P-04-289

Oskarshamn site investigation

Hydraulic injection tests in borehole KSH01A, 2003/2004

Sub-area Simpevarp

Nils Rahm, Golder Associates AB Cristian Enachescu, Golder Associates GmbH

December 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-04-289

Oskarshamn site investigation

Hydraulic injection tests in borehole KSH01A, 2003/2004

Sub-area Simpevarp

Nils Rahm, Golder Associates AB Cristian Enachescu, Golder Associates GmbH

December 2004

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity.

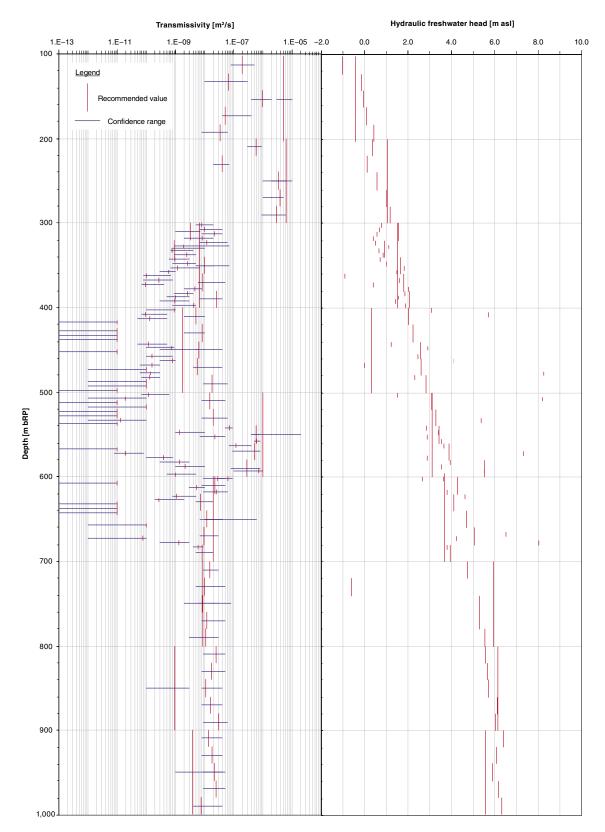
This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KSH01A at the Simpevarp area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Simpevarp sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KSH01A performed between 4th December 2003 and 29th of January 2004.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 103–999 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KSH01A i delområde Simpevarp, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata från de hydrauliska injektionstesterna i borrhål KSH01A. Testerna utfördes mellan den 4 december 2003 till den 29 januari 2004.

Syftet med hydrotesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissivitet (T), hydraulisk konduktivitet (K) vid olika mätskalor av 100 m, 20 m, och 5 m sektioner. Transient utvärdering under injektions- och återhämtningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 103–999 m borrhålslängd. Resultaten av test utvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent nivå sötvattenpelare (fresh-water head).

Borehole KSH01A – Summary of results.

Contents

1	Introduction	9
2	Objective	11
3 3.1 3.2 3.3	Scope of work Boreholes Tests Control of equipment	13 13 15 21
4 4.1 4.2 4.3	Equipment Description of equipment Sensors Data acquisition system	23 23 27 28
5 5.1 5.2 5.3	Execution Preparations Execution of tests/measurements 5.2.1 Test principle 5.2.2 Test procedure Data handling	29 29 29 29 30 31
5.4	Analyses and interpretation5.4.15.4.2Analysis software5.4.3Analysis methodology5.4.4Steady state analysis5.4.5Flow models used for analysis5.4.6Calculation of the static formation pressure and equivalent	31 31 31 32 33 33
	freshwater head5.4.7 Derivation of the recommended transmissivity and the confidence range	33 34
6 6.1	Results $100 \text{ m single-hole injection tests}$ $6.1.1$ Section $103-203 \text{ m}$, test no 1, injection $6.1.2$ Section $200-300 \text{ m}$, test no 2, injection $6.1.3$ Section $300-400 \text{ m}$, test no 1, injection $6.1.4$ Section $400-500 \text{ m}$, test no 2, injection $6.1.5$ Section $500-600 \text{ m}$, test no 2, injection $6.1.6$ Section $600-700 \text{ m}$, test no 2, injection $6.1.7$ Section $700-800 \text{ m}$, test no 1, injection $6.1.8$ Section $800-900 \text{ m}$, test no 1, injection $6.1.9$ Section $899-999 \text{ m}$, test no 2, injection	37 37 37 38 38 38 39 40 40 40 41 42 42
6.2	 20 m single-hole injection tests 6.2.1 Section 103–123 m, test no 1, injection 6.2.2 Section 123–143 m, test no 1, injection 6.2.3 Section 143–163 m, test no 1, injection 6.2.4 Section 163–183 m, test no 1, injection 6.2.5 Section 183–203 m, test no 1, injection 6.2.6 Section 200–220 m, test no 1, injection 	43 43 44 45 45 45 46 47

6.2.7 Section 220–240 m, test no 1, injection	48
6.2.8 Section 240–260 m, test no 1, injection	48
6.2.9 Section 260–280 m, test no 1, injection	49
6.2.10 Section 280–300 m, test no 1, injection	50
6.2.11 Section 300–320 m, test no 1, injection	50
6.2.12 Section 320–340 m, test no 1, injection	51
6.2.13 Section 340–360 m, test no 1, injection	52
6.2.14 Section 360–380 m, test no 1, injection	52
6.2.15 Section 380–400 m, test no 1, injection	53
6.2.16 Section 400–420 m, test no 1, injection	54
6.2.17 Section 420–440 m, test no 1, injection	54
6.2.18 Section 440–460 m, test no 1, injection	55
6.2.19 Section 460–480 m, test no 1, injection	56
6.2.20 Section 480–500 m, test no 1, injection	56
6.2.21 Section 500–520 m, test no 1, injection	57
6.2.22 Section 520–540 m, test no 1, injection	58
6.2.23 Section 540–560 m, test no 1, injection	58
6.2.24 Section 560–580 m, test no 1, injection	59
6.2.25 Section 580–600 m, test no 1, injection	60
6.2.26 Section 600–620 m, test no 1, injection	60
6.2.27 Section 620–640 m, test no 1, injection	61
6.2.28 Section 640–660 m, test no 1, injection	62
6.2.29 Section 660–680 m, test no 1, injection	62
6.2.30 Section 680–700 m, test no 1, injection	63
6.2.31 Section 700–720 m, test no 1, injection	64
6.2.32 Section 720–740 m, test no 1, injection	64
6.2.33 Section 740–760 m, test no 1, injection	65
6.2.34 Section 760–780 m, test no 1, injection	66
6.2.35 Section 780–800 m, test no 1, injection	67
6.2.36 Section 800–820 m, test no 1, injection	67
6.2.37 Section 820–840 m, test no 1, injection	68
6.2.38 Section 840–860 m, test no 1, injection	69
6.2.39 Section 860–880 m, test no 1, injection	69
6.2.40 Section 880–900 m, test no 1, injection	70
6.2.41 Section 899–919 m, test no 1, injection	71
6.2.42 Section 919–939 m, test no 1, injection	72
6.2.43 Section 939–959 m, test no 1, injection	72
6.2.44 Section 959–979 m, test no 1, injection	73
6.2.45 Section 979–999 m, test no 1, injection	74
5 m single-hole injection tests	74
6.3.1 Section 300–305 m, test no 1, injection	75
6.3.2 Section 305–310 m, test no 1, injection	75
6.3.3 Section 310–315 m, test no 1, injection	76
6.3.4 Section 315–320 m, test no 1, injection	77
6.3.5 Section 320–325 m, test no 1, injection	77
6.3.6 Section 325–330 m, test no 1, injection	78
6.3.7 Section 330–335 m, test no 1, injection	79
6.3.8 Section 335–340 m, test no 1, injection	79
6.3.9 Section 340–345 m, test no 1, injection	80
6.3.10 Section 345–350 m, test no 1, injection	81
6.3.11 Section 350–355 m, test no 1, injection	82
6.3.12 Section 355–360 m, test no 1, injection	82
6.3.13 Section 360–365 m, test no 1, injection	83
6.3.14 Section 365–370 m, test no 1, injection	84

6.3

6.3.15 Section 370–375 m, test no 1, injection	84
6.3.16 Section 375–380 m, test no 1, injection	85
6.3.17 Section 380–385 m, test no 1, injection	86
6.3.18 Section 385–390 m, test no 1, injection	86
6.3.19 Section 390–395 m, test no 1, injection	87
6.3.20 Section 395–400 m, test no 1, injection	88
6.3.21 Section 400–405 m, test no 1, injection	88
6.3.22 Section 405–410 m, test no 1, injection	89
6.3.23 Section 410–415 m, test no 1, injection	90
6.3.24 Section 415–420 m, test no 1, injection	90
· · · · · · · · · · · · · · · · · · ·	
6.3.25 Section 420–425 m, test no 1, injection	91
6.3.26 Section 425–430 m, test no 1, injection	91
6.3.27 Section 430–435 m, test no 1, injection	92
6.3.28 Section 435–440 m, test no 1, injection	92
6.3.29 Section 440–445 m, test no 1, injection	93
6.3.30 Section 445–450 m, test no 1, injection	93
· · · · ·	
6.3.31 Section 450–455 m, test no 1, injection	94
6.3.32 Section 455–460 m, test no 1, injection	94
6.3.33 Section 460–465 m, test no 1, injection	95
6.3.34 Section 465–470 m, test no 1, injection	96
6.3.35 Section 470–475 m, test no 1, injection	96
6.3.36 Section 475–480 m, test no 1, injection	97
· · · · · · · · · · · · · · · · · · ·	97
6.3.37 Section 480–485 m, test no 1, injection	
6.3.38 Section 485–490 m, test no 1, injection	98
6.3.39 Section 490–495 m, test no 1, injection	99
6.3.40 Section 495–500 m, test no 1, injection	99
6.3.41 Section 500–505 m, test no 1, injection	100
6.3.42 Section 505–510 m, test no 1, injection	100
6.3.43 Section 510–515 m, test no 1, injection	100
6.3.44 Section 515–520 m, test no 2, injection	101
6.3.45 Section 520–525 m, test no 1, injection	102
6.3.46 Section 525–530 m, test no 1, injection	102
6.3.47 Section 530–535 m, test no 1, injection	103
6.3.48 Section 535–540 m, test no 1, injection	103
6.3.49 Section 540–545 m, test no 1, injection	104
6.3.50 Section 545–550 m, test no 1, injection	104
	104
6.3.51 Section 550–555 m, test no 1, injection	
6.3.52 Section 555–560 m, test no 1, injection	106
6.3.53 Section 560–565 m, test no 1, injection	107
6.3.54 Section 565–570 m, test no 1, injection	107
6.3.55 Section 570–575 m, test no 1, injection	108
6.3.56 Section 575–580 m, test no 1, injection	108
6.3.57 Section 580–585 m, test no 1, injection	109
6.3.58 Section 585–590 m, test no 1, injection	110
6.3.59 Section 590–595 m, test no 1, injection	110
6.3.60 Section 595–600 m, test no 1, injection	111
6.3.61 Section 600–605 m, test no 1, injection	112
6.3.62 Section 600–605 m, test no 1, injection	113
6.3.63 Section 605–610 m, test no 1, injection	113
6.3.64 Section 610–615 m, test no 1, injection	113
6.3.65 Section 615–620 m, test no 1, injection	114
6.3.66 Section 620–625 m, test no 1, injection	115
6.3.67 Section 625–630 m, test no 1, injection	116
6.3.68 Section 630–635 m, test no 1, injection	117

	6.3.69 Section 635–640 m, test no 1, injection	117
	6.3.70 Section 640–645 m, test no 1, injection	118
	6.3.71 Section 645–650 m, test no 1, injection	118
	6.3.72 Section 650–655 m, test no 1, injection	119
	6.3.73 Section 655–660 m, test no 1, injection	119
	6.3.74 Section 660–665 m, test no 1, injection	120
	6.3.75 Section 665–670 m, test no 1, injection	120
	6.3.76 Section 670–675 m, test no 1, injection	121
	6.3.77 Section 675–680 m, test no 1, injection	121
	6.3.78 Section 680–685 m, test no 1, injection	122
	6.3.79 Section 685–690 m, test no 1, injection	123
	6.3.80 Section 690–695 m, test no 1, injection	123
	6.3.81 Section 695–700 m, test no 1, injection	124
7	Synthesis	125
7.1	Summary of results	126
7.2	Correlation analysis	139
	7.2.1 Comparison of steady state and transient analysis results	139
	7.2.2 Comparison between the matched and theoretical wellbore	
	storage coefficient	140
8	Conclusions	141
8.1	Transmissivity	141
8.2	Equivalent freshwater head	141
8.3	Flow regimes encountered	142
9	References	143
Арре	endix 1 File description table (only on attached CD)	
Appe	endix 2 Test analyses diagrams (only on attached CD)	
Appe	endix 3 Test summary sheets (only on attached CD)	

Appendix 4 Nomenclature (only on attached CD)

Appendix 5 Transmissivity and freshwater head log (only on attached CD)

Appendix 6 SICADA data tables (only on attached CD)

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB, 2001a/, as well as a site-specific program for the investigations in the Simpevarp area /SKB, 2001b/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme /SKB, 2002/.

Measurements were carried out according in borehole KSH01A during 4th December 2003 to 29th January 2004 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-03-063 (SKB internal controlling documents). Data and results were delivered to the SKB site characterization database SICADA with field note number Simpevarp 138.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KSH01A. The data is subsequently delivered for the site descriptive modelling. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KSH01A is situated at the Simpevarp peninsula about 200 m east of "Block 3" of the nuclear power plant at Simpevarp, Figure 1-1. The borehole was drilled 2002 at 1,003 m depth with an inner diameter of 76 mm and an inclination of -80.598°. The upper 101.67 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 273 mm-80 mm.

Figure 1-1. The investigation area Simpevarp, Oskarshamn with location of borehole KSH01A.

2 Objective

The objective of the hydrotests in borehole KSH01A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analysis and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following test programme was performed

No of Injection tests	Interval	Positions	Time/test	Total test time
9	100 m	103–999 m	125 min	18.8 hrs
45	20 m	103–999 m	90 min	67.5 hrs
81	5 m	300–700 m	90 min	121.5 hrs

Table 3-1. Performed test programme at borehole KSH01A.

Total: 207.8 hrs.

3.1 Boreholes

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point in the boreholes is the centre of top of casing (ToC), given as Elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

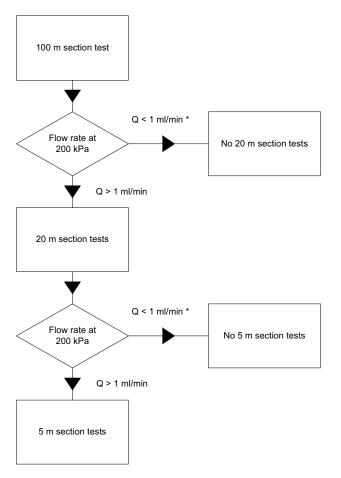

Title	Value				
Borehole length (m):	1,003.000				
Drilling Period(s):	From Date 2002-08-22 2002-10-07	To Date 2002-09-17 2002-12-18	Secup (m) 0.000 100.240	Seclow (m) 100.240 1,003.000	Drilling Type Percussion drilling Core drilling
Starting point coordinate: (centerpoint of TOC)	Length (m) 0.000	Northing (m) 6366013.461	Easting (m) 1552442.978	Elevation (masl) 5.314	Coord Sys. RT90-RHB70
Angles:	Length (m) 0.000	Bearing Inclinati 174.148 –80.598	on	(– = down)	
Borehole diameter:	Secup (m) 0.000 12.100 100.240 101.670 101.670	Seclow (m) 12.100 100.240 0.086 1,003.000	Hole Diam (m) 0.200 0.198 0.076		
Casing diameter:	Secup (m) 0.000 0.000 97.020 101.670	Seclow (m) 2.200 12.100 97.020 101.670	Case In (m) 0.263 0.200 0.195 0.076	Case Out (m) 0.273 0.208 0.199 0.080	
Grove milling:	Length (m) 110.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 550.000 650.000 650.000 750.000 800.000 850.000 850.000 850.000	Trace detectable YES YES YES YES YES YES YES YES YES YES	9		

Table 3-2. Information about KSH01A (from SICADA 2003-10-02).

During this testing campaign, the marker at 250 m could not be detected with the positioner.

3.2 Tests

Injection tests were conducted according to the Activity Plan AP PS 400-03-063 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m, 20 m test sections between 103-999 m below ToC and in 5 m test sections between 300-700 m below ToC. The initial criteria for performing injection tests in 20 m and 5 m test sections was a measurable flow of Q > 0.001 L/min (see Figure 3-1). In some 20 m sections higher flow rates than in the appropriate 100 m section were observed. Due to this it was decided to perform all planned 20 m and 5 m tests. The measurements were performed with SKB's custom made equipment for hydraulic testing called PSS2.

* eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Bh ID	Test section	Test type ¹	Test no	Test start	Test stop
	(m)			Date, time	Date, time
KSH01A	103–203	3	1	2003-12-09	2003-12-09
				11:01:05	14:06:28
KSH01A	200–300	3	2	2003-12-10	2003-12-10
				10:18:11	14:53:31
KSH01A	300–400	3	1	2003-12-10	2003-12-10
				16:33:39	20:20:07
KSH01A	400–500	3	2	2003-12-14	2003-12-14
				09:18:38	11:33:26
KSH01A	500–600	3	2	2003-12-11	2003-12-11
				14:58:15	16:37:38
KSH01A	600–700	3	2	2003-12-12	2003-12-12
				07:06:50	08:20:16
KSH01A	700–800	3	1	2003-12-12	2003-12-12
				10:03:16	12:33:46
KSH01A	800–900	3	1	2003-12-12	2003-12-13
				13:59:54	07:29:02
KSH01A	899–999	3	2	2003-12-13	2003-12-13
				13:28:38	15:32:29
KSH01A	103–123	3	1	2003-12-15	2003-12-15
				11:03:35	12:38:26
KSH01A	123–143	3	1	2003-12-15	2003-12-15
				13:10:59	15:33:34
KSH01A	143–163	3	1	2003-12-15	2003-12-15
				16:09:58	17:38:56
KSH01A	163–183	3	1	2003-12-15	2003-12-15
				18:10:27	19:50:45
KSH01A	183–203	3	1	2003-12-16	2003-12-16
				08:19:38	10:40:44
KSH01A	200–220	3	1	2003-12-16	2003-12-16
				11:13:31	12:50:16
KSH01A	220–240	3	1	2003-12-16	2003-12-16
				13:37:31	14:59:16
KSH01A	240–260	3	1	2003-12-16	2003-12-16
				15:34:37	17:00:30
KSH01A	260–280	3	1	2003-12-16	2003-12-16
				17:29:56	18:57:25
KSH01A	280–300	3	1	2003-12-17	2003-12-17
		-		08:17:19	10:05:28
KSH01A	300–320	3	1	2003-12-17	2003-12-17
	000 010	C		10:41:38	12:58:43
KSH01A	320–340	3	1	2003-12-17	2003-12-17
	020 010	0	·	13:27:34	14:54:08
KSH01A	340–360	3	1	2003-12-17	2003-12-17
	0-10 000	5		15:38:17	17:02:28
KSH01A	360–380	3	1	2003-12-17	2003-12-17
	300-300	5	I	17:32:15	19:36:41
KSH01A	380–400	3	1	2003-12-18	2003-12-18
NOTIO IA	300-400	5	I	08:10:25	09:37:03
KSH01A	400-420	3	1	2003-12-18	2003-12-18

Table 3-3. Tests performed.

Bh ID	Test section (m)	Test type ¹	Test no	Test start Date, time	Test stop Date, time
KSH01A	420–440	3	1	2003-12-18	2003-12-18
				16:46:04	18:18:35
KSH01A	440–460	3	1	2003-12-19	2003-12-19
				08:01:09	09:31:18
KSH01A	460–480	3	1	2003-12-19	2003-12-19
				10:01:27	11:23:30
KSH01A	480–500	3	1	2003-12-19	2003-12-19
				11:54:13	13:41:42
KSH01A	500–520	3	1	2003-12-19	2003-12-19
				14:13:49	15:37:32
KSH01A	520–540	3	1	2003-12-19	2003-12-19
				16:11:35	17:34:17
KSH01A	540–560	3	1	2003-12-19	2003-12-19
				18:09:28	21:12:51
KSH01A	560–580	3	1	2003-12-20	2003-12-20
				08:13:52	09:49:52
KSH01A	580–600	3	1	2003-12-20	2003-12-20
				10:23:07	14:19:11
KSH01A	600–620	3	1	2003-12-20	2003-12-20
				14:47:45	17:47:10
KSH01A	620–640	3	1	2004-01-07	2004-01-07
				13:40:20	15:08:41
KSH01A	640–660	3	1	2004-01-07	2004-01-07
				15:45:27	17:11:00
KSH01A	660–680	3	1	2004-01-07	2004-01-07
				17:44:10	19:11:35
KSH01A	680–700	3	1	2004-01-08	2004-01-08
				08:27:52	10:03:48
KSH01A	700–720	3	1	2004-01-08	2004-01-08
				10:37:07	12:29:23
KSH01A	720–740	3	1	2004-01-08	2004-01-08
				13:00:03	14:54:44
KSH01A	740–760	3	1	2004-01-08	2004-01-08
				15:32:06	17:03:07
KSH01A	760–780	3	1	2004-01-08	2004-01-08
				17:35:06	19:18:29
KSH01A	780–800	3	1	2004-01-09	2004-01-09
				08:25:27	09:59:20
KSH01A	800–820	3	1	2004-01-09	2004-01-09
				10:29:58	12:02:18
KSH01A	820–840	3	1	2004-01-09	2004-01-09
				12:51:57	14:27:20
KSH01A	840–860	3	1	2004-01-09	2004-01-09
				15:31:25	17:14:05
KSH01A	860–880	3	1	2004-01-09	2004-01-09
	000 000			17:44:08	19:21:58
KSH01A	880–900	3	1	2004-01-10	2004-01-10
KSH01A	899–919	3	1	08:31:20	10:06:52
	099-919	3	I	2004-01-10 10:39:17	2004-01-10 12:08:30
KSH01A	010 020	3	1	2004-01-10	2004-01-10
NORUTA	919–939	3	I	2004-01-10 13:14:23	2004-01-10 14:32:23
				13.14.23	14.32.23

Bh ID	Test section	Test type ¹	Test no	Test start	Test stop
	(m)			Date, time	Date, time
SH01A	939–959	3	1	2004-01-10	2004-01-10
				15:07:04	16:29:43
SH01A	959–979	3	1	2004-01-10	2004-01-10
				17:00:10	18:22:37
SH01A	979–999	3	1	2004-01-11	2004-01-11
				08:23:57	10:07:49
SH01A	300–305	3	1	2004-01-12	2004-01-12
				16:06:45	17:26:44
SH01A	305–310	3	1	2004-01-12	2004-01-12
				17:53:54	19:27:28
H01A	310–315	3	1	2004-01-13	2004-01-13
				08:37:00	10:12:09
H01A	315–320	3	1	2004-01-13	2004-01-13
				10:37:25	13:47:38
H01A	320–325	3	1	2004-01-13	2004-01-13
				14:12:20	15:28:47
H01A	325–330	3	1	2004-01-13	2004-01-13
				15:58:10	17:19:10
H01A	330–335	3	1	2004-01-13	2004-01-13
				17:42:19	19:19:53
-101A	335–340	3	1	2004-01-14	2004-01-14
				08:15:33	09:41:17
I01A	340–345	3	1	2004-01-14	2004-01-14
				10:09:16	11:41:46
101A	345–350	3	1	2004-01-14	2004-01-14
				12:10:16	14:06:08
101A	350–355	3	1	2004-01-14	2004-01-14
				14:29:01	16:00:28
101A	355–360	3	1	2004-01-14	2004-01-14
				16:26:05	18:35:40
01A	360–365	3	1	2004-01-15	2004-01-15
		-		08:28:05	10:36:43
101A	365–370	3	1	2004-01-15	2004-01-15
2		-		11:02:05	13:04:28
101A	370–375	3	1	2004-01-15	2004-01-15
	0.0 0.0	v		13:30:20	15:41:02
H01A	375–380	3	1	2004-01-15	2004-01-15
	010-000	U		16:10:38	17:42:53
H01A	380–385	3	1	2004-01-15	2004-01-1
	000-000	0		18:07:00	2004-01-10
H01A	385–390	3	1	2004-01-16	20.47.55 2004-01-16
	000-090	0	I	08:25:04	10:05:54
H01A	390–395	3	1	08.25.04 2004-01-16	2004-01-16
IUIA	290-292	J	I		
	205 400	2	1	10:32:53 2004-01-16	12:00:50
H01A	395–400	3	1		2004-01-16
	400 405	2	1	13:05:03	14:45:25
H01A	400–405	3	1	2004-01-16	2004-01-16
	405 440	2	4	15:10:17	17:13:35
H01A	405–410	3	1	2004-01-16	2004-01-17
	440 44-	0		17:37:40	07:08:06
H01A	410–415	3	1	2004-01-17	2004-01-17
				08:25:23	09:57:05

Bh ID	Test section (m)	Test type ¹	Test no	Test start	Test stop
	. ,			Date, time	Date, time
KSH01A	415–420	3	1	2004-01-17	2004-01-17
1011044	400 405	0		10:22:57	11:24:54
KSH01A	420–425	3	1	2003-07-31	2003-07-31
1011044	405 400	0		14:49:10	17:50:05
KSH01A	425–430	3	1	2004-01-17	2004-01-17
1/01/04/4	400 405	<u> </u>		14:25:48	15:08:58
KSH01A	430–435	3	1	2004-01-17	2004-01-17
1011044	405 440	0		15:37:28	16:35:27
KSH01A	435–440	3	1	2004-01-17	2004-01-17
101101	440 445	2	4	17:01:38	17:50:46
KSH01A	440–445	3	1	2004-01-17	2004-01-18
1011044	445 450	0		18:15:03	05:36:05
KSH01A	445–450	3	1	2004-01-18	2004-01-18
1011044	450 455	0		08:55:39	11:22:58
KSH01A	450–455	3	1	2004-01-18	2004-01-18
1011044	455 400	0		11:46:55	13:35:40
KSH01A	455–460	3	1	2004-01-18	2004-01-18
	400 405	<u> </u>		13:59:22	15:49:22
KSH01A	460–465	3	1	2004-01-18	2004-01-18
				16:14:25	23:50:13
KSH01A	465–470	3	1	2004-01-19	2004-01-19
	470 475	<u>.</u>		08:26:53	10:47:54
KSH01A	470–475	3	1	2004-01-19	2004-01-19
1/01/04/4	475 400	<u> </u>		11:11:20	13:01:03
KSH01A	475–480	3	1	2004-01-19	2004-01-19
1011044	400 405	0		13:26:26	15:39:57
KSH01A	480–485	3	1	2004-01-19	2004-01-19
1011044	405 400	0		16:03:20	18:01:02
KSH01A	485–490	3	1	2004-01-20	2004-01-20
KSH01A	490–495	3	1	08:19:33 2004-01-20	09:51:50 2004-01-20
Nor Io I/A	400 400	5	•	10:18:10	12:17:56
KSH01A	495–500	3	1	2004-01-20	2004-01-20
				12:57:20	13:55:53
KSH01A	500-505	3	1	2004-01-20	2004-01-20
				14:25:23	16:43:52
KSH01A	505–510	3	1	2004-01-20	2004-01-21
				17:11:10	06:42:55
KSH01A	510–515	3	1	2004-01-21	2004-01-21
				08:17:17	09:16:03
KSH01A	515–520	3	2	2004-01-21	2004-01-21
	0.00 020	C	-	09:58:57	12:05:55
KSH01A	520–525	3	1	2004-01-21	2004-01-21
	010 010	C	•	13:02:24	14:02:36
KSH01A	525–530	3	1	2004-01-21	2004-01-21
	~	-		14:26:28	15:30:43
KSH01A	530–535	3	1	2004-01-21	2004-01-21
		-	·	15:54:48	18:09:52
KSH01A	535–540	3	1	2004-01-22	2004-01-22
		-		08:13:28	09:13:45
	540–545	3	1	2004-01-22	2004-01-22
KSH01A					

Bh ID	Test section	Test type ¹	Test no	Test start	Test stop
	(m)			Date, time	Date, time
KSH01A	545–550	3	1	2004-01-22	2004-01-22
				13:11:23	14:56:03
KSH01A	550–555	3	1	2004-01-22	2004-01-22
				15:21:13	17:01:13
KSH01A	555–560	3	1	2004-01-22	2004-01-22
				17:25:31	19:01:09
KSH01A	560–565	3	1	2004-01-23	2004-01-23
				08:20:16	09:36:31
KSH01A	565–570	3	1	2004-01-23	2004-01-23
				10:02:16	11:01:37
KSH01A	570–575	3	1	2004-01-23	2004-01-23
				11:27:48	13:49:44
KSH01A	575–580	3	1	2004-01-23	2004-01-23
				14:13:17	16:09:54
KSH01A	580–585	3	1	2004-01-23	2004-01-23
				16:34:13	18:07:06
KSH01A	585–590	3	1	2004-01-24	2004-01-24
				08:15:56	09:41:24
KSH01A	590–595	3	1	2004-01-24	2004-01-24
				10:05:57	13:02:59
KSH01A	595–600	3	1	2004-01-24	2004-01-24
				13:30:40	15:07:55
SH01A	600–605	3	1	2004-01-24	2004-01-24
				15:31:48	17:02:56
SH01A	600–605	3	1	2004-01-28	2004-01-28
				10:42:02	12:08:42
SH01A	605–610	3	1	2004-01-24	2004-01-24
				17:27:06	18:25:51
SH01A	610–615	3	1	2004-01-25	2004-01-25
				08:23:48	10:52:18
SH01A	615–620	3	1	2004-01-25	2004-01-25
				11:16:40	12:40:29
SH01A	620–625	3	1	2004-01-25	2004-01-25
				13:40:39	15:19:55
KSH01A	625–630	3	1	2004-01-25	2004-01-25
				15:44:29	17:34:04
KSH01A	630–635	3	1	2004-01-25	2004-01-25
				17:56:51	18:55:28
KSH01A	635–640	3	1	2004-01-26	2004-01-26
				08:16:40	09:17:54
(SH01A	640–645	3	1	2004-01-26	2004-01-26
				09:48:56	10:47:28
SH01A	645–650	3	1	2004-01-26	2004-01-26
				11:16:35	12:39:41
KSH01A	650–655	3	1	2004-01-26	2004-01-26
				13:05:23	14:03:59
KSH01A	655–660	3	1	2004-01-26	2004-01-26
				14:32:29	16:09:00
KSH01A	660–665	3	1	2004-01-26	2004-01-26
				16:36:56	17:35:21
KSH01A	665–670	3	1	2004-01-26	2004-01-27
				18:02:00	05:16:26

Bh ID	Test section	Test type ¹	Test no	Test start	Test stop
	(m)			Date, time	Date, time
KSH01A	670–675	3	1	2004-01-27	2004-01-27
				08:15:35	09:59:58
KSH01A	675–680	3	1	2004-01-27	27.01.2004
				10:27:00	12:20:53
KSH01A	680–685	3	1	2004-01-27	2004-01-27
				12:51:26	15:39:49
KSH01A	685–690	3	1	2004-01-27	2004-01-27
				16:07:39	17:07:05
KSH01A	690–695	3	1	2004-01-27	2004-01-27
				17:34:20	18:32:52
KSH01A	695–700	3	1	2004-01-28	2004-01-28
				08:15:07	09:14:02

1: 3: Injection test.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KSH01A were conducted.

