shear stress, which is 
achieved if the differential principal stress increases while the mean stress is constant. The 
Instab path, on the other hand, only considers an increase in fault shear stress for a given 
fault normal stress, i.e an increase in differential principal stress accompanied by a suitable 
increase in mean stress.

In a series of papers /e.g. Wu and Hasegawa, 1996a,b; Wu, 1997; Wu and Johnston, 2000/, 
Wu has analyzed the influence of rebound stresses on fault stability using the FSM measure. 
Noting the uncertainty in the values for µ, S0, Pf, and the crustal deviatoric stress, Wu settled 
on using a differential measure of the FSM. The dFSM is the difference between the FSM at 
two different points in time, usually involving two different stress fields. Defined as

dFSM ( t ) = FSM ( t ) − FSM ( t0 ) →
1
2

S 1 t 0 S 3 t 0 S 1 t S 3 t S 1 t S 3 t S 1 t 0 S 3 t 0+ µβ + +

  
           (13)

dFSM is positive if faults are more stable at time t than at the reference time t0, and negative 
if fault failure is promoted. We note that for a time invariant µ, dFSM is independent of 
pore pressure, cohesion and the weight of the overburden if these quantities are also time 
invariant. We also note that since FSM applies to optimally oriented faults, we are not com-
paring the same faults at time t and time t0 but rather the generic stability of faults. There 
is, however, a problem associated with dFSM when assessing the stability of faults. Due to 
it’s nature as a differential measure, dFSM will correctly predict the increased/decreased 
stability of faults as the stress field evolves. It will not, however, indicate whether or not the 
faults are close to failure. For such an assessment an absolute measure of fault stability have 
to be utilized.

Below we will investigate how fault stability is affected by rebound stresses using both the 
dFSM and Instab measures. This will enable us to compare the merits of the two approaches 
and how they best add to our understanding of endglacial faulting.
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8.1.1 Pore pressure

In the model results presented above we have not incorporated effects of fluids. We know 
that the lithosphere to a large extent is saturated by fluids and that the pore pressure that 
these fluids exert reduce normal stresses in the Earth. Since it is these reduced, or effective, 
stresses that act to cause fault failure, as we saw in Eqns 7 and 10, inclusion of pore 
pressure in the modelling of endglacial faulting is crucial. In order to include pore pressure 
in our modelling in a “correct” manner we have to use a finite element formulation that 
allows pore fluid movement. This is straightforwardly done in our modelling software 
Abaqus, as it is equipped with the proper type of elements. It is, however, difficult to find 
simple models of GIA with pore fluids that we can validate our model against. We will use 
the Decovalex projects /e.g. Wallroth et al. 2002/ results, which incorporated pore fluids 
in glacial rebound models but only use elastic media. GIA with pore fluids in viscoelastic 
media are more elusive. We have, therefore, so far not included pore pressure on the 
element level in the modelling. This is, however, an important and necessary development 
of the model since it will allow us not only to reduce the differential stress necessary to 
cause fault instability but also to incorporate dynamic pore fluid effects as the ice evolves.

From a stress point of view, a simple way to include a static pore fluid pressure is by 
reducing the density of the rock, thereby accounting for the decrease in normal stress caused 
by the fluids. Assuming hydrostatic conditions in the elastic part of our reference model 
would decrease the density from 3,380 kg/m3 to 2,380 kg/m3. Unfortunately, this is not 
possible from the GIA modelling viewpoint. We saw in section 4.3 how the shear stress 
of the reference model was affected by a decrease in elastic plate density from 3,380 to 
2,730 kg/m3. The buoyancy mode of the isostatic adjustment process is sensitive to density 
variations like these and a lowering of the model density is, thus, not a viable way to 
achieve pore pressure effects.

Another possibility to include pore pressure effects is to assume that they are insignificant to 
the rebound stress modelling, an assumption which may be incorrect if dynamic effects are 
incorporated, and only include them as static effects on fault stability in the postprocessing 
stage. We have chosen this method in the section on deviatoric initial stresses below, where 
a deviatoric stress state is calculated assuming a certain pore pressure. This deviatoric 
stress is added to the result of the rebound stress modelling and the sum of the stresses then 
assessed from a faulting perspective, again including a static pore pressure as dFSM and 
Instab is calculated. Noting that the elastic part of the model, where the deviatoric stress is 
applied, lacks any plastic behaviour to relax stresses, this approach to pore fluid pressure 
inclusion is valid for this particular model.

