P-04-12

Oskarshamn site investigation

Complete hydrochemical characterisation in KSH01A

Results from four investigated sections, 156.5–167.0, 245.0–261.6, 586.0–596.7 and 548.0–565.4 metres

Pia Wacker, Cecilia Berg, Anette Bergelin Geosigma AB

December 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-04-12

Oskarshamn site investigation

Complete hydrochemical characterisation in KSH01A

Results from four investigated sections, 156.5–167.0, 245.0–261.6, 586.0–596.7 and 548.0–565.4 metres

Pia Wacker, Cecilia Berg, Anette Bergelin Geosigma A

December 2004

Keywords: Hydrochemical characterisation, Groundwater, Measurements on line, Sampling and measurements in situ in borehole section, Redox potential, Dissolved gas, Humic and fulvic acids, Colloids, Microbes, Chemical analyses, Isotope determinations, AP PS 400-02-33, Field note no 56, 66, 69, 112.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Complete chemical characterisation has been conducted in four sections, 156.5–167.0, 245.0–261.6, 586.0–596.7 and 548.0–565.4 m of borehole KSH01A. This is the most extensive chemical investigation method performed in core drilled boreholes. The Complete chemical characterisation entails pumping, measurements on-line and regular water sampling for chemical analyses in isolated borehole sections during a time period of approximately three weeks per section and at a flow rate between 50 and 200 mL/min.

The results obtained from the investigation in sections 156.5–167.0, 245.0–261.6 and 548.0–565.4 m includes on-line measurements of redox potential, pH, dissolved oxygen, electric conductivity and water temperature in the borehole section as well as chemical analyses of major constituents, trace components and isotopes. Furthermore, gas content and composition, inorganic colloids as well as humic and fulvic acids in the groundwater were investigated. In section 245.0–261.1 the fractionation of humic and fulvic acids were cancelled since there were no flow at the time for the fractionation. Section 586.0–596.7 were interrupted due to high flushing water content (36%) and repairs of the down hole equipment after approximately three weeks of pumping.

The flushing water content in the samples should not exceed 1% to be considered representative for the groundwater of the fracture zone. This condition was not met in any of the investigated sections. The flushing water content in the final sample in each section was 3% (156.5–167.0 m), 8% (245.0–261.1 m) and 11% (548.0–565.4 m). The chloride concentration increased with depth and was in the final water sample approximately 5,600 mg/L in section 156.5–167.0 m, 6,300 mg/L in section 245.0–261.1 m and 8,800 mg/L in section 548.0–565.4 m. Stable redox potential measurements are reported from the three sections 156.5–167.0, 245.0–261.1 and 548.0–565.4 m. The redox electrodes stabilised at approximately -257, -160, -173 mV respectively. The reducing conditions in the groundwater of the three sections were also verified by the presence of ferrous iron Fe(+II) at relatively high concentrations. The content of inorganic colloids was low or nonexistent and the organic constituents were present mainly as fulvic acids and possibly other low molecular weight organic acids (citric acid, oxalic acid, etc).

Sammanfattning

Fullständig kemikarakterisering har utförts i fyra sektioner i borrhål KSH01A, sektionerna 156,5–167,0 m, 245,0–261,6 m, 586,0–596,7 m och 548,0–565,4 m. Detta är den mest omfattande kemiska undersökningsmetoden för kärnborrhål. Fullständig kemikarakterisering innebär pumpning, mätning on-line och regelbunden vattenprovtagning för kemiska analyser i avgränsade borrhålssektioner under ett en tidsperiod av cirka tre veckor och ett pumpflöde på mellan 50 och 200 mL/min.

Resultaten som erhölls från den fullständiga kemikaraktäriseringen av sektionerna 156,5–167,0 m 245,0–261,6 m och 548,0–565,4 m omfattar mätningar on-line av redoxpotential, pH, löst syre, elektrisk konduktivitet och vattentemperatur i borrhålssektionen till lika kemiska analyser av huvudkomponenter, spårelement och isotoper. Vidare undersöktes gasmängd och sammansättning, oorganiska kolloider samt humus- och fulvosyror i grundvattnet. I sektion 245,0–261,1 m ställdes fraktioneringen av humus- och fulvosyror in då det inte var något vattenflöde vid tidpunkten för provtagningen. Sektion 586,0–596,7 ställdes in efter en pumpperiod på cirka tre veckor på grund av hög spolvattenhalt (36%) och reparation av utrustningen.

Spolvattenhalten i ett vattenprov bör inte överstiga 1% för att anses vara representativt för grundvattnet i den undersökta sprickzonen. De undersökta sektionerna hade alla en spolvattenhalt över det representativa värdet. Spolvattenhalten i det sista provet taget från varje sektion var 3% (156,5–167,0 m), 8% (245,0–261,1 m) och 11% (548,0–565,4 m). Kloridkoncentrationen ökade med djupet i borrhålet och var i det sista vattenprovet ungefär 5 600 mg/L i sektion 156,5–167,0 m, 6 300 mg/L i sektion 245,0–261,1 m och 8 800 mg/L i sektion 548,0–565,4 m. Stabila redoxpotentialmätningar rapporterades för de tre sektionerna 156,5–167,0 m, 245,0–261,1 m och 548,0–565,4 m. Redoxelektroderna stabiliserade sig vid cirka –257 mV, –160 mV respektive –173 mV. De reducerande förhållanden i grundvattnet i dessa sektioner verifierades också av närvaron av tvåvärt järn i relativt höga koncentrationer. Förekomsten av oorganiska kolloider var mycket låg eller obefintlig och de organiska komponenterna förekom huvudsakligen som fulvosyror eller eventuellt andra lågmolekylära organiska syror (citronsyra, oxalsyra etc).

Contents

1 1.1 1.2	Introduction The cored borehole KSH01A Previous investigations in KSH01A	7 7 8
2	Objective and scope	9
3 3.1 3.2 3.3 3.4 3.5 3.6	Equipment The mobile field laboratory Equipment for enrichment of humic and fulvic acids Equipment for fractionation of humic and fulvic acids Colloid filtering equipment Equipment for sampling of microbes Equipment for sampling of dissolved gases	11 11 12 13 14 16 16
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Performance Choice of borehole sections Overview of field work procedure Performance in section 156.5–167.0 m Performance in section 245.0–261.6 m Performance in section 586.0–596.7 m Performance in section 548.0–565.4 m Water sample treatment and analyses Enrichment of humic and fulvic acids Fractionation of humic and fulvic acids Colloid filtration Microbes Dissolved gases Data handling 4.13.1 Measurement data 4.13.2 Water analysis data 4.13.3 Data from special sampling activities	17 17 17 18 19 20 21 23 23 23 23 23 24 24 24 25 25 25 25 25 27
5	Nonconformities	29
6 6.1 6.2	Results Chemmac measurements Water analyses 6.2.1 Basic water analyses 6.2.2 Stable and radioactive isotopes	31 31 32 32 35
6.3 6.4	Enrichment of humic and fulvic acids Fractionation 6.4.1 Humic and fulvic acids	36 36 36
6.5	Inorganic colloids 6.5.1 Inorganic colloids-fractionation 6.5.2 Inorganic colloids-colloid filtration	37 37 38
6.6 6.7	Microbes Dissolved gases	42 42

7	Conclu	usions	43
8	Refere	ences	45
Appe	endix 1	Downhole equipment	47
Appe	endix 2	Sampling and analysis methods Abbreviations and definitions:	53 55
Appe	endix 3	Chemmac measurement in section 156.5–167.0 m	57
Appe	endix 4	Chemmac measurement in section 245.0–261.6 m	61
Appe	endix 5	Chemmac measurement in section 548.0–565.4 m	65
Appe	endix 6	Water analysis data in SICADA	69

1 Introduction

This document reports performance of and results from the activity "Complete hydrochemical characterisation" in the cored borehole KSH01A performed within the site investigation at Oskarshamn /1/. The work was conducted according to the activity plan AP PS 400-02-33 (SKB internal controlling document) which refer to the method description SKB MD 430.017-01 (SKB internal controlling document). The data is reported to SICADA in field note no. 56, 66, 69 and 112 for sections 156.5–167.0, 245.0–261.6, 586.0–596.7, and 548.0–565.4 m respectively.

The report presents groundwater chemistry data from four borehole sections:

- 156.5–167.0 m.
- 245.0–261.6 m.
- 586.0–596.7 m. The measurements were interrupted due to high flushing water content in the section.
- 548.0–565.4 m.

The data were obtained during March 2003–September 2003.

1.1 The cored borehole KSH01A

Borehole KSH01A is a deep telescopic borehole drilled at the site investigations in the Simpevarp subarea, Oskarshamn. The borehole is of the so called SKB chemical type, according to method description for core drilling, MD 620.003 (SKB internal controlling document). A chemical type borehole implies that cleaning procedures of all downhole equipment are used in the borehole during and after drilling, according to level 2 in the cleaning instructions in MD 600.004 (SKB internal controlling document). The location of the borehole and the flushing water well HSH03 is presented in Figure 1-1.

The borehole section 0-100.24 m is percussion drilled, with the internal diameter 200 mm, whereas section 100-1,003 m is core drilled with a diameter of 76 mm, Table 1-1 /2/.

Activity	Length (m)	Diameter (mm)	Comment
Percussion drilling KSH01A	0–100.24	200	/2/
Core drilling KSH01A	100.24–1,003	76	/2/
Percussion drilling HSH03	201.00	-	/3/

	Table 1-1.	Borehole	information	for KSH01A	and the f	flushing	water well HS	SH03.
--	------------	----------	-------------	------------	-----------	----------	---------------	-------

Core drilling of a 1,000 m long borehole requires at least 1,000 m³ flushing water. The concentration of uranine in the supply well HSH03 is 160 μ g/L/3/.

Figure 1-1. Locations of the core borehole KSH01A and the flushing water well, percussion borehole HSH03.

1.2 Previous investigations in KSH01A

KSH01A is a SKB chemistry type of core borehole. The investigations carried out in the borehole have special requirements on purity. The more equipment that is used in the borehole, the greater is the risk of contamination and thereby also effects on the in situ microbiological conditions. The activities/investigations performed in KSH01A prior to the Complete hydrochemical characterisation are listed in Table 1-2.

Table 1-2. Activities performed in	borehole KSH01A prior to the	chemistry campaign.
------------------------------------	------------------------------	---------------------

Borehole section (m)	Stop date	Comment
1–1,000	2003-01-29	/4/
101–998	2003-03-22	/5/, /6/
0–1,003	2003-02-15	/5/, /7/
100–1,000	2003-03-02	/8/
	Borehole section (m) 1–1,000 101–998 0–1,003 100–1,000	Borehole section (m)Stop date1-1,0002003-01-29101-9982003-03-220-1,0032003-02-15100-1,0002003-03-02

2 Objective and scope

"Complete hydrochemical characterisation" is an extensive chemical investigation method performed in core drilled boreholes and is carried out in order to obtain as much information as possible about the groundwater chemical conditions in individual water bearing fractures or local fracture zones. Considerable effort is put into obtaining representative samples from a limited rock volume. Careful pumping and continuous control of the pressure in the sampled borehole section, as well as above the section, is maintained in order to minimise the risk of mixing with water from other fracture systems.

The water analysis programme is carried out according to SKB class 2, class 4 and class 5 (including all options). In addition, pH, redox potential (Eh) and water temperature are measured in a downhole flow-through cell as well as at the surface. Surface measurements include also electric conductivity and dissolved oxygen. Furthermore, in-situ samples are collected in the borehole section: a) to determine gas contents and composition, b) for microbe content and characterisation, and c) for determination of colloid content and composition. The in situ samples maintain the pressure of the borehole section when lifted to the surface. Also fractionation of humic and fulvic acids as well as inorganic species is performed to obtain information about the size distribution in the water. In addition, enrichment of humic and fulvic acids is carried out in order to determine $\partial^{13}C$ and pmC (percent modern carbon).

3 Equipment

3.1 The mobile field laboratory

The mobile field laboratories used by SKB for water sampling and measurements in deep cored boreholes include a hose unit, a laboratory unit, downhole equipment (the equipment that is used in the borehole section) and a measurement system, Chemmac^{ω} (borehole Chemmac and surface Chemmac).

The mobile units used for the investigation of the four sections in KSH01A consisted of the hose unit S2 and borehole Chemmac, the laboratory unit L2 and an unit for computer work (MYC 2), including the surface Chemmac, Figure 3-1. The equipment is presented schematically in Figure 3-2. Technical details of the equipment is documented in SKB MD 434.004, 434.005, 434.006, 434.007 and SKB MD 433.018 (SKB internal controlling documents).

The downhole equipment allows measurement and sampling in situ in the borehole section. These samples maintain the pressure from the borehole section when lifted to the surface and are used for gas analyses, microbe investigations and colloid filtration. Some special equipment for more complex sampling activities (humic and fulvic acids and colloids) have also been used.

Figure 3-1. The mobile units at KSH01A; from left L2, MYC 2 and S2. Photo: Karl-Göran Nederfeldt.

^o Chemmac-surface and borehole Chemmac. A measurement system with communication system and measurement application. The measurement application in surface Chemmac includes a device for measurement of pH, Eh, oxygen, electric conductivity and temperature, the corresponding application for borehole Chemmac includes measurement of pH, Eh and temperature. However, the configuration of electrodes in surface and borehole Chemmac can be varied between the sections.

Figure 3-2. A schematic presentation of a mobile field laboratory; hose unit, laboratory unit and downhole equipment. The configuration of the downhole units in the borehole can be varied depending on desired section length. However, the in situ water sampler must always be positioned first in the sample water path.

3.2 Equipment for enrichment of humic and fulvic acids

The enrichment of humic and fulvic acids is conducted in order to collect enough material to determine ∂^{13} C and pmC on organic constituents in the groundwater. The equipment for enrichment includes a porous column and a textile filter with defined pore size and filled with an anion exchanger (DEAE-cellulose). The textile filter is placed inside the column in order to prevent the ion exchange resin from diffusing through the column. Technical details of the equipment and performance according to SKB MD 431.044 (SKB internal controlling document). Figure 3-3 shows the equipment setup.

Figure 3-3. Water from the borehole passes through the ion exchanger in the column.

3.3 Equipment for fractionation of humic and fulvic acids

The equipment consists of membrane filters with defined cut off (pore size), a peristaltic pump, flexible tubing and vessels. Generally, one water sample from each section is filtered through two filters with different pore sizes, 1,000 D and 5,000 D (D=Dalton, 1D=1g/mol). The equipment and performance is described in SKB MD 431.043 (SKB internal controlling document). Figure 3-4 presents the equipment setup.

Figure 3-4. Equipment used for fractionation of humic and fulvic acids.

3.4 Colloid filtering equipment

The colloid filtering equipment/method is not yet approved. The equipment is used to determine the concentration of colloids in pressurised water samples. The equipment, Figure 3-5, is described in SKB MD 431.045 (SKB internal controlling document to be published)

The method has earlier been used under realistic conditions in borehole KFM01A to test and verify the method according to the activity plan AP PU 400-03-002 (SKB internal controlling document).

The sample for colloid filtration is an in situ groundwater sample which is collected in each borehole section with the pressurised ground water sampling system (PVP) in four sample containers (PVB). Two of them are generally used for colloid filtration. The groundwater is filtered through a series of connected filters in a closed system. The pressure is maintained under argon atmosphere at the same level as the pressure in the sampled borehole section. The intention is that colloids should be collected on the different filters (descending pore sizes) according to their size. Each filtration results in five filter samples (two 0.4 μ m, one 0.2 μ m and two 0.05 μ m filter pore size) and two water samples (water in and water out). All samples are sent for ICP analysis (major components and common trace metals).

The major equipment features:

• Filtering is performed in a closed system at argon atmosphere thus avoiding the risk of iron precipitation due to contact between the groundwater sample and air.

- Filtering is performed at a pressure similar to that of the groundwater in the borehole section since the sample container maintains the pressure. The system is adjusted to create a pressure difference between the inlet of the filter package and the outlet side, the pressure difference drives the sample water through the filters.
- The design of the sample containers and the mounting with the outlet at the top prevents migration of the larger particles, which may clog the filters. Furthermore, clogging is prevented also by the first two filters with pore size $0.4 \mu m$ which are mounted parallel to each other.