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage at joints in the pipe string was done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the Mätssystembeskrivning.

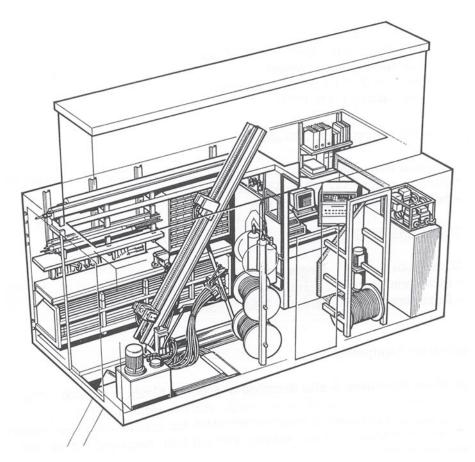
4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.



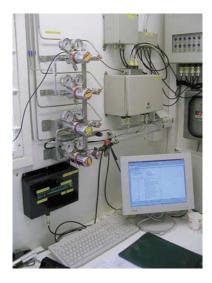

Figure 4-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Contact carrier SS 1.0 m carrying connections for sensors below.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Gauge carrier with breakpin SS 2.0 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN.
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Pipe gauge carrier SS 2.0 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa.

The tool scheme is presented in Figure 4-2.

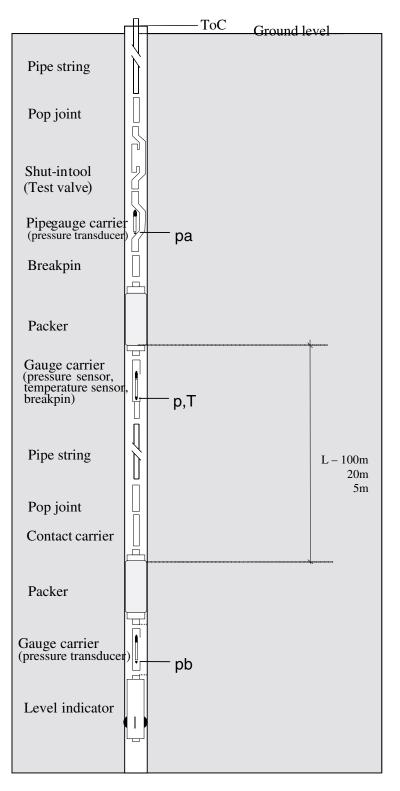
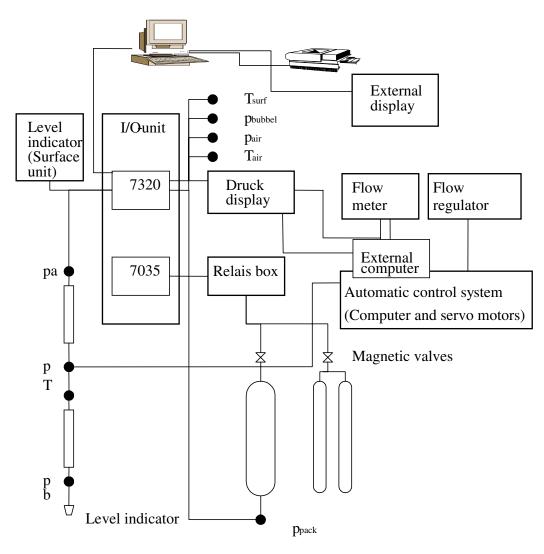


Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Unit	Value/range	Comments
p _{sec,a,b}	Pressure	Druck PTX 162-1464abs	9–30 4–20 0–13.5 Resolution Accuracy	VDC mA MPa % of FS	
T _{sec,surf,air}	Temperature	BGI	18–24 4–20 0–32 0.1	VDC mA ℃ ℃	
\mathbf{Q}_{big}	Flow	Micro motion Elite sensor	0–100 <u>+</u> 0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 <u>+</u> 0.1	kg/min %	Massflow
Pair	Pressure	Druck PTX 630	9–30 4–20 0–120 <u>+</u> 0.1	VDC mA KPa % of FS	
P _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 <u>+</u> 0.1	VDC mA MPa % of FS	
P _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5	VDC mA MPa	

Table 4-1. Technical specifications of sensors.


Table 4-2. Sensor positions and wellbore storage (WBS) controlling fact	Table 4-2. Sensor	positions and wellbore sto	orage (WBS) controlling factors
---	-------------------	----------------------------	---------------------------------

Borehole information			Sensors		Equipment affecting WBS coefficient		
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KSH01A	103–203	1	pa	100.5	section	Signal cable	9.1
			р Т	104.25 104.5		Pump string	33
			ı p₀	205		Packer line	6
KSH01A	103–123	1	pa	100.5	104.25 section 104.5	Signal cable	9.1
			р Т	104.25 104.5		Pump string	33
			p₅	125		Packer line	6
KSH01A	300–305	!	pa	297.5	Test section	Signal cable	9.1
			р Т	301.25 301.5		Pump string	33
			r p₅	307.5		Packer line	6

4.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection tests parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

5 Execution

5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling injection tank with water out of the borehole.
- Filling buffer tank with water.
- Filing vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English.
- Filling packers with water and de-air.
- Measure and assemble test tool.

5.2 Execution of tests/measurements

5.2.1 Test principle

The tests were conducted as constant pressure injection (CHi phase) followed by a shut-in pressure recovery (CHir phase). In some cases, when the test section transmissivity was too low (typically lower than $1E-9 \text{ m}^2/\text{s}$) no measurable flow could be registered during the CHi phase (Q < 1 mL/min). Due to the very low test section transmissivity, the packer compliance period (PSR phase) lasted very long (typically several hours). As agreed with SKB, a test was skipped when there was no indication for a pressure stabilisation within 30 min (for 20 m and 5 m sections, see Figure 5-1). In such cases there was no active test conducted, the behaviour of the compliance period being taken as a proof of very low section transmissivity (lower than $1E-11 \text{ m}^2/\text{s}$).

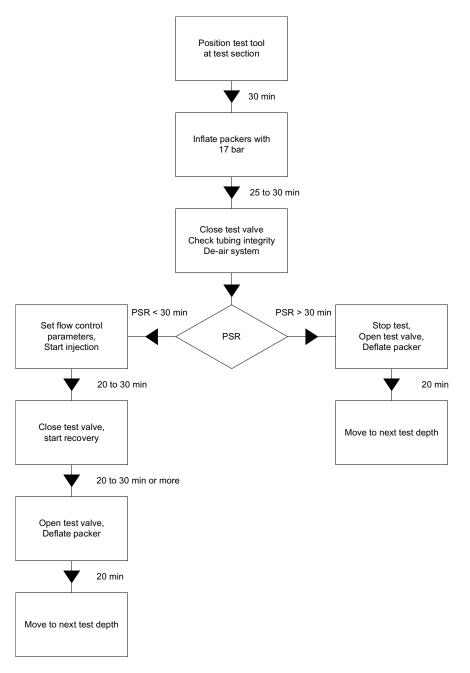


Figure 5-1. Flow chart for test performance.

5.2.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Constant head injection. 5) Pressure recovery. 6) Packer deflation. The injection tests in KSH01A has been carried out by applying a constant injection pressure of ca 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured. In some cases, if small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually.

The duration for each phase is presented in Table 3-3.

 Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KSH01A.

•	Position test tool to new test section (correct position using the borehole markers)	Approx 30 min
•	Inflate packers with 20 bar	25 min
•	Close test valve	10 min
•	Check tubing integrity with 9 bar	5 min
•	De-air system	2 min
•	Set automatic flow control parameters	5 min
•	Start injection	20 to 45 min
•	Close test valve, start recovery	20 min or more
•	Open test valve	10 min
•	Deflate packers	25 min
•	Move to next test depth	

In some cases injection and recovery phases were prolonged. This was due to testing zones of high interest for example high flow zones or low flow zones.

5.3 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in csv format. These files were also used for the subsequent test analysis.

5.4 Analyses and interpretation

5.4.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

5.4.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman,1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten, 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

5.4.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

• Injection Tests

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition HORNER plot /Horner, 1951/). In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne, 1990/.

• Pulse Injection Tests

A test is always initiated as a constant pressure injection. However, if after a few seconds of injection the rate quickly drops to zero, this indicates a very tight section. It is then decided to close the test valve and measure the pressure recovery. The pressure recovery is analysed as a pulse injection phase (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

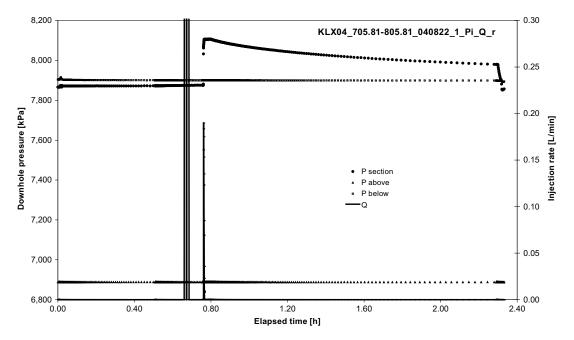


Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

5.4.4 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye, 1967/.

5.4.5 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as most likely (according to the experience from previous tests in this region) for this test section as the recommended flow model. The value of p* was then calculated according to this assumption.

5.4.6 Calculation of the static formation pressure and equivalent freshwater head

The static pressure measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using straight line or type curve extrapolation in the Horner plot.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the static formation pressure, corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-2 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$h = \frac{(p_i - p_{atm})}{\rho \cdot g}$$

which is the P_i value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head is

$$head = RP_{elev} - Gd + \frac{(p_i - p_{atm})}{\rho \cdot g}$$

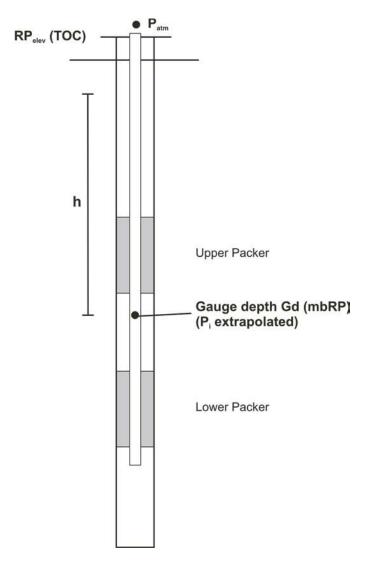


Figure 5-3. Schematic methodologies for calculation of the freshwater head.

5.4.7 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality. In cases when a composite flow model was deemed to be most representative for the hydraulic behaviour of the specific test section, than the outer zone transmissivity was selected as recommended value, because it is regarded as most representative for the large scale undisturbed formation properties.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared in a normalized plot (which is not part of the report itself but used as tool for quality assurance) and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In some cases the tests were not analysable due to the fact that the flow rates during the CHi phase were below the range of the flowmeter (< 0.5 mL/min) or because the compliance phase following packer inflation was too long, thus indicating a very low interval transmissivity. In such cases the interval transmissivity was recommended to a value of $1.0E-11 \text{ m}^2$ /s which was in the same time regarded as the upper boundary of the confidence range. This value is consistent with the observations made during the analysis of the other tests in the borehole (i.e. the transmissivity must be lower than in the cases when the test was analysable).

6 Results

In the following, results of all tests are presented and analysed. Chapter 6.1 presents the 100 m tests, 6.2 the 20 m tests and 6.3 the 5 m tests. The results are given as general comments to test pereformance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 7-1 and 7-2 of the Synthesis chapter.

6.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KSH01A are presented and analysed.

6.1.1 Section 103–203 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 197 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 1.57 L/min at start of the CHi phase to 1.37 L/min at the end, indicating a moderately high interval transmissivity. The early times of the CHi phase (first 7 minutes) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The late times of the CHir phase show a negative slope of -0.5 indicative of spherical flow. However, based on the normalized derivative plot an infinite acting radial composite flow model was chosen for the analysis. The analysis is presented in Appendix 2-1. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.0E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-6 to $1.0E-5 \text{ m}^2/\text{s}$ (the inner zone composite transmissivity is regarded as a local skin effect). The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,046.2 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.2 Section 200-300 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 14.1 L/min at start of the CHi phase to 8.2 L/min at the end, indicating a relatively high interval transmissivity. The early times of the CHi phase are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow) in the analysis. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-2. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.3E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-6 to $1.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,985.2 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.3 Section 300-400 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate control during the CHi phase was not very good. In addition, due to the small injection rates (low transmissivity) the rate measurements are relatively noisy. The injection rate decreased from 24.7 mL/min at start of the CHi phase to 16.9 mL/min at the end, indicating a relatively low interval transmissivity. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows an upward trend at late times indicating a decrease of transmissivity at some distance from the borehole. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-3. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-9 to $2.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,943.2 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.1.4 Section 400–500 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of about 240 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. During the injection phase the pressure in the interval rose by 6 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 25.3 mL/min at start of the CHi phase to 5.2 mL/min at the end, indicating a relatively low interval transmissivity. The early times of the CHi phase (first 50 seconds) are not analysable. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting radial composite flow model was chosen for the analysis of this phase. The CHir phase shows an upward trend indicating either a decrease of transmissivity at some distance from the borehole or a flow dimension below 2. A radial composite flow model was chosen for the analysis of this phase. The analysis of this phase. The analysis is presented in Appendix 2-4. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-10 to $6E-9 \text{ m}^2/\text{s}$. The flow dimension

displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,883.7 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.5 Section 500-600 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 4.97 L/min at beginning of the CHi phase to 2.27 L/min at the end, indicating a moderately high interval transmissivity. The first part of the CHi phase (first 8 to 9 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of this phase. The CHir phase shows an upward trend indicating either a decrease of transmissivity at some distance from the borehole or a flow dimension below 2. A radial composite flow model was chosen for the analysis of this phase. Additionally an alternative analysis with a flow dimension of 1 (linear flow) for the outer zone of the composite model was performed. The analysis is presented in Appendix 2-5. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4E-7 to $2E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,861.6 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.6 Section 600-700 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 203 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.48 L/min at start of the CHi phase to 0.06 L/min at the end, indicating a relatively low

interval transmissivity. The results of the CHi phase analysis should be regarded as order of magnitude only. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test none of the test phases (CHi and CHir) shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. The CHir phase shows an upward trend indicating either a decrease of transmissivity at some distance from the borehole or a flow dimension below 2. A radial composite flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-6. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-8 to $6E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,818.2 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.7 Section 700-800 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 177 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.12 L/min at start of the CHi phase to 0.016 L/min at the end, indicating a relatively low interval transmissivity. The early and middle times of the CHi phase are not analysable due to the time needed to get constant pressure. However, the late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of this phase. The CHir phase shows an upward trend indicating either a decrease of transmissivity at some distance from the borehole or a flow dimension below 2. A radial composite flow model was chosen for the analysis of this phase. Additionally an alternative analysis with a flow dimension of 1 (linear flow) for the outer zone of the composite model was performed. The analysis is presented in Appendix 2-7. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2E–9 to 8E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,790.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.1.8 Section 800–900 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 182 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 4 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a very low interval transmissivity. Due to the very small injection rates the rate measurements are relatively noisy. Because of this reason the results of the CHi analysis should be regarded as order of magnitude only. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, due to the very small transmissivity, the flow model is difficult to diagnose. An infinite acting homogeneous radial flow model was chosen for the analysis. The analysis is presented in Appendix 2-8. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.4E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-10 to $3.0E-9 \text{ m}^2/\text{s}$. Due to the low transmissivity of the test section the flow dimension could not be diagnosed. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 7,737.7 kPa.

The analysis results of the two test phases show reasonable consistency. Due to the relatively poor data quality no further analysis is recommended.

6.1.9 Section 899–999 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 208 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 9.5 mL/min at start of the CHi phase to 6.6 mL/min at the end with a sharp drop after

7 minutes from 9 mL/min to 7 mL/min, indicating a very low interval transmissivity. The cause for the drop in the flow rate is unknown. The early times of the CHi phase (first 20 seconds) are not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase are of good quality and can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of this phase. For the analysis of the CHir phase a radial composite flow model was used. The analysis is presented in Appendix 2-9. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.9E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which although noisy, shows a flat derivative at late times. The confidence range for the interval transmissivity is estimated to be 1E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,659.8 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KSH01A are presented and analysed.

6.2.1 Section 103–123 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 0.60 L/min at beginning of the CHi phase to 0.42 L/min at the end, indicating relatively low interval transmissivity. The first part of the CHi phase (first 10 minutes) is not analysable due to the time needed by the system to regulate constant pressure and because of a malfunction of the system after 7 minutes when the flow rate and so the pressure rose up suddenly and became stable again. However, the late times of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of this phase. A radial composite flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-10. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.0E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E–8 to 5E–7 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,040.4 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.2 Section 123-143 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 68.2 mL/min at beginning of the CHi phase to 61.28 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 2 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). A radial composite flow model was chosen for the analysis of this phase. The CHir phase was analysed using an infinite acting homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-11. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which although noisy, shows a flat derivative at late times . The confidence range for the interval transmissivity is estimated to be 1E-8 to $3E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,239.5 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned.

6.2.3 Section 143–163 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.06 L/min at beginning of the CHi phase to 0.76 L/min at the end, indicating a moderately high interval transmissivity. The first part of the CHi phase (first 30 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHi phase was analysed using a homogeneous infinite acting radial flow model. The CHir phase shows in middle times a downward trend indicating a flow dimension higher than 2. Therefore a radial two shell composite model with a flow dimension of 3 (spherical flow) for the inner shell was chosen for the analyses of this phase. The analysis is presented in Appendix 2-12. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.6E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. It should be noted, that the results of both test phases can not be compared directly, because different flow dimensions were used. The confidence range for the interval transmissivity is estimated to be 4E-7 to $2E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,431.3 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.4 Section 163–183 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 80.5 mL/min at beginning of the CHi phase to 63.3 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 4 to 5 minutes) is not analysable due to the time needed to regulate constant pressure. The middle and late times of the CHi phase are of better quality and amenable for quantitative analysis. The

CHir phase recovered to static conditions very quickly, such that the analysis should be regarded with caution.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the data quality does not allow for a specific determination of the flow dimension. The analysis was conducted assuming a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis. The analysis is presented in Appendix 2-13. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.0\text{E}-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which although noisy, shows the more reliable data and derivative. The confidence range for the interval transmissivity is estimated to be 4E-8 to $4\text{E}-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,623.1 kPa.

The analysis of the CHi and CHir phases show some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.5 Section 183–203 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 198 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 42.5 mL/min at beginning of the CHi phase to 19.1 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 5 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively, although it is noisy. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at late times, which is indicative of a flow dimension higher than 2. An infinite acting homogeneous radial flow model with a flow dimension of 3 (spherical flow) was chosen for the analysis of this phase. The CHir phase was analysed using an assumed radial composite flow model. The analysis is presented in Appendix 2-14. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.4E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality, although no infinite acting radial flow was measured The confidence range for the interval transmissivity is estimated to be 8E-9 to $6E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is not unambiguous. The static pressure measured at transducer depth was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,817.0 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.6 Section 200-220 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.5 L/min at beginning of the CHi phase to 0.47 L/min at the end, indicating a moderately high interval transmissivity. The first part of the CHi phase (first 2 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at middle and late times, which is indicative of a flow dimension higher than 2. A regression line drawn through the entire middle and late times of the CHi phase derivative yields a flow dimension of 2.8. An infinite acting homogeneous radial flow model with a flow dimension of 3 was chosen for the analysis of this phase. The CHir phase shows a downward trend at late times indicating either an increase of transmissivity at some distance from the borehole or a flow dimension higher than 2. A radial composite flow model was chosen for the analysis is presented in Appendix 2-15. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.7E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-7 to $9E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is not unambiguous. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,978.6 kPa.

It should be noted that the transmissivities derived from the CHi and the CHir phase are not directly comparable, because different flow dimensions were used. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.7 Section 220-240 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 0.12 L/min at beginning of the CHi phase to 0.06 L/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first minute) is not analysable due to the time needed by the system to regulate constant pressure. However, the middle and late times of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-16. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $4.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2E-8 to $7E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,166.7 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.2.8 Section 240-260 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 5.48 L/min at beginning of the CHi phase to 3.37 L/min at the end, indicating a moderately high interval transmissivity. The first part of the CHi phase (first 1.5 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of this phase. The CHir phase shows an upward trend indicating either a decrease of transmissivity at some distance from

the borehole or a flow dimension below 2. A radial composite flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-17. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.5E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-6 to $6E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,361.8 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.9 Section 260-280 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 198 kPa, followed by a pressure recovery phase. The test data indicates no hydraulic connection between the test interval and the adjacent sections. The injection rate decreased from 1.91 L/min at beginning of the CHi phase to 1.43 L/min at the end, indicating a moderately high interval transmissivity. The first part of the CHi phase (first 4 to 5 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at late times, which is indicative of a flow dimension higher than 2. An infinite acting homogeneous radial flow model with a flow dimension of 3 (spherical flow) was chosen for the analysis of this phase. The CHir phase shows a downward trend at late times as well, indicating either an increase of transmissivity at some distance from the borehole or a flow dimension above 2. A radial composite flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-18. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.9E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-6 to $5E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is not unambiguous. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,556.7 kPa.

The analysis of the CHi and CHir phases show some inconsistencies concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.10 Section 280-300 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates no hydraulic connection between the test interval and the adjacent zones. The injection rate decreased from 7.49 L/min at beginning of the CHi phase to 3.72 L/min at the end, indicating a relatively high interval transmissivity. The first part of the CHi phase (first 2 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both of the phases show a downward trend at late times, indicating either an increase of transmissivity or a flow dimension above 2. It was decided to use a flow dimension of 2 (radial flow). A radial 2 shell composite model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-19. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.9E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-7 to 6E-6 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,749.3 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.11 Section 300-320 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 220 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 15.54 mL/min at beginning of the CHi phase to 8.18 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 50 seconds) is not analysable due to the time needed to regulate constant pressure. However, the middle and late times of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting

homogeneous radial flow model was chosen for the analysis of the CHi phase. The CHir phase was analysed using a radial composite flow model with wellbore storage and skin. The analysis is presented in Appendix 2-20. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-9 to $7E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,943.7 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.12 Section 320-340 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 199 kPa, followed by a pressure recovery phase. The test data indicates no hydraulic connection between the test interval and the adjacent sections. The injection rate decreased from 11.49 mL/min at beginning of the CHi phase to 4.35 mL/min at the end, indicating a low interval transmissivity. The first 30 seconds of the CHi phase is not analysable due to the time needed to regulate constant pressure. The middle and late times of the CHi phase are of better quality and amenable for quantitative analysis, although they are very noisy. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the data quality does not allow for a specific determination of the flow dimension. The analysis was conducted assuming a flow dimension of 2 (radial flow). The CHi phase shows an upward trend indicating a decrease of transmissivity at some distance from the borehole. A radial composite flow model was chosen for the analysis of this phase. The CHir phase was analysed using a radial composite flow model with wellbore storage and skin. The analysis is presented in Appendix 2-21. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.3E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-10 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,127.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.13 Section 340-360 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 209 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 21.80 mL/min at beginning of the CHi phase to 11.20 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 8 to 9 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-22. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $7E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,325.8 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.14 Section 360-380 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 26.6 mL/min at beginning of the CHi phase to 13.7 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis

of both phases. The analysis is presented in Appendix 2-23. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,517.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.15 Section 380-400 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 25.9 mL/min at start of the CHi phase to 12.6 mL/min at the end with a sharp drop after 2 minutes from 17.7 mL/min to 16.3 mL/min, indicating a low interval transmissivity. The cause for the drop in the flow rate is unknown. The first part of the CHi phase (first 3 to 4 minutes) is not analysable due to the time needed to regulate constant pressure and because of the dropdown of the flowrate. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-24. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E–9 to 4E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,710.6 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.16 Section 400-420 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 13.7 mL/min at beginning of the CHi phase to 7.8 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-25. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.1E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2E-9 to $1E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,900.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned.

