P-04-288

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX02, 2003

Sub-area Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

December 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-04-288

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX02, 2003

Sub-area Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

December 2004

Keywords: Site/project, hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KLX02 at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Simpevarp sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX02 performed between 8th July and 1st of August 2003.

The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 204–1,004 m below ToC. The results of the test interpretation are presented as transmissivity and hydraulic freshwater head

Summary

Injektionstester har utförts i borrhål KLX02 i delområde Laxemar området, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata från de hydrauliska injektionstesterna i borrhål KLX02. Testerna utfördes mellan den 8 juli till den 1 augusti 2003.

Syftet med hydrotesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissivitet (T), hydraulisk konduktivitet vid olika mätskalor av 100 m, 20 m, och 5 m sektioner. Transient utvärdering under injektions- och återhämtningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 204–1 004 m borrhålslängd. Resultaten av test utvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent nivå sötvattenpelare (fresh-water head).

Borehole KLX02 – Summary of results.

Contents

1	Introdu	ction	9
2	Objecti	ve	11
3 3.1	Scope of Borehol	f work es	13 13
3.2 3.3	Control	of equipment	14 19
4	Equipm	ent	21
4.1	Descript	tion of equipment	21
4.2	Sensors		25
4.3	Data acc	juisition system	26
5	Executi	on	27
5.1	Preparat	ions	27
5.2	Executio	on of tests/measurements	27
	5.2.1	Test principle	27
5.2	5.2.2	lest procedure	28
5.5	Data hai	ndling	29
5.4	Analyse	s and interpretation	29
	5.4.1	Analysis software	29
	5.4.2	Analysis approach Dulse injection tests	29
	5.4.5	Analysis methodology	21
	5.4.4	Steady state analysis	31
	546	Flow models used for analysis	31
	547	Calculation of the static formation pressure an equivalent	51
	5.1.7	freshwater head	32
	5.4.8	Derivation of the recommended transmissivity and the	52
		confidence range	33
	5.4.9	Normalized derivative plot analysis	34
6	Results		37
6.1	100 m si	ingle-hole injection tests	37
	6.1.1	Section 204 – 304 m, test no 1, injection	37
	6.1.2	Section 304–404 m, test no 2, injection	38
	6.1.3	Section 404–504 m, test no 1, injection	39
	6.1.4	Section 504–604 m, test no 4, injection	40
	6.1.5	Section 604–704 m, test no 1, injection	41
	6.1.6	Section 704–804 m, test no 1, injection	42
	6.1.7	Section 804–904 m, test no 1, injection	43
()	6.1.8	Section 904–1,004 m, test no 1, injection	44
6.2	20 m sm	igle-hole injection tests	45
	0.2.1	Section 204–224 m, test no 2, injection	45
	0.2.2	Section 224–244 m, test no 1, injection	40
	0.2.3	Section 244–204 III, test no 1, injection	4/
	0.2.4	Section 284 304 m test no 1, injection	48
	0. <i>L</i> .J	Section $204-304$ m, test no 1, mjection	50

	6.2.6	Section 304–324 m, test no 1, injection	51
	6.2.7	Section 324–344 m. test no 1, injection	52
	628	Section 384–404 m test no 1 injection	53
	629	Section 424–444 m test no 1 injection	54
	6 2 10	Section 444–464 m test no 1 injection	55
	6 2 11	Section 464–484 m test no 1 injection	56
	6 2 1 2	Section 481–501 m test no 1, injection	50
	6 2 13	Section 481–504 m test no 1, injection	58
	6 2 14	Section 504-524 m test no 1 injection	50
	6215	Section 524–524 m, test no 1, injection	57 60
	6216	Section 544, 564 m, test no 1, injection	61
	6217	Section 544–504 m, test no 1, injection	62
	0.2.17	Section 734–004 III, test no 1, injection	02
	0.2.10	Section 724–744 m, test no 1, injection	03
	0.2.19	Section 744–704 m, test no 1, injection	04
	6.2.20	Section 764–784 m, test no 1, injection	65
	6.2.21	Section /84–804 m, test no 1, injection	66
	6.2.22	Section 804–824 m, test no 1, injection	6/
	6.2.23	Section 824–844 m, test no 1, injection	68
	6.2.24	Section 844–864 m, test no 1, injection	69
	6.2.25	Section 864–884 m, test no 1, injection	70
	6.2.26	Section 884–904 m, test no 1, injection	71
	6.2.27	Section 904–924 m, test no 1, injection	72
	6.2.28	Section 922–942 m, test no 1, injection	73
	6.2.29	Section 943–963 m, test no 1, injection	74
	6.2.30	Section 964–984 m, test no 1, injection	75
	6.2.31	Section 984–1,004 m, test no 1, injection	76
6.3	5 m sin	gle-hole injection tests	78
	6.3.1	Section 300–305 m, test no 1, injection	78
	6.3.2	Section 305–310 m, test no 1, injection	79
	6.3.3	Section 310–315 m, test no 1, injection	80
	6.3.4	Section 315–320 m, test no 1, injection	81
	6.3.5	Section 320–325 m, test no 1, injection	82
	6.3.6	Section 325–330 m, test no 1, injection	83
	6.3.7	Section 330–335 m. test no 1. injection	84
	6.3.8	Section 335–340 m, test no 1, injection	85
	6.3.9	Section 385–390 m. test no 1, injection	87
	6310	Section 390–395 m test no 1 injection	88
	6311	Section 395–400 m test no 1 injection	89
	6312	Section 400–405 m test no 1 injection	89
	6313	Section 420–425 m test no 1 injection	90
	6314	Section 425–430 m test no 1 injection	91
	6315	Section 429–434 m test no 1 injection	92
	6316	Section 434-439 m test no 1 injection	93
	6317	Section 440-445 m test no 1 injection	94
	6318	Section 445-450 m test no 1 injection	94
	6310	Section 450-455 m test no 1 injection	05
	63.20	Section 455-460 m test no 1 injection	95
	6321	Section 460_465 m test no 1 injection	90 07
	6222	Section 460 465 m test no 2 injection	۶/ ۵0
	6 2 22	Section 465 470 m test no 1 injection	70 00
	0.3.23	Section 403-470 III, test no 1, Injection	99 100
	0.3.24	Section 500, 505 m test no 1, injection	100
	0.3.23	Section 500–505 m, test no 1, injection	101
	0.3.20	Section 505–510 m, test no 1, injection	102

pulse injection103 $6.3.28$ Section 515–520 m, test no 2, injection104 $6.3.29$ Section 525–530 m, test no 1, injection105 $6.3.30$ Section 530–535 m, test no 2, injection106 $6.3.31$ Section 535–540 m, test no 1, injection107 $6.3.32$ Section 540–545 m, test no 1, injection108 6.4 Single-hole pulse injection tests108
6.3.28 Section 515–520 m, test no 2, injection 104 6.3.29 Section 525–530 m, test no 1, injection 105 6.3.30 Section 530–535 m, test no 2, injection 106 6.3.31 Section 535–540 m, test no 1, injection 107 6.3.32 Section 540–545 m, test no 1, injection 108 6.4 Single-hole pulse injection tests 108
6.3.29 Section 525–530 m, test no 1, injection 105 6.3.30 Section 530–535 m, test no 2, injection 106 6.3.31 Section 535–540 m, test no 1, injection 107 6.3.32 Section 540–545 m, test no 1, injection 108 6.4 Single-hole pulse injection tests 108
6.3.30 Section 530–535 m, test no 2, injection 106 6.3.31 Section 535–540 m, test no 1, injection 107 6.3.32 Section 540–545 m, test no 1, injection 108 6.4 Single-hole pulse injection tests 108
6.3.31Section 535-540 m, test no 1, injection1076.3.32Section 540-545 m, test no 1, injection1086.4Single-hole pulse injection tests108
6.3.32Section 540–545 m, test no 1, injection1086.4Single-hole pulse injection tests108
6.4 Single-hole pulse injection tests 108
6.4.1 Section 344–364 m, test no 1, pulse injection 109
6.4.2 Section 364–384 m, test no 1, pulse injection 110
6.4.3 Section 404–424 m, test no 1, pulse injection 111
6.4.4 Section 564–584 m, test no 1, pulse injection 112
6.4.5 Section 704–724 m, test no 1, pulse injection 113
6.4.6 Section 341–346 m, test no 1, pulse injection 114
6.4.7 Section 470–475 m, test no 1, pulse injection 115
6.4.8 Section 475–480 m, test no 2, pulse injection 116
6.4.9 Section 520–525 m, test no 1, pulse injection 117
7Synthesis1197.1Summary of results1207.2Correlation analysis1317.2.1Comparison of steady state and transient analysis results1317.2.2Comparison of steady state and transient analysis results131
storage coefficient 132
8Conclusions1338.1Transmissivity1338.2Equivalent freshwater head1338.3Flow regimes encountered133
9 References 135
Appendix 1 File description table
Appendix 2 Test analyses diagrams
Appendix 3 Test summary sheets
Appendix 4 Nomenclature

- Appendix 5 Normalized derivative plots
- Appendix 6 SICADA data tables

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB, 2001a/, as well as a site-specific program for the investigations in the Simpevarp area /SKB, 2001b/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB, 2002/.

Measurements were carried out according in borehole KSH01A during 8th July to 1st August 2003 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-03-063 (SKB internal controlling documents). Data and results were delivered to the SKB site characterization database SICADA with field note number Simpevarp 138.

Borehole KLX02 is situated in the Laxemar area 2.5 km northwest from the nuclear power plant at Simpevarp, Figure 1-1. The borehole was drilled 1992 at 1,700 m depth with an inner diameter of 76 mm. The upper 200 m is cased with large diameter telescopic casing ranging from diameter 340–92 mm.

Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX02.

The aim at the time for drilling was to test drilling technique and enable investigation beyond 1,000 m depth. Two extensive borehole investigation programmes were performed during a five year period. Hydrotesting has previously been done in the borehole and done with 300 m test sections and showed that the uppermost 207–505 m were of highest conductivity and the section 505–803 of lowest hydraulic conductivity. Later hydrotesting concluded that one existing highly conductive zone was present at 250 m below ToC. An account of previous activities and results in KLX02 is found in /SKB, 2001c/.

2 Objective

The objective of the hydrotests in borehole KLX02 is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analysis and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following test programme was performed.

No of injection tests	Interval	Positions	Time/test	Total test time
8	100 m	204–1,004 m	125 min	16.7 hrs
35	20 m	204–1,004 m	90 min	54 hrs
36	5 m	300–700 m	90 min	52.5 hrs
			Total:	123.2 hrs

 Table 3-1. Performed test programme at borehole KLX02.

3.1 Boreholes

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point in the boreholes is the centre of top of casing (ToC), given as Elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

Title	Value				
Borehole length (m)	1,700.500				
Drilling period(s)	From date	To date	Secup (m)	Seclow (m)	Drilling type
	1992-08-15	1992-09-05	0.000	202.950	Core drilling
	1992-10-15	1992-11-29	202.950	1,700.500	Core drilling
Starting point coordinate	Length (m)	Northing (m)	Easting (m)	Elevation (masl)	Coord system
(centerpoint of TOC)	0.000	6366768.985	1549224.090	18.400	RT90-RHB70
Angles	Length (m)	Bearing Inclination	(– = down)		
	0.000	9.119		-85.000	

Table 3-2. Information about KLX02 (from SICADA 2003-05-23 10:11:11).

Title	Value			
Borehole diameter	Secup (m)	Seclow (m)	Hole diam (m)	
	0.400	3.000	0.340	
	3.000	200.800	0.215	
	200.800	201.000	0.165	
	201.000	202.950	0.092	
	202.950	1,700.500	0.076	
Casing diameter	Secup (m)	Seclow (m)	Case in (m)	Case out (m)
	0.000	3.000	0.250	
	3.000	200.800	0.183	0.194
	200.800	202.950	0.077	0.084
Grove milling	Length (m)	Trace detecTable		
	220.000	YES		
	300.000	YES		
	400.000	YES		
	500.000	YES		
	600.000	YES		
	700.000	YES		
	803.000	YES		
	901.000	NO		
	951.000	YES		
	1,001.000	YES		
	1,051.000	YES		
	1,101.000	YES		
	1,201.000	YES		
	1,301.000	YES		
	1,401.000	YES		
	1,501.000	YES		
	1,601.000	YES		

3.2 Tests

Injection tests were conducted according to the Activity Plan AP PS 400-03-034 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m, 20 m test sections between 204–1,004 m below ToC and in 5 m test sections between 300–700 m below ToC. The criteria for performing injection tests in 20 m and 5 m test sections was as follows (see Figure 3-1):

- for the 20 m sections a measurable flow of > 0,001 L/min in the previously performed tests at 100 m test scale,
- for the 5 m sections a measurable flow of > 0,001 L/min in the previously performed tests in at 20 m test scale.

The measurements were performed with SKB's custom made equipment for hydraulic testing called PSS2, SKB MD 345.100 (SKB internal document).

 * eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Bh ID	Test section	Test	Test	Test start	Test stop
	(m)	type¹	no	Date, time (yyyy-mm-dd hh:mm:ss)	Date, time (yyyy-mm-dd hh:mm:ss)
KLX02	204–304	3	1	2003-07-10	2003-07-10
				08:23:00	11:15:42
KLX02	304–404	3	2	2003-07-10	2003-07-10
				13:06:06	15:49:57
KLX02	404–504	3	1	2003-07-10	2003-07-10
				17:17:27	19:35:55
KLX02	504–604	3	4	2003-07-11	2003-07-11
				10:05:06	17:25:07
KLX02	604–704	3	1	2003-07-11	2003-07-12
				18:46:23	08:04:23
KLX02	704–804	3	1	2003-07-12	2003-07-12
				09:31:43	12:01:13
KLX02	804–904	3	1	2003-07-12	2003-07-12
				14:29:13	16:20:58
KLX02	904–1004	3	1	2003-07-12	2003-07-12
				17:51:11	19:41:44
KLX02	204–224	3	2	2003-07-14	2003-07-14
				12:16:05	14:27:45

Table 3-3. Tests	performed.
------------------	------------

Bh ID	Test section	Test	Test	Test start	Test stop
	(m)	type ¹	no	Date, time (yyyy-mm-dd hh:mm:ss)	Date, time (yyyy-mm-dd hh:mm:ss)
KLX02	224–244	3	1	2003-07-14	2003-07-14
				15:32:56	17:15:35
KLX02	244–264	3	1	2003-07-14	2003-07-14
				17:50:43	19:11:14
KLX02	264–284	3	1	2003-07-15	2003-07-15
				08:27:56	09:54:58
KLX02	284–304	3	1	2003-07-15	2003-07-15
				10:46:41	12:09:00
KLX02	304–324	3	1	2003-07-15	2003-07-15
				12:56:28	14:44:09
KLX02	324–344	3	1	2003-07-15	2003-07-15
				15:33:57	16:57:59
KLX02	344–364	7	1	2003-07-15	2003-07-16
				17:31:20	07:57:23
KLX02	364–384	7	1	2003-07-16	2003-07-16
				08:35:17	09:39:47
KLX02	384–404	3	1	2003-07-16	2003-07-16
				10:20:41	13:45:14
KLX02	404–424	7	1	2003-07-16	2003-07-16
				14:23:23	15:29:01
KLX02	424–444	3	1	2003-07-16	2003-07-16
				16:07:33	17:31:20
KLX02	444–464	3	1	2003-07-16	2003-07-16
				18:03:49	19:59:09
KLX02	464–484	3	1	2003-07-17	2003-07-17
				08:08:16	10:13:06
KLX02	481–501	3	1	2003-07-17	2003-07-17
				10:48:27	12:52:40
KLX02	484–504	3	1	2003-07-17	2003-07-17
				13:21:26	15:06:32
KLX02	504–524	3	1	2003-07-17	2003-07-17
				15:40:43	18:46:30
KLX02	524–544	3	1	2003-07-17	2003-07-17
				19:25:26	21:32:36
KLX02	544–564	3	1	2003-07-18	2003-07-18
				11:21:00	13:41:58
KLX02	564–584	7	1	2003-07-18	2003-07-18
				14:16:16	16:30:51
KLX02	584–604	3	1	2003-07-18	2003-07-18
				17:12:14	18:41:14
KLX02	704–724	7	1	2003-07-19	2003-07-19
				09:18:04	10:48:39
KLX02	724–744	3	1	2003-07-19	2003-07-19
				11:23:16	15:45:40

Bh ID	Test section	Test	Test	Test start Test stop		
	(m)	type ¹	no	Date, time (yyyy-mm-dd hh:mm:ss)	Date, time (yyyy-mm-dd hh:mm:ss)	
KLX02	744–764	3	1	2003-07-19	2003-07-19	
				16:21:59	18:03:27	
KLX02	764–784	3	1	2003-07-19	2003-07-19	
				18:46:26	22:07:40	
KLX02	784–804	3	1	2003-07-20	2003-07-20	
				08:30:05	09:51:18	
KLX02	804–824	3	1	2003-07-20	2003-07-20	
				10:36:25	13:06:43	
KLX02	824–844	3	1	2003-07-20	2003-07-20	
				13:39:13	16:02:14	
KLX02	844–864	3	1	2003-07-20	2003-07-20	
				16:42:46	19:17:46	
KLX02	864–884	3	1	2003-07-21	2003-07-21	
				08:11:54	10:07:05	
KLX02	884–904	3	1	2003-07-21	2003-07-21	
				10:45:16	12:38:38	
KLX02	904–924	3	1	2003-07-21	2003-07-21	
				13:11:12	16:10:35	
KLX02	922–942	3	1	2003-07-21	2003-07-21	
				16:48:25	18:34:37	
KLX02	943–963	3	1	2003-07-22	2003-07-22	
				08:27:35	10:10:55	
KLX02	964–984	3	1	2003-07-22	2003-07-22	
				10:53:15	12:59:46	
KLX02	984–1,004	3	1	2003-07-22	2003-07-22	
				13:39:39	15:33:16	
KLX02	300–305	3	1	2003-07-24	2003-07-24	
				10:32:54	12:36:23	
KLX02	305–310	3	1	2003-07-24	2003-07-24	
				13:01:43	16:09:26	
KLX02	310–315	3	1	2003-07-24	2003-07-24	
				16:35:19	18:33:22	
KLX02	315–320	3	1	2003-07-25	2003-07-25	
				08:25:57	09:47:53	
KLX02	320–325	3	1	2003-07-25	2003-07-25	
				10:12:02	12:46:06	
KLX02	325–330	3	1	2003-07-25	2003-07-25	
				13:18:15	15:11:54	
KLX02	330–335	3	1	2003-07-25	2003-07-25	
				15:37:19	17:42:08	
KLX02	335–340	3	1	2003-07-25	2003-07-25	
				18:05:23	19:34:39	
KLX02	341–346	7	1	2003-07-26	2003-07-26	
				08:19:56	10:41:54	

T _T	Transient evaluation (log-log or lin-log). Judged best	$[L^2/T]$	m ² /s
	evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}		
T _{NLR}	Evaluation based on non-linear regression.	$[L^2/T]$	m^2/s
S	Storage coefficient, (Storativity)	[-]	-
S*	Assumed storage coefficient	[-]	-
S_{f}	Fracture storage coefficient	[-]	-
Sm	Matrix storage coefficient	[-]	-
S _{NLR}	Storage coefficient, evaluation based on non-linear regression	[-]	-
Ss	Specific storage coefficient; confined storage.	[1/L]	1/m
S _s *	Assumed specific storage coefficient; confined storage.	[1/L]	1/m
٤	Skin factor	[-]	-
٤*	Assumed skin factor	[-]	-
Č	Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m ³ /Pa
C _D	$C_{\rm D} = C \cdot \rho_{\rm w} g / (2\pi \cdot S \cdot r_{\rm w}^2)$, Dimensionless wellbore storage	[-]	-
	coefficient		
ω	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio of	[-]	-
	storage coefficient between that of the fracture and total		
	storage.		
λ	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
T _{GRF}	Transmissivity interpreted using the GRF method	$[L^2/T]$	m^2/s
S _{GRF}	Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}	Flow dimension interpreted using the GRF method	[-]	-
c _w	Water compressibility; corresponding to β in hydrogeological	$[(LT^2)/M]$	1/Pa
	literature.	2	
c _r	Pore-volume compressibility, (rock compressibility);	$[(LT^2)/M]$	1/Pa
	Corresponding to α/n in hydrogeological literature.	2	
ct	$c_t = c_r + c_w$, total compressibility; compressibility per	$[(LT^2)/M]$	1/Pa
	volumetric unit of rock obtained through multiplying by the		
	total porosity, n. (Presence of gas or other fluids can be		
	included in c_t if the degree of saturation (volume of respective		
	fluid divided by n) of the pore system of respective fluid is also		
	included)		
n	Total porosity	-	-
ρ	Density	$[M/L^3]$	kg/(m ³)
$\rho_{\rm w}$	Fluid density in measurement section during pumping/injection	[M/L']	kg/(m٬)
μ	Dynamic viscosity	[M/LT]	Pa s
$\mu_{\rm w}$	Dynamic viscosity (Fluid density in measurement section	[M/LT]	Pa s
	during pumping/injection)		

Bh ID	Test section	Test	Test	Test start	Test stop
	(m)	type ¹	no	Date, time (yyyy-mm-dd hh:mm:ss)	Date, time (yyyy-mm-dd hh:mm:ss)
KLX02	385–390	3	1	2003-07-26	2003-07-26
				11:20:36	13:46:54
KLX02	390–395	3	1	2003-07-26	2003-07-26
				14:12:41	16:06:07
KLX02	395–400	3	1	2003-07-26	2003-07-27
				16:35:40	08:11:01
KLX02	400–405	3	1	2003-07-27	2003-07-27
				08:38:04	09:24:22
KLX02	420–425	3	1	2003-07-27	2003-07-27
				09:55:46	10:56:17
KLX02	425–430	3	1	2003-07-27	2003-07-27
				11:23:43	12:09:03
KLX02	429–434	3	1	2003-07-27	2003-07-27
				13:20:34	14:21:18
KLX02	434–439	3	1	2003-07-27	2003-07-27
				14:48:52	16:31:48
KLX02	440–445	3	1	2003-07-27	2003-07-27
				16:58:13	17:58:57
KLX02	445–450	3	1	2003-07-28	2003-07-28
				08:13:41	09:13:23
KLX02	450–455	3	1	2003-07-28	2003-07-28
				09:38:48	10:38:26
KLX02	455–460	3	1	2003-07-28	2003-07-28
				11:02:06	13:29:31
KLX02	460–465	3	1	2003-07-28	2003-07-28
				13:53:46	15:33:06
KLX02	460–465	3	2	2003-08-01	2003-08-01
				11:51:55	15:49:18
KLX02	465–470	3	1	2003-07-28	2003-07-28
				15:56:11	17:44:44
KLX02	470–475	7	1	2003-07-28	2003-07-29
				18:07:32	08:23:13
KLX02	475–480	7	2	2003-08-01	2003-08-01
				09:44:33	11:22:57
KLX02	480–485	3	1	2003-07-29	2003-07-29
				10:54:04	13:28:33
KLX02	500–505	3	1	2003-07-29	2003-07-29
				14:00:46	14:59:49
KLX02	505–510	3	1	2003-07-29	2003-07-29
				15:29:13	16:29:02
KLX02	510–515	3	1	2003-07-29	2003-07-29
				16:54:05	20:42:34
KLX02	510–515	7	2	2003-07-31	2003-07-31
				18:16:37	23:56:00

Bh ID	Test section	Test	Test	Test start	Test stop
	(m)	type¹	no	Date, time (yyyy-mm-dd hh:mm:ss)	Date, time (yyyy-mm-dd hh:mm:ss)
KLX02	515–520	3	2	2003-07-31	2003-07-31
				14:49:10	17:50:05
KLX02	520–525	7	1	2003-07-30	2003-07-30
				13:23:25	15:12:17
KLX02	525–530	3	1	2003-07-30	2003-07-30
				15:36:31	16:58:56
KLX02	530–535	3	2	2003-07-31	2003-07-31
				11:06:21	14:18:09
KLX02	535–540	3	1	2003-07-31	2003-07-31
				08:09:25	09:08:37
KLX02	540–545	3	1	2003-07-31	2003-07-31
				09:44:18	10:42:00

1: 3: Injection test, 7: Pulse injection test.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX02 were conducted.

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage at joints in the pipe string was done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the Mätssystembeskrivning.

4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next Figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc. shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

Figure 4-1. A view of the layout and equipment of PSS2.

PSS2 is documented in photographs 1-6.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Contact carrier SS 1,0 m carrying connections for sensors below.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Gauge carrier with breakpin SS 2.0 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN.
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Pipe gauge carrier SS 2.0 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa.

The tool scheme is presented in Figure 4-2.

Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Unit	Value/Range	Comments
$p_{\text{sec},a,b}$	Pressure	Druck PTX 162- 1464abs	9–30	VDC	
			4–20 0–13.5 Resolution accuracy	mA MPa % of FS	
$T_{sec,surf,air}$	Temperature	BGI	18–24	VDC	
			4–20	mA	
			0–32	°C	
			0.1	°C	
\mathbf{Q}_{big}	Flow	Micro motion	0–100	kg/min	Massflow
		Elite sensor	± 0.1	%	
Q_{small}	Flow	Micro motion	0–1.8	kg/min	Massflow
		Elite sensor	± 0.1	%	
p _{air}	Pressure	Druck PTX 630	9–30	VDC	
			4–20	mA KPa % of FS	
			0–120		
			± 0.1		
\mathbf{p}_{pack}	Pressure	Druck PTX 630	9–30	VDC	
			4–20	mA MPa	
			0–4	% of FS	
			± 0.1		
$\mathbf{p}_{\text{in,out}}$	Pressure	Druck PTX 1400	9–28	VDC	
			4–20	mA MPa	
			0–2.5		

Table 4-1. Technical specifications of sensors.

Table 4-2. Sensor positions and wellbore storage (WBS) controlling factors.

Borehole information			Senso	rs	Equipment affecting WBS coefficient		
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KLX02 204–30	204–304	1	pa	201.5	Test section	Signal cable	9.1
			р т	205.25		Pump string	33
			p₀	306		Packer line	6
KLX02 20	204–224	1	\mathbf{p}_{a}	201.5	Test section	Signal cable	9.1
			p	205.25		Pump string	33
			p _b	205.5 226		Packer line	6
KLX02 3	300–305	1	pa	297.5	Test section	Signal cable	9.1
			p	301.25	301.25 301.5 307	Pump string	33
			р _ь	301.5 307		Packer line	6

4.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection tests parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

5 Execution

5.1 Preparations

The Site Acceptance Test (SAT) between 26th May and 6th June were forming part of previous work. Due to the work done in the frame of the SAT task on borehole KLX02, the test container was already installed, the packer inflation and test valve hoses were filled with water and the rig was mounted at arrival of the test team.

Following additional preparation work and functional checks were conducted prior to starting test activities:

- Function check of shut-in tool both ends, overpressure by 1 MPa, leak detected on lower side close to valve. Discarded. Replace shut-in tool. Check new shut-in tool (OK).
- Synchronize clocks on all computers (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water OK).
- Check functionality of level indicator works well with 77 mm ring.
- Translate all protocols into English (OK).
- Filling injection tank with 2"pump (OK).
- Filling pressure vessels with clean water (OK).
- Filling buffer tank with water (OK).
- Filling packers with water and de-air (OK).
- Measure and assemble test tool (OK).

5.2 Execution of tests/measurements

5.2.1 Test principle

The tests were conducted as constant pressure injection (CHi phase) followed by a shut-in pressure recovery (CHir phase). In some cases, when the test section transmissivity was too low (typically lower than $1E-9 \text{ m}^2/\text{s}$) no measurable flow could be registered during the CHi phase. In some of these cases the CHir phase was conducted as a pulse injection test as a trial (PI phase). In other cases, also due to the very low test section transmissivity, the packer compliance period lasted very long (typically several hours). As agreed with SKB, a test was skipped when there was no indication for a pressure stabilisation within 45 min (for 100 m sections) or within 30 min (for 20 m and 5 m sections, see Figure 5-1). In such cases there was no active test conducted, the behaviour of the compliance period being taken as a proof of very low interval transmissivity (lower than $1E-11 \text{ m}^2/\text{s}$). Between test no 42 (922–942 m) and no 43 (943–963 m) as well as between test no 52 (335–340 m) and no 53 (341–346 m) are no overlaps of the sections. The positions of the packers had to be shifted to avoid cross-flow and damage of the packers due to major fractured zones. Basics for selection of performing tests in 20 m and 5 m section see chapter 3.2.

Figure 5-1. Flow chart for test performance.

5.2.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Constant head injection. 5) Pressure recovery. 6) Packer deflation. The injection tests in KLX02 has been carried out by applying a constant injection pressure of c 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured.

The duration for each phase is presented in Table 3-3.

In some cases injection and recovery phases were prolonged. This was due to testing zones of high interest for example high flow zones, low flow zones or when performing pulse tests.

 Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX02.

Position test tool to new test section (correct position using the borehole markers)	Approx. 30 min
Inflate packers with 17 bar	25 min
Close test valve	10 min
Check tubing integrity with 6 bar	2 min
De-air system	2 min
Set automatic flow control parameters	5 min
Start injection	20 to 45 min
Close test valve, start recovery	20 min or more
Open test valve	10 min
Deflate packers	25 min
Move to next test depth	

5.3 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in csv format. These files were also used for the subsequent test analysis.

5.4 Analyses and interpretation

5.4.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

5.4.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman, 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant rate and pressure recovery tests are analysed using the method described by /Gringarten, 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

5.4.3 Pulse injection tests

A test is always initiated as a constant pressure injection. However, if after a few seconds of injection the rate quickly drops to zero, this indicates a very tight section. It is then decided to close the test valve and measure the pressure recovery. The pressure recovery is analysed as a pulse injection phase (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

The analysis was then done according to:

- Calculation of initial estimates of the model parameters by using the Ramey Plot /Ramey et al. 1975/. This plot is typically not presented in the appendix.
- Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989; Chakrabarty and Enachescu, 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages. An example of the type curves is presented in Figure 5-3.

Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

Figure 5-3. Deconvolution type curve set for pulse test analysis.

5.4.4 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates /superposition HORNER plot; Horner, 1951/. In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne, 1990/.

5.4.5 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye, 1967/.

5.4.6 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

In other cases, the use of a homogeneous flow model led to very large skin factors (e.g. 20). In these cases, in addition to the homogeneous flow model analysis an analysis using a composite flow model was conducted. In these cases the skin was represented explicitly as inner composite zone.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. However, in all cases it was possible to achieve to acceptable analysis results (good match quality) by using radial flow geometry (flow dimension of 2).

5.4.7 Calculation of the static formation pressure an equivalent freshwater head

The static pressure measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using straight line or type curve extrapolation in the Horner plot.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the static formation pressure, corrected for atmospheric pressure measured by the surface gauge, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-4 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$h = \frac{(p_i - p_{atm})}{\rho \cdot g}$$

which is the p_i value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head is

$$head = RP_{elev} - Gd + \frac{(p_i - p_{atm})}{\rho \cdot g}.$$

Figure 5-4. Schematic methodologies for calculation of the freshwater head.

5.4.8 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality, which is most of the cases at the CHir phase. In cases when a composite flow model was deemed to be most representative for the hydraulic behaviour of the specific test section, than the outer zone transmissivity was selected as recommended value, because it is regarded as most representative for the large scale undisturbed formation properties.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In some cases the tests were not analysable due to the fact that the flow rates during the CHi phase were below the range of the flowmeter (< 0.5 mL/min) or because the compliance phase following packer inflation was too long, thus indicating a very low interval transmissivity. In such cases the interval transmissivity was recommended to a value of $1.0\text{E}-11 \text{ m}^2/\text{s}$ which was in the same time regarded as the upper boundary of the confidence

range. This value is consistent with the observations made during the analysis of the other tests in the borehole (i.e. the transmissivity must be lower than in the cases when the test was analysable).

5.4.9 Normalized derivative plot analysis

In addition to the type curve analysis described above, a normalized derivative plot analysis was performed. The advantage of this analysis is that it allows displaying the derivatives of several tests and test phases in a normalized fashion, such that the radial flow transmissivity can be directly read from the y-axis of the plot. A normalized plot synthesis of all tests conducted is presented in Appendix 5. In the following, the theory of normalized plots is briefly presented:

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared in a normalized plot and the phase showing the best derivative quality was selected.

The synthesis of hydraulic packer tests as well as long term monitoring data can be conducted using normalized derivative plotting techniques. This technique unifies the analysis of tests conducted under different inner boundary conditions (i.e. constant rate, constant pressure and slug/pulse), allowing a direct comparison between such measurements in terms of flow model and transmissivity.

Test type	Data processing	Transmissivity transformation equation
Slug/Pulse tests	$p_{PR}(t) = \frac{\int_{0}^{t} (p_i - p_w(t))}{(p_w(t) - p_0)} \left[\frac{1}{s}\right]$	$p_{PR}(t) = \frac{C \rho g p_D(t_D)}{2\pi T}$
Constant rate tests	$p(t) = p_w(t) - p_0 [Pa]$	$\Delta p(t) = \frac{q \rho g p_D(t_D)}{2\pi T}$
Constant pressure tests	$q_{inv}(t) = \frac{1}{q_w(t)} \left[\frac{s}{m^3} \right]$	$q_{inv}(t) = \frac{\Delta p \rho g}{2\pi T Q_D(t_D)}$

Table 5-2.	Data processing and transmissivity transformation equations used in the
derivative	normalization analysis.

The table presents the data processing methodology used in the derivative normalization analysis. The method is based on the fact that in the case of infinite acting radial flow, the semilog derivative of the flow model ($p_D(t_D)$ or $Q_D(t_D)$) converges to the constant value of 0.5 at middle and late times:

$$\frac{dp_D(t_D)}{d\log t_D} = 0.5$$

$$\frac{dQ_D(t_D)}{d\log t_D} = 0.5$$
(1)

for $t_D > 1E+02$ (constant rate) and $t_D > 1E+01$ (constant pressure and slug/pulse).

The transformation equations in the table can be rewritten for the semilog derivative:

$$\frac{dp_{PR}(t)}{d\log t} = \frac{C \rho g \frac{dp_D(t_D)}{d\log t_D}}{2\pi T} \qquad \text{for slug/pulse tests}$$
(2)

$$\frac{d\Delta p(t)}{d\log t} = \frac{q \rho g \frac{dp_D(t_D)}{d\log t_D}}{2\pi T} \qquad \text{for constant rate tests}$$
(3)
$$\frac{dq_{inv}(t)}{dq_{inv}(t)} = -\frac{\Delta p \rho g}{d\log t_D}$$

for constant pressure tests

$$\overline{d \log t} = \overline{2\pi T \frac{dQ_D(t_D)}{d \log t_D}}$$
 for constant pressure tests (4)
If replacing the infinite acting radial flow assumption stated in equation 1 into equations 2
3 and 4, these can be solved for transmissivity, as presented for the example of a constant
rate test, in equation 5.

(4)

$$T_{LARF} = \frac{d\log t}{d\Delta p(t)} \frac{q \rho g}{4\pi}$$
(5)

Using equations of the type of equation 5, one can normalize the derivative of any test phase and express it in terms of transmissivity units. In this way, for any point on the derivative curve that fulfils the infinite acting radial flow (IARF) assumption (flat shape of the derivative), the formation transmissivity is equal to the Y-coordinate of this point in a T_{LARF} vs. time plot.

This method allows plotting the derivative of a given test phase in terms of transmissivity units, this fact enabling the user to directly compare and synthesize the behaviour of different tests on a single normalized multi-derivative plot.

6 Results

In the following, results of all tests are presented and analysed. Chapter 6.1 presents the 100 m tests, 6.2 the 20 m tests, 6.3 the 5 m tests and 6.4 the pulse injection tests. The results are given as general comments to test pereformance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 7-1 and 7-2 of the Synthesis chapter.

6.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX02 are presented and analysed.

6.1.1 Section 204 – 304 m, test no 1, injection

Comments to test

The test was conducted as a constant pressure injection (CHi) with a pressure difference of 201 kPa, followed by a pressure recovery (CHir). The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 52.5 L/min at start of the CHi to 47.5 L/min at the end, indicating a relatively high interval transmissivity. The early times of the CHi (first 3 minutes) are not analysable due to the time needed by the system to regulate constant pressure. The CHir shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow regime is interpreted from the shape of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-1. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	3.86E–5	NA	NA
T _M [m²/s]	5.03E-05	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	NA	NA	4.5E–5
T ₂ [m ² /s]	5.6E–5	1.8E-4	1.5E–4
r ₁ [m]	NA	NA	19
S [–] (ass. approx. 1E–6)	1.3E–6	1.0E–6	2.8E-6
ξ []	0	17.8	0
C [m³/Pa]	NA	3.0E-8	2.6E-8

Table 6-1. Analyses results; section 204–304 m.

Selected representative parameters

The recommended transmissivity of 1.8E-4 m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-5 to 3E-4 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,028.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.1.2 Section 304–404 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 14.22 L/min at start of the CHi phase to 13.19 L/min at the end, indicating a relatively high interval transmissivity. The early times of the CHi phase (first 20 seconds) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis is presented in Appendix 2-2. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.08E–5	NA	NA
T _M [m²/s]	1.41E–5	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	4.6E–6	NA	4.9E–6
T ₂ [m ² /s]	4.6E–5	4.9E-5	4.9E–5
r ₁ [m]	0.38	NA	0.38
S [–] (ass. approx. 1E–6)	1.4E–6	1.0E–6	7.69E–7
ξ []	0	18.5	0
C [m³/Pa]	NA	8.3E-9	7.11E–9

Table 6-2.	Analyses	results;	section	304–404 m.
------------	----------	----------	---------	------------

Selected representative parameters

The recommended transmissivity of $4.9E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-5 to $6.5E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,007.6 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.3 Section 404–504 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.185 L/min at start of the CHi phase to 0.163 L/min at the end, indicating a low interval transmissivity. The early times of the CHi phase (first 1 minute seconds) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-3. The table below presents relevant parameters with respect to the selected model.
Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.31E–7	NA	NA
T _M [m²/s]	1.71E–7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	6.5E–8	NA	5.3E–8
T ₂ [m ² /s]	2.4E-7	5.9E-7	5.3E-7
r ₁ [m]	0.38	NA	0.38
S [–] (ass. approx. 1E–6)	3.8E-6	1.0E-6	2.8E-6
ξ [-]	0	20.1	0
C [m³/Pa]	NA	3.0E-10	2.6E-10

Table 6-3. Analyses results; section 404–504 m.

The recommended transmissivity of $5.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.5E-7 to $6.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,967.9 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.4 Section 504–604 m, test no 4, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The rate regulation during the constant pressure injection phase was poor because dominated by strong oscillations. The average injection rate during this phase was 1.8E–2 L/min, indicating a low interval transmissivity. The CHi data is not analysable due to the problems mentioned above. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHir phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-4. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.31E–8	NA	NA
T _M [m²/s]	1.70E-8	NA	NA
Flow model	NA	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	1.5E–8
T ₂ [m ² /s]	NA	NA	3.0E–9
r ₁ [m]	NA	NA	2.4
S [–] (ass. approx. 1E–6)	NA	NA	
ξ []	NA	NA	0
C [m³/Pa]	NA	NA	2.5E-10

Table 6-4. Analyses results; section 504–604 m.

Selected representative parameters

The recommended transmissivity of $3.0E-9 \text{ m}^2/\text{s}$ was derived from the outer zone transmissivity derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-9 to $2.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,953.6 kPa.

No further analysis is recommended.

6.1.5 Section 604–704 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 196 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The rate regulation during the constant pressure injection phase was poor because dominated by strong oscillations. The average injection rate during this phase was 2E–3 L/min, indicating a very low interval transmissivity. This rate was also used in the analysis of the pressure recovery phase (CHir). The CHi data is not analysable due to the problems mentioned above. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHir phase is mainly dominated by wellbore storage and composite transition, such that a flow dimension of 2 (radial flow) had to be assumed. An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-5. The table below presents relevant parameters with respect to the selected model.

CHi phase	CHir phase	CHir phase
1.25E-9	NA	NA
1.63E–9	NA	NA
NA	NA	WBS and skin Radial 2 shell composite Infinite acting
NA	NA	3.0E–10
NA	NA	1.1E–10
NA	NA	1.2
NA	NA	2.8E-6
NA	NA	0
NA	NA	1.4E–10
	CHi phase 1.25E–9 1.63E–9 NA NA NA NA NA NA	CHi phaseCHir phase1.25E-9NA1.63E-9NA

Table 6-5. Analyses results; section 604–704 m.

The recommended transmissivity of $3.0E-10 \text{ m}^2/\text{s}$ was derived from the outer zone transmissivity derived from the analysis of the CHir phase. The confidence range for the interval transmissivity is estimated to be 5.0E-11 to $7.0E-10 \text{ m}^2/\text{s}$. The flow was assumed to be 2 (test response strongly masked by wellbore storage). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,886.5 kPa.

No further analysis is recommended.

6.1.6 Section 704-804 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate was nearly constant 0.2 L/min during the CHi phase, indicating a relatively low interval transmissivity. The early times of the CHi phase (first 1.8 minutes) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The downward slope of the derivative at late times of the CHir phase (slope = -1) indicates a radial composite transition to a shell of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-6. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.63E–7	NA	NA
T _M [m²/s]	2.12E-7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.3E–7	NA	1.2E–7
T ₂ [m ² /s]	8.7E–7	6.9E-7	7.0E-7
r ₁ [m]	6.5	NA	2.9
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	3.2E-6
ξ []	0	19.4	0
C [m³/Pa]	NA	1.3E–9	1.1E–9

Table 6-6. Analyses results; section 704–804 m.

Selected representative parameters

The recommended transmissivity of $6.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-8 to $1.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,873.4 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.7 Section 804–904 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate was nearly constant varying between 0.105 L/min at start of the CHi phase and 0.095 L/min at its end, indicating a relatively low interval transmissivity. The early times of the CHi phase (first 2.4 minutes) are not analysable due to the time needed by the system to regulate constant pressure. The middle and late times of the CHi phase are of better quality, they are however distorted at late times by noise in the measured flow rate. The analysis results of the CHi phase should be regarded as order of magnitude only. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The downward slope of the derivative at late times of the CHir phase (slope = -1) indicates a radial composite transition to a shell of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-7. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	7.81E–8	NA	NA
T _M [m²/s]	1.02E–7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	5.9E–8	NA	6.9E-8
T ₂ [m ² /s]	3.0E-7	3.5E–7	3.4E-7
r ₁ [m]	3.8	NA	5.3
S [–] (ass. approx. 1E–6)	6.9E–7	1.0E–6	2.9E-7
ξ []	0	20.0	0
C [m³/Pa]	NA	4.2E–10	3.9E–10

Table 6-7. Analyses results; section 804–904 m.

The recommended transmissivity of $3.5E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-8 to $5.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,861.1 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.8 Section 904–1,004 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 198 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate was nearly constant varying between 0.183 L/min at start of the CHi phase and 0.172 L/min at its end, indicating a relatively low interval transmissivity. The early times of the CHi phase (first 2.8 minutes) are not analysable due to the time needed by the system to regulate constant pressure. The middle and late times of the CHi phase are of better quality, they are however distorted at late times by noise in the measured flow rate. The analysis results of the CHi phase should be regarded as order of magnitude only. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The downward slope of the derivative at late times of the CHir phase (slope = -1) indicates a radial composite transition to a shell of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-8. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.42E-7	NA	NA
T _M [m²/s]	1.85E–7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	1.1E–7	NA	9.1E–8
T ₂ [m ² /s]	1.3E–6	9.1E–7	1.5E–6
r ₁ [m]	4.6	NA	1.9
S [–] (ass. approx. 1E–6)	3.3E–6	1.0E–6	2.3E-6
ξ []	0	32.6	0
C [m³/Pa]	NA	1.6E–9	1.6E–9

Table 6-8. Analyses results; section 904–1,004 m.

Selected representative parameters

The recommended transmissivity of $9.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-8 to $2.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,848.6 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX02 are presented and analysed.

6.2.1 Section 204–224 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a good packer seal. No hydraulic connection between the test section and the adjacent zones was observed. The injection rate decreased from 4.25 L/min at start of the CHi phase to 3.16 L/min at the end, indicating a relatively high interval transmissivity. The early times of the CHi phase (first 0.7 minutes) are not analysable due to the time needed by the system to regulate constant pressure. Only the late times of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows early times problems as well, which were caused by the test valve. Therefore, only the middle and late times can be analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the data quality does not allow for a specific determination of the flow dimension. The analysis was conducted assuming a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The CHir phase was analysed using a radial composite flow model. The analysis plots are presented in Appendix 2-9. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	2.62E-6	NA	NA
T _M [m²/s]	2.74E-6	NA	NA
Flow model	Homogeneous Infinite acting	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	3.2E–6	NA	1.9E–6
T ₂ [m ² /s]	NA	NA	1.6E–4 (acting as a cst. P boundary)
r ₁ [m]	NA	NA	1.4
S [–] (ass. approx. 1E–6)	1.4E–6	NA	2.6E-6
ξ []	0	NA	0
C [m³/Pa]	NA	NA	1.7E–10

Table 6-9. Analyses results; section 204-224 m.

Selected representative parameters

The recommended transmissivity of 3.2E-6 m²/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the transmissivity of the inner composite zone (borehole vicinity) is estimated to be 1E-6 to 2E-5 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,030.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.2 Section 224–244 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a good packer seal; no hydraulic connection between the test section and the adjacent zones was observed. The injection rate decreased from 1.68 L/min at start of the CHi phase to 1.34 L/min at the end, indicating a moderate interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (14 seconds) such that the entire phase is amenable for quantitative analysis. The CHir phase recovered to static conditions very quickly, such that the analysis should be regarded with caution.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension was derived from the CHi phase, which shows a flat derivative (dimension 2 – radial flow) at late times. An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-10. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.18E–6	NA	NA
T _M [m ² /s]	1.23E-6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	9.7E-7	NA	4.7E–7
T ₂ [m ² /s]	4.8E–6	NA	6.9E–4 (acting as a cst. P boundary)
r ₁ [m]	3.8	NA	0.4
S [-] (ass. approx. 1E-6)	1.0E-6	NA	1.7E–6
ξ []	0	NA	0
C [m³/Pa]	NA	NA	1.9E–10

Table 6-10. Analyses results; section 224–244 m.

Selected representative parameters

The recommended transmissivity of $9.7E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the transmissivity of the inner composite zone (borehole vicinity) is estimated to be 4E-7 to $2E-6 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,226.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.3 Section 244–264 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection of the test interval to both adjacent sections (above and below test interval). The injection rate decreased from 49.5 L/min at start of the CHi phase to 43.4 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (less than 1 minute) such that the entire phase is amenable for quantitative analysis. The CHir phase was distorted at early times by a malfunction of the test valve. The phase shows however, good data quality and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be derived from both test phases, which show a flat derivative (dimension 2 - radial flow) at late times. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-11. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	3.60E-5	NA	NA
T _M [m²/s]	3.77E–5	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	3.2E–5 (only estimated)	NA	3.4E–5
T ₂ [m ² /s]	1.6E-4	1.7E–4	1.7E–4
r ₁ [m]	3.8 (upper limit)	NA	3.8
S [–] (ass. approx. 1E–6)	9.2E–7	1.0E–6	2.9E-6
ξ []	0	18.0	0
C [m³/Pa]	NA	2.1E-8	2.7E–8 (large value due to malfunction of the test valve

Table 6-11. Analyses results; section 244–264 m.

Selected representative parameters

The recommended transmissivity of $1.7E-4 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity of the outer composite zone is estimated to be 8E-5 to 2E-4 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,424.2 kPa.

The analysis of the CHi and CHir phases shows good consistency. It is unclear whether the inner or outer composite zone parameters should be regarded as representative for the formation behaviour. If further analysis is intended, this uncertainty should be resolved using full superposition analysis.

6.2.4 Section 264–284 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The injection rate decreased from 2.47 L/min at start of the CHi phase to 1.59 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (less than 1 minute) such

that the entire phase is amenable for quantitative analysis. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be derived from the CHi phase, which shows a flat derivative (dimension 2 – radial flow) at late times. However, a regression line drawn through the entire middle and late times of the CHi phase derivative yields a flow dimension of 1.3. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-12. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.31E–6	NA	NA
T _M [m ² /s]	1.37E–6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.7E–6	NA	1.1E–6
T ₂ [m ² /s]	1.1E–6	6.2E–6	5.7E–6 (results less reliable due to very fast recovery)
r1 [m]	32.3	NA	3.8
S [–] (ass. approx. 1E–6)	7.8E–7	1.0E–6	1.6E–6
ξ []	0	20.3	0
C [m ³ /Pa]	NA	2.4E-10	1.38E–10

Table 6-12. Analyses results; section 264–284 m.

Selected representative parameters

The recommended transmissivity of $1.7E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (inner composite zone), which shows the best data and derivative quality. The confidence range for the transmissivity of the inner composite zone is estimated to be 8E-7 to 5E-6 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,616.7 kPa.

The analysis of the CHi and CHir phases shows some inconsistency. The quick pressure recovery during the CHir phase renders this phase as less useful for the analysis. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.2.5 Section 284–304 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The injection rate decreased from 1.35 L/min at start of the CHi phase to 1.05 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (1.6 minutes) such that the entire phase is amenable for quantitative analysis. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be derived from the CHi phase, which shows a flat derivative (dimension 2 – radial flow) at late times. However, a regression line drawn through the entire middle and late times of the CHi phase derivative yields a flow dimension of 1.7. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-13. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	8.63E-7	NA	NA
T _M [m²/s]	9.02E-7	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.1E–6	NA	6.9E–7
T ₂ [m ² /s]	NA	6.9E–6	8.7E–6 (results less reliable due to very fast recovery)
r ₁ [m]	NA	NA	2.9
S [–] (ass. approx. 1E–6)	9.9E-7	1.0E-6	7.5E–7
ξ []	0	38.3	0
C [m³/Pa]	NA	1.4E–10	6.9E–11

Table 6-13. Analyses results; section 284–304 m.