Disadvantages/drawbacks, which may cause modifications of the equipment:

- The sample volume is limited to maximum of 2×190 mL.
- The PVB sample containers are made of stainless steal and contamination may occur. If the filtering method proves to be successful, an improvement would be to use Teflon coating on the inside of the cylindrical containers.

Figure 3-5. The colloid filtering equipment including the sample containers, the filter holder package and the collecting container. The black arrows, 1-4, give the flow direction of the sample water through the system.

3.5 Equipment for sampling of microbes

The sampling equipment for microbes is part of the downhole equipment and consists of one sample container (PVB) from the pressurised ground water sampling system (PVP). The system is designed to maintain pressure and temperature at the actual borehole depth of the investigated section, since changes in pressure and temperature may affect the results of the analysis. The method used for determination of microbes from the water sample is described in a primary report, Appendix 1.

3.6 Equipment for sampling of dissolved gases

One of the sample containers (PVB) from the pressurised ground water sampling system (PVP) is used for sampling of water for analysis of dissolved gases. The container is designed to maintain pressure and temperature at the actual depth of the investigated section.

4 Performance

Complete chemical characterisation in KSH01A was performed according to activity plan AP PS 400-02-33 following the method described in SKB MD 430.017 (SKB internal controlling document).

4.1 Choice of borehole sections

The investigation of the borehole starts with a choice of borehole sections. The choices of sections and the lengths of the sections are made using data from BIPS*-filming, differential flow logging and geophysical logging of temperature and electric conductivity. The final decision is supported by drilling water budget analysis, depth, appropriate mineralogy, hydraulic and hydro-chemical data.

Preliminary results from the differential flow logging indicate that there are no waterbearing zones between 300–550 m and 600–1,000 m. Flow rates above 10,000 mL/h are found in sections located at 160, 250, 259, 290 and 590 m and flow rates < 10,000 mL/h are found at 118, 270 and 558 m. Based on this, the sections at 160, 250, 290, and 590 m is chosen. One additional section is chosen from the following sections; 259, 270 and 558 m (AP PF 400-02-33, SKB internal controlling document). The investigated sections were 156.5-167.0 m, 245.0-261.6 m, 586.0-596.7 m and 548.0-565.4 m.

4.2 Overview of field work procedure

An overview of the Complete chemical characterisation in the borehole is given in this chapter.

The investigation was performed according to SKB MD 430.017-01 (SKB internal controlling document) compound by the following steps, each of them according to detailed description given in the SKB internal controlling document presented in parenthesis.

- 1. Establishment of mobile field laboratory at the borehole (SKB MD 434.007-01, SKB MD 434.005-01).
- 2. Cleaning of the umbilical hose.

The outside of the umbilical hose was cleaned with a cloth and 70% de-naturised ethanol, while the inside was cleaned with 15 ppm chlorine dioxide, prepared with de-ionised de-oxygenised water. The inside was thereafter rinsed with de-ionised de-oxygenised water in abundance (SKB MD 600.004).

- 3. Calibration of electrodes in borehole Chemmac (SKB MD 434.007-01ω).
- 4. Mounting of electrodes in borehole and surface Chemmac (SKB MD 434.006-01 and SKB MD 434.007-01).

^{*} BIPS-Borehole Image Processing System

- 5. Mounting of downhole equipment (SKB MD 434.006-01).
- 6. Lowering of downhole equipment, Appendix A3-1 to A3-4, and borehole Chemmac (SKB MD 434.006-01).
- 7. Length calibration of the umbilical hose (SKB MD 434.006-01).
- 8. Calibration of electrodes in surface Chemmac (SKB MD 434.007-01^w). The last calibration is used as an initial calibration for the next investigated section when possible.
- 9. Water pumping /SKB MD 452.001-01/, Chemmac measurement (SKB MD 434.007-01) and sampling of water (SKB MD 452.001-01).

Changes in water composition are monitored using registered conductivity values and/or analysed water samples class 2. When conductivity values have stabilised, samples for analyses of class 4 and 5 are taken each week. The continuous measurement proceeds until, if possible, the redox potential have stabilised, which normally takes two or three weeks. A class 5 sample icluding all options is taken at the end of the measuring period.

- 10. Analyses (SKB laboratory, external laboratories and field analyses).
- 11. Sampling for fractionation (SKB MD 431.043) and enrichment (SKB MD 431.044) of humic and fulvic acids.

The enrichment was performed during approximately two weeks while the fractionation was performed at the end of the measuring period.

- 12. Sampling of pressurised water in four sample container (PVB) in the PVP equipment (SKB MD 434.006-01) for colloid filtering (SKB MD 431.045, in progress), and analysis of dissolved gases and microbes.
- 13. Calibration of electrodes in borehole Chemmac.
- 14. Calibration of electrodes in surface Chemmac.
- 15. Calculation of calibration constants from Chemmac measurements.
- 16. Calculation of measurement data in Hilda.
- 17. Quality control of analyses and measurement data and storage in SICADA.

All the method descriptions and instructions above are SKB internal controlling documents

For sections 156.5–167.0 m and 245.0–261.6 m the data from the enrichment and fractionation of humic and fulvic acids, colloid filtration, gas and microbe analyses were given SKB no 54XX, see Table 4-1 and 4-2, while in section 4 they were given a common number, which is the number of the last water sample in the section.

4.3 Performance in section 156.5–167.0 m

The configuration of the downhole equipment is given in Appendix 2, A2-1.

The events during the measurement period for the borehole section 156.5–167.0 m is listed in Table 4-1.

^{°° 3.6} g/L Kinhydrone

Date	Activity	SKB sample no: xxxx Improvement/deviation no: x
2003-03-25	Delivery of PVB.	Improvement/deviation no:1
2003-03-25	Security setup for the downhole equipment did not fit.	2
2003-03-26	Screw thread is cleaned on the chemistry probe.	3
2003-03-26– 2003-04-23	No collection container for water from the field laboratory.	11
2003-03-27	Probably a broken electrode channel in the chemistry probe KE 021.	4
2003-03-27	Lack of material/materials in the field laboratory.	6
2003-03-27	Lowering of equipment.	
2003-03-28	Water sampling: SKB class 2.	5,256
2003-03-31	Water sampling: SKB class 4.	5,257
2003-03-31	No packaging for sending of water samples to external laboratories.	5
2003-03	Lack of information about water parameters for preparation of microbe media.	12
2003-04-02	Lifting, change of borehole pump and then lowering of equipment (due to loss of flow).	
2003-04-03	Water sampling: SKB class 2; pH, cond., alk., anions, ura- nine, Fe(II), Fe-tot and archive samples.	5,258
2003-04-03	Interruption of measurements due to broken spring in the borehole pump.	7
2003-04-07	Water sampling: SKB class 5.	5,259
2003-04-08– 2003-04-23	No contact with the borehole Chemmac, electric power/ communication problem.	8
2003-04-10	Humic and fulvic acids; enrichment start.	5,422 (5,263)
2003-04-10	Water sampling: SKB class 4.	5,260
2003-04-14	Water sampling: SKB class 5.	5,261
2003-04-16	Water sampling: SKB class 5.	5,262
2003-04-22	Water sampling: SKB class 5.	5,263
2003-04-22	Humic and fulvic acids: fractionation.	5,407–5,414 (5,263)
2003-04-22	Humic and fulvic acids; enrichment stop.	5,422 (5,263)
2003-04-23	Lifting of equipment.	
2003-04-23	Sampling of colloids, microbes and dissolved gases.	(5,263)
2003-04-23	Colloid filtration.	5,415–5,421 (5,263)
2003-04-23	Delay due to re-installation of electric power 2003-04-23.	10

Table 4-1. Events during the pumping/measurement period in section 156.5–167.0 m.

4.4 Performance in section 245.0–261.6 m

The configuration of the downhole equipment is given in Appendix 2, A2-2.

The events during the measurement period for the borehole section 245.0–261.6 m is listed in Table 4-2.

Date	SKB sample no: xxxx Improvement/deviation no: x	
2003-04-24	Lowering of equipment.	
2003-04-24	Communication problem, possibly due to the inflatable packer.	9
2003-04-25	Water sampling: SKB class 2.	5,264
2003-04-26	Humic and fulvic acids; enrichment start	5,423 (5,269)
2003-04-28	Pressure of inflatable packer is low. About 3 bars, should be about 10 bars.	17
2003-04-29	Water sampling: SKB class 4.	5,265
2003-05-02	Water sampling: SKB class 5.	5,266
2003-05-05	Lack of information about water parameters for preparation of microbe media.	13
2003-05-08	Water sampling: SKB class 4.	5,267
2003-05-09	Delay in distribution of calculated data, since the measu- rement files could not be used in the calculation program HILDA.	14
2003-05-12	Water sampling: SKB class 5.	5,268
2003-05-13	No registration of data in the measurement application.	18
2003-05-14	HILDA is not adapted to the measurement application, which results in extra calculation steps when the conducti- vity values are calculated.	15
2003-05-14	No plots/figures in the measurement application.	19
2003-05-15	Water sampling: SKB class 4.	5,269
2003-05-19	Calibration of flow. Qmanual is not the same as Qmeasure- ment application.	16
2003-05-19	No flow. 2003-05-19 065601, Q=0. The PVB:s are filled up. Fractionation of humic and fulvic acids was cancelled. Density sample and archive samples are missing from the section.	20
2003-05-19	Humic and fulvic acids; enrichment stop.	5,423(5,269)
2003-05-19	Lifting of equipment.	
2003-05-19	Sample of colloids, microbes and dissolved gases.	5,269
2003-05-20	Colloid filtration.	5,424–5,430 (5,269)

Table 4-2. Events during the pumping/measurement period in section 245.0–261.6 m.

4.5 Performance in section 586.0–596.7 m

The configuration of the downhole equipment is given in Appendix 2, A2-3.

The events during the measurement period for the borehole section 586.0–596.7 m is listed in Table 4-3. The measurements were interrupted due to high content of flushing water and the downhole equipment, Chemmac/umbilical hose, was serviced. After the service, the section at 548.0–565.4 m was characterised.

The water sampling/analysis of SKB class 2 in the section was reduced to pH, electric conductivity, flushing water content, hydrogen carbonate and chloride.

Date	SKB sample no: xxxx Improvement/deviation no: x		
2003-05-21	Lowering of equipment.		
2003-05-21	The airflow in the closed hood is low. Safety risk.	21	
2003-05-22	No contact with the borehole chemistry probe.	22	
2003-05-22	Lifting of equipment due to loss of contact with the probe.		
2003-05-23	Lowering of equipment.		
2003-05-26	Water sampling: SKB class 2.	5,270	
2003-05-28	No flow when the surface Chemmac is installed and irregu- lar flow when the surface Chemmac is uninstalled.	23	
2003-05-28	Qmanual ≠ Qmeassurement application.	24	
2003-06-06	Water sampling: uranine analysis at Äspö laboratory.		
2003-06-10	Water sampling: uranine analysis.*		
2003-06-10	The air condition in L2 is out of operation.	25	
2003-06-11	Water sampling: uranine analysis in field.		
2003-06-13	Water sampling: uranine analysis.*		
2003-06-16	Water sampling: uranine analysis.*.		
2003-06-17	Lifting.		
2003-06-17	Borehole equipment is lifted due to repairs of the umbilical hose.	26	

Table 4-3. Events during the pumping/measurement period in section 586.0–596.7 m.

* Uranine analysis made at Geosigma AB.

4.6 Performance in section 548.0–565.4 m

The configuration of the downhole equipment is given in Appendix 2, A2-4.

The events during the measurement period of the borehole section 548.0–565.4 m is given in Table 4-4. The water sampling/analyses of SKB class 2 in the section was reduced to pH, electric conductivity, flush water content, hydrogen carbonate and chloride because of the relatively high flushing water content.

Date	Date Activity	
2003-06-24	PVP probe does not work.	27
2003-06-26	Water sampling: SKB class 2.*	5,271
2003-07-01	Water sampling: uranine analysis.*	
2003-07-03	Water sampling: uranine field analysis.	
2003-07-05	Loss of flow is observed.	
2003-07-05	No flow from the section due to broken spring in borehole pump.	28
2003-07-08	No contact with the PVP. The containers are filled up with depression.	29
2003-07-08	Lifting of equipment followed by change of pump before lowering again.	
2003-07-10	Lost contact with umbilical hose.	
2003-07-10	No contact with the borehole probe, short-circuit.	30
2003-07-10	Lifting, repairing.	
2003-07-11	Lowering.	
2003-07-15	Water sampling: SKB class 2, uranine field analysis.	5,272
2003-07-17	Water sampling: SKB class 2, uranine field analysis.	5,273
2003-07-21	Water sampling: SKB class 2, uranine field analysis.	5,274
2003-07-21	Qmanual ≠ Qmeasurement application	31
2003-07-24	Loss of flow.	
2003-07-24	No flow from the section due to broken spring in borehole pump.	32
2003-07-28	Lifting of equipment for change of pump followed by lowering.	
2003-07-30	Water sampling: uranine field analysis.	
2003-07-31	Water sampling: SKB class 2, uranine field analysis.	5,275
2003-08-04	Water sampling: SKB class 2, uranine field analysis.	5,276
2003-08-07	Water sampling: SKB class 2, uranine field analysis.	5,277
2003-08-11	Loss of flow is observed.	
2003-08-11	No flow from the section, Q=0, 2003-08-09. The drift pump for the borehole pump does not work, the magnet valve is changed and the clock is modified.	33
2003-08-13	A leak from the drift pump, from a plunger.	34
2003-08-14	Water sampling: SKB class 2.	5,278
2003-08-18	Water sampling: SKB class 2.	5,279
2003-08-21	Water sampling: SKB class 5.	5,280
2003-08-25	Water sampling: SKB class 1/uranine.	5,281
2003-08-26	The measurement application:Writes wrong borehole length, for instance, on the admi-	35
	nistration page. The message: "Message from MATDATOR1 to ARE-	
	BETSGRUPP MATDATOR is on batteryshutdown in 10 mins"	
2003-08-26	Humic and fulvic acids; enrichment start.	5,288
2003-08-28	Water sampling: SKB class 1/uranine.	5,282
2003-08-29	Water sampling: uranine field analysis.	
2003-09-01	Water sampling: SKB class 1/uranine.	5,283
2003-09-05	Water sampling: SKB class 1/uranine.	5,284
2003-09-08	Water sampling: SKB class 1/uranine.	5,285
2003-09-09	Q=0, the borehole pump does not work. No flow from the section due to broken spring in the borehole pump. The borehole pump is changed.	37
2003-09-09	Humic and fulvic acids; enrichment stop.	5,288
2003-09-10	Lifting of equipment to change borehole pump followed by lowering.	

Table 4-4. Events during the pumping/measurement period in section 548.0–565.4 m.

Date	Activity	SKB sample no: xxxx Improvement/deviation no: x
2003-09-11	Water sampling: SKB class 1/uranine.	5,286
2003-09-12	Water sampling: SKB class 1/uranine.	5,287
2003-09-15	Water sampling: SKB class 5.	5,288
2003-09-15	Humic and fulvic acids; fractionation (5.000 D).	5,288
2003-09-15	The fractionation of humic and fulvic acids with 1.000 D filter will be done later due to defect filter. Water from the section is deep frozen.	36
2003-09-16	Lifting.	
2003-09-16	Sample of colloids, microbes and dissolved gases.	5,288
2003-09-17	Colloid filtration.	5,288
2003-10-27	Humic and fulvic acids; fractionation (1.000 D).	5,288

* Uranine analysis made at Geosigma AB.

4.7 Water sample treatment and analyses

An overview of sample treatment and analysis routines of major components, minor anions, trace metals and isotopes is given in Appendix 3. The routines are applicable independently of sampling method or sampling object.

4.8 Enrichment of humic and fulvic acids

The enrichment of humic and fulvic acids was conducted in order to collect enough material to determine $\partial^{13}C$ and pmC in organic constituents in the groundwater. The enrichment method entails collection of organic acids on an ion exchanger, eluation of the resin and evaporation of the resulting solution. The method is described in SKB MD 431.044 (SKB internal controlling document). The dry residue is used for the isotope determination; a minimum amount of 10 mg organic carbon is needed. In addition to organic material the residue also contains sodium hydroxide from the eluation. The sample is acidified at the relevant laboratory prior to analysis in order to exclude the carbon dioxide.