6.2.17 Section 420-440 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 10.8 mL/min at beginning of the CHi phase to 7.4 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively, although it is very noisy. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting radial

two shell composite flow model was chosen for the analysis of this phase. The CHir phase was analysed using an infinite acting homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-26. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.5E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The inner zone transmissivity is regarded as a local skin effect. The confidence range for the interval transmissivity is estimated to be 2E-9 to $1E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,092.5 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.18 Section 440-460 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 22.4 mL/min at beginning of the CHi phase to 11.1 mL/min at the end, indicating a relatively low interval transmissivity. The CHi phase is noisy and shows not the best data quality, however, the late time data can be analysed quantitatively. The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-27. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.5E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,286.1 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.19 Section 460-480 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 12.0 mL/min at beginning of the CHi phase to 6.9 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-28. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,476.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistency that should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.2.20 Section 480-500 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 203 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 15.8 mL/min at beginning of the CHi phase to 11.6 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-29. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.8E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-9 to $6E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,668.7 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, essentially caused by the fast recovery of the CHir phase and from this resulting data quality of this phase. No further analysis recommended.

6.2.21 Section 500-520 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The test was accomplished without using the automatic regulation system. The injection rate decreased from 19.1 mL/min at beginning of the CHi phase to 12.3 mL/min at the end, indicating a relatively low interval transmissivity. The first 20 seconds of the CHi phase is not analysable due to the time needed to regulate constant pressure. However, the remaining part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-30. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality, although it is noisy. The confidence range for the interval transmissivity is estimated to be 8E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,861.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, essentially caused by the fast recovery of the CHir phase and from this resulting data quality of this phase. No further analysis recommended.

6.2.22 Section 520-540 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 18.0 mL/min at beginning of the CHi phase to 12.2 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 30 seconds) is not analysable due to the time needed to regulate constant pressure. However, the remaining part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the analysis does not provide reliable results. The results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-31. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality, although it is noisy. The confidence range for the interval transmissivity is estimated to be 8E–9 to 6E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,053.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, mainly caused by the fast recovery of the CHir phase and from this resulting data quality of this phase. No further analysis recommended.

6.2.23 Section 540-560 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 1.38 L/min at beginning of the CHi phase to 0.79 L/min at the end, indicating a moderately high interval transmissivity. The injection rate control during the CHi phase was good. The flow data is adequate for quantitative analysis. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase shows an upward trend at late times indicating a decrease of transmissivity. An infinite acting homogeneous flow model was chosen for the analysis of the CHi phase. The CHir phase was analysed using a 2 shell composite flow model. The analysis is presented in Appendix 2-32. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.8E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4E-7 to $8E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,244.9 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis recommended.

6.2.24 Section 560-580 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 0.14 L/min at beginning of the CHi phase to 0.13 L/min at the end, indicating a middle interval transmissivity. The first part of the CHi phase (first 1.5 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). A radial 2 shell composite flow model was chosen for the analysis of this phase. The CHir phase was analysed using an infinite acting homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-33. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.4E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The inner zone transmissivity is regarded as a local skin effect. The confidence range for the interval transmissivity is estimated to be 9E-8 to 8E-7 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,439.9 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.25 Section 580-600 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 4.39 L/min at beginning of the CHi phase to 1.44 L/min at the end, indicating a relatively high interval transmissivity. Both phases are adequate for quantitative analysis, but it should be noted that the data are affected due to the hydraulic connection to the section below. So the results should be regarded with respect to this fact.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of this phase. The CHir phase shows at middle times a slope upward, indicating a decrease in transmissivity or a flow dimension below 2. It was decided to use a flow dimension of 2. A radial 2 shell composite model with wellbore storage and skin was chosen for the analysis of this phase. The analysis is presented in Appendix 2-34. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.8E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-8 to $8E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,646.1 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which are mainly caused by the connection to the section below. Due to this, the value for C is unrealistic high.

6.2.26 Section 600-620 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 0.14 L/min at beginning of the CHi phase to 0.13 L/min at the end, indicating a middle interval transmissivity. The CHi phase is not adequate for quantitative analysis due to the time needed by the system to regulate constant pressure. Additionally the hydraulic connection to the section below impair the quality and reliability of the data. The results of the analysis of the CHi phase should be regarded as order of magnitude only. The recovery phase (CHir) shows no problems and is adequate for quantitative analysis, but the results should be regarded carefully as well because of the hydraulic connection to the section below.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at the end, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous flow model was chosen for the analysis of the CHi phase. The CHir phase shows an upward trend indicating a decrease of transmissivity. For the analysis of this phase a radial 2 shell composite model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-35. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.3E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,824.1 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.27 Section 620-640 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 32.4 mL/min at beginning of the CHi phase to 11.7 mL/min at the end, indicating a relatively low interval transmissivity. For unknown reason the flow rate dropped down after 4 minutes from 17 mL/min to 14 mL/min. The CHi phase is not amenable for quantitative analysis due to the time needed by the system to regulate constant pressure and because of that sharp dropdown in flowrate. The results of the analysis of the CHi phase should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-36. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $7.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-9 to $2E-8 \text{ m}^2/\text{s}$. The flow dimension displayed

during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,012.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.28 Section 640-660 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 209 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 16.5 mL/min at beginning of the CHi phase to 10.8 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 30 seconds) is not analysable due to the time needed to regulate constant pressure. However, the remaining part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-37. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality, although it is noisy. The confidence range for the interval transmissivity is estimated to be 7E–9 to 4E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,208.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the fast recovery of the CHir phase and from this resulting data quality of this phase. No further analysis recommended.

6.2.29 Section 660-680 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 23.2 mL/min at beginning of the CHi phase to 12.0 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 20 seconds) is not analysable due to the time needed to regulate constant pressure. However, the remaining part of the CHi phase

can be analysed quantitatively. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-38. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E-9 to $3E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,402.2 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, essentially caused by the fast recovery of the CHir phase. No further analysis recommended.

6.2.30 Section 680–700 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 2,081 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 30.1 mL/min at beginning of the CHi phase to 13.8 mL/min at the end, indicating a relatively low interval transmissivity. The rate regulation during the constant pressure injection (CHi) did not perform properly, the flow rate shows oscillations till the late times of the phase. Because of this reason the analysis of the CHi phase is only qualitative. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be clearly determined. The analysis was conducted using the radial flow assumption (flow dimension = 2). A radial 2 shell composite flow model was chosen for the analysis. The CHir phase was analysed using an infinite acting homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-39. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-9 to 2E-8 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth,

was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,581.4 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.31 Section 700-720 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 192 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 28.1 mL/min at beginning of the CHi phase to 15.2 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 15 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward slope, indicating an increase in transmissivity or a flow dimension above 2. It was decided to use a homogeneous flow model with a flow dimension of 3 for the analysis of this phase. The derivative of the CHir phase shows a downward slope at late times as well. A radial 2 shell composite flow model with a flow dimension of 3 for the inner zone and a flow dimension of 2 for the outer zone was chosen for the analysis of this phase. The analysis is presented in Appendix 2-40. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E–9 to 3E–8 m²/s. It should be noted that the transmissivities derived from the CHi and the CHir phase are not directly comparable, because different flow dimensions were used. The flow dimension displayed during the test is not unambiguous. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,778.7 kPa.

To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.2.32 Section 720-740 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 208 kPa, followed by a pressure recovery phase. The test was performed without using the automatic flow regulation. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 76.5 mL/min at

beginning of the CHi phase to 17.3 mL/min at the end, indicating a relatively low interval transmissivity. After 7.5 minutes an unusual drop in flow rate was observed. The cause for the drop is unknown. The first part of the CHi phase (first 1.5 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. Both test phases show linear flow at early times (slope = 0.5). In addition, the derivative of the CHir phase flattens at late times indicating a transition to radial flow geometry. The CHi phase was analysed using a homogeneous flow model with a flow dimension of 1.25. The CHir phase was analysed using a composite flow model with a flow dimension of 1 in the inner zone and a dimension of 2 in the outer zone. The analysis is presented in Appendix 2-41. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity for this test section is $1E-8 \text{ m}^2/\text{s}$. It was derived from the analysis of the CHir phase (mean value of both zones), which shows the best data and derivative quality and it is consistent to the results of the steady state analysis. The confidence range for the interval transmissivity is estimated to be 5E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is not clear. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,916.0 kPa.

To improve analysis consistency and resolve the uncertainty concerning the flow dimension, a full superposition analysis coupled with a generalized radial flow analysis is recommended

6.2.33 Section 740-760 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 187 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. During the CHi phase the pressure in the test section decreased by 7 kPa. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 20.4 mL/min at beginning of the CHi phase to 10.8 mL/min at the end, indicating a relatively low interval transmissivity. After 4 minutes an unusual dropdown of the flow rate was observed. Due to that fact the first part of the CHi phase is not analysable. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting

homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-42. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.3E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6E-9 to $3E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,163.0 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the fast recovery of the CHir phase and resulting from that the poor data quality. No further analysis recommended.

6.2.34 Section 760-780 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 206 kPa, followed by a pressure recovery phase. The test was accomplished without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 21.4 mL/min at beginning of the CHi phase to 12.4 mL/min at the end, indicating a relatively low interval transmissivity. After 9 minutes a dropdown of the flow rate was observed. However, the data quality is good and amenable for quantitative analysis. The CHir phase shows a fast recovery, but the quality of the data is still adequate for qualitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model with wellbore storage and skin was used for the analysis of both phases. The analysis is presented in Appendix 2-43. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 7,352.1 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.35 Section 780-800 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 12.9 mL/min at beginning of the CHi phase to 4.5 mL/min at the end, indicating a relatively low interval transmissivity. After 7 minutes a remarkable decrease of flow rate was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). At late times the derivative shows a steep upward slope. Considering the normalised derivatives of both phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous radial flow model with wellbore storage and skin was used. The analysis is presented in Appendix 2-44. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-9 to $3E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,543.2 kPa.

Considering the uncertainties due to the change of flow rate and the fast recovery, the analysis of the CHi and CHir phases shows consistency. No further analysis recommended. Compared with the results of the transient analysis, the transmissivity of the steady state analysis is much lower. That is due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.36 Section 800-820 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 206 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 18.6 mL/min at beginning of the CHi phase to 11.1 mL/min at the end, indicating a relatively low interval transmissivity. After 7 minutes a remarkable decrease of flow rate was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a steep upward slope and stabilisation at a higher level. Considering the normalised derivatives of both phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used. The analysis is presented in Appendix 2-45. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E–9 to 5E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,732.3 kPa.

Considering the uncertainties due to the change of flow rate and the fast recovery, the analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.37 Section 820-840 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 210 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 22.2 mL/min at beginning of the CHi phase to 13.3 mL/min at the end, indicating a relatively low interval transmissivity. After 7 minutes an abrupt decrease of flow rate was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a steep upward slope and stabilisation at a higher level. Considering the normalised derivatives of both phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used. The analysis is presented in Appendix 2-46. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E–9 to 5E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived

from the CHir phase using straight line curve extrapolation in the Horner plot to a value of 7,921.2 kPa.

Considering the uncertainties due to the change of flow rate and the fast recovery, the analysis of the CHi and CHir phases shows consistency. No further analysis recommended.

6.2.38 Section 840-860 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 192 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 16.6 mL/min at beginning of the CHi phase to 3.3 mL/min at the end, indicating a relatively low interval transmissivity. After 7 minutes an abrupt decrease of flow rate from 12 mL/min to 5 mL/min was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-47. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,109.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended. Compared with the results of the transient analysis, the transmissivity of the steady state analysis is much lower. That is due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.39 Section 860-880 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 19.0 mL/min at beginning of the CHi phase to 6.9 mL/min at the end, indicating a relatively low interval

transmissivity. After 8 minutes an abrupt decrease of flow rate from 14 mL/min to 8 mL/min was observed. The CHir phase shows fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-48. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,301.2 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended. Compared with the results of the transient analysis, the transmissivity of the steady state analysis is much lower. That is due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.40 Section 880-900 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 203 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 16.6 mL/min at beginning of the CHi phase to 3.3 mL/min at the end, indicating a relatively low interval transmissivity. After 6 minutes an abrupt decrease of flow rate from 20 mL/min to 13 mL/min was observed. The CHir phase shows fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope and a second stabilisation at a higher level. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The

analysis is presented in Appendix 2-49. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-9 to $6E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,487.1 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended. The results of the steady state calculations are lower, due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.41 Section 899–919 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 19.4 mL/min at beginning of the CHi phase to 7.4 mL/min at the end, indicating a relatively low interval transmissivity. After 7 minutes an abrupt decrease of flow rate from 14 mL/min to 8 mL/min was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-50. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.4E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,668.0 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended. Compared with these results, the transmissivity of the steady state analysis is lower. That is due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.42 Section 919-939 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 20.1 mL/min at beginning of the CHi phase to 8.0 mL/min at the end, indicating a relatively low interval transmissivity. After 8 minutes an abrupt decrease of flow rate from 16 mL/min to 10 mL/min was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-51. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.8E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,850.5 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis recommended. The results of the steady state calculations are lower, due to the fact, that the steady state calculations are based on the lower flow rates of the second part of the injection phase.

6.2.43 Section 939-959 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 191 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 21.9 mL/min at beginning of the CHi phase to 13.6 mL/min at the end, indicating a relatively low interval transmissivity. After 8 minutes a fast decrease of flow rate from 17 mL/min to 14 mL/min was observed. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope and a second stabilisation at a higher level. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-52. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of 2.2E–8 m^2/s was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E–9 to 4E–8 m^2/s . The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,033.7 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis recommended.

6.2.44 Section 959–979 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 22.2 mL/min at beginning of the CHi phase to 17.6 mL/min at the end, indicating a relatively low interval transmissivity. Excluding the first 30 seconds, the whole CHi phase is adequate for quantitative analysis. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-53. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-9 to $5E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,221.1 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, which are mainly caused by the fast recovery and the resulting poor data quality of the CHir phase. No further analysis recommended.

6.2.45 Section 979-999 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 192 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent sections was observed. The injection rate decreased from 20.9 mL/min at beginning of the CHi phase to 9.2 mL/min at the end, indicating a relatively low interval transmissivity. After 6 minutes an abrupt decrease of flow rate from 15.5 mL/min to 10.5 mL/min was observed. The cause for the drop is unknown. The CHir phase shows very fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). After the first stabilisation of the derivative, it shows a very steep upward slope and then again a stabilisation at a higher level. Considering the normalised derivatives of both test phases, it was decided to analyse the first part of the CHi phase, which shows the most reliable results. An infinite acting homogeneous flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-54. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of 7.6E–9 m²/s was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. It should be noted, that there are uncertainties for both analyses. The confidence range for the interval transmissivity is estimated to be 4E–9 to 4E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,406.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the drop in the flow rate during the injection phase and the very fast recovery of the CHir phase. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3 5 m single-hole injection tests

In the following, the 5 m section tests conducted in borehole KSH01A are presented and analysed.

6.3.1 Section 300-305 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 207 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 18.4 mL/min at beginning of the CHi phase to 10.8 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 40 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows very fast recovery. Therefore, the analysis results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-55. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-9 to $2E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,935.9 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the very fast recovery of the CHir phase. No further analysis is recommended.

6.3.2 Section 305–310 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 18.0 mL/min at beginning of the CHi phase to 10.3 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first minute) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase shows fast recovery. Therefore, the analysis results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting radial

flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-56. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E–9 to 4E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,982.8 kPa.

The analysis of the CHi and CHir phases shows limited consistency, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.3.3 Section 310-315 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. During the injection phase the pressure in the test section decreased by 4 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 21.3 mL/min at beginning of the CHi phase to 12.9 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase (first 30 seconds) is not analysable due to the time needed to regulate constant pressure. However, the second part of the CHi phase can be analysed quantitatively. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases (CHi and CHir) show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-57. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. Due to the low flow rate, the data of the CHi phase are a bit noisy. The confidence range for the interval transmissivity is estimated to be 8E-9 to $4E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,029.1 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.3.4 Section 315–320 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 211 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 10.2 mL/min at beginning of the CHi phase to 1.9 mL/min at the end, indicating a relatively low interval transmissivity. After 6 minutes an abrupt decrease of flow rate from 9 mL/min to 2.5 mL/min was observed. The cause for the drop in the flow rate is unknown. The CHir phase shows fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at the first part, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-58. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality, although there are uncertainties due to the low flow rate and the remarkable drop down after 6 minutes of the injection phase. Therefore the confidence range for the interval transmissivity is estimated to be 2E-9 to 2E-8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,075.1 kPa.

The analysis of the CHi and CHir phases shows some inconsistency due to the problems mentioned above. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.5 Section 320–325 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 206 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 15.8 mL/min at beginning of the CHi phase to 10.8 mL/min at the end, indicating a relatively low interval transmissivity. The CHi phase can be analysed quantitatively, although it is very noisy. The CHir phase recovered to static conditions very quickly, such that the analysis should be regarded with caution.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-59. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality, although there are uncertainties due to the low flow rate and the noise. Therefore the confidence range for the interval transmissivity is estimated to be 7E–9 to 6E–8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,123.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistency due to the problems mentioned above. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.6 Section 325-330 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 203 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. During the injection phase the pressure in the test section rose by 7 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 6.6 mL/min at beginning of the CHi phase to 2.8 mL/min at the end, indicating a low interval transmissivity. After 7 minutes an abrupt decrease of flow rate from 5 mL/min to 3.5 mL/min was observed. The cause for the drop in the flow rate is unknown. The CHir phase shows fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). At middle times the derivative shows a very steep upward slope. Considering the normalised derivatives of both test phases, it was decided to analyse only the first part of the CHi phase, which shows the most reliable results. A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-60. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.9E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality, although there are some uncertainties due to the low flow rate and the noisy data. The confidence range for the

interval transmissivity is estimated to be 9E-10 to 7E-8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,177.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistency due to the problems mentioned above. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.7 Section 330–335 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 7.5 mL/min at the beginning of the CHi phase to 2.6 mL/min at the end, indicating a low interval transmissivity. Due to the low flow rate the CHi phase is quite noisy. The CHir phase shows relatively fast recovery, such that the results of both test phases should be regarded as orders of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). At late times the derivative shows an upward slope. The CHi phase was analysed using an infinite acting radial 2 shell composite flow model to match the slope at late times. The CHir phase was analysed using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-61. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $7.6E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone). The confidence range for the interval transmissivity is estimated to be 7E–10 to 4E–9 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,220.7 kPa.

The analysis of the CHi and CHir phases shows inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.3.8 Section 335–340 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 9.0 mL/min at beginning of the CHi phase to 2.6 mL/min at the end, indicating a low interval transmissivity. After

4 minutes a drop down in flow rate from 7 to 5 mL/min and after 6 minutes again a drop from 5 to 3 mL/min was observed. The reason for those drops is unknown. The CHir phase shows relatively fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). After that flat part, the derivative shows a steep slope upward. A homogeneous infinite acting radial flow model was chosen for the analysis of the first part of this phase and for analysing the CHir phase. The analysis is presented in Appendix 2-62. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.5E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-10 to $5E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,270.2 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the drop of the flow rate during the injection phase and the fast recovery of the CHir phase. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.9 Section 340-345 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 197 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 4.1 mL/min at beginning of the CHi phase to 1.3 mL/min at the end, indicating a low interval transmissivity. After 6 minutes a drop down of the flow rate from 2.5 to 1.5 mL/min was observed. The reason for that drop is unknown. Due to that drop and the low flow rate the data quality of the CHi phase is not amenable for quantitative analysis. The CHir phase shows fast recovery, such that the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). At late times the derivative shows an upward slope. A homogeneous infinite acting radial flow model was chosen for the analysis of both phases. With consideration of the slope at late times, an additional analysis of the CHi phase using an infinite acting radial 2 shell composite

flow model was performed. Considering the normalised derivatives of both test phases, the analysis using the homogeneous model is preferable. The analysis is presented in Appendix 2-63. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.5E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase. The confidence range for the interval transmissivity is estimated to be 5E-10 to $5E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,316.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the low and noisy flow rate and the fast recovery of the CHir phase. No further analysis is recommended.

6.3.10 Section 345-350 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 4.8 mL/min at the beginning of the CHi phase to 1.0 mL/min at the end, indicating a low interval transmissivity. Due to the low flow rate the data are very noisy, such that the results should be regarded as order of magnitude only. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined clearly. The analysis was conducted assuming a flow dimension of 2 (radial flow). The CHi phase shows an upward slope at late times. A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. With consideration of the slope at late times, an additional analysis of the CHi phase using an infinite acting radial 2 shell composite flow model was performed. The analysis is presented in Appendix 2-64. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-10 to $7E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,366.9 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the very noisy data of the CHi phase. No further analysis is recommended.

6.3.11 Section 350-355 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 207 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. The pressure in the test section rose by 10 kPa during the perturbation phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 5.3 mL/min at the beginning of the CHi phase to 1.2 mL/min at the end, indicating a low interval transmissivity. After 8 minutes a drop down in flow rate from 3 to 2 mL/min was observed. The reason for this drop is unknown. The CHir phase shows relatively fast recovery, however, the data is amenable for qualitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase, although it is very noisy, shows a flat derivative at early and middle times, which is indicative of a flow dimension of 2 (radial flow). At late times the derivative shows a slope upward. A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis. In addition, the CHi phase was analysed using an infinite acting radial 2 shell flow model. The analysis is presented in Appendix 2-65. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (first part), which is quite noisy, but showing the most reliable results. The confidence range for the interval transmissivity is estimated to be 7E–10 to 7E–9 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,422.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the low flow rate and the fast recovery of the CHir phase. No further analysis is recommended.

6.3.12 Section 355-360 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 196 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 3.3 mL/min at beginning of the CHi phase to 0.6 mL/min at the end, indicating a very low interval transmissivity. After 6 minutes a sharp drop down in flow rate from 1.5 to 0.8 mL/min was observed. The reason for this drop is unknown. The CHir phase shows no problems and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, which is indicative of a flow dimension of 2 (radial flow). After that flat part, the derivative shows a steep slope upward due to the drop in flow rate. It was decided to analyse only the first part of this phase. A homogeneous infinite acting radial flow model was chosen for the analysis of the first part of this phase and for analysing the CHir phase. The analysis is presented in Appendix 2-66. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.9E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-10 to $1E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,467.0 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.13 Section 360-365 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 10.0 mL/min at the beginning of the CHi phase to 3.5 mL/min at the end, indicating a low interval transmissivity. The reason for this drop is unknown. The CHir phase shows fair data quality and is amenable for limited quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly determined with one of the phases. It was decided to use the assumption of radial flow (flow dimension of 2). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. The CHir phase was analysed using a radial two shell composite model. The analysis is presented in Appendix 2-67. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. It should be noted, that due to the very low flow rate, the results have some uncertainties. The confidence range for the interval transmissivity is estimated to be 8E-11 to 7E-10 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,491.1 kPa.

The analysis of the CHi and CHir phases shows with regard to the low interval transmissivity good consistency. No further analysis is recommended.

6.3.14 Section 365-370 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.6 mL/min at the beginning of the CHi phase to 0.5 mL/min at the end, indicating a very low interval transmissivity. Due to the very low flow rate and due to this the very noisy data, the results of the analysis of the CHi phase should be regarded as order of magnitude only. The CHir phase shows the first 20 minutes no problems and is amenable for quantitative analysis. The second part of the CHir phase is not analysable due to some effects in the data curve. The reason for those effects is unknown.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be clearly derived from one of the phases. A homogeneous infinite acting flow model with a flow dimension of 2 (radial flow) was chosen for the analysis of both phases. The analysis is presented in Appendix 2-68. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.7E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (first part), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-11 to $8E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,563.3 kPa.

Considering the very low flow rate, the analysis of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.3.15 Section 370-375 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 206 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.0 mL/min at the beginning of the CHi phase to 0.5 mL/min at the end, indicating a very low interval transmissivity. The dta of the CHi phase are very noisy and the results should be regarded as order of magnitude only. The CHir phase shows fair data quality and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived clearly from one of the phases It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. The CHir phase was analysed using a radial 2 shell composite flow model. The analysis is presented in Appendix 2-69. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.4E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. It should be noted, that due to the very low interval transmissivity, the results are uncertain. The confidence range for the interval transmissivity is estimated to be 7E-11 to $4E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,599.1 kPa.

The analysis of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.16 Section 375-380 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 7.1 mL/min at beginning of the CHi phase to 3.8 mL/min at the end, indicating a low interval transmissivity. The CHi phase is noisy due to the low flow rate, but still adequate for quantitative analysis. The CHir phase shows no problems and the data is of good quality and as such, amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-70. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $4.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2E-9 to $8E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,662.6 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.3.17 Section 380-385 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 194 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. During the injection phase, the pressure in the test section rose by 4 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 6.1 mL/min at beginning of the CHi phase to 3.2 mL/min at the end, indicating a low interval transmissivity. The CHi phase is noisy due to the low flow rate, but the quality of the data is adequate for quantitative analysis. The CHi phase is of good quality and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. The CHir phase was analysed using a radial 2 shell composite flow model. The analysis is presented in Appendix 2-71. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.6E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-10 to $4E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,708.5 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.18 Section 385-390 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.0 mL/min at the beginning of the CHi phase to 1.0 mL/min at the end, indicating a very low interval transmissivity. Due to the very low flow rate, the data of the CHi phase are very noisy and the results should be regarded as order of magnitude only. The CHir phase shows no problems and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived clearly from one of the phases. The analysis was conducted using a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the test. The analysis is presented in Appendix 2-72. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-10 to $3E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,753.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the very low flow rate. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.19 Section 390-395 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.0 mL/min at the beginning of the CHi phase to 0.6 mL/min at the end, indicating a low interval transmissivity. Due to the very low flow rate, the data of the CHi phase are very noisy, such that the results should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be clearly derived from one of the phases. A homogeneous infinite acting flow model with wellbore storage and skin was chosen for the analysis of the CHi phase. The CHir phase was analysed assuming a radial 2 shell composite flow model. The analysis is presented in Appendix 2-73. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.7E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-10 to $3E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,799.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the very low flow rate during the injection phase. No further analysis is recommended.

6.3.20 Section 395-400 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 3.1 mL/min at beginning of the CHi phase to 0.5 mL/min at the end, indicating a low interval transmissivity. After 11 minutes a drop down in flow rate from 1.2 mL/min to 0.05 mL/min. The reason for the drop is unknown. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a flat derivative at early and middle times, which is indicative of a flow dimension of 2 (radial flow). After that flat part, the derivative shows a steep slope upward. A homogeneous infinite acting flow model was chosen for the analysis of this phase. The CHir phase was analysed using a radial 2 shell composite flow model. The analysis is presented in Appendix 2-74. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $4.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E-10 to $5E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,851.4 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the drop of the flow rate during the injection phase and the very noisy data of this phase. No further analysis is recommended.

6.3.21 Section 400-405 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the whole perturbation phase below 1 mL/min, indicating a very low interval transmissivity. The data of the CHi phase are very noisy and should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension cannot be clearly derived, because of the noisy data of the CHi phase. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-75. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.0E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-10 to $1E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,910.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the very low flow rate of the CHi phase. Considering that low flow rate, the transmissivity is lower than 1E-9 m²/s. No further analysis is recommended.

6.3.22 Section 405-410 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.5 mL/min at the beginning to below 0.5 mL/min at the end of the CHi phase. Due to that flow rate, the results of the CHi phase should be regarded as order of magnitude only. The CHir phase ran over night for 12 hours. It is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived clearly from one of the phases. The CHir phase shows an upward trend at late times with a slope of 2. Since this slope is to steep for a transition to a zone of lower transmissivity or a flow dimension of 1, the analysis was conducted without taking this last part in consideration. It was decided to use a flow dimension of 2 (radial flow). Both phases were analysed using a homogeneous infinite acting flow model with wellbore storage and skin. The analysis is presented in Appendix 2-76. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $9.7E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E-11 to $5E-10 \text{ m}^2/\text{s}$. This analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived

from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,984.1 kPa.