Selected representative parameters

The recommended transmissivity of $1.1E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 6E-7 to $5E-6 \text{ m}^2/\text{s}$ (the outer zone transmissivity derived from the CHir phase is not considered reliable due to the very quick recovery). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,812.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistency. The quick pressure recovery during the CHir phase renders this phase as less useful for the analysis. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.2.6 Section 304–324 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test shows hydraulic communication between the test interval and the adjacent zones. The injection rate decreased from 12.03 L/min at start of the CHi phase to 11.39 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (36 seconds) such that the entire phase is amenable for quantitative analysis. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be derived from both test phases which show a flat derivative (dimension 2 - radial flow) at late times. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-14. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	9.36E–6	NA	NA
T _M [m²/s]	9.80E-6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.1E–5	NA	8.3E-6
T ₂ [m ² /s]	4.2E–5	4.2E–5	4.1E–5
r ₁ [m]	41.8	NA	3.8
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	5.9E-7
ξ []	0	18.6	0
C [m³/Pa]	NA	6.5E–9	5.5E–9

Table 6-1	4. Analv	ses results	: section	304–324 m.
		000 1004110	,	

The recommended transmissivity of $4.2E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 2E-5 to $6E-5 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,009.3 kPa.

The analysis of the CHi and CHir phases shows inconsistency as far as the extent of the inner composite zone is concerned. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.7 Section 324–344 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test shows hydraulic communication between the test interval and the adjacent zones. The injection rate decreased from 2.73 L/min at start of the CHi phase to 2.27 L/min at the end, indicating a moderately high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (32 seconds) such that the entire phase is amenable for quantitative analysis. The CHir phase shows very fast recovery. Therefore, the analysis results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be best derived from the late time CHi data which shows a flat derivative (dimension 2 – radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-15. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.86E–6	NA	NA
T _M [m ² /s]	1.95E–6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.8E–6	NA	1.6E–6
T ₂ [m ² /s]	3.2E–6	8.7E–6	7.8E-6
r ₁ [m]	2.28	NA	3.8
S [-] (ass. approx. 1E-6)	8.7E–7	1.0E–6	2.9E-6
ξ[-]	0	20.1	0
C [m³/Pa]	NA	3.5E–10	2.7E–10

Table 6-15. Analyses results; section 324–344 m.

The recommended transmissivity of $3.2E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 2E-6 to $8E-6 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,207.4 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.8 Section 384–404 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 249 kPa, followed by a pressure recovery phase. The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase is only qualitative. The flow rate oscillated between 4 and 14 mL/min, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-18. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.74E-9	NA	NA
T _M [m²/s]	2.87E-9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.0E-9	NA	7.6E–10
T ₂ [m ² /s]	NA	1.1E–8	2.2E–08
r ₁ [m]	NA	NA	0.2
S [–] (ass. approx. 1E–6)	2.5E-6	1.0E–6	3.8E-6
ξ []	0	21.1	0
C [m³/Pa]	NA	4.3E–11	3.5E–11

Table 6-16. Analyses results; section 384-404 m.

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 2E-9 to $4E-8 \text{ m}^2/\text{s}$ (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,768.0 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor CHi data. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.2.9 Section 424-444 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was not very good. In addition, due to the very small injection rates (very low transmissivity) the rate measurements are relatively noisy. Because of this reason the results of the CHi analysis should be regarded as order of magnitude only. The flow rate varied between 0.048 L/min and 0.054 L/min. The CHir phase is of good quality and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be best derived from the late time CHir data which shows a flat derivative (dimension 2 - radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-20. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	4.05E-8	NA	NA
T _M [m²/s]	4.24E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	2.6E-8	NA	1.8E-8
T ₂ [m ² /s]	8.6E-8	2.4E-7	2.6E-7
r ₁ [m]	2.85	NA	0.50
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.0E–6
ξ []	0	32.2	0
C [m³/Pa]	NA	8.8E-11	9.4E–11

Table 6-17. Analyses results; section 424–444 m.

Selected representative parameters

The recommended transmissivity of $2.4E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 1E-8 to $4E-7 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,164.9 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.2.10 Section 444–464 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test shows hydraulic communication between the test interval and the bottom hole zone. The injection rate decreased from 0.15 L/min at start of the CHi phase to 0.088 L/min at the end, indicating a relatively low interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (1.7 minutes) such that the late time data of the CHi phase is amenable for quantitative analysis. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis was conducted using the radial flow assumption (flow dimension = 2), the downward derivative slope at late times of the CHir phase was interpreted as a transition to a higher transmissivity zone. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-21. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	7.26E–8	NA	NA
T _M [m²/s]	7.60E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	5.2E–8	NA	4.0E-8
T ₂ [m ² /s]	2.6E-7	3.1E–7	3.2E-7
r ₁ [m]	2.85	NA	0.76
S [–] (ass. approx. 1E–6)	1.6E–6	1.0E–6	5.7E–7
ξ [-]	0	21.0	0
C [m³/Pa]	NA	5.6E–11	5.3E–11

Table 6-18. Analyses results; section 444-464 m.

Selected representative parameters

The recommended transmissivity of $2.6E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone). The confidence range for the transmissivity is estimated to be 4E-8 to $5E-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,362.5 kPa.

To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.11 Section 464-484 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 197 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate was very noisy and decreased from approx. 0.03 L/min at start of the CHi phase to 0.01 L/min at the end, indicating a relatively low interval transmissivity. The automated system managed to regulate the rate relatively quickly (2.8 minutes), however, due to the low injection rates the data set is very noisy. Therefore the results of the analysis of the CHi phase should be regarded as order of magnitude only. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis was conducted using the radial flow assumption (flow dimension = 2), the downward derivative slope at late times of the CHir phase was interpreted as a transition to a higher transmissivity zone. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-22. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	8.78E–9	NA	NA
T _M [m²/s]	9.19E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	6.5E–9	NA	3.9E–9
T ₂ [m ² /s]	NA	5.7E–8	1.3E–7
r ₁ [m]	NA	NA	0.47
S [–] (ass. approx. 1E–6)	1.8E–6	1.0E–6	4.8E-7
ξ []	0	32.6	0
C [m³/Pa]	NA	4.4E-11	4.4E–11

Table 6-19.	Analyses	results;	section	464–484 m.
-------------	----------	----------	---------	------------

Selected representative parameters

The recommended transmissivity of $5.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 1E-8 to $3E-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,558 kPa.

To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.12 Section 481–501 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. Because conducted at an erroneous depth (481–501 m bToC) the test was terminated prematurely and repeated at the correct depth. The formation shows very low transmissivity, the injection rate was for the largest period of the test lower than 0.5 mL/min and most of the time not measurable. Therefore the CHi phase is not analysable. The CHir phase was analysed, however due to the fact that the flow rate was below the measurement range of the flowmeter, the analysis was conducted assuming a maximum value for the flow rate of 0.5 mL/min. Therefore, the derived transmissivity should be regarded as a maximum value as well.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis was conducted using the radial flow assumption (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-23. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.64E-10	NA	NA
T _M [m²/s]	1.72E–10	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	NA
T ₁ [m²/s]	NA	1.3E–10 (or lower)	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	1.9E–6	NA
ξ []	NA	0	NA
C [m³/Pa]	NA	1.7E–11	NA

Table 6-20. Analyses results; section 481–501 m.

Selected representative parameters

The recommended transmissivity is $1.3E-10 \text{ m}^2/\text{s}$ which should be seen as an upper boundary of the formation transmissivity at this depth. The analysis was conducted using a flow dimension of 2.

No further analysis is recommended.

6.2.13 Section 484–504 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The formation shows very low transmissivity, the injection rate was for the largest period of the test lower than 0.5 mL/min and most of the time not measurable. Therefore the CHi phase is not analysable. The CHir phase was analysed, however due to the fact that the flow rate was below the measurement range of the flowmeter, the analysis was conducted assuming a maximum value for the flow rate of 0.5 mL/min. Therefore, the derived transmissivity should be regarded as a maximum value as well.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis was conducted using the radial flow assumption (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage

and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-24. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	4.08E-10	NA	NA
T _M [m²/s]	4.27E-10	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	NA	NA	1.6E–10 (or lower)
T ₂ [m ² /s]	NA	1.6E–10	3.3E–10
r ₁ [m]	NA	NA	0.56
S [–] (ass. approx. 1E–6)	NA	1.0E–6	9.9E-7
ξ []	NA	0.04	0
C [m³/Pa]	NA	1.2E–11	1.3E–11

Table 6-21. Analyses results; section 484–504 m.

Selected representative parameters

The recommended transmissivity is $1.6E-10 \text{ m}^2/\text{s}$ and was derived from the inner composite zone. Due to the fact that the derivative does not reach infinite acting regime at late times, the derived transmissivity could be higher than calculated (estimated up to one order of magnitude). The analysis was conducted using a flow dimension of 2.

No further analysis is recommended.

6.2.14 Section 504–524 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The pressure regulation of the CHi phase was poor and the injection flow rate was unsTable. The injection rate decreased from 0.018 L/min at start of the CHi phase to 0.008 L/min at the end, indicating a low interval transmissivity. Due to the poor data quality, the analysis of the CHi phase can only deliver an order of magnitude for transmissivity. The CHir phase is of good quality and can be analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis could be consistently conducted using the radial flow assumption (flow dimension = 2). However, the derivative of the CHir phase shows at late times a slope of 0.5 which may indicate linear flow (flow dimension = 1). An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-25. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	6.36E–9	NA	NA
T _M [m²/s]	6.66E–9	NA	NA
Flow model	Homogeneous Infinite acting	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	5.4E–9	NA	5.4E–9
T ₂ [m ² /s]	NA	NA	1.9E–9
r ₁ [m]	NA	NA	1.83
S [–] (ass. approx. 1E–6)	1.2E–6	NA	1.0E–6
ξ []	0	NA	0
C [m³/Pa]	NA	NA	3.9E–11

Table 6-22. Analyses results; section 504–524 m.

The recommended transmissivity of $5.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone). The confidence range for the transmissivity is estimated to be 1E-9 to $7E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a range between 4,944 kPa and 4,950 kPa.

To improve analysis consistency and resolve the uncertainty concerning the flow dimension, a full superposition analysis coupled with a generalized radial flow analysis is recommended.

6.2.15 Section 524-544 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The CHi phase was well controlled except for the late times when the system started to oscillate, thus producing noisy flow rates. The injection rate decreased from 0.028 L/min at start of the CHi phase to 0.007 L/min at the end, indicating a low interval transmissivity. Due to the poor data quality, the analysis of the CHi phase can only deliver an order of magnitude for transmissivity. The CHir phase is of good quality and can be analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis could be consistently conducted using the radial flow assumption (flow dimension = 2). However, the derivative of the CHir phase shows at late times a slope of 0.08 which may indicate a flow dimension of 1.8. An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-26. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	5.78E–9	NA	NA
T _M [m²/s]	6.05E–9	NA	NA
Flow model	Homogeneous Infinite acting	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	6.4E–9	NA	8.2E–9
T ₂ [m ² /s]	NA	NA	5.5E–9
r ₁ [m]	NA	NA	1.92
S [–] (ass. approx. 1E–6)	1.0E–6	NA	1.6E–6
ξ []	0	NA	0
C [m³/Pa]	NA	NA	6.3E–11

Table 6-23. Analyses results; section 524–544 m.

Selected representative parameters

The recommended transmissivity of $8.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone). The confidence range for the transmissivity is estimated to be 2E-9 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,149.9 kPa.

To improve analysis consistency and resolve the uncertainty concerning the flow dimension, a full superposition analysis coupled with a generalized radial flow analysis is recommended.

6.2.16 Section 544–564 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate dropped below the measurement range of the flowmeter (q < 0.5 mL/min) almost instantaneously, indicating the very low transmissivity of the interval. None of the test phases is analysable, but the low injection rates show that the interval transmissivity must be lower than 1E–10 m²/s.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be determined. No flow model identification was possible. The measured pressures, flow rates and temperatures are presented in Appendix 2-27. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m²/s]	lower than 1E–10	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-24. Analyses results; section 544–564 m.

Based on the very low injection rates (below measurement range of flowmeter), the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.17 Section 584-604 m, test no 1, injection

Comments to test

The test was conducted as constant pressure injection (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The formation shows very low transmissivity, the injection rate was for the largest period of the test lower than 0.5 mL/min and most of the time not measurable. Therefore the CHi phase is not analysable. The CHir phase was analysed, however due to the fact that the flow rate was below the measurement range of the flowmeter, the analysis was conducted assuming a maximum value for the flow rate of 0.5 mL/min. Therefore, the derived transmissivity should be regarded as a maximum value as well.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis was conducted using the radial flow assumption (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-29. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase	
Q/s [m²/s]	4.17E–10 (or lower)	NA	NA	
T _M [m²/s]	4.36E–10 (or lower)	NA	NA	
Flow model	NA	WBS and skin Homogeneous Infinite acting	NA	
T ₁ [m ² /s]	NA	1.2E–10 (or lower)	NA	
T ₂ [m ² /s]	NA	NA	NA	
r₁ [m]	NA	NA	NA	
S [–] (ass. approx. 1E–6)	NA	3.5E–6	NA	
ξ [-]	NA	0	NA	
C [m³/Pa]	NA	3.4E–11	NA	

Table 6-25. Analyses results; section 584–604 m.

Selected representative parameters

The recommended transmissivity is 1.2E–10 m²/s. Regarding the fact that the transmissivity is very low and the injection rate was below the measurement range of the flowmeter the derived transmissivity could be up to one order of magnitude lower than derived from the analysis. The analysis was conducted using a flow dimension of 2.

No further analysis is recommended.

6.2.18 Section 724–744 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The CHi phase was well controlled the target pressure difference being achieved after 2.4 minutes. The injection rate decreased from 0.070 L/min at start of the CHi phase to 0.038 L/min at the end, indicating a low interval transmissivity. The CHi test phase was analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis could be consistently conducted using the radial flow assumption (flow dimension = 2). However, the late time derivative of both test phases (CHi and CHir) is sloping downwards, which may indicate a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-31. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	3.11E-8	NA	NA
T _M [m²/s]	3.25E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	2.4E8	NA	2.8E-8
T ₂ [m ² /s]	8.0E-8	7.6E–8	9.2E-8
r ₁ [m]	3.80	NA	4.86
S [–] (ass. approx. 1E–6)	1.1E–6	1.0E-06	1.1E–6
ξ []	0	7.9	0
C [m³/Pa]	NA	1.0E–9	8.6E–10

Table 6-26. Analyses results; section 724–744 m.

Selected representative parameters

The recommended transmissivity of $7.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 6E-9 to $1E-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 7,076.1 kPa.

To improve analysis consistency and resolve the uncertainty concerning the flow dimension, a full superposition analysis coupled with a generalized radial flow analysis is recommended.

6.2.19 Section 744-764 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The CHi phase was well controlled the target pressure difference being achieved after 2.7 minutes. The injection rate decreased from 0.045 L/min at start of the CHi phase to 0.015 L/min at the end, indicating a low interval transmissivity. The CHi test phase was analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be uniquely determined. The analysis could be consistently conducted using the radial flow assumption (flow dimension = 2). However, the late time derivative of the CHi phase is sloping downwards, which may indicate a flow dimension above 2. In the analysis, this was interpreted as a transition to a higher transmissivity region. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-32. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.37E-8	NA	NA
T _M [m²/s]	1.43E–8	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	9.9E–9	NA	8.2E–9
T ₂ [m ² /s]	NA	8.5E–8	1.5E–7
r ₁ [m]	NA	NA	1.36
S [–] (ass. approx. 1E–6)	1.1E–6	1.0E–6	1.1E–6
ξ []	0	32.3	0
C [m³/Pa]	NA	8.9E-11	6.9E–11

Table 6-27. Analyses results; section 744–764 m.

Selected representative parameters

The recommended transmissivity of $8.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 6E-9 to $3E-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,274.1 kPa.

To improve analysis consistency and resolve the uncertainty concerning the flow dimension, a full superposition analysis coupled with a generalized radial flow analysis is recommended.

6.2.20 Section 764–784 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The CHi phase was poorly controlled, the rate sequence is very noisy. The injection rate decreased from approx. 0.02 L/min at start of the CHi phase to 0.01 L/min at the end, indicating a low interval transmissivity. The CHi data quality is inadequate for quantitative analysis. Only a qualitative type curve match was conducted. The results should be regarded as order of magnitude only. The CHir phase is of good quality and was analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the horizontal derivative at late times of the CHir phase indicates a flow dimension of 2. The analysis was conducted using the radial flow assumption (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-33. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	8.19E–9	NA	NA
T _M [m²/s]	8.57E–9	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	5.6E–9	NA	3.8E-9
T ₂ [m ² /s]	7.2E–9	3.7E–8	3.8E-8
r ₁ [m]	0.57	NA	0.57
S [–] (ass. approx. 1E–6)	2.8E-6	1.0E–6	1.0E–6
ξ []	0	22.5	0
C [m³/Pa]	NA	4.6E–11	4.0E–11

Table 6-28. Analyses results; section 764–784 m.

Selected representative parameters

The recommended transmissivity of $3.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 1E-9 to $6E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,467.8 kPa.

No further analysis is recommended.

6.2.21 Section 784-804 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.241 L/min at start of the CHi phase to 0.135 L/min at the end, indicating a low interval transmissivity. The early times of the CHi phase (first 1 minute) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and adequate for quantitative analysis. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis as well.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-34. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.10E–7	NA	NA
T _M [m²/s]	1.15E–7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	7.8E–8	NA	6.9E-8
T ₂ [m ² /s]	7.8E–7	6.6E–7	5.8E-7
r ₁ [m]	2.66	NA	1.52
S [–] (ass. approx. 1E–6)	2.0E-6	1.0E–6	2.3E-6
ξ []	0	32.0	0
C [m³/Pa]	NA	2.4E–10	2.1E–10

Table 6-29. Analyses results; section 784–804 m.

Selected representative parameters

The recommended transmissivity of $6.6E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-8 to $8E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,664.1 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.2.22 Section 804–824 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase is only qualitative. The flow rate decreased from 0.007 L/min at start of the CHi phase to 0.003 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis and model the downward sloping derivative using a composite system with increasing transmissivity away from the borehole. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-35. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.45E-9	NA	NA
T _M [m²/s]	2.57E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.6E–9	NA	8.0E-10
T ₂ [m ² /s]	NA	1.6E–8	2.7E-08
r ₁ [m]	NA	NA	0.24
S [–] (ass. approx. 1E–6)	1.5E–6	1.0E–6	1.5E–6
ξ []	0	32.6	0
C [m³/Pa]	NA	3.8E-11	3.8E-11

Table 6-30. Analyses results; section 804-824 m.

The recommended transmissivity of $1.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 7E-9 to $4E-8 \text{ m}^2/\text{s}$ (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,865 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor CHi data. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.2.23 Section 824-844 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of 250 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase was performed. The flow rate decreased from 0.006 L/min at start of the CHi phase to 0.002 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model

with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-36. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.62E–9	NA	NA
T _M [m²/s]	1.70E–9	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	NA	NA	1.0E–9
T ₂ [m ² /s]	NA	3.8E–9	3.4E–9
r ₁ [m]	NA	NA	1.25
S [–] (ass. approx. 1E–6)	NA	1.0E–6	7.3E–7
ξ []	NA	9.25	0
C [m ³ /Pa]	NA	7.5E–11	6.4E–11

Table 6-31. Analyses results; section 824-844 m.

Selected representative parameters

The recommended transmissivity of $3.8E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 8E-10 to $6E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 8,055.6 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.2.24 Section 844–864 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis; the flow rate varied between 0.16 L/min and 0.06 L/min indicating a moderate interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the late time derivative of the CHir phase shows a downward trend which could indicate a flow-geometry larger than radial as well as the transition to a zone of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an

alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-37. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	4.93E-8	NA	NA
T _M [m²/s]	5.15E–8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	3.8E-8	NA	4.1E–8
T ₂ [m ² /s]	5.4E–8	3.2E–7	4.8E-7
r ₁ [m]	0.76	NA	4.37
S [–] (ass. approx. 1E–6)	1.4E–6	1.0E–6	4.3E-7
ξ []	0	30.9	0
C [m³/Pa]	NA	1.1E–10	8.4E–11

Table 6-32. Analyses results; section 844-864 m.

Selected representative parameters

The recommended transmissivity of $3.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase which appears to be the most conservative choice in this case. The confidence range for the transmissivity is estimated to be 1E-8 to $6E-7 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,259.9 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.2.25 Section 864-884 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis although the flow rate was oscillating at late times in a bandwidth of approx. 3 mL/min; the flow rate varied between 0.041 L/min and 0.028 L/min indicating a moderate interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the late time derivative of the CHir phase shows a downward trend which could indicate a flow-geometry larger than radial as well as the transition to a zone of higher transmissivity. An infinite acting homogeneous radial

flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-38. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	2.28E-8	NA	NA
T _M [m²/s]	2.38E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.7E–8	NA	1.5E–8
T ₂ [m ² /s]	1.1E–7	1.5E–7	3.6E-7
r ₁ [m]	2.36	NA	1.47
S [–] (ass. approx. 1E–6)	1.3E–6	1.0E–6	1.2E–6
ξ [-]	0	32.5	0
C [m³/Pa]	NA	7.1E–11	5.5E–11

Table 6-33. Analyses results; section 864-884 m.

Selected representative parameters

The recommended transmissivity of $1.5E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase which appears to be the most conservative choice in this case. The confidence range for the transmissivity is estimated to be 1E-8 to $6E-7 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,453.9 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.2.26 Section 884–904 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis; the flow rate varied between 0.055 L/min and 0.021 L/min indicating a moderate interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the late time derivative of the CHir phase shows a downward trend which could indicate a flow-geometry larger than radial as well as the transition to a zone of higher transmissivity. An infinite acting homogeneous radial

flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-39. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.72E–8	NA	NA
T _M [m²/s]	1.80E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.1E–8	NA	7.0E–9
T ₂ [m ² /s]	7.5E–8	1.1E–7	1.3E–7
r ₁ [m]	2.47	NA	0.40
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.1E–6
ξ [-]	0	32.2	0
C [m³/Pa]	NA	1.1E–10	1.1E–10

Table 6-34. Analyses results; section 884–904 m.

Selected representative parameters

The recommended transmissivity of $1.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 5E–9 to 3E–7 m²/s (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,658.4 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.2.27 Section 904-924 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was poor. Due to the very small injection rate (6 to 3 mL/min) the rate sequence is very noisy, such that the CHi phase is inadequate for quantitative analysis. The results of the type curve analysis should be regarded as order of magnitude only. The low injection rates indicate a low interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The downward trend in the CHir derivative at late times can be either interpreted as a flow dimension above 2 or as a transition period to a zone of higher transmissivity. The analysis was conducted using the radial flow assumption (dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-40. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.86E-9	NA	NA
T _M [m ² /s]	2.99E-9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.9E–9	NA	1.1E–9
T ₂ [m ² /s]	NA	1.3E–8	1.5E–8
r ₁ [m]	NA	NA	3.20
S [–] (ass. approx. 1E–6)	1.3E–6	1.0E–6	1.2E–6
ξ []	0	21.1	0
C [m³/Pa]	NA	4.1E–11	3.8E–11

Table 6-35. Analyses results; section 904–924 m.

Selected representative parameters

The recommended transmissivity of $1.3E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. the confidence range for the transmissivity is estimated to be 5E-10 to $3E-8 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,851.6 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis. Resolving the uncertainty concerning the flow dimension may be a further topic of interest which could be addressed with a GRF analysis.

6.2.28 Section 922–942 m, test no 1, injection

Comments to test

The test was conducted as of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased during the CHi phase from 0.59 L/min at start to 0.18 L/min at the end of the CHi phase, indicating a relatively low interval transmissivity. The early times of the CHi phase (first 2.1 minutes) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a downward trend at late times, which can be interpreted as a flow dimension above 2 or a transition to a zone of higher transmissivity. Both phases were analysed using radial flow models (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-41. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.38E–7	NA	NA
T _M [m²/s]	1.44E–7	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	1.1E–7	NA	1.0E-7
T ₂ [m ² /s]	1.4E–6	6.1E–7	7.0E–7
r ₁ [m]	5.51	NA	2.26
S [–] (ass. approx. 1E–6)	2.0E-6	1.0E–6	1.4E–6
ξ []	0	19.4	0
C [m³/Pa]	NA	1.4E–9	1.4E–9

Table 6-36. Analyses results; section 922–942 m.

Selected representative parameters

The recommended transmissivity of $6.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-8 to $3.0E-6 \text{ m}^2/\text{s}$. The flow dimension used for analysis is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,038.3 kPa.

The analysis of the CHi and CHir phases shows very consistency. The uncertainty concerning the flow dimension could be addressed in a GRF analysis, in case further interpretation is planned.

6.2.29 Section 943-963 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 201 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis although the flow rate was oscillating at late times in a bandwidth of approx. 2 mL/min; the flow rate varied between 0.051 L/min and 0.02 L/min indicating a moderate interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The downward slope of the CHir derivative at late times may indicate a flow dimension above 2 or represent the transition to a zone of higher transmissivity (composite model). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-42. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase	
Q/s [m ² /s]	1.91E–8	NA	NA	
T _M [m²/s]	2.00E-8	NA	NA	
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting	
T ₁ [m ² /s]	1.5E–8	NA	8.8E-9	
T ₂ [m ² /s]	1.9E-8	1.2E–7	7.5E–7	
r1 [m]	1.14	NA	0.63	
S [–] (ass. approx. 1E–6)	1.2E–6	1.0E–6	1.3E–6	
ξ []	0	32.6	0	
C [m³/Pa]	NA	4.7E–11	3.9E-11	

Table 6-37.	Analyses	results;	section	943–963 ı	m.
-------------	----------	----------	---------	-----------	----

Selected representative parameters

The recommended transmissivity of $1.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. the confidence range for the transmissivity is estimated to be 7E–9 to 8E–7 m²/s (including both inner and outer composite zone). The transmissivity at the high end of the range are determined by the fact that the CHir derivative slopes downwards and shows no sign of sTableilization. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,281.5 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis. Also, the relatively high outer composite zone transmissivity should be verified.

6.2.30 Section 964–984 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase has only qualitative character.
The flow rate decreased from 0.0075 L/min at start of the CHi phase to 0.0014 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis and model the downward sloping derivative using a composite system with increasing transmissivity away from the borehole. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-43. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.13E–9	NA	NA
T _M [m²/s]	1.18E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	9.7E–10	NA	7.3E–10
T ₂ [m ² /s]	NA	2.0E-9	2.4E-9
r ₁ [m]	NA	NA	0.75
S [–] (ass. approx. 1E–6)	1.2E–6	1.0E–6	1.5E–6
ξ [-]	0	5.0	0
C [m ³ /Pa]	NA	3.7E-11	3.0E-11

Table 6-38. Analyses results; section 964–984 m.

Selected representative parameters

The recommended transmissivity of $2.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 5E-10 to $5E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value ranging from 9,431 to 9,445 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.2.31 Section 984–1,004 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 202 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection

rate control during the CHi phase was poor. Due to the very small injection rate (18 to 5 mL/min) the rate sequence is very noisy, such that the CHi phase is inadequate for quantitative analysis. The results of the type curve analysis should be regarded as order of magnitude only. The low injection rates indicate a low interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. The downward trend in the CHir derivative at late times can be either interpreted as a flow dimension above 2 or as a transition period to a zone of higher transmissivity. The analysis was conducted using the radial flow assumption (dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-44. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	4.51E–9	NA	NA
T _M [m²/s]	4.72E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	3.5E–9	NA	2.6E-9
T ₂ [m ² /s]	NA	1.9E–8	3.0E-8
r ₁ [m]	NA	NA	1.08
S [–] (ass. approx. 1E–6)	1.3E–6	1.0E–6	8.8E-7
ξ []	0	20.9	0
C [m³/Pa]	NA	6.9E–11	5.4E–11

Table 6-39. Analyses results; section 984–1,004 m.

Selected representative parameters

The recommended transmissivity of $1.9E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 1E-9 to $5E-8 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,642.9 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis. Resolving the uncertainty concerning the flow dimension may be a further topic of interest which could be addressed with a GRF analysis.

6.3 5 m single-hole injection tests

In the following, the 5 m section tests conducted in borehole KLX02 are presented and analysed.

6.3.1 Section 300-305 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis; the flow rate varied between 0.076 L/min and 0.043 L/min indicating a moderate interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test there is ambiguity concerning the flow dimension in borehole vicinity. The CHir derivative shows at middle times a slope of -0.5, which is indicative for spherical flow. At late times the derivative shows a negative unit slope (-1) which indicates a transition to a higher transmissivity zone. Generally, the derivative shows the picture of a "partially penetrating" interval, which is consistent with the small interval length (5 m). However, for consistency, the test was analysed using a radial flow model (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-45. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	3.49E-8	NA	NA
T _M [m²/s]	2.88E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.2E-8	NA	1.7E–8
T ₂ [m ² /s]	3.2E–7	1.4E–7	2.4E-7
r ₁ [m]	1.9	NA	1.0
S [–] (ass. approx. 1E–6)	1.1E–6	1.0E–6	9.6E-7
ξ []	0	21.5	0
C [m³/Pa]	NA	1.8E–11	9.9E–12

The recommended transmissivity of $3.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase. The confidence range for the transmissivity is estimated to be 1E-8 to $6E-7 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,968.1 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis. The ambiguity concerning the near borehole flow dimension could be addressed by means of a GRF analysis.

6.3.2 Section 305–310 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The formation shows very low transmissivity, the injection rate was for the largest period of the test lower than 0.5 mL/min and most of the time not measurable. Therefore the CHi phase is not analysable. The CHir phase was analysed, however due to the fact that the flow rate was below the measurement range of the flowmeter, the analysis was conducted assuming an average value for the flow rate of 0.35 mL/min. Therefore, the derived transmissivity should be regarded as a maximum value as well.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-46. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.45E-10	NA	NA
T _M [m²/s]	2.02E-10	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	4.8E–11 (or lower)
T ₂ [m ² /s]	NA	7.4E–11 (or higher)	8.1E–11 (or higher)
r ₁ [m]	NA	NA	0.14
S [-] (ass. approx. 1E-6)	NA	1.0E–6	1.7E–6
ξ [-]	NA	26.2	0
C [m³/Pa]	NA	1.7E–11	1.7E–11

Table 6-41. Analyses results; section 305-310 m.

The recommended transmissivity is $7.4E-11 \text{ m}^2/\text{s}$ and was derived from the analysis of the CHir phase. Due to the fact that the derivative does not reach infinite acting regime at late times, the transmissivity could be higher than calculated (estimated up to one order of magnitude). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,004 kPa.

No further analysis is recommended.

6.3.3 Section 310–315 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase is only qualitative. The flow rate decreased from 0.008 L/min at start of the CHi phase to 0.001 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis and model the downward sloping derivative using a composite system with increasing transmissivity away from the borehole. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-47. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	1.23E–9	NA	NA
T _M [m²/s]	1.01E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	1.4E–9	NA	7.2E–10
T ₂ [m ² /s]	NA	1.8E–8	7.4E–08
r ₁ [m]	NA	NA	0.23
S [–] (ass. approx. 1E–6)	1.6E–6	1.0E–6	1.4E–6
ξ []	0	39.1	0
C [m³/Pa]	NA	1.4E–11	1.2E–11

Table 6-42. Analyses results; section 310–315 m.

Selected representative parameters

The recommended transmissivity of $1.8E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 9E-9 to $9E-8 \text{ m}^2/\text{s}$ (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,066.7 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor CHi data. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.4 Section 315–320 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 198 kPa, followed by a pressure recovery phase (CHir). The test shows hydraulic communication between the test interval and the adjacent zones. The injection rate decreased from 12.38 L/min at start of the CHi phase to 10.94 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (43 seconds) such that the entire phase is adequate for quantitative analysis. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be derived from both test phases which show a flat derivative (dimension 2 – radial flow) at late times. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-48. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	9.03E-6	NA	NA
T _M [m²/s]	7.46E–6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	8.6E–6	NA	8.2E–6
T ₂ [m ² /s]	2.6E-5	4.2E–5	4.1E–5
r ₁ [m]	3.8	NA	3.8
S [–] (ass. approx. 1E–6)	1.2E–6	1.0E–6	1.0E–6
ξ []	0	18.6	0
C [m³/Pa]	NA	6.0E–9	6.4E–9

Table 6-43. Analyses results; section 315–320 m.

Selected representative parameters

The recommended transmissivity of $4.2E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 1E-5 to $6E-5 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,111.9 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.3.5 Section 320-325 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate dropped below the measurement range of the flowmeter (q < 0.5 mL/min) almost instantaneously, indicating the very low transmissivity of the interval. In addition, due to hardware problems (possibly extended packer compliance) the pressure kept rising during the CHir phase. None of the test phases is analysable, but the low injection rates show that the interval transmissivity must be lower than 1E-10 m²/s.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-49.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m²/s]	lower than 1E–10	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-44. Analyses results; section 320-325 m.

Selected representative parameters

Based on the very low injection rates (below measurement range of flowmeter), the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.6 Section 325–330 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test section was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase is possible. The flow rate oscillated between 7 mL/min and 0 mL/min below measurement range of the flowmeter), indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis. The analysis was conducted using an average flow rate of 1.3 mL/min.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative

analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-50. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	6.51E-10	NA	NA
T _M [m²/s]	5.37E-10	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	NA	NA	3.9E–10
T ₂ [m ² /s]	NA	7.2E–9	1.3E–08
r ₁ [m]	NA	NA	0.36
S [–] (ass. approx. 1E–6)	NA	1.0E-6	6.3E–7
ξ []	NA	38.0	0
C [m ³ /Pa]	NA	1.4E–11	1.2E–11

Table 6-45. Analyses results; section 325-330 m.

Selected representative parameters

The recommended transmissivity of 7.2E–9 m²/s was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 5E–9 to 4E–8 m²/s (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,215.8 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.3.7 Section 330-335 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test section was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase is possible. The flow rate oscillated between 9 mL/min and 0 mL/min (below measurement range of the flowmeter), indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis. The analysis was conducted using an average flow rate of 0.8 mL/min.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the

borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-51. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.45E-10	NA	NA
T _M [m²/s]	2.02E-10	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	8.5E–11
T ₂ [m ² /s]	NA	3.9E–9	4.3E-09
r ₁ [m]	NA	NA	0.08
S [–] (ass. approx. 1E–6)	NA	1.0E–6	4.4E–6
ξ []	NA	33.2	0
C [m³/Pa]	NA	1.3E–11	1.2E–11

Table 6-46. Analyses results; section 330-335 m.

Selected representative parameters

The recommended transmissivity of $3.9E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir. The confidence range for the transmissivity is estimated to be 1E-9 to $1E-8 \text{ m}^2/\text{s}$ (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,264 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.3.8 Section 335–340 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The injection rate decreased from 2.739 L/min at start of the CHi phase to 1.863 L/min at the end, indicating a relatively high interval transmissivity. The CHi phase was conducted without problems. The automated system managed to regulate the rate very quickly (44 seconds) such that the entire phase is adequate for quantitative analysis. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be derived from the CHi phase, which shows a flat derivative (dimension 2 – radial flow) at late times. However, a regression line drawn through the entire middle and late times of the CHi phase derivative yields a flow dimension of 1.5. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-52. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.52E–6	NA	NA
T _M [m²/s]	1.26E–6	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.0E-6	NA	8.7E–7 (results less reliable due to very fast recovery)
T ₂ [m ² /s]	1.1E–7	1.2E–5 (results less reliable due to very fast recovery)	4.1E–5 (results less reliable due to very fast recovery)
r ₁ [m]	29.26	NA	7.37
S [–] (ass. approx. 1E–6)	1.1E–6	1.0E–6	2.7E–6
ξ []	0	34.1	0
C [m³/Pa]	NA	2.8E-10	2.8E-10

Table 6-47. Analyses results; section 335-340 m.

Selected representative parameters

The recommended transmissivity of $2.0E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 7E-7 to 3E-6 m²/s (the outer zone transmissivity derived from the CHir phase is not considered reliable due to the very quick recovery). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,311.9 kPa.

The analysis of the CHi and CHir phases shows some inconsistency. The quick pressure recovery during the CHir phase renders this phase as less useful for the analysis. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.9 Section 385–390 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase was possible. The flow rate decreased from oscillated between 5 mL/min and 2 mL/min during CHi, indicating a low interval transmissivity. The average flow rate was 3.5 mL/min. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-54. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	2.44E-9	NA	NA
T _M [m²/s]	2.01E–9	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	6.6E-10
T ₂ [m ² /s]	NA	1.7E–8	1.3E-08
r ₁ [m]	NA	NA	0.15
S [–] (ass. approx. 1E–6)	NA	1.0E–6	1.7E–6
ξ []	NA	33.1	0
C [m ³ /Pa]	NA	1.8E–11	1.5E–11

Table 6-48. Analyses results; section 385-390 m.

Selected representative parameters

The recommended transmissivity of $1.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 8E-9 to 3E-8 m²/s (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was

conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,780.1 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.3.10 Section 390-395 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate dropped below the measurement range of the flowmeter (q < 0.5 mL/min) almost instantaneously, indicating the very low transmissivity of the interval. In addition (possibly due to hardware problems) the pressure did not show any reaction after closing the test valve (CHir phase). None of the test phases is analysable, but the low injection rates show that the interval transmissivity must be lower than 1E-10 m²/s.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-55.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m ² /s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–10	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-49. Analyses results; section 390-395 m.

Selected representative parameters

Based on the very low injection rates (below measurement range of flowmeter), the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.11 Section 395-400 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising for 2 hours to start decreasing afterwards for 14 hours (overnight). This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-56.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m ² /s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-50. Analyses results; section 395–400 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.12 Section 400–405 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 27 kPa per 15 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-57.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-51. Analyses results; section 400-405 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.13 Section 420-425 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 17 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-58.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-52. Analyses results; section 420-425 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.14 Section 425-430 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 45 kPa per 15 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-59.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-53. Analyses results; section 425-430 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.15 Section 429-434 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 25 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-60.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m²/s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-54. Analyses results; section 429-434 m.

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.16 Section 434–439 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good; the CHi phase is adequate for quantitative analysis. The flow rate varied between 0.07 L/min and 0.05 L/min. The CHir phase is of good quality and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension can be best derived from the late time CHir data which shows a flat derivative (dimension 2 – radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-61. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	4.10E-8	NA	NA
T _M [m²/s]	3.38E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.7E–8	NA	1.9E-8
T ₂ [m ² /s]	1.1E–7	1.7E–7	5.9E-7
r ₁ [m]	1.5	NA	0.86
S [–] (ass. approx. 1E–6)	1.2E–6	1.0E–6	1.0E–6
ξ [-]	0	22.8	0
C [m³/Pa]	NA	6.0E–11	5.3E–11

Table 6-55. Analyses results; section 434–439 m.

Selected representative parameters

The recommended transmissivity of $1.7E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 1E-8 to $7E-7 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow

dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,261 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.3.17 Section 440-445 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 42 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-62.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m²/s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-56. Analyses results; section 440-445 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.18 Section 445–450 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 72 kPa per 30 minutes. Based

on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-63.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-57. Analyses results; section 445-450 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.19 Section 450-455 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 20 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-64.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-58. Analyses results; section 450-455 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.20 Section 455-460 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good, however, due to very small rates, the flow data is noisy. Only a qualitative analysis was possible. The flow rate varied between 0.017 L/min at start of the CHi phase and 0.006 L/min at its end, indicating a low interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test there is ambiguity concerning the flow dimension. The downward trend of the CHir derivative at late times can be interpreted as a flow dimension above 2 or can represent the transition to a zone of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-65. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	5.34E–9	NA	NA
T _M [m²/s]	4.41E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	3.8E–9	NA	1.2E–9
T ₂ [m ² /s]	NA	3.9E-8	1.8E–7
r ₁ [m]	NA	NA	0.16
S [–] (ass. approx. 1E–6)	1.2E–6	1–0E–6	1.5E–6
ξ []	0	39.0	0
C [m³/Pa]	NA	1.4E–11	1.3E–11

Table 6-59. Analyses results; section 455-460 m.

Selected representative parameters

The recommended transmissivity of $3.9E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase which appears to be most representative for the formation behaviour. The confidence range for the transmissivity is estimated to be 5E-8 to $3E-7 \text{ m}^2/\text{s}$ (refers to the outer composite zone only; the inner zone is considered to be a local skin). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,465.4 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.3.21 Section 460-465 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good; the CHi phase is adequate for quantitative analysis. The flow rate varied between 0.057 L/min and 0.039 L/min. The CHir phase shows very fast recovery, such that the late time data can are only adequate for a qualitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be best derived from the CHi data which shows a flat derivative (dimension 2 – radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-66. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	3.23E-8	NA	NA
T _M [m²/s]	2.67E-8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	2.2E-8	NA	8.5E–9
T ₂ [m ² /s]	1.1E–7	1.8E–7	3.0E–6 (unreliable)
r ₁ [m]	1.71	NA	0.21
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.0E–6
ξ []	0	32.0	0
C [m³/Pa]	NA	1.4E–11	1.3E–11

Table 6-60. Analyses results; section 460-465 m.

Selected representative parameters

The recommended transmissivity of $1.8E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 7E–9 to 3E–7 m²/s (excluding the outer composite zone transmissivity derived from the CHir analysis, which is considered not reliable). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,515.6 kPa.

If further analysis is planned, it should be clarified which of the composite zones can be seen as representative. This could be done by using a full superposition analysis.

6.3.22 Section 460-465 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good, the flow rate varied between 0.135 L/min and 0.061 L/min. The phase is adequate for quantitative analysis. The CHir phase shows very fast recovery and should be therefore be seen as less adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of both flow phases are relatively noisy, such that a reliable calculation of the flow dimension is not possible. The analysis was conducted assuming a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-81. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	4.99E-8	NA	NA
T _M [m²/s]	4.12E–8	NA	NA
Flow model	Radial 2 shell composite Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	5.4E-8	NA	2.6E-8
T ₂ [m ² /s]	1.1E–8	4.2E–7	8.5E–7 (less reliable due to fast recovery)
r ₁ [m]	26.6	NA	0.57
S [–] (ass. approx. 1E–6)	6.1E–7	1.0E-6	1.3E–6
ξ []	0	39.1	0
C [m³/Pa]	NA	1.9E–11	2.1E–11

Table 6-61. Analyses results; section 460–465 m.

Selected representative parameters

The recommended transmissivity of $5.4E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (inner zone). The confidence range for the transmissivity is estimated to be 1E-8 to $1E-6 \text{ m}^2/\text{s}$ (including both inner and outer composite zone). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,520.9 kPa.

If further analysis is planned, more detailed flow model identification should be conducted. This could be done by using a full superposition analysis.

6.3.23 Section 465-470 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test shows no hydraulic communication between the test interval and the adjacent zones. The injection rate control during the CHi phase was good, however, due to very small rates, the flow data is noisy. Only a qualitative analysis was possible. The flow rate varied between 0.007 L/min at start of the CHi phase and 0.004 L/min at its end, indicating a low interval transmissivity. The CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test there is ambiguity concerning the flow dimension. The downward trend of the CHir derivative at late times can be interpreted as a flow dimension above 2 or can represent the transition to a zone of higher transmissivity. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-67. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	3.70E–9	NA	NA
T _M [m²/s]	3.05E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.8E-9	NA	1.1E–9
T ₂ [m ² /s]	NA	2.4E-8	1.4E–7 (unreliable)
r ₁ [m]	NA	NA	0.19
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.2E–6
ξ []	0	33.2	0
C [m³/Pa]	NA	1.3E–11	1.2E–11

Table 6-62. Analyses results; section 465-470 m.

The recommended transmissivity of $2.4E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase which appears to be most representative for the formation behaviour. The confidence range for the transmissivity is estimated to be 2E-9 to $3E-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,565.8 kPa.

As commented above, there is room for interpretation as far as the flow dimension is concerned. This uncertainty could be further explored using GRF analysis.

6.3.24 Section 480-485 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of about 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase is possible. The flow rate decreased from 0.007 L/min at start of the CHi phase to 0.001 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative

analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-70. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	1.50E-9	NA	NA
T _M [m²/s]	1.24E-9	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	4.1E–10
T ₂ [m ² /s]	NA	1.1E–8	4.1E–08
r ₁ [m]	NA	NA	0.15
S [–] (ass. approx. 1E–6)	NA	1.0E–6	9.4E-7
ξ []	NA	33.4	0
C [m³/Pa]	NA	6.1E–12	6.9E–12

Table 6-63. Analyses results; section 480-485 m.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 9E–9 to 9E–8 m²/s (the inner zone transmissivity derived from the CHir phase is considered to be caused by a local skin effect). The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,709.4 kPa.

No further analysis is recommended.

6.3.25 Section 500–505 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 47 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-71.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-64. Analyses results; section 500-505 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.26 Section 505-510 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 106 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-72.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m²/s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [-] (ass. approx. 1E-6)	NA	NA	NA
ξ [-]	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-65. Analyses results; section 505–510 m.

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.27 Section 510–515 m, test no 1 and 2, injection and pulse injection

Comments to test

The test was composed of two parts. Part one was conducted as a constant pressure injection phase (CHi) with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test section was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the pressure in the interval showing oscillations till the late times of the phase. Because of this reason no analysis of the CHi phase is possible. The flow rate was 0.001 L/min or lower (most of the time below measurement range of the flowmeter), indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis. The analysis was conducted using an average flow rate of 1 mL/min. The second part of the test was conducted as pulse injection (PI). The test was analysed using a wellbore storage coefficient of 1.3E–11 m³/Pa, which is consistent with the value obtained from the CHir analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis and model the downward sloping derivative using a composite system with increasing transmissivity away from the borehole. The response of the CHir phase is, however, inconsistent with the PI phase response, which shows an upwards derivative trend at late times. The analysis plots are presented in Appendix 2-73. The table below presents relevant parameters with respect to the selected model.

Parameter	PI phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	4.8E-10	NA	2.0E-10
T ₂ [m ² /s]	5.5E–11	1.7E–9	1.6E–9
r ₁ [m]	0.94	NA	0.16
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.0E–6
ξ []	3.5	10.1	0
C [m³/Pa]	1.3E–11	1.4E–11	1.3E–11

Table 6-66. An	alvses results	: section	510-515 m.

The recommended transmissivity of $1.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. The confidence range for the transmissivity is estimated to be 3E-11 to $3E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,004.8 kPa.

If further analysis of the data set is planned, the inconsistency between the CHir and PI responses should be clarified using full superposition analysis.

6.3.28 Section 515–520 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase (CHi) with a pressure difference of 242 kPa, followed by a pressure recovery phase (CHir). No hydraulic connection between test interval and the adjacent zones was observed. The rate regulation during the constant pressure injection phase was very good, the data is adequate for quantitative analysis. The injection rate decreased from 0.26 L/min at start of the CHi phase to 0.009 L/min at its end, indicating a relatively low interval transmissivity. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-74. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	6.05E–9	NA	NA
T _M [m ² /s]	5.00E–9	NA	NA
Flow model	Radial 2 shell composite Infinite acting	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	4.7E–9	NA	9.3E-9
T ₂ [m ² /s]	2.9E-9	NA	2.9E-9
r ₁ [m]	2.09	NA	1.95
S [–] (ass. approx. 1E–6)	1.6E–6	NA	1.0E-6
ξ[-]	0	NA	2
C [m³/Pa]	NA	NA	1.8E–11

Table 6-67. Analyse	es results: sectio	n 515–520 m

The recommended transmissivity of $2.9E-9 \text{ m}^2/\text{s}$ was derived from the outer zone transmissivity derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-9 to $1E-8 \text{ m}^2/\text{s}$ (accounting for both composite zones). The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,054.6 kPa.

The analysis of the two test phases shows good consistency. No further analysis is recommended.

6.3.29 Section 525-530 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of 200 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) did not perform properly, the flow rate showing oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase is only qualitative. The flow rate decreased from 0.005 L/min at start of the CHi phase to 0.003 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-76. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	3.27E–9	NA	NA
T _M [m²/s]	2.70E-9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	2.3E-9	NA	1.1E–9
T ₂ [m ² /s]	NA	1.1E–8	9.7E–9
r ₁ [m]	NA	NA	0.23
S [–] (ass. approx. 1E–6)	1.0E–6	1.0E–6	1.0E–6
ξ []	0	15.9	0
C [m³/Pa]	NA	1.5E–11	1.3E–11

Table 6-68. Analyses results; section 525–530 m.

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 1E-9 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,156.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor CHi data. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further, as commented above, there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.30 Section 530–535 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection phase (CHi) conducted with a pressure difference of about 220 kPa, followed by a pressure recovery phase (CHir). The test interval was well isolated, no hydraulic connection between test section and adjacent zones was observed. The rate regulation during the constant pressure injection (CHi) performed well, the flow rate decreased from 0.02 L/min at start of the CHi phase to 0.006 L/min at its end, indicating a low interval transmissivity. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase derivative is horizontal at middle and late times indicating a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. In a further step, an alternative analysis of the CHir using a radial composite flow model was performed with the aim of explicitly modelling the skin as a zone of finite thickness. The analysis plots are presented in Appendix 2-78. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	4.66E–9	NA	NA
T _M [m²/s]	3.85E–9	NA	NA
Flow model	Homogeneous Infinite acting	WBS and skin Homogeneous Infinite acting	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m²/s]	4.0E–9	NA	2.7E–9
T ₂ [m ² /s]	NA	6.6E–9	6.5E–9
r ₁ [m]	NA	NA	0.19
S [–] (ass. approx. 1E–6)	1.2E–6	1.0E–6	1.0E–6
ξ []	0	2	0
C [m³/Pa]	NA	1.8E–11	1.8E–11

Table 6-69. Analyses results; section 530-535 m.

The recommended transmissivity of $6.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 1E-9 to $8E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,218.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor CHi data. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3.31 Section 535–540 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 123 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than $1E-11 \text{ m}^2/\text{s}$. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-79.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ [-]	NA	NA	NA
C [m³/Pa]	NA	NA	NA

Table 6-70. Analyses results; section 535–540 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.32 Section 540-545 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising with approx. 30 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E–11 m2/s. The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-80.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	NA
T ₁ [m ² /s]	lower than 1E–11	NA	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	NA	NA
ξ []	NA	NA	NA
C [m ³ /Pa]	NA	NA	NA

Table 6-71. Analyses results; section 540-545 m.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.4 Single-hole pulse injection tests

In the present section the tests that were conducted as pulse injection or that were analysed as pulse injection due to lack of measurable flow during the injection flow are presented. The tests were analysed using RAMEY type curve analysis as well as deconvolution type curve analysis.