4.9 Fractionation of humic and fulvic acids

Humic and fulvic acids were fractionated with respect to molecular weight using an ultra filtration technique. The method is described in SKB MD 431.043 (SKB internal controlling document).

Sampled water from two sections at 156.5–167.0 and 548.0–565.4 m were filtered through membrane filters with a cut off of 1,000 D and 5,000 D. The initial water volumes prior to filtration were approximately 5 litres. The final retentate and permeate volumes following filtration were approximately 1 and 4 litres respectively, which gave an enrichment factor of five in the retentate.

Water samples were collected from the retentate and the permeate as well as from the original groundwater in the borehole section. Each sample was analysed for dissolved organic carbon (DOC), major components and common trace metals. The analyses of metal

ions are conducted in order to detect any precipitation of metals that could possibly lead to co-precipitation of the humic and fulvic acids. Furthermore, the analyses of metal ions should indicate if metals such as Al, Si, Mn and Fe exist as colloidal species.

Since the filter for 1,000 D broke during fractionation in section 4 (15^{th} of September), the water sample was deep frozen and fractionated with the 1,000 D filter the 27^{th} of October. After melting the sample, it was filtered through a 0.45 μ m Pall filter before fractionation, due to visible precipitation. A water sample was sent for DOC analysis at the sampling occasion (15^{th} of September) as well as before and after fractionation (27^{th} of October) so that any changes in the DOC concentration could be registered.

4.10 Colloid filtration

Two of the four sample containers of the pressurised ground water sampling system (PVP) were used for colloid filtration (PVB cleaned and controlled before sampling). Before the filtration the colloid system is cleaned. New filters and deionised water was used. A leak test at 10 bar was also done before each sampling occasion in order to eliminate the risk of leakage during filtration. Thereafter, if no leakage was visible, the system was dried and put together.

The theoretical amount of water left in the sample container (PVB) is 12 ml. The colloid filtration filters from each sample, two 0.4 μ m, one 0.2 μ m and two 0.05 μ m, water from the collection container and any remaining water from the downhole equipment (PVB) were sent for analysis, primarily aluminium, iron, manganese and silica (analysis of major components and common trace metals). The PVB containers from section 245.0–254.6 m were not completely filled.

Section/ sampling date	Entering pressure (bar)	Max. diff. pressure over filter package (bar)	Temp. (°C)	Filtering time (min)	Filtered volume (ml)	Comments
156.5–167.0 m/ 20030423	18	3.9	7	41	283.5	Broken filters: 0.2 μm and the first 0.05 μm.
245.0–261.6/ 20030520	26.5	3.2	(11) Laboratory temperature during filtration.	38	255.0	Broken filters: 0.2 μ m and the first 0.05 μ m. The water in the sampling container is colder than 11°C.
548.0–565.4/ 20030916	58	15.7	(14) Laboratory temperature during filtration.	170	306.0	Broken filter: the last 0.05 μ m. The water in the sampling container is colder than 14°C.

Table 5-4. Colloid filtration performance.

4.11 Microbes

One of the four sample containers of the pressurised ground water sampling system (PVP) was sent for microbial analysis. The PVB container was lifted from the borehole and put on ice to maintain the temperature and sent to the laboratory as soon as possible for analysis. At the laboratory, the sample was collected in sterile tubes under nitrogen gas.

One sample container from the sections 156.5–167.0 m, 245.0–261.6 m and 548.0–565.4 m was analysed for total cell number and most probably number (MPN). For sample preparation and analysis methods see Appendix 1.

4.12 Dissolved gases

The container is designed to maintain the pressure and temperature from the investigated borehole section. At the laboratory, the container is purged with nitrogen gas in vacuum and pumped into a sample cylinder. The sample is then analysed for argon (Ar), helium (He), nitrogen (N₂), carbon dioxide (CO₂), methane (CH₄), oxygen (O₂), hydrogen (H₂), carbon monoxide (CO), ethane (C₂H₆), ethene (C₂H₄), acetylene (C₂H₂), propane (C₃H₈) and propene (C₃H₆).

One of the PVB containers from the downhole equipment in the sections 156.5–167.0 m, 245.0–261.6 m and 548.0–565.4 m was sent for analysis of content and composition of dissolved gases.

4.13 Data handling

4.13.1 Measurement data

The measurement data (from the on-line Chemmac measurements) was calculated and evaluated in Hilda (specially developed calculation software). The evaluated data is reported in SICADA. An overview of the routine for treatment of measurement data (pH, Eh and electric conductivity) is given as follows;

- 1. Calibration files (*.CRB) and calibration comments (*.CI) for the electrodes in borehole and surface Chemmac are imported to Hilda (* is exchanged for borehole ID _ secup).
- 2. The calibration constants calculated from the calibration measurements are evaluated (SKB MD document is in preparation). The calibration comments are used as guidance for selecting appropriate calibration constants.
- 3. The selected calibration constants are used for re- calculation of the recorded measurement data (*.MRB files from Chemmac measurements). The calculated data is plotted in graphs. Files containing information (*.MI) about the measurements are used as support for deleting apparently deviating values. Any changes of the Chemmac measurement data are noted in *comments.mio.
- 4. Three files with selected calibration constants, evaluated data and comments are generated and reported to SICADA; (*constants.mio, *measurements.mio and *comments.mio).

4.13.2 Water analysis data

The following routines for quality control and data management are generally applied for hydrogeochemical analysis data, independently of sampling method or sampling object.

Several components are determined by more than one method and/or laboratory. Moreover, control analyses by an independent laboratory are performed as a standard procedure on each fifth or tenth collected sample.

All analytical results is stored in the SICADA database. The hierarchy path "Hydrochemistry/Hydrochemical investigation/Analyses/Water in the database" contains two types of tables, raw data tables and primary data tables (final data tables).

Data on basic water analyses are inserted into the raw data tables for further evaluation. This evaluation results in a final reduced data set for each sample. These data sets are compiled in a primary data table named "water_composition". The evaluation is based on:

- Comparison of results from different laboratories and/or methods. The analyses are repeated if a large disparity is noted (generally more than 10%).
- Calculation of charge balance errors. Relative errors within ± 5% are considered acceptable (in surface waters ± 10%).

Relative error
$$[\%] = 100 \cdot \frac{\sum cations(equivalents) - \sum anions(equivalents)}{\sum cations(equivalents) + \sum anions(equivalents)}$$

• General expert judgement of plausibility of results, based on earlier results and experiences.

Figure 4-1. Overview of data management system for hydrogeochemical data.

All results from special analyses of trace metals and isotopes are inserted directly into the primary data tables. In cases where the analyses are repeated or performed by more than one laboratory, a "best choice" notation indicates the results that are considered most reliable.

An overview of the data management system is given in Figure 4-1.

4.13.3 Data from special sampling activities

The analysis data from special sampling activities are stored in the file archives in the SICADA database. Data are subject to quality control and stored in tables in the SICADA database.

Enrichment of humic and fulvic acids

Carbon-13 and pmC results are directly inserted into the primary data tables in SICADA.

Fractionation of humic and fulvic acids and inorganic colloids

The concentrations of humic and fulvic acids in the permeate and retentate after fractionation with 1,000 D and 5,000 D filters, are calculated from the DOC analyses. The results are given as:

- Fraction < 1,000 D
- Fraction < 5,000 D but > 1,000 D
- Fraction > 5,000 D
- Adsorption

The same procedure is followed for the elements (inorganic colloids) analysed by ICP-AES.

A detailed description of performed calculations and equations used is given in the method description SKB MD 431.043. Calculated and evaluated results are stored in SICADA.

Colloids

The concentration is calculated with the assumption that the water volume coming out in the collecting container is equal to the volume going into the system. This is not quite true as up to ten millilitres will be left in cavities in the filter holder package, in the tubing and in valves. A small volume of about 0.01 to 0.06 mL is left in each filter after the filtration and its content of the different elements is included in the analysis. Calculated analysis results from colloid filtration (metals) are stored in SICADA. The measurement uncertainty of each colloid concentration is calculated according to equation (2).

$$U = \sqrt{\left(\frac{1}{V^2} \cdot (\Delta m)^2 + \frac{m^2}{V^4} (\Delta V)^2\right)}$$
(2)

where

 $U = measurement uncertainty (\mu g/L)$ V = water volume through the system (L) $\Delta V = estimated volume error, 0.010 L$ $m = amount on filter (\mu g)$ $\Delta m = measurement uncertainty of the filter analysis, 20% (\mu g)$ The calculated results from the colloid filtration, filters, are stored in SICADA. The water samples (in and outgoing water) are directly inserted into the primary data tables in SICADA.

Microbes

The results from the microbe analyses are stored in SICADA.

Dissolved gases

Results from gas analyses are directly inserted into the primary data tables in SICADA.

5 Nonconformities

The complete chemical characterisation of the four sections in KSH01A has been conducted according to the SKB internal controlling documents AP PS 400-02-33 and SKB MD 434.004, 434.005, 434.006, 434.007 and SKB MD 433.018. Some equipment malfunctions have occurred during the pumping/measurement periods (Tables 4-1 to 4-4) such as communication problems with the electrodes in borehole Chemmac and borehole pump failure.

The targeted upper limit for flushing water content, 1%, was exceeded in all sections; 156.5–167.0 m (3%), 245.0–261.1 m (8%), 548.0–565.4 m (11%) and 586.0–596.7 m (36%). Extended water sampling/analyses of uranine (flushing water) was made in the last sections. However, during prevailing circumstances it was concluded that it was not possible to reach a flushing water content below 1% in any of the sections. The fractionation in section 245.0–261.6 m was cancelled due to loss of water flow. The flow rate in section 245.0–261.6 m and 548.0–565.4 m measured with the measurement application did not agree with the manual measured flow, Figure A5-6 and A6-7. In section 586.0–596.7 m the investigation (including enrichment fractionation, colloid filtration, microbes and dissolved gases) was interrupted due to the high flushing water content and repairs of the downhole equipment, Chemmac/umbilical hose.

6 Results

6.1 Chemmac measurements

A representative measurement value for each electrode is selected at a logging occasion in a stable part of the measurement period in the end of the measurement. The standard deviation for each pH and Eh electrode is calculated from calibration constants obtained before and after each measurement. The "final" pH and Eh value, representative for the section, is given as a mean value for all pH and Eh electrodes respectively with calculated standard deviation (σ), Table 6-1.

The surface Chemmac measurements were conducted successfully, in sections 156.5–167.0, 245.0–261.1 and 548.0–565.4 m, the whole measurement sequences of electric conductivity, pH, dissolved oxygen, Eh, temperature and water flow are plotted versus time in Appendix 4 to Appendix 6. The flow rate in section 245.0–261.6 m and 548.0–565.4 m measured with the measurement application did not agree with the manual measured flow, Figure A5-6 and A6-7. The borehole Chemmac measurements failured in the four sections due to communication problems with the electrodes and borehole pump failure.

The concentration of dissolved oxygen decreased, in all sections, to below detection limit after a few days of measurement. However, the concentration is increasing temporarily during lifting of the equipment.

For section 156.5–167.0 m there is a discontinuity in the graphs due to lifting of the equipment when the borehole pump was replaced (2003-04-02), Appendix 4.

Also, for section 548.0–565.4 m there are some discontinuities in the graphs due to lifting of the equipment. The values are stabilised at the end of the measuring period, end of August to beginning of September, Appendix 6.

Borehole section	Electric conductivity*	рН	Eh	Dissolved oxygen**
(m)	(mS/m)		(mV)	(mg/L)
156.5–167.0	1,558 ± 100	8.17 ± 0.16	–257 ± 20	0 ± 0.01
245.0–261.6	1,787 ± 100	8.08 ± 0.17	-160 ± 36	0 ± 0.01
548.0-565.4	2,397 ± 100	8.15 ± 0.16	-173 ± 20	0 ± 0.01

 Table 6-1. Evaluated results from the Chemmac measurements in KSH01A.

* The electric conductivity is measured between 0–10,000 mS/m with a resolution of 1% of the measurement interval.

** Measuring interval 0-15 mg/L, resolution 0.01 mg/L.

6.2 Water analyses

6.2.1 Basic water analyses

The basic water analyses includes the major components Na, K, Ca, Mg, S, SO_4^{2-} , Cl⁻, Si and HCO_3^- as well as the minor constituents Fe, Li, Mn, DOC, Br, F, HS⁻ and NH_4^+ . Further, batch measurements of pH and electric conductivity are included. The content of flushing water in each sample is also an important parameter. The basic water analysis data are compiled in Appendix 7, Table A7-1. Existing batch measurement values of pH and electric conductivity (last collected sample in each section) are compared to the corresponding online Chemmac measurement values in the diagrams in Appendix 4 to Appendix 6.

The charge balance errors give an indication of the quality and uncertainty of the analyses of the major components. The relative charge balance errors were calculated the selected sets of data; see Appendix 7, Table A7-1. The errors do not exceed \pm 5% in any case when incomplete data sets are excluded. A comparison between results from different laboratories and methods indicates that the agreement is acceptable in most cases. The difference in concentration between each controlled component is generally less than 10%.

The flushing water contents in the samples collected in the four borehole section are presented in Figure 6-1, the field analyses are excluded. The analyses data with outlines, in the graph below, are values not stored in SICADA. The flushing water content should not exceed 1% in a sample considered representative for the groundwater of the fracture zone. This condition was not met in any of the sections.

The pH and concentration of chloride and hydrogen carbonate respectively are presented in Figure 6-2 to Figure 6-4. The pH is similar in all investigated sections.

Figure 6-1. Flushing water content in the sections during the investigation period. The data points with outlines are not stored in SICADA.

Figure 6-2. pH in the sections during the investigation period.

Figure 6-3. Chloride in the sections during the investigation period.

Figure 6-4. Hydrogen carbonate in the sections during the investigation period.

The chloride concentrations are plotted versus the corresponding electric conductivity values in Figure 6-5. The data from the borehole sections, 156.5–167.0 m, 245.0–261.6 m and 548.0–565.4 m, agree well with the line obtained by earlier data from the Äspö Hard Rock Laboratory. The plot gives a rough control that the values are reasonable.

Figure 6-5. Chloride versus electric conductivity. Data from earlier investigations at the Äspö hard rock laboratory are used to show the linear trend. The data from KSH01A do not deviate from a regression line.

6.2.2 Stable and radioactive isotopes

The isotope determinations include the stable isotopes δD , $\delta^{18}O$, ${}^{10}B/{}^{11}B$, $\delta^{34}S$, $\delta^{13}C$ and ${}^{87}Sr/{}^{86}Sr$ as well as the radioactive isotopes Tr (TU), ${}^{14}C$ (pmC), ${}^{238}U$, ${}^{235}U$, ${}^{234}U$, ${}^{232}Th$, ${}^{230}Th$, ${}^{226}Ra$ and ${}^{222}Rn$. The isotope data are compiled in Appendix 7, Table A7-2 and Table A7-4.

The tritium and δ^{18} O results are presented in Figure 6-6 to Figure 6-7, respectively. The tritium content was below the detection limit (0.8 Tritium Units, 0.4±0.4 Tritium Units) in most samples collected in section 156.5–167.0 m and 245.0–261.6 m. From sections 586.0–596.7 m and 548.0–565.4 m there are only one and two results available respectively. The δ^{18} O ratios remained stable during the sampling periods.

Figure 6-6. Tritium in the sections during the investigation period.

Figure 6-7. $\delta^{18}O$ in the sections during the investigation period.

6.3 Enrichment of humic and fulvic acids

The carbon isotopes (δ^{13} C and pmC) were determined in organic constituents, Table 6-2. Enrichment of organic carbon was necessary in order to get enough organic material. The enrichment was not performed in section 586.0–596.7 m due to high content of flushing water.

Table 6-2. Organic $\delta^{13}C$ and pmC.

Borehole section (m)	δ¹³C (dev PDB)	pmC
156.5–167.0	x	x
245.0–261.6	-27.0	85.2
548.0-565.4	x	х

x = not enough carbon to perform the analysis.

6.4 Fractionation

6.4.1 Humic and fulvic acids

The results from fractionation of organic acids in the sections at 156.5–167.0 and 548.0–565.4 m are summarised in Table 6-3. As shown, the water in the sections contains organic acids with a molecular weight less than 1,000 D, except for a very small fraction larger than 5,000 D. This means that the organic constituents are present as low molecular weight fulvic acids and possibly other low molecular weight organic acids (e.g. citric acid, oxalic acid etc).