The analysis of the CHi and CHir phases shows consistency. There are uncertainties about the last part of the CHir phase as mentioned above. That should be resolved in case further analysis of the test is planned. In this case we recommend conducting a full superposition transient analysis in order to account for pressure history effects and changing flow rates during the CHi phase.

6.3.23 Section 410-415 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 195 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.5 mL/min at the beginning of the CHi phase to below 0.5 mL/min at the end, indicating a very low interval transmissivity. After 13 minutes a drop down in flow rate from 0.6 to 0.3 mL/min was observed. The reason for this drop is unknown. After closing the test valve, the pressure in the interval rose the entire CHir phase (possibly extended packer compliance). The CHir phase is not analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived clearly from the CHi phase. The analysis was made using a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. The analysis is presented in Appendix 2-77. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.3E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which is the only analysable phase. Due to the very low flow rate and the noisy data, the results are uncertain. The confidence range for the interval transmissivity is estimated to be 5E-11 to 5E-10 m²/s. The analysis was conducted using a flow dimension of 2.

No further analysis is recommended.

6.3.24 Section 415-420 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 98 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-78.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.25 Section 420-425 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 128 kPa in 100 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-79.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.26 Section 425-430 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 159 kPa in 15 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-80.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.27 Section 430-435 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 86 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-81.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.28 Section 435-440 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 206 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-82.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.29 Section 440-445 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 211 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.5 mL/min at the beginning of the CHi phase to below 0.5 mL/min at the end, indicating a very low interval transmissivity. The CHir phase took 12 hours over night and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly derived from one of the test phases. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial 2 shell composite flow model was chosen. The analysis is presented in Appendix 2-83. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. It should be noted that due to the very low flow rate the results are uncertain. The confidence range for the interval transmissivity is estimated to be 5E-11 to 5E-10 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,272.7 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the very low flow rate. No further analysis is recommended.

6.3.30 Section 445-450 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 210 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire perturbation phase below 1 mL/min, indicating a very low interval transmissivity. Due to that very low flow rate the data of the CHi phase is very noisy and the results should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly derived, because of the very noisy data of the CHi phase. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the

analysis of both phases. The analysis is presented in Appendix 2-84. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $7.2E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-10 to $9E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,336.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies and uncertainties, mainly caused by the very low flow rate and the noisy data of the CHi phase. No further analysis is recommended.

6.3.31 Section 450-455 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 174 kPa in 80 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-85.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.32 Section 455-460 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 183 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.0 mL/min at the beginning of the CHi phase to less than 1 mL/min at the end, indicating a very low interval transmissivity. The CHi data are very noisy and the results should be regarded as order of magnitude only. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHi phase. The CHir phase shows an upward trend at late times, indicating a transition to a zone of lower transmissivity. An infinite acting 2 shell composite flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-86. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.6E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-10 to $8E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,427.4 kPa.

The analysis of the CHi and CHir phases shows some minor inconsistencies and uncertainties, mainly caused by the very low flow rate and the noisy data of the CHi phase. No further analysis is recommended.

6.3.33 Section 460-465 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 195 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The pressure in the test section shows unusual sharp pressure drops during the PSR phase. The reason for this behaviour is unknown. The injection rate was during the entire perturbation phase at around 1 mL/min, indicating a very low interval transmissivity. The first 2.5 to 3 hours, the CHir phase shows no problems and is amenable for quantitative analysis. After this part, the pressure in the test section shows an unusual drop down and is no longer adequate for analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous from one of the test phases. It was decided to analyse the test assuming radial flow conditions (flow dimension of 2). Both test phases were analysed using a homogeneous infinite acting radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-87. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $8.1E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-10 to $1E-9 \text{ m}^2/\text{s}$. The analysis was performed

using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,491.1 kPa.

The analysis of the CHi and CHir phases shows some minor inconsistencies and uncertainties, mainly caused by the very low flow rate of the CHi phase. No further analysis is recommended.

6.3.34 Section 465-470 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire injection phase below 1 mL/min, indicating a very low interval transmissivity. Due to the very low flow rate the results of the CHi phase should be regarded as order of magnitude only. The CHir phase shows good data quality.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). Both test phases were analysed using a homogeneous infinite acting flow model with wellbore storage and skin. The analysis is presented in Appendix 2-88. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.6E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6E-11 to $3E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,498.2 kPa.

Considering the very low transmissivity, the analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.3.35 Section 470-475 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 206 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire perturbation phase below 1 mL/min, indicating a very low interval transmissivity. During the CHir phase, the pressure in the interval decreased in 20 minutes by 10 kPa only. None of the test phases is analysable.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-89.

Selected representative parameters

The steady state analysis was calculated with a flow rate of 0.2 mL/min.

Based on the very low injection rates, the interval transmissivity is lower than 1E–10 m²/s.

6.3.36 Section 475-480 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. The pressure in the test section shows unusual pressure drops during the PSR phase. The reason for this behaviour is unknown. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire injection phase below 1 mL/min, indicating a very low interval transmissivity. Considering the very low transmissivity, the CHir phase shows good data quality and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting radial flow model with wellbore storage and skin was chosen for the analysis of both phases. The analysis is presented in Appendix 2-90. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.4E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6E-11 to $3E-10 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve line extrapolation in the Horner plot to a value of 4,674.3 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.37 Section 480-485 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 207 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the

adjacent zones was observed. The injection rate was during the entire perturbation below 1 mL/min, indicating a very low interval transmissivity. Due to that, the results from the CHi phase should be regarded as order of magnitude only. The CHir phase shows good data quality, but the results should be regarded as order of magnitude, either.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived of one of the test phases. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model with wellbore storage and skin was chosen for the analysis of this test. The analysis is presented in Appendix 2-91. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.3E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E-11 to 3E-10 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,663.6 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.38 Section 485-490 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 214 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire perturbation between 0 and 0.5 mL/min, indicating a very low interval transmissivity. After closing the test valve and starting the recovery phase, the pressure in the test section rose steadily and it was decided to stop the recovery. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-92.

Selected representative parameters

Based on the very low flow rate, the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.39 Section 490-495 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 188 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire perturbation between 0 and 0.5 mL/min, indicating a very low interval transmissivity. After closing the test valve and starting the recovery phase, the pressure in the test section rose steadily. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-93.

Selected representative parameters

Based on the very low flow rate, the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.40 Section 495-500 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 58 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-94.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.41 Section 500-505 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 193 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire perturbation phase between 0.2 and 1 mL/min. Due to that, the CHi data are not analysable. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-95. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E–11 to 6E–10 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,845.8 kPa.

No further analysis is recommended.

6.3.42 Section 505-510 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 193 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire perturbation phase between 0 and 0.5 mL/min. Due to that, the CHi data are not analysable. The CHir phase was conducted without problems and shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). The CHir phase shows an upward trend at late times with a slope above 2. Since this slope is to steep for a transition to a zone of lower transmissivity or a flow dimension of 1, the analysis was conducted without taking this last part in consideration. It was decided to use a flow

dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-96. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.9E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase. Based on the very low injection rates, the confidence range for the interval transmissivity is estimated to be $1E-10 \text{ m}^2/\text{s}$ or lower. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,958.9 kPa.

No further analysis is recommended.

6.3.43 Section 510–515 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 157 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-97.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.44 Section 515–520 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 214 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire perturbation between 0 and 0.5 mL/min, indicating a very low interval transmissivity. After closing the test valve and starting the recovery phase, the pressure in the test section rose steadily for 40 minutes. None of the test phases is analysable.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-98.

Selected representative parameters

Based on the very low flow rate, the interval transmissivity is lower than $1E-10 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.45 Section 520-525 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 120 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-99.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.46 Section 525-530 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 75 kPa in 35 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-100.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.47 Section 530–535 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 212 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the perturbation phase below 1 mL/min, indicating a very low interval transmissivity. The CHi phase is not analysable. The CHir phase shows better data quality, but the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. It was decided to use a flow dimension of 2 (radial flow). At middle and late times, the derivative of the CHir phase shows an upward trend indicating a transition to a zone of lower transmissivity. For the analysis a radial two shell composite flow model was chosen. The analysis is presented in Appendix 2-101. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.3E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone). Based on the very low injection rates, the confidence range for the interval transmissivity is estimated to be $1E-10 \text{ m}^2/\text{s}$ or lower. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,168.9 kPa.

No further analysis is recommended.

6.3.48 Section 535-540 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 162 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-102.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.49 Section 540-545 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 0.17 L/min at the beginning of the CHi phase to 0.10 L/min at the end, indicating a moderate interval transmissivity. The first 2 minutes of the CHi phase are not analysable due to the time needed by the system to regulate constant pressure. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of both phases are horizontal at middle and late times indicating a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-103. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $7.4E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-8 to $9E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,239.3 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.3.50 Section 545-550 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the

adjacent zones was observed. The injection rate oscillated during the CHi phase between 4 and 2.5 mL/min, indicating a low interval transmissivity. The CHi data are very noisy and the results should be regarded as order of magnitude only. The CHir phase shows very fast recovery and the results should be regarded as order of magnitude, either.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase, although very noisy, shows a flat derivative at middle and late times indicating a flow dimension of 2 (radial flow). A homogeneous infinite acting flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-104. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase. Although it is very noisy, it shows the more reliable results. But it should be noted, that due to the very noisy data of the CHi phase and the fast recovery of the CHir phase the results of both analysis are very uncertain. The confidence range for the interval transmissivity is estimated to be 1E-9 to $1E-8 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,292.4 kPa.

To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3.51 Section 550-555 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 19.5 mL/min at the beginning of the CHi phase to 11.5 mL/min at the end, indicating a low interval transmissivity. The CHi data are noisy at middle and late times, but still adequate for quantitative analysis. The CHir phase shows fast recovery, but it shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows at middle and late times a downward trend, indicating a flow dimension above 2. This phase was analysed using a homogeneous flow model with a flow dimension of 3 (spherical flow). The CHir phase shows an downward trend at late times, indicating a transition to a zone of higher transmissivity. An infinite acting 2 shell composite radial flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-105. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.3E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. It should be noted, that the results of both test phases can not be compared directly due to the fact, that they were analysed using different flow dimensions. The confidence range for the interval transmissivity is estimated to be 7E–9 to 5E–8 m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,334.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the uncertainty concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.52 Section 555-560 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.4 L/min at the beginning of the CHi phase to 0.72 L/min at the end, indicating a moderate interval transmissivity. The CHi data are a bit noisy at middle and late times, but still adequate for quantitative analysis. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both test phases show a flat derivative at middle and late times, indicating a flow dimension of 2 (radial flow). Both phases were analysed using a homogeneous infinite acting radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-106. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5E-7 to $8E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,388.9 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.3.53 Section 560-565 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 0.21 L/min at the beginning of the CHi phase to 0.15 L/min at the end, indicating a relatively low interval transmissivity. The CHi data are noisy at middle and late times, but still adequate for quantitative analysis. The first part of the CHi phase (first 8 minutes) is not analysable due to the time needed by the system to regulate constant pressure. However, the second part is of good quality and amenable for quantitative analysis. The CHir phase shows very fast recovery and the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows at late times a flat derivative, indicating a flow dimension of 2 (radial flow). Both phases were analysed using a homogeneous infinite acting radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-107. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows at late times the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7E-8 to 4E-7 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,437.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by very fast recovery of the CHir phase. No further analysis is recommended.

6.3.54 Section 565-570 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 300 kPa in 35 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-108.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.55 Section 570-575 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 202 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the entire phase between 0 and 0.5 mL/min, indicating a very low interval transmissivity. The CHi phase is not analysable. The CHir phase shows no problems and is amenable for quantitative analysis. It should be noted, that the results are uncertain due to the very low interval transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be determinate. The test was analysed using a radial flow approach (flow dimension = 2). The CHir phase was analysed using a homogeneous infinite acting flow model with wellbore storage and skin. The analysis is presented in Appendix 2-109. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.9E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which is the only analysable phase. The confidence range for the interval transmissivity is estimated to be 8E-12 to $8E-11 \text{ m}^2/\text{s}$. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,568.5 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the uncertainty concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.56 Section 575-580 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 3.5 mL/min at the beginning of the CHi phase to 1 mL/min at the end, indicating a very low interval transmissivity. The CHi data are noisy at middle and late times, but still adequate for

quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived clearly from one of the test phases. It was decided to use a flow dimension of 2 (radial flow). The CHi phase was analysed using a homogeneous infinite acting flow model. For the analysis of the CHir phase a radial 2 shell composite flow model was chosen. The analysis is presented in Appendix 2-110. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $3.8E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1E-10 to $8E-10 \text{ m}^2/\text{s}$. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,572.6 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.57 Section 580-585 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate oscillated during the perturbation phase between 0.5 and 2 mL/min, indicating a low interval transmissivity. The CHi data are very noisy. The results of the CHi phase should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly determinate. The test was analysed using the flow dimension of 2 (radial flow). Both phases were analysed using a homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-111. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which is less noisy and shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-10 to $3E-9 \text{ m}^2/\text{s}$. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,630.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the poor data quality of the CHi phase. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3.58 Section 585-590 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 5.5 mL/min at the beginning of the CHi phase to 4.0 mL/min at the end, indicating a low interval transmissivity. The CHi data are very noisy, but still adequate for quantitative analysis. The CHi phase shows fast recovery and the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived unambiguous. The analysis was conducted using a flow dimension of 2 (radial flow). For the analysis of both phases a homogeneous flow model was chosen. The analysis is presented in Appendix 2-112. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of 2.2E–9 m²/s was derived from the analysis of the CHi phase, which shows the more reliable results. The confidence range for the interval transmissivity is estimated to be 1E–9 to 1E–8 m²/s. The flow dimension displayed during the testis 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,674.3 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the reduced data quality of the CHi phase and the fast recovery of the CHir phase. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3.59 Section 590-595 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 201 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test interval and the section below. The injection rate decreased from 5.82 L/min at the beginning of the CHi phase to 1.43 L/min at the end, indicating a relatively high interval transmissivity. The first part of the CHi phase is not analysable due to the time needed by the system to regulate constant pressure. However, the second part is of good quality and adequate for quantitative analysis. The CHir phase shows no problems and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test there is ambiguity concerning the flow dimension. The upward trend of the CHir derivative at middle and late times can be interpreted as a flow dimension below 2 or can represent the transition to a zone of higher transmissivity. This phase was analysed using a radial 2 shell composite flow model with the flow dimension of 2 for both shells. In addition, it was analysed using the same flow model with a flow dimension of 2 for the inner zone and n = 1 for the outer zone. The CHi phase was analysed using a homogeneous infinite acting flow model. The analysis is presented in Appendix 2-113. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $7.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. It should be noted, that the results of both analysis of the CHir phase can not be compared directly due to the fact, that they were analysed using different flow dimensions. The confidence range for the interval transmissivity is estimated to be 1E-7 to 1E-6 m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,741.2 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the uncertainty concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.60 Section 595-600 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 213 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 4 mL/min at the beginning of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity. The CHi data are noisy due to the low flow rate, but still adequate for quantitative analysis. The CHir phase shows fast recovery and the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the analysis was conducted assuming a flow dimension of 2 (radial flow). This test was analysed using a homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-114. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the more reliable results. The confidence range for the interval transmissivity is estimated to be 5E–10 to 5E–9 m²/s. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,770.8 kPa.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the low flow rate and the noisy data of the CHi phase and the fast recovery of the CHir phase. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted.

6.3.61 Section 600-605 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 183 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. During the perturbation phase, the pressure in the interval dropped by 15 kPa. The test was repeated and both tests were analysed. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 44 mL/min at the beginning of the CHi phase to 24 mL/min at the end, indicating a relatively low interval transmissivity. The CHi phase shows good data quality and is amenable for quantitative analysis. The CHir phase shows fast recovery, but it shows good data quality. The CHir phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of 2. For the analysis of the CHi phase a homogeneous infinite acting flow model with wellbore storage and skin was chosen. The derivative of the CHir phase shows at late times a downward trend, which is indicative for transition to a zone with a higher transmissivity. For this phase a radial two shell composite flow model was chosen. The analysis is presented in Appendix 2-115. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.8E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-9 to $5E-8 \text{ m}^2/\text{s}$. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,817.6 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.62 Section 600-605 m, test no 1, injection

Comments to test

This is the second test in this section, because at the first time, the pressure in the test section decreased during the perturbation phase by 15 kPa. The test was composed of a constant pressure injection test phase with a pressure difference of 198 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 51 mL/min at the beginning of the CHi phase to 30 mL/min at the end, indicating a low interval transmissivity. The first part of the CHi data is not analysable due to the time needed by the system to regulate constant pressure. However, the second part is amenable for quantitative analysis. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase becomes flat at late times, indicating a flow dimension of 2 (radial flow). This phase was analysed using a homogeneous flow model with wellbore storage and skin. The derivative of the CHir phase shows at late times a downward trend, which is indicative for transition to a zone with a higher transmissivity. For this phase a radial two shell composite flow model was chosen for analysis. The analysis is presented in Appendix 2-116. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-8 to $9E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,808.1 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended. The results of this test show good consistency to those of the first test made in this section. Due to the decreasing of the pressure during the injection phase at the first test in this section, only the results of this second test in the section is understood as representative for the section.

6.3.63 Section 605–610 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 184 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-117.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.64 Section 610-615 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 204 kPa, followed by a pressure recovery phase. The test data indicates a hydraulic connection between the test section and the section below. The injection rate decreased from 0.18 L/min at the beginning to 0.04 L/min at the end of the CHi phase, indicating a moderate interval transmissivity. The first part of the CHi phase is not analysable due to the time needed by the system to regulate constant pressure. However, the second part is good and amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly derived from one of the test phases. The derivative of the CHi phase becomes flat at late times, which is indicative of a flow dimension of 2 (radial flow). This phase was analysed using a homogeneous infinite acting flow model. The CHir phase shows at middle and late times an upward trend with a slope of 0.5, indicating a flow dimension of 1. The CHir phase was analysed using a 2 shell composite flow model with a flow dimension of 2 for the inner zone and 1 for the outer zone. The analysis is presented in Appendix 2-118. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $5.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. It should be noted, that the results of both phases can not be compared directly due to the fact, that they were analysed using different flow dimensions. The confidence range for the interval transmissivity is estimated to be 3E-9 to $1E-8 \text{ m}^2/\text{s}$.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the uncertainty concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.65 Section 615-620 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 30.3 mL/min at the beginning of the CHi phase to 21.7 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase is not analysable due to the time needed by the system to regulate constant pressure. The second part is amenable for quantitative analysis. The CHir phase shows relatively fast recovery, however, the data is of good quality and as such, amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase becomes flat at middle times, indicating a flow dimension of 2. This test phase was analysed using a homogeneous flow model. The CHir phase shows a flat curve at late times and was analysed using a radial 2 shell composite flow model. The analysis is presented in Appendix 2-119. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9E-9 to $6E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,962.0 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.66 Section 620-625 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 212 kPa, followed by a pressure recovery phase. During the perturbation phase, the pressure in the interval increased by 10 kPa. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 6 mL/min at the beginning of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity. The CHi data are very noisy, but amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be best derived from the CHir derivative. At middle times the derivative is flat, indicating a flow dimension of 2 (radial flow). At late times it shows an upward trend, indicating a transition to a zone of lower transmissivity. This phase was analysed using a radial 2 shell composite flow

model. For the analysis of the CHi phase, a radial homogeneous infinite acting flow model was chosen. The analysis is presented in Appendix 2-120. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.1E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8E–10 to 5E–9 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,017.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.3.67 Section 625-630 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 195 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 10 mL/min at the beginning of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity. The CHi data are noisy, but amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be clearly determinated. Both phases show an upward trend at late times, indicating either a transition to zone of lower transmissivity or a flow dimension below 2. The CHi phase was analysed using a radial 2 shell composite model with a flow dimension of 2 for both zones. For analysing the CHir phase, a radial 2 shell composite flow model with a flow dimension of 2 for the inner zone and a flow dimension of 1 for the outer zone was chosen. The analysis is presented in Appendix 2-121. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $2.7E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase. It should be noted, that the results of both phases can not be compared directly, because different flow dimension were used. The confidence range for the interval transmissivity is estimated to be 2E-10 to $2E-9 \text{ m}^2/\text{s}$.

The analysis of the CHi and CHir phases shows some inconsistency, which is mainly caused by the uncertainty concerning the flow dimension. To improve analysis consistency and if further analysis is intended, a full superposition analysis should be conducted. Further there is room for interpretation as far as the flow dimension is concerned. This additional uncertainty could be further explored using GRF analysis.

6.3.68 Section 630-635 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 101 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-122.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.69 Section 635-640 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 105 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-123.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.70 Section 640-645 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 178 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-124.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.71 Section 645-650 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 117 kPa in 54 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-125.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.72 Section 650-655 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 224 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-126.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.73 Section 655-660 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 194 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate during the perturbation phase was most of the time not measurable. After closing the test valve, the pressure in the interval rose the entire CHir phase (possibly extended packer compliance). The CHir phase is not analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-127.

Selected representative parameters

The steady state analysis was conducted using a flow rate of 0.1 mL/min. The results of this calculations should be seen as maximum values for the transmissivity of this section.

No further analysis is recommended.

6.3.74 Section 660-665 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 167 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-128.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.75 Section 665-670 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 195 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire CHi phase below 1 mL/min and most of the time below the measurement limit of the flowmeter. Due to that, the CHi phase is not analysable. The CHir phase took 12 hours (overnight). The first part of it is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can not be derived from the CHir phase. The derivative of the CHir phase shows at middle and late times an upward trend, which was interpreted as transition to a zone of lower permeability. The analysis was conducted using a radial 2 shell composite flow model. In addition, an alternative analysis using a homogeneous infinite acting radial flow model was made. The analysis is presented in Appendix 2-129. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.8E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase using the composite flow model (outer zone), which shows the best data and derivative quality. Based on this analysis and the very low injection rates (below measurement range of flowmeter), the interval transmissivity is lower than $5E-11 \text{ m}^2/\text{s}$.

The flow dimension used for this analysis is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,463.9 kPa.

No further analysis is recommended.

6.3.76 Section 670–675 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 205 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate was during the entire perturbation phase below 0.5 mL/min. The CHi phase is not analysable. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can no be derived clearly. It was decided to use a flow dimension of 2. The CHir phase was analysed using a homogeneous infinite acting flow model. For an alternative analysis, a radial 2 shell composite flow model was chosen. The analysis is presented in Appendix 2-130. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of 7.6E–11 m²/s was derived from the analysis of the CHir phase using the homogeneous flow model. Based on this analysis and the very low injection rates (below measurement range of flowmeter), the interval transmissivity is lower than $1E-10 \text{ m}^2$ /s. A flow dimension of 2 was used for the analysis. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,489.1 kPa.

Both analysis of the CHir phase show good consistency. No further analysis is recommended.

6.3.77 Section 675–680 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 200 kPa, followed by a pressure recovery phase. The test was performed without using the automatic regulation system. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 2.2 mL/min at the beginning of the CHi phase to 0.5 mL/min at the end, indicating a low interval transmissivity. The CHi data are very noisy and the results should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be derived from the CHi derivative, which is flat at late times, indicating a flow dimension of 2 (radial flow). Both phases were analysed using a homogeneous infinite acting radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-131. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $1.3E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3E-10 to $3E-9 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,573.9 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, mainly caused by the very low flow rate. No further analysis is recommended.

6.3.78 Section 680-685 m, test no 1, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 215 kPa, followed by a pressure recovery phase. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 21 mL/min at the beginning of the CHi phase to 13 mL/min at the end, indicating a relatively low interval transmissivity. The first part of the CHi phase is not analysable due to the time needed by the system to regulate constant pressure, However, the second part is amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow dimension can be best derived from the CHi phase. At middle times the derivative is flat, indicating a flow dimension of 2 (radial flow). This phase was analysed using a homogeneous infinite acting flow model. The derivative of the CHir phase shows at middle times an upward trend and at late times a stabilisation, indicating a transition to a zone of lower transmissivity. For the analysis of the CHir phase, a radial composite flow model was chosen. The analysis is presented in Appendix 2-132. The Table 7-2 presents relevant parameters with respect to the selected model.

Selected representative parameters

The recommended transmissivity of $6.1E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase. The confidence range for the interval transmissivity is estimated to be 4E-9 to $9E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,579.8 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.3.79 Section 685-690 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 30 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-133.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.80 Section 690–695 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 224 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-134.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.81 Section 695-700 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 156 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). The test shows no hydraulic communication between the test interval and the adjacent zones. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model can not be determined. No analysis was performed. The measured data is presented in Appendix 2-135.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

<u>ዓ</u>	seclow			3	ב	d D	۳.	ď	ā	ď	¶ ∎	le _w	lest pna	Test phases measured
		for test, start	for test, stop										Analyse	Analysed test phases
	(E)	үүүүММDD hh:mm	YYYYMMDD hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°°)	marked bold	bold
	203	20031209 11:00	20031209 14:08	2.28E-05	2.31E-05	1800	1800	1053	1045	1242	1051	8.9	CHi	CHir
	300	20031210 10:20	20031210 14:53	1.37E-04	1.55E-04	1800	1800	1982	1985	2184	1997	9.8	CHİ	CHir
	400	20031210 16:33	20031210 20:20	2.90E-07	3.61E-07	1800	5400	2950	2951	3152	2954	11.3	CHi	CHir
	500	20031214 09:18	20031214 11:33	8.97E-08	1.53E-07	1800	3600	3887	3894	4134	3930	12.7	CHi	CHir
	600	20031211 14:57	20031211 16:37	3.78E-05	5.75E-05	1800	3600	4874	4870	5071	4895	14.0	CHi	CHir
	700	20031212 07:06	20031212 08:20	1.00E-06	1.58E-06	1800	1800	5841	5828	6031	5878	15.5	CHi	CHir
	800	20031212 10:02	20031212 12:33	2.92E-07	4.63E-07	1800	3600	6793	6788	6966	6813	17.0	CHi	CHir
	006	20031212 13:59	20031213 07:29	1.45E-08	2.54E-08	1800	57600	7746	7780	7962	7741	18.5	CHi	CHir
	666	20031213 13:28	20031213 15:32	1.12E-07	1.56E-07	1800	1800	8668	8682	8890	8670	20.0	CHi	CHir
	123	20031215 11:03	20031215 12:37	6.94E-06	8.28E-06	1200	1800	1054	1048	1248	1054	8.8	CHİ	CHir
	143	20031215 13:10	20031215 15:33	1.03E-06	1.11E-06	1200	1200	1245	1241	1441	1240	9.1	CHİ	CHir
143	163	20031215 16:09	20031215 17:38	1.28E-05	1.33E-05	1200	1200	1435	1430	1630	1432	9.4	CHİ	CHir
163	183	20031215 18:09	20031215 19:50	1.06E-06	1.16E-06	1800	1200	1628	1624	1823	1623	9.6	CHİ	CHir
183	203	20031216 08:19	20031216 09:40	3.19E-07	3.82E-07	1200	1200	1819	1819	2017	1821	9.9	CHİ	CHir
200	220	20031216 11:13	20031216 12:49	6.94E-06	8.84E-06	1200	1200	1982	1979	2179	1987	10.0	CHİ	CHir
220	240	20031216 13:37	20031216 14:58	9.10E-07	1.03E-06	1200	1200	2175	2172	2371	2178	10.3	CHİ	CHir
240	260	20031216 15:34	20031216 17:00	5.61E-05	6.11E-05	1200	1200	2367	2363	2562	2369	10.5	CHİ	CHir
	280	20031216 17:29	20031216 18:57	2.40E-05	2.49E-05	1200	1200	2561	2558	2756	2559	10.8	CHi	CHir
280	300	20031217 08:19	20031217 10:04	6.20E-05	7.20E-05	1800	1200	2752	2752	2951	2759	11.1	CHi	CHir
300	320	20031217 10:41	20031217 12:58	1.36E-07	1.74E-07	1200	4080	2945	2947	3169	2956	11.3	CHi	CHir
320	340	20031217 13:27	20031217 14:54	7.26E-08	1.09E-07	1200	1200	3138	3137	3336	3136	11.6	CHi	CHir
340	360	20031217 15:37	20031217 17:02	1.88E-07	2.19E-07	1200	1200	3329	3328	3537	3328	11.9	CHi	CHir
360	380	20031217 17:31	20031217 19:36	2.28E-07	2.65E-07	1200	1800	3521	3519	3718	3519	12.1	CHİ	CHir
380	400	20031218 08:09	20031218 09:36	2.10E-07	2.54E-07	1200	1800	3715	3713	3915	3716	12.4	CHi	CHir
400	420	20031218 14:53	20031218 16:16	1.30E-07	1.44E-07	1200	1200	3905	3903	4107	3902	12.7	CHi	CHir

Table 7-1. General test data from constant head injection tests in KSH01A.