Figure 8-1. Left: Angular relationship between failure planes and principal stresses. Right: Mohr 
circles for two different states of stress, red and blue. The Instability measure is indicated by the 
two orange lines, dFSM by the green line.
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8.1.2 Initial state of stress

It is well known from e.g. earthquake focal mechanisms, borehole measurements and 
geology that the ambient state of stress in the lithosphere is not simply equal to the 
weight of the overburden /e.g. Zoback, 1992/. There is, in most areas, a significant 
deviatoric component added to the isotropic overburden stress. In addition, there is three 
independent lines of evidence indicating that the state of stress in intraplate continental 
upper crust is in frictional failure equilibrium: (1) seismicity induced by fluid injection or 
reservoir impoundment; (2) seismicity induced by other earthquakes and; (3) in situ stress 
measurements in deep boreholes /see e.g. Zoback and Townend, 2001, for references/. 
Measured stresses are frequently found to be approximately equal to those predicted 
by Coulomb frictional failure theory /e.g. review in Townend and Zoback, 2000/, using 
laboratory derived coefficients of friction of 0.6–1.0 /Byerlee, 1978/.

The above mentioned circumstances indicate that a careful inclusion of the initial state of 
stress is very important if we are to properly assess fault stability in the varying stress field 
created by the GIA processes. Below we will show how the fault stability measures are 
affected by the initial stress, using zero, isotropic and deviatoric initial stresses.

8.2 Glacial rebound and faulting
In this section we will show some examples of how the stresses induced by glacial rebound 
affect the stability of faults, using the Instab and dFSM measures discussed above. We will 
consider three different models: our reference model with a 100 km thick elastic plate, the 
model lay2 of section 4.5, which differs from the reference model by having a 50 km thick 
elastic plate, and the reference earth model with the non-stationary ice of section 7. In the 
discussion below these models will be referred to as model m1, m2 and m3 respectively. 
The models will be investigated using three different initial stress states: first with no initial 
stress in order to understand how the rebound stresses are reflected by our fault stability 
measures; then an isotropic initial stress and finally a deviatoric initial state of stress with 
the upper crust in frictional equilibrium on optimally oriented faults, with a coefficient of 
friction of 0.6. We recall that the ice has a lateral extent of 900 km and exerts a maximum 
pressure of 25 MPa below the centre, decreasing elliptically toward the ice margin. LGM 
is at 18 kyr BP and the ice disappeared at 8 kyr BP in models m1 and m2, and gradually 
decreased from 18 to 8 kyr BP in model m3. Stresses and fault stability are displayed for 
2.5 km depth at four different locations in the plots below: 500, 750, 900 and 1,050 km 
from the ice center. We see from e.g. Figure 2-6 that these locations correspond to the inner 
maxima in shear stress, the shear stress minimum, the edge of the ice and the outer shear 
stress maximum, respectively. We also note, from the ice history in Figure 7-3, that the non-
stationary ice of model m3 disappears from the 750 km point between 15–14 kyr and from 
the 500 km point between 11 and 10 kyr. We have chosen to show the maximum horizontal, 
SH, and vertical, Sv, stresses below. It should be noted that although these correspond to the 
directions of the maximum, S1, and minimum, S3, principal stresses in most of the model, 
there is a region, central in the plate below the ice margin, where there are significant shear 
stresses. Also, the directions of S1 and S3 are interchanged as we move along the model, 
cf. Figure 2-6, implying that SH is sometimes equal to S1 and sometimes to S3. Finally, 
we point out that the models, as used in this section, do not contain plasticity in the elastic 
plate, i.e. the models will not deform plastically in response to stresses above the fault 
stability threshold and these stresses will, consequently not be relaxed by the model. In 
section 8.3 below we will briefly consider plasticity.
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8.2.1 Stress free initial state