The fractionation in section 245.0–261.6 m was cancelled since there was no water flow from the section at the time for the fractionation. In section 586.0–596.7 m the content of flushing water was too high and the downhole equipment, borehole Chemmac/umbilical hose, had to be serviced.

Fraction	Section 156.5–167.0 m DOC concentration (mg/L)	Section 548.0–565.4 m DOC concentration (mg/L)
< 1,000 D	1.0 ± 0.1	1.0 ± 0.1
> 1,000 D but < 5,000 D	_	_
> 5,000 D	0.06 ± 0.04 (almost within the error)	0.04 ± 0.03 (almost within the error)

Table 6-3. Summary of fractionation results.

– = Not found

6.5 Inorganic colloids

The presence of inorganic colloids is investigated by two different methods. One method is colloid filtration (the results are not yet stored in SICADA) through a series of connected filters of different pore sizes. This method is new and not yet approved. A second method is fractionation/ultra filtration using cylindrical membrane filters with a cut off of 1,000 D and 5,000 D respectively. The results of the two methods are difficult to compare quantitatively but a qualitative agreement is identified.

6.5.1 Inorganic colloids-fractionation

Besides the DOC analyses, the samples from fractionation experiments were also analysed by ICP-AES. The determined elements were; Ca, Fe, K, Mg, Na, S, Si, Al, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sr, V and Zn. Only iron, silicon, aluminium and manganese were considered important as colloid species.

The results presented in Table 6-4 and Table 6-5 were calculated using mass balance equations (SKB MD 431.043, SKB internal controlling document). As shown, Fe, Si and Mn exist as species (associated or non-associated with humic and fulvic acids) with a molecular weight less than 1,000 D. Such species are too small to be referred to as colloids. The concentrations of aluminium in the water were too low to draw any conclusions regarding fractions of aluminium. Iron (and silicon) was partly precipitated during the fractionation, since oxygen is present in the filtering system (pump, filter, hose etc). Although unlikely, the presence of iron and silicon containing species of a larger fraction cannot be completely excluded.

Fe (mg/L)	Si (mg/L)	Mn (mg/L)
0.54 ± 0.05	3.5 ± 0.5	0.51 ± 0.05
0.77 ± 0.08	3.5 ± 0.5	0.52 ± 0.05
_	-	-
_	-	-
0.59 ± 0.13	-	-
0.36 ± 0.14	-	-
	Fe (mg/L) 0.54 ± 0.05 0.77 ± 0.08 - - 0.59 ± 0.13 0.36 ± 0.14	FeSi(mg/L) (mg/L) 0.54 ± 0.05 3.5 ± 0.5 0.77 ± 0.08 3.5 ± 0.5 $ 0.59 \pm 0.13$ $ 0.36 \pm 0.14$ $-$

Table 6-4. Inorganic fractions (1,000 D and 5,000 D filters) in section 156.5–167.0 m.

– = Not found.

Table 6-5.	Inorganic fractions	(1,000 D and	5,000 D filters)	in section	548.0–565.4 m.
------------	---------------------	--------------	------------------	------------	----------------

Fraction	Fe (mg/L)	Si (mg/L)	Mn (mg/L)
< 1,000 D	0.05 ± 0.01	2.9 ± 0.4	0.40 ± 0.04
< 5,000 D	0.35 ± 0.04	4.1 ± 0.6	0.41 ± 0.04
> 1,000 D but < 5,000 D	-	-	-
> 5,000 D	-	-	-
Adsorption 1,000 D	0.38 ± 0.05	1.5 ± 0.8	_
Adsorption 5,000 D	0.10 ± 0.06	-	-

– = Not found.

The filters were carefully washed before use and samples of de-ionised water (after passing through the washed filters) were analysed as sample blanks. The concentrations in the sample blanks were insignificant. The results from both sections show that Calcite was not precipitated to any significant extent during the filtrations.

6.5.2 Inorganic colloids-colloid filtration

The main results from the colloid filtration method conducted in the sections 156.5–167.0 m, 245.0–261.6 m and 548.0–565.4 m are presented in Figure 6-8 to 6-11, Figure 6-12 to 6-15 and Figure 6-16 to 6-19 respectively. Zero values in the graphs are values below the detection limit. Colloid filtration was not performed in section 586.0–596.7 m, the measurements were interrupted because of high flushing water content in the section.

The results are presented as amount (μg) of aluminium, iron, silicon and manganese going into the filter package, in each filter and in the collecting container. The amount is calculated with the assumption that the water volume coming out in the collecting container is equal to the volume going into the system. This is not quite true as up to ten millilitres will be left in cavities in the filter holder package, in the tubing and in valves. A small volume of about 0.01 to 0.06 mL is left in each filter after the filtration and its content of the different elements is included in the analysis.

Comments and conclusions regarding the results presented in Figure 6-8 to 6-19 follow below:

- The input amount of aluminium and iron is larger than the sum of the amounts recovered in the filters and in the output.
- The output concentrations of aluminium, iron, silica and manganese are close to the concentrations in the up pumped borehole water, except for iron in section 245.0–261.6 m.
- The input sample is collected after the filtration, from the small residual volume in the PVB-container. A possible explanation to the generally high input concentrations, when comparing with the concentration in the up pumped water, is that the sample water when poured from the PVB-container is in contact with the surface on the outlet. The source of contamination is probably the borehole section.
- A better control of the pressure differences between different positions in the filtering line or a more gentle pressure regulation and slower filtration might possibly prevent broken filters and improve the filtering performance. However, it can be noted that the amount of the different elements are not significantly different on broken filters compared to intact filters. Results obtained from broken filters are given within brackets in the diagrams, Figures 6-8 to 6-19.
- The concentrations of aluminium, iron, silica and manganese in filter sample blanks (just filter, no preparation) are insignificant.
- The results from the three sections show that Calcite was not precipitated to any significant extent during the colloid filtrations.

Result of colloid filtering using water sample from section 156.5-167.0 metres

Result of colloid filtering using water sample from section 245.0-261.6 metres

filters and in the collecting container (m out). filters and in the collecting container (m out). Result of colloid filtering using water sample from section 548.0-565.4 metres

Figure 6-19. Amount of manganese entering the filter system (m in), in the

filters and in the collecting container (m out).

6.6 Microbes

The results from the microbe investigation in sections 156.5–167.0, 245.0–254.6 and 548.0–565.4 m are reported in Appendix 1.

6.7 Dissolved gases

The results from the gas analyses in sections 156.5–167.0, 245.0–254.6 and 548.0–565.4 m are reported in Appendix 7, Table A7-5.

7 Conclusions

The main conclusions from the experimental results are:

- The targeted upper limit for flushing water content, 1%, was exceeded in all sections; 156.5–167.0 m (3%), 245.0–261.1 m (8%), 548.0–565.4 m (11%) and 586.0–596.7 m (36%). A high flushing water content can have an influence on the water composition.
- The pH (about 7.5) is similar in the sections.
- The electric conductivity increases with depth and the salinity (chloride concentration) of the water increases from section 156.5–167.0 m to section 548.0–565.4 m. This is expected since it generally is the case in deep boreholes.
- The redox potential measurements with surface Chemmac appear to be of very good quality. Almost all the electrodes stabilised at practically the same level (about –200 mV) in all three sections.
- The generally reducing conditions in the groundwater, as shown by the negative redox potentials, are supported by the presence of ferrous iron Fe (+II) at relatively high concentrations in all three borehole sections. Furthermore, the on-line measurements of dissolved oxygen show zero values and do not contradict this statement.
- The organic constituents in the groundwater are present as fulvic acids and possibly other low molecular weight organic acids (citric acid, oxalic acid etc).

8 References

- /1/ SKB, 2001. Generellt genomförande program för platsundersökningar. SKB R 01-10. Svensk Kärnbränslehantering AB.
- /2/ Ask H, Morosini M, Samuelsson L-E, Stridsman H, 2003. Drilling of cored borehole KSH01. SKB P-03-113. Svensk Kärnbränslehantering AB.
- /3/ Ask H, Samuelsson L-E, 2003. Drilling of three flushing water wells, HSH01, HSH02 and HSH03. SKB P-03-114, Svensk Kärnbränslehantering AB.
- /4/ Wacker P, 2003. Hydrochemical logging in KSH01A. SKB P-03-87. Svensk Kärnbränslehantering AB.
- /5/ Nilsson P, Gustafsson C, 2003. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03. SKB P-03-15. Svensk Kärnbränslehantering AB.
- /6/ Aaltonen J, Gustafsson C, Nilsson P, 2003. RAMAC and BIPS logging and deviation measurements in boreholes KSH01A, KSH01B and the upper part of KSH02. SKB P-03-73. Svensk Kärnbränslehantering AB.
- /7/ Nielsen U-T, Ringgaard J, 2003. Geophysical borehole logging in borehole KSH01A, KSH01B and part of KSH02. SKB P-03-16. Svensk Kärnbränslehantering AB.
- /8/ Rouhiainen P, Pöllänen J, 2003. Differential flow measurements in borehole KSH01A at Simpevarp. SKB P-03-70. Svensk Kärnbränslehantering AB.
- /9/ Pedersen K, Kalmus A, 2003. Oskarshamn site investigation, Total numbers and metabolic diversity of micro organisms in borehole KSH01A, Results from three investigated sections 156,5–167 m, 245–261,6 m and section 548–565 m. SKB P-03-XX, Svensk Kärnbränslehantering AB.

Downhole equipment

A1-1. Down-hole equipment in section 156.5-167.0 metres, administration.

Mätapp	ikation -	SKB												
<u>Fie</u> <u>S</u> p	ecial													Development
Mä	tapp	likation	Administra	tion	GivarKonf.	B.Utr.Konf.	м	ätning		Larm	Logg	a Ut		01/10
Hu	vudn	neny	System		Kemkal.	LängdKal.	1	rend	Fr	orcerad mätn				SRB Smark Kinteinslabertarian AB
MAT	DATORI	1	Larmorän	ser	Referenser			HistLog	TIII					2003-04-23 11:30:46
												kgn		
Ad	mini	stration		[Enhetsi	dentiteter		Borrt	iåis(Chemmac/PVF	7 /0P		,	YtChemmac
		onderon			YtChemmac	MYC2		ETB		M-EK 422	-	0		Eläde
	Ute	skrift			Multisland	Multisland	152	EPHB		G45		EO2	Y	48296
	_		1		Spårdetektor	SP022		ECB		C2-96			-	
	Export a	av mätfiler		[Ö. Manschett	Övre man	s 52	EPHIB		G40		ERE	F1Y	Ref
					Hydr.Pump	Pump 21		EREFB		R22		EPH	Ý	WD
		All			Borrhälschemma	IC KE 021		EAUB		AU 022		EPHI	ΙY	WE
		Alimant			Vattenprovtagar	e PVP 021	_	EPTB		Pt 022		EPT	r	N9-1
Borr	hål	KSH01A		-	Ex. Behållare	Ex 021						EAU	Y	P8-1
Oper	ator	kan			Förlängning	Rör 2 m	_	PB		1682925				
SEC	JP	156.50		-	N. Manschett	Nedre MA	S2	PIV		1576833		ETI	1	Temp
SEC	.ow	167.00					_	P2Y		1576877		ECY		Kal
Star	ttid	2003-03-27	16:10:34	-			_	INTEM	P	Inse utata		EKO	NDY	29102
Stop	ptid	2003-04-23	10:07:36				_	UTIEN	1P	ut/B				
Kem	data	KSH01A0327	156K.MRB	-			_	CUNIN		ato/ box6709	_			
OPD	ata	KSHUIAU327	196U.MRB	L			_	DUMDE	,	1699542				
Kom	mentar	KSH01A032	/156K.MI	-		_		MANS		maQ0	_			
Filbi	hotek	D: Mathler V	KSH01A030	3(01)	07-0167			IN MINUS		maso				
		Filer - ink	alibrering			Filer - ut	kalihre	rina						
CHE	MMAC	Data		Kom	mentar	Data			K	nmentar				
		KSH01A03270	H4Y.CRB	KSHO	140327InH4Y.CI									
	рпа	KOHOLAGOZT										-		
Y I	pm/	KSHUTAU3271	DH71.CRB	KSH	JIAU32/IPH/1.CI							_		
Т	pH10	KSH01A03271	DH10Y.CRB	KSHQ	01A03271pH10Y.C	2								
	0.01M	KSH01A03271	kd01Y.CR	KSHQ	01A0327Ikd01Y.0	л								
	0.1M	KSH01A03271	kd 1Y.CRB	KSHQ	01A03271kd 1Y.CI									
В -	pH4	KSH01A0326I	pH4B.CRB	KSHO	01A0326IpH4B.CI	KSH01A04	23UpH4	B.CRB	KS	H01A0423Upi	H418.CI			
BĂ	pH7	KSH01A03261	pH7B.CRB	KSHO	01A0326[pH7B.CI	KSH01A04	23UpH	B.CRB	KSI	H01A0423Upl	H7B.CI			
RL	pH10	KSH01A0326I	H108.CRB	KSHO	01A0326IpH10B.0	3								

Administration (2003-04-23).

A1-2. Down-hole equipment in section 245.0-261.6 metres, chemmac configuration, configuration of borehole equipment and length calibration.

Mätap	plikation - S	ikb													
<u>File</u> S	pecial							_							Developn
Mä	itappli	ikation	Admir	nistratior	Giva	rKonf.	B.Utr.Konf.	Mätning 😑		Larm	Lo	gga Ut			
Hu	ivudm	env	Sy	/stem	Ker	nkal.	LängdKal.	Trend	Fore	erad m	ätn			5	ήB
MA	IDATORI	· · · · ,					HistLog Från utrice 2003							onsk Kärnbri 103-05-1	nslehantering Al 9 17:00:13
				00								unitza			
GN	/arkor	ntigura	lon -	52	Vatten	pro∨tagai	omgivni	ing/Process			Radera	Hämta	n Spa	ra	
		Borrhålso	hemmac				Ytchemmac			Ytche	emmac, Id:	MYC2	Anm.	Ja	
		2.									Тур	Id	Datum	Nod	Kanal
		3./_ 🔘								9.	E02Y	48296	021112	4	17
	/	70		1						10.				0	0
	- 1	\frown	0	Temn			10 17.			11.	EREF1Y	Ref	020918	3	4
		ິ 🚳 🍙	5	1.0			· / ···	18.	\sim	12.	EPHY	WD	020918	3	3
	'	0 0 6		ł.			15.	19.	\sim	13.	EPHIY	WE	020918	3	6
							f	Ì	\rightarrow	14.	EPTY	N9-1	021112	з	2
		~	<u> </u>	_			14.		- 11	15.	EAUY	P8-1	020918	3	1
	Radera	Hämta	Spara			II 1	l.	1	- 8	16.				0	0
Borrh	ålschemn	nac, Id:Ke O	21	Anm.	Ja		N3.	9. 🏒		17.	ET1Y	Temp	020918	3	15
\geq	Тур	ld	Datum	Nod	Kanal			<u>-</u>	7	18.	ECY	Kol	020918	3	7
Temp	ETB	M-FK 422	020911	2	15		1L	10,		19.	EKONDY	29102	021112	4	10
1.	EPHB	G45	030326	2	1					-				0	0
2.	ECB	C2-96	030324	2	2					-				0	0
3.				0	0	· · · · ·				-				0	0
4.	EREFB	R22	030324	2	4					-				U	0
5.	EAUB	AU 022	020911	2	5					-				U	U
6.	EPTB	Pt 022	020911	2	6					-				0	0
Gnd				0	0					-	-	E112.1	000010	4	0
-	PB	1682925		2	9					-	0	Fiede	020918	3	10
-	VLARMB	-		2	20					-	VIY	-	020918	3	13
-	VB	-		2	19										

Chemmac configuration (2003-05-19).

Configuration of borehole equipment (2003-05-19).

Length calibration (2003-04-25).

A1-3. Down-hole equipment in section 586.0-596.7 metres, configuration of borehole equipment.

Configuration of borehole equipment (2003-06-23).

A1-4. Down-hole equipment in section 548.0-565.4 metres, administration (20030711, 20030826 and 20030916) configuration of borehole equipment and length calibration.

Length calibration (2003-06-23).