7.1 Summary of results

(m) (m) YYYMMDD hh:mm YYYMMDD hi:mm (m's) (n's) (s) (s) (s) 420 440 200312181645 200312181613 1.25E-07 1.4E-07 120 120 203 440 2003121910:00 200312191133 1.35E-07 1.4E-07 1200 1200 428 550 2003121916:11 2003121915:37 2.06E-07 2.06E-07 1200 1200 486 550 550 2003121916:11 2003121917:33 2.04E-07 2.06 486 550 500 2003121916:11 2003121917:33 2.04E-07 1.206 1200 486 560 580 2003122014:47 2.003121917:33 2.04E-07 1200 1200 486 560 580 2003122014:47 2.003121917:33 2.04E-07 1200 1200 486 560 580 2003122014:48 2.37E-66 1200 1200 1200 1200 1200 1200 1200 1200 1200 <th>Borehole secup</th> <th>Borehole seclow</th> <th>Date and time for test, start</th> <th>Date and time for test, stop</th> <th>ð</th> <th>Å</th> <th>đ</th> <th>ته</th> <th>ĥ</th> <th>ā</th> <th>ď</th> <th>å</th> <th>Te</th> <th>Test ph Analys</th> <th>Test phases measured Analysed test phases</th>	Borehole secup	Borehole seclow	Date and time for test, start	Date and time for test, stop	ð	Å	đ	ت ه	ĥ	ā	ď	å	Te	Test ph Analys	Test phases measured Analysed test phases
440 20031218 16:45 20031219 16:45 20031219 16:45 20031219 16:45 20031219 16:47 2001 1200	m)	(m)	YYYYMMDD hh:mm	үүҮҮММDD hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°)	marked bold	l bold
460 20031219 08:00 20031219 11:23 1.41E-07 1.40E-07 1200 1200 480 20031219 14:13 20031219 14:13 20031219 14:13 20031219 14:13 20031219 14:13 20031219 14:13 20031219 14:13 20031219 14:13 20031219 16:37 2.00F-07 2.20E-07 2.26E-07 1200 1200 540 20031219 16:11 20031219 15:37 2.00F-07 2.26E-07 1200 1200 560 20031220 10:13 20031220 14:47 20031220 14:18 2.37E-06 1200 1200 660 20031220 10:22 200331220 14:18 2.37E-05 4.12E-06 1200 1200 660 20031220 14:47 200331220 14:18 2.37E-06 1200 1200 660 20031220 14:17 20031220 14:18 2.37E-05 4.12E-05 1200 1200 660 20031220 14:47 200341017 17:10 1.36E-07 1266 1200 1200 660 20040107 15:44 20040107 10:10 2.36E-07 2.66E-07 1266 1200 1200	120	440	20031218 16:45	20031218 18:18	1.23E-07	1.41E-07	1200	1200	4096	4094	4299	4093	12.9	CHi	CHir
480 20031219 10:00 20031219 11:53 20031219 11:53 20031219 11:53 20031219 11:53 20031219 11:53 20031219 11:53 20031219 11:53 2001 200 1200 1200 1200 540 20031219 11:15 20031219 11:33 20031219 11:33 20031219 11:33 20031219 11:00 1200 1200 1200 560 20031220 10:21 20031220 11:12 2.015-07 2.205 1.14E-07 1200 1200 560 20031220 10:22 20031220 11:12 2.035-05 1.15E-06 1200 200 600 20031220 10:22 20031220 11:12 2.015E-07 2.01E-07 1200 1200 600 20031220 11:41 20031220 11:12 2.015E-07 126E-07 1200 1200 610 20040107 17:10 1.76E-07 1506 120 360 1800 1800 620 20040107 17:10 1.76E-07 1500 1200 200 200 200 200 200 200 200 200 200 200 200 200	40	460	20031219 08:00		1.83E-07	2.14E-07	1200	1200	4287	4291	4491	4289	13.2	CHi	CHir
500 20031219 11:53 20031219 15:37 2.07E-07 1200 1200 540 20031219 14:13 20031219 15:37 2.00E-07 2.26E-07 1200 1200 560 20031219 16:11 20031219 15:37 2.00E-07 2.26E-07 1200 1200 580 20031220 18:10 20031220 14:47 20031220 14:37 2.00E-07 2.26E-07 1200 1200 580 20031220 14:47 20031220 14:46 8.26E-07 1800 1800 600 20031220 14:47 20031220 14:18 8.26E-07 1800 1800 600 20040107 15:48 2.0040107 15:08 2.016-07 1800 1800 610 20031220 14:18 2.0040107 15:08 2.016-07 1800 1800 620 20040107 15:08 2.016-07 1806-07 1800 1800 1800 700 200	60	480	20031219 10:00		1.14E-07	1.40E-07	1200	1200	4480	4478	4683	4478	13.5	CHi	CHir
520 20031219 14:13 20031219 15:37 2.006-07 2.26E-07 1200 1200 540 20031219 16:11 20031219 15:37 2.04E-07 2.28E-07 1200 1200 560 20031219 16:11 20031219 21:12 1.33E-05 1.51E-05 1200 1200 580 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20031220 14:47 20040107 15:10 1.45E-06 1200 1200 660 200040107 15:43 20031220 14:18 2.37E-07 1.200 1800 1200 680 20040107 15:14 20040107 15:10 1.76E-07 1.200 1800 1200 700 20031220 14:17 2.0040108 12:08 2.0040108 12:03 2.31E-07 1200 1800 710 20040108 12:01 2.0040108 12:02 2.0040108 12:02 2.01E-07 1200 1800 700 20040108 12:01 2	80	500	20031219 11:53		1.92E-07	2.07E-07	1200	1200	4672	4670	4873	4669	13.8	CHi	CHir
540 20031219 16:11 20031219 17:33 2.04E-07 2.28E-07 1200 1200 560 20031220 08:13 20031219 17:33 2.04E-07 1.51E-06 1200 2200 580 20031220 08:13 20031220 14:47 20031220 14:18 2.37E-06 4.12E-05 1800 3600 600 20031220 14:47 20031220 17:46 8.26E-07 1.45E-06 1200 200 610 20031220 14:47 20031220 17:46 8.26E-07 1.45E-06 1200 200 620 20031220 14:47 20031220 17:46 8.26E-07 1.45E-07 1200 1200 640 20040107 17:43 20040107 17:10 1.76E-07 1200 1200 660 20040108 10:36 2.01E-07 2.01E-07 1200 1200 700 20040108 10:33 2.0040108 10:33 2.01E-07 1200 1200 710 20040108 10:33 2.01E-07 1200 1200 1200 710 20040108 10:33 2.01E-07 2.01E-07 1200 <td>00</td> <td>520</td> <td>20031219 14:13</td> <td></td> <td>2.00E-07</td> <td>2.26E-07</td> <td>1200</td> <td>1200</td> <td>4864</td> <td>4863</td> <td>5065</td> <td>4861</td> <td>14.1</td> <td>CHi</td> <td>CHir</td>	00	520	20031219 14:13		2.00E-07	2.26E-07	1200	1200	4864	4863	5065	4861	14.1	CHi	CHir
560 20031219 18:09 20031219 21:12 1:35E-05 1:51E-05 1:20 7200 580 20031220 08:13 20031220 01:12 2015 1:00 200 600 20031220 10:22 20031220 11:45 2:17E-06 1:20 2:00 600 20031220 11:47 20031220 17:46 2:37E-05 1:120 1:200 2:00 640 20040107 15:44 20040107 15:08 2:01E-07 1:201 2:00 1:200 2:00 1:200 2:00 2:00 2:00 2:00 2:00 1:200 2:01 2:01 2:01 <td>20</td> <td>540</td> <td>20031219 16:11</td> <td></td> <td>2.04E-07</td> <td>2.28E-07</td> <td>1200</td> <td>1200</td> <td>5056</td> <td>5055</td> <td>5257</td> <td>5054</td> <td>14.3</td> <td>CHi</td> <td>CHir</td>	20	540	20031219 16:11		2.04E-07	2.28E-07	1200	1200	5056	5055	5257	5054	14.3	CHi	CHir
58020031220 08:1320031220 14:162.17E-061200120060020031220 14:4720031220 14:182.37E-054.12E-051800360062020040107 15:4420031220 14:168.26E-071.45E-061200360064020040107 15:4420031220 17:468.26E-071.45E-061200360066020040107 15:4420040107 17:101.76E-071.96E-071800360068020040107 17:4320040107 19:112.08E-072.31E-071200240070020040108 10:3620040108 10:322.31E-073.36E-071200240071020040108 12:5920040108 12:282.35E-073.05E-071200240074020040108 12:5120040108 17:021.89E-072.07E-07120020078020040108 12:5120040108 17:021.89E-072.07E-07120020078020040108 17:3420040108 17:021.86E-072.36E-07120020080020040108 17:3420040109 12:011.86E-072.26E-072.06E-07120020080020040109 12:5120040109 12:011.86E-072.26E-072.06E-07120020080020040109 12:5120040109 12:011.86E-072.26E-072.06E-07120020080020040109 12:3120040109 12:011.86E-072.26E-072.06E-0720020080020040109 12:3020040109 12:322.26E-072.07E-0	40	560	20031219 18:09	20031219 21:12	1.33E-05	1.51E-05	1200	7200	5249	5244	5444	5249	14.6	CHi	CHir
6002003122010.222003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122014.472003122017.002004010717.1017.6E-071.96E-07120020046602004010717.432004010717.1017.6E-071.96E-07180018007002004010810.362004010810.362.31E-072.31E-07120024007102004010812.592004010812.282.55E-072.36E-07120024007002004010812.512004010817.322.34E-072.07E-07120024007802004010817.342004010817.322.36E-07120024007802004010817.342004010817.322.36E-0712002007802004010817.342004010817.322.36E-07120012008802004010912.512004010912.512.07E-07120012008802004010912.512004010917.335.91E-07120012008802004010912.512004010912.512.25E-07120012008802004010912.512004010912.512.55E-0712001200	60	580	20031220 08:13	20031220 09:49	2.17E-06	2.27E-06	1200	1200	5445	5440	5640	5440	14.9	CHi	CHir
620 20031220 14:47 20031220 17:46 8.26E-07 1.45E-06 1200 3600 640 20040107 15:44 20040107 15:08 2.01E-07 2.61E-07 1200 1200 680 20040107 15:44 20040107 17:10 1.76E-07 1.96E-07 1200 1200 680 20040107 17:43 20040108 10:03 2.31E-07 3.36E-07 1200 1800 700 20040108 10:36 20040108 11:54 2.84E-07 4.77E-07 1200 1800 720 20040108 11:53 20040108 11:54 2.84E-07 4.77E-07 1200 2400 740 20040108 11:53 20040108 11:50 2.01E-07 2.36E-07 1200 2400 780 20040108 11:53 20040108 11:50 2.36E-07 1200 1200 880 20040109 08:24 20040108 11:50 2.36E-07 1200 1200 880 20040109 01:29 1.89E-07 2.76E-07 1200 1200 880 20040109 01:29 2.0640109 01:20 1.36E-07	80	600	20031220 10:22	20031220 14:18	2.37E-05	4.12E-05	1800	3600	5637	5637	5831	5677	15.2	CHi	CHir
640 20040107 13:39 20040107 15:08 2.01E-07 2.61E-07 1200 1200 680 20040107 15:44 20040107 17:10 1.76E-07 1.96E-07 1800 1800 680 20040107 15:44 20040107 19:11 2.08E-07 1.96E-07 1200 1800 700 20040108 08:27 20040108 10:03 2.31E-07 3.36E-07 1200 1800 720 20040108 12:59 20040108 12:28 2.35E-07 3.36E-07 1200 2400 740 20040108 12:53 20040108 11:02 2.34E-07 4.77E-07 1200 2400 780 20040108 15:31 20040108 11:02 2.36E-07 1200 1200 780 20040109 12:31 20040108 11:02 2.36E-07 1200 1200 800 20040109 08:24 20040109 09:58 7.99E-08 1.26E-07 1200 1200 810 20040109 12:01 1.86E-07 2.36E-07 1200 1200 1200 820 20040109 10:21 2.0040109 12:01 <td< td=""><td>00</td><td>620</td><td>20031220 14:47</td><td></td><td>8.26E-07</td><td>1.45E-06</td><td></td><td>3600</td><td>5830</td><td>5835</td><td>6035</td><td>5850</td><td>15.5</td><td>CHİ</td><td>CHir</td></td<>	00	620	20031220 14:47		8.26E-07	1.45E-06		3600	5830	5835	6035	5850	15.5	CHİ	CHir
66020040107 15:4420040107 17:101.76E-071.96E-071800180068020040107 17:4320040107 19:112.08E-072.31E-071800180070020040108 08:2720040108 10:032.31E-073.36E-071200180072020040108 10:362.0040108 11:262.084-0712.001200240074020040108 11:3620040108 11:282.55E-073.05E-071200240076020040108 11:3120040108 11:262.084-0712.002004120078020040108 12:3420040108 17:021.89E-072.07E-071200120080020040109 12:3120040108 17:122.01E-072.07E-071200120080020040109 12:5120040109 12:011.85E-072.27E-071200120080020040109 12:5120040109 12:011.85E-072.27E-071200120080020040109 12:5120040109 12:135.91E-081.19E-071200120080020040109 17:432.0040109 12:135.91E-081.19E-071200120091920040110 11:312.0040109 12:135.91E-081.91E-071200120092020040110 11:312.0040109 12:135.91E-081.91E-071200120093020040110 11:312.0040109 12:131.91E-0712001200120093920040110 11:312.0040110 14:311.34E-072.01E-071200120093	20	640	20040107 13:39	20040107 15:08	2.01E-07	2.61E-07	1200	1200	6024	6020	6221	6035	15.8	CHi	CHir
6802004010717:432004010719:112.08E-072.31E-07180018007002004010808:272004010810:362.004010812:302.0012007202004010810:362004010812:352.55E-073.05E-07120024007402004010812:312004010814:542.84E-074.77E-07120024007602004010815:312004010817:021.89E-072.07E-07120024007602004010817:342004010817:1021.89E-072.07E-07120012007802004010917:342004010919:172.01E-072.07E-07120012008002004010910:292004010912:112.05E-072.07E120012008002004010912:132.004010914:262.25E-072.25E-07120012008002004010912:302.004010914:262.25E-072.051120012008002004010912:302.004010914:262.25E-071200120012008102004010912:302.004010914:262.25E-07120012008102004010912:302.004010914:262.25E-07120012008102004010912:302.004010914:262.25E-07120012009102004011016:332.004011017:131.36E-07<	40	660	20040107 15:44		1.76E-07	1.96E-07	1800	1800	6211	6210	6418	6209	16.1	CHi	CHir
700 20040108 08:27 20040108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 10:36 20340108 12:39 2.555E-07 3.055E-07 3.055E-07 1200 2400 740 20040108 12:31 20040108 17:32 2.0440108 17:02 1.89E-07 2.07E-07 1200 1200 780 20040109 17:34 20040109 19:17 2.01E-07 2.36E-07 1200 1200 800 20040109 17:34 20040109 12:17 2.01E-07 1200 1200 840 20040109 12:13 20040109 12:13 2.0140109 12:13 2.0140109 12:10 1200 1200 840 20040109 12:13 2.0040109 12:13 2.0140109 12:10 1200 1200 880 20040109 12:13 2.014010	<u> 90</u>	680	20040107 17:43	20040107 19:11	2.08E-07	2.31E-07	1800	1800	6404	6407	6612	6404	16.4	CHi	CHir
720 20040108 10:36 20040108 12:59 20040108 12:59 20040108 14:54 2.55E-07 3.05E-07 1200 2400 740 20040108 15:31 20040108 15:31 20040108 17:02 1.89E-07 2.07E-07 1200 2400 760 20040108 17:34 20040108 17:02 1.89E-07 2.07E-07 1200 1200 780 20040109 17:34 20040109 09:58 7.99E-08 1.200 1200 800 20040109 10:29 20040109 12:01 1.85E-07 2.36E-07 1200 1200 800 20040109 12:01 1.85E-07 2.36E-07 1200 1200 820 20040109 12:01 1.85E-07 2.26E-07 1200 1200 840 20040109 12:01 1.85E-07 2.26E-07 1200 1200 860 20040109 15:30 20040109 12:18E-07 12:01 1200	80	700	20040108 08:27	20040108 10:03	2.31E-07	3.36E-07	1200	1800	6595	6591	6791	6601	16.7	CHi	CHir
740 20040108 12:59 20040108 14:54 2.84E-07 4.77E-07 1200 2400 760 20040108 15:31 20040108 17:32 1.89E-07 2.07E-07 1200 1200 780 20040108 17:34 20040108 19:17 2.01E-07 2.07E-07 1200 1200 780 20040109 17:34 20040109 08:28 7.99E-08 1.26E-07 1200 1200 800 20040109 10:29 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 2.27E-07 1200 1200 860 20040109 17:43 20040109 12:51 20040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51 2.0040109 12:51	00	720	20040108 10:36		2.55E-07	3.05E-07		2400	6786	6786	6978	6787	17.0	CHi	CHir
760 20040108 15:31 20040108 17:34 20040108 17:34 20040108 17:34 20040108 17:34 20040108 17:34 20040108 17:34 20040108 19:17 2.36E-07 1200 1200 1200 780 20040109 08:24 20040109 09:58 7.99E-08 1.26E-07 1200 1200 800 20040109 08:24 20040109 12:01 1.85E-07 2.36E-07 1200 1200 820 20040109 12:51 20040109 12:01 1.85E-07 2.27E-07 1200 1200 840 20040109 12:51 20040109 14:26 2.25E-07 2.52E-07 1200 1200 860 20040109 15:30 20040109 14:26 2.25E-07 1.96E-07 1200 1200 900 20040109 15:30 20040109 19:21 1.13E-07 1.80E-07 1200 1200 919 20040110 17:33 20040110 10:06 1.99E-07 1.90E-07 1200 1200 919 20040110 10:38 20040110 10:06 1.99E-07 1.91E-07 1200 1200 910 20040110 10:38	20	740	20040108 12:59		2.84E-07	4.77E-07		2400	6975	6974	7182	7001	17.3	CHi	CHir
780 20040108 17:34 20040108 19:17 2.01E-07 2.36E-07 1200 1200 800 20040109 08:24 20040109 09:58 7.99E-08 1.26E-07 1200 1200 820 20040109 10:29 20040109 12:01 1.85E-07 2.27E-07 1200 1200 840 20040109 12:51 20040109 12:01 1.85E-07 2.52E-07 1200 1200 860 20040109 15:30 20040109 14:26 2.25E-07 2.52E-07 1200 1200 880 20040109 15:30 20040109 17:13 5.91E-08 1.19E-07 1800 1200 900 20040109 15:30 20040109 17:13 5.91E-08 1.19E-07 1200 1200 910 20040110 16:30 20040110 10:06 1.39E-07 1.200 1200 1200 919 20040110 10:31 1.315E-07 1.300 1200 1200 1200 919 20040110 10:38 20040110 10:06 1.39E-07 1.200 1200 1200 919 20040110 13:13	40	760	20040108 15:31		1.89E-07	2.07E-07	1200	1200	7166	7165	7352	7163	17.6	CHi	CHir
800 20040109 08:24 20040109 09:58 7.99E-08 1.26E-07 1200 1200 820 20040109 10:29 20040109 12:51 20040109 12:51 20040109 12:51 20040109 12:51 2.27E-07 1200 1200 840 20040109 12:51 20040109 14:26 2.25E-07 2.52E-07 1200 1200 860 20040109 15:30 20040109 17:13 5.91E-08 1.19E-07 1800 1200 860 20040109 17:43 20040109 17:13 5.91E-08 1.19E-07 1200 1200 900 20040110 16:30 20040110 10:06 1.99E-07 1.80E-07 1200 1200 919 20040110 10:38 20040110 10:06 1.99E-07 1.91E-07 1200 1200 919 20040110 10:38 20040110 12:08 1.25E-07 1.91E-07 1200 1200 929 20040110 13:13 20040110 14:31 1.34E-07 2.01E-07 1200 1200 939 20040110 15:06 2.0040110 16:29 2.06E-07 2.006-07 1200	<u> 90</u>	780	20040108 17:34	20040108 19:17	2.01E-07	2.36E-07	1200	1200	7358	7355	7560	7355	17.9	CHi	CHir
820 20040109 10:29 20040109 12:01 1.85E-07 2.27E-07 1200 1200 840 20040109 12:51 20040109 14:26 2.25E-07 2.52E-07 1200 1200 860 20040109 15:30 20040109 17:13 5.91E-08 1.19E-07 1800 1200 860 20040109 17:43 20040109 17:13 5.91E-08 1.19E-07 1800 1200 900 20040110 17:43 20040110 17:13 5.91E-07 1.80E-07 1200 1200 919 20040110 17:43 20040110 10:06 1.99E-07 1.80E-07 1200 1200 910 20040110 10:38 20040110 10:06 1.99E-07 1.91E-07 1200 1200 919 20040110 10:38 20040110 12:08 1.25E-07 1.91E-07 1200 1200 939 20040110 16:59 20040110 16:29 2.06E-07 2.71E-07 1200 300 979 20040110 16:59 20040110 18:22 2.96E-07 3.17E-07 1200 300 999 2004	80	800	20040109 08:24		7.99E-08	1.26E-07	1200	1200	7550	7544	7750	7544	18.2	CHi	CHir
840 20040109 12:51 20040109 12:51 2025E-07 2.52E-07 1200	00	820	20040109 10:29		1.85E-07	2.27E-07	1200	1200	7737	7734	7927	7733	18.5	CHi	CHir
860 20040109 15:30 20040109 17:13 5.91E-08 1.19E-07 1800 1200 880 20040109 17:43 20040109 19:21 1.13E-07 1.80E-07 1200 1200 900 20040110 08:30 20040110 10:06 1.99E-07 2.61E-07 1200 1200 919 20040110 10:38 20040110 12:08 1.25E-07 1.91E-07 1200 1200 939 20040110 13:13 20040110 12:08 1.25E-07 1.91E-07 1200 1200 939 20040110 13:13 20040110 14:31 1.34E-07 2.09E-07 1200 300 959 20040110 15:06 20040110 16:29 2.26E-07 2.71E-07 1200 300 979 20040110 16:29 20040110 18:22 2.96E-07 3.17E-07 1200 300 979 20040111 08:23 20040111 10:07 1.61E-07 3.00 300	20	840	20040109 12:51		2.25E-07	2.52E-07	1200	1200	7925	7922	8132	7921	18.8	CHi	CHir
880 20040109 17:43 20040109 17:43 20040109 17:43 20040109 17:43 20040110 1.36-07 1.80E-07 1200	40	860	20040109 15:30		5.91E-08	1.19E-07	1800	1200	8113	8110	8302	8112	19.1	CHİ	CHir
900 20040110 08:30 20040110 10:06 1.99E-07 2.61E-07 1200	60	880	20040109 17:43		1.13E-07	1.80E-07	1200	1200	8303	8301	8501	8302	19.4	CHi	CHir
919 20040110 10:38 20040110 12:08 1.25E-07 1.91E-07 1200	80	006	20040110 08:30		1.99E-07	2.61E-07	1200	1200	8492	8487	8690	8487	19.7	CHi	CHir
939 20040110 13:13 20040110 14:31 1.34E-07 2.09E-07 1200 600 959 20040110 15:06 20040110 16:29 2.26E-07 2.71E-07 1200 300 979 20040110 16:59 20040110 18:22 2.96E-07 3.17E-07 1200 300 979 20040111 06:23 20040111 10:07 1.61E-07 3.17E-07 1200 300	66	919	20040110 10:38		1.25E-07	1.91E-07	1200	1200	8668	8668	8669	8669	20.0	CHi	CHir
959 20040110 15:06 20040110 16:29 2.26E-07 2.71E-07 1200 300 979 20040110 16:59 20040110 18:22 2.96E-07 3.17E-07 1200 300 999 20040111 08:23 20040111 10:07 1.61E-07 2.12E-07 1200 1200	19	939	20040110 13:13		1.34E-07	2.09E-07	1200	600	8855	8852	9056	8852	20.3	CHi	CHir
979 20040110 16:59 20040110 18:22 2.96E-07 3.17E-07 1200 300 999 20040111 08:23 20040111 10:07 1.61E-07 2.12E-07 1200 1200	39	959	20040110 15:06		2.26E-07	2.71E-07	1200	300	9041	9037	9228	9037	20.6	CHi	CHir
999 20040111 08:23 20040111 10:07 1.61E-07 2.12E-07 1200 1200	59	979	20040110 16:59		2.96E-07	3.17E-07	1200	300	9225	9223	9428	9223	20.9	CHİ	CHir
	62	666	20040111 08:23		1.61E-07	2.12E-07	1200	1200	9409	9406	9610	9407	21.2	CHi	CHir