We start by studying only the incremental stresses from the rebound process and their 
influence on our faulting measures. In Figure 8-2 we show the maximum horizontal and 
vertical stress for the three models and four locations. As expected, the horizontal stress in 
models m1 and m3 are identical up to LGM due to the identical earth and ice models thus 
far, and all three models have, almost, identical vertical stresses until LGM. Only at the ice 
margin does the thin plate model m2 have slightly higher vertical stress than m1 and m3. 
We see, again, that the glaciation produce high horizontal incremental stresses, at 500 km 
for models m1 and m3 the ratio of horizontal to vertical stress is approximately two, the 
difference being approximately 20 MPa. As discussed in section 4.5 and Figure 4-10, we 
note again that model m2 has its maximum and minimum shear stress areas offset toward 
the ice edge. Figure 8-2 clearly show how the horizontal stress vary from compressive 
under the ice to tensional in the forebulge region, and that the magnitude of the maximum 
tensional SH is approximately half of the maximum compressional SH. We also see the 
large impact the non-stationary ice model has on the stress evolution, specially under the 
ice. As discussed in section 7, the receding ice amplifies stress under the central areas of 
the ice and then decrease stress magnitudes faster than the stationary ice as the ice margin 
passes. Finally, as noted earlier, all models show residual stress today.

Turning now to the Instability and dFSM measures in Figure 8-3, we recall from the 
definitions that positive Instability implies fault reactivation whereas negative is more 
stable faults. dFSM, on the other hand, promotes stability with positive values and promotes 
faulting with negative values. /Wu, 1996a/ points out that for the dFSM measure to be of 
interest, the optimally oriented faults must be considered as critically stressed at the onset 
of glaciation. This assumption is not compatible with the assumption of zero initial stress, 
obviously, but it is nevertheless useful for the presentation of the rebound stresses.

We see how, during the glaciation phase, stability is promoted by the dFSM measure under 
the ice sheet but that outside the ice faulting is strongly promoted. The Instability measure 
similarly shows that there is no faulting under the ice but that outside the ice sheet faulting 
should be abundant. These observations are consistent with those of /Johnston, 1989/, who 
demonstrated that, for an elastic model, the presence of a large ice sheet tends to suppress 
seismic activity. As deglaciation starts, we see that under the ice sheet the stability measures 
both indicate that faults become increasingly less stable. When the mean stress, i.e. the aver-
age of the principal stress magnitudes, becomes small enough compared to the differential 
stress, the faults become unstable. We see that this generally happens before deglaciation 
is complete. We also note that the maximum measures of instability are generally reached 
as the ice disappears. Faults in our reference model m1 are predicted to become unstable 
at approximately 13 kyr BP at 500 km, and at 9 kyr BP at 750 km. The non-stationary 
ice of model m3 significantly increases the magnitude of Instability or dFSM, and at the 
same time decreases the time from LGM to the onset of fault instability, this is especially 
noticeable at 750 km. Comparing Figure 8-2B and Figure 8-3B, we note that the large 
increase in Instability/decrease in dFSM occurs as the ice of model m3 recedes from 750 
km and the state of stress changes from reverse faulting to normal faulting. It should be 
noted that as the stress state changes, the orientation of the optimally oriented faults change 
as they follow S1. In the case above we go from studying faults dipping 30 degrees to faults 
dipping 60 degrees. After the completion of deglaciation, viscoelastic relaxation causes both 
stability measures to tend slowly toward zero. Outside the ice sheet both measures indicate 
that the model continues to be unstable during the entire deglaciation process. This is due to 
the tensional horizontal stress not being matched by any increase in the vertical stress, i.e. 
the differential stress increase much more than the mean stress.
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Figure 8-2. Horizontal, solid lines, and vertical, dashed lines, stresses at 2.5 km depth versus 
time in kyr BP. The stresses are incremental rebound stresses only. Model m1 in red, model m2 
in green, model m3 in blue. Stresses investigated at A) 500 km, B) 750 km, C) 900 km and D) 
1,050 km from the center of the ice load.
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Figure 8-3. Instability, solid lines, and dFSM, dashed lines, at 2.5 km depth versus time in kyr BP. 
Model m1: red, m2: green, m3: blue. Distances as in Figure 8-2.
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In Figure 8-4 we have plotted Instability and dFSM for the entire first 2,000 km of the 
model versus time. The depth of evaluation is again 2.5 km for model m1 and m3, but 1.25 
km for model m2. These depths correspond to the center of the first row of finite elements. 
We now observe more clearly the patterns outlined above, i.e. how the ice sheet promotes 
stability under the ice but instability outside, specially in the forebulge region. We also see 
how a thinner elastic plate produces a more localized region of fault instability outside the 
ice sheet, and that the non-stationary ice decreases the time to instability below the outer 
regions of the (former) ice sheet and increases the magnitude of the fault stability measure. 
We note that these models show fault instability at all times outside the ice edge.