6.4.1 Section 344–364 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery overnight. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.0072 l was injected (derived from the flowmeter measurements). This injected volume produced a pressure increase of 266 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 2.7E–11 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-16. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase (analysed as PI)
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	8.5E–11
T ₂ [m ² /s]	NA	NA	2.6E–11
r ₁ [m]	NA	NA	0.21
S [–] (ass. approx. 1E–6)	NA	NA	2.9E-6
ξ []	NA	NA	0
C [m³/Pa]	NA	NA	2.7E–11 (derived from dV/dP)

Table 6-72. Analyses results; section 344–364 m.

Selected representative parameters

The recommended transmissivity of $2.6E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 1E-11 to $5E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was estimated from the last reading and shape of the pressure recovery to a value of 3,400.0 kPa.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

6.4.2 Section 364–384 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery overnight. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.0164 l was injected (derived from the flowmeter measurements. This injected volume produced a pressure increase of 285.3 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 5.8E–11 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-17. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase (analysed as PI)
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	3.2E–9
T ₂ [m ² /s]	NA	NA	1.8E–9
r ₁ [m]	NA	NA	1.38
S [–] (ass. approx. 1E–6)	NA	NA	2.5E–7
ξ []	NA	NA	0
C [m³/Pa]	NA	NA	5.8E–11 (derived from dV/dP)

Table 6-73. Analyses results; section 364-384 m.

Selected representative parameters

The recommended transmissivity of $1.8E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 5E-10 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was estimated from the last reading and shape of the pressure recovery to a value of 3,600.0 kPa.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

6.4.3 Section 404–424 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.048 l was injected (derived from the flowmeter measurements. This injected volume produced a pressure increase of 249 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.9E-10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-19. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase (analysed as PI)
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	
			Radial 2 shell composite Infinite acting
T ₁ [m²/s]	NA	NA	1.8E–11 (to be seen as skin)
T ₂ [m ² /s]	NA	NA	3.6E–13
r ₁ [m]	NA	NA	0.08
S [–] (ass. approx. 1E–6)	NA	NA	2.2E–6
ξ []	NA	NA	0
C [m³/Pa]	NA	NA	1.9E–10 (derived from dV/dP)

Table 6-74. Analyses results; section 404-424 m.

Selected representative parameters

The recommended transmissivity of $3.6E-13 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone). It should be noted that due to the very low interval transmissivity the results are very uncertain. The confidence range for the transmissivity is estimated to be 3E-13 to $2E-11 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.
6.4.4 Section 564–584 m, test no 1, pulse injection

Comments to test

The test was started as a constant pressure injection test phase (CHi) with subsequent pressure recovery phase (CHir). However, given the fact that no measurable flow was registered during the CHi phase it was decided to close the test valve and conduct the test as a pulse injection. The test shows no hydraulic communication between the test interval and the adjacent zones.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be uniquely determined because the slope of the deconvolution derivative is strongly dependent on the assumed static and initial pressure of the pulse. The analysis was conducted using the radial flow assumption (flow dimension = 2). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-28. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	Homogeneous Infinite acting	NA
T ₁ [m ² /s]	NA	2.8E-12	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	3.1E–6	NA
ξ []	NA	0	NA
C [m³/Pa]	NA	5.1E–11 (assumed; value similar with other tests)	NA

Table 6-75. Analyses results; section 564-584 m.

Selected representative parameters

The recommended transmissivity is $2.8E-12 \text{ m}^2/\text{s}$. The confidence range of the transmissivity is estimated to be between $1E-12 \text{ m}^2/\text{s}$ and $5E-11 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2.

No further analysis is recommended.

6.4.5 Section 704–724 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.035 l was injected (derived from the flowmeter measurements. This injected volume produced a pressure increase of 203.3 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.7E–10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-30. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase (analysed as PI)	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m ² /s]	NA	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	NA
T ₁ [m ² /s]	NA	1.2E–10	NA
T ₂ [m ² /s]	NA	NA	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	1.1E–6	NA
ξ []	NA	2 (from deconvolution analysis)	NA
C [m ³ /Pa]	NA	1.7E–10 (derived from dV/dP)	NA

Table 6-76. Analyses results; section 704–724 m.

Selected representative parameters

The recommended transmissivity of $1.2E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. It should be noted that due to the very low interval transmissivity the results are very uncertain the confidence range for the transmissivity is estimated to be 1E-11 to $3E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

6.4.6 Section 341-346 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.022 l was injected (derived from the flowmeter measurements. This injected volume produced a pressure increase of 201.6 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.1E–10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-53. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase (analysed as PI)	CHir phase
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	NA	WBS and skin Radial 2 shell composite Infinite acting
T ₁ [m ² /s]	NA	NA	1.8E–11 (to be seen as skin)
T ₂ [m ² /s]	NA	NA	6.1E–11
r ₁ [m]	NA	NA	0.15
S [–] (ass. approx. 1E–6)	NA	NA	1.0E–6
ξ []	NA	NA	0
C [m³/Pa]	NA	NA	1.1E–10 (derived from dV/dP)

Table 6-77. Analyses results; section 341–346 m.

Selected representative parameters

The recommended transmissivity of $6.1E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone). It should be noted that due to the very low interval transmissivity the results are very uncertain. The confidence range for the transmissivity is estimated to be

5E-12 to 8E-11 m²/s (the outer zone transmissivity is considered as most representative). The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

6.4.7 Section 470–475 m, test no 1, pulse injection

Comments to test

The test was started with a long lasting pressure recovery. After rising for approx. 1 hour, the pressure rolled over and started dropping, this response indicating a very tight test section as well as the relatively long time needed by the packers to inflate completely. The test was continued as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, confirming that the section is very tight. It was therefore decided to close the test valve and measure the pressure recovery. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of approx 3 ml was injected (derived from the flowmeter measurements. This injected volume produced a pressure increase of 204 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.3E–11 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-68. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase (analysed as PI)	CHir phase
Q/s [m²/s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	WBS and skin Homogeneous Infinite acting	NA
T ₁ [m²/s]	NA	NA (transmissivity near the wellbore much lower, expressed by the high skin)	NA
T ₂ [m ² /s]	NA	3.4E–9 (matched to late time data)	NA
r ₁ [m]	NA	NA	NA
S [–] (ass. approx. 1E–6)	NA	1.7E–6	NA
ξ []	NA	10	NA
C [m³/Pa]	NA	1.3E–13 (derived from dV/dP)	NA

T-11-0 70	A			470 475
1 able 6-78.	Analyses	results;	section	470–475 m.

Selected representative parameters

The recommended transmissivity of $3.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. It should be noted that due to the very low interval transmissivity the results are very uncertain. The confidence range for the transmissivity is estimated to be 1E-11 to $5E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

6.4.8 Section 475–480 m, test no 2, pulse injection

Comments to test

The test was started with pressure recovery of 0.4 hours during which the pressure rose by 13 kPa. The test was continued as a pulse injection. During the brief injection phase a total volume of approx 6 ml was injected (derived from water level in tubing). This injected volume produced a pressure increase of 293 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.8E–11 m3/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. The analysis was conducted assuming a flow dimension of 2 - radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis plots are presented in Appendix 2-69. The table below presents relevant parameters with respect to the selected model.

Parameter	NA	PI phase	NA
Q/s [m ² /s]	NA	NA	NA
T _M [m²/s]	NA	NA	NA
Flow model	NA	WBS and skin Radial 2 shell composite Infinite acting	NA
T ₁ [m ² /s]	NA	1.9E–9	NA
T ₂ [m ² /s]	NA	6.9E–9	NA
r ₁ [m]	NA	1.9	NA
S [–] (ass. approx. 1E–6)	NA	1.1E–6	NA
ξ []	NA	10	NA
C [m³/Pa]	NA	1.8E–13 (derived from dV/dP)	NA

Table 6-79. Analyses results; section 475-480 m.

Selected representative parameters

The recommended transmissivity of $1.9E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the PI phase (inner composite zone). It should be noted that due to the very low interval transmissivity the results are very uncertain. The confidence range for the transmissivity is estimated to be 1E-9 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

No further analysis is recommended.

6.4.9 Section 520–525 m, test no 1, pulse injection

Comments to test

The test was initiated as a constant pressure injection. However, after a few seconds of injection the rate quickly dropped to zero, indicating a very tight section. It was therefore decided to close the test valve and measure the pressure recovery. The pressure recovery was analysed as a pulse injection phase (PI). During the brief injection phase a total volume of 0.163 l was injected (derived from the flowmeter measurements). This injected volume produced a pressure increase of 209 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.3E–10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the flow dimension cannot be determined with any degree of certainty because the shape of the deconvolved pulse data is very sensitive to the assumed p0 and pi values of the test. An infinite acting radial composite flow model was used in the analysis. The analysis plots are presented in Appendix 2-75. The table below presents relevant parameters with respect to the selected model.

Parameter	CHi phase	CHir phase	CHir phase (analysed as PI)
Q/s [m²/s]	NA	NA	NA
TM [m²/s]	NA	NA	NA
Flow model	NA	NA	WBS and skin Radial 2 shell composite Infinite acting
T1 [m²/s]	NA	NA	9.1E–12
T2 [m²/s]	NA	NA	7.3E–11
r1 [m]	NA	NA	0.07
S [-] (ass. approx. 1E-6)	NA	NA	1.0E–6
ξ []	NA	NA	0.4
C [m³/Pa]	NA	NA	1.3E–10 (derived from dV/dP)

Table 6-80. Analyses results; section 520–525 m.

Selected representative parameters

The recommended transmissivity of $7.3E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone). It should be noted that due to the very low interval transmissivity the results are very uncertain. The confidence range for the transmissivity is estimated to be 5E-12 to $8E-11 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. No static pressure could be derived.

The test data is poor, this being mainly caused by the very low interval transmissivity and the test design which was not optimized for this transmissivity range. No further analysis is recommended.

7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed. An additional synthesis based on normalized plots as well as transmissivity and equivalent freshwater head profiles are presented in Appendix 5.

results	
of	
Summary	
5	

Table 7-1. General test data from constant head injection tests and pulse tests in KLX02. (bml = below measurement limit).

Borehole	Borehole	Date and time	Date and time	ď	å	tp	ي د ا	ď	ā	ď	pF	Te	Test ph	ases measured
secup	seclow	for test, start	for test, stop										Analyse	d test phases
(m)	(m)	үүүүммрр hh:mm	үүүҮММDD hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°c)	marked	bold
204.00	304.00	20030710 08:23	20030710 11:15	7.92E-04	8.34E-04	2160	2040	2021.0	2026.0	2227.0	2030.0	10.0	CHİ	CHir
304.00	404.00	20030710 13:46	20030710 15:49	2.20E-04	2.26E–04	1980	1800	3012.0	3011.0	3210.0	3010.0	11.5	СНІ	CHir
404.00	504.00	20030710 17:17	20030710 19:35	2.67E-06	2.83E-06	1980	1920	3994.0	3968.0	4167.0	3969.0	I	СНІ	CHir
504.00	604.00	20030711 10:05	20030711 17:29	2.67E-07	3.01E-07	1800	8340	4968.0	4987.0	5187.0	4975.0	14.5	CHI	CHir
604.00	704.00	20030711 18:46	20030712 08:04	2.50E-08	3.33E-08	1800	42300	5963.0	5953.0	6149.0	5897.0	15.7	CHI	CHir
704.00	804.00	20030712 09:31	20030712 12:01	3.32E-06	3.33E-06	3600	1800	6939.0	6874.0	7074.0	6876.0	17.3	СНІ	CHir
804.00	904.00	20030712 14:29	20030712 16:20	1.58E–06	1.69E–06	1800	1980	7926.0	7864.0	8063.0	7862.0	18.8	СНІ	CHir
904.00	1,004.00	20030712 17:51	20030712 19:41	2.87E-06	2.88E–06	1800	1800	8909.0	8850.0	9048.0	8850.0	20.5	СНІ	CHir
204.00	224.00	20030714 12:16	20030714 14:27	5.34E-05	5.95E-05	1200	1200	2029.0	2030.0	2230.0	2030.0	10.0	СНІ	CHir
224.00	244.00	20030714 15:32	20030714 17:15	2.40E-05	2.53E-05	1500	1200	2228.0	2227.0	2427.0	2227.0	10.0	СНІ	CHir
244.00	264.00	20030714 17:50	20030714 19:11	7.31E-04	7.54E–04	1200	1500	2423.0	2423.0	2622.0	2427.0	10.5	СНІ	CHir
264.00	284.00	20030715 08:25	20030715 10:01	2.67E-05	3.01E-05	1200	1200	2616.0	2616.0	2817.0	2617.0	10.7	СНІ	CHir
284.00	304.00	20030715 10:46	20030715 12:09	1.75E–05	1.94E–05	1200	1200	2813.0	2813.0	3012.0	2813.0	11.0	СНІ	CHir
304.00	324.00	20030715 12:56	20030715 14:44	1.90E–04	1.94E–04	1200	1200	3010.0	3011.0	3210.0	3011.0	11.2	СНІ	CHir
324.00	344.00	20030715 15:33	20030715 16:57	3.97E–05	4.12E-05	1200	1200	3207.0	3207.0	3407.0	3407.0	11.5	СНі	CHir
344.00	364.00	20030715 17:31	20030716 07:57	I	I	300	49440	3404.0	3432.0	3666.0	3403.0	12.0	Ē	
364.00	384.00	20030716 08:35	20030716 09:39	I		120	1320	3598.0	3600.0	3810.0	3604.0	12.2	Ē	
384.00	404.00	20030716 10:20	20030716 13:45	6.96E–08	6.96E–08	1200	1200	3795.0	3773.0	4022.0	3776.0	12.5	СНІ	CHir
404.00	424.00	20030716 14:23	20030716 15:29	I	I	180	1200	3994.0	4010.0	4247.0	4246.0	12.8	Ē	
424.00	444.00	20030716 16:07	20030716 17:31	8.22E–07	8.39E–07	1200	1200	4191.0	4165.0	4364.0	4165.0	13.1	СНі	CHir
444.00	464.00	20030716 18:03	20030716 19:59	1.47E–06	1.51E-06	1200	1800	4387.0	4363.0	4562.0	4363.0	13.4	СНі	CHir
464.00	484.00	20030717 08:08	20030717 10:13	1.76E–07	1.92E–07	1800	1200	4585.0	4558.0	4755.0	4558.0	13.6	СНі	CHir
481.00	501.00	20030717 10:48	20030717 12:52	3.33E-09 ^(bml)	8.33E-09	1800	1800	4749.0	4744.0	4943.0	4759.0	14.0	CHi	CHir

Borehole	Borehole	Date and time	Date and time	å	å	tp	Ť,	b₀	ä	p _p	p⊧	Te	Test pł	lases measured
secup	seclow	for test, start	for test, stop										Analys	ed test phases
(m)	(m)	үүүүммрр hh:mm	үүүүммрр hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(၁့)	marke	l bold
484.00	504.00	20030717 13:21	20030717 15:06	8.28E-09 ^(bml)	8.33E-09	1800	2400	4781.0	477.6	4975.0	4774.0	14.0	CHi	CHir
504.00	524.00	20030717 15:40	20030717 18:46	1.30E–07	1.48E–07	1800	2700	4978.0	4983.0	5183.0	4980.0	14.2	CHI	CHir
524.00	544.00	20030717 19:25	20030717 21:32	1.17E–07	1.97E–07	3600	1800	5173.0	5165.0	5363.0	5184.0	14.5	CHI	CHir
544.00	564.00	20030718 11:21	20030718 13:41	I	I	480	5400	5371.0	5365.0	5555.0	5426.0	14.9		
564.0	584.0	20030718 14:16	20030718 16:30	I	I	180	3840	5568.0	5614.0	5817.0	5794.0	15.2	Ä	
584.00	604.00	20030718 17:12	20030718 18:41	8.33E-09 ^(bml)	8.33E-09	1200	1800	5765.0	5767.0	5963.0	5820.0	15.5	CHi	CHir
704.00	724.00	20030719 09:18	20030719 10:48	I	I	1200	1800	6941.0	6950.0	7147.0	7117.0	17.3	₽	
724.00	744.00	20030719 11:23	20030719 15:45	6.33E-07	7.34E07	1200	1800	7139.0	7081.0	7281.0	7081.0	17.6	CHI	CHir
744.0	764.0	20030719 16:21	20030719 18:03	2.79E–07	2.88E–07	1800	1200	7337.0	7275.0	7475.0	7275.0	18.0	CHI	CHir
764.00	784.00	20030719 18:46	20030719 22:07	1.65E-07	1.69E–07	7200	1800	7532.0	7474.0	7672.0	7474.0	18.2	CHI	CHir
784.00	804.00	20030720 08:30	20030720 09:51	2.24E–06	2.30E-06	1200	1200	7726.0	7664.0	7884.0	7665.0	18.6	CHI	CHir
804.00	824.00	20030720 10:36	20030720 13:06	5.00E-08	5.49E-08	2400	1800	7924.0	7866.0	8066.0	7865.0	18.9	CHI	CHir
824.00	844.00	20030720 13:39	20030720 16.02	4.14E–08	4.76E–08	1800	2400	8122.0	8069.0	8319.0	8066.0	19.2	CHI	CHir
844.00	864.00	20030720 16:42	20030720 19:17	1.00E–06	1.07E-06	3600	1800	8320.0	8261.0	8461.0	8261.0	20.1	CHI	CHir
864.00	884.00	20030721 08:11	20030721 10:07	4.65E–07	5.01E-07	1200	1200	8511.0	8454.0	8654.0	8455.0	19.9	CHI	CHir
884.00	904.00	20030721 10:45	20030721 12:38	3.50E-07	3.65E-07	1800	1800	8711.0	8658.0	8858.0	8659.0	20.2	CHI	CHir
904.00	924.00	20030721 13:11	20030721 16:10	5.83E-08	6.47E–08	1200	1200	8911.0	8855.0	9055.0	8855.0	20.6	CHI	CHir
922.00	942.00	20030721 16:48	20030721 18:34	2.81E-06	3.03E-06	1200	1800	9087.0	9040.0	9240.0	9039.0	20.9	CHI	CHir
943.00	963.00	20030722 08:27	20030722 10:10	3.91E–07	4.01E-07	1800	1200	9289.0	9285.0	9486.0	9282.0	21.1	CHI	CHir
964.00	984.00	20030722 10:53	20030722 12:59	2.23E–08	3.04E-08	2400	1800	9497.0	9450.0	9653.0	9453.0	21.5	CHI	CHir
984.00	1,004.00	20030722 13:39	20030722 15:33	9.29E–08	9.91E-08	2400	1800	9692.0	9648.0	9850.0	9647.0	21.8	CHI	CHir
300.00	305.00	20030724 10:32	20030724 12:36	7.11E–07	7.14E-07	1800	1800	2967.0	2968.0	3168.0	2968.0	11.4	CHI	CHir
305.00	310.00	20030724 13:01	20030724 16:09	5.00E-09 ^(bml)	5.83E-09	1200	7200	3018.0	3021.0	3221.0	3019.0	11.3	CHI	CHir
310.00	315.00	20030724 16:35	20030724 18:33	2.50E–08	5.12E-08	1800	1800	3067.0	3067.0	3267.0	3067.0	11.5	CHI	CHir
315.00	320.00	20030725 08:25	20030724 09:47	1.82E–04	1.92E–04	1200	1200	3112.0	3112.0	3310.0	3114.0	11.5	CHI	CHir
320.00	325.00	20030725 10:12	20030725 12:46	I	I	300	420	3161.0	3359.0	3491.0	3732.0	11.6		

Borehole	Borehole	Date and time	Date and time	ď	ď	tp	ت .	ď	ā	å	p.	Te	Test ph	ises measured
secup	seclow	for test, start	for test, stop										Analyse	d test phases
(m)	(m)	үүүүммрр hh:mm	үүүүммрр hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°c)	marked	bold
325.00	330.00	20030725 13:18	20030725 15:11	1.33E-08 ^{(bml}	2.17E-08	1800	1800	3211.0	3214.0	3415.0	3216.0	11.7	CHi	CHir
330.00	335.00	20030725 15:37	20030725 17:42	5.00E-09 ^{(bml}	1.33E-08	1800	2700	3262.0	3264.0	3464.0	3265.0	11.8	CHi	CHir
335.00	340.00	20030725 18:05	20030725 19:34	3.11E-05	3.61E-05	1200	1200	3311.0	3312.0	3512.0	3312.0	11.7	СНі	CHir
341.00	346.00	20030726 08:19	20030726 10:41	I	I	1200	1800	3367.0	3490.0	3688.0	3666.0	11.9	CHi	CHir
385.00	390.00	20030726 11:20	20030726 13:46	5.00E-08	5.86E-08	1200	5160	3802.0	3783.0	3984.0	3780.0	12.4	CHi	CHir
390.00	395.00	20030726 14:12	20030726 16:06	I	I	1200	300	3851.0	3975.0	4183.0	4183.0	12.6		
395.00	400.00	20030726 16:35	20030727 08:11	I	I	I	I	3897.0	I	I	I	12.7		
400.00	405.00	20030727 08:38	20030727 09:24	I	I	I	I	3937.0	I	I	I	12.8		
420.00	425.00	20030727 09:55	20030727 10:56	I	I	I	I	4140.0	I	I	I	13.0		
425.00	430.00	20030727 11:23	20030727 12:09	I	I	I	I	4188.0	I	I	I	13.1		
429.00	434.00	20030727 13:20	20030727 14:21	I	I	I	I	4229.0	I	I	I	13.2		
434.00	439.00	20030727 14:48	20030727 16:31	8.35E-07	8.55E-07	1800	1200	4283.0	4261.0	4461.0	4261.0	13.3	СНі	CHir
440.00	445.00	20030727 16:58	20030727 17:58	I	I	I	I	4338.0	I	I	I	13.4		
445.00	450.00	20030728 08:13	20030728 09:13	I	I	I	I	4381.0	I	I	I	13.5		
450.00	455.00	20030728 09:38	20030728 10:38	I	I	I	I	4436.0	I	I	I	13.5		
455.00	460.00	20030728 11:02	20030728 13:29	1.09E–07	1.16E-07	3600	1200	4478.0	4466.0	4666.0	4466.0	13.6	СНі	CHir
460.00	465.00	20030728 13:53	20030728 15:33	6.66E-07	&.98E-07	1800	1200	4537.0	4515.0	4717.0	4515.0	13.6	СНі	CHir
460.00	465.00	20030801 11:51	20030801 15:49	1.01E-06	1.16E–06	7560	1200	4537.0	4520.0	4719.0	4521.0	13.7	СНі	CHir
465.00	470.00	20030728 15:56	20030728 17:44	7.57E–08	8.43E-08	1800	1200	4581.0	4565.0	4766.0	4566.0	13.8	СНі	CHir
470.00	475.00	20030728 18:07	20030729 08:23	I	I	240	1200	4620.0	4617.0	4810.0	4612.0	13.8	Pi	
475.00	480.00	20030801 09:44	20030801 11:22	I	I	0	2700	4659.0	4671.0	4948.0	4670.0	13.9	Pi	
480.00	485.00	20030729 10:54	20030729 13.28	3.04E-08	3.90E-08	1800	4860	4709.0	4712.0	4910.0	4709.0	14.0	CHi	CHir
500.00	505.00	20030729 14:00	20030729 14:59	I	I	Ι	I	4910.0	I	I	I	14.2		
505.00	510.00	20030729 15:29	20030729 16:29	I	I	Ι	I	4957.0	I	I	I	14.3		
510.00	515.00	20030729 16:54	20030729 20:42	8.33E-09 ^(bml)	1.67E–08	1200	0096	5009.0	5010.0	5210.0	5005.0	14.4	CHir	Ŀ
515.00	520.00	20030731 14:49	20030731 17:50	1.49E–07	1.94E–07	1200	5400	5057.0	5067.0	5309.0	5067.0	14.5	CHİ	CHir

Borehole	Borehole	Date and time	Date and time	ď	a "	tp	"	ď	ä	ď	p⊧	Tew	Test phases n	leasured
secup	seclow	for test, start	for test, stop										Analysed test	phases
(m)	(m)	үүүүммрр hh:mm	үүүүммрр hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°c)	marked bold	
520.00	525.00	20030730 13:23	20030730 15:12	1	I	1800	1200	5103.0	5116.0	5314.0	5239.0	14.5	Pi	
525.00	530.00	20030730 15:36	20030730 16:36	6.67E-08	6.96E-08	1200	1200	5172.0	5159.0	5359.0	5160.0	14.6	CHI CH	Ŀ
530.00	535.00	20030731 11:06	20030731 14:18	1.06E–07	1.46E–07	1200	7980	5224.0	5221.0	5445.0	5221.0	14.7	CHI CF	Ŀ
535.00	540.00	20030731 08:09	20030731 09:08	I	I	I	I	5273.0	I	I	I	14.8		
540.00	545.00	20030731 09:44	20030731 10:42	I	I	I	I	5322.0	I	I	I	14.8		
#NV: Not analy	/sed.													

	phase.	
	injection	
laiy seu.	int head	
	li: Consta	

CHi: Constant head injection phase. CHir: Recovery phase following the constant head injection phase. Pi: Pulse Injection.

Table 7-2. Results from analysis of constant head tests and pulse tests in KLX02.

						Transient ar	nalysis										
Interv tion	al posi-	Steady sta	te analysis			Wellbore efi	fects		ormation p	arameters					Stat con	ic ditions	Obser- vations
g e	yo M	Q/s m²/s	T _м m²/s	K _M m/s	Flow model	C _w (m³/Pa r	C⊤ n³/Pa	ء – سي ا			r⊤ m²/s r	T _{MIN} T	Max r n ² /s n	ν F Ε	k p* kPa	h _{wŕ} masl	cuz clz
bToC	bToC																
204	304	3.86E-05	5.03E-05	5.03E-07	WBS2	3.00E-08	1.01E-10	17.8 #	, NV	.80E-04	1.80E-04 3	3.00E-05 3	:.00E-04 #	ŧNV 1	.00E-06 202	9 10.58	×
304	404	1.08E-05	1.41E-05	1.41E–07	WBS2	8.30E-09	1.01E-10	18.5 #	NV 4	1.90E-05 4	1.90E-05 2	2.00E-05 6	:.50E-05 #	ŧNV 1	.00E-06 300	8 10.77	I
404	504	1.31E-07	1.71E-07	1.71E-09	WBS2	3.00E-10	1.01E-10	20.1 #	NV ENV	6.90E-07	5.90E-07	1.50E-07 6	:.00E-07 #	ŧNV 1	.00E-06 396	8 9.14	I
504	604	1.31E–08	1.70E-08	1.70E–10	WBS22	2.50E-10	1.01E-10	0	.50E-08	3.00E-09	3.00E-09	1.00E-09 2	:.00E-08 2	1 1	.00E-06 495	4 10.21	ı ı
604	704	1.25E–09	1.63E-09	1.63E–11	WBS22	1.40E–10	1.01E-10	е 0	:.00E-10	.10E-10	3.00E-10	5.00E-11 7	.00E-10 1	i2	.00E-06 588	7 5.97	ı ı
704	804	1.63E–07	2.12E–07	2.12E–09	WBS2	1.30E-09	1.01E-10	19.4 #	NV 6	3.90E-07	3.90E-07 3	3.00E-08 1	.00E-06 #	ŧNV 1	.00E-06 687	3 7.26	I
804	904	7.80E–08	1.02E-07	1.02E-09	WBS2	4.20E-10	1.01E-10	20 #	NV NV	3.50E-07	3.50E-07 2	2.00E-08 5	:.00E-07 #	ŧNV 1	.00E-06 786	1 8.64	I
904	1,004	1.42E–07	1.85E–07	1.85E–09	WBS2	1.60E-09	1.01E-10	32.6 #	NV S).10E-07	9.10E-07	5.00E-08 2	:.00E-06 #	ŧNV 1	.00E-06 884	9 10.03	I
204	224	2.62E-06	2.74E–06	1.37E–07	WBS2	1.70E–10 2	2.02E–11	е 0	.20E-06 ≠	¢NV	3.20E-06	1.00E-06 2	:.00E-05 #	ŧNV 1	.00E-06 203	0 10.75	T
224	244	1.18E–06	1.23E-06	6.15E-08	WBS22	1.90E-10 2	2.02E–11	。 0	70E-07 4	1.80E-06	9.70E-07 4	1.00E-07 2	00E-06 3	3.8	.00E-06 222	7 10.84	I
244	264	3.60E-05	3.77E-05	1.89E–06	WBS2	2.10E-08 2	2.02E–11	18 #	, NV	.70E-04	1.70E-04 8	3.00E-05 2	:.00E-04 #	ŧNV 1	.00E-06 242	4 11.06	×
264	284	1.31E-06	1.37E-06	6.85E-08	WBS22	2.40E–10 2	2.02E-11	20.3 1	.70E-06	.10E-06	1.70E-06 8	3.00E-07 5	.00E-06 3	32 1	.00E-06 261	7 10.77	I
284	304	8.63E-07	9.02E-07	4.51E-08	WBS2	1.40E–10 2	2.02E-11	38.3 1	.10E–06 <i>≢</i>	, NV≜	1.10E-06 (3.00E-07 5	:.00E-06 #	ŧNV 1	.00E-06 281	3 10.82	I
304	324	9.36E-06	9.80E-06	4.90E-07	WBS22	6.50E-09 2	2.02E-11	18.6 1	.10E-05 4	I.20E-05 4	1.20E-05 2	2.00E-05 6	.00E-05 4	1	.00E-06 300	9 10.95	×
324	344	1.86E–06	1.95E-06	9.75E–08	WBS22	3.50E-10 2	2.02E-11	20.1 1	.80E-06	3.20E-06	3.20E-06 2	2.00E-06 8	.00E-06 2	2.3 1	.00E-06 320	7 11.22	×
344	364	NN#	NN#	NN#	WBS22	2.70E–11 2	2.02E–11	8	.50E-11	2.60E-11	2.60E-11	1.00E-11 5	.00E-10 0	0.2	.00E-06 340	0 10.94	I I
364	384	NN#	NN#	NN#	WBS22	5.80E-11 2	2.02E-11	е 0	20E-09	.80E-09	1.80E-09 £	5.00E-10 1	.00E-08	4.	.00E-06 360	0 11.42	I
384	404	2.74E–09	2.87E-09	1.44E–10	WBS2	4.30E-11 2	2.02E-11	21.1 #	, NV	.10E-08	1.10E-08 2	2.90E-09 4	.00E-08 #	ŧNV 1	.00E-06 376	8 8.65	I
404	424	NN#	NN#	NN#	WBS22	1.90E-10 2	2.02E–11	0	.80E-11	3.60E-13	3.60E-13 3	3.00E-13 2	00E-11 0	1.1	.00E-06 #NV	∧N# /	T
424	444	4.05E-08	4.24E–08	2.12E–09	WBS2	8.80E-11 2	2.02E–11	32.2 #	NV NV	2.40E-07	2.40E-07	1.00E-08 4	.00E-07 #	ŧNV 1	.00E-06 416	5 9.33	I
444	464	7.26E–08	7.60E-08	3.80E-09	WBS22	5.60E-11 2	2.02E-11	21 5	20E-08	2.60E-07	2.60E-07 4	1.00E-08 5	.00E-07 2	1 1	.00E-06 436	3 9.59	×
464	484	8.78E–09	9.19E–09	4.60E-10	WBS2	4.40E–11 2	2.02E-11	32.6 #	NV EN	5.70E-08	5.70E-08 、	1.00E-08	:.00E-07 #	ŧNV 1	.00E-06 455	8 9.64	ı ı
481	501	1.64E–10	1.72E–10	8.60E-12	WBS2	1.70E–11 2	2.02E–11	#	‡ NV	, €NV	1.30E-10	1.00E–13 1	.30E–10 #	ŧNV 1	.00E-06 #NV	∧N# /	I

						I ransient a	nalysis									
Intervi tion	ıl posi-	Steady sta	te analysis			Wellbore ef	fects	For	nation paraı	meters				Static condi	tions	Obser- vations
ы bToC	bToC	Q/s m²/s	T _M m²/s	K _™ m/s	Flow model	C _™ m³/Pa	C _⊤ m³/Pa	Ç. ⊤. - m²/s	T ₂ m²/s	T⊤ m²/s	T _{MIN} m²/s	T _{Max} m²/s	ς Ε	* kPa	h _{wiŕ} masl	cuz clz
484	504	4.08E-10	4.27E-10	2.14E-11	WBS2	1.20E-11	2.02E-11	D.04 #NV	1.60	E-10 1.60E-1	0 1.00E-13	1.60E-10	#NV 1	.00E-06 #NV	- ^N#	1
504	524	6.36E-09	6.66E-09	3.33E-10	WBS22	3.90E-11	2.02E-11	0 5.40	E-09 1.90	E-09 5.40E-0	9 1.00E-09	7.00E-09	1.8 1	.00E-06 4947	9.54 -	1
524	544	5.78E–09	6.05E-09	3.03E-10	WBS22	6.30E-11	2.02E-11	0 8.20	E-09 5.50	E-09 8.20E-0	9 2.00E-09	1.00E-08	1.9 1	.00E-06 5150	10.35 -	I
544	564	NN#	NN#	NN#	NN#	NN#	2.02E-11	¢NV 1.00	E-10 #NV	1.00E-1	0 1.00E-13	1.00E-10	#NV 1	.00E-06 #NV	- ^N#	I
564	584	NN#	NN#	NN#	WBS2	5.10E-11	2.02E-11	0 2.80	E-12 #NV	2.80E-1	2 1.00E-12	5.00E-11	#NV 1	.00E-06 #NV	- ^N#	I
584	604	4.17E–10	4.36E-10	2.18E–11	WBS2	3.40E-11	2.02E-11	0 1.20	E-10 #NV	1.20E-1	0 1.00E-13	1.20E-10	#NV 1	.00E-06 #NV	- ^N#	I
704	724	NN#	NN#	NN#	WBS2	1.70E-10	2.02E-11	2 1.20	E-10 #NV	1.20E-1	0 1.00E-11	3.00E-10	#NV 1	.00E-06 #NV	- ^N#	I
724	744	3.11E–08	3.25E-08	1.63E–09	WBS2	1.00E-09	2.02E-11	7.9 #NV	.7.60	E-08 7.60E-0	8 6.00E-09	1.00E-07	#NV 1	.00E-06 7076	8.06	I
744	764	1.37E–08	1.43E-08	7.15E-10	WBS2	8.90E-11	2.02E-11	32.3 #NV	8.50	E-08 8.50E-0	8 6.00E-09	3.00E-07	#NV 1	.00E-06 7274	8.39 -	I
764	784	8.19E–09	8.57E-09	4.29E–10	WBS2	4.60E-11	2.02E-11	22.5 #NV	3.70	E-08 3.70E-0	8 1.00E-09	6.00E-08	#NV 1	.00E-06 7468	8.28	I
784	804	1.10E-07	1.15E-07	5.75E-09	WBS2	2.40E-10	2.02E-11	32 #NV	09.9	E-07 6.60E-0	7 5.00E-08	8.00E-07	#NV 1	.00E-06 7664	8.42 -	I
804	824	2.45E–09	2.57E-09	1.29E–10	WBS2	3.80E-11	2.02E-11	32.6 #NV	1.60	E-08 1.60E-0	8 7.00E-09	4.00E-08	#NV 1	.00E-06 7865	9.04	I
824	844	1.62E–09	1.70E-09	8.50E-11	WBS2	7.50E-11	2.02E-11	9.25 #NV	3.80	E-09 3.80E-0	9 8.00E-10	6.00E-09	#NV 1	.00E-06 8056	8.61 -	I
844	864	4.93E-08	5.15E-08	2.58E-09	WBS2	1.10E-10	2.02E-11	30.9 #NV	3.20	E-07 3.20E-0	7 1.00E-08	6.00E-07	#NV 1	.00E-06 8260	9.58 -	I
864	884	2.28E–08	2.38E-08	1.19E–09	WBS2	7.10E-11	2.02E-11	32.5 #NV	1.50	E-07 1.50E-0	7 1.00E-08	6.00E-07	#NV 1	.00E-06 8454	9.51 -	I
884	904	1.72E–08	1.80E-08	9.00E-10	WBS2	1.10E-10	2.02E-11	32.2 #NV	1.10	E-07 1.10E-0	7 5.00E-09	3.00E-07	#NV 1	.00E-06 8658	10.50 -	I
904	924	2.86E–09	2.99E–09	1.50E-10	WBS2	4.10E-11	2.02E-11	21.1 #NV	1.30	E-08 1.30E-0	8 5.00E-10	3.00E-08	#NV 1	.00E-06 8852	10.34 -	I
922	942	1.38E–07	1.44E-07	7.20E-09	WBS2	1.40E-09	2.02E-11	19.4 #NV	6.10	E07 6.10E0	7 6.00E-08	3.00E-06	#NV 1	.00E-06 9038	11.50 -	I
943	963	1.91E–08	2.00E-08	1.00E-09	WBS2	4.70E-11	2.02E-11	32.6 #NV	1.20	E-07 1.20E-0	7 7.00E-09	8.00E-07	#NV 1	.00E-06 9282	15.44 -	I
964	984	1.13E–09	1.18E-09	5.90E-11	WBS2	3.70E-11	2.02E-11	5 #NV	2.00	E-09 2.00E-0	9 5.00E-10	5.00E-09	#NV 1	.00E-06 9438	10.54 -	I
984	1004	4.51E-09	4.72E-09	2.36E-10	WBS2	6.90E-11	2.02E-11	20.9 #NV	1.90	E-08 1.90E-0	8 1.00E-09	5.00E-08	#NV 1	.00E-06 9643	11.57 -	I
300	305	3.49E–08	2.88E-08	5.76E-09	WBS22	1.80E–11	5.05E-12	21.5 2.20	E-08 3.20	E-07 3.20E-0	7 1.00E-08	6.00E-07	1.9 1	.00E-06 2968	10.73 -	I
305	310	2.45E–10	2.02E-10	4.04E–11	WBS2	1.70E–11	5.05E-12	26.2 #NV	7.40	E-11 7.40E-1	1 4.00E–11	7.00E-10	#NV 1	.00E-06 3004	9.41 -	I
310	315	1.23E–09	1.01E-09	2.02E-10	WBS2	1.40E–11	5.05E-12	39.1 #NV	1.80	E-08 1.80E-0	8 9.00E-09	9.00E-08	#NV 1	.00E-06 3067	10.82 -	I

					Transient a	nalysis								
Interval po tion	si- Steady st	ate analysis			Wellbore et	ffects	Formatio	on parameters				S S	atic nditions	Obser- vations
up low m m bToC bTo	Q/s m²/s C	T _м m²/s	K _™ m/s	Flow model	C _w m³/Pa	C _⊤ ξ m³/Pa −	T, m²/s	T ₂ m²/s	T⊤ m²/s	T _{MIN} m²/s	T _{MAX} r ₁ m²/s m	\$ кол кол	h _{wif} a masl	CUZ CLZ
315 3.	20 9.03E-06	7.46E-06	1.49E–06	WBS2	6.00E-09	5.05E-12 1	VN# 9.8	4.20E-05	4.20E-05	1.00E-05	6.00E-05 #N	V 1.00E-06 31	12 10.45	××
320 3.	25 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	NN# 0	1.00E-10	1.00E-13	1.00E-10 #N	V 1.00E-06 #N	NN# ∧I	I
325 3.	30 6.51E-10	5.37E-10	1.07E–10	WBS2	1.40E–11	5.05E-12 3	∧N# 8	7.20E–09	7.20E-09	5.00E-09	4.00E-08 #N	V 1.00E-06 32	16 11.08	I
330 <u>3</u> .	35 2.45E-10	2.02E-10	4.04E11	WBS2	1.30E–11	5.05E-12 3;	.2 #NV	3.90E-09	3.90E-09	1.00E-09	1.00E-08 #N	V 1.00E-06 32	64 11.02	I I
335 3	40 1.52E-06	1.26E–06	2.52E-07	WBS22	2.80E-10	5.05E-12 3 [,]	.1 2.00E-0	6 1.10E-07	2.00E-06	7.00E-07	3.00E-06 29	1.00E-06 33	12 10.92	I I
341 3	46 #NV	NN#	NN#	WBS22	1.10E–10	5.05E-12 #I	V 1.80E-1	1 6.10E–11	6.10E-11	5.00E-12	8.00E-11 0.2	: 1.00E-06 #N	NN# ∧I	ı ı
385 3.	90 2.44E–09	2.01E-09	4.02E-10	WBS2	1.80E–11	5.05E-12 3;	1.1 #NV	1.70E–08	1.70E-08	8.00E-09	3.00E-08 #N	V 1.00E-06 37	80 8.89	ı ı
390 3.	95 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	NN# 0	1.00E-10	1.00E-13	1.00E-10 #N	V 1.00E-06 #N	NN# NI	ı I
395 4	NN# 00	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E–13	1.00E-11 #N	V 1.00E-06 #N	ΛN# /Ι	I I
400 4	05 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E–13	1.00E-11 #N	V 1.00E-06 #N	NN# ∧I	I I
420 4.	25 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E–13	1.00E-11 #N	V 1.00E-06 #N	NN# ∧I	I I
425 4.	30 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E-13	1.00E-11 #N	V 1.00E-06 #N	NN# ∧I	ı ı
429 4.	34 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E-13	1.00E-11 #N	V 1.00E-06 #N	NN# NI	ı ı
434 4.	39 4.10E–08	3.38E-08	6.76E–09	WBS2	6.00E-11	5.05E-12 2;	NN# 8.	1.70E-07	1.70E-07	1.00E-08	7.00E-07 #N	V 1.00E-06 42	61 9.19	ı I
440 4	45 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E-13	1.00E-11 #N	V 1.00E-06 #N	NN# NI	I I
445 4.	50 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E–13	1.00E-11 #N	V 1.00E-06 #N	NN# ∧I	I I
450 4.	55 #NV	NN#	NN#	NN#	NN#	5.05E-12 #I	V 1.00E-1	1 #NV	1.00E-11	1.00E-13	1.00E-11 #N	V 1.00E-06 #N	NN# ∧I	ı ı
455 4	60 5.34E-09	4.41E-09	8.82E-10	WBS2	1.40E–11	5.05E-12 3	∧N# (3.90E-08	3.90E-08	5.00E-08	3.00E-07 #N	V 1.00E–06 44	65 9.14	ı ı
460 4	65 3.23E-08	2.67E-08	5.34E-09	WBS2	1.40E–11	5.05E-12 3;	∧N#	1.80E-07	1.80E-07	7.00E-09	3.00E-07 #N	V 1.00E-06 45	16 9.29	I I
460 4	65 4.99E–08	4.12E–08	8.24E09	WBS22	1.90E–11	5.05E-12 3	.1 5.40E-0	8 1.10E-08	5.40E-08	1.00E-08	1.00E-06 27	1.00E-06 45	21 9.83	ı I
465 4	70 3.70E-09	3.05E-09	6.10E-10	WBS2	1.30E–11	5.05E-12 3;	1.2 #NV	2.40E–08	2.40E-08	2.00E-09	3.00E-07 #N	V 1.00E-06 45	66 9.44	ı ı
470 4	75 #NV	NN#	NN#	WBS2	1.30E-13	5.05E-12 1	∧N# (3.40E–09	3.40E-09	1.00E–11	5.00E-09 #N	V 1.00E-06 #N	NN# NI	I I
475 4.	NN# 08	NN#	NN#	WBS22	1.80E–13	5.05E-12 1	0 1.90E-0	9 6.90E-09	1.90E-09	1.00E-09	1.00E-08 1.9	1.00E-06 #N	NN# NI	I I
480 4	85 1.50E–09	1.24E-09	2.48E–10	WBS2	6.10E-12	5.05E-12 3	.4 #NV	1.10E-08	1.10E–08	9.00E-09	9.00E-08 #N	V 1.00E–06 47	09 9.17	I I

					•	Transient a	inalysis											
Intervition	al posi-	Steady stat	te analysis		-	Wellbore e	ffects	LL.	ormation	parameters					Stati	itions	Obser- vations	
up bToC	low m bToC	Q/s m²/s	T _M m²/s	K _м m/s	Flow model	C _м m³/Pa	C _⊤ m³/Pa	н E wi	י ז ² וא	Τ ₂ m²/s	Π ₋ . m²/s -	T _{MIN}	Г _{мах} 1 n²/s 1	E	S* p* KPa	h _{wif} masl	CUZ CL	N
500	505	NN#	NN#	NN#	NN#	NN#	5.05E-12	#NV 1	.00E-11	NN#	1.00E-11	1.00E-13	1.00E–11 ≢	¢ NN‡	I.00E-06 #NV	NN#	1	I
505	510	NN#	NN#	NN#	* ^N#	NN#	5.05E-12	#NV 1	.00E-11	NN#	1.00E-11	1.00E–13	1.00E–11 ≉	NN‡	I.00E-06 #NV	NN#	1	
510	515	NN#	NN#	NN#	WBS2	1.40E–11	5.05E-12	10.1 #	N	1.70E–09	1.70E-09	3.00E-11	3.00E-09 ≉	τ NN‡	I.00E-06 5005	9.47	1	
515	520	6.05E-09	5.00E-09	1.00E-09	WBS22	1.80E–11	5.05E-12	2	.30E-09	2.90E-09	2.90E-09	1.00E-09	1.00E-08		I.00E-06 5055	9.58	1	
520	525	NN#	NN#	NN#	WBS22	1.30E–10	5.05E-12	0.4 9	.10E-12	7.30E-11	7.30E-11	5.00E-12	3.00E-11 (1.1	I.00E-06 #NV	NN#	1	
525	530	3.27E–09	2.70E-09	5.40E-10	WBS2	1.50E–11	5.05E-12	15.9 #	N	1.10E-08	1.10E-08	1.00E-09	1.00E-08 ≉	τ NN‡	I.00E-06 5156	10.01	1	
530	535	4.66E–09	3.85E-09	7.70E–10	WBS2	1.80E–11	5.05E-12	4	N	6.60E-09	3.60E-09	1.00E-09	3.00E-09 ≉	NN‡	I.00E-06 5218	11.36	1	
535	540	NN#	NN#	NN#	* ^N#	NN#	5.05E-12	#NV 1	.00E-11	NN#	1.00E-11	1.00E–13	1.00E–11 ≱	NN‡	I.00E-06 #NV	NN#	1	
540	545	NN#	NN#	NN#	۰ NN#	NN#	5.05E-12	#NV 1	.00E-11	NN#	1.00E-11	1.00E–13	1.00E–11 ≉	, VN≄	I.00E-06 #NV	NN#	1	
1 The	flow mo	idel descri□																

set of numbers describing the fl□

a homogene

2 T_1 and T_2 refer to the transmissivity(s) derid T_1 or T_2 are reported (T_1 for near borehole and T_2 for far field), in case a two zones composite model was recommended both T_1 and T_2 are given. The recommended transmissivity T_T typically refers to the T_2 value (far field transmissivity)

3 The r₁ parameter denotes the radius of the inner composite zone, and is reported in case a two zone composite model was used.

4 The parameter p^* denoted the static formation $p \square$

extrapolation.

5 CUZ and CLZ denote hydraulic comunication of the test section to the upper and lower zones, respectively.

6 CM and CT denote the matched and the □

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

Figure 7-1. Results summary – profiles of transmissivity and equivalent freshwater head.

Figure 7-2. Results summary – profile of transmissivity.

Figure 7-3. Results summary – profile of conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that most of the steady state derived transmissivities differ by one order of magnitude or less from the transmissivities derived from the transient analysis.

Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to a unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx. 5E–10 1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility 0f 7E–10 1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to three orders of magnitude larger than the theoretical values. A three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by three orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a serried of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.4.8.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described using a skin effect.

In some cases the tests were not analysable due to the fact that the flow rates during the CHi phase were below the range of the flowmeter (< 0.5 mL/min) or because the compliance phase following packer inflation was too long, thus indicating a very low interval transmissivity. In such cases the interval transmissivity was recommended to a value of $1.0\text{E}-11 \text{ m}^2$ /s which was in the same time regarded as the upper boundary of the confidence range. This value is consistent with the observations made during the analysis of the other tests in the borehole (i.e. the transmissivity must be lower than in the cases when the test was analysable).

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.4.7.

The head profile shows three distinct zones. The first zone between 204 m and 384 m depth shows slightly increasing freshwater heads between 10.5 and 11.5 m asl. The second zone between 384 and 604 m depth shows steadily increasing freshwater heads between 8.5 and 10.5 m asl which is distinctly different from the heads derived from the upper zone. Finally, the third zone at depths below 604 m shows freshwater heads between 6 and 11.5 m asl with steadily increasing tendency towards greater depth.

It should be noted that the head differences may be explained by salinity differences if we assume that the salinity increases with depth. In this case the freshwater heads would have to increase with depth, what the actual profile shows for the distinct zones. Further hydraulic effects have to be considered for the differences between the zones.

8.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

In other cases, the use of a homogeneous flow model led to very large skin factors (e.g. 20). In these cases, in addition to the homogeneous flow model analysis an analysis using a composite flow model was conducted. In these cases the skin was represented explicitly as inner composite zone.

The frequent occurrence of large skins (as large as 40) is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections (in the normalized plot see Appendix 5) converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that high skins were observed in sections with transmissivities as low as 1E–9 m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. However, in all cases it was possible to achieve to acceptable analysis results (good match quality) by using radial flow geometry (flow dimension of 2).

9 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp 293–302.

Chakrabarty C, Enachescu C, 1997. Using the deconvolution approach for slug test analysis: theory and application. Ground Water, Sept–Oct 1997, pp 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. V. 25, No 7, pp 1,591–1,602.

Ramey H J Jr, Agarwal R G, Martin R G I, 1975. Analysis of "Slug Test" or DST flow Period data. J. Can. Pet. Tec., September 1975.

SKB, **2001a.** Site investigations: Investigation method and general execution programme. SKB TR-01-29, Svensk Kärnbränslehantering AB.