(m) (m) YYYMMOD hi, mm (m/s) (m) (m) (m/s) (s)	Borehole secup	Borehole seclow	Date and time for test, start	Date and time for test, stop	σ̈́	ď	tр	t,	ď	ä	ď	₽F	Te	Test pha Analyse	Test phases measured Analysed test phases
305 20040112 16:06 20040112 17:53 20040112 17:53 20040112 17:53 20040113 00:11 209E-07 1200 2085 2984 316 20040113 10:36 20040113 10:31 3.56E 08 7.47E-08 1200 3023 3032 325 20040113 10:36 20040113 11:347 3.56E 08 7.47E-08 1200 3023 3032 335 20040113 17:41 20040113 17:18 5.56E 08 7.77E-07 1200 3020 3172 335 20040113 17:41 20040113 17:18 5.56E 08 5.77E-08 1200 1720 3172 346 20040114 16:00 20040114 11:41	(m)	(m)	YYYYMMDD hh:mm	үүүүммдд нн:тт	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	marked bold	pold
310 20040112 17:53 20040113 10:36 20040113 10:36 20040113 10:36 20040113 10:31 2.09E-07 2.31E-07 1200 2096 2986 2984 325 20040113 14:11 2.09E-07 2.31E-07 1200 3003 3032 3333 3145 32040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:35 20040114 14:	300	305	20040112 16:06	17:	1.79E-07	1.98E-07	1200	300	2947	2939	3145	2938	11.4	CHI	CHir
315 20040113 06:36 20040113 10:36 20040113 11:34 3.58E-08 7.4TE-07 1200 3002 3032 3032 325 20040113 15:57 20040113 15:37 3.58E-08 7.4TE-08 1200 3012 3172 3172 335 20040113 15:57 20040113 15:17 20040113 15:17 20040113 15:17 3.58E-08 7.4TE-08 1200 3012 3172 3172 335 20040114 16:17 20040114 16:10 20040114 16:10 20040114 16:10 3201 3201 3221 3321 345 20040114 16:10 20040114 16:10 20040114 16:20 2356-08 3.74E-08 1200 3003 333 355 20040114 16:20 20040114 16:10 20040114 16:30 3.35E-08 4.31E-08 1200 3201 321	305	310	20040112 17:53		1.69E-07	1.88E-07	1200	1200	2986	2984	3185	2984	11.5	CHİ	CHir
320 20040113 10.36 20040113 15.7 3.58E 08 7.47E-07 1.80E-07 200 3123 3124 335 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 17.41 20040113 17.41 20040113 17.41 20040113 17.41 20040113 17.41 20040114 10.08 3172 3172 3172 3173 335 20040114 10.08 20040114 14.05 1.86E-08 3.74E-08 1200 203 3323 3323 345 20040114 16.25 20040114 14.05 1.86E-08 3.74E-08 1200 3326 3324 356 20040114 16.25 20040114 16.50 2.35E-08 4.31E-08 1200 3323 3323 356 20040115 08.27 20040115 18:06 2.0040115 18:06 2.0040115 18:06 3764 346 370 20040115 18:06 20040115 18:06 2.0040115 18:06 2.0040115 18:06 3764 360 3603 3614 370 20040115 18:10 20040115 18:40 3.756-08 <	310	315	20040113 08:36		2.09E-07	2.31E-07	1200	1200	3032	3032	3232	3035	11.5	CHİ	CHir
325 20040113 15.37 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 15.57 20040113 17.41 20040113 15.57 20040113 15.57 20040114 08:15 5.05E-08 6.92E-08 1700 300 3172 3177 345 20040114 10:08 20040114 16:00 20040114 16:00 2356 32.01 200 32.01 33.05 356 20040114 16:20 2.0040114 16:00 2.35E-08 3.16E-08 1200 203 33.33 356 20040114 16:20 2.366-08 5.55E-08 12.66 1300 346 346 375 20040114 16:20 2.36040115 13:04 7.55E-09 1.36E-08 1200 200 3512 351 377 20040115 13:04 7.55E-09 1.36E-08 1200 360 366 351 356 377 20040115 13:04 7.55E-09 1.26E-08 1200 200 361 351 351 376	315	320	20040113 10:36		3.58E-08	7.47E-08	1200	1200	3080	3074	3285	3075	11.5	CHİ	CHir
330 20040113 15:57 20040113 17:18 5.06E-08 6.52E-08 1200 600 3172 3171 335 20040113 17:41 20040114 10:08 20040114 11:41 2.66E-08 7.09E-08 1200 3221 3223 346 20040114 11:209 20040114 14:05 1.86E-08 3.16E-08 1200 3320 3333 356 20040114 16:25 20040114 16:26 20040114 16:26 20040114 16:26 3.16E-08 1200 300 346 3424 356 20040114 16:25 20040114 16:26 2.0040114 16:26 2.0040114 16:26 3.16E-08 1200 300 346 3424 356 20040114 16:25 20040114 16:26 2.0040114 16:26 2.0040114 16:26 3.06E-08 3.16E-08 3.16E-08 3.16E-08 3.16E 376 20040115 10:10 2.0040116 10:26 3.28E-09 1.26E-08 3.16E-08 3.01 3.06 3.66 377 20040115 13:29 2.0040115 10:36 7.53E-09 1.26E-08 3.16E-08 3.06 3.66	320	325	20040113 14:11		1.72E-07	1.83E-07	1200	300	3123	3124	3330	3124	11.6	CHİ	CHir
335 20040113 17.41 20040113 17.41 20040114 0.03 3271 3221 3221 3221 3221 3231 3232 3333 3333 3335 3335 3336 3346 346 346 346 346 346 346 346 346 346 346 346 346 346 346	325	330	20040113 15:57		5.05E-08	6.92E-08	1200	600	3172	3177	3380	3177	11.7	CHi	CHir
340 20040114 08:15 20040114 11:41 2.66E-08 7.09E-08 7.09E-08 7.09 900 3272 3271 345 20040114 12:09 20040114 11:41 2.66E-08 3.74E-08 7200 1200 3202 3333 355 20040114 12:09 20040114 14:05 1.86E-08 3.16E-08 3.74E-08 7200 3202 3345 3330 356 20040114 16:25 20040114 16:26 2.35E-09 1.27E-08 1200 1300 3463 3570 366 20040115 13:29 20040115 16:30 2.0040115 16:30 2.35E-09 1.27E-08 1200 1300 3571 3574 376 20040115 16:10 2.0040115 16:10 2.0040115 16:10 2.75E-09 1.27E-08 1200 1300 3571 3571 376 20040115 16:10 2.0040115 16:10 2.0040115 12:00 1.96E-08 7.36E-09 1200 1300 3761 3571 385 20040115 18:06 20040115 12:01 1.12E-08 1.56E-08 1.26E-08	330	335	20040113 17:41	20040113 19:19	4.80E-08	6.75E-08	1200	1200	3221	3222	3424	3222	11.7	CHİ	CHir
345 20040114 10:08 20040114 11:01 2.60E-08 3.74E-08 120 120 320 3336 356 20040114 14:26 20040114 14:05 1.86E-08 3.16E-08 120 150 3368 3380 355 20040114 14:28 20040114 16:25 20040114 16:25 20040114 16:25 20040114 16:25 3.060 3464 3463 365 20040115 16:10 2.35E-08 4.31E-08 120 1200 3603 3464 3463 3765 20040115 16:10 2.0540115 17:34 7.53E-09 1.36E-08 1.00 3603 3613 3771 3775 20040115 13:29 20040115 17:32 20040115 17:42 6.37E-08 1.36E-08 1.00 3603 3673 3771 3785 20040115 17:32 20040115 17:42 6.37E-08 1.36E-08 1.00 3603 3673 3711 378 20040115 17:42 6.37E-08 1.36E-08 1.36E-08 1.36E-08 3765 3762 3711 379 20040116	335	340	20040114 08:15		4.56E-08	7.09E-08	1200	006	3272	3271	3475	3272	11.8	CHİ	CHir
350 20040114 12:09 20040114 14:05 1.86E-08 3.16E-08 1.00 1500 3368 3380 355 20040114 16:25 20040114 16:26 2.0340114 16:26 2.35E-08 4.31E-08 1200 3600 3464 3486 365 20040115 16:25 20040115 16:26 2.0340115 16:26 2.35E-08 1.27E-08 1200 3501 3571 3571 370 20040115 16:10 20040115 16:40 6.32E-09 9.14E-08 1200 3601 3671 3570 370 20040115 16:10 20040115 16:40 6.32E-09 9.94E-09 1200 3601 3603 3651 3570 370 20040115 16:10 20040115 16:10 20040115 16:20 20040115 16:20 1.06E-08 1200 300 3651 3570 385 20040115 16:10 20040116 16:10 20040116 16:10 1.01E-08 1.206 1200 300 3651 3671 3672 3671 386 20040116 16:10 20040116 16:10 2.0040116 17:13	340	345	20040114 10:08		2.60E-08	3.74E-08	1200	1200	3320	3333	3530	3327	11.9	CHİ	CHir
35520040114 14:2820040114 16:002.35E-084.31E-0812036003464348636020040115 08:2720040115 10:367.53E-091.27E-08120036103510351037020040115 11:0120040115 11:367.53E-091.36E-0812003501357037120040115 11:0120040115 11:426.75E-091.36E-0812003603363237120040115 16:1020040115 16:406.32E-099.94E-0912003603363238020040115 16:1020040115 17:426.77E-087.84E-0812003603363238120040115 18:0620040115 17:426.77E-087.84E-082003603371139020040115 18:0620040116 10:051.98E-087.84E-082003703371139120040116 10:3220040116 10:051.98E-082.77E-0827063703371239220040116 10:3220040116 17:136.32E-091.12E-0812003703371440020040116 17:3720040116 17:136.32E-091.31E-0827063704371441020040116 17:3720040116 17:136.32E-091.31E-082003714371441120040116 17:3720040116 17:136.32E-091.31E-082003714371441220040116 17:3720040116 17:136.32E-091.31E-082003714371441320040116 17:3720040117 11:24<	345	350	20040114 12:09		1.86E-08	3.16E-08	1200	1500	3368	3380	3582	3374	11.9	CHİ	CHir
360 20040114 16.25 20040114 16.25 20040115 10.3610 3600 3614 3486 365 20040115 08.27 20040115 10.361 3510 3514 346 370 20040115 13.29 20040115 15.40 5.53E-09 1.26E-08 1200 360 3512 3514 370 20040115 15.10 20040115 15.40 6.32E-09 9.94E-09 1200 360 362 3623 385 20040115 16:10 20040115 17.42 6.77E-08 7.84E-08 1200 360 3711 386 20040116 16:10 20040116 10.05 1.98E-08 1.206 360 3712 390 20040116 10:05 1.98E-08 1.56E-08 1.206 360 3712 391 400 20040116 10:05 1.98E-08 1.06 370 367 366 400 20040116 10:05 1.98E-08 1.	350	355	20040114 14:28	20040114 16:00	2.35E-08	4.31E-08	1200	1200	3416	3424	3631	3423	12.0	CHİ	CHir
365 20040115 08:27 20040115 10:36 7.53E-09 1.27E-08 120 361 3570 370 20040115 11:01 20040115 13:04 7.53E-09 1.36E-08 1200 3613 3570 375 20040115 13:29 20040115 13:40 6.32E-09 9.94E-08 1200 3693 3623 380 20040115 18:06 20040115 17:42 6.77E-08 7.84E-08 1200 3603 3623 385 20040116 16:10 20040116 10:05 1.98E-08 1200 1200 3673 3623 395 20040116 10:12 20040116 112:00 1.12E-08 1200 1200 3703 3714 395 20040116 10:12 20040116 112:01 1.12E-08 1200 1200 3803 3816 400 20040116 17:37 20040116 17:13 6.32E-09 1.36E-08 1200 1200 3803 3816 410 20040116 17:37 20040116 17:13 6.32E-09 1.36E-08 1200 3804 3970 411	355	360	20040114 16:25		9.98E-09	2.19E-08	1200	3600	3464	3486	3682	3482	12.1	CHİ	CHir
370 20040115 11:01 20040115 13:04 7.53E-09 1.36E-08 120 3561 3570 375 20040115 16:10 20040115 15:40 6.32E-09 9.94E-09 1200 3667 3662 386 20040115 16:10 20040115 17:42 6.77E-08 7.84E-08 1200 3677 3657 3652 386 20040115 18:06 20040115 17:42 6.77E-08 7.84E-08 1200 3677 3677 3657 3652 386 20040116 16:02 20040116 10:05 1.98E-08 6.83E-08 1200 3705 3711 390 20040116 10:32 20040116 11:00 1.12E-08 1.59E-08 1200 3803 3816 400 20040116 17:31 20040116 17:13 6.32E-09 1.10E-08 1200 3803 3816 410 20040116 17:31 6.32E-09 1.31E-08 1200 3803 3816 410 20040116 17:31 6.32E-09 1.31E-08 1200 3803 3816 410 200	360	365	20040115 08:27		7.53E-09	1.27E-08	1200	1800	3512	3514	3715	3569	12.1	CHİ	CHir
375 20040115 13:29 20040115 15:40 6.32E-09 9.94E-09 1200 1800 3603 3623 380 20040115 16:10 20040115 17:42 6.77E-08 7.84E-08 1200 1200 3657 3662 385 20040115 18:06 20040115 17:42 6.77E-08 7.84E-08 1200 3705 3711 385 20040116 18:06 20040116 10:32 20040116 12:00 1.98E-08 1200 1200 3705 3711 395 20040116 10:32 20040116 12:00 1.12E-08 1.59E-08 1200 1200 3705 3762 395 20040116 17:37 20040116 17:13 6.32E-09 1.59E-08 1200 1200 3705 3762 410 20040116 17:37 20040116 17:13 6.32E-09 1.59E-08 1200 3846 4024 410 20040116 17:37 20040116 17:13 6.32E-09 1.59E-08 1200 3806 4024 410 20040116 17:37 20040117 07:07 2.62E-09 1.01E-08	365	370	20040115 11:01		7.53E-09	1.36E-08	1200	3240	3561	3570	3764	3593	12.2	CHİ	CHir
380 20040115 16:10 20040115 17:42 6.77E-08 7.84E-08 1200 3657 3652 3657 3705 3711 390 20040116 10:32 20040116 12:00 1.026-08 1.200 1200 3705 3715 395 20040116 10:32 20040116 17:10 1.12E-08 1.59E-08 1200 1200 3806 3816 400 20040116 17:37 20040116 17:13 6.32E-09 1.00E-08 1200 3705 3914 410 20040116 17:37 20040117 17:24 #NV #NV #NV #NV 403 3914 420 20040117 10:22 20040117 11:24 #NV #NV #NV 403 4024 420 20040117 10:22 20040117 11:24	370	375	20040115 13:29		6.32E-09	9.94E-09	1200	1800	3609	3623	3829	3668	12.3	CHİ	CHir
385 20040115 18:06 20040115 20:47 5.29E-08 6.83E-08 1200 3705 3711 390 20040116 08:24 20040116 10:05 1.98E-08 2.77E-08 1200 3752 3752 395 20040116 10:32 20040116 12:00 1.12E-08 1.59E-08 1200 1200 3848 3849 400 20040116 13:04 20040116 17:13 6.32E-09 1.59E-08 1200 1200 3848 3849 405 20040116 17:37 20040116 17:13 6.32E-09 1.00E-08 1200 3700 3846 410 20040116 17:37 20040116 17:13 6.32E-09 1.00E-08 1200 3944 3970 410 20040116 17:37 20040117 07:07 2.62E-09 1.31E-08 1200 3944 3970 415 20040117 10:22 20040117 07:07 2.62E-09 1.28E-08 1200 3944 3970 420 20040117 10:22 20040117 11:24 #NV #NV #NV 4043 #NV	375	380	20040115 16:10	20040115 17:42	6.77E-08	7.84E-08	1200	1200	3657	3662	3863	3674	12.3	CHİ	CHir
39020040116 08:2420040116 10:051.98E-082.70E-08120012003752376239520040116 10:3220040116 12:001.12E-081.59E-08120012003800381640020040116 13:0420040116 17:132.0546-091.12E-08120012003803391440520040116 17:3720040116 17:136.32E-091.00E-0812003906391441020040116 17:3720040117 07:072.62E-091.31E-0812003936392441020040117 08:2420040117 07:072.62E-091.31E-0812003936402442020040117 10:2220040117 11:24#NV#NV#NV#NV403#NV42520040117 11:2420040117 11:24#NV#NV#NV41033956402443020040117 16:3520040117 11:24#NV#NV#NV41033956402444020040117 16:3520040117 15:3620040117 15:3641007003936402443020040117 16:354NV#NV#NV#NV4103#NV44020040117 15:3620040117 15:35#NV#NV4138#NV44020040117 15:3620040117 15:3620040117 15:3620040117 16:354103#NV44120040117 15:3620040117 15:3620040117 16:3541044138#NV44220040117 16:356.32E-091.16E-081.06203 </td <td>380</td> <td>385</td> <td>20040115 18:06</td> <td>20040115 20:47</td> <td>5.29E-08</td> <td></td> <td>1200</td> <td>3600</td> <td>3705</td> <td>3711</td> <td>3905</td> <td>3714</td> <td>12.4</td> <td>CHİ</td> <td>CHir</td>	380	385	20040115 18:06	20040115 20:47	5.29E-08		1200	3600	3705	3711	3905	3714	12.4	CHİ	CHir
395 20040116 10:32 20040116 12:00 1.12E-08 1.59E-08 1200 1200 3800 3816 400 20040116 13:04 20040116 14:44 7.53E-09 1.00E-08 1200 1800 3848 3849 405 20040116 17:37 20040116 17:13 6.32E-09 1.00E-08 1200 3806 3914 410 20040116 17:37 20040117 07:07 2.62E-09 1.31E-08 1200 3896 3914 415 20040117 10:22 20040117 07:07 2.62E-09 1.31E-08 1200 3936 4024 420 20040117 10:22 20040117 11:24 #NV #NV #NV 4043 #NV 420 20040117 10:22 20040117 11:24 #NV #NV #NV 4043 #NV 421 20040117 11:24 #NV #NV #NV #NV 4043 #NV 425 20040117 11:24 #NV #NV #NV #NV 4043 #NV 430 20040117 14:25 <t< td=""><td>385</td><td>390</td><td>20040116 08:24</td><td>20040116 10:05</td><td>1.98E-08</td><td>2.70E-08</td><td>1200</td><td>1200</td><td>3752</td><td>3762</td><td>3962</td><td>3775</td><td>12.5</td><td>CHİ</td><td>CHir</td></t<>	385	390	20040116 08:24	20040116 10:05	1.98E-08	2.70E-08	1200	1200	3752	3762	3962	3775	12.5	CHİ	CHir
400 20040116 13:04 20040116 14:44 7.53E-09 2.54E-08 1200 1800 3848 3849 405 20040116 17:37 20040116 17:13 6.32E-09 1.00E-08 1200 2700 3896 3914 410 20040116 17:37 20040117 07:07 2.62E-09 1.31E-08 1200 2396 4024 415 20040117 08:24 20040117 07:07 2.62E-09 1.31E-08 1200 3996 4024 420 20040117 10:22 20040117 11:24 #NV #NV #NV #NV 403 #NV 430 20040117 11:24 #NV #NV #NV #NV #NV 4043 #NV 430 20040117 11:24 #NV #NV #NV #NV 4043 #NV 431 20040117 11:26 20040117 115:36 20040117 115:39 4004 4138 #NV 435 20040117 115:36 20040117 115:35 #NV #NV #NV 4138 #NV 436 20040117 115:36 20040117 115:35 #NV #NV #NV 4138 WV	390	395	20040116 10:32	20040116 12:00	1.12E-08	1.59E-08	1200	1200	3800	3816	4013	3815	12.5	CHİ	CHir
405 20040116 15:09 20040116 17:37 20040116 17:37 20040116 17:37 20040116 17:37 20040117 07:07 2.62E-09 1.31E-08 1200 3396 3914 410 20040117 08:24 20040117 07:07 2.62E-09 1.31E-08 1200 3396 4024 415 20040117 08:24 20040117 10:22 20040117 10:26 9.98E-09 1.28E-08 1200 3996 4024 420 20040117 10:22 20040117 11:24 #NV #NV #NV #NV 403 #NV 425 20040117 11:49 20040117 13:58 #NV #NV #NV 400 #NV 430 20040117 16:36 20040117 15:09 #NV #NV #NV 4108 #NV 430 20040117 15:36 20040117 16:35 #NV #NV #NV 4108 #NV 440 20040117 15:36 20040117 16:35 #NV #NV #NV 4138 #NV 430 20040117 15:36 20040117 16:35 #NV #NV #NV 4138 #NV 440 20040117 15:36 20040117 16:35 <td>395</td> <td>400</td> <td>20040116 13:04</td> <td></td> <td>7.53E-09</td> <td>2.54E-08</td> <td>1200</td> <td>1800</td> <td>3848</td> <td>3849</td> <td>4053</td> <td>3868</td> <td>12.6</td> <td>CHİ</td> <td>CHir</td>	395	400	20040116 13:04		7.53E-09	2.54E-08	1200	1800	3848	3849	4053	3868	12.6	CHİ	CHir
410 20040116 17:37 20040117 07:07 2.62E-09 1.31E-08 1200 43200 3944 3970 415 20040117 08:24 20040117 09:56 9.98E-09 1.28E-08 1200 1200 3996 4024 420 20040117 10:22 20040117 11:24 #NV #NV #NV #NV 4043 #NV 425 20040117 11:22 20040117 11:24 #NV #NV #NV 4NV 4043 #NV 430 20040117 14:25 20040117 15:36 4NV #NV #NV 4NV 4138 #NV 430 20040117 15:36 20040117 16:35 #NV #NV #NV 410 2164 313 440 20040117 15:36 20040117 16:35 #NV #NV #NV 4108 #NV 440 20040117 17:50 #NV #NV #NV 4108 4108 4108 4108 4108 4108 4108 4108 4104 430 20040117 15:36 20040117 16:35 #NV #NV #NV 4108 4108 4108 4108	400	405	20040116 15:09	20040116 17:13	6.32E-09	1.00E-08	1200	2700	3896	3914	4115	3916	12.7	CHİ	CHir
415 20040117 08:24 20040117 09:56 9.98E-09 1.28E-08 1200 396 4024 420 20040117 10:22 20040117 11:24 #NV #NV #NV #NV 4043 #NV 425 20040117 11:22 20040117 11:24 #NV #NV #NV #NV 4043 #NV 430 20040117 11:25 20040117 11:53 #NV #NV #NV 4108 #NV 430 20040117 15:36 20040117 16:35 #NV #NV #NV 4108 #NV 440 20040117 17:01 20040117 16:35 #NV #NV #NV 4108 4108 440 20040117 17:01 20040117 17:50 #NV #NV #NV 4108 4108 440 20040117 17:50 #NV #NV #NV 4108 4203 4NV 445 20040117 18:14 20040118 05:35 6.32E-09 1.16E-08 1200 36000 4281 4290	405	410	20040116 17:37	20040117 07:07	2.62E-09	1.31E-08	1200	43200	3944	3970	4170	3965	12.7	CHİ	CHir
420 20040117 10:22 20040117 11:24 #NV #NV #NV #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4043 #NV 4090 #NV 1 4090 #NV 1 4090 #NV 1 4090 #NV 1 4090 #NV 1 4090 #NV 1 4090 #NV 1 4090 #NV 1 4	410	415	20040117 08:24		9.98E-09	1.28E-08	1200	1200	3996	4024	4219	4236	12.8	CHİ	CHir
425 20040117 11:49 20040117 13:58 #NV #NV #NV #NV 4090 #NV 1 430 20040117 14:25 20040117 15:09 #NV #NV #NV 4138 #NV 1 430 20040117 15:36 20040117 16:35 #NV #NV #NV 4108 4186 #NV 1 440 20040117 17:01 20040117 17:50 #NV #NV #NV 4233 #NV 1	415	420	20040117 10:22		NN#	NN#	NN#	NN#	4043	∧N#	NN#	NN#	12.9	I	I
430 20040117 14:25 20040117 15:09 #NV #NV #NV 4138 #NV 140 20040117 177:50 #NV #NV #NV #NV #NV 4233 #NV 1445 20040117 18:14 20040118 05:35 6.32E-09 1.16E-08 1200 36000 4281 4290 1200 4290 1200 4281 4290 10 10 10 10 10 10 10 10 10	420	425	20040117 11:49		NN#	NN#	NN#	NN#	4090	∧N#	NN#	NN#	13.0	I	I
435 20040117 15:36 20040117 16:35 #NV #NV #NV 4186 #NV 436 440 20040117 17:01 20040117 17:50 #NV #NV #NV 4233 #NV 33 445 20040117 18:14 20040118 05:35 6.32E-09 1.16E-08 1200 36000 4281 4290	425	430	20040117 14:25		NN#	NN#	NN#	NN#	4138	∧N#	NN#	NN#	13.0	I	I
440 20040117 17:01 20040117 17:50 #NV #NV #NV #NV 4233 #NV i 445 20040117 18:14 20040118 05:35 6.32E-09 1.16E-08 1200 36000 4281 4290	430	435	20040117 15:36		NN#	NN#	NN#	NN#	4186	∧N#	NN#	NN#	13.1	I	I
445 20040117 18:14 20040118 05:35 6.32E-09 1.16E-08 1200 36000 4281 4290 4	435	440	20040117 17:01		NN#	NN#	NN#	NN#	4233	NN#	NN#	NN#	13.2	I	I
	440	445	20040117 18:14		6.32E-09	1.16E-08	1200	36000	4281	4290	4501	4277	13.3	CHİ	CHir

(m) 450 455 455 465 475 475 505 505 515 510 510 510 510 510 510 51	Date and time for test, start	Date and time for test, stop	ð	å	tp	ٿ	ď	ā	ď	å	Te	Test pha Analyse	Test phases measured Analysed test phases
455 465 465 475 475 475 505 515 516 535 535 535 535 535 535 535 535 535 53	үүүүммдд hh:mm	YYYYMMDD hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	marked bold	bold
455 466 477 470 515 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 510	20040118 08:55	20040118 11:22	9.98E-09	1.57E-08	1200	1200	4330	4346	4556	4361	13.3	CHi	CHir
465 470 571 572 570 575 570 570 575 570 575 570 570 570	20040118 11:46	20040118 13:35	NN#	NN#	NN#	NN#	4379	NN#	NN#	NN#	13.4	I	I
465 470 505 505 570 570 570 570 570 570 570 5	20040118 13:58	20040118 15:48	1.12E-08	1.86E-08	1200	1200	4426	4459	4642	4506	13.5	CHi	CHir
475 475 484 505 515 535 535 535 535 535 535 535 535 53	20040118 16:13	20040118 23:49	1.12E-08	1.52E-08	1200	21600	4475	4496	4691	4477	13.5	CHi	CHir
4 75 4 8 4 8 5 00 5 10 5 10 5 10 5 10 5 10 5 10 5 10	20040119 08:26	20040119 10:47	2.62E-09	9.68E-09	1200	1800	4524	4559	4759	4576	13.6	CHi	CHir
4 88 5 90 5 95 5 90 5 90 5 90 5 90 5 90 5 90	20040119 11:10	20040119 13:00	3.33E-09	4.86E-09	1200	1200	4571	4600	4806	4794	13.7	CHi	I
485 505 505 515 530 545 530 555 565 565 570 570 585 585 585 585 585 580 570 585 585 585 570 570 570 570 570 570 570 570 570 57	20040119 13:25	20040119 15:39	2.50E-09	6.50E-09	1200	1200	4618	4644	4844	4785	13.7	CHi	CHir
490 505 515 515 510 510 510 510 510 510 51	20040119 16:02	20040119 18:00	2.50E-09	6.69E-09	1200	1800	4666	4696	4903	4721	13.8	CHi	CHir
495 500 515 515 535 545 535 565 570 585 586 588 588 588	20040120 08:19	20040120 09:51	2.62E-09	4.67E-09	1200	240	4714	4752	4967	4972	13.9	I	I
500 515 515 515 515 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 510 515 515	20040120 10:17	20040120 12:17	1.42E-09	2.93E-09	1200	2400	4763	4796	4983	5009	13.9	I	I
505 510 515 525 530 550 555 560 570 585 580 585 580 585 580 585 580 570 585 580 570 585 580 570 570 570 570 570 570 570 570 570 57	20040120 12:56	20040120 13:55	NN#	NN#	NN#	NN#	4809	NN#	NN#	NN#	14.0	I	I
510 515 520 525 535 555 580 585 580 585 580 585 580 585 580 585 580 570 570 570 570 570 570 570 570 570 57	20040120 14:24	20040120 16:43	3.87E-09	6.91E-09	1200	2400	4856	4889	5082	4881	14.1	CHi	CHir
515 520 535 545 555 565 585 585 585 585 585 585 585 58	20040120 17:10	20040121 06:42	2.62E-09	4.53E-09	1200	43200	4903	4928	5133	4961	14.1	CHi	CHir
520 525 535 545 555 565 570 585 585 585 585	20040121 08:16	20040121 09:16	NN#	NN#	NN#	NN#	4952	NN#	NN#	NN#	14.2	I	I
525 530 540 555 565 570 585 580 585 580	20040121 09:58	20040121 12:05	1.42E-09	3.31E-09	1200	2400	4999	5041	5249	5342	14.3	I	I
530 545 545 555 560 570 585 580 580 580	20040121 13:01	20040121 14:02	NN#	NN#	NN#	NN#	5050	NN#	NN#	NN#	14.4	I	I
535 545 555 565 570 585 585 585 585	20040121 14:25	20040121 15:30	NN#	NN#	NN#	NN#	5098	NN#	NN#	NN#	14.4	I	I
545 545 555 565 570 585 580 585	20040121 15:54	20040121 18:09	2.62E-09	3.36E-09	1200	1800	5147	5172	5384	5310	14.5	CHi	CHir
545 550 565 565 570 585 580 585	20040122 08:13	20040122 09:13	NN#	NN#	NN#	NN#	5191	NN#	NN#	NN#	14.6	I	I
550 555 565 575 585 580 585	20040122 09:36	20040122 11:42	1.73E-06	1.95E-06	1200	1800	5240	5243	5443	5250	14.6	CHi	CHir
555 560 575 585 585 585	20040122 13:10	20040122 14:55	5.05E-08	5.56E-08	1200	1200	5288	5294	5499	5293	14.7	CHi	CHir
560 570 575 585 585 590	20040122 15:20	20040122 17:00	2.00E-07	2.05E-07	1200	006	5338	5338	5539	5339	14.8	CHi	CHir
565 570 575 580 585 585	20040122 17:25	20040122 19:00	1.21E-05	1.35E-05	1200	1800	5387	5386	5586	5397	14.9	CHi	CHir
570 575 580 585 590	20040123 08:19	20040123 09:36	2.44E-06	2.61E-06	1200	600	5436	5437	5635	5438	14.9	CHi	CHir
575 580 585 590	20040123 10:01	20040123 11:01	NN#	NN#	NN#	NN#	5486	NN#	NN#	NN#	15.0	I	I
580 585 590	20040123 11:27	20040123 13:49	1.42E-09	3.84E-09	1200	1200	5533	5554	5756	5712	15.1	CHir	
585 590	20040123 14:12	20040123 16:09	1.61E-08	2.58E-08	1200	2400	5580	5598	5799	5604	15.1	CHi	CHir
590	20040123 16:33	20040123 18:06	1.37E-08	1.69E-08	1200	1200	5629	5642	5846	5642	15.2	CHI	CHir
	20040124 08:15	20040124 9:41	7.38E-08	7.87E-08	1200	600	5673	5676	5876	5675	15.3	CHI	CHir
590 595 20040124 1	20040124 10:05	20040124 13:02	2.39E-05	4.30E-05	1800	3600	5724	5729	5929	5768	15.4	CHI	CHir