We conclude this section by again stressing that the above discussion only pertains to the 
rebound stresses. The inclusion of overburden and crustal scale deviatoric stresses will 
significantly change some of the conclusions of this section. 

Figure 8-4. Contour plots of Instability and dFSM for models m1, top, m2, middle, and m3, 
bottom, at depth 2.5 km for m1 and m2 and 1.25 km for m3. Note that the zero contour is between 
white and blue. Models only include rebound stresses. Distance from the center of the ice load 
versus time, in kyr BP. The black bar on top of the plots indicate the extent of the ice at LGM.
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8.2.2 Isotropic initial stress: the weight of the overburden

In this section we will make our study of the effect of the rebound stresses on fault stability 
slightly more realistic by including the isotropic weight of the overburden in the models. 
Using our model’s density of 3,380 kg/m3, the mean stress in the model increases by 
33 MPa/km. It is instructive to compare this gradient to the maximum horizontal stress 
produced by the glaciation, approximately 45 MPa at 2.5 km depth. We see that already 
at 2.5 km depth, the glacially induced horizontal stress is only 50% of the overburden 
stress and as we proceed deeper into the model the rebound stresses will become relatively 
insignificant. In Figure 8-5 we show the maximum horizontal and the vertical stresses for 
the model m1 including the weight of the overburden. We see that differential stresses are 
virtually undetectable at these scales.

Figure 8-6 shows the horizontal and vertical stresses at the four locations discussed above, 
and we see that the curves are identical to those in Figure 8-2, except for the added 83 MPa 
of overburden stress.

Turning to Figure 8-7, we encounter the above mentioned problem of dFSM as a differential 
measure. The dFSM measures in Figure 8-7 are identical to those of Figure 8-3, indicating 
that exactly the same tendencies for fault stability/instability apply when the overburden 
is included in the models. The Instability measure, however, shows that although there are 
variations in the tendency toward increased or decreased stability, the verburden effectively 
prohibits all fault instability everywhere in the model by a massive increase of the normal 
stress. Inserting numbers in Eq 12, we note that the Instability measure in the initial, iso-
tropic, state has a value of Ins = 0 – µ(S1 + S3)/2 = –49.7 MPa, which is what the Instability 
measure tends toward during the viscoelastic relaxation.

Figure 8-5. Contour plots of the maximum horizontal, left, and vertical, right, stresses for model 
m1 including the weight of the overburden. Time slices at LGM, EoG and present. Distance from 
the center of the ice load versus depth.
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In order to show the effect of the overburden even more explicitly, we include a Mohr circle 
diagram of the state of stress at the 500 km location at 11 kyr BP, see Figure 8-8. We see 
that the Mohr circles (the differential stresses) are tiny and very far away from the failure 
envelope, although the dFSM measure shows that models m1 and m3 are now promoting 
fault failure.

These examples show that careful interpretation of the dFSM measure is necessary when 
discussing fault stability, and also that careful language consideration needs to be taken not 
to confuse “promoting fault instability” with “fault instability”.