SKB, **2001b.** Geovetenskapligt program för platsundersökning vid Simpevarp. SKB R-01-44, Svensk Kärnbränslehantering AB.

SKB, **2001c.** Project deep drilling KLX02 – phasae 2. Method, scope of activites and results. Summary report. SKB TR-01-11, Svensk Kärnbränslehantering AB.

SKB, **2002.** Execution programme fort the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

Borehole: KLX02

APPENDIX 1

File Description Table

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX02		
TEST- A	AND	FILEP	ROTO	DCOL	Testorder dated : 2003-07-09				
Teststart		Interval boundari	ies	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)	1	disk/CD	(date)	
10.07.2002	00.10	204	204	KI X02 1700 50 200207100810 1/2	KI X02 204 204 020710 1 CUL: O	Tuisstian	10.07.2002	10.07.2002	
10.07.2003	08:19	204	304	KLX02_1/00.50_20030/100819.ht2	KLX02_204-304_030710_1_CHir_Q_f.csv	Injection	10.07.2003	10.07.2003	
10.07.2003	12:50	304	404	KLX02_1700.50_200307101250.ht2	KLX02_304-404_030710_1_CHir_Q_r.csv	Injection	10.07.2003	10.07.2003	
10.07.2003	14:22	304	404	KLX02_1700.50_200307101422.ht2	KLX02_304-404_030710_2_CHir_Q_r.csv	Injection	10.07.2003	10.07.2003	
10.07.2003	17:13	404	504	KLX02_1700.50_200307101713.ht2	KLX02_404-504_030711_1_CHir_Q_r.csv	Injection	10.07.2003	10.07.2003	
11.07.2003	10:04	504	604	KLX02_1700.50_200307111004.ht2	KLX02_504-604_030711_1_CHir_Q_r.csv	Injection	11.07.2003	11.07.2003	
11.07.2003	11:10	505	604	KLX02_1700.50_200307111110.ht2	KLX02_504-604_030711_2_CHir_Q_r.csv	Injection	11.07.2003	11.07.2003	
11.07.2003	12:52	505	604	KLX02_1700.50_200307111252.ht2	KLX02_504-604_030711_3_CHir_Q_r.csv	Injection	11.07.2003	11.07.2003	
11.07.2003	14:25	505	604	KLX02_1700.50_200307111425.ht2	KLX02_504-604_030711_4_CHir_Q_r.csv	Injection	11.07.2003	11.07.2003	
11.07.2003	18:44	604	704	KLX02_1700.50_200307111844.ht2	KLX02_604-704_030711_1_CHir_Q_r.csv	Injection	11.07.2003	11.07.2003	
12.07.2003	09:15	704	804	KLX02_1700.50_200307120915.ht2	KLX02_704-804_030712_1_CHir_Q_r.csv	Injection	12.07.2003	12.07.2003	
12.07.2003	14:28	804	904	KLX02_1700.50_200307121428.ht2	KLX02_804-904_030712_1_CHir_Q_r.csv	Injection	12.07.2003	12.07.2003	
12.07.2003	17:45	904	1004	KLX02_1700.50_200307121745.ht2	KLX02_804-904_030712_1_CHir_Q_r.csv	Injection	12.07.2003	12.07.2003	
14.07.2003	12:15	204	224	KLX02_1700.50_200307141215.ht2	KLX02_204-224_030714_1_CHir_Q_r.csv	Injection	14.07.2003	14.07.2003	
14.07.2003	13:39	204	224	KLX02_1700.50_200307141339.ht2	KLX02_204-224_030714_2_CHir_Q_r.csv	Injection	14.07.2003	14.07.2003	
14.07.2003	15:19	224	244	KLX02_1700.50_200307141519.ht2	KLX02_224-244_030714_1_CHir_Q_r.csv	Injection	14.07.2003	14.07.2003	

HYDRO	OTES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX02		
TEST- A	AND	FILEF	PROTO	OCOL	Testorder dated : 2003-07-09				
Teststart		Interval boundar	ies	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
14.07.2003	17:50	244	264	KLX02_1700.50_200307141750.ht2	KLX02_244-264_030714_1_CHir_Q_r.csv	Injection	14.07.2003	14.07.2003	
15.07.2003	08:26	264	284	KLX02_1700.50_200307150826.ht2	KLX02_264-284_030715_1_CHir_Q_r.csv	Injection	15.07.2003	15.07.2003	
15.07.2003	10:46	284	304	KLX02_1700.50_200307151046.ht2	KLX02_284-304_030715_1_CHir_Q_r.csv	Injection	15.07.2003	15.07.2003	
15.07.2003	12:55	304	324	KLX02_1700.50_200307151255.ht2	KLX02_304-324_030715_1_CHir_Q_r.csv	Injection	15.07.2003	15.07.2003	
15.07.2003	15:33	324	344	KLX02_1700.50_200307151533.ht2	KLX02_324-344_030715_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
15.07.2003	17:30	344	364	KLX02_1700.50_200307151730.ht2	KLX02_344-364_030715_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
16.07.2003	08:34	364	384	KLX02_1700.50_200307160834.ht2	KLX02_364-384_030716_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
16.07.2003	10:20	384	404	KLX02_1700.50_200307161020.ht2	KLX02_384-404_030716_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
16.07.2003	14:22	404	424	KLX02_1700.50_200307161422.ht2	KLX02_404-424_030716_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
16.07.2003	16:06	424	444	KLX02_1700.50_200307161606.ht2	KLX02_424-444_030716_1_CHir_Q_r.csv	Injection	17.07.2003	16.07.2003	
16.07.2003	18:03	444	464	KLX02_1700.50_200307161803.ht2	KLX02_444-464_030716_1_CHir_Q_r.csv	Injection	17.07.2003	17.07.2003	
17.07.2003	08:07	464	484	KLX02_1700.50_200307170807.ht2	KLX02_464-484_030717_1_CHir_Q_r.csv	Injection	17.07.2003	17.07.2003	
17.07.2003	10:47	481	501	KLX02_1700.50_200307171047.ht2	KLX02_481-501_030717_1_CHir_Q_r.csv	Injection	17.07.2003	17.07.2003	
17.07.2003	13:20	484	504	KLX02_1700.50_200307171320.ht2	KLX02_484-504_030717_1_CHir_Q_r.csv	Injection	19.07.2003	17.07.2003	
17.07.2003	15:40	504	524	KLX02_1700.50_200307171540.ht2	KLX02_504-524_030717_1_CHir_Q_r.csv	Injection	19.07.2003	17.07.2003	
17.07.2003	19:24	524	544	KLX02_1700.50_200307171924.ht2	KLX02_524-544_030717_1_CHir_Q_r.csv	Injection	19.07.2003	18.07.2003	

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX02		
TEST- A	AND	FILEF	PROTO	OCOL	Testorder dated : 2003-07-09				
Teststart		Interval boundar	ies	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)	1	disk/CD	(date)	_
18.07.2003	11:20	544	564	KLX02_1700.50_200307181120.ht2	KLX02_544-564_030718_1_CHir_Q_r.csv	Injection	19.07.2003	18.07.2003	
18.07.2003	14:15	564	584	KLX02_1700.50_200307181415.ht2	KLX02_564-584_030718_1_CHir_Q_r.csv	Injection	19.07.2003	18.07.2003	
18.07.2003	17:11	584	604	KLX02_1700.50_200307181711.ht2	KLX02_584-604_030718_1_CHir_Q_r.csv	Injection	19.07.2003	18.07.2003	
19.07.2003	09:16	704	724	KLX02_1700.50_200307190916.ht2	KLX02_704-724_030719_1_CHir_Q_r.csv	Injection	19.07.2003	19.07.2003	
19.07.2003	11:21	724	744	KLX02_1700.50_200307191121.ht2	KLX02_724-744_030719_1_CHir_Q_r.csv	Injection	19.07.2003	19.07.2003	
19.07.2003	13:00	724	744	KLX02_1700.50_200307191300.ht2	KLX02_724-744_030719_2_CHir_Q_r.csv	Injection	19.07.2003	19.07.2003	
19.07.2003	14:06	724	744	KLX02_1700.50_200307191406.ht2	KLX02_724-744_030719_3_CHir_Q_r.csv	Injection	19.07.2003	19.07.2003	
19.07.2003	16:20	744	764	KLX02_1700.50_200307191620.ht2	KLX02_744-764_030719_1_CHir_Q_r.csv	Injection	19.07.2003	19.07.2003	
19.07.2003	18:44	764	784	KLX02_1700.50_200307191844.ht2	KLX02_764-784_030719_1_CHir_Q_r.csv	Injection	20.07.2003	20.07.2003	
20.07.2003	08:28	784	804	KLX02_1700.50_200307200828.ht2	KLX02_784-804_030720_1_CHir_Q_r.csv	Injection	20.07.2003	20.07.2003	
20.07.2003	10:35	804	824	KLX02_1700.50_200307201035.ht2	KLX02_804-824_030720_1_CHir_Q_r.csv	Injection	20.07.2003	20.07.2003	
20.07.2003	13:38	824	844	KLX02_1700.50_200307201338.ht2	KLX02_824-844_030720_1_CHir_Q_r.csv	Injection	20.07.2003	20.07.2003	
20.07.2003	16:41	844	864	KLX02_1700.50_200307201641.ht2	KLX02_844-864_030720_1_CHir_Q_r.csv	Injection	21.07.2003	21.07.2003	
21.07.2003	08:10	864	884	KLX02_1700.50_200307210810.ht2	KLX02_864-884_030721_1_CHir_Q_r.csv	Injection	21.07.2003	21.07.2003	
21.07.2003	10:43	884	904	KLX02_1700.50_200307211043.ht2	KLX02_884-904_030721_1_CHir_Q_r.csv	Injection	21.07.2003	21.07.2003	

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX02		
TEST- A	AND	FILEF	PROTO	DCOL	Testorder dated : 2003-07-09				
Teststart		Interval boundar	ies	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	-
21.07.2003	13:10	904	924	KLX02_1700.50_200307211310.ht2	KLX02_904-924_030721_1_CHir_Q_r.csv	Injection	21.07.2003	21.07.2003	
21.07.2003	16:46	922	942	KLX02_1700.50_200307211646.ht2	KLX02_922-942_030721_1_CHir_Q_r.csv	Injection	22.07.2003	22.07.2003	
22.07.2003	09:27	943	963	KLX02_1700.50_200307220927.ht2	KLX02_943-963_030722_1_CHir_Q_r.csv	Injection	22.07.2003	22.07.2003	
22.07.2003	10:51	964	984	KLX02_1700.50_200307221051.ht2	KLX02_964-984_030722_1_CHir_Q_r.csv	Injection	22.07.2003	22.07.2003	
22.07.2003	13:38	984	1004	KLX02_1700.50_200307221338.ht2	KLX02_984-1004_030722_1_CHir_Q_r.csv	Injection	22.07.2003	22.07.2003	
24.07.2003	10:32	300	305	KLX02_1700.50_200307241032.ht2	KLX02_300-305_030724_1_CHir_Q_r.csv	Injection	24.07.2003	24.07.2003	
24.07.2003	13:00	305	310	KLX02_1700.50_200307241300.ht2	KLX02_305-310_030724_1_CHir_Q_r.csv	Injection	24.07.2003	24.07.2003	
24.07.2003	16:34	310	315	KLX02_1700.50_200307241634.ht2	KLX02_310-315_030724_1_CHir_Q_r.csv	Injection	25.07.2003	25.07.2003	
25.07.2003	08:24	315	320	KLX02_1700.50_200307250824.ht2	KLX02_315-320_030725_1_CHir_Q_r.csv	Injection	25.07.2003	25.07.2003	
25.07.2003	10:10	320	325	KLX02_1700.50_200307251010.ht2	KLX02_320-325_030725_1_CHir_Q_r.csv	Injection	25.07.2003	25.07.2003	
25.07.2003	13:16	325	330	KLX02_1700.50_200307251316.ht2	KLX02_325-330_030725_1_CHir_Q_r.csv	Injection	25.07.2003	25.07.2003	
25.07.2003	15:36	330	335	KLX02_1700.50_200307251536.ht2	KLX02_330-335_030725_1_CHir_Q_r.csv	Injection	25.07.2003	25.07.2003	
25.07.2003	18:04	335	340	KLX02_1700.50_200307251804.ht2	KLX02_335-340_030725_1_CHir_Q_r.csv	Injection	26.07.2003	26.07.2003	
26.07.2003	08:18	341	346	KLX02_1700.50_200307260818.ht2	KLX02_341-346_030726_1_CHir_Q_r.csv	Injection	26.07.2003	26.07.2003	
26.07.2003	11:20	385	390	KLX02_1700.50_200307261120.ht2	KLX02_385-390_030726_1_CHir_Q_r.csv	Injection	26.07.2003	26.07.2003	
26.07.2003	14:11	390	395	KLX02 1700.50 200307261411.ht2	KLX02 390-395 030726 1 CHir Q r.csv	Injection	26.07.2003	26.07.2003	

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX02		
TEST- A	AND	FILE	PROTO	OCOL	Testorder dated : 2003-07-09				
Teststart		Interval boundar	ies	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)	1	disk/CD	(date)	-
26.07.2003	16:35	395	400	KLX02_1700.50_200307261635.ht2	KLX02_395-400_030726_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	08:37	400	405	KLX02_1700.50_200307270837.ht2	KLX02_400-405_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	09:54	420	425	KLX02_1700.50_200307270954.ht2	KLX02_420-425_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	11:24	425	430	KLX02_1700.50_200307271124.ht2	KLX02_425-430_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	13:20	429	434	KLX02_1700.50_200307271320.ht2	KLX02_429-434_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	14:48	434	439	KLX02_1700.50_200307271448.ht2	KLX02_434-439_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
27.07.2003	16:57	440	445	KLX02_1700.50_200307271657.ht2	KLX02_440-445_030727_1_CHir_Q_r.csv	Injection	27.07.2003	27.07.2003	
28.07.2003	08:12	445	450	KLX02_1700.50_200307280812.ht2	KLX02_445-450_030728_1_CHir_Q_r.csv	Injection	28.07.2003	28.07.2003	
28.07.2003	09:36	450	455	KLX02_1700.50_200307280936.ht2	KLX02_450-455_030728_1_CHir_Q_r.csv	Injection	28.07.2003	28.07.2003	
28.07.2003	11:01	455	460	KLX02_1700.50_200307281101.ht2	KLX02_455-460_030728_1_CHir_Q_r.csv	Injection	28.07.2003	28.07.2003	
28.07.2003	13:53	460	465	KLX02_1700.50_200307281353.ht2	KLX02_460-465_030728_1_CHir_Q_r.csv	Injection	28.07.2003	28.07.2003	
28.07.2003	15:54	465	470	KLX02_1700.50_200307281554.ht2	KLX02_465-470_030728_1_CHir_Q_r.csv	Injection	28.07.2003	28.07.2003	
28.07.2003	18:07	470	475	KLX02_1700.50_200307281807.ht2	KLX02_470-475_030728_1_CHir_Q_r.csv	Injection	29.07.2003	29.07.2003	
29.07.2003	08:58	475	480	KLX02_1700.50_200307290858.ht2	KLX02_475-480_030729_1_CHir_Q_r.csv	Injection	29.07.2003	29.07.2003	
29.07.2003	10:53	480	485	KLX02_1700.50_200307291053.ht2	KLX02_480-485_030729_1_CHir_Q_r.csv	Injection	29.07.2003	29.07.2003	
29.07.2003	14:00	500	505	KLX02 1700.50 200307291400.ht2	KLX02 500-505 030729 1 CHir Q r.csv	Injection	29.07.2003	29.07.2003	

HYDRO	OTES	TING	WITH	PSS	DRILLHOLE IDEN	NTIFICATION	NO.: F	KLX02		
TEST-	AND	FILEP	PROTO)COL	Testorder dated : 2	2003-07-09				
Teststart		Interval boundari	ies	Namo	e of Datafiles		Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-fil	le)		disk/CD	(date)	
29.07.2003	15:28	505	510	KLX02_1700.50_200307291528.ht2	KLX02_505-510_030729_1_	CHir_Q_r.csv	Injection	29.07.2003	29.07.2003	
29.07.2003	16:53	510	515	KLX02_1700.50_200307291653.ht2	KLX02_510-515_030729_1_	CHir_Q_r.csv	Injection	30.07.2003	30.07.2003	
30.07.2003	08:12	515	520	KLX02_1700.50_200307300812.ht2	KLX02_515-520_030730_1_	CHir_Q_r.csv	Injection	30.07.2003	30.07.2003	
30.07.2003	13:24	520	525	KLX02_1700.50_200307301324.ht2	KLX02_520-525_030730_1_	CHir_Q_r.csv	Injection	30.07.2003	30.07.2003	
30.07.2003	15:36	525	530	KLX02_1700.50_200307301536.ht2	KLX02_525-530_030730_1_	CHir_Q_r.csv	Injection	30.07.2003	30.07.2003	
30.07.2003	17:21	530	535	KLX02_1700.50_200307301721.ht2	KLX02_530-535_030730_1_	CHir_Q_r.csv	Injection	31.07.2003	31.07.2003	
31.07.2003	08:08	535	540	KLX02_1700.50_200307310808.ht2	KLX02_535-540_030731_1_	CHir_Q_r.csv	Injection	31.07.2003	31.07.2003	
31.07.2003	09:43	540	545	KLX02_1700.50_200307310943.ht2	KLX02_540-545_030731_1_	CHir_Q_r.csv	Injection	31.07.2003	31.07.2003	
31.07.2003	11:05	530	535	KLX02_1700.50_200307311105.ht2	KLX02_530-535_030731_2_	CHir_Q_r.csv	Injection	31.07.2003	31.07.2003	
31.07.2003	14:48	515	520	KLX02_1700.50_200307311448.ht2	KLX02_515-520_030731_2_	CHir_Q_r.csv	Injection	31.07.2003	31.07.2003	
31.07.2003	18:16	510	515	KLX02_1700.50_200307311816.ht2	KLX02_510-515_030731_2_	Pulse_P_r.csv	Pulse	01.08.2003	01.08.2003	
01.08.2003	08:19	480	485	KLX02_1700.50_200308010819.ht2	KLX02_480-485_030801_2_	Pulse_P_r.csv	Pulse	01.08.2003	01.08.2003	
01.08.2003	09:44	475	480	KLX02_1700.50_200308010944.ht2	KLX02_475-480_030801_2_	Pulse_P_r.csv	Pulse	01.08.2003	01.08.2003	
01.08.2003	11:51	460	465	KLX02_1700.50_200308011151.ht2	KLX02_460-465_030801_2_	CHir_Q_r.csv	Injection	01.08.2003	01.08.2003	
01.08.2003	16:15	480	485	KLX02_1700.50_200308011615.ht2	KLX02_480-485_030801_3_	Pulse_P_r.csv	Pulse	01.08.2003	01.08.2003	

Borehole: KLX02

APPENDIX 2

Test Analyses Diagrams

APPENDIX 2-1

Test 204 – 304 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

10

10

CHIR phase; log-log match

10

10

CHIR phase; HORNER match

10 5

CHIR phase; Homogeneous model analyses, log-log match

Test 304 – 404 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

10 5

tD

10 4

10 6

10

CHI phase; log-log match

10 ²

10 3

8

10

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 404 – 504 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

10 ³ tD

10²

.

10 4

10 ⁵

10 6

CHI phase; log-log match

10

FLOW MODEL : Two shell composite BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10 0

10

-

-

10

10 -1

10⁸

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 504 – 604 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 604 – 704 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 704 – 804 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

10 2

tD/CD

CHIR phase; Homogeneous model analyses, log-log match

10

10 0

10 -1

10 4

10 3

Test 804 – 904 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 904 – 1004 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 204 – 224 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 224 – 244 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 244 – 264 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 264 – 284 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 284 – 304 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 304 – 324 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

 FLOW MODEL
 : Two shell composite
 T
 1.05E-05

 BOUNDARY CONDITIONS: Constant pressure
 S
 1.01E-06

 WELL TYPE
 : Source
 n1
 2.00E+00

 SUPERPOSITION TYPE
 : Log-log
 r01
 1.10E-03

 PLOT TYPE
 : Log-log
 r01
 1.10E+03

 10
 10
 10
 5
 10

 10
 10
 10
 5
 10

 10
 10
 10
 10
 10

CHI phase; log-log match

m2/s --

-

10 8

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 324 – 344 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match
Test 344 – 364 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 364 – 384 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

SKB Laxemar / KLX 02 364 - 384 m / CHIR as PI

1.0

<u>10</u>.-3

CHIR phase analysed as pulse injection; deconvolution match

Test 384 – 404 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 404 – 424 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 424 – 444 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 444 – 464 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 464 – 484 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

10³

tD

CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10

10²

10 0

m2/s --

10 5

T S n1

10 4

6.47E-09 1.77E-06 2.00E+00

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 481 – 501 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 484 – 504 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match
<u>10</u> -3

10

10 0

pD, pD'

tD/CD

CHIR phase; HORNER match

p-p0, (p-p0)' [kPa]

CHIR phase; Homogeneous model analyses, log-log match

Test 504 – 524 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 524 – 544 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

10

10

10

pD, pD'

CHIR phase; log-log match

CHIR phase; HORNER match

Test 544 – 564 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 564 – 584 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 584 – 604 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 704 – 724 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 724 – 744 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 744 – 764 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match
Test 764 – 784 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 784 – 804 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 804 – 824 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 824 – 844 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 844 – 864 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

10

10

pD, pD'

tD/CD

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 864 – 884 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 884 – 904 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 904 – 924 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 922 – 942 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 943 – 963 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 964 – 984 m

9450

9400

1.25

1.50

1.75

2.00

Pressure and flow rate vs. time; cartesian plot

0.50

0.75

1.00

Elapsed Time [h]

0.25

Pressure and temperature in the test section; cartesian plot

0.002

0.001

0.000

2.25

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 984 – 1004 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

SKB Laxemar / KLX 02 984 - 1004 m / CHi

10

10

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 300 – 305 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 305 – 310 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 310 – 315 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 315 – 320 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 320 – 325 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 325 – 330 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 330 – 335 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 335 – 340 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

10 5

tD

10 6

CHI phase; log-log match

: Log-log

10³

10 4

[10⁻³ 10 7

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 341 – 346 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

10

PLOT TYPE

: Ramey A

10

CHIR phase analysed as pulse injection; deconvolution match

10³

10²

Test 385 – 390 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 390 – 395 m

Elapsed Time [h]

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 395 – 400 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 400 – 405 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 420 – 425 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 425 – 430 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 429 – 434 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 434 – 439 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 440 – 445 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed

Test 445 – 450 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; log-log match

Not Analysed
Test 450 – 455 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 455 – 460 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 460 – 465 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 465 – 470 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 470 – 475 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 475 – 480 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 480 – 485 m

Pressure and flow rate vs. time; cartesian plot (test repeated and analysed)

Pressure and temperature in the test section; cartesian plot (test repeated and analysed)

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

10 3

10

.0d 10

10

10

10³

10 0

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : Build-up TC PLOT TYPE : Log-log

10

10² tD/CD

p-p0, (p-p0)' [kPa]

E 10¹

10 0

10 5

1.08E-08 1.03E-35 6.09E-12 2.00E+00 3.34E+01

T S C n1 s

10

m2/s

m3/Pa

-

Test 500 – 505 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match
CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 505 – 510 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 510 – 515 m

Pressure and flow rate vs. time; cartesian plot (test repeated and analysed)

Pressure and temperature in the test section; cartesian plot (test repeated and analysed)

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

CHIR phase; Homogeneous model analyses, log-log match

Test 515 – 520 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Pressure and temperature in the test section; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 520 – 525 m

Pressure and flow rate vs. time; cartesian plot

CHIR phase; RAMEY match

CHIR phase analysed as pulse injection; deconvolution match

Test 525 – 530 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 530 – 535 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Pressure and temperature in the test section; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Test 535 – 540 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 540 – 545 m

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

APPENDIX 2-81

Test 460 – 465 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Pressure and temperature in the test section; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase; Homogeneous model analyses, log-log match

Borehole: KLX02

APPENDIX 3

Test Summary Sheets

	Test S	Sumr	nary Sheet			
Project:	Site investig	ations	Test type:[1]			3
Area:	La	xemar	Test no:			1
Borehole ID:	к	(LX 02	Test start:		()30710 08:23
Test section from - to (m):	204 - 304	m brp	Responsible for			N. Rahm
Section diameter. 2·r., (m):		0.076	Responsible for			C. Enachescu
, w()		- ,	test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
3500		- T ¹⁰⁰	Indata		Indata	
KLX02_204-304_030710_	1_CHir_Q_r ● P section ▲ P above		p ₀ (kPa) =	2021		
3300 -	P below	1.00	p _i (kPa) =	2026		
3100 -		- 80	p _p (kPa) =	2227	p _F (kPa) =	2030
2900 -		70	$Q_{p} (m^{3}/s) =$	7,92E-04		
हु 2700 - ह		⁶⁰ E	tp (s) =	2160	t _F (s) =	2040
8 2500 -	-	50 Late	S el S [*] (-)=	1,26E-06	S el S [*] (-)=	2,80E-06
2300 .		40 lu	EC _w (mS/m)=			
2100	-	- 30	Temp _w (gr C)=	11		
1900 -		- 20	Derivative fact.=	0,16	Derivative fact.=	0,09
1700 -		- 10				
1500 0,50 1,00 1,50	2,00 2,50 3,00 3	0 3,50	Results		Results	
Elaps	ed Time [h]		Q/s $(m^{2}/s)=$	3,86E-05		
Log-Log plot incl. derivates- fl	ow period		$T_{M} (m^{2}/s) =$	5,03E-05		
	-		Flow regime:	transient	Flow regime:	transient
Elapsed time [7	nj		dt_1 (min) =	13,65	dt_1 (min) =	1,2876
10, ⁻³ SKB Laxemar / KLX 02 204 - 304 m / CH	4	-	dt_2 (min) =	20,98	dt ₂ (min) =	16,6572
		10 -1	$T(m^2/s) =$	5,6E-05	$T(m^2/s) =$	5,0E-05
10 1	e 0.0.0.0000000000000000000000000000000		S (-) =	1,3E-06	S (-) =	2,8E-06
		10 -2	$K_s(m/s) =$	5,6E-07	$K_s(m/s) =$	5,0E-07
10 °			$S_{s}(1/m) =$	1,3E-08	$S_{s}(1/m) =$	2,8E-08
(davi) de	(·	af [mim] to	$C (m^{3}/Pa) =$	N.A.	$C (m^{3}/Pa) =$	2,6E-08
²⁰ 10 ⁻¹		10-1	$C_{D}(-) =$	N.A.	$C_{D}(-) =$	3,1E-03
	and the second second second second second second second second second second second second second second second		ξ(-) =	0	ξ(-) =	0
10 -2	•	10 -5	5()		5()	
-			$T_{ODE}(m^2/s) =$		$T_{CDF}(m^2/s) =$	
10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 1D	10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ 10	°	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRE}(-) =$	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	eters.	
			dt_1 (min) =	13,65	C (m ³ /Pa) =	2,6E-08
10 ⁻⁴ 10 ⁻³ Elapsed time	ε[h] 10 ⁻¹ 10 ⁰ 10 ¹		dt_2 (min) =	20,98	$C_{\rm D}(-) =$	3,1E-03
10 ² SKB Lavemar / KLX 02 204 - 304 m / CHir	FlowDim Version 2.1- (c) Golder Associater	l4b s	$T_{T}(m^2/s) =$	5,6E-05	ξ(-) =	0
		10 3	S(-) =	1.3E-06	5()	
10 1			$K_{a}(m/s) =$	5.6E-07		
		10 2	$S_{a}(1/m) =$	1.3F-08		
	•	-	Comments:	1,02.00	1	<u>. </u>
	*	(p-p0) (kP	The radial composit	e flow model se	lected for the analys	is of the CHIR
		10 1 8	phase reflects the pr	resence of a zon	e of lower transmissi	ivity in the
10 -1	<u>به وها ۲۵ کار د مار د</u>		borehole vicinity. W	ith a discontinu	ity radius of 19 m (c	alculated
•		10 0	assuming $S = 2.8E$ -	6) the inner com	posite zone cannot b	be regarded as a
		_	skin. Therefore, the representative for the	inner composite	snell parameters are	e regarded as
10 ⁰ 10 ¹ 10 tDM	4 10 ³ 10 ⁴ CD	10 -	ispresentative for th	e shian seale 10	mation properties.	

	Test Su	ımn	nary Sheet			
Project:	Site investigat	tions	Test type:[1]			3
Area:	Laxe	emar	Test no:			2
Borehole ID:	KL	X 02	Test start:		0	30710 13:06
Test section from - to (m):	304 - 404 m	n brp	Responsible for			N. Rahm
Section diameter, 2·r,, (m):	0	.076	Responsible for			C. Enachescu
, w ()		,	test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
4500	I	25	Indata		Indata	
KLX02_304-404_03(710_2_CHir_Q_r P section P solve		p ₀ (kPa) =	3012		
4300 -	P below	20	p _i (kPa) =	3011		
4100 -		20	p _p (kPa) =	3210	p _F (kPa) =	3010
3900 -			Q _p (m ³ /s)=	2,20E-04		
िव अ 9 3700 -		¹⁵ [uim/]	tp (s) =	1980	t _F (s) =	1800
6 Press		on Rate	S el S [*] (-)=	1,40E-06	S el S [*] (-)=	7,69E-07
2 3500 -	•	10 III 01	EC _w (mS/m)=			
3300 -			Temp _w (gr C)=	11,2		
3100 -		5	Derivative fact.=	0,02	Derivative fact.=	0,09
2900	080 100 120 140 160	0	Posulte		Posulte	
Elap	sed Time [h]	-			Results	
Log Log plot incl. dorivatos, fl	ow pariod		Q/s (ff /s)=	1,00E-05		
Log-Log plot men derivates- n			T _M (m /s)=	i,∓1∟-00	Flow regime:	transient
			dt (min) =		dt (min) =	
Elapsed time	h] 		$dt_1(min) =$	3,59	$dt_1 (min) =$	2,30
SKB Laxemar / KLX 02 304 - 404 m / CHi	FlowDim Version 2.14b (c) Golder Associates	10 0	$dl_2(min) =$	24,35	$dl_2(min) =$	13,32
10 1	•		I (m²/s) =	4,6E-05	1 (m²/s) =	4,9E-05
	*****	10 -1	S (-) =	1,4E-06	S (-) =	7,7E-07
10 0		10 -2	κ_{s} (m/s) =	4,6E-07	κ_{s} (m/s) =	4,9E-07
10 -1		(m)	$S_{s}(1/m) =$	1,4E-08	$S_{s}(1/m) =$	7,7E-09
9, cp/1		10 7 1/d/(hr	C (m³/Pa) =	N.A.	C (m³/Pa) =	7,1E-09
10 -2	•	4	C _D (-) =	N.A.	$C_{\rm D}(-) =$	3,1E-03
10 -3		10	ξ(-) =	0	ξ(-) =	0
		10 -5	- (2)		2.	
10 ⁻² 10 ⁻³ 10 ⁻⁴	10 ^{.5} 10 ^{.6} 10 ^{.7} 10 ^{.6}		I _{GRF} (m ⁻ /s) =		l _{GRF} (m⁻/s) =	
			$S_{GRF}(-)$ –		$S_{GRF}(-) =$	
	ve e e ve ma vie d				$D_{\text{GRF}}(-) =$	
Log-Log plot incl. derivatives-	recovery period		dt (min) -			7 15 00
	61		ut ₁ (mm) =	2,30	C (m [×] /Pa) =	7,1E-U9
10 ⁻⁴ 10 ⁻³ Euprote and 10 ² SKB Laxemar / KLX 02	FlowDim Version 2.14b	1	$dl_2(min) =$	13,32	$C_D(-) =$	3, TE-03
304 - 404 m / CHir	(c) Golder Associates		$T_T (m^2/s) =$	4,9E-05	ζ(-) =	0
		10 3	S (-) =	7,7E-07		
10			κ_{s} (m/s) =	4,9E-07		
A STATE OF THE STA			$S_{s}(1/m) =$	7,7E-09		
w d	Annon con a	10 Reall (rod d) 'rod d	The radial composit and CHIR phase ref in the borehole vicit (calculated assumin regarded as a skin.	te flow model se flects the present nity. With a disc g S = 7.7E-7) th Therefore, the or	lected for the analysi ce of a zone of lower ontinuity radius of 0 e inner composite zo ater composite shell p	s of the CHI transmissivity 38 m ne can be parameters are
ι το ^ά το΄ το΄	10 ² 10 ³ 10 ⁷	ť.,	regarded as represen properties.	ntative for the sr	nall to medium scale	tormation

	Test S	umn	nary Sheet			
Project:	Site investiga	ations	Test type:[1]			3
Area:	La>	xemar	Test no:			4
Borehole ID:	K	LX 02	Test start:		()30711 10:05
Test section from - to (m):	504 - 604	m brp	Responsible for			N. Rahm
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu
Linear plot Q and p			test evaluation: Flow period		Recovery period	
P P			Indata		Indata	
6100 KLX02_504-604	1_030711_4_CHir_Q_r	0,050	p₀ (kPa) =	4968		
		0,045	p; (kPa) =	4987		
5900 -	-	0,040	p _n (kPa) =	5187	p _⊏ (kPa) =	4975
5700 -	P section Pabove	0,035	Q_{-} (m ³ /s)=	2,67E-07	, ,	
[e43]		0.030 E	tp(s) =	1800	t _⊏ (s) =	8340
\$ \$ 5500 -	-	0,025 H	Sel S [*] (-)=	NA	S el S [*] (-)=	1.10E-06
		Injection	EC,, (mS/m)=			,
5300 ·			Temp(ar C)=	14.4		
	Ť	0,015	Derivative fact.=	2	Derivative fact.=	0.07
5100	-	0,010				
		0,005				
4900 0,00 0,50 1,00	1,50 2,00 2,50 3,00	0,000	Results		Results	L
Ela	ipsed Time [h]		$\Omega/s (m^2/s) =$	1,31E-08		I
Log-Log plot incl. derivates- f	flow period		$T_{\rm M}$ (m ² /s)=	1,70E-08		
	•		Flow regime:	transient	Flow regime:	transient
			dt_1 (min) =	NA	dt_1 (min) =	1,70
			dt_2 (min) =	NA	dt_2 (min) =	52,00
			$T(m^2/s) =$	NA	$T(m^2/s) =$	1,5E-08
			S (-) =	NA	S (-) =	1,1E-06
			K _s (m/s) =	NA	K _s (m/s) =	1,5E-10
Not A	nalwed		S _s (1/m) =	NA	S _s (1/m) =	1.1E-08
	liary sea		$C_{(m^{3}/Pa)} =$	NA	$C_{\rm (m^{3}/Pa)} =$	2.5E-10
			$C_{p}(-) =$	NA	$C_{p}(-) =$	7.6E-05
			۶ (-) =	NA	۶ (-) =	0
			, , , , , , , , , , , , , , , , , , ,		· / / c	
			$T_{}(m^2/s) =$		$T_{}(m^2/s) =$	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{CDE}(-) =$		$D_{OPF}(-) =$	
Log-Log plot incl. derivatives	- recovery period		Selected represe	ntative param	eters.	
	· · · ·		dt_1 (min) =	1,70	$C (m^3/Pa) =$	2,5E-10
10 ³ 10 ² Elapsed tin	me [h]		dt_2 (min) =	52,00	$C_{\rm D}(-) =$	7,6E-05
10 2 SKB Laxemar / KLX 02 504 - 604 m / CHir	FlowDim Version 2.14b	-	$T_{T}(m^{2}/s) =$	1,5E-08	٤ (-) =	0
	(c) Gouer Associates	10 3	S (-) =	1,1E-06	5()	
10 1		_	K _s (m/s) =	1.5E-10		
		10 2	S _s (1/m) =	1,1E-08		
	and the second se	7	Comments:			
	о' 10 ² 1	10 10 10 10	The CHI data is not selected for the anal zone of higher trans discontinuity radius inner composite zor composite shell para scale formation prot	analysable. The lysis of the CHII missivity in the of 2.4 m (calcu- he cannot be rega ameters are rega perties.	radial composite flo R phase reflects the p borehole vicinity. W lated assuming $S = 1$ arded as a skin. Then rded as representative	w model presence of a /ith a .1E-6) the refore, the inner we for the small
			proj	r		

	Test S	Sumn	nary Sheet			
Project:	Site investig	gations	Test type:[1]			3
Area:	La	ixemar	Test no:			5
Borehole ID:	ĸ	KLX 02	Test start:		(030711 18:46
Test section from - to (m):	604 - 704	m brp	Responsible for			N. Rahm
Section diameter 2 r (m):		0.076	test execution:			
Section diameter, $2 \cdot r_w$ (m):		0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p			Flow period		Recovery period	
		- 0.010	Indata		Indata	
KLX02_604-704_030712_1	1_CHir_Q_r P section P above		p ₀ (kPa) =	5963		
	P below		p _i (kPa) =	5953		
		1	p _p (kPa) =	6149	p _F (kPa) =	5897
6800 -			Q _p (m ³ /s)=	2,50E-08		
(Ed X) on a set		[/min]	tp (s) =	1800	t _F (s) =	42300
		- 0,005 B	S el S [*] (-)=	NA	S el S [*] (-)=	2,8E-06
8400		Inject	EC _w (mS/m)=			
			Temp _w (gr C)=	15,8		
			Derivative fact.=		Derivative fact.=	0,09
6000	•					
5800		0,000			.	
0,00 2,00 4,00 6,00 Elapsed	8,00 10,00 12,00 14 d Time [h]	1,00	Results		Results	
Log Log plot incl. domivator, fl	ow pariod		$Q/s (m^2/s) =$	1,25E-09		
Log-Log plot incl. derivates- in	ow period		I _M (m ⁻ /s)=	1,03E-09 transiont	Elow rogimo:	transiont
			dt. (min) =		dt_{i} (min) =	283.88
			$dt_1 (min) =$		$dt_1(min) =$	660 18
			$T_{2}(m^{2}/c) =$	ΝΔ	$T_{2}(m^{2}/c) =$	3 0E-10
			S(-) =	NA	S(-) =	2.8E-06
			K (m/s) =	NA	K (m/s) =	2,0E 00
Not Ar	alwood		$S_{a}(1/m) =$	NA	$S_{a}(1/m) =$	2.8E-08
INULAL	1a1 y 500		$C_{\rm m}^{3}/Pa) =$	NA	$C_{\rm m}^{\rm 3/Pa} =$	1.4E-10
			$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	1,7E-05
			ξ(-) =	NA	<u>ξ(-)</u> =	0
			T _{GRF} (m ² /s) =		$T_{GRF}(m^2/s) =$	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	eters.	
			dt ₁ (min) =	283,88	C (m³/Pa) =	1,4E-10
Elapsed time ([h] , 10 ^{,-1}	_	dt ₂ (min) =	660,18	C _D (-) =	1,7E-05
10 - SKB Laxemar / KLX 02 604 - 704 m / CHir	FlowDim Version 2.14b (c) Golder Associates	10 3	$T_{T} (m^{2}/s) =$	3,0E-10	ξ(-) =	0
			S (-) =	2,8E-06		
10.5		10 2	$K_s (m/s) =$	3,0E-12		
			S _s (1/m) =	2,8E-08		
00 10 1	•	[kPa]	Comments:			
م مبرجم عنونو م		10d-d) '0d-	The CHI data is not	analysable. The	radial composite flo	ow model
			zone of higher trans	ysis of the CHII missivity in the	borehole vicinity. W	vith a
10		10 °	discontinuity radius	of 1.2 m (calcul	lated assuming $S = 2$	2.8E-6) the
			inner composite zon	e cannot be rega	arded as a skin. The	refore, the inner
10 ⁻² 10 ⁻¹ tb/C	10 [°] 10 [°]	10 2	composite shell para	ameters are rega	rded as representativ	e for the small
			state formation prop			

Test Summary Sheet						
Project:	Site investiga	ations	Test type:[1]			3
Area:	Lax	emar	Test no:			9
Borehole ID:	KL	LX 02	Test start:			030714 12:16
Test section from - to (m):	204 - 224 r	m brp	Responsible for test execution:			N. Rahm
Section diameter, 2·r _w (m):	(0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p			Flow period		Recovery period	l
			Indata		Indata	
2300 KLX02_204-224_030714	_2_CHir_Q_r	6.0	p ₀ (kPa) =	2029		
2250		- 5.0	p _i (kPa) =	2030		
2200	P section Pabove	- 5,0	p _n (kPa) =	2230	p _F (kPa) =	2030
	Q P below	40	$O_{(m^{3}/s)} =$	5.34E-05		
§ 2150		Line Line Line Line Line Line Line Line	$d_p (m/3)^{\perp}$	1200	t₌ (s) =	1200
9 m g 2100 -		ate []/m	$(0)^{*}$	1 40F-06	°+ (°)	2 60E-06
e e e e e e e e e e e e e e e e e e e		jection F	$S \in S(-) =$ EC (mS/m)=	1,402-00	S el S (-)-	2,001-00
â 2050 .		- 2,0	EO_{W} (IIIO/III)=	0.8		
2000 -			$\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$	9,0	Dorivativa fact -	0.02
		- 1,0	Derivative lact	0,02	Derivative lact	0,02
1950 -						
	0.50 0.60 0.70 0.80 0	0.0	Results		Rosults	
Elapsed	Time [h]		$O(a_1(m^2/a)=$	2.62E-06	Results	
Log Log plot incl. domivator, flo	wporiod		$Q/s (m/s) = - \frac{2}{3}$	2,02E-00		
Log-Log plot men derivates- no			T _M (m /s)=	z,74Ľ-00	Elow rogimo:	transiont
			riow regime.		dt (min) =	*
Elapsed time (h)		T	$dt_1(min) =$	3,07	$dt_1(min) =$	*
10 SKB Laxemar / KLX 02 204 - 224 m / CHi	FlowDim Version 2.14b (c) Golder Associates	Ì	$at_2 (min) =$	17,02	$dt_2 (min) =$	^
		10 0	T (m²/s) =	3,2E-06	T (m²/s) =	1,9E-06
10 1		-	S (-) =	1,4E-06	S (-) =	2,6E-06
· ·		10 -1	$K_{s} (m/s) =$	1,6E-07	K _s (m/s) =	9,5E-08
δ ₂ 10 °.	and a state of	L.	S _s (1/m) =	7,0E-08	S _s (1/m) =	1,3E-07
1) (dyl		iju], (byt) t	C (m³/Pa) =	NA	C (m³/Pa) =	1,7E-10
		10 2 2	$C_D(-) =$	NA	C _D (-) =	7,2E+01
10 -1		ļ	ξ(-) =	0	ξ(-) =	0
		10 -0				
10 ³ 10 ⁴ 10 ⁵	10 ^{°°} 10 ^{°°} 10 ^{°°}	ļ	T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
_			S _{GRF} (-) =		S _{GRF} (-) =	
			$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives- r	ecovery period		Selected represe	ntative param	eters.	
			dt_1 (min) =	3,07	C (m³/Pa) =	1,7E-10
			$dt_2 (min) =$	17,02	C _D (-) =	7,2E+01
Elapsed time [h]	10, ⁻¹	ł	$T_{T} (m^{2}/s) =$	3,2E-06	ξ(-) =	0
SKB Laxemar / KLX 02 204 - 224 m / CHir	FlowDim Version 2.14b (c) Golder Associates	510 ²	S (-) =	1,4E-06		
10 1			K _s (m/s) =	1,6E-07		
		10 2	S _s (1/m) =	7,0E-08		
10	i		Comments:			
g 10 ⁻¹	· · · · · · · · · · · · · · · · · · ·	10 [843]	* : IARF not measu	red		
		10° 00	The radial composit	e flow model se	lected for the analys	sis of the CHIR
10 2		-	times Although the	late times data	mality is poor (the d	CHIR phase
10 4		10 -1	reached static condi	tions relatively of	uickly), the outer c	omposite shell
		10 -2	seems to show a tran	nsmissivity of m	ore than one order of	of magnitude
10 ¹ 10 ²	10 ⁻² 10 ⁻⁴ 10 ⁻⁵	ţ	higher than in the vi	icinity of the bor	ehole (inner shell).	The radius of $radius = 2$ (F)
EUCO			(ine inner shell was (6) and appears too h	calculated to 1.4	m (calculated assur	ning $S = 2.6E$ -
			composite shell para	ameters are rega	rded as representativ	ve for the small
			scale formation proj	perties. It should	be noted however,	that the
			formation shows lar	ger transmissivi	ties further away fro	om the test
			interval.			

	Test Sum	nary Sheet			
Project:	Site investigations	Test type:[1]			3
Area:	Laxemai	Test no:			11
Borehole ID:	KLX 02	Pest start:		()30714 17:50
Test section from - to (m):	244 - 264 m brp	Responsible for test execution:			N. Rahm
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
2800 KLX02_244-264_030714_1_CH	tir_Q_r • P section	p ₀ (kPa) =	2423		
2750 -	▲ Pabove + 90 □ P below	p _i (kPa) =	2423		
2700 -	Q + 80	p _p (kPa) =	2622	p _F (kPa) =	2427
2650	70	$Q_{r} (m^{3}/s) =$	7,31E-04		
ي 2600 -	- ⁶⁰ E	tp(s) =	1200	t _F (s) =	1500
8 8 8 2550 -	• • • • • • • • • • • • • • • • • • • •	S el S [*] (-)=	9,2E-07	S el S [*] (-)=	2,9E-06
e o o o o o o o o o o o o o o o o o o o	6 5 40 40	$EC_w (mS/m) =$			
2450	20	Temp _w (gr C)=	10,4		
2400 -	20	Derivative fact.=	0,04	Derivative fact.=	0,08
2350 -	- 10				
2300 0,00 0,20 0,40 0,60	0,80 1,00 1,20 1,40	Results		Results	4
Elapsed	Time [h]	Q/s (m ² /s)=	3,60E-05		
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	3,77E-05		
		Flow regime:	transient	Flow regime:	transient
Elected line (b)		dt ₁ (min) =	1,05	dt ₁ (min) =	1,06
10 ⁻² SKE Lawmar / KLX 02	10. ⁻³ , 10. ⁻¹ , 10. ⁰ , 10. ¹	dt ₂ (min) =	13,22	dt ₂ (min) =	9,51
244 - 284 m / CHi	(c) Golder Associates	$T(m^{2}/s) =$	1,6E-04	T (m²/s) =	1,7E-04
	U	S (-) =	9,2E-07	S (-) =	2,9E-06
10	• • • • • • • • • • • • • • • • • • •	K _s (m/s) =	8,0E-06	K _s (m/s) =	8,5E-06
	10 2	S _s (1/m) =	4,6E-08	S _s (1/m) =	1,5E-07
100 U	(second) y	C (m³/Pa) =	NA	C (m ³ /Pa) =	2,7E-08
22	10 ³	$C_{D}(-) =$	NA	C _D (-) =	9,9E+03
10 -1		ξ(-) =	0	ξ(-) =	0
		$T_{GRE}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
10 ¹⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ¹	10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁹	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative param	ieters.	
		dt ₁ (min) =	1,06	C (m³/Pa) =	2,7E-08
10, ⁻⁴ 10, ⁻³ Elapsed time [h]	10 ⁻¹ 10 ⁰	dt ₂ (min) =	9,51	C _D (-) =	9,9E+03
10 ³ SKB Laxemar / KLX 02 244 - 264 m / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	1,7E-04	ξ(-) =	0
10 2		S (-) =	2,9E-06		
	10 3	K _s (m/s) =	8,5E-06		
10 ¹	•••======	S _s (1/m) =	1,5E-07		
····	10 ⁻²	Comments:			
	100 ⁻⁰ 0	An infinite acting ra	adial composite	flow model was iden	tified, whereas
10 1		the inner composite	zone can only b	be seen in the CHIR	data. Although
	• 10 °	2.9E-6) it is believe	s was calculated d that the result	was influenced by the	assuming $S =$ ne malfunction
10 2		of the test valve. It	is therefore a mo	ore conservative appr	roach to treat
10° · · · · · · · · · · · · · · · · · · ·	10 ⁻¹	the inner composite	zone as a skin e	effect and chose the o	outer composite
טימז דער איז דעראיז דעראיז דער איז דעראיז דער	10 10	zone transmissivity	as being more r	epresentative for the	formation
		properties.			