(m)	seclow	for test, start	for test, stop	ŝ	Ī	÷	÷	ŝ	ā	å	2	™ D	Analyse	rest pnases measured Analysed test phases
	(m)	YYYYMMDD hh:mm	түүүүммдд hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	() (marked bold	bold
595	600	20040124 13:30	20040124 15:07	3.70E-08	4.77E-08	1200	1200	5775	5777	5990	5776	15.4	CHi	CHir
600	605	20040124 15:31	20040124 17:02	3.98E-07	4.29E-07	1200	1200	5823	5822	6005	5823	15.5	CHi	CHir
600	605	20040128 10:41	20040128 12:08	4.86E-07	5.21E-07	1200	1200	5804	5811	6009	5813	15.5	CHi	CHir
605	610	20040124 17:26	20040124 18:25	NN#	NN#	NN#	NN#	5869	NN#	NN#	NN#	15.6	I	I
610	615	20040125 08:23	20040125 10:51	6.50E-07	1.18E-06	1200	2400	5915	5922	6120	5973	15.6	CHi	CHir
615	620	20040125 11:16	20040125 12:39	3.77E-07	3.89E-07	1200	1200	5964	5964	6164	5964	15.7	CHi	CHir
620	625	20040125 13:40	20040125 15:19	3.45E-08	4.91E-08	1200	1200	6013	6019	6231	6047	15.8	CHi	CHir
625	630	20040125 15:44	20040125 17:33	2.96E-08	5.99E-08	1200	2100	6061	6084	6279	6152	15.8	CHi	CHir
630	635	20040125 17:56	20040125 18:54	NN#	NN#	NN#	NN#	6109	NN#	NN#	NN#	15.9	I	I
635	640	20040126 08:16	20040126 09:16	NN#	NN#	NN#	NN#	6154	NN#	NN#	NN#	16.0	I	I
640	645	20040126 09:48	20040126 10:47	NN#	NN#	NN#	NN#	6200	NN#	NN#	NN#	16.1	I	I
645	650	20040126 11:16	20040126 12:39	NN#	NN#	NN#	NN#	6249	NN#	NN#	NN#	16.1	I	I
650	655	20040126 13:04	20040126 14:04	NN#	NN#	NN#	NN#	6298	NN#	NN#	NN#	16.2	I	I
655	660	20040126 14:32	20040126 16:08	1.67E-09	1.67E-09	1200	1200	6345	6376	6570	6631	16.3	I	I
660	665	20040126 16:36	20040126 17:35	NN#	NN#	NN#	NN#	6391	NN#	NN#	NN#	16.4	I	I
665	670	20040126 18:01	20040127 05:16	1.10E-09	1.10E-09	1200	36000	6439	6471	6666	6486	16.4	CHİ	CHir
670	675	20040127 08:15	20040127 09:59	2.62E-09	5.00E-09	1200	1200	6485	6505	6710	6558	16.5	CHi	CHir
675	680	20040127 10:26	20040127 12:20	1.37E-08	1.69E-08	1200	1800	6533	6558	6758	6581	16.6	CHi	CHir
680	685	20040127 12:50	20040127 15:39	2.19E-07	2.87E-07	1200	1200	6586	6596	6812	6615	16.7	CHİ	CHir
685	690	20040127 16:07	20040127 17:07	NN#	NN#	NN#	NN#	6632	∧N#	NN#	∧N#	16.7	I	I
690	695	20040127 17:33	20040127 18:32	NN#	NN#	NN#	NN#	6680	∧N#	NN#	∧N#	16.8	I	I
695	700	20040128 08:14	20040128 09:13	NN#	NN#	NN#	NN#	6726	NN#	NN#	NN#	16.9	I	I

Not analysed. Constant head injection phase. Recovery phase following the constant head injection phase. CHi CHi Li Li

1 ▶
(SH01
S
x c
tests
Ę
nt head t∈
he
nt
sta
Ű
č
0
sis
aly
ana
Ĕ
ē
sf
Results from analysis of constant
es
2
Table 7-2. R
6 7
plq
Ца

Interval	Interval position	Stationary flow	flow	Transient analysis	analysis													
		parameters	¢	Flow regime	me	Formatio	Formation parameters	ers									Static conditions	ditions
an	wo	Q/s	Ļ	Perturb.	Recoverv	Ļ	<u>۽</u>	Ļ	ŕ	Ļ	T	T	U	w	dt	dt,	*0	huir
m btoc	m btoc	m²/s	m²/s	Phase	Phase		m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	、 I	min	min	kPa	masl
103	203	1.12E-06	1.46E-06	22	WBS22	5.8E-07	5.0E-06	6.6E-07	1.8E-06	5.0E-06	3.0E-06	1.0E-05	1.27E-09	9.0-	6.1	26.9	1046.2	-0.44
200	300	6.72E-06	8.75E-06	2	WBS22	NN#	6.3E-06	4.2E-06	7.2E-06	6.3E-06	2.0E-06	1.0E-05	7.14E-09	-2.6	9.1	27.3	1985.2	1.05
300	400	1.42E-08	1.85E-08	2	WBS22	NN#	9.7E-06	1.3E-08	6.6E-09	6.6E-09	5.0E-09	2.0E-08	3.44E-10	-0.6	11.8	15.6	2943.2	1.51
400	500	3.67E-09	4.78E-09	22	WBS22	5.0E-09	1.7E-09	4.9E-09	4.9E-10	1.7E-09	3.0E-10	6.0E-09	3.84E-10	0.0	2.4	22.8	3883.7	0.33
500	600	1.84E-06	2.40E-06	2	WBS22	NN#	6.0E-07	1.1E-05	1.0E-06	1.0E-06	4.0E-07	2.0E-05	4.58E-08	-0.8	I	I	4861.6	3.12
600	700	4.85E-08	6.32E-08	2	WBS22	NN#	2.2E-08	1.1E-07	2.0E-08	2.0E-08	1.0E-08	6.0E-07	8.95E-10	-3.3	I	I	5818.2	3.68
700	800	1.61E-08	2.10E-08	2	WBS22	NN#	2.3E-09	7.6E-08	8.7E-09	8.7E-09	2.0E-09	8.0E-08	5.18E-10	0.3	I	I	6790.7	5.95
800	006	7.82E-10	1.02E-09	2	WBS2	NN#	2.2E-10	NN#	9.4E-10	9.4E-10	1.0E-10	3.0E-09	1.55E-10	9.1	I	I	7737.7	6.13
899	666	5.27E-09	6.87E-09	2	WBS22	NN#	3.9E-09	2.4E-09	3.0E-08	3.9E-09	1.0E-09	5.0E-08	2.79E-10	0.0	4.5	23.3	8659.8	5.56
103	123	3.40E-07	3.56E-07	2	WBS22	NN#	3.7E-07	8.0E-08	2.0E-07	2.0E-07	8.0E-08	5.0E-07	2.29E-10	-2.2	21.5	29.4	1040.4	-1.03
123	143	5.05E-08	5.28E-08	22	WBS2	1.3E-08	6.6E-08	NN#	3.2E-07	6.6E-08	1.0E-08	3.0E-07	2.20E-10	-0.1	1.8	18.0	1239.5	-0.15
143	163	6.27E-07	6.56E-07	2	WBS32	NN#	9.6E-07	5.1E-08	2.7E-06	9.6E-07	4.0E-07	2.0E-06	2.17E-11	2.5	0.5	17.0	1431.1	-0.04
163	183	5.20E-08	5.44E-08	2	WBS2	NN#	5.0E-08	NN#	3.5E-07	5.0E-08	4.0E-08	4.0E-07	1.49E-10	0.0	5.1	21.2	1623.1	0.09
183	203	1.58E-08	1.65E-08	ო	WBS22	NN#	1.1E-09	1.0E-08	3.4E-08	3.4E-08	8.0E-09	6.0E-08	2.32E-10	-1.2	I	I	1817.0	0.42
200	220	3.40E-07	3.56E-07	ო	WBS22	NN#	2.6E-08	2.6E-07	5.7E-07	5.7E-07	3.0E-07	9.0E-07	1.71E-09	-2.7	I	I	1978.6	0.38
220	240	4.49E-08	4.69E-08	2	WBS2	NN#	4.0E-08	NN#	5.4E-08	4.0E-08	2.0E-08	7.0E-08	1.12E-10	0.0	0.9	13.6	2166.7	0.11
240	260	2.77E-06	2.90E-06	2	WBS22	NN#	3.5E-06	5.2E-06	4.0E-06	3.5E-06	1.0E-06	6.0E-06	1.97E-09	0.0	1.7	17.8	2361.8	0.56
260	280	1.19E-06	1.24E-06	ო	WBS22	NN#	9.2E-08	1.2E-06	3.9E-06	3.9E-06	1.0E-06	5.0E-06	1.09E-09	-0.1	12.5	17.3	2556.7	0.99
280	300	3.06E-06	3.20E-06	22	WBS22	1.1E-06	2.9E-06	1.3E-06	6.3E-06	2.9E-06	9.0E-07	6.0E-06	4.24E-11	-4.8	I	I	2749.3	1.18
300	320	6.03E-09	6.30E-09	2	WBS22	NN#	3.2E-09	5.6E-09	3.8E-09	3.2E-09	1.0E-09	7.0E-09	1.11E-10	-1.2	0.8	17.9	2943.7	1.57
320	340	3.58E-09	3.74E-09	22	WBS2	3.7E-09	9.3E-10	NN#	2.1E-08	9.3E-10	8.0E-10	1.0E-08	1.00E-10	0.0	0.6	1.6	3127.8	0.91
340	360	8.82E-09	9.22E-09	2	WBS2	NN#	1.0E-08	NN#	6.2E-08	1.0E-08	8.0E-09	7.0E-08	7.26E-11	2.0	0.5	11.2	3325.8	1.66
360	380	1.13E-08	1.18E-08	2	WBS2	NN#	8.7E-09	NN#	4.3E-08	8.7E-09	6.0E-09	5.0E-08	7.66E-11	0.0	4.9	17.9	3517.8	1.81
380	400	1.02E-08	1.07E-08	2	WBS2	NN#	8.1E-09	NN#	2.6E-08	2.6E-08	7.0E-09	4.0E-08	9.04E-11	7.9	14.1	18.6	3710.6	2.06
400	420	6.26E-09	6.55E-09	2	WBS2	NN#	5.1E-09	NN#	4.1E-08	5.1E-09	2.0E-09	1.0E-08	6.26E-11	1.0	2.0	16.6	3900.4	2.03
420	440	5.88E-09	6.15E-09	22	WBS2	3.4E-09	8.5E-09	NN#	4.0E-09	8.5E-09	2.0E-09	1.0E-08	6.08E-11	0.0	0.2	13.7	4092.5	2.23
440	460	8.97E-09	9.39E-09	2	WBS2	NN#	6.5E-09	NN#	3.2E-08	6.5E-09	5.0E-09	4.0E-08	7.84E-11	0.0	4.2	9.9	4286.1	2.59
460	480	5.47E-09	5.72E-09	2	WBS2	NN#	5.6E-09	NN#	4.0E-08	5.6E-09	4.0E-09	4.0E-08	6.25E-11	1.5	0.3	14.4	4476.3	2.59

Interval	Interval position	Stationary flow	flow	Transient	Transient analvsis													
		parameters		i	•	;											;	
				Flow regime	ime	Formatio	Formation parameters	ers									Static conditions	litions
dn	low	Q/s	₽	Perturb.	Recovery	ц,	T_{n}	T _{s1}	T_{s_2}	Ļ	T _{TMIN}	T _{TMAX}	U	ŝ	dt,	dt ₂	*d	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	ı	min	min	kPa	masl
480	500	9.26E-09	9.68E-09	2	WBS2	NN#	1.8E-08	NN#	5.6E-08	1.8E-08	9.0E-09	6.0E-08	4.88E-11	6.9	0.6	14.0	4668.7	2.84
500	520	9.79E-09	1.02E-08	2	WBS2	NN#	1.5E-08	NN#	6.5E-08	1.5E-08	8.0E-09	5.0E-08	5.48E-11	4.4	0.4	17.9	4861.4	3.10
520	540	9.90E-09	1.04E-08	2	WBS2	NN#	2.0E-08	NN#	6.4E-08	2.0E-08	8.0E-09	6.0E-08	5.91E-11	6.7	0.5	15.9	5053.4	3.29
540	560	6.54E-07	6.84E-07	2	WBS22	NN#	5.8E-07	6.6E-07	4.2E-07	5.8E-07	4.0E-07	8.0E-07	7.29E-10	-1.7	0.7	15.0	5244.9	3.42
560	580	1.07E-07	1.11E-07	22	WBS2	4.4E-08	5.4E-07	NN#	6.9E-07	5.4E-07	9.0E-08	8.0E-07	1.73E-10	0.0	1.5	12.7	5439.9	3.90
580	600	1.20E-06	1.25E-06	2	WBS22	NN#	2.8E-07	8.8E-06	4.7E-07	2.8E-07	8.0E-08	8.0E-07	3.84E-08	-2.6	6.7	19.7	5646.1	5.53
600	620	4.05E-08	4.24E-08	2	WBS22	NN#	1.5E-08	4.3E-07	2.3E-08	2.3E-08	8.0E-09	5.0E-08	1.36E-09	-0.4	I	I	5824.1	4.28
620	640	9.88E-09	1.03E-08	2	WBS2	NN#	8.0E-09	NN#	7.2E-09	7.2E-09	5.0E-09	2.0E-08	7.27E-11	-1.0	9.7	18.6	6012.7	4.12
640	660	8.24E-09	8.62E-09	2	WBS2	NN#	1.2E-08	NN#	5.4E-08	1.2E-08	7.0E-09	4.0E-08	4.87E-11	4.0	0.5	8.1	6208.4	4.69
660	680	9.93E-09	1.04E-08	2	WBS2	NN#	9.7E-09	NN#	6.6E-08	9.7E-09	7.0E-09	3.0E-08	6.10E-11	1.1	0.2	14.0	6402.2	5.06
680	200	1.13E-08	1.18E-08	22	WBS22	1.1E-08	3.8E-09	1.5E-08	8.2E-09	8.2E-09	5.0E-09	2.0E-08	3.41E-10	-0.4	I	I	6581.4	3.95
200	720	1.30E-08	1.36E-08	с	WBS32	NN#	9.5E-10	1.1E-09	1.5E-08	1.5E-08	9.0E-09	3.0E-08	8.51E-11	-1.8	25.4	34.7	6778.7	4.73
720	740	1.34E-08	1.40E-08	1.25	WBS12	NN#	4.3E-07	1.6E-07	1.6E-09	1.0E-08	5.0E-09	5.0E-08	1.23E-10	-3.0	I	I	6916.0	-0.59
740	760	9.92E-09	1.04E-08	2	WBS2	NN#	8.3E-09	NN#	6.4E-08	8.3E-09	6.0E-09	3.0E-08	4.57E-11	0.6	2.8	15.1	7163.0	5.29
760	780	9.59E-09	1.00E-08	2	WBS2	∧N#	1.2E-08	NN#	4.6E-08	1.2E-08	8.0E-09	5.0E-08	5.43E-11	2.3	0.4	8.7	7352.1	5.30
780	800	3.81E-09	3.98E-09	7	WBS2	∧N#	1.1E-08	NN#	2.4E-08	1.1E-08	3.0E-09	3.0E-08	7.68E-11	4.4	0.5	3.6	7543.2	5.54
800	820	9.38E-09	9.81E-09	2	WBS2	∧N#	2.5E-08	NN#	4.9E-08	2.5E-08	9.0E-09	5.0E-08	5.00E-11	7.0	0.3	3.8	7732.3	5.58
820	840	1.05E-08	1.10E-08	2	WBS2	NN#	1.7E-08	NN#	4.6E-08	1.7E-08	8.0E-09	5.0E-08	4.34E-11	4.7	0.6	2.8	7921.2	5.65
840	860	3.00E-09	3.14E-09	2	WBS2	NN#	1.1E-08	NN#	2.4E-08	1.1E-08	8.0E-09	4.0E-08	9.31E-11	2.3	0.3	4.6	8109.7	5.71
860	880	5.54E-09	5.80E-09	2	WBS2	NN#	1.6E-08	NN#	3.6E-08	1.6E-08	8.0E-09	4.0E-08	7.04E-11	3.8	0.3	2.3	8301.2	6.13
880	006	9.61E-09	1.01E-08	2	WBS2	NN#	3.1E-08	NN#	5.1E-08	3.1E-08	9.0E-09	6.0E-08	5.65E-11	6.6	0.4	3.2	8487.1	6.02
899	919	6.08E-09	6.36E-09	2	WBS2	∧N#	1.4E-08	NN#	3.9E-08	1.4E-08	8.0E-09	4.0E-08	7.35E-11	2.8	0.2	4.5	8668.0	6.40
919	939	6.44E-09	6.74E-09	2	WBS2	∧N#	1.8E-08	NN#	4.0E-08	1.8E-08	8.0E-09	4.0E-08	6.47E-11	4.2	0.3	5.3	8850.5	6.07
939	959	1.15E-08	1.20E-08	2	WBS2	∧N#	2.2E-08	NN#	8.0E-08	2.2E-08	9.0E-09	4.0E-08	5.09E-11	4.5	0.4	5.0	9033.7	5.88
959	679	1.42E-08	1.48E-08	2	WBS2	NN#	2.5E-08	NN#	6.1E-08	2.5E-08	9.0E-09	5.0E-08	4.39E-11	0.0	0.4	10.2	9221.1	6.17
679	666	7.74E-09	8.09E-09	2	WBS2	∧N#	7.6E-09	NN#	4.5E-08	7.6E-09	4.0E-09	4.0E-08	5.72E-11	-0.4	1.7	3.4	9406.8	6.32
300	305	8.50E-09	7.01E-09	7	WBS2	∧N#	8.0E-09	NN#	5.6E-08	8.0E-09	5.0E-09	2.0E-08	1.87E-11	1.0	0.8	15.1	2935.9	0.77
305	310	8.27E-09	6.83E-09	2	WBS2	∧N#	1.0E-08	NN#	3.7E-08	1.0E-08	7.0E-09	4.0E-08	2.46E-11	2.6	1.1	12.4	2982.8	0.69
310	315	1.02E-08	8.41E-09	7	WBS2	NN#	1.1E-08	NN#	2.2E-08	2.2E-08	8.0E-09	4.0E-08	3.00E-11	7.0	7.3	17.2	3029.1	0.56

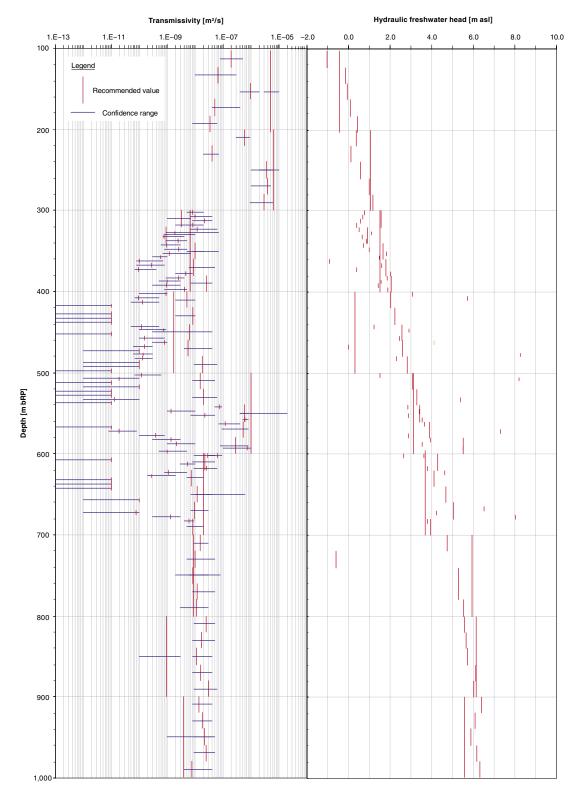
				E Contraction F														
Interval	Interval position	stationary now	IIOW	ransien	I ransient analysis													
		pai ailletei s	_	Flow regime	ime	Formation	on parameters	ers									Static conditions	ditions
dn	low	Q/s	⊾	Perturb.	Recovery	ц Н	T_{f2}	\mathbf{T}_{s_1}	T_{s_2}	Ļ	T _{TMIN}	T	U	ŝ	dt,	dt_2	*d	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	ı	min	min	kPa	masl
315	320	1.66E-09	1.37E-09	2	WBS2	NN#	8.2E-09	NN#	1.5E-08	8.2E-09	2.0E-09	2.0E-08	4.07E-11	3.2	0.3	3.7	3075.1	0.39
320	325	8.19E-09	6.76E-09	2	WBS2	NN#	1.2E-08	NN#	5.3E-08	1.2E-08	7.0E-09	6.0E-08	1.76E-11	4.4	0.2	13.3	3123.8	0.50
325	330	2.45E-09	2.02E-09	2	WBS2	NN#	1.9E-09	NN#	1.3E-08	1.9E-09	9.0E-10	7.0E-08	2.23E-11	0.1	0.5	5.1	3177.4	1.11
330	335	2.34E-09	1.93E-09	22	WBS22	2.3E-9	7.6E-10	NN#	1.3E-08	7.6E-10	7.0E-10	4.0E-09	2.96E-11	0.0	I	I	3220.7	0.66
335	340	2.20E-09	1.82E-09	2	WBS2	NN#	2.5E-09	NN#	1.4E-08	2.5E-09	9.0E-10	5.0E-09	3.03E-11	0.0	0.1	2.2	3270.2	0.86
340	345	1.29E-09	1.07E-09	2	WBS2	NN#	9.5E-10	NN#	5.5E-09	9.5E-10	6.0E-10	3.0E-09	2.44E-11	0.0	0.3	4.1	3316.6	0.73
345	350	9.02E-10	7.45E-10	2	WBS2	NN#	7.3E-10	NN#	2.6E-09	2.6E-09	8.0E-10	5.0E-09	3.98E-11	7.4	I	I	3366.9	1.00
350	355	1.11E-09	9.19E-10	2	WBS2	NN#	1.2E-09	NN#	7.7E-09	1.2E-09	7.0E-10	7.0E-09	3.32E-11	0.0	0.3	4.1	3422.8	1.83
355	360	5.00E-10	4.12E-10	2	WBS2	NN#	8.9E-10	NN#	5.9E-10	5.9E-10	3.0E-10	1.0E-09	3.16E-11	0.5	I	I	3467.0	1.49
360	365	3.68E-10	3.03E-10	2	WBS22	NN#	9.7E-11	5.0E-10	1.0E-10	1.0E-10	8.0E-11	7.0E-10	2.39E-11	0.6	I	I	3491.1	-0.91
365	370	3.83E-10	3.16E-10	2	WBS2	NN#	1.1E-10	NN#	2.7E-10	2.7E-10	8.0E-11	8.0E-10	2.86E-11	0.0	I	I	3563.3	1.60
370	375	3.02E-10	2.50E-10	2	WBS22	NN#	1.7E-10	2.8E-10	9.4E-11	9.4E-11	7.0E-11	4.0E-10	2.21E-11	1.2	I	I	3599.1	0.39
375	380	3.32E-09	2.74E-09	2	WBS2	NN#	2.3E-09	NN#	4.6E-09	4.6E-09	2.0E-09	8.0E-09	2.35E-11	2.9	12.4	18.0	3662.6	2.02
380	385	2.68E-09	2.21E-09	2	WBS22	NN#	1.9E-09	1.3E-09	2.6E-09	2.6E-09	9.0E-10	4.0E-09	2.11E-11	-1.1	28.6	51.8	3708.5	1.85
385	390	9.71E-10	8.02E-10	2	WBS2	NN#	5.3E-10	NN#	1.0E-09	1.0E-09	5.0E-10	3.0E-09	3.46E-11	1.6	I	I	3753.3	1.57
390	395	5.62E-10	4.64E-10	2	WBS22	NN#	2.8E-10	2.4E-10	9.7E-10	9.7E-10	3.0E-10	3.0E-09	1.67E-11	-0.3	I	I	3799.4	1.42
395	400	3.62E-10	2.99E-10	2	WBS22	NN#	8.1E-10	4.2E-10	4.2E-09	4.2E-09	8.0E-10	5.0E-09	5.62E-11	-0.4	I	I	3851.4	1.87
400	405	3.08E-10	2.54E-10	2	WBS2	NN#	1.4E-10	NN#	9.0E-10	9.0E-10	1.0E-10	1.0E-09	2.74E-11	11.2	I	I	3910.8	3.09
405	410	1.28E-10	1.06E-10	2	WBS2	NN#	2.8E-10	NN#	9.7E-01	9.7E-11	7.0E-11	5.0E-10	4.11E-11	-1.3	I	I	3984.1	5.71
410	415	5.02E-10	4.15E-10	2	NN#	NN#	1.3E-10	NN#	NN#	1.3E-10	5.0E-11	5.0E-10	NN#	-1.5	I	I	NN#	NN#
415	420	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
420	425	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
425	430	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
430	435	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
435	440	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
440	445	2.94E-10	2.42E-10	2	WBS22	NN#	6.8E-11	1.2E-09	1.2E-10	1.2E-10	5.0E-11	5.0E-10	1.57E-11	-0.3	I	I	4272.7	1.22
445	450	4.66E-10	3.85E-10	2	WBS2	NN#	2.2E-10	NN#	7.2E-10	7.2E-10	1.0E-10	9.0E-10	2.38E-11	3.5	I	I	4336.8	2.91
450	455	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
455	460	6.02E-10	4.97E-10	2	WBS22	NN#	3.9E-10	5.7E-10	1.6E-10	1.6E-10	1.0E-10	8.0E-10	2.36E-11	-0.3	I	Ι	4427.4	2.45