Figure 8-6. Horizontal, solid lines, and vertical, dashed lines, stresses at 2.5 km depth versus time 
in kyr BP. The stresses are incremental rebound stresses with the weight of the overburden added. 
Model m1: red, m2: green, m3: blue. Distances as in Figure 8-2.
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Figure 8-7. Instability, solid lines, and dFSM, dashed lines, at 2.5 km depth versus time in kyr 
BP. Models include the weight of the overburden. m1: red, m2: green, m3: blue. Distances as in 
Figure 8-2.
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8.2.3 Deviatoric initial stress: the critically stressed crust

In order to model a more realistic initial stress field we add a deviatoric stress tensor to 
the weight of the overburden. As discussed above, we have not been able to include pore 
pressure in the modelling proper. However, since our models do not include plasticity 
in the elastic plate at this stage, the entire deviatoric stress study can be undertaken as a 
postprocessing operation on the modelled rebound stresses, and we can then “artificially” 
consider a non-zero pore pressure. In this study pore pressure is taken into account both 
when constructing the deviatoric stress field and in the evaluation of the fault stability 
measures. Using a static pore pressure of 40% of the vertical stress (slightly above 
hydrostatic) and a coefficient of friction of 0.6, we construct a reverse faulting deviatoric 
stress field, using Eq 10, in frictional failure equilibrium on optimally oriented faults. 
Following /Zoback and Townend, 2001/ we limit the strength of the plate to approximately 
the value inferred for the cumulative strength of the lithosphere, 1–4 10^12 N/m /Forsyth 
and Uyeda, 1975; Bott and Kusznir, 1984; Kusznir, 1991/. Applied to our discontinuous 
models this implies that the deviatoric stress field is confined to the upper 15 km of the 
elastic plate. Below 15 km the initial stress field is isotropic (we note that our Maxwell 
viscoelastic half-space cannot be initialized to a deviatoric stress since it does not have any 
long term strength).

In Figure 8-9 we plot the horizontal and vertical stresses at 2.5 km depth and we see that 
the horizontal stresses are now a factor of approximately two higher than the vertical stress. 
Before considering the entire time variations of the Instability and dFSM measures we, 
again, view the Mohr diagram at 500 km, 2.5 km depth and 11 kyr BP, see Figure 8-10. We 
now see that the initial states of critically stressed, optimally oriented faults, have evolved 
during glaciation and partial deglaciation into stress states where optimally oriented faults 
in models m1 and m3 would fail.

Figure 8-8. Mohr diagram with the maximum and minimum principal stresses, scaled by the 
vertical stress, at 500 km from the load center and 11 kyr BP. Model m1: red, m2: green, m3:blue. 
Rebound stress plus overburden weight. Coefficient of friction is 0.6.
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Figure 8-9. Horizontal, solid lines, and vertical, dashed lines, stresses at 2.5 km depth versus time 
in kyr BP. The stresses are incremental rebound stresses with the weight of the overburden and a 
deviatoric component added. Model m1: red, m2: green, m3: blue. Distances as in Figure 8-2.
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Turning to the full time series in Figure 8-11, we note some interesting changes in the 
stability measures. Comparing Figure 8-11A with its equivalent without initial stress in 
Figure 8-3A, we note that not only are the dFSM identical, also the Instability measures 
are equal. We might have expected that the shape of the curves would be identical, as in 
the case of the isotropic initial stress in Figure 8-7, but not the numbers themselves. This 
equivalence, however, stems from the fact that although they derive from very different 
stresses, both examples refer back to a state of Instability equal zero. In Figure 8-3A, 
because when there are no rebound stresses, all stresses are zero and, thus, Instability 
is zero, and in Figure 8-11A because we constructed the initial state to be in failure 
equilibrium, e.g. Instability equals zero. Compare this to the isotropic state above, where 
initial Instability equals –49.7 MPa. The second effect responsible for the similarity of 
the figures is the stress state. Both figures are derived from consistently reverse faulting 
environments. Figure 8-11B and Figure 8-3B shows the effect of stress state reversals. We 
noted above that the rebound stresses of model m3 change from reverse to normal faulting 
at 15 kyr BP, at 750 km. With the reverse faulting initial state of this section, however, the 
small change in the rebound stresses cannot affect the stress state and we see in Figure 
8-11B that instead of promoting fault failure, the stability measures turn back toward 
increased stability before viscoelastic relaxation slowly brings the stresses back toward 
the initial state. The largest difference between the two different initial states is, however, 
found for the two locations at and beyond the ice margin. The instability predicted by the 
zero initial stress models have changed into complete stability during both glaciation and 
deglaciation. This is due to the tensional horizontal stress produced by the rebound, which 
acts to decrease the compressive differential stress of the initial state and thus stabilizes  
the model.