Mätapplikatio	n - SKB									
<u>Fie Special</u>										Developmentj
Mätap	plikation	Administ	ration	GivarKonf.	B.Utr.Konf.	Mätnin	g 😑	Larm	Logga Ut	a 1 b
Huvud	Imeny	Syste	m	Kemkal.	LängdKal.	Trend		Forcerad mätn		SKB
MATDATO	าคา	Larmgrä	inser	Referenser	GSM-larm			HistLog Till	kan	2003-06-24 13:01:26
Konfi	guration a Multislang Spårdetektor Borrhålschemm Ö. Manschett		Typ av Multis Spård Borrhi	utrustning venhet lang etektor ålschemmac	ld Multislang S2 Sp 021 Ke 021	Längd, mm 960 957 1235	Avst tikop	ễnd mellan mul- pling och tătning	Dummy Id	Lägg III Ta bort
I ∓∐	o. Multisciten		Ö. Ma	nschett	Övre mans S2	2165	500		ingen	
	Hydr.Pump		Hydr.Pump		Pump 21	2255			ingen	
		_	Vattenprovtagare		PVP 022	2505			ingen	
	Vattenprovtaga	re	Ex. Behallare		Ex 021	1475				
	Ev. Rebâllare	-	Foriar	igning	Im	1000				4
	Ex. Demanare	-	Forlar	igning	Rör 2m x 5 bit	10235				
	Förlängning	L	N. Ma	nschett	Nedre MA S2	2165	390		ingen dummy	J
	Förlängning		Total so	ndlängd: 23992	2, mm					
±_0	N. Manschett	:	Längd t Längd f Scktion:	ill Övre Mansch ill Nedre Mansc slängd: 17353, i	ett: 3857, mm hett: 21210, mm mm					

Configuration of borehole equipment (2003-06-24).

Mätapp	ikation -	SKB											
Ele Sp	ecial												Development
Mä	tapp	likation	Administra	ition	GivarKont. I	3.Utr.Konf.	Mä	tning 😑		Larm	Logga	ı Ut	e V D
Hu	vudn	neny	System	•	Kemkal.	LängdKal.	Tr	end	Fo	orcerad mätn			Svensk Kärnbränslehantering AB
MAT	DATOR	I	Larmgrän	ser	Referenser	GSM-larm			H	listLog Till		gn	2003-07-11 15:27:33
_													
Ad	<u>mini</u>	stration			Enhetsid	entiteter		Borrh	åls0	hemmae/PVP/	OP	1	rtChemmac
	1.16	- krift			YtChemmac	MYC2	_	ETB		M-FK 422		Q	Flöde
		БКПК			Multislang	Multislang	52	EPHB		G45		EO2Y	48296
	Example	av mätfiler			Spärdetektor	Sp 021	_	ECB	_	C2-96			
					Borrhälschemmac	Ke 021						EREF 1Y	Ref
					O. Manschett	Ovre mans	52	EREFB	_	R22	_	EPHY	WD
		Allmänt			Hyar.Pump	Pump 21	_	EAUB		AU 022		EPHLY	WE
Dane	- 81	N CL KALA			Vattenprovtagare	PVP 022	_	EPIB	_	Pt uzz	_	EPTY	N9-1
BOT	n tali	KSHUIA			Ex. Berialiare	EX 021	_	00		1602025		EAUT	P-8-1
CEC	iD	549.00			Forlanging	Diar Jan y 5	hit	PD D1V	_	1662923	_	ET 1V	Tomp
SEC	OW	565.00			N Manachett	Nodro MA S	2	P17		1576977		ET II	Kal
SEU		2002.07.00	16.10.05			NEULE MA 3	·2	1NTEM	D	13/05/7	_	EKONOV	20102
Star	otic	2003-07-08	16:13:05				_	LITTEM	ID ID	ut 78		EKONDI	29102
Kom	data	KSH01A0708	5/0K MDD					ATMP		at67			
OPD	ata	KSH01A070B	5480 MRB					GVNIV	_	hav6798			
Kom	mentar	KCH01A0700	540K MT	L				PUMPP		1668543			
Filbi	aliotek	D:Mätfiler)	(SH01A030	3052	19-0565	7		MANSC	ΗP	ma90			
1 11.4	ALDER	Lo. Watcher V	C. HOLMOID			_				1			
		Filer - ink	alibrering			Filer - utka	alibreri	ng					
CHE	MMAG	Data		Kom	mentar	Data			K	ommentar			
	pH4	KSH01A06251	H4Y.CRB	канс	01A06251pH4Y.CI								
l v	pH7	KSH01A06251p	H7Y.CRB	KSH	01A0625IpH7Y.CI								
Ι τ΄	pH10	KSH01A06251	H10Y.CRB	KSH	01A06251pH10Y.CI								
	0.01M	KSH01A0630Ik	doly.cr	KSH	01AO630Ikd01Y.CI								
	0.1M	KSH01A06251k	d IY.OB	KSH	01A0625Ikd 1Y.CI								
В-	pH4	KSH01A07111	H4B.CRB	KSH	01A07111pH4B.Cl	KSH01A0623	3UpH4	B.CRB	KSł	101A0623UpH	4B.CI	1	
O H	pH7	KSH01A07111	H7B.CRB	KSH	01A0711IpH7B.CI								
RL	pH10	KSH01A07111p	H10B.CRB	KSH	01A0711IpH10B.CI								

Administration (2003-07-11).

Fie Sp	ecial	• 5KB											Development
Mä	tann	likation	Administra	ation GivarKonf.	B.U	Jtr.Konf.	Mä	tning 😑		Larm	Logga	Ut	
Пла	app	nenv	Sveter	n Kemkal		nodKal.	Т	end	Eo	rcerad mätn			SKB
	uui	neny	- Official		_					loor du mour			Svensk Kärnbränslehantering AB
MAT	DATOR	1			GS	M-larm			H	listLog Till	ulr	ca	2003-08-26 15:39:22
Ad	mini	istration		Enhet	tsident	titeter		Borrh	âlsC	hemmac/PVP/	OP		YtChemmac
				YtChemmac	N	4YC2		ETB		M-FK 422		Q	Flöde
	Ut	skrift		Multislang	N	Multislang	S2	EPHB		G45		EO2Y	48296
	Even ant	au mättilar	1	Spårdetektor	5	Sp 021		ECB		C2-96			
	Export	av matticr		Ö. Manschett	ĸ	(e 021						EREF 1Y	Ref
				Ö. Manschett	ć	Övre mans	: S2	EREFB		R22		EPHY	WD
		All		Hydr.Pump	ĸ	<e 021<="" td=""><td></td><td>EAUB</td><td></td><td>AU 022</td><td></td><td>EPHLY</td><td>WE</td></e>		EAUB		AU 022		EPHLY	WE
		Alimant		Vattenprovtag	are F	PYP 021	_	EPTB		Pt 022		EPTY	N9-1
Borr	nâl	KSHO1A		Ex. Behållare	E	EX 021						EAUY	P8-1
Oper	atör	kgn		Förlängning	1	1m	_	PB		1682925			
SEC	л	245.00		Förlängning	N	Nedre MA !	S2	P1V		1576833		ET1Y	Temp
SECI	.ow	N 565.35		N. Manschett	<u>۲</u>	Nedre MA S2		P2V		1576877	_	ECY	Kal
Star	ttid	id 2003-07-28 15:18:19						INTEM	Р	in56		EKONDY	29102
Stop	ptid	2003-05-19	15:51:28				_	UTTEM	P	ut78	_		
Kem	data	KSH01A0728	245K.MRB					ATMP		at67			
OPD	ata	KSH01A0728	2450.MRB				_	GVNIV		hgv6798			
Kom	mentar	KSH01A0728	245K.MI					PUMPP		1698543			
Filbil	diatek	D:\Mätfiler\	<sh01a030< td=""><td>3\0548-0565</td><td></td><td></td><td></td><td>MANSC</td><td>ΗР</td><td>ma90</td><td></td><td></td><td></td></sh01a030<>	3\0548-0565				MANSC	ΗР	ma90			
		Filer - ink	alibrering			Filer - uth	alibreri	ng					
CHEI	MMAC	Data		Kommentar		Data			Ko	mmentar			
	pH4	KSH01A04251	H4Y.CRB	KSH01A04251pH4Y.C	п								
Y	pH7	KSH01A04251	H7Y.CRB	KSH01A0425IpH7Y.(a								
T	pH10	KSH01A07141p	H10Y.CRB	KSH01A0714IpH10Y	.cı								
	0.01M KSH01A06301kd01Y.CR KSH01A0630		KSH01A0630Ikd01Y	.a									
	0.1 M	KSH01A06251k	Kd1Y.CRB	KSH 01A0625I kd 1Y.	CI								
В-	pH4	KSH01A07111p	H4B.CRB	KSH01A0424[pH4B.	сі к	SH01A052	CUpH4	B.CRB	KS⊦	101A0520UpH	4B.CI		
ВÅ	pH7	KSH01A04241	H7B.CRB	KSH01A0424[pH7B.	ст к	SH01A052	OUpH 7	B.CRB					
RÊ	pH10	KSH01A04241	H10B.CRB	KSH01A07111pH10B	.ci								

Administration (2003-08-26).

Mätapplikatio	on · SKB									
<u>File</u> <u>Special</u>									Bevelopment	
Mätap	plikation	Adminis	tration	GivarKonf.	B.Utr.Konf.	Mätnir	ig 🔍 📕 Larm	Logga Vt	01/10	
Huvud	dmeny	Syste	:m	Kemkal.	LängdKal.	Trend	f Forcerad mätn		ShB Svensk Kämbränslebentering AB	
MATDATO)R1	Larmgra	inser	Reterenser	GSM-larm		HistLog Till	kgn	2003-09-10 07:54:40	
Konfi	guration a	v borr	háls	utrustning						
	Multislang									
						Längd,	Avstånd mellan mul-]	
	Spårdetektor		Тур а	iv enhet	ld	mm	tikoppling och tätning	Dummy Id	Lägg till	
	Ö. Manschett	[Multi	slang	Multislang S2	960				
			Spår	detektor	Sp 021	957				
1 1 1	Ö. Manschett		Ö. M	anschett	Ke 021	2165	0	ingen		
∥ ∓⊠			Ö. M	anschett	Övre mans S2	2242	500			
	Hydr.Pump Vattenprovtagare		Hydr.Pump		Ke 021	2255		ingen		
			Vattenprovtagare		PVP 021	2505		ingen		
			Ex. Behållare		Ex 021	1475				
			Förlängning Förlängning		lm	1000				
	Ex. Bchâllarc				Nedre MA S2	10235				
			N. M	anschett	Nedre MA S2	2165	0	ingen dummy		
	Forlangning									
I 40	Förlängning		Total s	ondlängd: 24999	. mm					
I M	ronangning		ISnad	till Över Mansch	ettr 2622 mm					
	N. Manschett				L N. 01010					
			Lango	till Nedre Manso	nett: 21210, mm					
			Sektion	islangd: 18588,	mm					
Confi	ourotion of	horah	مامم	auinmont	(2003 00 1	10)				

Configuration of borehole equipment (2003-09-10)