	Test S	umn	nary Sheet			
Project:	Site investiga	ations	Test type:[1]			3
Area:	Lax	emar	Test no:			12
Borehole ID:	KL	_X 02	Test start:		C	30715 08:25
Test section from - to (m):	264 - 284 r	m brp	Responsible for test execution:			N. Rahm
Section diameter, 2·r _w (m):	(0,076	Responsible for			C. Enachescu
Linear plot Q and p			Flow period	L	Recovery period	
			Indata		Indata	
KLX02_2 4-284_0307	15_1_CHir_Q_r	4,0	p ₀ (kPa) =	2616		
2850	······································	3,5	p _i (kPa) =	2616		
2800	•	3,0	p _p (kPa) =	2817	p _F (kPa) =	2617
P section	•		Q _n (m ³ /s)=	2,67E-05		
2750	•	2,5 E	tp (s) =	1200	t _F (s) =	1200
2700 -		2,0 L	S el S [*] (-)=	7,8E-07	S el S [*] (-)=	1,6E-06
ownh ole		Injection	EC _w (mS/m)=			
□ 2650 .		1,5	Temp _w (gr C)=	10,8		
2600 -		1,0	Derivative fact.=	0,09	Derivative fact.=	0,02
2550 -	· ·	0,5				
2500		0,0	Poculto		Boculto	
0,00 0,20 0,40 0,60 0 Elapsed	,80 1,00 1,20 1,40 1,1 I Time [h]	60		1 21 5 06	Results	
Log Log plot incl. dorivator, fla	w poriod		Q/s (m²/s)= ≖ (~²/)	1,312-00		
Log-Log plot Incl. derivates- no	ow period		I _M (m ⁻ /s)=	1,37E-00	Flow regime:	transiant
			riuw regime.		riow regime.	
Ekspeed time (h)			$dt_1(min) =$	1,27	$dt_1(min) =$	0,52
SKB Laxemar / KLX 02 264 - 284 / CHI	FlowDim Version 2.14b (c) Golder Associates		$dt_2 (min) =$	15,79	$dt_2 (min) =$	6,19
• • • •		10.0	I (m²/s) =	1,7E-06	I (m²/s) =	1,1E-06
10		10	S (-) =	7,8E-07	S (-) =	1,6E-06
			κ _s (m/s) =	8,5E-08	$K_{s}(m/s) =$	5,5E-08
10 ⁰		10 ⁻¹	$S_{s}(1/m) =$	3,9E-08	$S_{s}(1/m) =$	8,0E-08
. dout		hq. (Vqf (r	C (m³/Pa) =	NA	C (m³/Pa) =	1,4E-10
	-	10 -2	C _D (-) =	NA	C _D (-) =	9,3E+01
10 -1			ξ(-) =	0	ξ(-) =	0
		10 -3	$T_{(m^{2}/c)} =$		$T_{(m^{2}/c)} =$	
10 ⁴ 10 ⁵ ED	10 [°] 10 ⁷		$S_{GRF}(1175) =$		$S_{GRF}(III / S) =$	
			$O_{GRF}(-) =$		$O_{\text{GRF}}(-) =$	
Log Log plot incl. derivatives	acovery period		Selected represe	ntativo param		L
Log-Log plot men. denvatives- i	ecovery period		dt (min) =	1 27	$O(\pi^3(D_{\pi}))$	1.4E-10
د المجموع المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد الم	10 ⁻¹ ⁰		dt_{a} (min) -	1,27	$C_{m}(Pa) = C_{m}(a) = -$	0.3E±01
10 2 SKB Laxemar / KLX 02 284 - 284 / CHir	FlowDim Version 2.14b]	$T_{1} = \frac{1}{2} \frac{1}{2} \frac{1}{2}$	1 75 06		3,3⊑+01
	(c) Golder Associates	10 3	$I_{T}(m/s) =$	7 00 07	چ (-) =	0
10 ¹		4	S (-) =	7,0E-07		
		10 2	κ_{s} (m/s) =	8,5E-08		
			$S_{s}(1/11) =$	3,9E-00		
	• • • • • • • • • • •	*1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	An infinite acting ra on the CHI results, 32.3 m (calculated a composite shell para to medium scale for	adial composite the composite di assuming $S = 7.8$ ameters can be s mation propertie	flow model was iden scontinuity radius w 3E-7), which indicate een as representative es.	tified. Based as calculated to s that the inner o for the small

	Test S	umn	narv Sheet			
Project:	Site investiga	itions	Test type:[1]			3
Area:	Lax	emar	Test no:			13
Borehole ID:	KL	X 02	Test start:		(030715 10:46
-	004 004					B
lest section from - to (m):	284 - 304 r	n brp	Responsible for			R. v. d. Wall
Section diameter, 2·r,, (m):	(0,076	Responsible for			C. Enachescu
· • • · · · · · · · · · · · · · · · · ·			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
3100	1	2,0	Indata		Indata	
KLX02_284-304_030715_1_CHir_Q_r		1,8	p ₀ (kPa) =	2813		
	P section	16	p _i (kPa) =	2813		
3000 -	P above Polow		p _p (kPa) =	3012	p _F (kPa) =	2813
- 2950		1,4	Q _p (m³/s)=	1,75E-05		
e del ane	Mangare 1	1,2 [ujuu]	tp (s) =	1200	t _F (s) =	1200
2900. 9		tion Rate	S el S [*] (-)=	9,9E-07	S el S [*] (-)=	7,5E-07
2850 .		u)ec	EC _w (mS/m)=			
		0,6	Temp _w (gr C)=	11,1		
2800 -		0,4	Derivative fact.=	0,19	Derivative fact.=	0,07
2750 -		0,2				
2700 .00 0,20 0,40	0,80 0,80 1,00 1,20 1,4	0,0	Results		Results	
			Q/s (m²/s)=	8,63E-07		
Log-Log plot incl. derivates	s- flow period		T _M (m²/s)=	9,02E-07		
			Flow regime:	transient	Flow regime:	transient
Ei	apsed time [h]		dt ₁ (min) =	2,25	dt ₁ (min) =	0,46
10 ²			dt ₂ (min) =	11,78	dt ₂ (min) =	7,86
284 - 304 m / CHi	FlowDim Version 2.14b (c) Golder Associates		T (m²/s) =	1,1E-06	T (m²/s) =	6,9E-07
10 1	· · · ·		S (-) =	9,9E-07	S (-) =	7,5E-07
		10	$K_s (m/s) =$	5,5E-08	K _s (m/s) =	3,5E-08
	•		S _s (1/m) =	5,0E-08	S _s (1/m) =	3,8E-08
GP 10 °		10 fundi (bil	C (m³/Pa) =	NA	C (m³/Pa) =	6,9E-11
	· · ·	1d. (C _D (-) =	NA	C _D (-) =	1,0E+02
10 -1	•	10 -2	ξ(-) =	0	ξ(-) =	0
10 ¹ 10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =	
	D		S _{GRF} (-) =		S _{GRF} (-) =	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivativ	ves- recovery period		Selected represe	entative param	neters.	
			dt ₁ (min) =	2,25	C (m³/Pa) =	6,9E-11
	apsed time [h]	1	dt_2 (min) =	11,78	C _D (-) =	1,0E+02
10 - SKB Laxemar / KLX 02 284 - 304 m / CHir	FlowDim Version 2.14b (c) Golder Associates		$T_{T} (m^{2}/s) =$	1,1E-06	ξ(-) =	0
		10 3	S (-) =	9,9E-07		
10 1 · · · · · ·			$K_s (m/s) =$	5,5E-08		
10 0		10 1	S _s (1/m) =	5,0E-08		
· · ·		(Pa)	Comments:			
10-1	\	0 (P-001)	The flow model ide	ntification was b	based on the shape o	f the semi-log
	• • • • • • • • • • • • • • • • • • •		derivative of the CH	II phase. An infinitient of the CIU	inite acting radial ho	mogeneous
10 -2		10	shell composite flow	w model, this he	haviour is however :	attributed to a
		10 -1	skin effect.			
10 ¹	10 ² 10 ³ 10 10/CD	ļ				

Project: Site investigations Area: Laxemar			3
Area: Laxemar Test no:			
			14
Borehole ID: KLX 02 Test start:		()30715 12:56
Test section from - to (m): 304 - 324 m brp Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m): 0,076 Responsible for			C. Enachescu
Linear plot Q and p Flow period		Recovery period	
Indata		Indata	
³⁰⁰⁰ kLx02_304-324_030715_1_CHir_Q_r	3010		
¹⁸ p _i (kPa) =	3011		
szoo	3210	p _F (kPa) =	3011
\mathbf{L}_{q} Pbelow 14 \mathbf{Q}_{q} (m ³ /s)=	1,90E-04		
³ / ₂ ³¹⁵⁰ − ¹² ² / ₂ tp (s) =	1200	t _F (s) =	1200
100 to 10	1,0E-06	S el S [*] (-)=	5,9E-07
L s s s s s s s s s s s s s s s s s s s	,		· · · ·
⁶ 3000 Temp _w (gr C)=	11,4		
Derivative fact.=	0.12	Derivative fact.=	0.02
	,		,
2000 0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 1.60 1.80 Results		Results	
Q/s (m²/s)=	9,36E-06		
Log-Log plot incl. derivates- flow period T _M (m ² /s)=	9,80E-06		
Flow regime: tra	ansient	Flow regime:	transient
dt ₁ (min) =	1,60	dt ₁ (min) =	0,92
10 ⁻² SKE Laumar / NLX02 Foxfor / Version 2 140	15,40	dt_2 (min) =	9,63
$T (m^2/s) =$	4,2E-05	$T(m^{2}/s) =$	4,1E-05
S (-) =	1,0E-06	S (-) =	5,9E-07
$K_{\rm s} ({\rm m/s}) =$	2,1E-06	K _s (m/s) =	2,1E-06
	5,0E-08	S _s (1/m) =	3,0E-08
¹ / ₂ ¹ / ₂ ¹ / ₂ C (m ³ /Pa) = ΝΑ	A	C (m ³ /Pa) =	5,5E-09
	A	C _D (-) =	1,0E+04
$\xi(-) =$	0	ξ(-) =	0
Т _{срг} (m ² /s) =		$T_{GRE}(m^2/s) =$	
$S_{GRF}(-) =$		$S_{GRF}(-) =$	
$D_{\text{GRF}}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- recovery period Selected representa	ative param	eters.	
dt ₁ (min) =	1,60	C (m ³ /Pa) =	5,5E-09
$dt_2 (min) =$	15,40	$C_{\rm D}(-) =$	1,0E+04
^{10³} SKE Lasema / /Δ X 02 SKE Lasema / /Δ X 02 FloxCin Version 2.140 T _T (m ² /s) =	4,2E-05	ξ(-) =	0
(c) Gooder Addocutes	1,0E-06	5()	
$K_{s}(m/s) =$	2,1E-06		
$S_{s}(1/m) =$	5,0E-08		
Comments:			
The early time data of the inner composite zone; he presence of a lower trans zone) is a necessary ass Based on the CHI analy representative for the in	the CHI phase however, for nsmissivity ze sumption whi ysis, the outer nterval transm	e does not allow cha a given storativity a one around the bore ch allows matching zone transmissivity hissivity.	racterizing the round 1E-6 the hole (inner the late times. 7 is seen as

	Test S	umn	nary Sheet			
Project:	Site investiç	gation	Test type:[1]		PI	(see table 6.1)
Area:	Lax	xemar	Test no:			16
Borehole ID:	KI	LX 02	Test start:		(030715 17:31
Test section from - to (m):	344 - 364 -	m brp	Responsible for	R. v. d. Wall		
Section diameter, 2·r _w (m):	,	0,076	Responsible for	C. Enachescu		
Linear plot Q and p			Flow period	Flow period Recovery period		
			Indata		Indata	
3800		0,20		2404	inuata	1
KLX02_344-364_030715_1	_CHir_Q_r ● P section ▲ P above	0,18	$p_0 (kPa) =$	3404		
3700 -		0,16	$p_i(RPa) =$	3432		2 402
3650	. .	0.14	р _р (кРа) =	3666	р _ғ (кРа) =	3403
			Q _p (m³/s)=	-		
2, 3800 - 9 3	Ť	0,12 [uiu]	tp (s) =	300	t _F (s) =	49440
ຊື່ 3550 - 4. ຮ		0,10 Late	S el S [*] (-)=	NA	S el S [*] (-)=	2,9E-06
5 3500 -	-	0,08 L	EC _w (mS/m)=			
3450		0,06	Temp _w (gr C)=	12,0		
3400		0,04	Derivative fact.=	NA	Derivative fact.=	0,07
3350 -	·····	0,02				
3300 2,00 4,00 6,00	8,00 10,00 12,00 14,00 16/	0.00	Results		Results	<u> </u>
Eiapse	ed Time [h]		Q/s (m²/s)=	NA		1
Log-Log plot incl. derivates- flo	ow period		T_{M} (m ² /s)=	NA		
	-		Flow regime:	NA	Flow regime:	transient
			dt_1 (min) =	NA	dt₁ (min) =	182,96
			dt_2 (min) =	NA	dt_2 (min) =	550,18
			$T_{12}(m^{2}/c) =$	NA	$T_{1}(m^{2}/c) =$	2 6F-11
			S(-) =	NA	S(-) =	2,0E 11
			$K_{1}(m/s) =$	NA	$K_{1}(m/s) =$	1.3E-12
NI-4 A.			$S_{(1/m)} =$	NΔ	$S_{\rm s}(1/m) =$	1,6E 12
Not Af	narysed		$O_{s}(1/11) = O_{s}(1/11)$		$O_{s}(m^{3}(D_{s})) =$	2.7E-11
			C(m/Pa) = C(x)		C(m/Pa) = C(r)	2,7 E-11
			$C_{\rm D}(-)$ =		C _D (-) =	1,02.101
			ς(-) =	INA	ς(-) =	
			2		2	
			$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
			S _{GRF} (-) =		S _{GRF} (-) =	
	<u> </u>		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot Incl. derivatives-	recovery perioa		Selected represe	antative param	elers.	
			$at_1 (min) =$	182,96	C (m³/Pa) =	2,/E-11
Elapsed time (r	^[h]		$at_2 (min) =$	550,18	C _D (-) =	1,0E+01
10 - SKB Laxemar / KLX 02 344 - 364 m / SIS	FlowDim Version 2.14b (c) Golder Associates	10 1	$T_T (m^2/s) =$	2,6E-11	ξ(-) =	0
		4	S (-) =	2,9E-06		
10		10 0	K _s (m/s) =	1,3E-12		
		-	S _s (1/m) =	1,5E-07		
8 ·····		10 ⁻¹	Comments:			
		nd bedu per	The flow model ide	ntification is und	ertain and mainly b	ased on the
10		10 ° 8	shape of the semi-lo	og derivative of t	the deconvolved CH	IR phase. Due
	to the very small composite radius, it is believed that the out				erties.	
10		10 -3	The transmissivity of	lerived from the	transient analysis (h	both composite
	·····		shells) ranges from	2.6E-11 to 8.5E	-11 m2/s. Consideri	ng the inherent
10 ⁻¹ 10 ⁻⁰ 10 ⁻¹ 10	10 ^x 10 ³ 10 ⁴ 10 ⁵	-	uncertainties related	to the measurer	nent (e.g. specially	the
			measurement of the	wellbore storag	e coefficient) and to	the analysis
			process (e.g. numer	ects), the confide	ence range for the tr	ansmissivity is
			estimated to be 1E-	11 to 5E-10 m2/	s (the outer zone tra	nsmissivity is
			considered as most	representative)		

	Test Su	ımn	nary Sheet			
Project:	Site investiga	ation	Test type:[1]		PI	(see table 6.1)
Area:	Laxe	emar	Test no:			17
Borehole ID:	KL	X 02	Test start:		(030716 08:35
Test section from - to (m):	364 - 384 m	n brp	Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):	0),076	Responsible for			C. Enachescu
Linear plot Q and p			Flow period Recovery period			
p			Indata		Indata	
4000	P section	0,50	p₀ (kPa) =	3598		
3950 -	P above - 0. P below	0,45	p; (kPa) =	3600		
3900 -	Q0,	0,40	$p_{\rm p}(kPa) =$	3810	p _⊏ (kPa) =	3604
3850	3 - 0.	0,35	$O_{(m^{3}/s)} =$	-	p _F (
\$ 3600 -		0.30 E	$d_p (m/s) =$	120	t _r (s) =	1320
2 5 8 3750		T 25 2	ε οι ε [*] ()=	NA	$(0)^{*}() =$	2 5E-07
A of the second s		jection F	5 el 5 (-)- EC (mS/m)=	1177	Sel S (-)-	2,512 07
§ 3700 -	0.	0,20 E	$LC_w (IIIS/III) =$	12.2		
3650 -		0,15	Derivativa fact -	12,3	Dorivativo fact -	0.19
3600		0,10	Denvalive laci	INA	Derivative lact	0,18
3550	- 0.	0,05				
3500	0,80 1,00 1,20	0,00	Results		Results	
			Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flow	/ period		T _M (m²/s)=	NA		
			Flow regime:	NA	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	0,60
			dt ₂ (min) =	NA	dt ₂ (min) =	17,43
			T (m²/s) =	NA	T (m²/s) =	1,8E-09
			S (-) =	NA	S (-) =	2,5E-07
			K _s (m/s) =	NA	$K_{s} (m/s) =$	9,0E-11
Not Ana	lvsed		S _s (1/m) =	NA	S _s (1/m) =	1,3E-08
	- /		C (m³/Pa) =	NA	C (m³/Pa) =	5,8E-11
			C _D (-) =	NA	C _D (-) =	2,5E+02
			ξ(-) =	NA	ξ(-) =	0
					,	
			$T_{CBF}(m^2/s) =$		$T_{CBE}(m^2/s) =$	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	covery period		Selected represe	ntative param	eters.	
			dt_1 (min) =	0,60	C (m ³ /Pa) =	5,8E-11
			dt_2 (min) =	17,43	$C_{\rm D}(-) =$	2,5E+02
to 4 to 3 Elapsed time [t]	10 ⁻¹ 10 ⁰		$T_{T}(m^{2}/s) =$	1,8E-09	ξ(-) =	0
10 2 SKB Laxemar / KLX 02 364 - 384 m / CHIR as Pi	FlowDim Version 2.14b		S (-) =	2,5E-07	/	
	(c) Golder Associates		$K_s(m/s) =$	9,0E-11		
10 1	10	0 -1	$S_{s}(1/m) =$	1,3E-08		
and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an			Comments:			
•	10	o ⁻²	The flow model ide	ntification is und	certain and mainly b	ased on the
² ² ¹⁰		moluted pr	shape of the semi-lo	og derivative of	the deconvolved CH	IR phase. Due
		8	to the very small co	mposite radius,	it is believed that the	e outer
10 -1	10	o ~	Composite zone is re	epresentative for	transient analysis ()	erues.
	shells) ranges from 1.8E-9 to 3.2E-9 m2/s. Considering the				the inherent	
40 ⁴ 0 ²	10 ³ 10 ⁴ 5	o *	uncertainties related	l to the measure	ment (e.g. specially	the
تى ^ى . 10	10 10		measurement of the	wellbore storag	e coefficient) and to	the analysis
			process (e.g. numer	ic distortion whe	en calculating the de	rivative and
			estimated to be 5E-	10 to 1E-8 m $2/s$	(the outer zone trans	smissivity is
			considered as most	representative).		

Test Summary Sheet						
Project:	Site investigation	s <u>Test type:[1]</u>		PI	(see table 6.1)	
Area:	Laxema	ar Test no:			19	
Borehole ID:	KLX 0	2 Test start:			030716 14:23	
Test section from - to (m):	404 - 424 m br	p Responsible for			R. v. d. Wall	
Section diameter, 2·r _w (m):	0,07	6 Responsible for			C. Enachescu	
Linear plot O and p		test evaluation:		Recovery period		
		Indata		Recovery period		
4400	0,010	n_{o} (kPa) =	3994	indata		
4350 . KLX02_404-424_030716_1_CHir_Q_r	▲ P above - 0,009 ■ P below	p ₀ (kPa) =	4010			
4300 -	- 0,008	$p_{1}(kPa) =$	4010	p _⊏ (kPa) =	4246	
4250	0,007	$\rho_{\rm p(n)}(m^3/s) =$	-		1210	
د 4200 -	0.006 ਵ	$\frac{Q_p(11/3)}{tp(s)} =$	180	t _⊏ (s) =	1200	
91 88 84 4150 -	● + 0,005 B	유 (0) S el S [*] (_)=	NA	⊊ (°) S el S [*] (₋)=	2.2E-06	
112 All All All All All All All All All Al	injection	EC (mS/m)=		5 ei 5 (-)-	2,22 00	
8 100 -	•	Temp(ar C)=	12.8			
4050 -	• 0,003	Derivative fact.=	NA	Derivative fact.=	0.36	
4000	0,002				.,	
3950	0,001					
3900 0,00 0,20 0,40 0,4	0,000	Results		Results		
Elapsed	Time [h]	Q/s (m ² /s)=	NA			
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	NA			
		Flow regime:	NA	Flow regime:	transient	
		dt ₁ (min) =	NA	dt ₁ (min) =	*	
		dt ₂ (min) =	NA	dt ₂ (min) =	*	
		T (m²/s) =	NA	T (m²/s) =	3,6E-13	
		S (-) =	NA	S (-) =	2,2E-06	
		K _s (m/s) =	NA	K _s (m/s) =	1,8E-14	
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	1,1E-07	
		C (m³/Pa) =	NA	C (m³/Pa) =	1,9E-10	
		C _D (-) =	NA	C _D (-) =	9,3E+01	
		ξ(-) =	NA	ξ(-) =	0	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot Incl. derivatives- I	recovery period	Selected represe	*			
		$dt_1(min) =$	*	C (m [×] /Pa) =	1,9E-10	
10 ⁻³ Elapsed time (b)		$dt_2(mm) =$	3 65 13	$C_D(-) =$	9,32+01	
SKB Laxemar / KLX 02 404 - 424 m / CHIR (as PI	FlowDim Version 2.14b (c) Golder Associates	$I_{T}(m^{-}/s) =$	3,0E-13 2.2E.06	ς(-) –	0	
	10 '	S (-) =	2,2L-00			
10°		$S_{s}(1/m) =$	1,0E-14			
	3	Comments:	1,12 07			
	0 0°	The transmissivity of shells) ranges from	derived from the 3.6E-13 to 1.8E	transient analysis (l -11 m2/s. Consideri	both composite ng the inherent	
	0.3	uncertainties related	to the measure	ment (e.g. specially	the	
		measurement of the	wellbore storag	e coefficient) and to	the analysis	
	10 .	process (e.g. numer pressure history effe	ects), the confide	en calculating the de	ansmissivity is	
10 ⁻¹ 10 ⁻⁰ 1D	10 ¹ 10 ² 10 ³	estimated to be 3E-	13 to 2E-11 m2/	s (the outer zone tra	nsmissivity is	
		considered as most	representative).			

	Test Su	mn	nary Sheet										
Project:	Site investigations		Test type:[1]			3							
Area:	Laxemar		Test no:	23									
Borehole ID:	KLX 02		Test start:	030717 10:48									
Test section from - to (m):	481 - 501 m brp		Responsible for test execution:	R. v. d. Wall									
Section diameter, $2 \cdot r_w$ (m):	0,076		Responsible for	C. Enachescu									
Linear plot Q and p	I		Flow period	Recovery period									
			Indata		Indata								
5100	KLX02_481-501_030717_1_CHir_Q_r 0.0018 0.0016 0.0014 P section P above 0.0012 0.0014 0.0014	0	p₀ (kPa) =	4749									
5050 -		8	p _i (kPa) =	4744									
5000		6	p _p (kPa) =	4943	p _F (kPa) =	4759							
		4	Q _n (m ³ /s)=	3,33E-09									
		2 [u	tp(s) =	1800	t _F (s) =	1800							
2 8 4900 -	Q + 0,0010	o n Rate [W	S el S [*] (-)=	NA	S el S [*] (-)=	1,9E-06							
ownhold	0,000	8 Injectio	EC _w (mS/m)=										
4850 -	0,000	0006	Temp _w (gr C)=	13,9									
4800 -			Derivative fact.=	NA	Derivative fact.=	0,07							
	🗌 🦯 🖌 🕅 Th	-											
· <u> </u>		2											
4700 0,00 0,25 0,50 0,75 1,00 Flanser	1,25 1,50 1,75 2,00 2,25	0	Results		Results								
			Q/s (m²/s)=	1,64E-10									
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	1,72E-10									
			Flow regime:	transient	Flow regime:	transient							
			dt ₁ (min) =	NA	dt ₁ (min) =	*							
			dt ₂ (min) =	NA	dt ₂ (min) =	*							
			T (m²/s) =	NA	T (m²/s) =	1,3E-10							
			S (-) =	NA	S (-) =	1,9E-06							
			K _s (m/s) =	NA	$K_s (m/s) =$	6,5E-12							
Not An	nalysed		$S_s(1/m) =$	NA	$S_s(1/m) =$	9,5E-08							
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,7E-11							
			C _D (-) =	NA	$C_D(-) =$	9,7E+00							
			ξ(-) =	NA	ξ(-) =	0							
			2										
			$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$								
			$S_{GRF}(-) =$		$S_{GRF}(-) =$								
			D _{GRF} (-) -	ntativo param	$D_{GRF}(-)$ –	l							
Log-Log plot mel. derivatives-	Tecovery period		dt. (min) =	*	$C (m^3/D_2) =$	1 75-11							
			dt_1 (min) = dt_2 (min) =	*	$C_{n}(-) =$	9.7E+00							
10 10, 10, 2 Liapsed lime	[0] 10 -1 10 0 FlowDim Version 2.14b		$T_{1}(m^{2}/c) =$	1 3E-10	ε _D () =	0,12100							
481 - 501 m / CHir	(c) Golder Associates		S(-) =	1.9E-06	ۍ () د								
		10 ²	K _a (m/s) =	6.5E-12									
10 Contraction of the second s			$S_{s}(1/m) =$	9.5E-08									
a o'			Comments:	.,									
			* : IARF not measured										
The flow model identification was m				nainly based on the	shape of the								
10 ⁻³			semi-log derivative of the CHIR phase. Given the very low transmissivity, most of the CHIR data is masked wellbore storage. The transmissivity derived from the transient analysis of the CHIR phase is lower or equal to 1.3E-10 m2/s.										
							10 ⁻¹ 10 10 ⁻¹ 10 ⁻¹	5 10 ¹ 10 ²	10				

Test Summary Sheet							
Project:	Site investigation	s <u>Test type:[1]</u>			3		
Area:	Laxema	ar Test no:			24		
Borehole ID:	KLX 0	2 Test start:	030717 13:21				
Test section from - to (m):	484 - 504 m br	p Responsible for test execution:	R. v. d. Wall				
Section diameter, 2·r _w (m):	0,07	6 Responsible for test evaluation	C. Enachescu				
Linear plot Q and p		Flow period Recovery period					
		Indata		Indata			
5100 KLX02_48	0,000	p ₀ (kPa) =	4781				
5050 -	- 0,0045	p _i (kPa) =	4776				
5000	- 0,0040	p _p (kPa) =	4975	p _F (kPa) =	4774		
	P section P above - 0,0035 P above - 0,0035	Q_{2} (m ³ /s)=	8,28E-09				
4950 -	- 0,0030 g	tp(s) =	1800	t _F (s) =	2400		
8 8 4900 -	- 0,0025 2	S el S [*] (-)=	NA	S el S [*] (-)=	9,9E-07		
w uhola	00000 e	EC,, (mS/m)=		0 0. 0 ()	,		
ă 4850 -		Temp(ar C)=	14.0				
4800 -	0.0015	Derivative fact =	NA	Derivative fact =	0.02		
┝──────────────────────────────────────	0.0010				0,02		
4750							
4700		Posulte		Posults			
Elapse	d Time [h]	$O(a_1(m^2/a)=$	4 08F-10	Results	1		
l og l og plot incl. derivates, fl	ow period	Q/S (III/S) =	4 27E-10				
		$T_{\rm M}$ (III /S)=		Flow regime:	transient		
		dt (min) =	NA	dt (min) =	*		
		dt_1 (min) =		$dt_1 (min) =$	*		
		$dl_2(mm) =$		$dl_2(\Pi\Pi) =$	1 65 10		
		1 (m ⁻ /s) =		I (m ⁻ /s) =	1,0E-10		
		S (-) =		S(-) = K(m/n) = 0	9,9E-07		
		$R_s(III/S) =$		κ_{s} (III/S) =	8,0E-12		
Not Analysed		$S_{s}(1/11) =$		$S_{s}(1/11) =$	5,0E-0d		
		C (m°/Pa) =		C (m [°] /Pa) =	1,3E-11		
		$C_D(-) =$		$C_D(-) =$	1,4E+01		
		ζ(-) =	NA	ζ(-) =	U		
		2		2			
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
		$S_{GRF}(-) =$		$S_{GRF}(-) =$			
		$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$			
Log-Log plot incl. derivatives-	recovery period	dt (min) =	*				
		$ul_1(min) =$	*	C (m [×] /Pa) =	1,3E-11		
E1	ni	$u_{12}(mm) =$		$C_D(-) =$	1,4⊏+01		
10 ⁻¹ 10 ⁻¹ SKB Laxemar / KLX 02 store _ COL m _ COL	10,10,10,10,10,10,10,10,10,10,10,10,10,1	I _⊤ (m ⁻ /s) =		ς(-) =			
484 - 504 m / CHI	(c) Golder Associates	S(-) = K(m/n) = 0	9,9E-07				
		$r_s(m/s) =$	8,0E-12				
10 *	10 ²	$S_s(1/11) =$	5,0E-08				
		Comments:	1				
	30	The near borehole t	irea	rived from the trans	ient analysis of		
10 ⁻¹	the CHIR phase is lower or equal to $1.6E-10 \text{ m2/s}$. Further away from the borehole (r1 = 0.56 m, assuming S = 9.9E-7) the transmissivity						
Je M							
	3	seems to increase s	lightly (downwa	rd slope of the deriv	ative); a value		
	10 ⁰	the transmissivity is	is derived for the	e outer zone. Regard	below the		
10 ⁻¹ 10 ⁻⁰ sD/C0	measurement range of the flowmeter the derived transmissivities could be up to one order of magnitude lower than derived from the analysis.						
		In the same time, du	ue to the fact tha	t the derivative does	s not reach		
		be higher than calcu	ulated (estimated	l up to one order of	magnitude)		
				T to this order of			

Test Summary Sheet							
Project:	Site investig	gations	Test type:[1]			3	
Area:	Laxemar		Test no:	27			
Borehole ID:	KLX 02		Test start:	030718 11:21			
Test section from - to (m):	544 - 564	4 m brp	Responsible for	R. v. d. Wall			
Section diameter, 2·r _w (m):		0,076	Responsible for	C. Enachescu			
		-	test evaluation:				
Linear plot Q and p			Flow period	Recovery period			
5700	• • • • • • • • • • • • • • • • • • •	T 0,010	Indata		Indata		
KLX02_544-56	64_030718_1_CHir_Q_r	0,009	p ₀ (kPa) =	5371	L		
5050 -		- 0,008	p _i (kPa) =	5365			
5600 -		0.007	p _p (kPa) =	5555	p _F (kPa) =	5426	
a 5550			Q _p (m ³ /s)=	-	<u> </u>		
		0,006 [ci m2] ag	tp (s) =	480	t _F (s) =	5400	
8 5500 - 9 2		- 0,005 E	S el S (-)=	NA	S el S (-)=	NA	
5450 .		- _{0,004} 를	EC _w (mS/m)=				
		- 0,003	Temp _w (gr C)=	14,6			
5400 -		0,002	Derivative fact.=	NA	Derivative fact.=	NA	
5350 -		0,001					
5300	•	0.000					
0,00 0,50 1,00 Elapse	1,50 2,00 sed Time [h]	2,50	Results	lesults		Results	
			Q/s (m^{2}/s)=	NA			
Log-Log plot incl. derivates- fle	ow period		Τ _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt_1 (min) =	NA	
			dt ₂ (min) =	NA	$dt_2 (min) =$	NA	
			T (m²/s) =	NA	T (m²/s) =	NA	
			S (-) =	NA	S (-) =	NA	
			$K_{s} (m/s) =$	NA	K _s (m/s) =	NA	
Not Ar	nalysed		$S_{s}(1/m) =$	NA	S _s (1/m) =	NA	
			C (m³/Pa) =	NA	C (m ³ /Pa) =	NA	
			C _D (-) =	NA	C _D (-) =	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$		
			S _{GRF} (-) =		S _{GRF} (-) =		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- recovery period			Selected represe	entative param	neters.		
			dt ₁ (min) =	NA	$C (m^3/Pa) =$	NA	
			dt ₂ (min) =	NA	C _D (-) =	NA	
			$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA	
			S (-) =	NA			
		$K_{s}(m/s) =$	NA				
Not Analysed			$S_s(1/m) =$	NA			
			Comments:				
			The injection rate dropped below the measurement range of the flowmeter ($q < 0.5$ ml/min) almost instantaneously, indicating the very low transmissivity of the interval. None of the test phases is analysable, but the low injection rates show that the interval transmissivity must be lower than 1E-10 m2/s.				
	Test	Sumn	nary Sheet				
--	--	-----------------------	---	--	---	-------------------------------------	
Project:	Site investi	gations	Test type:[1]		PI	(see table 6.1)	
Area:	La	axemar	Test no:			28	
Borehole ID:	ł	KLX 02	Test start:		(030718 14:16	
Test section from - to (m):	564 - 584	1 m brp	Responsible for test execution:			R. v. d. Wall	
Section diameter, $2 \cdot r_w$ (m):		0,076	Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p			Flow period	-	Recovery period		
7000		0.040	Indata		Indata		
KLX02_564-584_030	1718_1_CHir_Q_r P section	0,010	p ₀ (kPa) =	5568			
5850 -	P below	- 0,009	p _i (kPa) =	5614			
500		- 0,008	p _p (kPa) =	5817	p _F (kPa) =	5794	
		- 0,007	$Q_{2} (m^{3}/s) =$	-			
5750 - &		0,006 g	$d_p(m, s)$ =	180	t _⊏ (s) =	3840	
9 9 9 5700		Rate []/w	S el S [*] (_)=	NA	S el S [*] (_)=	3.1E-06	
write P		njection	5 er 3 (-)- FC (mS/m)=		3 8 3 (-)-	5,12 00	
Å ₅₆₅₀ .		• 0,004 =	Temp (ar C)=	14.6			
5600	•	0,003	Derivative fact -	NA	Derivative fact -	0.24	
550		0,002		INA		0,24	
5500		0,001					
0,00 0,25 0,50 0,75 1,00 Elapsed 1	1,25 1,50 1,75 2,00 : ime[h]	2,25	Results		Results		
			Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	w period		Τ _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	*	
			dt ₂ (min) =	NA	dt ₂ (min) =	*	
			T (m²/s) =	NA	T (m²/s) =	2,8E-12	
			S (-) =	NA	S (-) =	3,1E-06	
			K _s (m/s) =	NA	K _s (m/s) =	1,4E-13	
Not An	alvsed		S _s (1/m) =	NA	S _s (1/m) =	1,6E-07	
	,		C (m³/Pa) =	NA	C (m ³ /Pa) =	5,1E-11	
			$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	1,8E+01	
			ξ(-) =	NA	ξ(-) =	C	
			$T_{opc}(m^2/s) =$		$T_{opr}(m^2/s) =$		
			$S_{GRE}(-) =$		$S_{GRF}(-) =$		
			$D_{ODE}(-) =$		$D_{ODE}(-) =$		
Log-Log plot incl. derivatives- r	ecovery period		Selected represe	entative param	eters.		
			dt₁ (min) =	*	$C (m^{3}/P_{2}) =$	5.1E-11	
			dt_2 (min) =	*	$C_{p}(-) =$	1.8F+01	
Elapsed time [n]			$T_{m}^{2}(c) =$	2 8F-12	ε (_) =	1,52.01	
SKB Laxemar / KLX 02 564 - 584 m / CHir as Pl	FlowDim Version 2.14b (c) Golder Associates		S(-) =	3 1E-06			
		10 1	- () - K (m/s) =	1 / E_12			
10 °			$S_{s}(11/s) =$	1,40-13		<u> </u>	
I I I Performance	The second second second second second second second second second second second second second second second s		$O_{s}(1/11) =$	1,0⊏-07			
		10 ° researd p		1			
			* : IARF not measu The near borehole t	irea transmissivity de	rived from the trans	ient analysis of	
	$\frac{1}{100}$ the CHIR phase was calculated to 2.8E-12 m2/s Regarding the fail				ding the fact that		
the transmissivity is very low, the injection				jection rate was bel	ow the		
FLOW MODEL : I BOUNDARY CONDITI WELL TYPE : ISS SUPERPOSITION TYP	iomogeneous C= b.12t-11 m3/F DNS: Stugipulse T= 2.83E-12 m2/F urce S= 3.12E-06 - 'E: No superposition s= 0.00E+00 -	5	measurement range	and there is con	siderable uncertaint	y concerning	
PLOT TYPE : Pe	res, Reynolds n= 2.00E+00 -	10 -2	the wellbore storage	e coefficient the	confidence range of	the	
טי טו נון			transmissivity is est	timated to be bet	ween 1E-12 m2/s an	nd 5E-11 m2/s.	
н сом може на сом може в ценеровном ме и туре и от туре то туре 10 ² 10 ³ 10 ² 10 ³	248: Books T 235:: 2 and 241: 112:: 0:: 112:: 0:: 21: 112:: 0:: 112:: 0:: 21: 110:: 0:: 112:: 0:: 20:: 10:: 0:: 0:: 0:: 10:: 10:: 10:: 10:: 10::	5 10 ⁻²	measurement range the wellbore storag transmissivity is est	and there is con e coefficient the timated to be bet	siderable uncertaint confidence range of ween 1E-12 m2/s ar	y concerning the nd 5E-11 m2,	

Test Summary Sheet								
Project:	Site investigations	Test type:[1]			3			
Area:	Laxemar	Test no:			29			
Borehole ID:	KLX 02	Test start:		(030718 17:12			
Test section from - to (m):	584 - 604 m brp	Responsible for test execution:			R. v. d. Wall			
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for			C. Enachescu			
Linear plot Q and p		test evaluation: Flow period		Recovery period				
		Indata		Indata				
6100	KLX02_584-604_030718_1_CHir_Q_r	p ₀ (kPa) =	5765					
6050 -	- 0,0018	p _i (kPa) =	5767					
6000	- 0,0016	p _p (kPa) =	5963	p _F (kPa) =	5820			
	P section = 0,0014 A P above	Q _p (m ³ /s)=	8,33E-09					
두 5950 - 문 권 온	□ P below 0,0012 ਵ	tp (s) =	1200	t _F (s) =	1800			
\$ 5900 -	- 0,0010 E	S el S [*] (-)=	NA	S el S [*] (-)=	3,5E-06			
5850	0,0008 =	EC _w (mS/m)=						
	0,0006	Temp _w (gr C)=	15,5					
5800 -	r	Derivative fact.=	NA	Derivative fact.=	0,02			
5750 -	0.0002							
5700								
0,00 0,25 0,50 (Elapse	0,75 1,00 1,25 1,50 d Time [h]	Results		Results				
		Q/s (m²/s)=	4,17E-10	L				
Log-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	4,36E-10		<u> </u>			
		Flow regime:	transient	Flow regime:	transient			
		$dt_1 (min) =$	NA	$dt_1 (min) =$	*			
		$dt_2 (min) =$	NA	$dt_2 (min) =$				
		$I(m^{2}/s) =$		$1 (m^2/s) =$	1,2E-10			
		S(-) = K(m/n) = -		S(-) =	3,5E-06			
	1 1	$R_{s}(11/s) =$		$R_{s}(11/s) =$	0,0E-12			
Not At	nalysed	$S_{s}(1/11) =$		$S_{s}(1/11) =$	1,8Ľ-07 3.4E-11			
		C (m ² /Pa) =	NA	C (m ² /Pa) =	3,4Ľ-11 1.0E+01			
		ε _D (-) =	NA	ε _D (-) =	1,02.01			
		ς(-) –	11/1	ς(-) –				
		$T_{(m^{2}/s)} =$		$T_{(m^{2}/s)} =$				
		$S_{GRF}(-) =$		$S_{CRE}(-) =$				
		$D_{GRE}(-) =$		$D_{GRF}(-) =$				
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.				
		dt ₁ (min) =	*	C (m³/Pa) =	3,4E-11			
10. ⁻³ 10. ⁻² 10. ⁻¹	[h] 10. ⁰ 10. ¹ 10. ² 10. ³	dt ₂ (min) =	*	$C_{D}(-) =$	1,0E+01			
10 2 SKB Laxemar / KLX 02 584 - 604 m / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	1,2E-10	ξ(-) =	0			
		S (-) =	3,5E-06					
10	10	K _s (m/s) =	6,0E-12					
	fin ²	S _s (1/m) =	1,8E-07					
8		Comments:						
8 10 ⁻¹	10 °	* : IARF not measu The transmissivity of phase is lower or eo transmissivity is ver measurement range be up to one order of	red derived from the jual to 1.2E-10 r ry low and the ir of the flowmete of magnitude low	transient analysis of n2/s. Regarding the njection rate was bel or the derived transm ver than derived from	f the CHIR fact that the ow the issivity could n the analysis.			
10 10 ¹ 10 ⁻⁰ tD/	10 [°] 10 [°] 10 [°] 10 [°] CD	-	-		-			

Test Summary Sheet							
Project:	Site investi	igations	Test type:[1]		PI	(see table 6.1)	
Area:	L	axemar	Test no:			30	
Borehole ID:		KLX 02	Test start:			030719 09:18	
Test section from - to (m):	704 - 724	4 m brp	Responsible for test execution:		R. v. d. Wall		
Section diameter, 2·r _w (m):		0,076	Responsible for		C. Enachescu		
l inear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
7300		0,010	p_{o} (kPa) =	6941	indutu		
7250 -	KLX02_704-724_030719_1_CHir_Q_r	- 0,009	$p_0(kra)$	6950			
7200		- 0,008	$p_{\rm r}({\rm kPa}) =$	7147	p _⊏ (kPa.) =	7117	
		0,007	$O_{\mu}(m^3/c) =$	-	p _F (m u)	, 11,	
7150 - 6	(160-		$\frac{Q_p(\Pi / S)}{tn(S)} =$	1200	t _r (s) =	1800	
g 7100 - g		gate []/mi	ερ (0) ε οι ε [*] ()=	NA	+ (0) S ol S [*] ()−	1 1E-06	
8 9 7050 -	P section P above	jection F	5 el 5 (-)- EC (mS/m)=	1171	S el S (-)-	1,12-00	
7000 -	P below	± 0,004 ≌	$LO_w (IIIO/III) =$	17.2			
	•	- 0,003	Derivativa fact -	17,5	Dorivativa fact -	0.28	
6950	•	- 0,002	Derivative Tact	NA	Derivative fact	0,28	
6900		0,001					
		0,000	Posults		Posulte		
Elapsed	d Time [h]	.,	$O(a_1(m^2/a))$	NΔ	Results		
l og l og plot incl. derivates, fl	ow period		Q/S (III/S) =	NA			
Log-Log plot incl. derivates- in			T _M (m /s)=	transient	Flow regime:	transient	
			dt (min) =		dt (min) =	*	
			$dt_1 (min) =$		$dt_1(min) =$	*	
			$dt_2(fff) =$		$dl_2(mn) =$		
			1 (m ⁻ /s) =		I (m ⁻ /s) =	1,2E-10	
			S (-) =		S (-) =	1,1E-06	
			$K_s (m/s) =$	NA	κ_{s} (m/s) =	6,0E-12	
Not Ar	nalysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5,5E-08	
			C (m ³ /Pa) =	NA	C (m³/Pa) =	1,7E-10	
			$C_{\rm D}(-) =$	NA	$C_D(-) =$	1,7E+02	
			ξ(-) =	NA	ξ(-) =	2	
			2		3		
			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$		
			S _{GRF} (-) =		S _{GRF} (-) =		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	leters.		
			$dt_1 (min) =$	<u>,</u>	C (m³/Pa) =	1,7E-10	
Elapsed time (h)	יז 		$dt_2 (min) =$		$C_{\rm D}(-) =$	1,7E+02	
10 SKB Laxemar / KLX 02 704 - 724 m / CHIR (as PI	FlowDim Version 2.14 (c) Golder Associates	ь	$T_T (m^2/s) =$	1,2E-10	ξ(-) =	2	
10 12		10	S (-) =	1,1E-06			
1º 1. A.M.	Winnerson		$K_s(m/s) =$	6,0E-12			
10 ° · · · · · · · · · · · · · · · · · ·		10 0	S _s (1/m) =	5,5E-08			
		basar	Comments:				
⁸		10 ⁻¹ Pegrapouso	* : IARF not measu	red	tunnainut nunlinin	and 1 2E 10	
	•	. 8	m_2/s . Considering t	he inherent unce	ertainties related to f	as 1.2E-10	
10 4		10 -2	(e.g. specially the m	easurement of the	he wellbore storage	coefficient) and	
			to the analysis proce	ess (e.g. numeric	distortion when cal	culating the	
10 ⁻¹ 10 ⁻⁰ 10 ⁻¹	10 ² 10 ³	10 ⁻³	deconvolved derivation	tive and pressure	e history effects), the	e confidence	
C1			range for the transm	issivity is estim	ated to be 1E-11 to.	DE-10 M2/S.	

	Test	t Sun	nmary Sheet					
Project:	Site investiç	gations	Test type:[1]			3		
Area:	La	axemar	Test no:			36		
Borehole ID:	ŀ	KLX 02	Test start:		(030720 13:39		
Test section from - to (m):	824 - 844	4 m brp	Responsible for			R. v. d. Wall		
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu		
Linear plot Q and p			Flow period		Recovery period			
			Indata		Indata			
KLX02_824-844_0307 0_	1_CHir_Q_r P section	0,010	p ₀ (kPa) =	8122				
8450 -	P below	- 0,009	p _i (kPa) =	8069				
8400 -		0,008	p _p (kPa) =	8319	p _F (kPa) =	8066		
8350 -		0,007	$Q_{p} (m^{3}/s) =$	4,14E-08				
8 8300 -		0.006 E	tp (s) =	1800	t _F (s) =	2400		
8250 -		- 0,005 B	S el S [*] (-)=	NA	S el S [*] (-)=	7,3E-07		
8200 -	r r	0,004 L	EC _w (mS/m)=					
8150 -	Land Control	0,003	Temp _w (gr C)=	19,2				
8100		0,002	Derivative fact.=	NA	Derivative fact.=	0,02		
8050		0.001						
8000		0,001						
8000 0,00 0,50 1,00 Elapsed	1,50 2,00 2	-+ 0,000 2,50	Results		Results			
			Q/s (m²/s)=	1,62E-09				
Log-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	1,70E-09				
			Flow regime:	transient	Flow regime:	transient		
			dt ₁ (min) =	NA	$dt_1 (min) =$	*		
			dt_2 (min) =	NA	dt_2 (min) =	*		
			T (m²/s) =	NA	T (m²/s) =	3,4E-09		
			S (-) =	NA	S (-) =	7,3E-07		
			$K_s (m/s) =$	NA	K _s (m/s) =	1,7E-10		
Not An	alysed		$S_s(1/m) =$	NA	$S_{s}(1/m) =$	3,7E-08		
			C (m³/Pa) =	NA	C (m³/Pa) =	6,4E-11		
			$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	9,4E+01		
			ξ(-) =	NA	ξ(-) =	0		
			T (m-2)->		τ (σ- ² /-)	┞────┤		
			$I_{GRF}(III /S) =$		1 _{GRF} (IN /S) = S ₂₂₂ (-) =	╂────┤		
			$D_{\text{GRF}}(-) =$		$D_{GRF}(-) =$			
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paramete	- GKF () -			
			dt_1 (min) =	*	$C_{\rm (m^3/Pa)} =$	6.4E-11		
-3 -2 Elapsed time [t	nj _o .		dt_2 (min) =	*	$C_{\rm D}(-) =$	9.4E+01		
10 2 SKB Laxemar / KLX 02 824 - 844 m / CHir	FlowDim Version 2.14 (c) Golder Associates	4b	$T_{T}(m^2/s) =$	3,4E-09	$\xi(-) =$	0		
			S (-) =	7,3E-07	5.()			
10 1		10 3	$K_s (m/s) =$	1,7E-10				
	\leq		S _s (1/m) =	3,7E-08				
8		10 (7)	Comments:					
of the second se		r (b-bo) (b	* : IARF not measu	red				
······································		0-00	An infinite acting ra	idial composite flow	model was chosen f	for the analysis.		
10 -2		10 0	transition to a higher	ang derivative at late transmissivity com	times was interprete mosite shell. This be	ed as the could		
•			also indicate transiti	ion to a higher flow	dimension. It is uncl	ear whether the		
10 10	10 10 ²	10 3 10 -1	inner composite zor	ne should be regarde	d as a local skin or a	s being		
EXCC	,		representative for th	tormation propertion	.es.			

	Test Sun	nmary Sheet			
Project:	Site investigations	Test type:[1]			3
Area:	Laxemar	Test no:			46
Borehole ID:	KLX 02	Test start:			030724 13:01
Test section from - to (m):	305 - 310 m brp	Responsible for			R. v. d. Wall
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Lincer plat O and p		test evaluation:		Becovery period	
Linear plot Q and p		Flow period		Recovery period	
3300	0,005	n (kPa) =	2019	illuata	
KLX02_305-310_0307	24_1_CHir_Q_r	p ₀ (kPa) =	3018		
	P section 0,004 P above	$p_{i}(kPa) =$	3021	n _⊏ (kPa.) =	3019
3200 -	P below	$O_{\mu}(m^{3}/s) =$	5.00E-09		5017
₹ ³¹⁵⁰ ·	- 0.003 E	$d_p (m/3)^{-}$	1200	t _⊏ (s) =	7200
g 3100		S el S [*] (-)=	NA	S el S [*] (-)=	1,7E-06
ownho le	0,002 G	$EC_w (mS/m) =$			
3050		Temp _w (gr C)=	11,4		
3000 -	0.001	Derivative fact.=	NA	Derivative fact.=	0,1
2950 -					
2900	0,000	Beculto		Populto	
0,00 0,50 1,00 1,50 Elapser	2,00 2,50 3,00 3,50 d Time [h]	Results $O(a_1/m^2/a_2)$	2 45E-10	Results	
l og l og plot incl. derivates, fl	ow period	Q/s (m/s) =	2,43L-10 2.02E-10		
Log-Log plot men derivates- n		Flow regime:	transient	Flow regime:	transient
		dt₄ (min) =	NA	dt₄ (min) =	*
		dt_1 (min) =	NA	dt_{2} (min) =	*
		$T(m^2/s) =$	NA	$T(m^2/s) =$	8,1E-11
		S (-) =	NA	S (-) =	1,7E-06
		$K_s (m/s) =$	NA	$K_s (m/s) =$	1,6E-11
Not Ar	nalvsed	S _s (1/m) =	NA	S _s (1/m) =	3,4E-07
1.00711	141 / 504	C (m³/Pa) =	NA	C (m³/Pa) =	1,7E-11
		C _D (-) =	NA	C _D (-) =	1,1E+01
		ξ(-) =	0	ξ(-) =	0
		$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =	
		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paramete	rs.	· / · ·
		at ₁ (min) =	^ +	C (m³/Pa) =	1,7E-11
Elapsed time	[h]	$a_{12} (min) =$		$C_D(-) =$	1,1E+01
10 SKB Laxemar / KLX 02 305 - 310 m / CHir	FlowDim Version 2.14b (c) Golder Associates	I _T (m ⁻ /s) =	0,1E-11 1 7E 00	ς(-) =	0
		S(-) = K(m/c) =	1,7E-00		
10 0		$R_{s}(11/s) =$	3.4E-07		
		Comments:	0,42 07		
24 10 ⁻¹		* : IARF not measu	red		
1 22 Laster and and	10 ' \$	IThe near borehole	transmissivity derive	ed from the transient	analysis of the
10 ° ,		CHIR phase is lower barehole $(r_1 = 0.14)$	er or equal to $4.8E-1$	m2/s. Further away	y from the
	10 °	increase slightly (de	11, assuming $S = 1.7$	e derivative); a value	e of 8.1E-11
		m2/s was derived for	or the outer zone. Re	garding the fact that	the
10 ⁻¹ 10 ⁻¹	10 ¹ 10 ²	transmissivity is ver	ry low and the inject	ion rate was below t	he measurement
		of magnitude lower	than derived from the	ne analysis. In the sa	ime time, due to
		the fact that the der	ivative does not reac	h infinite acting regi	ime at late
		times, the outer zon	e transmissivity coul	d be higher than cal	culated
		(estimated up to on-	e order of magnitude).	