Figure 8-10. Mohr diagram with the maximum and minum principal stresses, scaled by the 
vertical stress, at 500 km from the load center and 11 kyr BP. Model m1: red, m2: green, m3:blue. 
Rebound stress plus overburden weight and a deviatoric component. Coefficient of friction is 0.6.
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Figure 8-11. Instability, solid lines, and dFSM, dashed lines, at 2.5 km depth versus time in kyr 
BP. Models include the weight of the overburden and a deviatoric component. m1: red, m2: green, 
m3: blue. Distances as in Figure 8-2.
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In Figure 8-12 we, again, show a plot of the stability measures along the entire top of the 
model at different times. As observed above, we see that in comparison to Figure 8-4 we 
now have a large region beyond the ice margin that has become stabilized by the initial field 
during almost the entire glaciation/deglaciation period. Only at times after the final degla-
ciation is there a region beyond the forebulge which shows increased tendency toward fault 
failure. The three models show slightly different space-time regions of maximum instability, 
with the stationary ice models having a region closer to the ice edge than the non-stationary 
ice model, which shows a motion of the location of maximum instability toward the ice 
center as time progresses.

An interesting result of the deviatoric, frictional failure equilibrium, initial state example is 
that it shows that there is complete equivalence between the Instability and dFSM measures 
of fault stability in this case. Obviously, this can be inferred already from the definitions 
above, but the current example illustrates it nicely. The example also emphasizes, again, that 
the initial stress state is very important when assessing the stability of faults.

Figure 8-12. Contour plots of Instability and dFSM for models m1, top, m2, middle, and m3, 
bottom. Note that the zero contour is between white and blue. Models include rebound stresses, 
overburden weight and a deviatoric component. Distance from the center of the ice load versus 
time, in kyr BP. The black bar on top of the plots indicate the extent of the ice at LGM.
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8.3 Mohr-Coulomb plasticity as a model material property
Our modelling software, Abaqus, allows for the implementation of Mohr-Coulomb 
plasticity as a material property. During execution, the model will be examined for plastic 
yielding and if the stress state is such that Mohr-Coulomb failure is activated, the material 
will relax the excess stress through plastic creep. This allows us to model fault failure in a 
more accurate manner since stresses can be relaxed, as occurs in the crust when the failure 
envelope is reached. As mentioned above, we have not yet implemented pore pressure 
effects into the model so in order to construct an initial state of stress in frictional failure 
equilibrium, we have to resort to very large differential stress. This modelling effort is 
currently work in progress and is not yet completely tested. In Figure 8-13 we show 
the result of using plasticity in Abaqus with an initial reverse state of stress in frictional 
equilibrium and without pore pressure. We limit the modelling to the models m1 and m3. 
We see in Figure 8-13 that the stability measures never reach the zero level under the ice 
load, the stresses have been relaxed by plastic creep. There is a region beyond the ice 
edge where the stability measures have passed the zero level, indicating that plasticity 
have not been activated in these areas. The reason for this behaviour is currently under 
investigation, as are the oscillations in model m3. We note that, as expected, the results in 
Figure 8-13 agree very well with those of Figure 8-12, the deviatoric initial state, and not 
with Figure 8-4 with zero initial stresses. The application of plasticity as a material property 
in the modelling will be very valuable for future modelling efforts.