Fit Special Developer Mätapplikation Huvudmeny Mattaktori Administration System Givarkonf. Kenkal. B.Utr.Konf. B.Utr.Konf. Mätuling Histung Larm Logge U Forcerad mäth Histung Till Special kgn Administration Hubudom Bystem Kenkal. LöngdKal. Trend Forcerad mäth Forcerad mäth Logge U Kgn Special Speci Special Special Special Special Speci Speci Special	Mätapp	likation	SKB														
Mattapplikation Huvudmeny Mattaton Administration GivarKonf. B.Ur.Konf. Mitoing Lam Lagg U Mattaton Bystem Kemkal. LängdKal. Trend Forcerad mätn Forcerad mätn <td< td=""><td><u>File S</u></td><td>pecial</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Developmen</td></td<>	<u>File S</u>	pecial															Developmen
Huvudimeny Matbatori System Kenkal. LängtKal. Trend Forcerad mäin Full Forderadisting for 2003/09-16 16:295:57 Administration Enhetsideniteter GSM-term HistLog Till top 1003/09-16 16:295:57 Export av mätiller Utskrift Spärderletkor 59 021 EGB C2-96 C2-96 C2-96 C2-96 ED2/94 402366 ED2/94 ED2/94<	Mä	tapp	likation	Administra	ation	GivarKonf.	В	.Utr.Konf.	M	(ät	ning		Larm	Logg	a U	t	ovo
MAIDATORI Lamgrinzer Reteranzer GSM-larm Histlag Till Age 200319312 182953 Addministration Uiskrift Enhetsidentiteter MYC2 Enhetsidentiteter Enhetsidentite	Hu	vudr	neny	System	n	Kemkal.	L	.ängdKal.		Tre	nd	Fo	orcerad mätn				SRB Same Kimbrinishartarian AB
Administration Enhetsidenitieter Operation Operation <td>MAT</td> <td>DATOR</td> <td>1</td> <td>Larmgrän</td> <td>ser</td> <td>Reterenser</td> <td>G</td> <td>SM-larm</td> <td></td> <td></td> <td></td> <td>ł</td> <td>listLog Till</td> <td></td> <td></td> <td></td> <td>2003-09-16 16:29:53</td>	MAT	DATOR	1	Larmgrän	ser	Reterenser	G	SM-larm				ł	listLog Till				2003-09-16 16:29:53
Enhetsidentiteter BorrhålsChemmac/PVP/0P Utskrift PYChemmac MYC2 Export av mättiller Spå2rtekttor Sp 0/21 C. Manschett Ke 0/21 EAMB O. Manschett Ke 0/21 EAMB Vichemmac Mutisiang 52 EAB Barrhål KSH01A EAB Operatic kgn EAB Kgn Starthå KSH01A SECUP SH8.00 Starthå Starthå KSH01A09125486.MBB Starthå OPData KSH01A09125486.MBB Starthå OPData SH01A09125486.MBB Starthå MANSCHP Id83543 Kommentar KSH01A09125486.MBB Starthå VY MARSCHP Starthå MANSCHP Id83543															ĸġn		
Uiskrift VtC:2 ETB M-FK 422 Q Flöde Export av mättiler Spårdetektor Sp 021 G45 ED46 G45 Spårdetektor Sp 021 O. Manschett Ke 021 ED46 G45 ED47 G04 Bernhäl KSH01A Over mars 52 EAU AU G22 ED47 W-F ED42 ED41 ED43 ED	Ac	Imini	istration			Enhets	ide	ntiteter			Borrh	áls(Chemmac/PVP,	/0P			YtChemmac
Utskill Multislang Multislang 52 EpHB G45 Export av mättlier Spårdetektor Spårdetekto				1		YtChemmac		MYC2			ETB		M-FK 422			Q	Flöde
Spårdetektor Sp 0/21 EC8 C2-96 Allmönt 0. Manschett Korre mans 52 EAU EAU E Manschett Over mans 52 Hyd. Pump Ke 0/21 EAU E EAU E EAU E EAU E E EAU E		Ut	skrift			Multislang		Multislang	S2		EPHB		G45			EO2Y	48296
Child and the second		Event	su mättilar	1		Spårdetektor	_	Sp 021			ECB		C2-96	_			
Iminint O. Manschett Owre mans 52 R22 EPHY WO Bornhäl KSH01A Owre mans 52 EXERPS R22 EPHY Wo Bornhäl KSH01A Owre mans 52 EX.021 EX.021 </td <td></td> <td>Export</td> <td>avmaunci</td> <td></td> <td></td> <td>Ö. Manschett</td> <td></td> <td>Ke 021</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EREF1Y</td> <td>Ref</td>		Export	avmaunci			Ö. Manschett		Ke 021								EREF1Y	Ref
Allmönt Hydr.Pump Ke 021 EAUB AU 022 EPHIY Wet Borthål KSH01A Ex. Behållare Ex 021 ETB E022 ETHY N9-1 SECU.OW 598.00 Startbål 2000-09-12 Brötlängning Rör 2 x 5m + 1m bltPs 1682025 EAUY P3-1 SECU.OW 595.60 Startbål 2003-09-16 03:17:10 N. Manschett Nodre MA S2 P1V 1576833 ETTY Tomp Startbål 2003-09-16 03:17:10 N. Manschett Nodre MA S2 P2V 1576877 EXVIV Ney6798 OPData KSH01A09125498K.MB EXVIV Ney6798 PUMP 1688543 EXVIV Ney6798 PUMMP 1688543 MNSCHP mag0 Interver Interver Interver Interver VMARD Data KSH01A09162yEPH4Y.CB KSH01A09160yEPHY.CB KSH01A09160yEPH7Y.CI Interver Interver Interver Interver PH4 KSH01A04251pH7Y.CB KSH01A09160yEPH7Y.CB						Ö. Manschett	_	Övre mans	S 2		EREFB		R22			EPHY	WD
Wattangrowlagare PVP 021 EPTB Pt 022 EPTY No.1 Operatiz KSH01A Exclusive			Allmänt			Hydr.Pump		Ke (121			EAUB		AU 022			EPHIY	WE
Bornhal KSH01A Ex. Behalare Ex. 2021 Operativ Kon EX. Behalare Ex. 2021 EX. 2021 SECUP 548.00 EX. Behalare Ex. 2021 EX. 2021 SECU.0V 595.00 EX. Behalare EX. 2021 PLV 1576833 SECU.0V 2003-09-12 08:55:51 EX. 2021 PLV 1576877 Storthid 2003-09-16 08:17:10 EX. 2011 PLV 1576877 Storthid 2003-09-16 08:17:10 EX. 2011 PLV 1576877 Storthid 2003-09-16 08:17:10 EX. 2012 EX. 201 Kemdeta KSH01A09125480.MRB EX. 201 EX. 2012 OPData KSH01A09125480.MRB EX. 201 EX. 201 Kommentar KSH01A09125480.MRB EX. 201 EX. 201 VITTEMP 1683543 MANSC-IP ma90 FILer - inkalibrering Filer - utkalibrering EX. 201 EX. 201 PH4 KSH01A04251pH4Y.CB KSH01A09160pH4Y.CB KSH01A09160pH4Y.CB <td></td> <td></td> <td>Annual</td> <td></td> <td></td> <td>Vattenprovtaga</td> <td>re</td> <td>PVP 021</td> <td></td> <td></td> <td>EPTB</td> <td></td> <td>Pt 022</td> <td>_</td> <td></td> <td>EPTY</td> <td>N9-1</td>			Annual			Vattenprovtaga	re	PVP 021			EPTB		Pt 022	_		EPTY	N9-1
Operator Kgn Forlangning Kor 2 × 3m + 1m pMtB 1682025 SECU_P 5/8.00 N. Manschett Nodre MA S2 P1V 15/76873 Starttid 2003-09-12 08:551 N. Manschett Nodre MA S2 P2V 15/76873 Starttid 2003-09-16 08:17:10 N. Manschett Nodre MA S2 P2V 15/76873 Starttid 2003-09-16 08:17:10 N. Manschett Nodre MA S2 P2V 15/76873 Starttid 2003-09-16 08:17:10 N. Manschett Nodre MA S2 P2V 15/76873 OPData KSH01A0912548K.MRB ATMP at57 EKONDY 20102 OPData KSH01A0912548K.MIB GWNV heyd578 Heyd578 PUMY> 15683543 MNNSCHP ma90 Heitblock Heitblock Filter - inkalibrering Filter - utkalibrering MNNSCHP ma90 Heitblock Heitblock PH4 KSH01A04251pH4Y.CB KSH01A09160pH4Y.CB KSH01A09160pH4Y.CB KSH01A09160pH4Y.CB KSH01A09160pH4Y.CB NH10 KSH01A0912	Born	hai	KSHOIA			Ex. Behållare	_	Ex 021							- F	EAUY	P8-1
SECCUP 988.00 N. Marischett Nedre MA S2 PTV 15/08/33 ETT Temp Starttid 2003-05-12 08:55:51 Image: Starttid 2003-05-16 08:17:10 Image: Starttid	Ope	rator	Kgn			Forlangning	_	Ror 2 x 5m	+ 1m	D	Ф <u>В</u>		1682925	_	H		
SECUOW SSS.50 Intervention	SEC	UP	548.00			N. Manschett	_	Neare MA 3	52		PIV		15/6833		H	ELIX	Temp
Starttid 2003-09-12 08:55:11 Starttid 2003-09-12 08:55:11 Starttid 2003-09-16 08:17:10 Kemdata KSH01A09125498.MRB ATMP at57 OPData KSH01A09125498.MRB GWNV http://www.starture.et//	SEC	LOW	555.60	00 EE E4			-				P24		1576877 in 56	_		ECY	KO
Storgroud 2017/E10 2017 Kemdata KSH01A0912549K.MB ATMP At37 OPData KSH01A0912549K.MB GVNIV hgs6798 OPData KSH01A0912549K.MI GVNIV hgs6798 Kommentar KSH01A0912549K.MI GVNIV hgs6798 Filtsblotck D:MatfilerYKSH01A0303/05/8-0565 MARSC/HP hgs74 Filtsblotck D:MatfilerYKSH01A0303/05/8-0565 MARSC/HP hgs74 Filtsblotck D:MatfilerYKSH01A0303/05/8-0565 MARSC/HP hgs74 PH4 KSH01A04251pH4Y.CRB KSH01A04251pH4Y.CRB KSH01A09160pH4Y.CR PH4 KSH01A04251pH7Y.CRB KSH01A09160pH4Y.CRB KSH01A09160pH4Y.CR Y PH7 KSH01A04251pH7Y.CRB KSH01A09160pH7Y.CRB KSH01A09160pH7Y.CRB 0.01M KSH01A09160pH07Y.CRB KSH01A09160pH107.CR KSH01A09160pH107.CR 0.1IM KSH01A09121pH48.CR KSH01A09160pH48.CRB KSH01A09160pH107.CR 0.1IM KSH01A09121pH48.CR KSH01A09160pH48.CRB KSH01A09160pH48.CR 8 pH44 KSH01A09121pH48.CRB	Star	ttia	2003-09-12	08:55:51			-				INTEM		ut78	_		EKUNDY	29102
Kemmentar KSH01A09125480,M48B ATTPP AUX/P OPData KSH01A09125480,M48B GVNIV hgx6798 Kommentar KSH01A09125480,M48B GVNIV hgx6798 Kommentar KSH01A09125480,M48B GVNIV hgx6798 Filter inkalibrering Filter-utkalibrering FUMMP Filter inkalibrering Filter-utkalibrering MANSCHP pH4 KSH01A04251pH4Y,CB KSH01A04251pH4Y,CI KSH01A09160pH4Y,CI pH4 KSH01A04251pH4Y,CB KSH01A04251pH4Y,CI KSH01A09160pH4Y,CI q pH7 KSH01A04251pH4Y,CI KSH01A09160pH4Y,CI KSH01A09160pH4Y,CI 0.01M KSH01A04251pH4Y,CI KSH01A09160pH4Y,CI KSH01A09160pH4Y,CI 0.11M KSH01A09120pH48,CR8 KSH01A09160pH49,CI KSH01A09160pH49,CI 0.11M KSH01A09120pH48,CR8 KSH01A09160pH48,CI KSH01A09160pH48,CI 0.11M KSH01A09120pH48,CR8 KSH01A09160pH48,CI KSH01A09160pH48,CI 0.11M KSH01A09120pH48,CR8 KSH01A09160pH48,CI KSH01A09160pH48,CI 0.11M	510	pua	2003-09-16	UB: 17: 10							ATM	P	167		- H		
CHEMMAC Filer - inkalibrering Filer - utkalibrering CHEMMAC Data Kommentar PH4 KSH01A09125498, KSH01A0303\0548-0566 MANSCHP mapping Filer - inkalibrering Filer - utkalibrering PH4 KSH01A04251pH4Y, CB KSH01A0916UpH4Y, CB KSH01A04251pH4Y, CB KSH01A04251pH4Y, CB KSH01A0916UpH4Y, CB Y pH7 KSH01A04251pH4Y, CB KSH01A0916UpH4Y, CB V pH10 KSH01A04251pH4Y, CB KSH01A0916UpH4Y, CB V pH10 KSH01A0916UpH4Y, CB KSH01A0916UpH4Y, CB 0.01M KSH01A0916UpH4Y, CR KSH01A0916UpH1OY, CB 0.1M KSH01A0916UpH4B, CR KSH01A0916UpH4B, CR B pH4 KSH01A09121pH4B, CR KSH01A0916UpH4B, CR R Å pH7 KSH01A09121pH4B, CR KSH01A0916UpH4B, CR R	кеп	data	KSHUIAU912	CARR MRB			_				CONTRACTOR		box6798		H		
Kölmmertar Kölen Utkol 12948k, MI Internet Kölen Utkol 12948k, MI	UPL	ata	KSHU1AU912	SHOU.MIKD			_				CIVINI V		16995/13	_	- H		
Filter - inkalibrering Filter - utkalibrering CHEMMAC Biter - inkalibrering Eiler - utkalibrering pH4 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CI KSH01A09160pH4Y.CB y pH7 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CI KSH01A09160pH4Y.CB y pH7 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CI KSH01A09160pH4Y.CB y pH7 KSH01A04251pH4Y.CB KSH01A09160pH4Y.CI KSH01A09160pH4Y.CI y pH7 KSH01A04251pH4Y.CB KSH01A09160pH4Y.CI KSH01A09160pH4Y.CI 0.11M KSH01A09160pH4Y.CB KSH01A09160pH4Y.CI KSH01A09160pH4Y.CI 0.11M KSH01A09160pH4Y.CB KSH01A09160pH4B.CR KSH01A09160pH4B.CR B pH4 KSH01A0912pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI B pH4 KSH01A0912pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI B pH4 KSH01A0912pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI R pH4 KSH01A0912pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI R pH4	KOI	mentar	KSH01A0912	2548K.MI		an area		1			MANSC	че	ma90				
Filer - inkalibrering Data Kommentar Data Kommentar pH4 KSH01A04251pH4Y.CB KSH01A09160pH4Y.CB KSH01A09160pH4Y.CB pH7 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CI KSH01A09160pH4Y.CB KSH01A09160pH4Y.CI 0.11M KSH01A04251pH4Y.CI KSH01A09160pH4Y.CB KSH01A09160pH4Y.CI KSH01A09160pH4Y.CI 0.11M KSH01A09160pH4Y.CR KSH01A09160pH4Y.CR KSH01A09160pH4Y.CI KSH01A09160pH4Y.CI 0.11M KSH01A09160pH4Y.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CR 0 H4 KSH01A09121pH4B.CI KSH01A09160pH4B.CR KSH01A09160pH4B.CI KSH01A09160pH4B.CI 0 H7 KSH01A09121pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI KSH01A09160pH4B.CI 0 H7 KSH01A09121pH4B.CR KSH01A09160pH4B.CR KSH01A09160pH4B.CI KSH01A09160pH4B.CI 0 H7 KSH01A09121pH7B.CI KSH01A09160pH7B.CI KSH01A09160pH4B.CR KSH01A09160pH7B.CI 1 pH10 KSH01A09121pH7B.CI KSH01A09160pH1B.CR KSH01A09160pH7B.CI KSH01A09160pH7B.CI	FIID	DIIOUBK	D: (Machier (KSHUTAU3U	13105	48-0566		J			PIANOC		maso				
CHEMMAC Filer - inkalibrering Filer - utkalibrering Data Kommentar Data Kommentar pH4 KSH01A0423IpH4Y.CRB KSH01A0423IpH4Y.CR KSH01A091GUpH4Y.CI Y pH7 KSH01A0423IpH4Y.CRB KSH01A0423IpH7Y.CI KSH01A091GUpH4Y.CI 0.01M KSH01A0423IpH7Y.CRB KSH01A0423IpH7Y.CI KSH01A091GUpH7Y.CRB KSH01A091GUpH7Y.CI 0.01M KSH01A0921GUpH4Y.CI KSH01A091GUpH4Y.CI KSH01A091GUpH4Y.CI KSH01A091GUpH7Y.CI 0.11M KSH01A091GUpH4Y.CI KSH01A091GUpH4Y.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CI 0.11M KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB 0 H pH4 KSH01A0912IpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB 0 H pH7 KSH01A0912IpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB 0 H pH7 KSH01A0912IpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB KSH01A091GUpH4B.CRB																	
CHEMMAC Data Kommentar Data Kommentar pH4 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CB KSH01A09160jH4Y.CB KSH01A09160jH4Y.CB KSH01A09160jH4Y.CC pH7 KSH01A04251pH4Y.CB KSH01A04251pH4Y.CC KSH01A09160jH4Y.CB KSH01A09160jH4Y.CC 0.11 KSH01A04251pH4Y.CC KSH01A09160jH4Y.CC KSH01A09160jH410Y.CC KSH01A09160jH410Y.CC 0.01M KSH01A09160jH4B.CR KSH01A09160jH4B.CC KSH01A09160jH4B.CC KSH01A09160jH4B.CC 0.11M KSH01A09121pH4B.CC KSH01A09160jH4B.CR KSH01A09160jH4B.CC KSH01A09160jH4B.CC 0 H pH4 KSH01A09121pH4B.CC KSH01A09160jH4B.CR KSH01A09160jH4B.CC KSH01A09160jH4B.CC 0 H pH7 KSH01A09121pH4B.CC KSH01A09160jH4B.CCB KSH01A09160jH4B.CC KSH01A09160jH4B.CC 0 H pH7 KSH01A09121pH7B.CCB KSH01A09160jH10B.CC KSH01A09160jH10B.CC KSH01A09160jH110B.CC	aur		Filer - ink	alibrering				Filer - utk	alibre	rin	9						
pH4 KSH01A0423pH4Y.CR8 KSH01A0423pH4Y.CR KSH01A0423pH4Y.CR8 KSH01A0423pH4Y.CR8 <td>CHE</td> <td>ммас</td> <td>Data</td> <td></td> <td>Кот</td> <td>mentar</td> <td></td> <td>Data</td> <td></td> <td></td> <td>-</td> <td>K</td> <td>ommentar</td> <td></td> <td></td> <td></td> <td></td>	CHE	ммас	Data		Кот	mentar		Data			-	K	ommentar				
pH7 KSH0IA0423[pH7Y.CB KSH0IA0425[pH7Y.CI KSH0IA0916JpH17Y.CI KSH0IA0916JpH17Y.CI pH10 KSH0IA0425[pH7Y.CI KSH0IA0916JpH10Y.CI KSH0IA0916JpH10Y.CI 0.01M KSH0IA0916JpH10Y.CI KSH0IA0916JpH10Y.CI 0.1M KSH0IA0916JpH10Y.CI KSH0IA0916JpH10Y.CI 0.1M KSH0IA0916JpH10Y.CI KSH0IA0916JpH10Y.CI 0.1M KSH0IA0916JpH14B.CRB KSH0IA0916JpH14B.CI pH44 KSH0IA0912[pH4B.CRB KSH0IA0916JpH4B.CI 0 H pH7 KSH0IA0912[pH4B.CRB KSH0IA0916JpH4B.CI R A pH7 KSH0IA0912[pH4B.CRB KSH0IA0916JpH4B.CI R I pH10 KSH0IA0910[pH10B.CI KSH0IA0916JpH7B.CB		pH4	KSH01A04251	pH4Y.CRB	KSH	01A04251pH4Y.Cl	I	KSH01A091	6UpH	14Y	.CRB	KSI	H01A0916UpH	14Y.CI			
T pH10 KSH01A0916JpH10Y.CR8 KSH01A0916JpH10Y.CI 0.01M KSH01A0916JpH10Y.CR KSH01A0916JpH10Y.CI 0.1M KSH01A0916JpH10Y.CR KSH01A0916JpH10Y.CI 0.1M KSH01A0916JpH10Y.CR KSH01A0916JpH10Y.CI 0.1M KSH01A0916JpH10B.CR KSH01A0916JpH10B.CI 0.1M KSH01A0916JpH4B.CR KSH01A0916JpH4B.CR 0.1 KSH01A0912JpH7B.CI KSH01A0916JpH7B.CI 0.1 KSH01A0912JpH7B.CI KSH01A0916JpH7B.CI 0.1 KSH01A0912JpH7B.CI KSH01A0916JpH7B.CI 1 pH10 KSH01A0912JpH7B.CI KSH01A0916JpH10B.CI	L V	pH7	KSH01A04251	DH7Y.CRB	KSH	01A04251pH7Y.C	I I	KSH01A091	6UpH	I7Y	.CRB	KS	H01A0916UpH	17Y.CI			
0.01M KSH01A091GUkd01Y.CR KSH01A091GUkd01Y.CI 0.1M KSH01A091GUkd01Y.CR KSH01A091GUkd1Y.CR 0.1M KSH01A091GUkd1Y.CR KSH01A091GUkd1Y.CR B pH4 KSH01A0912tpH48.CR KSH01A0912tpH48.CR B pH4 KSH01A0912tpH48.CR KSH01A0916UpH48.CR B pH7 KSH01A0912tpH78.CR KSH01A0912tpH78.CR R pH7 KSH01A0912tpH78.CR KSH01A0916UpH78.CR R pH10 KSH01A0912tpH78.CR KSH01A0916UpH78.CR	ΙŤ.	pH10						KSH01A091	6UpH	10	Y.CRB	KS	H01A0916UpH	10Y.CI			
0.1M KSH01A0916Ukd1Y.CB KSH01A0916Ukd1Y.CB B pH4 KSH01A0912IpH48.CB KSH01A0912IpH48.CB KSH01A0916UpH48.CB B pH7 KSH01A0912IpH78.CR KSH01A0912IpH48.CB KSH01A0916UpH48.CB KSH01A0916UpH48.CB R pH7 KSH01A0912IpH78.CR KSH01A0912IpH78.CI KSH01A0916UpH78.CB KSH01A0916UpH78.CI R pH10 KSH01A0912IpH78.CI KSH01A0916UpH78.CI KSH01A0916UpH78.CI		0.01M						KSH01A091	60kd	01	Y.CR	KS	101A0916Ukd	101Y.CI			
B pH4 KSH01A09122pH4B.CR8 KSH01A09121pH4B.CI KSH01A0916UpH4B.CR8 KSH01A0916UpH4B.CI N H pH7 KSH01A09121pH7B.CR8 KSH01A09121pH7B.CI KSH01A0916UpH7B.CR8 KSH01A0916UpH7B.CI R L pH10 KSH01A04241pH10B.CR8 KSH01A09101pH10B.CI KSH01A0916UpH10B.CR8 KSH01A0916UpH10B.CI		0.1M						KSH01A091	60kd	11	.CRB	KS	101A0916 Ukd	1Y.CI			
R L pH10 KSH01A09121pH78.CRB KSH01A09101pH78.CI KSH01A091601pH78.CRB KSH01A091601pH78.CI R L pH10 KSH01A04241pH108.CRB KSH01A09101pH108.CI KSH01A091601pH108.CRB KSH01A091601pH108.CI	B -	pH4	KSH01A0912Ip	pH41B.CRB	KSH	01A09121pH4B.C	I	KSH01A091	60 pH	4B	.CRB	KS	H01A0916UpH	4B.CI			
R L pH10 KSH01A0424IpH10B.CRB KSH01A0910IpH10B.CI KSH01A0916UpH10B.CRB KSH01A0916UpH10B.CI	RÅ	pH7	KSH01A0912I	DH7B.CRB	KSH	01A09121pH7B.C	I	KSH01A091	6UpH	7B	.CRB	KS	H01A0916UpH	17B.CI			
	RL	pH10	KSH01A04241	H10B.CRB	KSH	01A09101pH10B.0	CI	KSH01A091	6UpH	10	B.CRB	KS	H01A0916UpH	10B.CI			