	Test	: Sum	nmary Sheet			
Project:	Site investig	ations	Test type:[1]			3
Area:	La	xemar	Test no:			49
Borehole ID:	К	(LX 02	Test start:			030725 10:12
Test section from - to (m):	320 - 325	m brp	Responsible for			R. v. d. Wall
Section diameter 2·r (m):		0.076	test execution:			C. Enachescu
		0,070	test evaluation:			C. LINCHESCU
Linear plot Q and p			Flow period		Recovery period	l
3800		0,50	Indata		Indata	
KLX02_320-325_030725_	1_CHir_Q_r	- 0,45	p ₀ (kPa) =	3161		
3700 -	l l	0.40	p _i (kPa) =	3359		
3600 -	P section	0,40	p _p (kPa) =	3491	p _F (kPa) =	3732
-	P above P below	- 0,35	Q _p (m³/s)=	NA		
85 3500 - ₽	- J:	- 0,30 [uim/] o	tp (s) =	300	t _F (s) =	480
tole Pres		- 0,25 up	S el S [*] (-)=	NA	S el S [*] (-)=	NA
1 3400 -		-0,20 L	EC _w (mS/m)=			
3300 -		- 0,15	Temp _w (gr C)=	11,5		
		- 0,10	Derivative fact.=	NA	Derivative fact.=	NA
		- 0,05				
3100 .00 0,50 1,00	1,50 2,00 2,50 3	0,00 3,00	Results		Results	
			Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- f	low period		T _M (m²/s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
			T (m²/s) =	NA	T (m²/s) =	NA
			S (-) =	NA	S (-) =	NA
			K _s (m/s) =	NA	K _s (m/s) =	NA
Not A	nalysed		S _s (1/m) =	NA	S _s (1/m) =	NA
	,		C (m³/Pa) =	NA	C (m³/Pa) =	NA
			C _D (-) =	NA	C _D (-) =	NA
			ξ(-) =	NA	ξ(-) =	NA
			$T_{opr}(m^2/s) =$		$T_{ops}(m^2/s) =$	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives	- recovery period		Selected represe	entative paramete	rs.	
			dt_1 (min) =	NA	C (m ³ /Pa) =	NA
			dt ₂ (min) =	NA	$C_{\rm D}(-) =$	NA
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	0
			S (-) =	NA		
			$K_s (m/s) =$	NA		
Not A	nalvsed		S _s (1/m) =	NA		
			Comments:			1
			The injection rate di ($q < 0.5$ ml/min) alr transmissivity of the (possibly extended) CHIR phase. None of the test pha the interval transmis very low injection r	ropped below the me nost instantaneously e interval. In addition packer compliance) t ases is analysable, bu ssivity must be lower ates (below measure	asurement range of , indicating the very n, due to hardware p the pressure kept ris t the low injection r r than 1E-10 m2/s. I ment range of flown	the flowmeter low problems ing during the rates show that Based on the meter), the
			the interval transmis very low injection r interval transmissiv	ssivity must be lower ates (below measure ity is lower than 1E-	r than 1E-10 m2/s. I ment range of flown 10 m2/s.	Based on the meter), the

	Test	t Sum	mary Sheet				
Project:	Site investig	gations	Test type:[1]			3	
Area:	La	axemar	Test no:			50	
Borehole ID:	ł	<lx 02<="" td=""><td>Test start:</td><td></td><td colspan="3">030725 13:18</td></lx>	Test start:		030725 13:18		
Test section from - to (m):	325 - 330 m brp		Responsible for		R. v. d. Wall		
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu	
Lincer plot Q and p			test evaluation:		Descuences		
Linear plot Q and p			Flow period		Recovery period		
3500		0,010		2011	indata		
3450 -	KLX02_325-330_030725_1_CHir_Q_r	- 0,009	$p_0 (kPa) =$	3211			
سألقا ا	P section A P above	- 0,008	$p_i(KPa) =$	3214	n (kDa) -	2210	
3400 -	P below	- 0,007	$p_p(\mathbf{KPA}) =$	1 225 09	р _F (кРа) =	3210	
⊊ 3350 -		0.008	$Q_p (m^{\circ}/s) =$	1,33E-08	t (a) -	1000	
		te [vmin]	tp(s) =	1800	t _F (S) =	1800	
e 3300		ction Ra	S el S (-)=	NA	S el S (-)=	6,3E-07	
3250		- 0,004 Ĕ	EC _w (mS/m)=				
		- 0,003	Temp _w (gr C)=	11,7			
3200	Š	0,002	Derivative fact.=	NA	Derivative fact.=	0,06	
3150		- 0,001					
3100		0.000					
0,00 0,20 0,40 0,60 0,80 1, Elapsed	,00 1,20 1,40 1,60 1,80 2 d Time [h]	2,00	Results		Results		
			Q/s (m²/s)=	6,51E-10			
Log-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	5,37E-10			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	*	
			dt ₂ (min) =	NA	dt ₂ (min) =	*	
			T (m²/s) =	NA	T (m²/s) =	1,3E-08	
			S (-) =	NA	S (-) =	6,3E-07	
			K _s (m/s) =	NA	$K_s (m/s) =$	2,6E-09	
Not Ar	nalvsed		S _s (1/m) =	NA	S _s (1/m) =	1,3E-07	
			C (m³/Pa) =	NA	C (m ³ /Pa) =	1,2E-11	
			C _D (-) =	NA	C _D (-) =	2,1E+01	
			ξ(-) =	NA	ξ(-) =	0	
			5.()		5 ()		
			$T_{opr}(m^2/s) =$		$T_{ops}(m^2/s) =$		
			$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GPE}(-) =$		$D_{GRE}(-) =$		
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paramete	rs.		
5 51			dt₁ (min) =	*	$C_{\rm c}$ (m ³ /Pa) =	1.2E-11	
Elapsed time (h] 10 ⁻¹ 40 ⁰ ·	10 ¹	dt_2 (min) =	*	$C_{\rm D}(-) =$	2,1E+01	
10 1 SKB Lavernar / KLX 02	FlowDim Version 2.14b		$T_{-}(m^{2}/s) =$	1 3F-08	ξ ₍₋₎ =	,	
	(c) conter Pasicianes		S (-) =	6 3F-07	· ()		
10.0	~	10 2	K (m/s) =	2 6F-09			
the second second	N		$S_{s}(1/m) =$	1.3E-07			
	And the second sec	- 	Comments:	1,02 01			
24 10 1	ta a construction of the second second second second second second second second second second second second se	5 P-POT [RP4	* · IARF not measu	red			
	s.fr.	p-10.(An infinite acting ra	adial 2 shell composi	te flow model was i	dentified and	
10 -2		10 0	chosen for the analy	sis. The downward	sloping derivative at	a late times was	
			interpreted as the tra	ansition to a higher t	ransmissivity compo	osite shell. This	
		10 -1	behaviour could als	o indicate transition radius $(r_1 = 0.36 m)$	to a higher floe dime	ension. Due to $S = 6.3E_{-}7$	
10 ⁻¹ 10 ⁻⁰ soici	10 ¹ 10 ²	10 5	the outer zone trans	missivity is seen to h	be more representativ	ve for the	
			formation properties	s.			

	Test	Sum	mary Sheet				
Project:	Site investiga	ations	Test type:[1]			3	
Area:	Lax	kemar	Test no:			51	
Borehole ID:	KI	LX 02	Test start:		030725 15:37		
Test section from - to (m):	330 - 335 ı	m brp	Responsible for test execution:		R. v. d. Wall		
Section diameter, 2·r _w (m):	l	0,076	Responsible for			C. Enachescu	
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
3500 KLX02	2_330-335_030725_1_CHir_Q_r	0,010	p ₀ (kPa) =	3262			
	~	0,009	p _i (kPa) =	3264			
	P section Pabove	0,008	p _p (kPa) =	3464	p _F (kPa) =	3265	
3400 -		0,007	Q _n (m ³ /s)=	5,00E-09			
	+ (0,006 [tp (s) =	1800	t _F (s) =	2700	
3350 1		n Rate [V	S el S [*] (-)=	NA	S el S [*] (-)=	4,4E-06	
low nhole		Injectio	EC _w (mS/m)=				
3300 -		0.003	Temp _w (gr C)=	11,8			
			Derivative fact.=	NA	Derivative fact.=	0,02	
3250 -	•	0,002					
		0,001					
3200 0.25 0.50 0.75 1.00	1,25 1,50 1,75 2,00 2,25	0,000 5	Results		Results		
Elapsed	Time [h]		Q/s (m²/s)=	2,45E-10			
Log-Log plot incl. derivates- flo	ow period		T _M (m ² /s)=	2,02E-10			
	-		Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	*	
			dt_2 (min) =	NA	dt_2 (min) =	*	
			T (m²/s) =	NA	T (m²/s) =	4,3E-09	
			S (-) =	NA	S (-) =	4,4E-06	
			$K_s (m/s) =$	NA	$K_s(m/s) =$	8,6E-10	
Not An	alvsed		S _s (1/m) =	NA	$S_{s}(1/m) =$	8,7E-07	
100711	lui y bou		C (m ³ /Pa) =	NA	$C (m^{3}/Pa) =$	1,2E-11	
			$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	3,0E+00	
			ξ(-) =	NA	ξ(-) =	0	
			T _{GRF} (m²/s) =		T _{GRF} (m²/s) =		
			S _{GRF} (-) =		S _{GRF} (-) =		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- r	recovery period		Selected represe	entative paramete	rs.		
			dt_1 (min) =	*	C (m ³ /Pa) =	1,2E-11	
. 10 ⁻⁴ Elapsed time (n . 10 ⁻³ 10 ⁻²	[n] 		dt_2 (min) =	*	C _D (-) =	3,0E+00	
10 1 SKB Laxemar / KLX 02 330 - 335 m / CHir	FlowDim Version 2.14b (c) Golder Associates	<u>,</u>	$T_T (m^2/s) =$	4,3E-09	ξ(-) =	0	
		10	S (-) =	4,4E-06			
10 "	6	10 2	K _s (m/s) =	8,6E-10			
			S _s (1/m) =	8,7E-07			
10 ⁻¹	A A A	10 1 -	Comments:				
a a	a tr	to poly lives	* : IARF not measu	red			
10		10 00	An infinite acting ra	adial 2 shell composi	te flow model was i	dentified and	
			cnosen for the analy	sis. The downward ansition to a higher t	sloping derivative at	t late times was	
10		10 -1	behaviour could als	o indicate transition	to a higher flow dim	nension. Due to	
			the small composite	radius ($r1 = 0.08$ m	calculated assuming	g S = 4.4E-6)	
10 ⁻² 10 ⁻¹	10 ⁰ 10 ¹ 1	10 2	the outer zone trans	missivity is seen to b	be more representativ	ve for the	
			formation properties	S			

	Test Sun	nmary Sheet				
Project:	Site investigations	Test type:[1]		PI	(see table 6.1)	
Area:	Laxemar	Test no:			53	
Borehole ID:	KLX 02	Test start:			030726 08:19	
Test section from - to (m):	341 - 346 m brp	Responsible for test execution:			R. v. d. Wall	
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for			C. Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
3800	0,010	$n_{k}(kPa) =$	3367		1	
3750 -	P above + 0,009	$p_0 (kr a) =$	2400			
3700 -	- 0,008	р _і (кра) =	3490	(15)		
3850	0.007	р _р (кРа) =	3688	р _F (кРа) =	3666	
		Q _p (m³/s)=	-			
8 3600 - 9	• • • • • • • • • • • • •	tp (s) =	1200	t _F (s) =	1800	
8 3550 - 9	• - 0.005 5	S el S [*] (-)=	NA	S el S [*] (-)=	1,0E-06	
8 3500 -	● _ <u>8</u> - 0.004 ਵ	EC _w (mS/m)=				
3450	• 0,003	Temp _w (gr C)=	11,9			
	•	Derivative fact.=	NA	Derivative fact.=	0,26	
3400	• 0.002					
3350	0.001					
3300	1,50 2,00 2,50	Results		Results	1	
Elapse	d Time [h]	$O(a_1(m^2/a))$	NΔ	iteouno		
Log Log plot incl. derivates fl	ow pariod	$Q/S (\Pi /S) =$				
Log-Log plot mer derivates- no	bw period	T _M (m ⁻ /s)=	NA transient		tunneinnt	
		Flow regime:	transient	Flow regime:	transient	
		$dt_1(min) =$	NA	$dt_1(min) =$	*	
		$dt_2 (min) =$	NA	$dt_2 (min) =$	*	
		$T(m^{2}/s) =$	NA	T (m²/s) =	6,1E-11	
		S (-) =	NA	S (-) =	1,0E-06	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	1,2E-11	
Not Ar	nalvsed	S _s (1/m) =	NA	S _s (1/m) =	2,0E-07	
	iui y sou	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,1E-10	
		$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	1.2E+02	
		ξ ₍₋₎ =	NA	ξ(-) =	, -	
		5()		5()		
		T (1-2(-)		T (2/-)		
		$I_{GRF}(m/s) =$		$I_{GRF}(m/s) =$		
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
	<u> </u>	$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paramete	rs.		
Elapsed time (nj 191	$dt_1 (min) =$	^	C (m³/Pa) =	1,1E-10	
10 SKB Laxemar / KLX 02 341 - 346 m / CHIr as PI	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	*	C _D (-) =	1,2E+02	
	10 1	$T_{T} (m^{2}/s) =$	6,1E-11	ξ(-) =	0	
		S (-) =	1,0E-06			
10° , 114.44	•	K_{s} (m/s) =	1,2E-11			
a serie and a series	10 0 3	S _s (1/m) =	2,0E-07			
		Comments:				
10 1	0.3	* : IARF not measu	red			
	Í	The flow model ide	ntification is uncerta	in and mainly based	l on the shape of	
	10 -1	the semi-log derivation	tive of the deconvolv	ed CHIR phase. Du	e to the very	
		small composite rac	ius, it is believed the	at the outer composi	te zone 1s	
10-1 10 ⁰ 10	10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻³	representative for th	ie iormation properti			

	Tes	t Sun	nmary Sheet					
Project:	Site investi	gations	Test type:[1]			3		
Area:	La	axemar	Test no:			54		
Borehole ID:	I	KLX 02	Test start:		(030726 11:20		
Test section from - to (m):	385 - 390 m brp		Responsible for			R. v. d. Wall		
Section diameter 2.r. (m):		0.076	test execution:			C Enachescu		
		0,070	test evaluation:					
Linear plot Q and p			Flow period		Recovery period			
4000		0,010	Indata		Indata			
KLX02_385-390_030726_1_	_CHir_Q_r	- 0,009	p ₀ (kPa) =	3802				
3950 -	 P section A P above 	0.008	p _i (kPa) =	3783				
	P below	0,008	p _p (kPa) =	3984	p _F (kPa) =	3780		
3900		+ 0,007	Q _p (m ³ /s)=	5,00E-08				
and a second sec		- 0,006 FE	tp (s) =	1200	t _F (s) =	5160		
88 9 3850 - 9		- 0,005 gate	S el S [*] (-)=	NA	S el S [*] (-)=	1,7E-06		
Downth		- 0,004 드	EC _w (mS/m)=					
3800		- 0,003	Temp _w (gr C)=	12,3				
		- 0,002	Derivative fact.=	NA	Derivative fact.=	0,13		
3750 -	•	- 0,001						
	•							
3700 0,00 1,50 1,50 1,50 Elapsed Time (h)	2,00	2,50	Results		Results			
			Q/s (m²/s)=	2,44E-09				
Log-Log plot incl. derivates- flow period			T _M (m²/s)=	2,01E-09				
			Flow regime:	transient	Flow regime:	transient		
			dt ₁ (min) =	NA	dt ₁ (min) =	13,12		
			dt ₂ (min) =	NA	dt ₂ (min) =	61,17		
			T (m²/s) =	NA	T (m²/s) =	1,3E-08		
			S (-) =	NA	S (-) =	1,7E-06		
			K _s (m/s) =	NA	K _s (m/s) =	2,6E-09		
Not Analysed			S _s (1/m) =	NA	S _s (1/m) =	3,4E-07		
			C (m³/Pa) =	NA	C (m³/Pa) =	1,5E-11		
			C _D (-) =	NA	C _D (-) =	9,7E+00		
			ξ(-) =	NA	ξ(-) =	0		
			T _{GRF} (m²/s) =		T _{GRF} (m²/s) =			
			S _{GRF} (-) =		S _{GRF} (-) =			
			D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives- recovery pe	eriod		Selected represe	entative paramete	rs.			
			dt_1 (min) =	13,12	C (m³/Pa) =	1,5E-11		
,,			$dt_2 (min) =$	61,17	C _D (-) =	9,7E+00		
10 SKB Lawemar / KLX 02 385 - 390 m / CHr	FlowDim Version 2.14 (c) Golder Associates	4b 10 ³ s	$T_{T}(m^{2}/s) =$	1,3E-08	ξ(-) =	0		
			S (-) =	1,7E-06				
10 °		10 2	K _s (m/s) =	2,6E-09				
			S _s (1/m) =	3,4E-07				
<u>B</u> 10 ⁻¹	:		Comments:					
	: i	10 100-01 0	An infinite acting ra	adial composite flow	model was identifie	d chosen for the		
			analysis. The down	ward sloping derivat	ive at late times was	interpreted as		
10 -2		10 0	could also indicate t	transition to a higher	composite shell. This flow dimension Di	s benaviour ie to the small		
			composite radius (r	1 = 0.15 m calculate	d assuming $S = 1.7E$	-6) the outer		
10 ⁻¹ , 10 ⁰ 10 ¹	10 2	10 3	zone transmissivity	is seen to be more re	presentative for the	formation		
ID/CD			properties.					

		Tes	t Sum	mary Sheet			
Project:		Site investi	gations	Test type:[1]			3
Area:		La	axemar	Test no:			55
Borehole ID:			KLX 02	Test start:			030726 14:12
Test section from - to (m):		390 - 395	5 m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, $2 \cdot r_w$ (m):			0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p				Flow period		Recovery period	l l
		_		Indata		Indata	
4200 KLX02_3	390-395_030726_1_CHir_Q_r		0,010	p ₀ (kPa) =	3851		
4150 -		P section P above R helew	- 0,009	p _i (kPa) =	3975		
4100 -			- 0,008	p _n (kPa) =	4183	p _F (kPa) =	4183
		•	- 0,007	Ω_{-} (m ³ /s)=	-		
ह 4050 - ट्रे		•	- ^{0,006} ਵ	$\frac{dp}{dp}(11,10) =$	1200	t _⊏ (s) =	300
2 Se 4000 -		•	4 0.005	$S = (2)^{*} (2)^{-}$	NA	S ol S [*] ()=	NA
nhote P		•	Jection	FC (mS/m)=		5 ei 5 (-)-	
ā 3950		•	+ 0,004 ≥	$EO_{W} (IIIO/III)^{-}$	11.0		
3900 -		•	- 0,003	Derivativa fact =	11,0 NIA	Dorivativo fact -	NT A
		•	- 0,002	Derivative lact.=	NA	Derivative fact.=	NA
3850			- 0,001			ļ	
3800			0,000				
0,00 0,20 0,40 0,60 0,8	80 1,00 1,20 1,40 Elapsed Time [h]	1,60 1,80	2,00	Results	•	Results	
				Q/s (m²/s)=	NA		
Log-Log plot incl. derivate	s- flow period			T _M (m²/s)=	NA		
				Flow regime:	transient	Flow regime:	transient
				dt ₁ (min) =	NA	dt ₁ (min) =	NA
				dt ₂ (min) =	NA	dt ₂ (min) =	NA
				T (m²/s) =	< 1E-10	T (m²/s) =	NA
				S (-) =	NA	S (-) =	NA
				K _s (m/s) =	NA	K _s (m/s) =	NA
Not	t Analysed			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
				$C (m^{3}/Pa) =$	NA	$C (m^3/Pa) =$	NA
				$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
				۶ (-) =	NA	ج (-) =	NA
				()			
				$T_{(m^{2}/c)} =$		$T_{(m^{2}/c)} =$	
				$S_{ORF}(1173) =$		$S_{\text{GRF}}(-) =$	
				$D_{GRF}(-) =$		$D_{\text{GRF}}(\mathbf{r}) =$	
Log Log plot incl. dorivativ	vos rocovoru po	riod		Soloctod roproco	ntativo paramoto	C _{GRF} ()	
Log-Log plot incl. derivativ	ves-recovery pe	illu		dt. (min) =		C (m ³ /D=)	NA
				$dt_1 (min) =$		C (m ² /Pa) =	
				$dl_2(mm) =$		$C_{\rm D}(-) =$	
				$T_T (m^2/s) =$	< 1E-10	ξ(-) =	0
				S (-) =	NA		
Not Analysed				K _s (m/s) =	NA		
			S _s (1/m) =	NA	L		
				Comments:			
			The injection rate di ($q < 0.5$ ml/min) alr transmissivity of the problems) the press (CHIR phase). None of the test pha the interval transmis	ropped below the mo nost instantaneously e interval. In addition ure did not show any ases is analysable, bu ssivity must be lowe	asurement range of , indicating the very n (possibly due to ha / reaction after closi it the low injection r r than 1E-10 m2/s.	the flowmeter low ardware ng the test valve rates show that	
				the interval transmis	ssivity must be lowe	r than 1E-10 m2/s.	

	Test Su	nmary Sheet			
Project:	Site investigation	s <u>Test type:[1]</u>			3
Area:	Laxema	r Test no:			56
Borehole ID:	KLX 0	2 Test start:			030726 16:35
Test section from - to (m):	395 - 400 m br	p Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):	0,07	6 Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery perio	d
		Indata		Indata	
	0,010	p₀ (kPa) =	3897	7	
KLX02_395-400_030726_1_CHi	"_ "	p; (kPa) =		1	
4300	 P section P above 0,008 	$p_{r}(kPa) =$		p _⊏ (kPa) =	
	Q 0,007	$\rho_{\rm p}(m^3/s) =$	_	PF (*** 2*)	
	+ 0,006 ਵ	$\frac{d_p(m/s)}{tn(s)} =$		t_ (s) =	
	1 0 005 S	€ d € [*] ()=	ΝΔ	(\mathbf{e})	NA
a ontro	pertion	$S \in S(-)=$		S el S (-)=	
4000	0,004 5	LC_w (III3/III)=	10.7	7	
		Derivative fact -	12,7	Dorivativa faat -	
3900	• 0.002	Derivative fact.=	NA	Derivative fact.=	NA
	0.001			<u> </u>	
3800	0,000				
0,0 2,0 4,0 6,0 8,0 Elapsed Tir	10,0 12,0 14,0 16,0 ime [h]	Results		Results	
		Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flow	w period	T _M (m²/s)=	NA		
		Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	NA	$dt_1 (min) =$	NA
		$dt_2 (min) =$	NA	$dt_2 (min) =$	NA
		$T(m^{2}/s) =$	< 1E-11	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	K_{s} (m/s) =	NA
Not Ana	alysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	ecovery period	Selected represe	entative paramete	rs.	
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA
		dt_2 (min) =	NA	$C_{\rm D}(-) =$	NA
		$T_{T}(m^2/s) =$	< 1E-11	ξ(-) =	0
		S (-) =	NA		1
	$K_s(m/s) =$	NA	<u> </u>	+	
Not Ana	S _s (1/m) =	NA	 	+	
	413.00 0	Comments:		<u> </u>	
		After inflating the p rising for 2 hours to This phenomenon i	backers and closing t start decreasing after s caused by prolongu	he test valve, the pr erwards for 14 hour ued packer expansi	ressure kept rs (overnight). on in a very tight
	section (T probably analysable.	smaller than 1E-11	m2/s). None of th	e test phases is	

Test Summary Sheet						
Project:	Site investigations	Test type:[1]			3	
Area:	Laxemar	Test no:		57		
Borehole ID:	KLX 02	Test start:		030727 08:38		
Test section from - to (m):	400 - 405 m brp	Responsible for test execution:		R. v. d. Wall		
Section diameter, 2·r _w (m):	0,076	Responsible for		C. Enachescu		
Linear plot Q and p		Flow period		Recovery period	3	
		Indata		Indata		
4100	0,010	p₀ (kPa) =	3937	7		
4080 • KLX02_400-405_030727_1_CHir_Q_r	▲ Pabove - 0,009 ■ P below	p₀ (kPa) =				
4060 -	- 0,008	p (kPa) =		n _r (kPa) =		
4040 -	0.007	$\rho_{p}(\mathbf{k}, \mathbf{a}) =$				
Z 4020	- 0.006	$Q_p (m/s) =$	-	t (a) =		
V		(p(s)) =	NT A	$r_{\rm F}$ (S) =	NT A	
2 4000 - 90 4	- 0.005 az 5 5	Sel S (-)=	NA	S el S (-)=	INA	
3980 -	- 0,004 Ē	EC _w (mS/m)=				
3960 -	0.003	Temp _w (gr C)=	12,8			
3940	0,002	Derivative fact.=	NA	Derivative fact.=	NA	
3920 -	- 0.001					
0,00 0,10 0,20 0,30 0,40 Elapsed Ti	0 0,50 0,60 0,70 0,80	Results	Results			
		Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	w period	T _M (m²/s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt ₁ (min) =	NA	dt ₁ (min) =	NA	
		dt ₂ (min) =	NA	dt ₂ (min) =	NA	
		T (m²/s) =	< 1E-11	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not An	alvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
1.0011	ary sea	$C_{\rm m}(m^3/Pa) =$	NA	$C_{\rm m}^{\rm 3/Pa}$ =	NA	
		$C_{D}(-) =$	NA	$C_{p}(-) =$	NA	
		۶ (-) =	NA	ε (-) =	NA	
		5 ()		ς ()		
		$T_{(m^{2}/c)} =$		$T_{m}(m^{2}/c) =$		
		$\Gamma_{GRF}(III / S) =$		$S_{GRF}(1173) =$		
		$D_{GRF}(-) =$		$O_{GRF}(-) =$		
Log Log plot incl. derivatives r	Selected represe	ntativo paramoto				
Log-Log plot incl. derivatives-recovery period		dt. (min) =		$G(m^{3}(Da)) =$	ΝΑ	
		dt_{r} (min) =	NA	$C_{(11)}(Pa) = C_{-}(-) = 0$	NA	
Not Analysed		$\operatorname{dl}_2(\operatorname{IIIII}) =$		$C_{\rm D}(-) =$		
		ı _⊤ (m ⁻ /s) =	> 1L-11	ς(-) =	0	
		S(-) = K(m(0)) = K(-)				
		$r_s(m/s) =$		 	4	
		$S_s(1/11) =$	NA			
		Comments:		_		
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 27 kPa per 15 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.				

Test Summary Sheet								
Project:	Site investig	gations	Test type:[1]	3				
Area:	Laxemar		Test no:		58			
Borehole ID:	KLX 02		Test start:		030727 09:55			
Test section from - to (m):	420 - 425	5 m brp	Responsible for test execution:		R. v. d. Wall			
Section diameter, $2 \cdot r_w$ (m):		0,076	Responsible for			C. Enachescu		
Linear plot Q and p			Flow period		Recovery period	6		
			Indata		Indata			
4250		0,010	n. (kPa) =	4140	indata	1		
4230 - KLX02_420-425_	030727_1_CHir_Q_r	- 0,009	p ₀ (kPa) =	-1-0				
4210 -		- 0,008	p _i (kPa) =		n (kPa) -			
4190 -	P section P above	- 0,007	$p_p(\mathbf{k} \mathbf{r} \mathbf{a}) =$		ρ _F (κρα) –			
R 4170	P below	0.006	$Q_p (m^{\circ}/s) =$	-	t (a) -	_		
since (k)		te []/min]	tp (s) =	N T 4	t _F (S) =	N X 4		
\$ 4150 9 9	•	- 0,005 2 tjo	S el S (-)=	NA	S el S (-)=	NA		
¥ 4130 -		- _{0,004} 출	EC _w (mS/m)=					
4110 -		0,003	Temp _w (gr C)=	13,0				
4090 -	•	0,002	Derivative fact.=	NA	Derivative fact.=	NA		
4070 -		0.001						
	•	0,001						
4050 0,00 0,20 0,40 C	0,60 0,80 1,00	1,20	Results		Results			
chapser	a mue (n)		Q/s (m ² /s)=	NA				
Log-Log plot incl. derivates- flo	ow period		T_{M} (m ² /s)=	NA				
	-		Flow regime:	transient	Flow regime:	transient		
			dt_1 (min) =	NA	dt_1 (min) =	NA		
			dt_2 (min) =	NA	dt_2 (min) =	NA		
			$T(m^2/s) =$	< 1E-11	$T(m^2/s) =$	NA		
			S (-) =	NA	S(-) =	NA		
			$K_{-}(m/s) =$	NA	$K_{-}(m/s) =$	NA		
Not Ar	alwood		$S_{\rm s}(1/m) =$	NΔ	$S_{(1/m)} =$	NΔ		
Not Al	laryseu		$O_{s}(1/11) = 0$	NA	$O_{s}(1/11) = O_{s}(1/11)$	NA		
			C (m ² /Pa) =		C (m [*] /Pa) =			
			$C_{\rm D}(-) =$		$C_{\rm D}(-) =$			
			ζ(-) =	NA	ξ(-) =	NA		
			$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =			
			$S_{GRF}(-) =$		S _{GRF} (-) =			
			D _{GRF} (-) =	_	D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paramete	rs.			
			dt_1 (min) =	NA	C (m³/Pa) =	NA		
			dt ₂ (min) =	NA	C _D (-) =	NA		
			T _⊤ (m²/s) =	< 1E-11	ξ(-) =	0		
		S (-) =	NA					
		$K_{s}(m/s) =$	NA					
Not Analysed			S _s (1/m) =	NA				
			Comments:					
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 17 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.						

Test Summary Sheet						
Project:	Site investigations	Test type:[1]			3	
Area:	Laxemar	Test no:		59		
Borehole ID:	KLX 02	Test start:		030727 11:23		
Test section from - to (m):	425 - 430 m brp	Responsible for test execution:		R. v. d. Wall		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p		Flow period		Recovery period	1	
4975		Indata		Indata		
4350	P section	p ₀ (kPa) =	4188			
4325 - KLX02_425-430_030727_1_CHir_Q_r	▲ P above - 0,009 ■ P below	p _i (kPa) =				
4300 -	- 0,008	$p_{p}(kPa) =$		p _⊏ (kPa) =		
4275 -	- 0,007	$\rho_{\rm p(, 2)}$	_	PF (&)		
	0,006 -	$Q_p (\Pi / S) =$		t (s) =		
	ab [1/min	(p(3)) =	NT A	t _F (3) –	NI A	
94 4225 - 960 47	0,005 22	Sel S (-)=	INA	Sel S (-)=	INA	
₹ 4200 -	• - 0,004 Ĕ	EC _w (mS/m)=				
4175 -	• • • 0,003	Temp _w (gr C)=	13,1			
4150	0,002	Derivative fact.=	NA	Derivative fact.=	NA	
4125 -	- 0.001					
	•					
4100	40 0,50 0,60 0,70 0,80	Results		Results		
Elapsed	Time [h]	Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	NA			
<u> </u>	•	Flow regime:	transient	Flow regime:	transient	
		dt ₄ (min) =	NA	dt (min) =	NA	
		$dt_1(\min) =$	NA	$dt_1(\min) =$	NA	
		T_{1}	< 1F_11	$T_{1}(m^{2}(a)) =$	NA	
		1 (m/s) =		1 (m/s) =		
		3 (-) –		S (-) –	NA NA	
		K_{s} (m/s) =	NA	K _s (m/s) =	NA	
Not An	alysed	$S_{s}(1/m) =$	NA	$S_s(1/m) =$	NA	
		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		$C_D(-) =$	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =		
		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- r	recovery period	Selected represe	ntative paramete	rs.		
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA	
1		dt_2 (min) =	NA	$C_{D}(-) =$	NA	
Not Analysed		$T_{m^{2}/s} =$	< 1F-11	۶ (-) =	NA	
		S (-) =	NA	<i>ت</i> ر /		
		<pre>< () =</pre>	NΔ		∤ → →	
		S(1/m) =	NA			
		$O_{s}(1/11) =$	11/1		1	
		Comments:				
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 45 kPa per 15 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.				

e investigations Laxemar	Test type:[1]			3		
Laxemar	Test no:					
Laxemar			60			
KLX 02	Test start:		030727 13:20			
429 - 434 m brp			R. v. d. Wall			
0,076	Responsible for			C. Enachescu		
	test evaluation:		Recovery period	4		
	Indata		Indata			
0,010	$p_0 (kPa) =$	4229		1		
ove = 0,009	p _i (kPa) =					
- 0,008	$p_{p}(kPa) =$		p _F (kPa) =			
0.007	Q_{r} (m ³ /s)=	-	, ,			
- 0.006 🗐	tp(s) =		t _⊏ (s) =			
- 0,005 ¥	S el S [*] (-)=	NA	S el S [*] (-)=	NA		
in poction	EC,, (mS/m)=					
•	Temp(ar C)=	13.2				
- 0,003	Derivative fact.=	NA	Derivative fact.=	NA		
- 0,002						
- 0,001						
0,000	Results		Results			
	$Q/s (m^2/s) =$	NA		1		
	$T_{\rm rel} (m^2/s) =$	NA				
	Flow regime:	transient	Flow regime:	transient		
	dt₁ (min) =	NA	dt₁ (min) =	NA		
	dt_2 (min) =	NA	dt_2 (min) =	NA		
		< 1E-11	$T(m^2/s) =$	NA		
		NA	S (-) =	NA		
	$K_s (m/s) =$	NA	$K_s(m/s) =$	NA		
	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA		
	$C (m^{3}/Pa) =$	NA	$C (m^{3}/Pa) =$	NA		
	$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	NA		
	ξ(-) =	NA	ξ(-) =	NA		
	5.()		5			
	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
	$S_{GRF}(-) =$		S _{GRF} (-) =			
	D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives- recovery period			rs.	-		
			C (m ³ /Pa) =	NA		
			$C_{D}(-) =$	NA		
			ξ(-) =	NA		
		NA				
		NA				
Not Analysed						
		Comments:				
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 25 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.				
	KLX 02 29 - 434 m brp 0,076	KLX 02Test start:29 - 434 m brp 0,076Responsible for test execution:0,076Responsible for test evaluation:Flow periodIndata p_0 (kPa) = p_i (kPa) = p_p (kPa) = p_0 (m³/s)= <td< td=""><td>KLX 02Test start:29 - 434 m brpResponsible for test execution:0,076Responsible for test evaluation:Flow periodIndata$p_0(kPa) =$4229$p_1(kPa) =$4229$p_1(kPa) =$$q_{229}$$p_1(kPa) =$$q_{229}$$q_1(kPa) =$$q_{29}$$q_1(kPa) =$$q_{29}$$q_1(kPa) =$$q_{29}$$q_1(kPa) =$$q_2(kPa)$$q_1(kPa) =$<td>KLX 02Test start:29 - 434 m brpResponsible for test execution:0.0776Responsible for test evaluation:Indatap0 (KPa) =4229p1 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p5 (KPa) =NAp4 (KPa) =p4 (KPa) =p5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =<</td></td></td<>	KLX 02Test start:29 - 434 m brpResponsible for test execution:0,076Responsible for test evaluation:Flow periodIndata $p_0(kPa) =$ 4229 $p_1(kPa) =$ 4229 $p_1(kPa) =$ q_{229} $q_1(kPa) =$ q_{29} $q_1(kPa) =$ q_{29} $q_1(kPa) =$ q_{29} $q_1(kPa) =$ $q_2(kPa)$ $q_1(kPa) =$ <td>KLX 02Test start:29 - 434 m brpResponsible for test execution:0.0776Responsible for test evaluation:Indatap0 (KPa) =4229p1 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p5 (KPa) =NAp4 (KPa) =p4 (KPa) =p5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =<</td>	KLX 02Test start:29 - 434 m brpResponsible for test execution:0.0776Responsible for test evaluation:Indatap0 (KPa) =4229p1 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p2 (KPa) =p3 (KPa) =p3 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p4 (KPa) =p5 (KPa) =NAp4 (KPa) =p4 (KPa) =p5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp5 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (KPa) =NAp6 (KPa) =NAp6 (KPa) =NAp7 (M2/s) =NAp6 (KPa) =<		

Test Summary Sheet							
Project:	Site investigations	Test type:[1]	3				
Area:	Laxema	r Test no:		62			
Borehole ID:	KLX 02	? Test start:		030727 16:58			
Test section from - to (m):	440 - 445 m brp	Responsible for test execution:		R. v. d. Wall			
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu		
Linear plot Q and p		Flow period		Recovery period	4		
		Indata		Indata			
4500	0,010	p_{o} (kPa) =	4338	indutu			
4480 - KLX02 440-445 030727 1 CHir Q r	P section O,009 Pabove	p ₀ (kPa) =	1550				
4460 -	P below Q = 0,008	$p_{\rm l}({\rm kPa}) =$		n _r (kPa) =			
4440	- 0.007	$p_p(\mathbf{x} \cdot \mathbf{a}) = 0$		$p_{\rm F}$ (Ki α) –			
		$Q_p (m/s) =$	-	t (s) =			
	in the second second second second second second second second second second second second second second second	(p(3)) =	NT A	$t_F(s) =$	NT A		
2 4400 - 8 4	- 0.005 & 55 8	Sel S (-)=	INA	Sel S (-)=	INA		
§ 4380 -	0.004 2	EC _w (mS/m)=	12.4		-		
4360 -	0.003	Temp _w (gr C)=	13,4	Devisionations for at			
4340	• 0.002	Derivative fact.=	NA	Derivative fact.=	NA		
4320 -	0.001						
4300	0,000						
0,00 0,20 0,40 0,6 Elapsed T	0 0,80 1,00 1,20 Time [h]	Results		Results			
		Q/s (m²/s)=	NA				
Log-Log plot incl. derivates- flo	w period	T _M (m²/s)=	NA				
		Flow regime:	transient	Flow regime:	transient		
		$dt_1 (min) =$	NA	$dt_1 (min) =$	NA		
		$dt_2 (min) =$	NA	dt_2 (min) =	NA		
		T (m²/s) =	< 1E-11	$T(m^{2}/s) =$	NA		
		S (-) =	NA	S (-) =	NA		
		K _s (m/s) =	NA	K_{s} (m/s) =	NA		
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	NA		
		C (m³/Pa) =	NA	C (m³/Pa) =	NA		
		C _D (-) =	NA	C _D (-) =	NA		
		ξ(-) =	NA	ξ(-) =	NA		
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
		S _{GRF} (-) =		S _{GRF} (-) =			
		D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives- r	Selected represe	entative paramete	rs.	•			
		dt ₁ (min) =	NA	C (m³/Pa) =	NA		
		dt_2 (min) =	NA	C _D (-) =	NA		
Not Analysed		$T_{\tau} (m^2/s) =$	< 1E-11	ξ(-) =	NA		
		S (-) =	NA	/			
		$K_s (m/s) =$	NA		1		
		$S_{s}(1/m) =$	NA				
		Comments:					
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 42 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.					

Test Summary Sheet							
Project:	Site investigation	s <u>Test type:[1]</u>			3		
Area:	Laxema	r Test no:		63			
Borehole ID:	KLX 0	2 Test start:		030728 08:13			
Test section from - to (m):	445 - 450 m br	p Responsible for test execution:		R. v. d. Wall			
Section diameter, 2·r _w (m):	0,07	6 Responsible for			C. Enachescu		
Linear plot Q and p		Flow period		Recovery perio	d		
Proc & P		Indata		Indata	-		
4500	P section	$p_0 (kPa) =$	4381				
4480	P below	p _i (kPa) =					
4460 -		$p_{p}(kPa) =$		p _F (kPa) =			
4440 -	7	$Q_{p} (m^{3}/s) =$	-				
ब 4420 -	۰ ₋	tp(s) =		t _F (s) =			
8 8 4400 -	• • • • • • • • • • • • • • • • • • •	S el S [*] (-)=	NA	S el S [*] (-)=	NA		
900 4380 4380 A	● 4 P	EC _w (mS/m)=					
4360 -	3	Temp _w (gr C)=	13,4	ł			
		Derivative fact.=	NA	Derivative fact.=	NA		
4.540							
4320 -	• 1						
4300 0,00 0,10 0,20 0,30 0,40 0	0 0,50 0,80 0,70 0,80 0,90 1,00	Results		Results			
Elapsed	d Time (h)	Q/s (m ² /s)=	NA				
Log-Log plot incl. derivates- flo	ow period	T _M (m²/s)=	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	dt ₁ (min) =	NA		
		dt ₂ (min) =	NA	$dt_2 (min) =$	NA		
		T (m²/s) =	< 1E-11	T (m²/s) =	NA		
		S (-) =	NA	S (-) =	NA		
		$K_{s} (m/s) =$	NA	$K_{s} (m/s) =$	NA		
Not An	alysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	NA		
		C (m³/Pa) =	NA	C (m³/Pa) =	NA		
		C _D (-) =	NA	C _D (-) =	NA		
		ξ(-) =	NA	ξ(-) =	NA		
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
		$S_{GRF}(-) =$		$S_{GRF}(-) =$			
		$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$			
Log-Log plot incl. derivatives- recovery period		dt (min) -		0 (³ /D)	ΝΑ		
		$dt_1(min) =$		C (m ² /Pa) =			
Not Analysed		$T_{2}(m^{2}(r)) =$		C _D (-) -			
		1 _T (m ⁻ /s) = S (-) -	ΝΔ	ς(-) =			
		K (m/s) =	NA	<u> </u>			
		$S_{-}(1/m) =$	NA				
		Comments:					
		After inflating the packers and closing the test valve, the pressure kept rising with approx. 72 kPa per 30 minutes. Based on this response it was recognized that the test section transmissivity must be very low and the test was stopped. T is probably smaller than 1E-11 m2/s. None of the test phases is analysable.					
Test Summary Sheet							
--	---	--	--	---	---	--	
Project:	Site investigations	Test type:[1]			3		
Area:	Laxemar	Test no:	64				
Borehole ID:	KLX 02	Test start:			030728 09:38		
Test section from - to (m):	450 - 455 m brp	Responsible for test execution:		R. v. d. Wall			
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu		
Linear plot Q and p		Flow period		Recovery period	4		
		Indata		Indata	4		
4550 KI X02 450 455 030728 1 C	0,010 P section	p₀ (kPa) =	4436				
4530	▲ P above - 0,009 ■ P below	p; (kPa) =					
4510 -		$p_{r}(kPa) =$		p _⊏ (kPa) =			
4490 -	- 0,007	$O_{\mu}(m^{3}/c) =$	-				
	- 0.0.0 문	$\frac{Q_p(\Pi / S)}{tn(S)} =$		t_ (s) =			
		εφ (8) Ο αl Ο [*] ()=	NA		NA		
e de la companya de la compa		Sel S (-)= EC (mS/m)=		S el S (-)=	NA .		
§ 4430	- 0,004 =	EC_w (IIIS/III)=	12.5				
4410 -	0.003	Temp _w (gr C)-	13,3	Derivative fact -			
4390 -	0,002	Derivative fact.=	NA	Derivative fact.=	NA		
4370 -	- 0,001						
4350	0.000			-			
0,00 0,10 0,20 0,30 0,40 0 Elapsed	1,50 0,60 0,70 0,80 0,90 1,00 d Time [h]	Results		Results			
		$Q/s (m^2/s) =$	NA				
Log-Log plot incl. derivates- flo	ow period	T_{M} (m ² /s)=	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	$dt_1 (min) =$	NA		
		dt ₂ (min) =	NA	$dt_2 (min) =$	NA		
		T (m²/s) =	< 1E-11	T (m²/s) =	NA		
		S (-) =	NA	S (-) =	NA		
		K _s (m/s) =	NA	K _s (m/s) =	NA		
Not Ar	nalysed	S _s (1/m) =	NA	S _s (1/m) =	NA		
		C (m³/Pa) =	NA	C (m³/Pa) =	NA		
		C _D (-) =	NA	C _D (-) =	NA		
		ξ(-) =	NA	ξ(-) =	NA		
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =			
		S _{GRF} (-) =		S _{GRF} (-) =			
		D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paramete	rs.			
		dt ₁ (min) =	NA	C (m ³ /Pa) =	NA		
		dt ₂ (min) =	NA	C _D (-) =	NA		
		$T_{T} (m^{2}/s) =$	< 1E-11	ξ(-) =	NA		
		S (-) =	NA				
	K _s (m/s) =	NA					
Not Ar	nalvsed	S _s (1/m) =	NA				
	· ر	Comments:			-		
		After inflating the p rising with approx. recognized that the was stopped. T is pu the test phases is an	backers and closing t 20 kPa per 30 minut test section transmis robably smaller than alysable.	he test valve, the pr es. Based on this re sivity must be very 1E-11 m2/s.	essure kept sponse it was low and the test None of		

	Te	st Sun	mary Sheet			
Project:	Site invest	tigations	Test type:[1]		PI	(see table 6.1)
Area:	L	axemar	Test no:			68
Borehole ID:		KLX 02	Test start:			030728 18:07
Test section from - to (m):	470 - 47	75 m brp	Responsible for			R. v. d. Wall
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu
Linear plot Q and p			test evaluation: Flow period		Recovery period	
			Indata		Indata	
4900	P section	0,010	p ₀ (kPa) =	4620		
KLX02_470-475_030728_1_CHir_Q_r 4850 -	P above P below	- 0,009	p _i (kPa) =	4617		
	1	0,008	p _p (kPa) =	4810	p _F (kPa) =	4612
4800 -	1	0,007	$Q_{x} (m^{3}/s) =$	-		
چ بر 1750 -		- ^{0,006} 듣	tp(s) =	240	t _F (s) =	1200
au na na na na na na na na na na na na na		- 0.005 B	S el S [*] (-)=	NA	S el S [*] (-)=	1,7E-06
90 4700 -		Poction	EC _w (mS/m)=		0 0. 0 ()	
6		0.007	Temp _w (gr C)=	13.8		
4650 -		- 0,003	Derivative fact.=	NA	Derivative fact.=	0.08
4600		- 0,002				- ,
	•	- 0,001				
4550 0 1 2 3 4 5 6 7 8	3 9 10 11 12 13 14	0,000	Results		Results	
Elapsed Time	e [h]		Ω/s (m ² /s)=	NA		
l og-l og plot incl. derivates- flow	/ period		$T_{m}(m^{2}/s) =$	NA		
	ponou		Flow regime:	transient	Flow regime:	transient
			dt_{ℓ} (min) =	NA	dt_{ℓ} (min) =	13.08
			$dt_1(min) = dt_2(min) =$	NΔ	dt_1 (min) = dt_2 (min) =	19,00
			$dt_2(1111) =$		$a_2(1111) =$	3 45 00
			I (m /s) =		I (m /s) =	1 7E 06
			S(-) = K(m/c) = -		S(-) = K(m/c) = -	1,7E-00
	1 1		$R_{s}(11/5) =$		$R_{s}(11/5) =$	0,7E-10
Not Ana	lysed		$S_{s}(1/11) =$		$S_{s}(1/11) =$	3,4E-07
			C (m³/Pa) =	NA	C (m³/Pa) =	1,3E-13
			$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	8,3E-02
			ξ(-) =	NA	ξ(-) =	10
			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$	
			$S_{GRF}(-) =$		S _{GRF} (-) =	
	· · ·		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	covery period		Selected represe	entative paramete		
Elapsed time (h)	<u>10,⁻¹</u> 10, ⁰ 10	o 1	$at_1 (min) =$	13,08	C (m˘/Pa) =	1,3E-13
10 3 SKB Laxemar / KLX 02 470 - 475 m / CHIR as Pi	FlowDim Version 2.14	4b 10 °	$at_2 (min) =$	19,61	$C_{\rm D}(-) =$	8,3E-02
	(c) Coluct Parolatica		$T_T (m^2/s) =$	3,4E-09	ξ(-) =	10
10 2		10 -1	S (-) =	1,7E-06		
		_	$\kappa_{s}(m/s) =$	6,7E-10		
10 1	\$	10 ⁻² 3	$S_{s}(1/m) =$	3,4E-07		
	•	ned press	Comments:			
10 °	,	10 ⁻³	The transmissivity of	lerived from the trar	sient analysis was 3	.4E-9 m2/s.
:	HERE		Because it was mate	ched to the late time	aata, it is representa	tive for a zone
10 -1		10-4	much lower, this be	ing documented by	the relatively high sk	cin coefficient
	•	10	(10).	J	, , , ,	
	10 ² 10 ³ 10 ⁴	10 5				
tD						