Figure 8-13. Contour plots of Instability and dFSM for models m1, top, and m3, bottom. Note 
that the zero contour is between white and blue. Models include rebound stresses, overburden 
weight and a deviatoric component. Mohr-Coulomb plasticity is used as a material property in the 
modelling. Distance from the center of the ice load versus time, in kyr BP. The black bar on top of 
the plots indicate the extent of the ice at LGM.
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9 Summary and discussion

It is generally accepted that the large earthquakes that shook northern Scandinavia 
approximately 9,000 years ago and created fault scarps visible over hundreds of kilometer, 
sometimes more than 10 m high, were triggered by the deglaciation process. A quantitative 
description of the deglaciation process and its relation to fault stability has, however, been 
elusive. In this report we have studied a number of parameters involved in quantitative 
modelling of glacial isostatic adjustment (GIA) in order to illustrate how they affect stress, 
displacement and fault stability during deglaciation.

Using a variety of different reference models we have verified that our modelling  
approach, a finite element analysis scheme with proper adjustments for the requirements  
of GIA modelling, performs satisfactory. The size of the model and the density of the 
grid have been investigated in order to be able to perform high resolution modelling in 
reasonable time.

This report includes studies of both the ice and earth models. Naturally, the ice model 
describes the evolution of the load and thus dictates the effects of glaciation and 
deglaciation. We have seen that the steeper the ice edge is, the more concentrated is  
the deformation around the edge and consequently shear stress localizes with high 
magnitudes around the ice edge. Variations in the temporal evolution of both height  
and basal extent of the ice is very important for the response of the earth model and we  
have shown that the last stages of ice retreat can cause fault instability over a large  
lateral region.

In order to mimic the real Earth itself, an earth model can contain a very large number of 
parameters. We have chosen to investigate a few of these, which we have varied in the 
simplest ways possible. We have studied the effects of variations in stiffness, viscosity, 
density, compressibility and layer thickness on shear stress and vertical displacement. More 
complicated geometries such as multiple layers and lateral layer thickness variations have 
also been investigated. We generally find that these variations have more effect on the shear 
stress distributions than on the vertical displacement distributions. We also note that shear 
stress magnitude is affected more than the spatial shape of the shear stress distribution. 
Frequently, the variation of one parameter can be, in part, counteracted by the variation of 
another parameter, such that it would be very difficult to infer these parameters from limited 
data sets such as, e.g. vertical displacements only.

We chose to implement two variations on the Mohr-Coulomb failure criterion for our study 
of fault stability during glaciation/deglaciation. The Instability measure is the difference 
between the shear stress magnitude on a fault plane and the normal stress times the 
coefficient of friction and assesses how far from instability the fault is. The differential 
Fault Stability Margin, dFSM, /Wu and Hasegawa, 1996a/ is a relative measure which 
assesses whether or not a fault becomes more unstable when the stress state changes. We 
show that dFSM must be cautiously interpreted with respect to the initial state whereas 
Instability has a more direct interpretation. The Instability measure, however, is more 
vulnerable to erroneous assumptions of the actual values of e.g. the coefficient of friction 
and pore pressure. We also show that the initial state of stress is very important for the 
assessment of fault stability during glacial rebound.
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This report highlights some important aspects that must be taken into consideration in 
future, more specific, modelling of fault stability in Scandinavia during deglaciation. A 
proper ice model, in terms of both ice thickness and temporal evolution, is, obviously, 
most important. The initial state of stress and pore pressure are variables that need careful 
consideration and are just as important as the earth model. Much of the earth model can be 
inferred from refraction seismic profiling and gravity/magnetic observations and modelling. 
The viscosity structure is a more delicate problem; a ductile lower crust, the strength of the 
lithospheric mantle and how to relate seismic lithospheric depths to equivalent elastic thick-
nesses are all issues that need consideration. We have seen interesting result in this report 
with regard to the ice models and the lateral variation of elastic plate thickness. A stationary 
ice edge will promote faulting closer to the edge at a different time than a receding ice. This 
could very well have bearing on the conditions during the Weichselian deglaciation, which 
was mostly stationary to the west but receded rapidly from the east and south. Western 
Scandinavia has a large variation in crustal and lithospheric thicknesses, from the thick 
interior of the Baltic shield, to the oceanic lithosphere off the coast of Norway. We saw in 
the models of lateral thickness variations that such rapid thinning causes sudden variations 
in the stress field which may be of importance for fault stability.
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