Administration (2003-09-16).

Appendix 2

Sampling and analysis methods

Table A2-1. Overview of general sample handling routines and analysis methods.

Component group	Component/ element	Sample container (material)	Volume (mL)	Filtering	Preparation/ Conservation*	Analysis method	Laboratory***	Analysis within – or delivery time to lab.
Anions 1	HCO ₃ pH(lab) cond (lab)	Plastic	250	Yes (not in the field)	oz	Titration Pot. meas, Cond. meas	Mobile field lab. Alcontrol	The same day – maximum 24 hours
Anions 2	Cl, SO4, Br, F-, I-	Plastic	100	Yes (not in the field)	oN	Titration (CF) IC (CI-, SO4, Br-, F-) ISE (F-)	Äspö:s chemistry lab. Alcontrol	Not critical (month)
	Br, I	Plastic	100	Yes (not in the field)	No	ICP MS	Paavo Ristola ΟΥ SGAB Analytica,	Not critical (month)
Cations, Si and S according to SKB class 3	Na, K, Ca, Mg, S(tot), Si(tot), Li, Sr	Plastic (at low conc. acid washed bottles)	100	Yes (not in the field)	Yes (not in the field, 1 mL $\rm HNO_3$)	ICP-AES ICP-MS	SGAB Analytica, SLU, Umeå	Not critical (month)
Cations, Si and S according to SKB class 4 and 5	Na, K, Ca, Mg, S(tot), Si(tot), Fe, Mn, Li, Sr	Plastic (Acid washed)	100	Yes (immediately in the field)	Yes (1mL HNO ₃)	ICP-AES ICP-MS	SGAB Analytica, SLU, Umeå	Not critical (month)
Fe(II), Fe(tot)	Fe(II), Fe(tot)	Plastic (Acid washed)	500	Yes	Yes (5 mL HCl))	Spectrophotometry Ferrozine method	Mobile field lab.	As soon as possible the same day
Hydrogen sulphide	HS-	Glass (Winkler)	About 120×2	No	Ev 1 mL 1 M NaOH+ 1 mL 1M ZnAc	Spectrophotometry	Alcontrol Äspö:s chemistry lab.	Immediately or if conserved, a few days
Nutrient salts	NO2, NO3+NO2, NH4, PO4	Plastic	250	No	No	Spectrophotometry	Äspö:s chemistry lab. Alcontrol	Maximum 24 hours
Environmental metals	Al, As, Ba, B, Cd, Co, Cr, Cu, Hg, Mo, Ni, P, Pb, V, Zn	Plastic	100	Yes	Yes (1 mL HNO ₃)	ICP-AES ICP-MS	SGAB Analytica, Alcontrol	Not critical (month)
Lantanoids, U, Th and so on	Sc, Rb, Y, Zr, I, Sb, Cs, La, Hf, Tl, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, U, Th	Plastic	100	Yes	Yes (1 mL HNO ₃)	ICP-AES ICP-MS	SGAB Analytica, Alcontrol	Not critical (month)
Component group	Component/ element	Sample container (material)	Volume (mL)	Filtering	Preparation/ Conservation*	Analysis method	Laboratory***	Analysis within – or delivery time to lab.
Dissolved organic Carbon, dissolved inorganic Carbon	DOC, DIC	Plastic	250 25	Yes	Frozen, transported in isolated bag	UV oxidation, IR Carbon analysator Shimadzu TOC5000	Paavo Ristola OY Dept. of System ecology, SU	Short transportation time

Total organic Carbon	TOC	Plastic	250 25	No	Frozen, transported in isolated bag	UV oxidation, IR Carbon analysator Shimadzu TOC5000	Paavo Ristola OY Dept. of System ecology, SU	Short transportation time
Environmental isotopes	² H, ¹⁸ O	Plastic	100	No	1 1	MS	IFE	Not critical (month)
Tritium,	³ H (enhanced.)	Plastic (dry bottle)	500	No	1	LSC	Univ. Of Waterloo	Not critical (month)
Chlorine-37	Chlorine-37	Plastic	100	No	I	ICP MS		
Carbon isotopes	¹³ C, ¹⁴ C	Glass (brown)	100×2	No	I	(A)MS	Univ. Of Waterloo	A few days
Sulphur isotopes	34 S	Plastic	500 -1000	Yes	I	Combustion, ICP MS	IFE	No limit
Strontium-isotopes	⁸⁷ Sr/ ⁸⁶ Sr	Plastic	100	Yes	I	TIMS	IFE	Days or Week
Uranium and Thorium isotopes	234U, 235U, 238U, 232 Th, ²³⁰ Th,	Plastic	50	Nej	I	Chemical separat. Alfa/ gamma spectrometry	IFE	No limit
Boron isotopes	10 B	Plastic	100	Yes	Yes (1 mL HNO_3)	ICP – MS	SGAB Analytica	No limit
Radon and Radium isotopes	²²² Rn, ²²⁶ Ra	Plastic	500	No	No	EDA, RD-200	IFE	Immediate transport
Dissolved gas (content and composition)	Ar, N ₂ , CO ₂ , O ₂ , CH ₄ , H ₂ , CO, C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₆ , C ₃ H ₈	Cylinder of stainless steel	200	No	No	GC	Paavo Ristola OY	Immediate transport
Colloids	Filter series and fractionation (see below)	Polycarbonate filter	0.45, 0.2 and 0.05 µm	I	N ₂ atmosphere	ICP-AES ICP-MS	SGAB Analytica	Immediate transport
Humic and fulvic acids	Fractionation	Fractions are collected in plastic bottles	250	I	N ₂ atmosphere	UV oxidation, IR (DOC)	Paavo Ristola OY	Immediate transport
Archive samples with acid	1	Plast (washed in acid)	100×2 **	Yes	Yes (1 mL HNO ₃)	I	1	Storage in freeze container
Archive samples without acid	I	Plastic	250×2 **	Yes	No	I	1	Storage in freeze container
Component group	Component/ element	Sample container (material)	Volume (mL)	Filtering	Preparation/ Conservation*	Analysis method	Laboratory***	Analysis within – or delivery time to lab.
Carbon isotopes in humic and fulvic acids	¹³ C, ¹⁴ C	DEAE cellulose (anion exchanger)	I	I	I	SM(A)	The Ångström laboratory, Uppsala	A few days

* Suprapur acid is used for conservation of samples. ** Minimu□ *** Full name and address is given in Table A2-3.

Abbreviations and definitions:

IC	Ion chromatograph
ISE	Ion selective electrode
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectrometry
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
INAA	Instrumental Neutron Activation Analysis
MS	Mass Spectrometry
LSC	Liquid Scintillation Counting
(A)MS	(Accelerator) Mass Spectrometry
ĞĆ	Gas Chromatography

Component	Method	Reporting limits or range	Unit	Measurement uncertainties ¹	"Total" uncertainties ²
HCO ₃	Alkalinity titration	1	mg/L	4%	Time delay affects the results
Cŀ- Cŀ-	Mohr- titration IC	> 70 1–100	mg/L	5% 6%	< 10% 20%
SO ₄	IC	1	mg/L	10%	20%
Br- Br-	IC ICP	0.2 0.001	mg/L	9% 15%	30%
F- F-	IC Potentiometric	0.1	mg/L	10% _	20%
ŀ	ICP	0.001	mg/L	15%	20%
Na	ICP	0.1	mg/L	4%	10%
К	ICP	0.4	mg/L	6%	20%
Са	ICP	0.1	mg/L	4%	10%
Mg	ICP	0.09	mg/L	4%	10%
S(tot)	ICP	0.160	mg/L	21%	20%
Si(tot)	ICP	0.03	mg/L	4%	15%
Sr	ICP	0.002	mg/L	4%	10%
Li	ICP	0.2 (Salt ≤ 0.4% , 520 mS/m) 2 (Salt ≤3.5% , 3810 mS/m)	mg/L	10%	20%
² H	MS	-	%∘ dev SMOW	±1.0%	-
¹⁸ O	MS	-	%∘ dev SMOW	±.2%	-
³Н	LSC	0.8 eller 0.1	TU	0.8	-
³⁷ CI	ICP MS	0.2% (20 mg/L)	SMOC	-	-
¹³ C	A (MS)	-	PDB	-	-
¹⁴ C pmc	A (MS)	-	PMC	-	-
³⁴ S	ICP MS	0.2%	CDT	0.3%	-
⁸⁷ Sr/ ⁸⁶ Sr	TIMS	-	No unit	± 0.000015	-
¹⁰ B/ ¹¹ B	ICP MS	-	No unit	± 0.001	

Table A2-2. Reporting limits and measurement uncertainties.

¹ Measurement uncertainty reported by consulted laboratory ²" Total" uncertainty estimated by experience (includes sampling and sample handling)

Table A2-3. Consulted laboratories, full name and address.

Äspö waterchemical laboratory (SKB) Mobile field laboratory, Oskarshamn (SKB) Inainööritoimisto Paavo Ristola Oy Teollisuus-ja Voimalaitoskemia Rajantorpantie 8, C-talo 01600 Vantaa FINLAND Dept. of System ecology Stockholm University 10691 Stockholm Analytica AB Aurorum 10 977 75 Luleå (Nytorpsvägen 16 Box 511 183 25 Täby) Environmental Isotope Laboratory Dep. Of earth sciences University of Waterloo Waterloo, Ontario N2L 3G1 CANADA Institutt for energiteknik (IFE) Insituttveien 18 P.O Box 40 2027 Kjeller NORGE Alcontrol Nordic AB Box 905 531 19 Lidköping The Ångström laboratory Box 534 Se-751 21 Uppsala Environmental research laboratory (SLU), Luleå Alcontrol Box 1083 581 10 Linköping

Chemmac measurement in section 156.5–167.0 m

Figure A3-1. Electric conductivity measurement in the surface measurement cell (KONDY). The electric conductivity measured in the last collected sample (KONDL) is given for comparison.

Figure A3-2. Measurements of pH by two glass electrodes at the surface (PHY and PHIY). The laboratory pH in the last collected sample (PHL) is given for comparison.

Dissolved oxygen: section 156.5 to 167.0 m

Figure A3-3. Dissolved oxygen measurement (O2Y) in the surface measurement cell.

Figure A3-4. Redox potental measurements (Eh) by platinum, gold and glassy carbon electrodes at the surface (EHPTY, EHAUY and EHCY).

Temperature: section 156.5 to 167.0 m

Figure A3-5. Temperature of the groundwater in the borehole section (TB).

Figure A3-6. Variation in flow rate during the pumping and measurement period.

Chemmac measurement in section 245.0–261.6 m

Figure A4-1. Electric conductivity measurement in the surface measurement cell (KONDY). The electric conductivity measured in the last collected sample (KONDL) is given for comparison.

Figure A4-2. Measurements of pH by two glass electrodes at the surface (PHY and PHIY). The laboratory pH in the last collected sample (PHL) is given for comparison.

Dissolved oxygen: section 245.0 to 261.6 m

Figure A4-3. Dissolved oxygen measurement (O2Y) in the surface measurement cell.

Figure A4-4. Redox potental measurements (Eh) by platinum, gold and glassy carbon electrodes at the surface (EHPTY, EHAUY and EHCY).

Figure A4-5. Variation in flow rate during the pumping and measurement period.

Figure A4-6. Comparison between flow rate from the measurement application and flow rate from maual measurements.

Appendix 5

Chemmac measurement in section 548.0–565.4 m

Figure A5-1. Electric conductivity measurement in the surface measurement cell (KONDY). The electric conductivity measured in the last collected sample (KONDL) is given for comparison.

Figure A5-2. Measurements of pH by two glass electrodes at the surface (PHY and PHIY) The laboratory pH in the last collected sample (PHL) is given for comparison.

Dissolved oxygen: section 548.0 to 565.4 m

Figure A5-3. Dissolved oxygen measurement (O2Y) in the surface measurement cell.

Figure A5-4. Redox potental measurements (Eh) by platinum, gold and glassy carbon electrodes at the surface (EHPTY, EHAUY and EHCY).

Temperature: section 548.0 to 565.4 m

Figure A5-5. Temperature of the groundwater in the borehole section (TB).

Figure A5-6. Variation in flow rate during the pumping and measurement period.

Figure A5-7. Comparison between flow rate from the measurement application and flow rate from maual measurements.