	Test	: Sun	nmary Sheet				
Project:	Site investig	ations	Test type:[1]	PI (see table 6.1)			
Area:	La	xemar	Test no:			69	
Borehole ID:	K	(LX 02	Test start:			030801 09:44	
Test section from - to (m):	475 - 480	m brp	Responsible for test execution:			R. v. d. Wall	
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu	
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
5000	P section	10	p ₀ (kPa) =	4659			
KLX02_475-480_030801_2_Pulse_P_r	P above P below	- 9	p _i (kPa) =	4671			
4900	q	- 8	$p_{p}(kPa) =$	4948	p _F (kPa) =	4670	
		7	$O_{(m^{3}/s)} =$	-	, ,		
ङ्ग ⁴⁸⁵⁰ - रु		-6 E	$\frac{Q_p(11/3)}{tn(s)} =$	0	t _n (s) =	2700	
9 8 4800 -		Sate [Vm	$(\mathbf{e})^{*}$	NA	(0)	1 1E-06	
d south		jection 1	$S \in (-)^{=}$		S el S (-)=	1,12-00	
å 4750 		4 =	$LC_w (IIIS/III) =$	14.5			
4700 -	\	- 3	Temp _w (gr C)=	14,5	Device the fact	0.20	
		2	Derivative fact.=	NA	Derivative fact.=	0,28	
4650		- 1					
4600	•	0					
0,00 0,20 0,40 0,60 0,80 Elapsed 1	1,00 1,20 1,40 1,60 Time [h]	1,80	Results		Results		
			Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flow	w period		T _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	*	
			dt ₂ (min) =	NA	dt ₂ (min) =	*	
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	1,9E-09	
			S (-) =	NA	S (-) =	1,1E-06	
			$K_{c}(m/s) =$	NA	K_{a} (m/s) =	3.7E-10	
Not An	luced		$S_{2}(1/m) =$	NA	$S_{2}(1/m) =$	2 1F-07	
Not Alle	ilyseu		$C_{\rm s}(m^3/P_2) =$	NA	$C_{\rm s}(m^3/P_2) =$	1 8E-13	
			$C(\Pi/Fa) =$	NΔ	$C(\Pi/Fa) =$	1,8E-01	
			ω _D (-) -		SD(-) -	1,0Ľ-01	
			ς (-) –		ς (-) –	10	
			$T_{opc}(m^2/s) =$		$T_{opr}(m^2/s) =$		
			$S_{OPF}(-) =$		$S_{OPF}(-) =$		
			$D_{ORF}(-) =$		$D_{ops}(-) =$		
l og l og plot incl. derivatives- re	ecovery period		Selected represe	ntative narameter			
			dt_{4} (min) =	*	$C (m^3/P_2) =$	1 8F-13	
Elapsed time (h)	2 .1 0		$dt_1(min) =$	*	C(m/Pa) = C(-) =	1,0E-13	
10 2	10, 10, 10,	7	$\operatorname{dl}_2(\operatorname{min}) =$	1 05 00	$C_{\rm D}(-) =$	1,0⊏-01	
475 - 480 m / Pl	FlowDim Version 2.14b (c) Golder Associates		$I_{T}(m^{-}/s) =$	1,92-09	ς(-) =	10	
• • • • • • • • • • • • • • • • • • •		10	S(-) =	1,1E-00			
10		-	κ_{s} (m/s) =	3,7E-10			
		10 -2	$S_{s}(1/m) =$	2,1E-07			
10 10 10 10 10 10 10 10 10 10 10 10 10 1		dpressur	Comments:				
· · · · · · · · · · · · · · · · · · ·	and the second second second second second second second second second second second second second second second	condute	* : IARF not measu	red	-:	l hataa 1 OE	
		10-3 8	11 m ² /s (inner zone	and $6.9E_{-11} \text{ m}^{2/6}$	Signt analysis range	a between 1.9E- th skin factor	
10 -1	•	ł	(10) indicates a mu	ch lower transmissiv	ity in the vicinity of	the borehole.	
		10 4					
10 ⁻ 10 ⁻ 10 ⁻ 10	10 10 1	10 -					

Test Summary Sheet						
Project:	Sit investig	ations	Test type:[1]			3
Area:	La	xemar	Test no:			71
Borehole ID:	k	(LX 02	Test start:			030729 14:00
Test section from - to (m):	500 - 505	m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):		0,076	Responsible for			C. Enachescu
Linear plot Q and p			Flow period		Recovery perio	d
			Indata		Indata	
5100		0,010	p₀ (kPa) =	4910		
KLX02_500-505_030729_1_CHir_Q_r	P section Pabove	0,009	p; (kPa) =			
5050 -	Q	0,008	$p_{n}(kPa) =$		p _∈ (kPa) =	
		0,007	$O_{1}(m^{3}/c) =$	_	PF (\$)	
5000		0,006 -	$Q_p (\Pi / S) =$	-	t (s) =	
		ate [Vmi	ιρ (3) –	NT A	ι _F (3) –	NI A
8 9 4 9 4 9 0 4 9 0	•	ection & d00,0 +	Sel S (-)=	INA	Sel S (-)=	INA
		-0,004 Ē	$EC_w (mS/m) =$	14.0		
		0,003	Temp _w (gr C)=	14,2		
	•	0,002	Derivative fact.=	NA	Derivative fact.=	NA
4850 -		0,001				
	•					
4800 +	. 0,6 0,7 0,8 0,9 1	+ 0,000 1,0	Results		Results	
			Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flo	w period		T _M (m²/s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt_2 (min) =	NA
			T (m²/s) =	< 1E-11	$T (m^2/s) =$	NA
			S (-) =	NA	S (-) =	NA
			$K_s(m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alvsed		S _s (1/m) =	NA	$S_{s}(1/m) =$	NA
1.00.7 11	urysed		$C (m^3/Pa) =$	NA	$C_{\rm m}^{\rm 3/Pa} =$	NA
			$C_{p}(-) =$	NA	$C_{p}(-) =$	NA
			ε ₍₋) =	NA	ε ₍₋) =	NA
			5()		5()	
			$\mathbf{T} = (m^2/n) -$		\mathbf{T} (m ² /c) -	
			$\Gamma_{GRF}(\Pi / S) =$		$\Gamma_{GRF}(\Pi / S) =$	
			$S_{GRF}(-)$ –		$S_{GRF}(-) =$	
					$D_{\text{GRF}}(-)$ –	
Log-Log plot incl. derivatives- h	ecovery period		dt (min) -			NIA
			$dt_1(min) =$	NA	C (m ^o /Pa) =	
			$dt_2 (min) =$		$C_{\rm D}(-) =$	NA
			$T_T (m^2/s) =$	< 1E-11	ξ(-) =	NA
			S (-) =	NA		
			κ_{s} (m/s) =	NA	ļ	4
Not Ana	alysed		S _s (1/m) =	NÁ		
			Comments:			
			After inflating the p rising with approx. recognized that the was stopped. T is pu the test phases is an	ackers and closing t 47 kPa per 30 minut test section transmis robably smaller than alysable.	he test valve, the pr es. Based on this re sivity must be very 1E-11 m2/s.	ressure kept esponse it was low and the test None of

	Test Sum	nmary Sheet			
Project:	Site investigations	Test type:[1]			3
Area:	Laxemar	Test no:			72
Borehole ID:	KLX 02	Test start:			030729 15:29
Test section from - to (m):	505 - 510 m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plot Q and p		Flow period		Recovery perio	d
		Indata		Indata	
5100	P section 0,010	p₀ (kPa) =	4957	1	
5080 - KLX02_505-510_030729_1_CH	lir_Q_r ▲ P above - 0,009	p. (kPa) =	.,,,,		
5060	0.008	$p_1(kra)$		n (kPa) -	
5040 ·	0.007	р _р (кга) –		μ _F (κFa) –	_
	•	Q _p (m [°] /s)=	-	(()	
4 5020 - 9 3	0,006	tp (s) =		t _F (s) =	
ଞ୍ଚି 5000 - ଜୁ ଞ୍	• - 0,005 ½	S el S [*] (-)=	NA	S el S [*] (-)=	NA
4980 -	• + 0,004 [±]	EC _w (mS/m)=			
4960	- 0,003	Temp _w (gr C)=	14,3		
4940	0.002	Derivative fact.=	NA	Derivative fact.=	NA
	•				
4920 -	- 0.001				
4900	,5 0,6 0,7 0,8 0,9 1,0	Results		Results	
Elapsed	Time [h]	$\Omega/s (m^2/s) =$	NA		
Log-Log plot incl. derivates- flo	ow period	$T_{\rm ex} (m^2/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt_{i} (min) =	NΔ	dt_{i} (min) =	NΔ
		$dt_1(min) =$		$dt_1 (min) =$	
		$dt_2(1111) =$		$u_{12}(1111) =$	
		I (m ⁻ /s) =	< 1E-11	I (m ⁻ /s) =	
		S (-) =	NA	S (-) =	NA
		$K_{s}(m/s) =$	NA	$K_{s}(m/s) =$	NA
Not An	alysed	$S_s(1/m) =$	NA	$S_s(1/m) =$	NA
		C (m³/Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	$C_D(-) =$	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paramete	rs.	
		dt ₁ (min) =	NA	C (m ³ /Pa) =	NA
		dt ₂ (min) =	NA	$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	< 1E-11	ξ(-) =	NA
		S (-) =	NA	/	1
		K _s (m/s) =	NA		1
Not An	alvsed	S _s (1/m) =	NA		+
	ury sou	Comments:			
1		After inflating the r	ackers and closing t	he test value the p	essure kent
		rising with approx. recognized that the was stopped. T is pi the test phases is an	ackers and closing t 106 kPa per 30 minu test section transmis robably smaller than alysable.	test valve, the pr ates. Based on this u sivity must be very 1E-11 m2/s.	response it was low and the test None of

	Tes	t Sun	mary Sheet			
Project:	Site investi	gations	Test type:[1]			3
Area:	La	axemar	Test no:			73
Borehole ID:		KLX 02	Test start:		(030729 16:54
Test section from - to (m):	510 - 515	5 m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, $2 \cdot r_w$ (m):		0,076	Responsible for			C. Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
5300 KLX02 510-	515 030729 1 CHir Q r • P section	0,010	p₀ (kPa) =	5009		
5250 -	Pabove Pabove Pabove	- 0,009	p _i (kPa) =	5010		
500 i	Q	- 0,008	$p_{p}(kPa) =$	5210	p _F (kPa) =	5005
		0,007	$\Omega_{(m^{3}/s)} =$	8.33E-09		
हु 5150 - मु		- ^{0,006} ਵ	$d_p(m/s) =$	1200	t _⊏ (s) =	9600
5100		Rate [7	S el S [*] (_)=	NA	+ (-) S el S [*] (_)=	1 0E-06
mihole P		njection	FC (mS/m)=	1.11	3 8 3 (-)-	1,02 00
å ₅₀₅₀ .		0,004 =	Temp (ar C)=	14.4		
5000		- 0,003	Derivative fact =	л т,т NA	Derivative fact =	0.02
	•	0,002				0,02
4950 -	•	- 0,001				
4900	200 250 200 250	0,000	Posulte		Posulte	
0,00 0,00 1,00 1,00 E	2,00 2,00 3,00 3,00	4,00		4 00E 10	Results	
Log Log plot incl. dorivator	flow pariod		$Q/s (m^{-}/s) =$	4,09E-10		
Log-Log plot incl. derivates-	now period		I _M (m ⁻ /s)=	3,37 E-10	Flow regimes	transiant
			riow regime.		riuw regime.	*
			$dt_1(min) =$		$dt_1(min) =$	*
			$at_2 (min) =$	NA	$dt_2 (min) =$	-
			T (m²/s) =	NA	T (m²/s) =	1,6E-09
			S (-) =	NA	S (-) =	1,0E-06
			$K_s (m/s) =$	NA	$K_s (m/s) =$	3,2E-10
Not A	Analysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2,0E-07
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,3E-11
			C _D (-) =	NA	C _D (-) =	1,4E+01
			ξ(-) =	NA	ξ(-) =	0
			$T_{}(m^2/s) =$		$T_{}(m^2/s) =$	
			$S_{CRE}(-) =$		$S_{CRF}(-) =$	
			$D_{CRF}(-) =$		$D_{CRE}(-) =$	
Log-Log plot incl. derivative	s- recovery period		Selected represe	entative paramete	rs.	
5 - 5 p			dt_1 (min) =	*	$C (m^3/Pa) =$	1,3E-11
10 ⁻³ 40 ⁻² Elapsec	d time [h]		dt_2 (min) =	*	$C_{D}(-) =$	1.4E+01
10 1 SKB Laxemar / KLX 02	FlowDim Version 2.1	4b 10 ³	$T_{-}(m^{2}/s) =$	1.6E-09	ε (-) =	0
510 - 515 III / CMI	(5)		S (-) =	1.0E-06	()	
10 0			$K_{1}(m/s) =$	3 2E-10		
and the second sec	and the second sec	10 *	$S_{a}(1/m) =$	2 0F-07		
and the second se	the second		Comments:	_,		
Q 10-1		10 ¹ 10	* : IARF not measu	red		
		p-p0. (p-p	An infinite acting ra	adial 2 shell composi	te flow model was i	dentified and
			chosen for the analy	sis. The downward	sloping derivative at	late times was
10		10 °	interpreted as the tra	ansition to a higher t	ransmissivity compo	osite shell. This
		ł	the small composite	e radius $(r_1 = 0.16 \text{ m})$	calculated assuming	s = 1.0E-6
10 ⁻¹ 10 [°]	10 ¹ 10 ²	10 3	the outer zone trans	missivity is seen to b	e more representativ	ve for the
	HACD		formation propertie	S.	-	

	Test	Sun	nmary Sheet			
Project:	Site investig	ations	Test type:[1]		PI	(see table 6.1)
Area:	Lax	xemar	Test no:			73a
Borehole ID:	K	LX 02	Test start:			030731 18:16
Test section from - to (m):	510 - 515	m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):		0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p			Flow period		Recovery period	
5400 1			Indata		Indata	
KLX02_510-515_030731_2_	Pulse_P_r		p ₀ (kPa) =	5009		
5350 -	P secon P secon P secon P secon	5	p _i (kPa) =	5012		
5300 -	o	- 8	p _p (kPa) =	5302	p _F (kPa) =	5006
5250 -		- 7	Q _p (m ³ /s)=	-		
ි දී \$200 -		0 [nim]	tp (s) =	1200	t _F (s) =	9600
Press		5 I atte	S el S [*] (-)=	NA	S el S [*] (-)=	1,0E-06
		4 ¹⁰	EC _w (mS/m)=			
5100		- 3	Temp _w (gr C)=	14,4		
5050		- 2	Derivative fact.=	NA	Derivative fact.=	0,02
5000		- 1				
4950	4,00 5,00	0 6,00	Results	<u>n</u>	Results	•
Elapsed I	ime [n]		Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flow	v period		T _M (m ² /s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	*
			dt ₂ (min) =	NA	dt_2 (min) =	*
			T (m²/s) =	NA	T (m²/s) =	5,5E-11
			S (-) =	NA	S (-) =	1,0E-06
			$K_{s} (m/s) =$	NA	$K_{s}(m/s) =$	1,1E-11
Not Ana	lysed		S _s (1/m) =	NA	S _s (1/m) =	2,0E-07
			C (m³/Pa) =	NA	C (m³/Pa) =	1,3E-11
			C _D (-) =	NA	C _D (-) =	1,4E+01
			ξ(-) =	NA	ξ(-) =	3,5
			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$	
			S _{GRF} (-) =		S _{GRF} (-) =	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	ecovery period		Selected represe	entative paramete	rs.	
			dt ₁ (min) =	*	C (m³/Pa) =	1,3E-11
Elapsed time [h]		-	dt_2 (min) =	*	C _D (-) =	1,4E+01
10 SKB Laxemar / KLX 02 510 - 515 m / Pl	FlowDim Version 2.14b (c) Golder Associates		$T_T (m^2/s) =$	5,5E-11	ξ(-) =	3,5
		1	S (-) =	1,0E-06		
10 1		10 -1	$K_s (m/s) =$	1,1E-11		
]	$S_{s}(1/m) =$	2,0E-07		
		Decountry for the second page of	The transmissivities phase range from 5. uncertainties related the analysis process and prossure biston	s derived from the tra 5E 11 to 1.6E-9 m2/ 1 to the measurement (e.g. numeric distor	insient analysis of th 's. Considering the in the (e.g. measured flow tion when calculating the program for the tr	the CHIR and PI nherent v rates) and to ug the derivative
10 ⁻¹ 10 ⁻² 1D	10 ⁻³ 10 ⁻⁴ 10		estimated to be 3E-	11 to 3E-9 m2/s.	ince range for the tr	ansinissivity 18

	Test Sun	nmary Sheet				
Project:	Site investigations	Test type:[1]		PI	(see table 6.1)	
Area:	Laxema	r Test no:			75	
Borehole ID:	KLX 02	2 Test start:			030730 13:23	
Test section from - to (m):	520 - 525 m brp	Responsible for		R. v. d. Wall		
Section diameter, 2·r _w (m):	0,076	6 Responsible for		C. Enachescu		
l inear plot Ω and p		Flow period		Recovery period		
		Indata		Indata		
5400	0,010	n_{a} (kPa) =	5103	indata		
5350 -	P above 0,009 P below	$p_0(R a) =$	5116			
	-0.008	$p_i(RPa) =$	5214	n (kPa) -	5220	
5300 -	0.007	ρ _p (κra) -	5514	р _F (кга) –	5259	
₹ ⁵²⁵⁰		Q _p (m ³ /s)=	-		1000	
	• 0.000 (rit)	tp (s) =	1800	t _F (s) =	1200	
2 5200		S el S [*] (-)=	NA	S el S [*] (-)=	1,0E-06	
5150 -	• • 0,004 [•]	EC _w (mS/m)=				
	• - 0,003	Temp _w (gr C)=	14,5			
5100	0.002	Derivative fact.=	NA	Derivative fact.=	0,28	
5050 -	• 0,001					
5000 0,00 0,20 0,40 0,60 0,80 1,00	0,000 1,20 1,40 1,60 1,80 2,00	Results		Results		
Elapsed Tim	e [h]	Ω_{10} (m ² /o)=	ΝΑ	litoounto		
l og l og plot incl. derivates, flo	w period	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	NA			
Log-Log plot men derivates- no	w period	T _M (III /S)=	transiont	Elow rogimo:	transiont	
		dt (min) =		t low legime.		
		$dt_1 (min) =$		$dt_1 (min) =$	5,90	
		dl_2 (IIIIII) =		dl_2 (mm) =	10,75	
		$T(m^{2}/s) =$	NA	T (m²/s) =	7,3E-11	
		S (-) =	NA	S (-) =	1,0E-06	
		$K_{s} (m/s) =$	NA	K _s (m/s) =	1,5E-11	
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	2,0E-07	
		C (m³/Pa) =	NA	C (m³/Pa) =	1,3E-10	
		C _D (-) =	NA	C _D (-) =	1,4E+02	
		ξ(-) =	NA	ξ(-) =	0,4	
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =		
		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- i	ecovery period	Selected represe	entative paramete	rs.		
Plane 11 11		$dt_1 (min) =$	5,96	C (m ³ /Pa) =	1,3E-10	
10 ¹		dt_2 (min) =	16,75	C _D (-) =	1,4E+02	
SKB Laxemar / KLX 02 520 - 525 m / CHir as Pl	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	7,3E-11	ξ(-) =	0,4	
	10 °	S (-) =	1,0E-06			
10 °		$K_{s} (m/s) =$	1,5E-11			
•		S _s (1/m) =	2,0E-07			
	10 ⁻¹ mg	Comments:				
10 ³	9 ²	The flow model ide semi-log derivative composite radius, it representative for th	of the deconvolved is believed that the formation properti	in and based on the CHIR phase. Due to outer composite zon ies.	shape of the the very small e is	
	10 ⁻³					
10 10 ⁻⁰ tD	10 ⁻ 10 ⁻ 10 ⁻³					

Test Summary Sheet					
Project:	Site investigations	Test type:[1]			3
Area:	Laxemar	Test no:			76
Borehole ID:	KLX 02	Test start:			030730 15:36
Test section from - to (m):	525 - 530 m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, 2·r _w (m):	0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
5400	P section	p ₀ (kPa) =	5172		
KLX02_525-530_030730_1_CHir_Q	P above P below 0,012	p _i (kPa) =	5159		
5350 -	• <u> </u>	$p_{r}(kPa) =$	5359	p _⊏ (kPa) =	5160
	0,010	$O_{1}(m^{3}/c) =$	6 67E-08		5100
5300 - ਵ		$Q_p (\Pi /S) =$	1200	t_ (s) =	1200
	+ 0,008 Ē	$(p_{1}(3)) =$	8 4E 07	$r_{\rm F}(3) =$	1 0E 06
	۵00.0 - والمحمد المحمد	S el S (-)= EC (mS/m)=	8,4E-07	5 el 5 (-)=	1,012-00
	£	$LC_w (III3/III) =$	14.0		
	0.004	Temp _w (gr C)=	14,6	Danis satis sa fa st	0.02
5150		Derivative fact.=	0,21	Derivative fact.=	0,02
	0,002				
5100		-		-	
0,00 0,20 0,40 0,60 Elapsed Ti	0,80 1,00 1,20 1,40 me[h]	Results		Results	
		$Q/s (m^2/s) =$	3,27E-09		
Log-Log plot incl. derivates- flow	w period	T _M (m²/s)=	2,70E-09		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (h)	. 10 ^{.1}	dt ₁ (min) =	5,08	$dt_1 (min) =$	*
SKB Lavemar / KLX 02 525 - 530 m / CHi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	17,68	$dt_2 (min) =$	*
	10 3	T (m²/s) =	2,3E-09	T (m²/s) =	9,7E-09
10 1		S (-) =	8,4E-07	S (-) =	1,0E-06
	was the state	$K_s (m/s) =$	4,7E-10	$K_s (m/s) =$	1,9E-09
	10 ²	S _s (1/m) =	1,7E-07	S _s (1/m) =	2,0E-07
GP() 10 °	dr (min)	C (m ³ /Pa) =	NA	C (m³/Pa) =	1,3E-11
-	1dg (1	C _D (-) =	NA	C _D (-) =	1,4E+01
10 -1	10	ξ(-) =	0	ξ(-) =	0
	•••	5.()		5.()	
-	10 °	$T_{opc}(m^2/s) =$		$T_{ops}(m^2/s) =$	
10 ⁻¹ 10 ⁻² 1D	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{CRF}(-) =$		$D_{CRF}(-) =$	
Log-Log plot incl. derivatives- re	ecovery period	Selected represe	entative paramete	rs.	
	···· , ····	dt₄ (min) =	*	$C (m^3/P_2) =$	1 3F-11
		dt_2 (min) =	*	$C_{D}(-) =$	1.4E+01
10 1 SKB Laxemar / KLX 02 576 550 m / CHir.	FlowDim Version 2.14b	$T_{1}(m^{2}/s) =$	9 7E-09	ε ₀ () =	0
	(c) Gover Associates	S(-) =	1.0E-06	S (-) –	Ŭ
		K (m/s) =	1,0E 00 1.9E-09		╉───┤
10 °	10 2	$R_{s}(11/3) =$	1,5E-03		
and the second se	E I		2,02-07		L
	and the second and the second se	An infinite acting r	adial composite flow	model was identifie	d chosen for the
¹⁰ analysis. The downward sloping derivative at late times was interpreted as					
	3	the transition to a h	igher transmissivity	composite shell. Thi	s behaviour
		could also indicate	transition to a higher $1 - 0.22$	flow dimension. Du	te to the small
10 ⁻¹ 10 [°]	10 ¹ 10 ² 10 ³	composite radius (r	1 = 0.23 m calculated	u assuming $S = 1.0E$	formation
LUCD		properties.	is seen to be more fo	presentative for the	10111utiOII

Test Summary Sheet					
Project:	Site investigations	Test type:[1]			3
Area:	Laxemar	Test no:			79
Borehole ID:	KLX 02	Test start:			030731 08:09
Test section from - to (m):	535 - 540 m brp	Responsible for test execution:			R. v. d. Wall
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	đ
		Indata		Indata	
5500	0,010	p ₀ (kPa) =	5273		
KI Y02 525 540 020721 4 C	P section 0,009 P above	p; (kPa) =			
5450	Q 0,008	$p_{\rm p}(\rm kPa) =$		p _⊏ (kPa) =	
	0,007	$O(m^3/c)=$	-	PF (•.)	
5400 - 7 _		$Q_p (\Pi / S) =$		t_ (s) =	
		(p(0))	N A	φ (5)	NIA
2 6350 - 9 4	0.005 22	Sei S (-)=	1174	Seis (-)=	nA .
8 8	0.004 Ê	$EC_w (IIIS/III) =$	14.7		
5300	0,003	Temp _w (gr C)=	14,/	Devised the fact	
	• 0.002	Derivative fact.=	NA	Derivative fact.=	NA
	- 0,001				
5200	• 0,000	Posults		Posults	
0,00 0,10 0,20 0,30 0,40 Elapse	d Time [h]	$O(a_1/m^2/a_2) =$	ΝΔ	Results	1
Log Log plot incl. dorivatoo fla	aw pariod	Q/S (ff1/S)=			
Log-Log plot incl. derivates- inc	ow period	I _M (m ⁻ /s)=	INA		transiant
		Flow regime.	transient	Flow regime.	transient
		$dt_1 (min) =$		$dt_1 (min) =$	NA
		$at_2 (min) =$	NA	$at_2 (min) =$	NA
		T (m²/s) =	< 1E-11	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_{s} (m/s) =$	NA	K _s (m/s) =	NA
Not An	nalysed	$S_s(1/m) =$	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m³/Pa) =	NA
		$C_D(-) =$	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paramete	rs.	
		dt ₁ (min) =	NA	C (m³/Pa) =	NA
		dt ₂ (min) =	NA	C _D (-) =	NA
		$T_{T} (m^{2}/s) =$	< 1E-11	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
Not An	alysed	S _s (1/m) =	NA	İ	
	2	Comments:			
		After inflating the p rising with approx. recognized that the was stopped. T is put the test phases is an	backers and closing t 123 kPa per 30 minu test section transmis robably smaller than alysable.	he test valve, the pr ites. Based on this r sivity must be very 1E-11 m2/s.	essure kept response it was low and the test None of

Test Summary Sheet						
Project:	Site investigations	Test type:[1]			3	
Area:	Laxemar	Test no:			80	
Borehole ID:	KLX 02	Test start:		030731 09:44		
Test section from - to (m):	540 - 545 m brp	Responsible for test execution:		R. v. d. Wall		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for			C. Enachescu	
Linear plot Q and p		Flow period		Recovery perio	d	
P # P		Indata		Indata	-	
5450	0,010	p_{o} (kPa) =	5322			
5430 -	0,009	p; (kPa) =				
5410 -	0,008 - 0,008	$p_{r}(kPa) =$		p _⊏ (kPa) =		
5390 -	 P section P above - 0,007 	$\rho_{\rm p}(n, \alpha) = 0$				
	• P below • 0.006 ਵ	$\frac{Q_p(\Pi / S)}{tn(S)} =$		t _r (s) =		
9 8 5350		(\mathbf{p}, \mathbf{c})	NA	(0)	NA	
the second		Seis (-)= EC (mS/m)=		5 el 5 (- <i>)</i> =	11A	
§ 5330	- 0.004 =	$EC_w (IIIO/III) =$	14.9			
5310 -	• • • • • • • • • • • • • • • • • • • •	Derivative fact =	NA	Derivative fact =	NA	
5290		Derivative lact	INA	Derivative lact	INA	
5270 -	- 0.001					
5250	- 0,000	Desults		Deculto		
0,00 0,10 0,20 0,30 0,40 0,1 Elapsed	50 0,60 0,70 0,80 0,90 1,00 Time [h]		NIA	Results	-	
Les Les aletinel devivetes fle		Q/s (m⁻/s)=				
Log-Log plot incl. derivates- fic	ow period	I _M (m²/s)=	NA		transiant	
		Flow regime:	transient	Flow regime:	transient	
		$dt_1 (min) =$		$dt_1 (min) =$	NA	
		$dt_2 (min) =$		$at_2 (min) =$	NA	
		T (m²/s) =	< 1E-11	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not An	alysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
		C _D (-) =	NA	$C_{D}(-) =$	NA	
		ξ(-) =	NA	ξ(-) =	NA	
				2		
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- i	recovery period	Selected represe	entative paramete	rs.	T ••••	
		ατ ₁ (min) =	NA	C (m³/Pa) =	NA	
		$dt_2 (min) =$	NA	$C_D(-) =$	NA	
		$T_T (m^2/s) =$	< 1E-11	ξ(-) =	NA	
		S (-) =	NA			
		κ_{s} (m/s) =	NA			
Not An	alysed	$S_{s}(1/m) =$	NA			
		Comments:				
		After inflating the p rising with approx. recognized that the was stopped. T is p the test phases is an	backers and closing t 30 kPa per 30 minut test section transmis robably smaller than halysable.	he test valve, the pr es. Based on this re sivity must be very 1E-11 m2/s.	ressure kept esponse it was low and the test None of	

Borehole: KLX02

APPENDIX 4

Nomenclature

The following symbols are extracted from the more comprehensive list of symbols provided by SKB. Only the symbols that were used or deemed to be used in the future in the context of test analysis are presented.

bAquifer thickness of 2D formation)[L]mLwTest section length.[L]mr_wBorchole, well or soil pipe radius in test section.[L]mTDDimensionless radius, $r_p=r/r_w$ QpFlow in test section immediately before stop of flow. Stabilised[L ³ /T]m ³ /sQmArithmetical mean flow during perturbation phase.[L ³ /T]m ³ /sVVolume[L ³]m ³ V_wWater volume in test section.[L ³]m ³ V_wWater volume injected/pumped during perturbation[L ³]m ³ V_pTotal water volume injected/pumped during perturbation[L]stDuration of rest phase before perturbation phase.[T]st_bDuration of recovery phase (from flow start as far as p_a).[T]st_bDuration of recovery phase (from flow test.[T]hour,min,sdt_cdt_c = (dt : p) / (dt + tp) Agarwal equivalent time with dt as[T]st_b = 1, f < (S : x_a^{-3}). Dimensionless timepStatic pressureDynamic pressure sormally ignored in estimating the potential in groundwater flow[M/(LT)^2]kPa<	Character	Explanation	Dimension	Unit
L_w Test section length.[L]m t_w Borehole, well or soil pipe radius in test section.[L]m T_D Dimensionless radius, $r_p = r/r_w$ Q_p Plow in test section immediately before stop of flow. Stabilised[L ³ /T]m ³ /s Q_m Arithmetical mean flow during perturbation phase.[L ³ /T]m ³ /s V_w Volume[L ³]m ³ V_w Water volume in test section.[L ¹]m ³ V_w Water volume in test section.[L ¹]m ³ tTime[T]hour,min,st1Duration of rest phase before perturbation phase.[T]st_aDuration of rest phase before perturbation phase.[T]st_bDuration of recovery phase (from flow start as far as p_p).[T]st_bDuration of recovery phase (from flow start as far as p_p).[T]st_bTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]srespectively.for ecovery phase.[M/(LT) ²]kPadt_bt_b = T4 / (S + π_a^2). Dimensionless timepStatic pressure; including non-dynamic pressure inormally ignored in estimating the potential in groundwater flow[M/(LT) ²]kPap_bGauge pressure; Difference between absolute pressure and atmospheric pressure.[M/(LT) ²]kPap_aAtmospheric pressure.[M/(LT) ²] <t< td=""><td>b</td><td>Aquifer thickness (Thickness of 2D formation)</td><td>[L]</td><td>m</td></t<>	b	Aquifer thickness (Thickness of 2D formation)	[L]	m
r_w Borehole, well or soil pipe radius in test section.[L]m r_p Dimensionless radius, $r_p = r_{r_w}$ Q_p Flow in test section immediately before stop of flow. Stabilised pump flow in flow logging Q_m Arithmetical mean flow during perturbation phase.[L ³ /T]m ³ /s V Volume[L ²]m ³ V_w Water volume in test section.[L ¹]m ³ V_w Water volume injected/pumped during perturbation phase.[L ¹]m ³ tTotal water volume injected/pumped during perturbation phase.[T]stTime(from flow start as far as p_p).[T]stDuration of rest phase before perturbation phase.[T]st_sDuration of rest or various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]srespectively.(ftor p_p)[T]sdt_cdt_c = (dt · tp) / (dt + tp) Agarwal equivalent time with dt as running time for recovery phase.[M/(LT)]kPapStatic pressure; including non-dynamic pressure is normally ignored in estimating the potential in groundwater flow[M/(LT)]kPap_1Absolute pressure; $p_r = p_r p_x$ [M/(LT)]kPap_2Gauge pressure; $p_r = p_r p_x$ [M/(LT)]kPap_1Absolute pressure; $p_r = p_r p_x$ [M/(LT)]kPap_2Pressure during perturbation phase.[M/(LT)]kPa </td <td>L_w</td> <td>Test section length.</td> <td>[L]</td> <td>m</td>	L _w	Test section length.	[L]	m
TD Dimensionless radius, $r_D = r/r_w$ - - Q_p Flow in test section immediately before stop of flow. Stabilised $[L^3/T]$ m^3/s Q_m Arithmetical mean flow during perturbation phase. $[L^3/T]$ m^3/s V Volume $[L^3]$ m^3/s V_w Water volume in test section. $[L^1]$ m^3 V_w Water volume in test section. $[L^1]$ m^3 V_w Water volume in test section. $[L^1]$ m^3 V_w Water volume in test section. $[L^1]$ m^3 V_w Duration of rest phase before perturbation phase. $[T]$ hour,min,s t_u Duration of recovery phase (from p_v to p_v). $[T]$ s t_u Duration of recovery phase. $[T]$ s respectively. dt at $q_u = (d_1 \cdot p) / (d_1 + p) Agarwal equivalent time with dt as running time for recovery phase. [M/(LT)^2] kPa p_b Static pressure; including non-dynamic pressure in sormally ignored in estimating the potential in groundwater flow relations. [M/(LT)^2] kPa p_a Atmospheric pressure [M/(LT)^2] $	r _w	Borehole, well or soil pipe radius in test section.	[L]	m
	r _D	Dimensionless radius, $r_D = r/r_w$	-	-
pump flow in flow logging.Image: Constraint of the second se	Q _p	Flow in test section immediately before stop of flow. Stabilised	$[L^3/T]$	m ³ /s
Q_m Arithmetical mean flow during perturbation phase. $[L^3/T]$ m^3/s V_w Volume $[L^3]$ m^3 V_w Water volume in test section. $[L^3]$ m^3 V_p Total water volume injected/pumped during perturbation $[L^3]$ m^3 $phase.$ $[T]$ m^3 m^3 t Time $[T]$ m^3 t_0 Duration of rest phase before perturbation phase. $[T]$ s t_p Duration of recovery phase (from f_p to p_p). $[T]$ s t_r Duration of recovery phase (from f_p to p_p). $[T]$ s t_r times for various phases during a hydro test. $[T]$ hour,min,sdtRunning time from start of flow phase and recovery phase $[T]$ s $respectively.$ s s $running time for recovery phase.st_0t_p = T t / (S r_s^2).ssrunning time for recovery phase.t_0t_p = T t / (S r_s^2).ssst_0t_p = T t / (S r_s^2).ssst_pStatic pressure; including non-dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M'(LT)^2]kPap_pAtmospheric pressure[M'(LT)^2]kPaM'(LT)^2kPap_pAtmospheric pressurep_p - [M'(LT)^2]kPap_qGauge pressure before test begins, prior to packer expansion.[M'(LT)^2]kPap_p$	- <u>i</u>	pump flow in flow logging.		
VVolume[L ³]m ³ V_w Water volume in jected/pumped during perturbation[L ³]m ³ V_p Total water volume injected/pumped during perturbation[L ³]m ³ $phase.$ [T]hour,min,s[L t Time[T]hour,min,s t_0 Duration of perturbation phase. (from p_b to p_p).[T]s t_p Duration of perturbation phase. (from p_b to p_p).[T]s t_1 Duration of recovery phase (from p_b to p_p).[T]s t_1 Times for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]srespectivelydt_e $d_{t_e} = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt as[T]srunning time for recovery phaset_0t_p = T \cdot t / (S \cdot t_a^{-1}). Dimensionless timepStatic pressure; including non-dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)^2]kPap_aAtmospheric pressure.[M/(LT)^2]kPa-p_aAtmospheric pressure.[M/(LT)^2]kPap_pPressure during perturbation phase.[M/(LT)^2]kPap_pPressure during perturbation phase.[M/(LT)^2]kPap_pPressure during perturbation phase.[M/(LT)^2]kPap_pPressure during perturbation phas$	Qm	Arithmetical mean flow during perturbation phase.	$[L^3/T]$	m ³ /s
V_w Water volume in test section. $[L^3]$ m^3 V_p Total water volume injected/pumped during perturbation $[L^1]$ m^3 $phase.$ Time $[L^1]$ m^1 t Time $[T]$ hour,min,s t_0 Duration of rest phase before perturbation phase. $[T]$ s t_p Duration of perturbation phase. (from flow start as far as p_0). $[T]$ s t_p Duration of recovery phase (from p_p to p_p). $[T]$ s t_r Quration of recovery phase (from p_p to p_p). $[T]$ s t_r Running time from start of flow phase and recovery phase $[T]$ s $respectively.$ $dt = (dt : tp) / (dt + tp) Agarwal equivalent time with dt as[T]srunning time for recovery phase.[T]sst_0t_p = T t / (S \cdot r_w^2). Dimensionless timepStatic pressure; including non-dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)^2]kPap_aAtmospheric pressure[M/(LT)^2]kPap_bp_aAtmospheric pressure, p_c=p_a+p_w[M/(LT)^2]kPap_pPressure during perturbation phase.[M/(LT)^2]kPap_pPressure during recovery.[M/(LT)^2]kPap_pPressure during recovery.[M/(LT)^2]kPap_pPressure during recovery.[M/(LT)^2]kPap_pPressure during neovery.[M/(LT)^2]$	V	Volume	[L ³]	m ³
V_p Total water volume injected/pumped during perturbation phase. $[L^3]$ m^3 t TimeTimeThour,min,s t_0 Duration of rest phase before perturbation phase.Ts t_p Duration of rest phase before perturbation phase.Ts t_p Duration of recovery phase (from flow start as far as p_0).Ts t_{ψ} Duration of recovery phase (from p_p to p_p).Ts t_{ψ} Times for various phases during a hydro test.Thour,min,sdtRunning time from start of flow phase and recovery phaseTs t_0 $t_p = \tau \cdot / (S \cdot r_p^2)$. Dimensionless time p Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations. $[M/(LT)^2]$ kPa p_a Atmospheric pressure $[M/(LT)^2]$ kPa $M/(LT)^2]$ kPa p_g Gauge pressure; $p_i=p_a+p_a$ $[M/(LT)^2]$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_r Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_p Pressure during perurbation phase. $[M/(LT)^2]$ kPa p_p <t< td=""><td>V_{w}</td><td>Water volume in test section.</td><td>$[L^3]$</td><td>m³</td></t<>	V_{w}	Water volume in test section.	$[L^3]$	m ³
Image: constraint of the second se	V _p	Total water volume injected/pumped during perturbation	$[L^3]$	m ³
tTime[T]hour,min,s t_0 Duration of rest phase before perturbation phase.[T]s t_p Duration of perturbation phase. (from flow start as far as p_0).[T]s t_r Duration of recovery phase (from p_p to p_T).[T]s t_1 , t_2 etcTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]s dt_e $dt_e = (dt \cdot tp) / (dt + p)$ Agarwal equivalent time with dt as[T]s t_0 $t_0 = T \cdot t / (S \cdot r_n^2)$. Dimensionless timepStatic pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow[M/(LT) ²] p_a Atmospheric pressure $[M/(LT)^2]$ kPa p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. $[M/(LT)^2]$ kPa p_g Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_r Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_r Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_r Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_p Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ <t< td=""><td></td><td>phase.</td><td></td><td></td></t<>		phase.		
t_0 Duration of rest phase before perturbation phase.[T]s t_p Duration of recovery phase (from flow start as far as p_p).[T]s t_F Duration of recovery phase (from p_1 to p_1).[T]s t_1 , t_2 etcTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]s dt_c $dt_c = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt as[T]st_0t_p = T \cdot t / (S \cdot r_a^2). Dimensionless timepStatic pressure; including non-dynamic pressure whichdepends on water velocity. Dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)2]kPap_aAtmospheric pressure[M/(LT)2]kPap_bGauge pressure; Difference between absolute pressure andatmospheric pressure.[M/(LT)2]kPap_iPressure before test begins, prior to packer expansion.[M/(LT)2]kPap_aPressure during perturbation phase.[M/(LT)2]kPap_bPressure during section before flow stop.[M/(LT)2]kPap_bPressure in measuring section before flow stop.[M/(LT)2]kPap_bPressure in measuring section at end of recovery.[M/(LT)2]kPap_bPressure in measuring section before flow stop.[M/(LT)2]kPap_bPressure in measuring section before flow stop.[M/(LT)2]kPap_bPressure in measuring s$	t	Time	[T]	hour,min,s
l_p Duration of perturbation phase. (from flow start as far as p_p).[T]s t_F Duration of recovery phase (from p_t to p_F).[T]hour,min,s t_1, t_2 etcTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]s $espectively.$ [T]s dt_e $dt_e = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt as[T]st_Dt_D = T_1 / (S \cdot r_w^2). Dimensionless timepStatic pressure; including non-dynamic pressure whichdepends on water velocity. Dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)^2]kPap_tAbsolute pressure; p_t = p_a + p_a[M/(LT)^2]kPap_gGauge pressure; p_t = p_a + p_a[M/(LT)^2]kPap_0Initial pressure before test begins, prior to packer expansion.[M/(LT)^2]kPap_rPressure during perturbation phase.[M/(LT)^2]kPap_sPressure during section before flow stop.[M/(LT)^2]kPap_pPressure in measuring section before flow stop.[M/(LT)^2]kPap_pPressure in measuring section before flow stop.[M/(LT)^2]kPap_pPressure difference, drawdown of pressure surface between[M/(LT)^2]kPap_pPressure difference, drawdown of pressure surface between[M/(LT)^2]kPap_pPressure in measuring section before flow stop.[M/$	t ₀	Duration of rest phase before perturbation phase.	[T]	S
$t_{\rm F}$ Duration of recovery phase (from $p_{\rm p}$ to $p_{\rm F}$).[T]s t_1, t_2 etcTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]s dt_e $dt_e = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt as[T]st_Dt_D = T:t/(S \cdot T_w^3). Dimensionless timepStatic pressure; including non-dynamic pressure which[M/(LT)^2]kPadepends on water velocity. Dynamic pressure is normallyignored in estimating the potential in groundwater flow[M/(LT)^2]kPap_aAtmospheric pressure[M/(LT)^2]kPa[M/(LT)^2]kPap_aGauge pressure; p_r=p_a+p_a[M/(LT)^2]kPap_gGauge pressure; outring section before start of flow.[M/(LT)^2]kPap_iPressure before test begins, prior to packer expansion.[M/(LT)^2]kPap_iPressure during perturbation phase.[M/(LT)^2]kPap_aPressure during section before flow stop.[M/(LT)^2]kPap_FPressure during section at end of recovery.[M/(LT)^2]kPap_FPressure in measuring section at end of recovery.[M/(LT)^2]kPap_FPressure difference, drawdown of pressure surface between[M/(LT)^2]kPap_FPressure in measuring section at end of recovery.[M/(LT)^2]kPap_FPressure in measuring section at end of recovery.[M/(L$	t _p	Duration of perturbation phase. (from flow start as far as p _p).	[T]	S
t_1 , t_2 etcTimes for various phases during a hydro test.[T]hour,min,sdtRunning time from start of flow phase and recovery phase[T]s dt_e $dt_e = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt asrunning time for recovery phase.[T]st_Dt_p = T \cdot t / (S \cdot r_p^2). Dimensionless timepStatic pressure; including non-dynamic pressure whichdepends on water velocity. Dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)2]kPap_aAtmospheric pressurep. [p_a+p_a.[M/(LT)2]kPap_gGauge pressure; p_i=p_a+p_a.[M/(LT)2]kPap_gGauge pressure; Difference between absolute pressure andatmospheric pressure.[M/(LT)2]kPap_iPressure in measuring section before start of flow.[M/(LT)2]kPap_rPressure during perturbation phase.[M/(LT)2]kPap_pPressure in measuring section before flow stop.[M/(LT)2]kPap_pPressure in measuring section at end of recovery.[M/(LT)2]kPap_pPressure infreence, drawdown of pressure surface betweentwo points of time.[M/(LT)2]kPap_pp_p c = p_r - p_r, drawdown/pressure increase ofpressure surface between two points of time duringperturbation phase. dp_r susually expressed positive.[M/(LT)2]kPadp_rdp_r = p_r - p_p or = p_r - p_r, maximal pressure increase/drawdown[M/(LT)2]kPadp_r$	t _F	Duration of recovery phase (from p_p to p_F).	[T]	S
dtRunning time from start of flow phase and recovery phase respectively.[T]sdte $dt_e = (dt \cdot tp) / (dt + tp) Agarwal equivalent time with dt asrunning time for recovery phase.[T]st_Dt_D = T \cdot t / (S \cdot r_w^2). Dimensionless timepStatic pressure; including non-dynamic pressure whichdepends on water velocity. Dynamic pressure is normallyignored in estimating the potential in groundwater flowrelations.[M/(LT)2]kPap_tAtmospheric pressureGauge pressure; Difference between absolute pressure andatmospheric pressure.[M/(LT)2]kPap_gGauge pressure; Difference between absolute pressure andatmospheric pressure.[M/(LT)2]kPap_0Initial pressure before test begins, prior to packer expansion.[M/(LT)2]kPap_gPressure in measuring section before flow.[M/(LT)2]kPap_gPressure in measuring section before flow stop.[M/(LT)2]kPap_gPressure in measuring section before flow stop.[M/(LT)2]kPap_gPressure in measuring section before flow stop.[M/(LT)2]kPap_gDp=2\pi:T:p/(Q:p_wg), Dimensionless pressureodpPressure in measuring section of pressure surface betweentwo points of time.[M/(LT)2]kPap_gdp_f = p_i - p_f or = p_f - p_i, drawdown/pressure increase ofpressure surface between two points of time duringperturbation phase. dp_f usually expressed positive.[M/(LT)2]kPadp_gdp_g = p_s - p_p or = p_p - p_s, maximal pressure$	t_1, t_2 etc	Times for various phases during a hydro test.	[T]	hour,min,s
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	dt	Running time from start of flow phase and recovery phase	[T]	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		respectively.		
tunning time for recovery phasetbtb = T:t / (S: r_w^2). Dimensionless time-pStatic pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.[M/(LT) ²]paAtmospheric pressure[M/(LT) ²]kPaAtmospheric pressure; $p_i=p_a+p_a$ [M/(LT) ²]kPaGauge pressure; Difference between absolute pressure and atmospheric pressure.[M/(LT) ²]kPaPiPressure before test begins, prior to packer expansion.[M/(LT) ²]kPaPressure during precturbation phase.[M/(LT) ²]kPaPressure during recovery.[M/(LT) ²]kPaPressure in measuring section before flow stop.[M/(LT) ²]kPaPpPressure in measuring section before flow stop.[M/(LT) ²]kPappPressure in measuring section at end of recovery.[M/(LT) ²]kPappPressure in measuring section at end of recovery.[M/(LT) ²]kPapressure surface drawdown of pressure surface between two points of time.[M/(LT) ²]dpdp_r = p_r - p_r or = p_r - p_i, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_r usality expressed positive.[M/(LT) ²]dpsdp_s = p_s - p_p or = p_p - p_s, maximal pressure[M/(LT) ²]kPapressure surface between two points of time during perturbation phase. dp_o expressed positive.[M/(LT) ²]dpsdps = p_s - p_p or = p_p - p_s, maximal pressure	dt _e	$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as	[T]	S
$ \begin{array}{cccc} t_{D} & t_{D} = T \cdot t / (S \cdot r_{w}^{2}) . Dimensionless time & - & - & - & - & - & - & - & - & - & $		running time for recovery phase.		
pStatic pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations. $[M/(LT)^2]$ kPa p_a Atmospheric pressure $[M/(LT)^2]$ kPa p_t Absolute pressure; $p_t=p_a+p_g$ $[M/(LT)^2]$ kPa p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. $[M/(LT)^2]$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_r Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_p Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa p_p Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase of pressure surface between two points of time during perturbation phase. dp_r usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_s = p_p - p_p$, $maximal$ pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_r = p_p - p_r$, m	t _D	$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations. p_a Atmospheric pressure p_t $[M/(LT)^2]$ kPa p_p Atmospheric pressure: $p_t^-p_a^+p_a$ $[M/(LT)^2]$ kPa p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. p_i $[M/(LT)^2]$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ $[M/(LT)^2]$ kPa p_i Pressure in measuring section before start of flow. $[M/(LT)^2]$ $[M/(LT)^2]$ kPa p_f Pressure during perturbation phase. p_s $[M/(LT)^2]$ kPa p_s Pressure in measuring section before flow stop. $[M/(LT)^2]$ $[M/(LT)^2]$ kPa p_p Pressure in measuring section at end of recovery. $[M/(LT)^2]$ $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ $[M/(LT)^2]$ kPa p_D $p_D=2\pi T \cdot p/(Q \cdot p_w g)$, Dimensionless pressure two points of time dp Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_f = p_i \cdot p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $[M/(LT)^2]$ kPa dp_p $dp_p = p_1 - p_p$ or $= p_r$	р	Static pressure; including non-dynamic pressure which	$[M/(LT)^2]$	kPa
ignored in estimating the potential in groundwater flow relations.Image: mathematical system is a straight of the probability of the pr		depends on water velocity. Dynamic pressure is normally		
relations. $M/(LT)^2$ kPa p_a Atmospheric pressure $M/(LT)^2$ kPa p_t Absolute pressure; $p_i=p_a+p_a$ $M/(LT)^2$ kPa p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. $M/(LT)^2$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $M/(LT)^2$ kPa p_i Pressure in measuring section before start of flow. $M/(LT)^2$ kPa p_f Pressure during perturbation phase. $M/(LT)^2$ kPa p_s Pressure during recovery. $M/(LT)^2$ kPa p_p Pressure in measuring section before flow stop. $M/(LT)^2$ kPa p_F Pressure in measuring section at end of recovery. $M/(LT)^2$ kPa p_D $p_D=2\pi \cdot T \cdot p/(Q \cdot p_wg)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between two points of time. $M/(LT)^2$ kPa dp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during persure surface between two points of time during pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $M/(LT)^2$ kPa dp_p $dp_F = p_p - p_p$ or $= p_p - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $M/(LT)^2$ kPa dp_p $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturb		ignored in estimating the potential in groundwater flow		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		relations.	2	
p_t Absolute pressure; $p_t=p_a+p_g$ $[M/(LT)^2]$ kPa p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. $[M/(LT)^2]$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_i Pressure in measuring section before start of flow. $[M/(LT)^2]$ kPa p_f Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_p $p_{ressure in measuring section at end of recovery.[M/(LT)^2]kPap_Dp_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g), Dimensionless pressuredpPressure difference, drawdown of pressure surface between[M/(LT)^2]kPap_Dp_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g), Dimensionless pressure increase ofpressure difference, drawdown of pressure surface between[M/(LT)^2]kPadp_fdp_f = p_i \cdot p_f or = p_f - p_i, drawdown/pressure increase ofpressure surface between two points of time duringperturbation phase. dp_f usually expressed positive.[M/(LT)^2]kPadp_pdp_s = p_s - p_p or = p_p - p_s, maximal pressure increase/drawdown ofpressure surface between two points of time duringperturbation phase. dp_p expressed positive.[M/(LT)^2]kPadp_pdp_f = p_p - p_f or = p_f - p_p, maximal pressurei$	pa	Atmospheric pressure	$[M/(LT)^2]$	kPa
p_g Gauge pressure; Difference between absolute pressure and atmospheric pressure. $[M/(LT)^2]$ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_i Pressure in measuring section before start of flow. $[M/(LT)^2]$ kPa p_f Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi \cdot T \cdot p/(Q \cdot p_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_f = p_i \cdot p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_p - p_p$ or $= p_p - p_s$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_P - p_P$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_p expressed positive. $[M/(LT)^2]$ kPa<	pt	Absolute pressure; $p_t = p_a + p_g$	$[M/(LT)^2]$	kPa
atmospheric pressure. $ M/(LT)^2 $ kPa p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_i Pressure in measuring section before start of flow. $[M/(LT)^2]$ kPa p_f Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between $[M/(LT)^2]$ kPa dp_f $dp_r = p_i - p_r$ or $= p_r - p_i$, drawdown/pressure increase of $[M/(LT)^2]$ kPa dp_f $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_p $dp_s = p_s - p_p$ or $= p_p - p_s$, maximal pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_p $dp_r = p_i - p_p$ or $= p_r - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_r = p_p - p_r$ or $= p_r - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_r = p_p - p_r$ or $= p_r - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_r = p_p - p_r$ or $= p_r - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_r = p_p - p_r$ or $= p_r - p_p$, maximal pr	pg	Gauge pressure; Difference between absolute pressure and	$[M/(LT)^2]$	kPa
p_0 Initial pressure before test begins, prior to packer expansion. $[M/(LT)^2]$ kPa p_i Pressure in measuring section before start of flow. $[M/(LT)^2]$ kPa p_f Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi T \cdot p/(Q \cdot p_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between $[M/(LT)^2]$ kPa dp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of $[M/(LT)^2]$ kPa dp_f $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_p $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of $[M/(LT)^2]$ kPa dp_p dp_s = $p_s - p_p$ or $= p_p - p_s$, maximal pressure increase/drawdown $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_s$, maximal pressure increase/drawdown $[M/(LT)^2]$ kPa dp_F $p_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure <t< td=""><td></td><td>atmospheric pressure.</td><td></td><td></td></t<>		atmospheric pressure.		
p_i Pressure in measuring section before start of flow. $[M/(L1)^2]$ kPa p_r Pressure during perturbation phase. $[M/(L1)^2]$ kPa p_s Pressure during recovery. $[M/(L1)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(L1)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(L1)^2]$ kPa p_D $p_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between $[M/(L1)^2]$ kPa dp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(L1)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(L1)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(L1)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(L1)^2]$ kPa dp_p $dp_r = p_p - p_r$ or $= p_r - p_p$, maximal pressure $[M/(L1)^2]$ kPa dp_F $p_P = p_r = p_r - p_p$, maximal pressure $[M/(L1)^2]$ kPa dp_F $dp_F = p_p - p_F$	p ₀	Initial pressure before test begins, prior to packer expansion.	$\left[M/(LT)^2 \right]$	kPa
p_f Pressure during perturbation phase. $[M/(LT)^2]$ kPa p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi \cdot T \cdot p/(Q \cdot p_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between $[M/(LT)^2]$ kPa dp_f $dp_f = p_i \cdot p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_r = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_r expressed positive. $[M/(LT)^2]$ kPa	pi	Pressure in measuring section before start of flow.	$\left[M/(LT)^2 \right]$	kPa
p_s Pressure during recovery. $[M/(LT)^2]$ kPa p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi\cdot T\cdot p/(Q\cdot \rho_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between $[M/(LT)^2]$ kPa $two points of timedp_fdp_f = p_i - p_f or = p_f - p_i, drawdown/pressure increase of[M/(LT)^2]kPapressure surface between two points of time duringperturbation phase. dp_f usually expressed positive.[M/(LT)^2]kPadp_sdp_s = p_s - p_p or = p_p - p_s, pressure increase/drawdown ofpressure surface between two points of time during recoveryphase. dp_s usually expressed positive.[M/(LT)^2]kPadp_pdp_p = p_i - p_p or = p_p - p_i, maximal pressure increase/drawdown ofof pressure surface between two points of time duringperturbation phase. dp_p expressed positive.[M/(LT)^2]kPadp_pdp_p = p_i - p_p or = p_p - p_i, maximal pressure increase/drawdownof pressure surface between two points of time duringperturbation phase. dp_p expressed positive.[M/(LT)^2]kPadp_Fdp_F = p_p - p_F or = p_F - p_p, maximal pressureincrease/drawdown of pressure surface between two points oftime during recovery phase. dp_p expressed positive.[M/(LT)^2]kPa$	p _f	Pressure during perturbation phase.	$\left[M/(LT)^2 \right]$	kPa
p_p Pressure in measuring section before flow stop. $[M/(LT)^2]$ kPa p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi\cdot T\cdot p/(Q\cdot \rho_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dp_p expressed positive. $[M/(LT)^2]$ kPa	p _s	Pressure during recovery.	$\left[M/(LT)^2 \right]$	kPa
p_F Pressure in measuring section at end of recovery. $[M/(LT)^2]$ kPa p_D $p_D=2\pi\cdot T\cdot p/(Q\cdot p_wg)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_f = p_i \cdot p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dns expressed positive. $[M/(LT)^2]$ kPa	p _p	Pressure in measuring section before flow stop.	$\left[M/(LT)^2 \right]$	kPa
p_D $p_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure dp Pressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPa dp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. $[M/(LT)^2]$ kPa	p _F	Pressure in measuring section at end of recovery.	$\left[M/(LT)^{2} \right]$	kPa
dpPressure difference, drawdown of pressure surface between two points of time. $[M/(LT)^2]$ kPadp_f $dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPadp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPadp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPadp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPadp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dp_p expressed positive. $[M/(LT)^2]$ kPa	p _D	$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	-	-
two points of time.Image: Mark time increase of time increase of time difference increase of time difference increase of time difference increase of time difference increase increase of time difference increase increase of time difference increase increase of time difference increase increase increase of time difference increase increa	dp	Pressure difference, drawdown of pressure surface between	$[M/(LT)^2]$	kPa
dp_fdp_f = p_i - p_f or = p_f - p_idrawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(L1)^2]$ kPadp_sdp_s = p_s - p_p or = p_p - p_s, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPadp_pdp_p = p_i - p_p or = p_p - p_i, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPadp_pdp_p = p_i - p_p or = p_p - p_i, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPadp_Fdp_F = p_p - p_F or = p_F - p_p, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dp_p expressed positive. $[M/(LT)^2]$ kPa	1	two points of time.		1.5
pressure surface between two points of time during perturbation phase. dp_f usually expressed positive. $[M/(LT)^2]$ kPa dp_s $dp_s = p_s - p_p$ or $= p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive. $[M/(LT)^2]$ kPa dp_p $dp_p = p_i - p_p$ or $= p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $[M/(LT)^2]$ kPa dp_F $dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_r expressed positive. $[M/(LT)^2]$ kPa	dp _f	$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of	$[M/(L1)^2]$	кРа
dpsdps = ps - pp or = pp - ps, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dps usually expressed positive. $[M/(LT)^2]$ kPadppdpp = pi - pp or = pp - pi, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dpp expressed positive. $[M/(LT)^2]$ kPadppdpp = pi - pp or = pp - pi, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dpp expressed positive. $[M/(LT)^2]$ kPadpFdpF = pp - pF or = pF - pp, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dpp expressed positive $[M/(LT)^2]$ kPa		pressure surface between two points of time during		
dpsdps = ps - pp or = pp - ps, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dps usually expressed positive. $[M/(L1)^2]$ kPadppdpp = pi - pp or = pp - pi, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dpp expressed positive. $[M/(L1)^2]$ kPadpFdpF = pp - pF or = pF - pp, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. $[M/(LT)^2]$ kPa	1	perturbation phase. dp _f usually expressed positive.	EN (/(I T) ²]	1.D
$\begin{array}{c c} dp_{p} & dp_{p} = p_{i} - p_{p} \text{ or } = p_{p} - p_{i}, \textbf{maximal pressure increase/drawdown} & [M/(LT)^{2}] & kPa \\ \hline dp_{p} & dp_{p} = p_{i} - p_{p} \text{ or } = p_{p} - p_{i}, \textbf{maximal pressure increase/drawdown} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{F} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{F} - p_{F} \text{ or } = p_{F} - p_{F}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{F} - p_{F} \text{ or } = p_{F} - p_{F}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{F} - p_{F} \text{ or } = p_{F} - p_{F}, \textbf{maximal pressure} & [M/(LT)^{2}] & kPa \\ \hline dp_{F} & dp_{F} = p_{F} - p_{F} \text{ or } p_{F} + p_{F} + p_{F} \text{ or } p_{F} + p_{F} + p_{F} + p_{F} \text{ or } p$	ap _s	$dp_s = p_s - p_p$ or $p_p - p_s$, pressure increase/drawdown of	[M/(L1) ⁻]	кРа
$ \begin{array}{c} dp_{p} & dp_{p} = p_{i} - p_{p} \text{ or } = p_{p} - p_{i}, \textbf{maximal} \text{ pressure increase/drawdown} \\ dp_{p} & dp_{p} = p_{i} - p_{p} \text{ or } = p_{p} - p_{i}, \textbf{maximal} \text{ pressure increase/drawdown} \\ of \text{ pressure surface between two points of time during} \\ perturbation phase. dp_{p} expressed positive. \\ dp_{F} & dp_{F} = p_{p} - p_{F} \text{ or } = p_{F} - p_{p}, \textbf{maximal} \text{ pressure} \\ \text{ increase/drawdown of pressure surface between two points of} \\ time during recovery phase. dp_{p} expressed positive. \\ \end{array} $		pressure surface between two points of time during recovery		
$\frac{dp_p}{dp_p} = \frac{dp_p - p_i - p_p}{dp_p - p_i}, \text{ maximal pressure increase/drawdown} [M/(LT)] = KFa$ of pressure surface between two points of time during perturbation phase. dp_p expressed positive. $\frac{dp_F}{dp_F} = \frac{dp_F - p_F}{dp_F - p_F} \text{ or } = p_F - p_P, \text{ maximal pressure}$ increase/drawdown of pressure surface between two points of time during recovery phase. dp_p expressed positive. $\frac{[M/(LT)^2]}{dp_F} = \frac{M}{dp_F} = \frac{M}{dp_F} = \frac{M}{dp_F} + \frac{M}{dp_F} = \frac{M}{dp_F} + \frac{M}{dp$	dn	phase. dp_s usually expressed positive.	$[M/(I T)^2]$	l/Do
$\frac{dp_{F}}{dp_{F}} = \frac{dp_{F} - p_{F}}{dp_{F} - p_{F}} \text{ or } p_{F} - p_{F}, \text{ maximal pressure} \qquad [M/(LT)^{2}] \text{ kPa}$	upp	$\mu p_p - p_i - p_p$ or $- p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during	[IVI/(LI)]	кга
$\frac{dp_F}{dp_F} = \frac{dp_F - p_F}{dp_F - p_F} \text{ or } = p_F - p_F, \text{ maximal pressure} \qquad [M/(LT)^2] \text{ kPa}$ $\frac{dp_F}{dp_F} = \frac{dp_F - p_F}{dp_F - p_F} \text{ or } = p_F - p_F, \text{ maximal pressure} \text{ time during recovery phase } dp_F \text{ expressed positive}$		nerturbation phase dn expressed positive		
μ_{PF} $\mu_{PF} = \mu_{PF}$ or $\mu_{F} = \mu_{P}$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase dn_{P} expressed positive	dn	$d\mathbf{n}_{r} = \mathbf{n}_{r} - \mathbf{n}_{r}$ or $= \mathbf{n}_{r} - \mathbf{n}_{r}$ maximal pressure	$[M/(I T)^2]$	kPa
time during recovery phase dn _r expressed positive	Aht	r_{PF} P_{P} P_{F} $Or P_{F}$ P_{P} , maximal pressure increase/drawdown of pressure surface between two points of		AI U
THE AUTHE TOOLY OF THAS, UNE CARCASCE POSITIVE.		time during recovery phase, dp_F expressed positive.		

		ET 3	
Н	Total head; (potential relative a reference level) (indication of h for phase as for p) $H=h+h+h$	[L]	m
h	Γ roundwater pressure level (hydraulie head (niezemetrie head)	Г Т]	
11	Groundwater pressure level (nydraune nead (prezometric nead,	[L]	III
	possible to use for level observations in borenoies, static		
	head)); (indication of h for phase as for p). $h=h_e+h_p$	FT 3	
h _e	Height of measuring point (Elevation head); Level above	[L]	m
	reference level for measuring point.		
Sp	Drawdown in measuring section before flow stop.	[L]	m
h_0	Initial above reference level before test begins, prior to packer	[L]	m
	expansion.		
h;	Level above reference level in measuring section before start	[L]	m
1	of flow		
hc	Level above reference level during perturbation phase	[L]	m
h	Level above reference level during recovery phase		m
11 _S	Level above reference level during recovery phase.		
n _p	Level above reference level in measuring section before flow	[L]	m
	stop.	FT 3	
h _F	Level above reference level in measuring section at end of	[L]	m
	recovery.		
dh	Level difference, drawdown of water level between two points	[L]	m
	of time.		
dh _f	$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of	[L]	m
-	pressure surface between two points of time during		
	perturbation phase dhe usually expressed positive		
dh	dh = h - h or $= h - h$ pressure increase/drawdown of	П.1	m
uns	$n_s = n_s = n_p or = n_p = n_s$, pressure increase, and wown or $n_s = n_s = n_s = n_s$	[12]	111
	phessa dh usually expressed positive		
.11.	phase. di_s usually expressed positive.	[]]	
an _p	$dn_p = n_i - n_p$ or $= n_p - n_i$, maximal pressure increase/drawdown	[L]	m
	of pressure surface between two points of time during		
	perturbation phase. dh _p expressed positive.		
dh _F	$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown	[L]	m
	of pressure surface between two points of time during		
	perturbation phase. dh _F expressed positive.		
Te _w	Temperature in the test section (taken from temperature		°C
	logging). Temperature		
Te _{w0}	Temperature in the test section during undisturbed conditions		°C
	(taken from temperature logging). Temperature		
σ	Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	$[L/T^2]$	m/s^2
8	oravity)	[=, -]	
-	Constant (approx 3 1/16)	ſ_1	
<i>π</i>	Desidual and a match be at Difference between	[-]	
1	Residual. $I = p_c - p_m$, $I = n_c - n_m$, etc. Difference between		
	measured data (p_m , n_m , etc) and estimated data (p_c , n_c , etc)	FT 2/m3	2,
Q/s	Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)	[L²/1]	m²/s
D	Interpreted flow dimension according to Barker, 1988.	[-]	-
dt_1	Time of starting for semi-log or log-log evaluated	[T]	S
	characteristic counted from start of flow phase and recovery		
	phase respectively.		
dt ₂	End of time for semi-log or log-log evaluated characteristic	[T]	S
2	counted from start of flow phase and recovery phase		
	respectively.		
Т	Transmissivity	$[L^2/T]$	m^2/s
T ₁	Transmissivity according to Move (1967)	$[1^2/T]$	m^2/s
Т	Transmissivity according to MOye (1907)	$\begin{bmatrix} L / I \end{bmatrix}$	$\frac{111}{5}$
I _S	Transmissivity evaluated from slug test	[L/1]	111 /S
1_{Sf} , 1_{Lf}	I ransient evaluation based on semi-log or log-log diagram for	[L ^{-/} I]	m⁻/s
l	perturbation phase in injection or pumping.	== 2 + =	2.
T_{Ss}, T_{Ls}	Transient evaluation based on semi-log or log-log diagram for	$[L^2/T]$	m²/s
	recovery phase in injection or pumping.		

APPENDIX 5

Normalized derivative plots

Synthesis

NORMALIZED DERIVATIVE PLOTS

The tests conducted in borehole KLX02 were analysed using the normalized derivative plot method described in Section 5.4.8 of the main report. The advantage of the normalized derivative plots is that the user not only can "read" the interval transmissivity of a certain test on the Y-axis of the plot (see Section 5.4.8 for details), but he can also compare the shape of the derivative of different tests and thus assess how the flow geometry differs from one test section to another. Similar and overlapping derivatives of tests conducted in different test sections indicate either that the tests are responding to the same dominating hydraulic structure or that they are responding to structures that have similar hydraulic behaviour. Use of this analysis method helps to identify typical patterns of hydraulic behaviour.

The derivatives of all tests were examined in the normalized plot and late test time transmissivity ranges were defined in which the results are clustered and behaviour is similar. The following transmissivity ranges were identified:

Colour	Тмім	Тмах
	2E-5	
	4E-7	2E-5
	3E-8	4E-7
	1E-10	3E-8
		1E-10

The individual tests were assigned to one of the transmissivity ranges. The further evaluation is concentrated on the five test groups, each of which is seen to be representative of a large number of observations made in this borehole. By considering the characteristics of each of the five groups it is possible to make a comprehensive appraisal of the complete set of results and of their implications for the hydraulic behaviour of the rock surrounding the borehole.

In the following each of the 100 m test sections is examined separately. All tests conducted in the respective 100 m section are plotted and the hydraulic behaviour of each of these sections is commented on.

Test Section 204 to 304 m b TOC

The total transmissivity in the 204 to 304 m section is approximately 2E-4 m^2/s . As seen in the figure above this transmissivity seems to be mainly concentrated in the section between 244 and 264 m depth. All other tests display transmissivities that are around one order of magnitude smaller. All tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high

skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	• 204 - 224	
	• 224 - 244	
• 204 - 304	• 244 - 264	
	• 264 - 284	
	• 284 - 304	• 300 - 305

Test Section 304 to 404 m b TOC

The total transmissivity in the 304 to 404 m section is approximately 5E-5 m²/s. As seen in the figure above this transmissivity seems to be mainly concentrated in the section between 304 and 324 m depth and further in the 5 m section between 315 and 320 m depth. All three tests show very similar behaviour which indicates that the structure tested in the section 315 m to 320 m depth is hydraulically dominant for the entire 100 m interval. Within the 20 m section 324 m to 344 m, the dominant structure is located in the 5 m interval between 335 and 340 m, both showing a transmissivity around 2E-6 m²/s.

The next highest transmissivity was tested in the 300 m to 305 m interval (approx. 1E-7 m^2/s).

All other tests display transmissivities lower than $3E-8 \text{ m}^2/\text{s}$. All tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	• 304 - 324	 305 - 310 310 - 315 315 - 320
	• 324 - 344	 325 - 330 330 - 335 335 - 340 341 - 346
• 304 - 404	• 344 - 364	
	• 364 - 384	
	• 384 - 404	• 385 - 390

The total transmissivity in the 404 to 504 m section is approximately 5E-7 m²/s. As seen in the figure above this transmissivity seems to be concentrated in the following 20 m sections: 424-444, 444-464 m and 464-484 m depth. Following 5 m sub-sections seem to dominate the hydraulic response: 434-439, 455-460 and 460-465 m depth.

All other tests display transmissivities lower than $3E-8 \text{ m}^2/\text{s}$. Most of the tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	• 404 - 424	
	• 424 - 444	• 434 - 439
• 404 - 504	• 444 - 464	 455 - 460 460 - 465
	• 464 - 484	 465 - 470 475 - 480 480 - 485
	• 484 - 504	

Test Section 504 to 604 m b TOC

The total transmissivity in the 504 to 604 m section is approximately 2E-9 m²/s. Most of the tests in this section show a clear two zone composite response, with the inner zone transmissivity slightly higher (factor of 3) than the outer zone transmissivity. The total transmissivity of the 504 to 604 m section seems to be concentrated in the interval between 510 m to 535 m depth (tested by several 5 m sections). All other test sections showed transmissivities lower than 1E-10 m²/s.

The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
• 504 - 604	• 504 - 524	 510 - 515 515 - 520 520 - 525
	• 524 - 544	 525 - 530 530 - 535

Test Section 604 to 704 m b TOC

The section 604 to 704 m depth was tested with only one 100 m interval which showed a transmissivity of approx. 2E-10 m^2/s and lower (clear two zone composite response). Due to the low transmissivity, no further tests were conducted.

The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
• 604 - 704		

Test Section 704 to 804 m b TOC

The test section 704 to 804 m depth shows a total transmissivity of approx. $6E-7 \text{ m}^2/\text{s}$. All transmissivity seems to be concentrated in the structure encompassed by the section 784 to 804 m depth. The transmissivities of all other tested sections are lower by approximately one order of magnitude or more.

All tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	• 724 - 744	
• 704 - 804	• 744 - 764	
	• 764 - 784	
	• 784 - 804	

Test Section 804 to 904 m b TOC

The total transmissivity of the section between 804 and 904 m depth is approx. $3E-7 \text{ m}^2/\text{s}$. Most of the transmissivity in this 100 m section seems to be concentrated in the 20 m interval between 844 and 864 m depth and to a lesser extent in the two intervals below, between 864 and 904 m depth. The intervals between 804 and 844 m depth show at least two orders of magnitude lower transmissivities.
All tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	• 804 - 824	
	• 824 - 844	
 804 - 904 	 844 - 864 	
	• 864 - 884	
	 884 - 904 	

Test Section 904 to 1004 m b TOC

The total transmissivity of the section between 904 and 1004 m depth is approx. 7E-7 m^2/s . Most of the transmissivity in this 100 m section seems to be concentrated in the 20 m interval between 922 and 942 m depth and to a lesser extent in the interval below, between 943 and 963 m depth. The other test sections show at least two orders of magnitude lower transmissivities. All tests show a smaller transmissivity in the borehole vicinity; this behaviour was modelled as a high skin in the analysis. A more thorough comment on the high skins encountered is given in the Conclusions-Section of the main report. The following figure presents the legend of the normalized plot. In this legend, the individual tests were given colours that are consistent to the transmissivity group they have been assigned to.

100 m	20 m	5 m
	9 04 - 924	
	• 922 - 942	
9 04 - 1004	● 943 - 963	
	● 964 - 984	
	• 984 - 1004	

BOREHOLE SYNTHESIS PLOT

The plot on the following page synthesizes the findings of the tests conducted in borehole KLS02. The individual components of the plot are:

- A synopsis of all tests conducted, including their assignment to one of the five transmissivity groups. The fields in the synopsis that have been assigned to a transmissivity group but do not explicitly show a test section, belong to tests that were not analysable because the transmissivity was too low.
- A transmissivity profile showing the recommended transmissivity and confidence range of all tests.
- An equivalent freshwater head profile. The head profile shows three distinct zones. The first zone between 204 m and 384 m depth shows freshwater heads between 9 and 10 m asl. The second zone between 384 and 604 m depth shows freshwater heads between 7 and 8 m asl which is distinctly different from the heads derived from the upper zone. Finally, the third zone at depths below 604 m shows freshwater heads between 3 and 6 m asl and with increasing tendency towards greater depth. These three zones were highlighted with different colours in the profile.

Borehole: KLX02

APPENDIX 6

SICADA data tables

General Information

Borehole	Borehole	Borehole	Test type	Formation	Date for	Start flow/	Qp	tp	t _F	\mathbf{h}_{i}	$\mathbf{h}_{\mathbf{p}}$	$h_{\rm F}$	\mathbf{p}_{i}	p_p	$p_{\rm F}$	Te _w	EC_{w}	$\mathrm{TDS}_{\mathrm{w}}$	$\mathrm{TDS}_{\mathrm{wm}}$	Reference	Comments
	secup	seclow		type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m**3/s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/ L)	(mg/ L)		(-)
KLX02	204	304	1	1	20030710	094200	7.92E-04	2160	2040				2026	2227	2030	10					
KLX02	304	404	1	1	20030710	144600	2.20E-04	1980	1800				3011	3210	3010	11.5					
KLX02	404	504	1	1	20030710	183100	2.67E-06	1980	1920				3968	4167	3969	-					
KLX02	504	604	1	1	20030711	143600	2.67E-07	1800	8340				4987	5187	4975	14.5					
KLX02	604	704	1	1	20030711	193500	2.50E-08	1800	42300				5953	6149	5897	15.7					
KLX02	704	804	1	1	20030712	102300	3.32E-06	3600	1800				6874	7074	6876	17.3					
KLX02	804	904	1	1	20030712	151700	1.58E-06	1800	1980				7864	8063	7862	18.8					
KLX02	904	1004	1	1	20030712	184000	2.87E-06	1800	1800				8850	9048	8850	20.5					
KLX02	204	224	1	1	20030714	134600	5.34E-05	1200	1200				2030	2230	2030	10					
KLX02	224	244	1	1	20030714	162700	2.40E-05	1500	1200				2227	2427	2227	10					
KLX02	244	264	1	1	20030714	182800	7.31E-04	1200	1500				2423	2622	2427	10.5					
KLX02	264	284	1	1	20030715	091200	2.67E-05	1200	1200				2616	2817	2617	10.7					
KLX02	284	304	1	1	20030715	112600	1.75E-05	1200	1200				2813	3012	2813	11					
KLX02	304	324	1	1	20030715	140100	1.90E-04	1200	1200				3011	3210	3011	11.2					
KLX02	324	344	1	1	20030715	161500	3.97E-05	1200	1200				3207	3407	3407	11.5					
KLX02	344	364	1	1	20030715	181600	-	300	49440				3432	3666	3403	12					
KLX02	364	384	1	1	20030716	091600	-	120	1320				3600	3810	3604	12.2					
KLX02	384	404	1	1	20030716	130200	6.96E-08	1200	1200				3773	4022	3776	12.5					
KLX02	404	424	1	1	20030716	150300	-	180	1200				4010	4247	4246	12.8					
KLX02	424	444	1	1	20030716	164800	8.22E-07	1200	1200				4165	4364	4165	13.1					
KLX02	444	464	1	1	20030716	190600	1.47E-06	1200	1800				4363	4562	4363	13.4					
KLX02	464	484	1	1	20030717	092000	1.76E-07	1800	1200				4558	4755	4558	13.6					
KLX02	481	501	1	1	20030717	113900	3.33E-09 ^(bml)	1800	1800				4744	4943	4759	14					
KLX02	484	504	1	1	20030717	135300	8.28E-09 ^(bml)	1800	2400				477.6	4975	4774	14					
KLX02	504	524	1	1	20030717	172800	1.30E-07	1800	2700				4983	5183	4980	14.2					
KLX02	524	544	1	1	20030717	200000	1.17E-07	3600	1800				5165	5363	5184	14.5					
KLX02	544	564	1	1	20030718	120100	-	480	5400				5365	5555	5426	14.9					
KLX02	564	584	1	1	20030718	152100	-	180	3840		l		5614	5817	5794	15.2					
KLX02	584	604	1	1	20030718	174800	8.33E-09 ^(bml)	1200	1800				5767	5963	5820	15.5					

Borehole	Borehole	Borehole	Test type	Formation	Date for	Start flow/	Qp	tp	t _F	\mathbf{h}_{i}	$\mathbf{h}_{\mathbf{p}}$	$h_{\rm F}$	\mathbf{p}_{i}	\mathbf{p}_{p}	$p_{\rm F}$	Te _w	EC_{w}	TDS_w	$\mathrm{TDS}_{\mathrm{wm}}$	Reference	Comments
	(m)	(m)	(1-6)	type	VYYYMMDD	hhmmss	(m**3/s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(°C)	(mS/m)	(mg/ I)	(mg/I)		(-)
KI X02	704	(11)	(1-0)	1	20030719	095500	(11 5/3)	1200	1800	(11)		(111)	(KI ŭ) 6950	7147	7117	17.3	(1113/111)	(ing/ L)	(ing/ L)		()
KLX02	704	744	1	1	20030719	145300	6 33E-07	1200	1800				7081	7281	7081	17.5					
KLX02	744	764	1	1	20030719	171000	2 79E-07	1800	1200				7001	7475	7001	17.0					
KLX02	764	784	1	1	20030719	193500	1.65E-07	7200	1200				7474	7672	7474	18.2					
KLX02	784	804	1	1	20030720	090900	2.24E-06	1200	1200				7664	7884	7665	18.6					
KLX02	804	824	1	1	20030720	115400	5.00E-08	2400	1800				7866	8066	7865	18.9					
KLX02	824	844	1	1	20030720	144900	4.14E-08	1800	2400				8069	8319	8066	19.2					
KLX02	844	864	1	1	20030720	174500	1.00E-06	3600	1800				8261	8461	8261	20.1					
KLX02	864	884	1	1	20030721	092400	4.65E-07	1200	1200				8454	8654	8455	19.9					
KLX02	884	904	1	1	20030721	113600	3.50E-07	1800	1800				8658	8858	8659	20.2					
KLX02	904	924	1	1	20030721	152800	5.83E-08	1200	1200				8855	9055	8855	20.6					
KLX02	922	942	1	1	20030721	174200	2.81E-06	1200	1800				9040	9240	9039	20.9					
KLX02	943	963	1	1	20030722	091800	3.91E-07	1800	1200				9285	9486	9282	21.1					
KLX02	964	984	1	1	20030722	114700	2.23E-08	2400	1800				9450	9653	9453	21.5					
KLX02	984	1004	1	1	20030722	142000	9.29E-08	2400	1800				9648	9850	9647	21.8					
KLX02	300	305	1	1	20030724	113300	7.11E-07	1800	1800				2968	3168	2968	11.4					
KLX02	305	310	1	1	20030724	134700	5.00E-09 ^(bml)	1200	7200				3021	3221	3019	11.3					
KLX02	310	315	1	1	20030724	173100	2.50E-08	1800	1800				3067	3267	3067	11.5					
KLX02	315	320	1	1	20030725	090500	1.82E-04	1200	1200				3112	3310	3114	11.5					
KLX02	320	325	1	1	20030725	123000	-	300	420				3359	3491	3732	11.6					
KLX02	325	330	1	1	20030725	140900	1.33E-08 ^{(bml}	1800	1800				3214	3415	3216	11.7					
KLX02	330	335	1	1	20030725	162400	5.00E-09 ^{(bml}	1800	2700				3264	3464	3265	11.8					
KLX02	335	340	1	1	20030725	184200	3.11E-05	1200	1200				3312	3512	3312	11.7					
KLX02	341	346	1	1	20030726	095000	-	1200	1800				3490	3688	3666	11.9					
KLX02	385	390	1	1	20030726	115800	5.00E-08	1200	5160				3783	3984	3780	12.4					
KLX02	390	395	1	1	20030726	153900	-	1200	300				3975	4183	4183	12.6					
KLX02	395	400	1	1	20030726	-	-	-	-				-	-	-	12.7					
KLX02	400	405	1	1	20030727	-	-	-	-				-	-	-	12.8					
KLX02	420	425	1	1	20030727	-	-	-	-				-	-	-	13					
KLX02	425	430	1	1	20030727	-	-	-	-				-	-	-	13.1					
KLX02	429	434	1	1	20030727	-	-	-	-				-	-	-	13.2					
KLX02	434	439	1	1	20030727	153900	8.35E-07	1800	1200				4261	4461	4261	13.3					

Borehole	Borehole	Borehole	Test type	Formation	Date for	Start flow/	Qp	tp	t _F	\mathbf{h}_{i}	$\mathbf{h}_{\mathbf{p}}$	\mathbf{h}_{F}	\mathbf{p}_i	p_p	\mathbf{p}_{F}	Te _w	EC_{w}	$\mathrm{TDS}_{\mathrm{w}}$	$\mathrm{TDS}_{\mathrm{wm}}$	Reference	Comments
	secup	seclow		type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m**3/s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/ L)	(mg/ L)		(-)
KLX02	440	445	1	1	20030727	-	-	-	-				-	-	-	13.4					
KLX02	445	450	1	1	20030728	-	-	-	-				-	-	-	13.5					
KLX02	450	455	1	1	20030728	-	-	-	-				-	-	-	13.5					
KLX02	455	460	1	1	20030728	120700	1.09E-07	3600	1200				4466	4666	4466	13.6					
KLX02	460	465	1	1	20030728	144000	6.66E-07	1800	1200				4515	4717	4515	13.6					
KLX02	460	465	1	1	20030801	132000	1.01E-06	7560	1200				4520	4719	4521	13.7					
KLX02	465	470	1	1	20030728	165200	7.57E-08	1800	1200				4565	4766	4566	13.8					
KLX02	470	475	1	1	20030729	075700	-	240	1200				4617	4810	4612	13.8					
KLX02	475	480	1	1	20030801	103500	-	0	2700				4671	4948	4670	13.9					
KLX02	480	485	1	1	20030729	113500	3.04E-08	1800	4860				4712	4910	4709	14					
KLX02	500	505	1	1	20030729	-	-	-	-				-	-	-	14.2					
KLX02	505	510	1	1	20030729	-	-	-	-				-	-	-	14.3					
KLX02	510	515	1	1	20030729	171900	8.33E-09 ^(bml)	1200	9600				5010	5210	5005	14.4					
KLX02	515	520	1	1	20030731	155700	1.49E-07	1200	5400				5067	5309	5067	14.5					
KLX02	520	525	1	1	20030730	141900	-	1800	1200				5116	5314	5239	14.5					
KLX02	525	530	1	1	20030730	161600	6.67E-08	1200	1200				5159	5359	5160	14.6					
KLX02	530	535	1	1	20030731	114300	1.06E-07	1200	7980				5221	5445	5221	14.7					
KLX02	535	540	1	1	20030731	-	-	-	-				-	-	-	14.8					
KLX02	540	545	1	1	20030731	-	-	-	-				-	-	-	14.8					

Basic Evaluation

					r					1	r	ГТ					1 1		1				T			ГГ					
Borehole	Borehole H	Borehole	Date for	Q/s	T _Q	T _M	р В	TB	TB-measl-L	TB-measl-U	SB	SB*	Ľ	T _T	T-measl-L	T-measl-U	S	S*	K′/b′	Ks	K _s -measl-L	K _s -measl-U	Ss	S_s^*	С	C _D &	ξ 14	/ 1	dt ₁	dt ₂	Comments
	secup s	eclow	test, start					(1D)	(1D)	(1D)	(1D)	(1D)	(1D)	(2D)	(2D)	(2D)	(2D)	(2D)	(2D)	(3D)	(3D)	(3D)	(3D)	(3D)		((1,2 or 3D)				
	(m) (m)	YYYYMMDD	(m^2/s)	(m^2/s)	(m^2/s)	(m)	(m^{3}/s)	(m^{3}/s)	(m^{3}/s)	(m)	(m)	(m)	(m^2/s)	(m^2/s)	(m^2/s)	(-)	(-)	(1/s)	(m/s)	(m/s)	(m/s)	(1/m)	(1/m)	(m**3/Pa)	(-)	(-) (-) (-)	(min)	(min)	(-)
KLX02	204	304	20030710	3.86E-05		5.03E-05	100							1.80E-04	3.00E-05	3.00E-04		1.00E-06	6						3.00E-08		17.8		13.7	21.0	
KLX02	304	404	20030710	1.08E-05		1.41E-05	100							4.90E-05	2.00E-05	6.50E-05		1.00E-06	6						8.30E-09		18.5		23	13.3	
KLX02	404	504	20030710	1.31E-07		1.71E-07	100							5.90E-07	1.50E-07	6.00E-07	'	1.00E-06	6						3.00E-10		20.1		3.9	13.5	
KLX02	504	604	20030711	1.31E-08		1.70E-08	100							3.00E-09	1.00E-09	2.00E-08		1.00E-06	6						2.50E-10		0		17	52.0	
KLX02	604	704	20030711	1.25E-09		1.63E-09	100							3.00E-10	5.00E-11	7.00E-10		1.00E-06	6						1.40E-10		0		283.9	660.2	
KLX02	704	804	20030712	1.63E-07		2.12E-07	100							6.90E-07	3.00E-08	1.00E-06		1.00E-06	6						1.30E-09		19.4		7.0	47.4	
KLX02	804	904	20030712	7.80E-08		1.02E-07	100							3.50E-07	2.00E-08	5.00E-07		1.00E-06	6						4.20E-10		20		8.8	13.9	
KLX02	904	1004	20030712	1.42E-07		1.85E-07	100							9.10E-07	5.00E-08	2.00E-06		1.00E-06	6						1.60E-09		32.6		- 0.0	15.5	
KLX02	204	224	20030712	2.62E-06		2.74E-06	20							3.20E-06	1.00E-06	2.00E-05		1.00E-06	6						1.70E-10		0		3.1	17.0	
KLX02	224	244	20030714	1.18E-06		1.23E-06	20							9.70E-07	4.00E-07	2.00E-06		1.00E-06	6						1.90E-10		0		0.5	14.7	
KLX02	244	264	20030714	3.60E-05		3.77E-05	20							1.70E-04	8.00E-05	2.00E-04		1.00E-06	6						2.10E-08		18		1.1	9.5	
KLX02	264	284	20030715	1.31E-06		1.37E-06	20							1.70E-06	8.00E-07	5.00E-06		1.00E-06	6						2.40E-10		20.3		1.1	15.8	
KLX02 KLX02	284	304	20030715	8.63E-07		9.02E-07	20							1.10E-06	6.00E-07	5.00E-06		1.00E-06	6						1.40E-10		38.3		2.3	11.8	
KLA02	304	324	20030715	9.36E-06		9.80E-06	20							4.20E-05	2.00E-05	6.00E-05		1.00E-06	6						6.50E-09		18.6		2.5	11.0	
KLA02	324	344	20030715	1.86E-06		1.95E-06	20							3.20E-06	2.00E-06	8.00E-06		1.00E-06	6						3.50E-10		20.1		1.0	13.4	
KLA02	344	364	20030715	#NV		#NV	20							2.60E-11	1.00E-11	5 00E-10		1.00E-06	6						2 70E-11		0		1.1	550.2	
KLA02	364	384	20030713	#NV		#NV	20							1.80E-09	5.00E-10	1 00E-08		1.00E-06	6						5 80E-11		0		165.0	17.4	
KLA02	384	404	20030710	2.74E-09		2.87E-09	20							1.00E-08	2.90E-09	4 00E-08		1.00E-06	6						4 30E-11		21.1		0.0	17.4	
KLA02	404	424	20030710	#NV		#NV	20							3.60E-13	3.00E-13	2 00E-11		1.00E-06	6						1.90E-10		0	_	-	-	
KLA02	424	444	20030710	4.05F-08		4 24F-08	20							2 40F-07	1.00E-08	4 00F-07	,	1.00E-06	6						8.80E-11		32.2		-	-	
KLX02	424	464	20030716	7 26E-08		7.60E-08	20			1				2.40E 07	4.00E-08	4.00E 07	,	1.00E-06	6						5.60E-11	+	21	_	5.2	6.9	
KLX02	464	404	20030716	8 78E-00		9.19E-00	20			1				5 70E-08	1.00E-08	3.00E-07	,	1.00E-06	6						4.40E-11	+	32.6	_	5.5	17.9	
KLX02	404	501	20030717	1.64E 10		9.19E-09	20							1.30E-10	1.00E-08	1.30E-07		1.00E-00	6						1.70E-11	+	52.0	_	-	-	
KLX02	401	504	20030717	1.04E-10		1.72E-10	20							1.50E-10	1.00E-13	1.50E-10		1.00E-00	6						1.70E-11	+	0.04	_	-	-	
KLX02	404 504	504	20030717	4.06E-10		4.27E-10	20							5.40E-00	1.00E-13	7.00E-10		1.00E-00	6						2.00E-11	$\left \right $	0.04	_	-	-	
KLX02	524	544	20030/17	5 78E 00		6.05E.00	20							9.40E-09	2.00E.00	1.00E-09		1.00E-00	6						6 20E 11		0	_	3.6	6.9	
KLX02	544	544	20030717	J. 76E-09		0.03E-09	20							0.20E-09	2.00E-09	1.00E-00		1.00E-00	0						0.50E-11				6.3	26.2	
KLX02	544	504	20030718			#IN V	20			-				1.00E-10	1.00E-13	1.00E-10		1.00E-00	0						#IN V	+ +	#IN V	_	-	-	
KLX02	594	504	20030718	$\frac{417E}{10}$		#IN V	20							2.80E-12	1.00E-12	3.00E-11		1.00E-00	6						2.40E-11	$\left \right $	0	_	-	-	
KLX02	584 704	604	20030718	4.1/E-10		4.30E-10	20			-				1.20E-10	1.00E-13	1.20E-10		1.00E-00	0						3.40E-11		0		-	-	
KLX02	704	724	20030719	7 #NV		#N V	20			-				1.20E-10	1.00E-11	3.00E-10		1.00E-00	0						1.70E-10		2		-	-	
KLX02	724	/44	20030719	3.11E-08		3.25E-08	20			-				7.60E-08	6.00E-09	1.00E-07		1.00E-00	0						1.00E-09		7.9		-	-	
KLX02	/44	/64	20030719	0.10E.00		1.43E-08	20							8.50E-08	6.00E-09	3.00E-07		1.00E-00	5						8.90E-11	$\left \right $	32.3	_	-	-	
KLX02	/64	/84	20030719	8.19E-09		8.5/E-09	20							3./0E-08	1.00E-09	6.00E-08		1.00E-06	6						4.60E-11		22.5	_	10.6	20.2	
KLX02	/84	804	20030720	1.10E-0/		1.15E-07	20							6.60E-07	5.00E-08	8.00E-07		1.00E-06	6						2.40E-10		32	_	3.9	8.4	
KLX02	804	824	20030720	2.45E-09		2.5/E-09	20							1.60E-08	7.00E-09	4.00E-08		1.00E-00	5						3.80E-11	$\left \right $	32.6	_	-	-	
KLX02	824	844	20030720	1.62E-09		1.70E-09	20							3.80E-09	8.00E-10	6.00E-09		1.00E-06	6						7.50E-11		9.25		-	-	
KLX02	844	864	20030720	4.93E-08		5.15E-08	20							3.20E-07	1.00E-08	6.00E-07		1.00E-06	6						1.10E-10		30.9		8.4	20.6	
KLX02	864	884	20030721	2.28E-08		2.38E-08	20							1.50E-07	1.00E-08	6.00E-07		1.00E-06	6						7.10E-11		32.5		-	-	
KLX02	884	904	20030721	1.72E-08		1.80E-08	20							1.10E-07	5.00E-09	3.00E-07		1.00E-06	6						1.10E-10		32.2		-	-	
KLX02	904	924	20030721	2.86E-09		2.99E-09	20							1.30E-08	5.00E-10	3.00E-08		1.00E-06	6						4.10E-11	\square	21.1		-	-	
KLX02	922	942	20030721	1.38E-07		1.44E-07	20							6.10E-07	6.00E-08	3.00E-06		1.00E-06	6						1.40E-09	'	19.4		-	-	
KLX02	943	963	20030722	1.91E-08		2.00E-08	20							1.20E-07	7.00E-09	8.00E-07		1.00E-06	6						4.70E-11		32.6		-	-	
KLX02	964	984	20030722	1.13E-09	<u> </u>	1.18E-09	20				1			2.00E-09	5.00E-10	5.00E-09		1.00E-06	6						3.70E-11	\square	5		-	-	
KLX02	984	1004	20030722	4.51E-09		4.72E-09	20							1.90E-08	1.00E-09	5.00E-08		1.00E-06	6						6.90E-11		20.9		-	-	
KLX02	300	305	20030724	3.49E-08		2.88E-08	5							3.20E-07	1.00E-08	6.00E-07		1.00E-06	6						1.80E-11		21.5		3.8	16.5	
KLX02	305	310	20030724	2.45E-10		2.02E-10	5							7.40E-11	4.00E-11	7.00E-10		1.00E-06	6						1.70E-11		26.2		-	-	
KLX02	310	315	20030724	1.23E-09		1.01E-09	5							1.80E-08	9.00E-09	9.00E-08		1.00E-06	6						1.40E-11		39.1		-	-	
KLX02	315	320	20030725	9.03E-06		7.46E-06	5							4.20E-05	1.00E-05	6.00E-05		1.00E-06	6						6.00E-09		18.6		1.5	8.9	
KLX02	320	325	20030725	; #NV		#NV	5							1.00E-10	1.00E-13	1.00E-10		1.00E-06	6						#NV		#NV		-	-	
KLX02	325	330	20030725	6.51E-10		5.37E-10	5							7.20E-09	5.00E-09	4.00E-08		1.00E-06	6						1.40E-11		38		-	-	

Page 6/5

Borehole	Borehole	Borehole	Date for	Q/s	T _Q	T _M b	В	ТВ	TB-measl-L	TB-measl-U	SB	SB*	L	T _T	T-measl-L	T-measl-U	S	S*	K'/b'	Ks	K _s -measl-L	K _s -measl-U	Ss	Ss*	С	C _D	ξW	/ 1	dt ₁	dt ₂	Comments
	secup	seclow	test, start			2		(1D)	(1D)	(1D)	(1D)	(1D)	(1D)	(2D)	(2D)	(2D)	(2D)	(2D)	(2D)	(3D)	(3D)	(3D)	(3D)	(3D)			(1,2 or 3D)				
	(m)	(m)	YYYYMMDD	(m^2/s)	(m^2/s)	(m^2/s) (m) (m)	(m ³ /s)	(m³/ s)	(m^3/s)	(m)	(m)	(m)	(m^2/s)	(m^2/s)	(m^2/s)	(-)	(-)	(1/s)	(m/s)	(m/s)	(m/s)	(1/m)	(1/m)	(m**3/Pa)	(-)	(-) (-	•) (•)	(min)	(min)	(-)
KLX02	33	0 33	20030725	5 2.45E-10)	2.02E-10	5							3.90E-09	1.00E-09	1.00E-08		1.00E-06	6						1.30E-11	1	33.2		-	-	
KLX02	33	5 34	20030725	5 1.52E-06	,	1.26E-06	5							2.00E-06	7.00E-07	3.00E-06)	1.00E-06	5						2.80E-10	0	34.1		0.8	2.2	
KLX02	34	1 34	20030726	6 #NV		#NV	5							6.10E-11	5.00E-12	8.00E-11		1.00E-06	5						1.10E-10	0	#NV		-	-	
KLX02	38	5 39	20030726	5 2.44E-09)	2.01E-09	5							1.70E-08	8.00E-09	3.00E-08	5	1.00E-06	5						1.80E-11	1	33.1		13.1	61.2	
KLX02	39	0 39	20030726	6 #NV		#NV	5							1.00E-10	1.00E-13	1.00E-10)	1.00E-06	5						#NV		#NV		-	-	
KLX02	39	5 40	20030726	6 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	6						#NV		#NV		-	-	
KLX02	40	0 40	5 20030727	7 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	42	0 42	5 20030727	7 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	42	5 43	20030727	7 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	42	9 43	20030727	7 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	43	4 43	20030727	7 4.10E-08	3	3.38E-08	5							1.70E-07	1.00E-08	7.00E-07	'	1.00E-06	5						6.00E-11	1	22.8		-	-	
KLX02	44	0 44	5 20030727	7 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	44	5 45	20030728	3 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	45	0 45	5 20030728	3 #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	45	5 46	20030728	3 5.34E-09)	4.41E-09	5							3.90E-08	5.00E-08	3.00E-07	'	1.00E-06	5						1.40E-11	1	39		-	-	
KLX02	46	0 46	5 20030728	3.23E-08	3	2.67E-08	5							1.80E-07	7.00E-09	3.00E-07	'	1.00E-06	5						1.40E-11	1	32		2.9	9.8	
KLX02	46	0 46	5 20030801	4.99E-08	3	4.12E-08	5							5.40E-08	1.00E-08	1.00E-06)	1.00E-06	5						1.90E-11	1	39.1		0.4	19.9	
KLX02	46	5 47	20030728	3.70E-09)	3.05E-09	5							2.40E-08	2.00E-09	3.00E-07	'	1.00E-06	6						1.30E-11	1	33.2		-	-	
KLX02	47	0 47	5 20030728	3 #NV		#NV	5							3.40E-09	1.00E-11	5.00E-09)	1.00E-06	6						1.30E-13	3	10		13.1	19.6	
KLX02	47	5 48	20030801	#NV		#NV	5							1.90E-09	1.00E-09	1.00E-08	5	1.00E-06	6						1.80E-13	3	10		-	-	
KLX02	48	0 48	5 20030729	9 1.50E-09)	1.24E-09	5							1.10E-08	9.00E-09	9.00E-08	5	1.00E-06	5						6.10E-12	2	33.4		-	-	
KLX02	50	0 50	5 20030729	e #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	50	5 51	20030729	e #NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	5						#NV		#NV		-	-	
KLX02	51	0 51	5 20030729) #NV		#NV	5							1.70E-09	3.00E-11	3.00E-09)	1.00E-06	5						1.40E-11	1	10.1		-	-	
KLX02	51	5 52	2003073	6.05E-09)	5.00E-09	5							2.90E-09	1.00E-09	1.00E-08	5	1.00E-06	5						1.80E-11	1	2		55.7	89.0	
KLX02	52	0 52	5 20030730) #NV		#NV	5							7.30E-11	5.00E-12	8.00E-11		1.00E-06	5						1.30E-10	0	0.4		9.0	16.8	
KLX02	52	5 53	20030730) 3.27E-09)	2.70E-09	5							1.10E-08	1.00E-09	1.00E-08	;	1.00E-06	5						1.50E-11	1	15.9		-	-	
KLX02	53	0 53	5 20030731	4.66E-09)	3.85E-09	5							6.60E-09	1.00E-09	8.00E-09)	1.00E-06	6						1.80E-11	1	2		6.8	53.1	
KLX02	53	5 54	2003073	#NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	6						#NV		#NV		-	-	
KLX02	54	0 54	5 20030731	#NV		#NV	5							1.00E-11	1.00E-13	1.00E-11		1.00E-06	6						#NV		#NV		-	-	

Page 6/6