Water analysis data in SICADA

 Table A6-1. Water composition, basic water analysis data.

ldcode	Secup m	Seclow m	Sample no	Charge Bal %	Na mg/L	K mg/L	Ca mg/L	Mg mg/L	HCO ³ mg/L	CI mg/L	SO₄ mg/L	SO₄-S mg/L	Br mg/L	F mg/L	Si mg/L
KSH01A	156.5	167.0	5256		_	_	_	_	69	4,007.1	_	_	_	_	_
KSH01A	156.5	167.0	5257	-2.2	2,090	8.44	915	70.9	30	5,166.4	43.18	14.8	29.56	1.11	3.8
KSH01A	156.5	167.0	5258		_	_	_	_	28	-	_	_	_	-	_
KSH01A	156.5	167.0	5259	-2.4	2,150	9.13	941	70	28	5,333.9	41.68	12.8	33.07	1.23	3.7
KSH01A	156.5	167.0	5260	-1.1	2,300	12.7	975	73.7	26	5,507.6	34.98	13.3	31.22	1.08	3.7
KSH01A	156.5	167.0	5261	-1.0	2,280	12.6	963	71.8	28	5,436.7	35.54	12.8	29.45	0.8	3.6
KSH01A	156.5	167.0	5262	-2.9	2,210	11.3	939	70.4	26	5,489.9	33.58	12.3	31.82	1.22	3.6
KSH01A	156.5	167.0	5263	-2.4	2,280	14.7	960	70.8	25	5,590.1	31.71	12	31.24	0.84	3.4
KSH01A	245.0	261.5	5264		-	_	_	_	19	6,217.6	_	_	-	_	-
KSH01A	245.0	261.5	5265	-3.6	2,450	15.6	1,160	62.4	18	6,342.5	53.19	19.5	35.48	1.2	3.6
KSH01A	245.0	261.5	5266	-1.8	2,580	12	1,160	63.5	18	6,322.2	48.16	18.1	36.14	0.96	3.5
KSH01A	245.0	261.5	5267	-2.0	2,590	13.4	1,140	63.2	17	6,335.5	48.56	17.5	38.43	0.89	3.5
KSH01A	245.0	261.5	5268		2,430	13.2	1,180	65.4	17	6,298.2	51.07	18.3	38.53	1.09	3.8
KSH01A	245.0	261.5	5269	-3.5	2,460	11.6	1,150	64.1	17	6,340.8	49.81	17.7	36.88	0.97	3.7
KSH01A	586.0	597.0	5270		_	-	-	-	18	6,778.6	-	_	_	-	-
KSH01A	548.0	565.0	5271		-	_	_	-	19	7,111.9	-	_	-	_	-
KSH01A	548.0	565.0	5272		-	-	-	-	14	8,100.1	_	-	-	-	-
KSH01A	548.0	565.0	5273		_	-	-	-	14	8,120.5	-	_	_	-	-
KSH01A	548.0	565.0	5274		-	_	_	-	13	8,399.7	-	_	-	_	-
KSH01A	548.0	565.0	5275		-	_	_	-	13	8,392.6	-	_	-	_	-
KSH01A	548.0	565.0	5276		-	-	-	-	12	8,405	-	-	-	-	-
KSH01A	548.0	565.0	5277		_	-	-	-	12	8,423.6	-	_	_	-	-
KSH01A	548.0	565.0	5278		-	_	_	-	12	8,399.7	-	_	-	_	-
KSH01A	548.0	565.0	5279		-	_	-	· _	12	8,552.1	-	_	-	_	-
KSH01A	548.0	565.0	5280	-0.3	3,220	12.4	2,190	44.7	12	8,755.1	221.98	73.5	70.95	0.98	4.7
KSH01A	548.0	565.0	5281		-	_	_	-	-	_	-	_	-	_	-
KSH01A	548.0	565.0	5282		-	_	_	-	-	_	-	_	-	_	-
KSH01A	548.0	565.0	5283		-	_	_	-	_	_	-	_	-	_	-
KSH01A	548.0	565.0	5284		-	_	_	-	_	_	-	_	-	_	-
KSH01A	548.0	565.0	5285		-	_	_	-	_	_	-	_	-	_	-
KSH01A	548.0	565.0	5286		_	-	_	_	_	_	-	_	-	-	_
KSH01A	548.0	565.0	5287		-	-	-	-	-	-	-	-	-	-	-
KSH01A	548.0	565.0	5288	-1.3	3,500	77	1,900	47	11	8,875.7	230.48	81	73.19	0.53	4.1

Cont Table A6-1. Water composition, basic water analys
--

Fe mg/L	Fe-tot mg/L	Fell mg/L	Mn mg/L	Li mg/L	Sr mg/L	рН	DOC mg/L	TOC mg/L	S₂ mg/L	ElCon mS/m	Drill_ water %	l mg/L	NO₂N mg/L	NO₃N mg/L	NO₃N+ NO₂N mg/L	NH₄N mg/L	PO₄P mg/L
_	_	_	_	_	_	7.34	_	_	_	1,181	3.28	_	_	_	_	_	_
1.38	1.604	1.591	0.58	0.303	15	7.51	1.5	_	0.01	1,476	3.7	0.121		0	0	0.08	0.001
-	-	-	-	_	-	7.27	_	_	_	1,513	_	-	_	-	-	-	_
1.15	1.474	1.463	0.56	0.31	15.6	7.43	1.2	1.2	0	1,498	3.34	0.115	0	0	0	0.08	0.001
1.44	1.767	1.743	0.55	0.312	16.8	7.38	1.2		0	1,527	3.17	0.138	0	0	0.001	0.017	0.002
1.38	1.701	1.681	0.54	0.306	16.6	7.38	1	1.1	0	1,484	2.61	0.125	0	0	0	0.083	0.002
1.31	1.596	1.574	0.54	0.302	16.3	7.34	-	-	0.01	1,491	2.51	0.138	0	0	0.001	0.103	0.003
1.15	1.413	1.397	0.54	0.308	15.9	7.36	0.9	0.9	0	1,539	2.39	0.128	0	0	0	0.095	0.004
-	-	-	-	-	-	7.41	-	-	_	1,673	3.6	_	-	-	-	-	-
1.08	1.32	1.34	0.56	0.378	19.7	7.4	<1		0.01	1,739	8.19	0.171	0	0	0	0.097	0.003
1.03	1.325	1.301	0.55	0.369	19	7.4	<1	<1	0.01	1,730	7.54	0.194	0	0	0	0.079	0.003
1.03	1.369	1.34	0.55	0.365	18.7	7.27	<1	-	0.01	1,707	7.48	0.16	0	0	0	0.083	0.003
	1.318	1.296	0.66	0.381	19.6	7.34	<1	<1	0	1,718	8.02	0.192	0	0	0	0.079	0.003
1.05	1.281	1.265	0.56	0.377	19.1	7.36	<1		0.01	1,722	8.22	0.122	0	0	0	0.083	0.003
-	-	-	-	-	-	7.17	-	-	-	1,860	36.58	-	-	-	-	-	-
-	-	-	-	-	-	7.32	-	-	_	1,926	_	_	_	-	-	-	-
-	-	-	-	-	-	6.76	-	-	-	2,105	18.67	-	-	-	-	-	-
-	-	-	-	-	_	7.46	-	-	_	2,167	-	-	_	_	-	_	-
-	-	-	-	-	-	7.51	-	-	-	2,189	17.26	-	-	_	-	-	-
-	-	-	-	-	-	7.48	-	-	-	2,215	17.46	-	-	_	-	-	-
-	-	-	-	-	-	7.14	-	-	_	2,194	15.69	_	-	-	-	-	-
-	-	-	-	-	_	7.16	-	-	_	2,245	15.1	-	_	_	-	_	-
-	-	-	-	-	_	7.38	-	-	_	2,225	15.39	-	_	_	-	_	-
-	-	-	-	-	_	7.32	-	-	_	2,262	13.91	-	_	_	-	_	-
0.638	0.686	0.688	0.46	0.58	32.3	7.45	1.1		0.05	2,275	13.45	0.414	0.001	0	0.001	0.04	0.001
-	-	-	-	-	_	-	-	-	_	-	12.92	-	_	_	-	_	-
-	-	-	-	-	_	-	-	-	_	-	12.35	-	_	_	-	_	-
-	-	-	-	-	-	-	-	-	_	-	6	_	-	-	-	-	-
-	-	-	-	-	_	-	-	-	_	-	11.49	-	_	_	-	_	-
-	-	-	-	-	_	-	-	-	_	-	10.93	-	_	_	-	_	-
-	-	-	-	-	-	-	-	-	_	-	11.73	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	11.37	-	-	-	-	-	-
0.35	0.523	0.511	0.4	0.88	0.03	7.63	1	-	_	2,325	10.74	_	0.001	0	0.001	0.048	0.001

ldcode	Secup m	Seclow m	Sample no	∂D dev SMOW	Tr TU	∂ ¹⁸ O dev SMOW	¹⁰ B/ ¹¹ B no unit	∂³4S dev CDT	∂¹³C dev PDB	∂³7CI dev SMOC	⁸⁷ Sr/ ⁸⁶ Sr no unit	¹⁴C pmC	AGE_BP years
KSH01A	156.5	167.0	5256	-88.8	2.6	-12.2	-	-	-	-	-	-	_
KSH01A	156.5	167.0	5257	-95.1	2.8	-12.7	-	-	_	-	-	-	_
KSH01A	156.5	167.0	5259	-93.6	<0.8	-12.9	0.24	21.2	-19.0	0.14	0.71	30.0	9,620
KSH01A	156.5	167.0	5260	-98	0.8	-13	-	-	-	-	-	-	-
KSH01A	156.5	167.0	5261	-97.5	<0.8	-13	-	22.8	-19.1	-	0.72	30.8	9,400
KSH01A	156.5	167.0	5262	-97.8	<0.8	-13	-		-	-	-	-	-
KSH01A	156.5	167.0	5263	-98.2	<0.8	-13.01	0.24	23.1	-13.5	0.31	0.71	-	-
KSH01A	245.0	261.5	5264	-102.2	<0.8	-13.6	-	-	-	-	-	-	-
KSH01A	245.0	261.5	5265	-99.1	<0.8	-13.8	0.24	-	-	-	-	-	-
KSH01A	245.0	261.5	5266	-100.2	<0.8	-13.4	0.24	20.2	-	-	0.71	-	-
KSH01A	245.0	261.5	5267	-99.8	<0.8	-14	-	-	-	-	-	-	-
KSH01A	245.0	261.5	5268	-100	<0.8	-14	0.24	20.5	-	0.65	0.71	-	-
KSH01A	245.0	261.5	5269	-100.6	-	-13.3	-	-	-	-	-	-	-
KSH01A	586.0	597.0	5270	-88.7	2.8	-12	-	-	-	-	-	-	-
KSH01A	548.0	565.0	5280	-91.2	2.0	-12.6	0.24	18.5	-	-	0.72	-	-
KSH01A	548.0	565.0	5288	-92.1	1.1	-12.7	0.22	17.7	-	-	0.72	-	-

Table A6-2. Isotopes I, H-, O-, B-, S-, CI-, C-isotopes and isotope ratios.

Table A6-3. Trace elements.

ldcode	Secup m	Seclow m	Sample no	U ug/L	Th ug/L	Sc ug/L	Rb ug/L	Y ug/L	Zr ug/L	ln ug/L	Sb ug/L	Cs ug/L	Ba ug/L	La ug/L
KSH01A	156.5	167.0	5259	0.135	<0.2	<0.5	23.1	1.56	<0.3	<0.5	0.157	1.13	1,280	0.242
KSH01A	156.5	167.0	5261	0.128	<0.2	<0.5	23.3	1.51	0.264	-	0.109	1.16	1,310	0.234
KSH01A	156.5	167.0	5263	0.135	<0.2	<0.5	25.3	0.3	2.35	<0.5	0.135	1.21	1,300	0.507
KSH01A	245.0	261.5	5265	1.01	<0.2	<0.5	29.3	0.311	3.4	<0.5	0.214	1.36	1,380	0.508
KSH01A	245.0	261.5	5266	0.157	<0.2	<0.5	30.5	0.308	2.36	<0.5	0.127	1.34	1,420	0.493
KSH01A	245.0	261.5	5268	0.169	<0.02	0.0338	28	0.115	0.275	<0.5	0.528	1.24	1,530	0.0213
KSH01A	548.0	565.0	5280	0.207	<0.2	<0.5	42.4	0.336	<0.3	<0.5	-	1.39	188	<0.05
KSH01A	548.0	565.0	5288	0.148	<0.2	<0.5	35.1	0.291	<0.25	<0.5	-	1.47	176	0.054

Cont Table A6-3. Trace elements.

Hf ug/L	TI ug/L	Ce ug/L	Pr ug/L	Nd ug/L	Sm ug/L	Eu ug/L	Gd ug/L	Tb ug/L	Dy ug/L	Ho ug/L	Er ug/L	Tm ug/L
<0.05	<0.3	0.0805	<0.05	1.12	0.0534	1.46	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05
<0.05	<0.3	0.0831	<0.05	0.765	0.0557	1.43	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05
0.503	<0.3	0.906	0.128	0.543	0.082	0.115	0.0681	<0.05	<0.05	<0.05	0.069	<0.05
0.781	<0.3	0.919	0.129	0.54	0.0745	0.116	0.0657	<0.05	<0.05	<0.05	<0.05	<0.05
0.445	<0.3	0.866	0.121	0.486	0.0749	0.121	0.0613	<0.05	<0.05	<0.05	<0.05	<0.05
0.0938	<0.001	0.0087	0.0017	0.0678	0.0072	0.108	0.0037	<0.001	0.0035	<0.001	0.0029	0.0019
<0.05	<0.3	<0.05	<0.05	0.243	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
<0.05	<0.3	<0.05	<0.05	0.095	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Cont Table A6-3. Trace elements.

Yb ug/L	Lu ug/L	Al ug/L	As ug/L	Cd ug/L	Cr ug/L	Cu ug/L	Co ug/L	Hg ug/L	Ni ug/L	Zn ug/L	Pb ug/L	V ug/L	Mo ug/L
<0.05	<0.05	5.6	<1	<0.02	0.57	1.18	0.17	<0.002	1.97	79.70	0.24	0.29	8.38
<0.05	<0.05	5.8	-	<0.02	1.15	<1	0.17	<0.002	2.48	85.10	0.19	0.35	8.59
<0.05	<0.05	22.5	<1	<0.05	0.33	0.75	0.17	<0.002	1.59	82.90	<0.3	0.32	9.57
<0.05	<0.05	<0.7	<1	<0.05	0.66	<0.5	0.25	<0.002	1.75	66.10	<0.3	0.39	10.80
<0.05	<0.05	<0.7	<1	<0.05	0.22	<0.5	0.17	<0.002	1.19	63.20	<0.3	0.37	10.10
0.0349	0.014	4.1	<1	0.03	0.47	<1	0.13	<0.002	1.27	50.40	0.13	<0.05	9.72
<0.05	<0.05	-	-	0.0294	-	-	-	<0.002	-	-	-	0.805	17.1
<0.05	<0.05	-	<2	0.022	-	-	-	<0.002	-	-	-	0.908	-

Table A6-4. Isotopes II, U-, Th-, Ra- and Rn-isotopes.

ldcode	Secup m	Seclow m	Sample no	U-238 mBq/L	U-235 mBq/L	U-234 mBq/L	Th-232 mBq/L	Th-230 mBq/L	Ra-226 Bq/L	Rn-222 Bq/L
KSH01A	156.5	167.0	5259	5,940	240	5,940	<50	110	0.4	44.8
KSH01A	156.5	167.0	5261	110	<50	110	<50	110	1.4	21.4
KSH01A	156.5	167.0	5263	<50	<50	<50	<50	<50	1.4	62.4
KSH01A	245.0	261.5	5266	-	<50	<50	<50	<50	0.6	66.9
KSH01A	245.0	261.5	5268	<50	<50	<50	<50	<50	0.8	73.4
KSH01A	548.0	565.0	5280	<50	<50	<50	<50	<50	0.5	27.3
KSH01A	548.0	565.0	5288	<50	<50	<50	<50	<50	0.6	73.2

Table A6-5. Dissolved gas.

ldcode	Secup	Seclow	Sample	Ar	He	N ₂		CH₄	O ₂	H₂	со	C₂H ₆	C₂H₄	C_2H_2	C₃Hଃ	DISS_GAS
	m	m	no	mL/L	mL/L	mL/L	mL/L	mL/L	mL/L	µL/L	μL/L	µL/L	µL/L	µL/L	µL/L	mL/L H2O
KSH01A	156.5	167.0	5263	1.28	2.2	75.5	0.79	0.06	0.9	<3.4	<4.2	1	0.23	0.1	1.4	79.8
KSH01A	245.0	261.5	5269	1.1	1.5	104	0.8	0.09	23	85	<11	0.88	0.93	<0.1	2.5	107
KSH01A	548.0	565.0	5288	1.4	7.5	67.2	0.08	0.04	0.17	81	<3.9	0.7	0.71	0.35	1.7	76.4