		;		.	.													
Interval	Interval position	Stationary flow	tlow	ransien	I ransient analysis													
		parameters		Flow regime	ime	Formation	on parameters	ers									Static conditions	ditions
dn	low	Q/s	Ť	Perturb.	Recovery	ц,	T_{n}	T_{s_1}	T_{s_2}	Ļ	T _{TMIN}	T _{TMAX}	U	~	dt, c	dt_2	*d	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	I	min	min	kPa	masl
460	465	5.65E-10	4.66E-10	2	WBS2	NN#	2.6E-10	NN#	8.1E-10	8.1E-10	3.0E-10	1.0E-09	2.38E-11	3.8	1	I	4491.1	4.10
465	470	1.28E-10	1.06E-10	2	WBS2	NN#	9.8E-11	NN#	1.6E-10	1.6E-10	6.0E-11	3.0E-10	2.59E-11	1.7	I	I	4498.2	-0.01
470	475	1.59E-10	1.31E-10	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-10	1.0E-12	1.0E-10	NN#	NN#	I	I	NN#	NN#
475	480	1.23E-10	1.01E-10	2	WBS2	NN#	8.4E-11	NN#	1.4E-10	1.4E-10	6.0E-11	3.0E-10	2.79E-11	-1.8	I	I	4674.3	8.25
480	485	1.18E-10	9.78E-11	2	WBS2	NN#	1.1E-10	NN#	1.3E-10	1.3E-10	7.0E-11	3.0E-10	1.75E-11	1.7	I	I	4663.6	2.32
485	490	1.20E-10	9.90E-11	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-10	1.0E-12	1.0E-10	NN#	NN#	I	I	NN#	NN#
490	495	7.39E-11	6.10E-11	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-10	1.0E-12	1.0E-10	NN#	NN#	I	I	NN#	NN#
495	500	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
500	505	6.02E-10	4.97E-10	NN#	WBS2	NN#	NN#	NN#	1.2E-10	1.2E-10	7.0E-11	6.0E-10	1.51E-11	0.7	I	I	4845.8	1.51
505	510	1.25E-10	1.03E-10	NN#	WBS2	NN#	NN#	NN#	1.9E-11	1.9E-11	1.0E-12	1.0E-10	2.82E-11	2.2	I	I	4958.9	8.20
510	515	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
515	520	6.68E-11	5.52E-11	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-10	1.0E-12	1.0E-10	NN#	NN#	I	I	NN#	NN#
520	525	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
525	530	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
530	535	1.21E-10	9.99E-11	NN#	WBS22	NN#	NN#	2.7E-10	1.3E-11	1.3E-11	1.0E-12	1.0E-10	9.24E-12	-0.4	Ι	I	5168.9	5.36
535	540	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
540	545	8.48E-08	7.00E-08	2	WBS2	NN#	7.9E-08	NN#	7.4E-08	7.4E-08	5.0E-08	9.0E-08	4.01E-11	-0.9	3.7	25.4	5239.3	2.85
545	550	2.42E-09	1.99E-09	2	WBS2	NN#	1.4E-09	NN#	1.1E-08	1.4E-09	1.0E-09	1.0E-08	2.66E-11	-0.1	、 8.0	10.1	5292.4	3.41
550	555	9.77E-09	8.06E-09	с	WBS22	NN#	7.0E-10	5.7E-09	2.3E-08	2.3E-08	7.0E-09	5.0E-08	3.50E-11	0.0	I	I	5334.8	2.89
555	560	5.93E-07	4.89E-07	2	WBS2	NN#	6.8E-07	NN#	6.2E-07	6.2E-07	5.0E-07	8.0E-07	7.93E-10	-1.1	1.6	27.4	5388.9	3.55
560	565	1.21E-07	9.95E-08	7	WBS2	NN#	1.2E-07	NN#	7.7E-07	1.2E-07	7.0E-08	4.0E-07	9.56E-11	0.4	9.0	18.7	5437.6	3.66
565	570	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
570	575	6.88E-11	5.68E-11	NN#	WBS2	NN#	NN#	NN#	1.9E-11	1.9E-11	8.0E-12	8.0E-11	2.06E-11	0.8	I	I	5568.5	7.31
575	580	7.87E-10	6.50E-10	2	WBS22	NN#	1.7E-10	1.5E-09	3.8E-10	3.8E-10	1.0E-10	8.0E-10	2.29E-11	0.0	I	I	5572.6	2.88
580	585	6.58E-10	5.43E-10	7	WBS2	NN#	2.7E-10	NN#	1.4E-09	1.4E-09	3.0E-10	3.0E-09	1.94E-11	8.1	I	I	5630.6	3.95
585	590	3.62E-09	2.99E-09	7	WBS2	NN#	2.2E-09	NN#	1.9E-08	2.2E-09	1.0E-09	1.0E-08	2.10E-11	0.0	3.0	9.7	5674.3	3.55
590	595	1.17E-06	9.68E-07	7	WBS22	NN#	1.5E-07	1.5E-05	7.2E-07	7.2E-07	1.0E-07	1.0E-06	4.05E-08	0.0	I	I	5741.2	5.52
595	600	1.70E-09	1.41E-09	7	WBS2	NN#	1.0E-09	NN#	6.8E-09	1.0E-09	5.0E-10	5.0E-09	3.65E-11	0.0	0.4 ,	10.7	5770.8	3.69
600	605	2.13E-08	1.76E-08	2	WBS22	NN#	2.8E-08	1.6E-08	4.9E-08	I	I	I	1.09E-10	3.1	3.7	13.3	5817.6	3.62

		parameters	<i>(</i> 0	Flow regime	me	Formation	n parameters	ŝrs									Static conditions	ditions
dn	low	Q/s	Ť	Perturb.	Recovery	ŕ	T_2	Ĕ	T _{s2}	Ļ	T	T	U	w	dt,	dt_2	*a	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	I	Ē	min	кРа	masl
600	605	2.41E-08	1.99E-08	7	WBS22	NN#	5.4E-08	1.8E-08	6.5E-08	6.5E-08	3.0E-08	9.0E-08	1.01E-10	0.0	1	I	5808.1	2.65
605	610	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
610	615	3.22E-08	2.66E-08	7	WBS21	NN#	5.2E-09	4.2E-07	1.1E-05	5.2E-09	3.0E-09	1.0E-08	3.75E-10	-4.2	11.4	19.1	NN#	NN#
615	620	1.85E-08	1.53E-08	7	WBS22	NN#	2.6E-08	9.9E-09	5.8E-08	2.6E-08	9.0E-09	6.0E-08	1.19E-11	3.8	0.8	8.6	5962.0	3.80
620	625	1.60E-09	1.32E-09	2	WBS22	NN#	8.3E-10	2.5E-09	1.1E-09	1.1E-09	8.0E-10	5.0E-09	1.94E-11	1.9	6.4	17.7	6017.7	4.63
625	630	1.49E-09	1.23E-09	22	WBS21	8.1E-10	2.7E-10	9.9E-09	1.4E-07	2.7E-10	2.0E-10	2.0E-09	2.96E-11	-2.1	I	I	NN#	∧N#
630	635	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	∧N#
635	640	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
640	645	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
645	650	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
650	655	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
655	660	8.34E-11	6.96E-11	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-10	1.0E-12	1.0E-10	NN#	NN#	I	I	NN#	∧N#
660	665	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
665	670	5.51E-11	4.55E-11	NN#	WBS22	NN#	NN#	6.4E-10	1.8E-11	1.8E-11	1.0E-13	5.0E-11	2.35E-12	1.8	I	I	6463.9	6.50
670	675	1.25E-10	1.03E-10	NN#	WBS2	NN#	NN#	NN#	7.6E-11	7.6E-11	1.0E-12	1.0E-10	1.31E-11	-0.2	I	I	6489.1	4.23
675	680	6.71E-10	5.54E-10	2	WBS2	NN#	2.9E-10	NN#	1.3E-09	1.3E-09	3.0E-10	3.0E-09	2.20E-11	5.3	I	I	6573.9	8.03
680	685	9.97E-09	8.23E-09	2	WBS22	NN#	6.1E-09	4.3E-08	5.4E-09	6.1E-09	4.0E-09	9.0E-09	8.60E-11	-1.0	2.3	13.6	6579.8	3.79
685	069	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	∧N#
690	695	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#
695	200	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	I	I	NN#	NN#

T1 and T2 refer to the transmissivity(s) derived□ reported, in case a two zones composite model was recommended both T1 and T2 are given.

בלהוונים, ווו כמסב מינאס בטוובס כטווילטסווב וווטעכו אמס ובכטווווווניוועכת טטנו דו מווט דב מוב אולבוו.


The recommended transmissivity TT typically refers to the T2 value (far field transmissivity).

2 The parameter p* denoted the static formation p extrapolation.

ო

The flow regime description refers to The recomme □ the flow dimension used in the analysis (1 = linear flow □ was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.

#NV Not analysed.

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

Figure 7-1. Results summary – profiles of Transmissivity and equivalent freshwater head, transmissivities derived from injectiontests, freshwater head extrapolated.

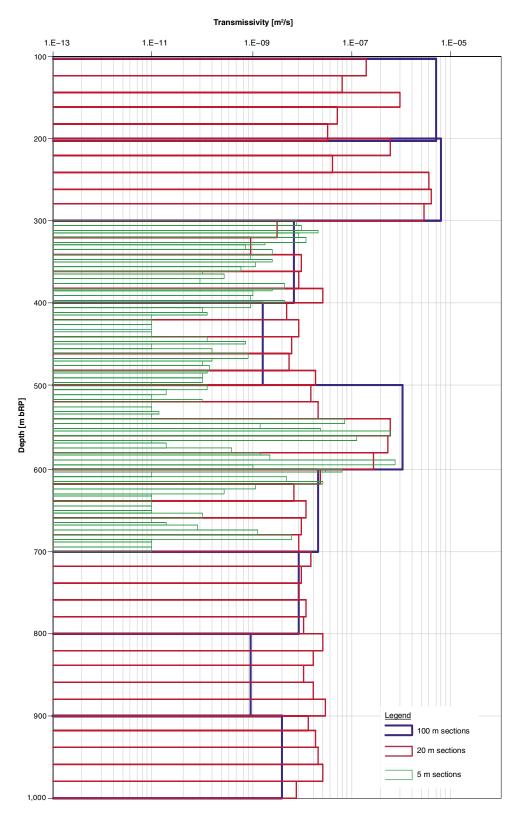


Figure 7-2. Results summary – profile of transmissivity.

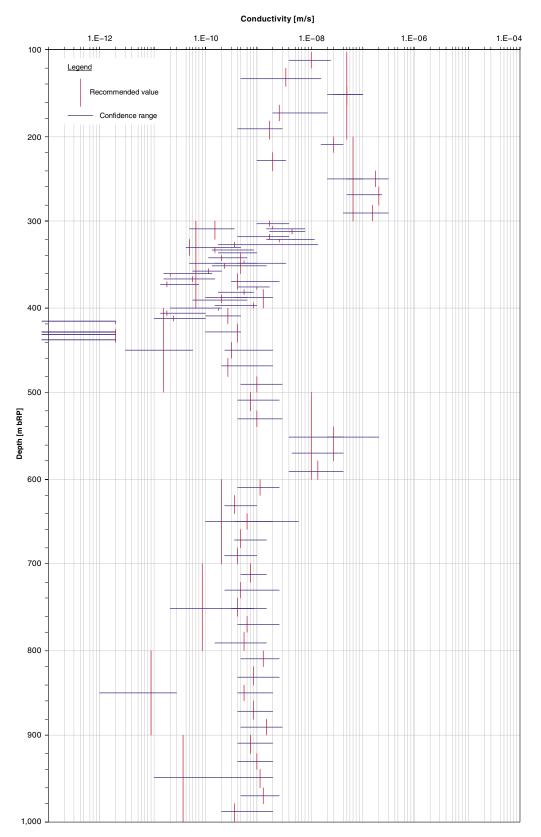


Figure 7-3. Results summary – profile of hydraulic conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that most of the steady state derived transmissivities differ by one order of magnitude or less from the transmissivities derived from the transient analysis.

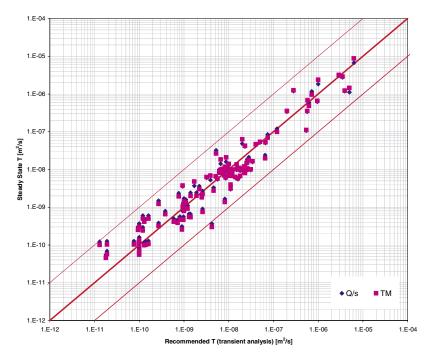


Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to a unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approximately 5E–10 1/Pa. For the calculation of the theoretical wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to three orders of magnitude larger than the theoretical values. A three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by three orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a serried of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

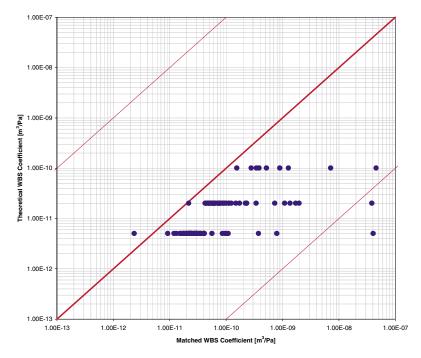


Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.4.7.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described using a skin effect.

In some cases the tests were not analysable due to the fact that the flow rates during the CHi phase were below the range of the flowmeter (< 0.5 mL/min) or because the compliance phase following packer inflation was too long, thus indicating a very low interval transmissivity. In such cases the interval transmissivity was recommended to a value of $1.0\text{E}-11 \text{ m}^2$ /s which was in the same time regarded as the upper boundary of the confidence range. This value is consistent with the observations made during the analysis of the other tests in the borehole (i.e. the transmissivity must be lower than in the cases when the test was analysable).

The transmissivity profile in Figure 7-1 shows in the upper part from 103 to 300 m relatively high transmissivities of 1E–7 to 1E–5 m²/s. From 300 m depth down to the bottom of the hole the transmissivities are quite constant with values in the range of 1E–9 to 1E–8 m²/s. The interval between 500 m and 600 m depth is an exception. It shows a transmissivity of 1E–6 m²/s.

Some shorter intervals show larger transmissivities than the appropriate longer interval (e.g. 800–900 m, 899–999 m). This can be explained with crossflow and connection to the zone above. A connection to the upper zone is very hard to detect.

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.4.6.

The head profile shows a freshwater head for the first zone between 103 and 203 m depth of about -0.5 m asl. Down to 700 m depth, the freshwater head increases continuously by approximately 1 m per 100 m depth. From 700 m to 1,000 m depth the freshwater head is nearly constant at about 5 m to 6 m asl. The profile shows no distinct zones, which means that there is a good vertical connectivity in the formation around the borehole.

It should be noted that the head differences may be explained by salinity differences if we assume that the salinity increases with depth. In this case the freshwater heads would have to increase with depth, what the actual profile shows.

8.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that high skins were observed in sections with transmissivities as low as 1E–9 m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In most of the cases it was possible to get a good match quality by using radial flow geometry. In some cases composite flow models with different flow dimension for each of the zones were used.

9 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp 293–302.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc, Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E J Brill, Leiden II, pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans, Inst. Eng. Australia, Apr 1967, pp 95–100.

SKB, 2001a. Site investigations: Investigation methods and general execution programme. TR-01-29, Svensk Kärnbränslehantering AB.

SKB, 2001b. Geoveteskapligt program för platsundersökning vid Simpevarp. R-01-44, Svensk Kärnbränslehantering AB.

SKB, **2002**. Execution programme for the initial site investigations at Simpevarp. P-02-06, Svensk Kärnbränslehantering AB.

Borehole: KSH01A

APPENDIX 1

File Description Table

HYDROT	ESTI	NG V	VITH	PSS	DRILLHOLE IDENTIFICATIO	N NO.:	KSH01A		
TEST- AN	D FI	LEPR	ото	COL	Testorder dated : 2003-12-04				
Teststart			erval daries	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
09.12.2003	11:00	103	203	KSH01A_0103.00_200312091100.ht2	KSH01A_103-203_031209_1_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
09.12.2003	15:32	200	300	KSH01A_0200.00_200312091532.ht2	KSH01A_200-300_031209_1_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
10.12.2003	13:51	200	300	KSH01A_0200.00_200312101017.ht2	KSH01A_200-300_031209_2_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
10.12.2003	16:33	300	400	KSH01A_0300.00_200312101633.ht2	KSH01A_300-400_031210_1_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
11.12.2003	09:19	400	500	KSH01A_0400.00_200312110919.ht2	KSH01A_400-500_031211_1_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
11.12.2003	13:28	500	600	KSH01A_0500.00_200312111328.ht2	KSH01A_500-600_031211_1_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
11.12.2003	14:57	500	600	KSH01A_0500.00_200312111457.ht2	KSH01A_500-600_031211_2_CHir_Q_r.csv	Injection	21.12.2003	11.12.2003	
11.12.2003	17:44	600	700	KSH01A_0600.00_200312111743.ht2	KSH01A_600-700_031211_1_CHir_Q_r.csv	Injection	21.12.2003	12.12.2003	
12.12.2003	07:06	600	700	KSH01A_0600.00_200312120706.ht2	KSH01A_600-700_031212_2_CHir_Q_r.csv	Injection	21.12.2003	12.12.2003	
12.12.2003	10:02	700	800	KSH01A_0700.00_200312121002.ht2	KSH01A_700-800_031212_1_CHir_Q_r.csv	Injection	21.12.2003	12.12.2003	
12.12.2003	13:59	800	900	KSH01A_0800.00_200312121359.ht2	KSH01A_800-900_031212_1_CHir_Q_r.csv	Injection	21.12.2003	13.12.2003	
13.12.2003	08:56	899	999	KSH01A_0899.00_200312130856.ht2	KSH01A_899-999_031213_1_CHir_Q_r.csv	Injection	21.12.2003	13.12.2003	
13.12.2003	13:28	899	999	KSH01A_0899.00_200312131328.ht2	KSH01A_899-999_031213_2_CHir_Q_r.csv	Injection	21.12.2003	13.12.2003	
14.12.2003	09:18	400	500	KSH01A_0400.00_200312140918.ht2	KSH01A_400-500_031214_2_CHir_Q_r.csv	Injection	21.12.2003	14.12.2003	
15.12.2003	11:03	103	123	KSH01A_0103.00_200312151103.ht2	KSH01A_103-123_031215_1_CHir_Q_r.csv	Injection	21.12.2003	15.12.2003	
15.12.2003	13:10	123	143	KSH01A_0123.00_200312151310.ht2	KSH01A_123-143_031215_1_CHir_Q_r.csv	Injection	21.12.2003	15.12.2003	

HYDROTESTING WITH PSS TEST- AND FILEPROTOCOL					DRILLHOLE IDENTIFICATION NO.: KSH01A Testorder dated : 2003-12-04					
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
15.12.2003	16:09	143	163	KSH01A_0143.00_200312151609.ht2	KSH01A_143-163_031215_1_CHir_Q_r.csv	Injection	21.12.2003	15.12.2003		
15.12.2003	18:09	163	183	KSH01A_0163.00_200312151809.ht2	KSH01A_163-183_031215_1_CHir_Q_r.csv	Injection	21.12.2003	16.12.2003		
16.12.2003	08:19	183	203	KSH01A_0183.00_200312160819.ht2	KSH01A_183-203_031216_1_CHir_Q_r.csv	Injection	21.12.2003	16.12.2003		
16.12.2003	11:13	200	220	KSH01A_0200.00_200312161113.ht2	KSH01A_200-220_031216_1_CHir_Q_r.csv	Injection	21.12.2003	16.12.2003		
16.12.2003	13:37	220	240	KSH01A_0220.00_200312161337.ht2	KSH01A_220-240_031216_1_CHir_Q_r.csv	Injection	21.12.2003	16.12.2003		
16.12.2003	15:34	240	260	KSH01A_0240.00_200312161534.ht2	KSH01A_240-260_031216_1_CHir_Q_r.csv	Injection	21.12.2003	16.12.2003		
16.12.2003	17:29	260	280	KSH01A_0260.00_200312161729.ht2	KSH01A_260-280_031216_1_CHir_Q_r.csv	Injection	21.12.2003	17.12.2003		
17.12.2003	08:16	280	300	KSH01A_0280.00_200312170816.ht2	KSH01A_280-300_031217_1_CHir_Q_r.csv	Injection	21.12.2003	17.12.2003		
17.12.2003	10:41	300	320	KSH01A_0300.00_200312171041.ht2	KSH01A_300-320_031217_1_CHir_Q_r.csv	Injection	21.12.2003	17.12.2003		
17.12.2003	13:27	320	340	KSH01A_0320.00_200312171327.ht2	KSH01A_320-340_031217_1_CHir_Q_r.csv	Injection	21.12.2003	17.12.2003		
17.12.2003	15:37	340	360	KSH01A_0340.00_200312171537.ht2	KSH01A_340-360_031217_1_CHir_Q_r.csv	Injection	21.12.2003	17.12.2003		
17.12.2003	17:31	360	380	KSH01A_0360.00_200312171731.ht2	KSH01A_360-380_031217_1_CHir_Q_r.csv	Injection	21.12.2003	18.12.2003		
18.12.2003	08:09	380	400	KSH01A_0380.00_200312180809.ht2	KSH01A_380-400_031218_1_CHir_Q_r.csv	Injection	21.12.2003	18.12.2003		
18.12.2003	14:53	400	420	KSH01A_0400.00_200312181453.ht2	KSH01A_400-420_031218_1_CHir_Q_r.csv	Injection	21.12.2003	18.12.2003		
18.12.2003	16:45	420	440	KSH01A_0420.00_200312181645.ht2	KSH01A_420-440_031218_1_CHir_Q_r.csv	Injection	21.12.2003	18.12.2003		
19.12.2003	08:00	440	460	KSH01A_0440.00_200312190800.ht2	KSH01A_440-460_031219_1_CHir_Q_r.csv	Injection	21.12.2003	19.12.2003		
19.12.2003	10:00	460	480	KSH01A_0460.00_200312191000.ht2	KSH01A_460-480_031219_1_CHir_Q_r.csv	Injection	21.12.2003	19.12.2003		

HYDROTESTING WITH PSS TEST- AND FILEPROTOCOL					DRILLHOLE IDENTIFICATION NO.: KSH01ATestorder dated : 2003-12-04					
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
19.12.2003	11:53	480	500	KSH01A_0480.00_200312191153.ht2	KSH01A_480-500_031219_1_CHir_Q_r.csv	Injection	21.12.2003	19.12.2003		
19.12.2003	14:13	500	520	KSH01A_0500.00_200312191413.ht2	KSH01A_500-520_031219_1_CHir_Q_r.csv	Injection	21.12.2003	19.12.2003		
19.12.2003	16:11	520	540	KSH01A_0520.00_200312191611.ht2	KSH01A_520-540_031219_1_CHir_Q_r.csv	Injection	21.12.2003	19.12.2003		
19.12.2003	18:09	540	560	KSH01A_0540.00_200312191808.ht2	KSH01A_540-560_031219_1_CHir_Q_r.csv	Injection	21.12.2003	20.12.2003		
20.12.2003	08:13	560	580	KSH01A_0560.00_200312200813.ht2	KSH01A_560-580_031220_1_CHir_Q_r.csv	Injection	21.12.2003	20.12.2003		
20.12.2003	10:22	580	600	KSH01A_0580.00_200312201022.ht2	KSH01A_580-600_031220_1_CHir_Q_r.csv	Injection	21.12.2003	20.12.2003		
20.12.2003	14:47	600	620	KSH01A_0600.00_200312201447.ht2	KSH01A_600-620_031220_1_CHir_Q_r.csv	Injection	21.12.2003	20.12.2003		
07.01.2004	13:39	620	640	KSH01A_0620.00_200401071339.ht2	KSH01A_620-640_040107_1_CHir_Q_r.csv	Injection	29.01.2004	07.01.2004		
07.01.2004	15:44	640	660	KSH01A_0640.00_200401071544.ht2	KSH01A_640-660_040107_1_CHir_Q_r.csv	Injection	29.01.2004	07.01.2004		
07.01.2004	17:43	660	680	KSH01A_0660.00_200401071743.ht2	KSH01A_660-680_040107_1_CHir_Q_r.csv	Injection	29.01.2004	08.01.2004		
08.01.2004	08:27	680	700	KSH01A_0680.00_200401080827.ht2	KSH01A_680-700_040108_1_CHir_Q_r.csv	Injection	29.01.2004	08.01.2004		
08.01.2004	10:36	700	720	KSH01A_0700.00_200401081036.ht2	KSH01A_700-720_040108_1_CHir_Q_r.csv	Injection	29.01.2004	08.01.2004		
08.01.2004	12:59	720	740	KSH01A_0720.00_200401081259.ht2	KSH01A_720-740_040108_1_CHir_Q_r.csv	Injection	29.01.2004	08.01.2004		
08.01.2004	15:31	740	760	KSH01A_0740.00_200401081531.ht2	KSH01A_740-760_040108_1_CHir_Q_r.csv	Injection	29.01.2004	08.01.2004		
08.01.2004	17:34	760	780	KSH01A_0760.00_200401081734.ht2	KSH01A_760-780_040108_1_CHir_Q_r.csv	Injection	29.01.2004	09.01.2004		
09.01.2004	08:24	780	800	KSH01A_0780.00_200401090824.ht2	KSH01A_780-800_040109_1_CHir_Q_r.csv	Injection	29.01.2004	09.01.2004		

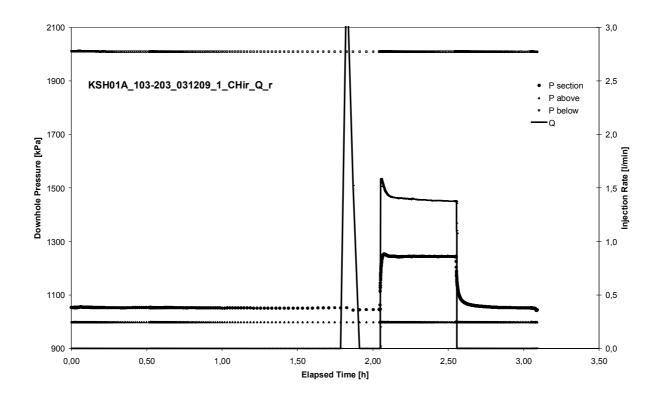
HYDROTESTING WITH PSS TEST- AND FILEPROTOCOL					DRILLHOLE IDENTIFICATION NO.: KSH01ATestorder dated : 2003-12-04					
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
09.01.2004	10:29	800	820	KSH01A_0800.00_200401091029.ht2	KSH01A_800-820_040109_1_CHir_Q_r.csv	Injection	29.01.2004	09.01.2004		
09.01.2004	12:51	820	840	KSH01A_0820.00_200401091251.ht2	KSH01A_820-840_040109_1_CHir_Q_r.csv	Injection	29.01.2004	09.01.2004		
09.01.2004	15:30	840	860	KSH01A_0840.00_200401091530.ht2	KSH01A_840-860_040109_1_CHir_Q_r.csv	Injection	29.01.2004	09.01.2004		
09.01.2004	17:43	860	880	KSH01A_0860.00_200401091743.ht2	KSH01A_860-880_040109_1_CHir_Q_r.csv	Injection	29.01.2004	10.01.2004		
10.01.2004	08:30	880	900	KSH01A_0880.00_200401100830.ht2	KSH01A_880-900_040110_1_CHir_Q_r.csv	Injection	29.01.2004	10.01.2004		
10.01.2004	10:38	899	919	KSH01A_0899.00_200401101038.ht2	KSH01A_899-919_040110_1_CHir_Q_r.csv	Injection	29.01.2004	10.01.2004		
10.01.2004	13:13	919	939	KSH01A_0919.00_200401101313.ht2	KSH01A_919-939_040110_1_CHir_Q_r.csv	Injection	29.01.2004	10.01.2004		
10.01.2004	15:06	939	959	KSH01A_0939.00_200401101506.ht2	KSH01A_939-959_040110_1_CHir_Q_r.csv	Injection	29.01.2004	10.01.2004		
10.01.2004	16:59	959	979	KSH01A_0959.00_200401101659.ht2	KSH01A_959-979_040110_1_CHir_Q_r.csv	Injection	29.01.2004	11.01.2004		
11.01.2004	08:23	979	999	KSH01A_0979.00_200401110823.ht2	KSH01A_979-999_040111_1_CHir_Q_r.csv	Injection	29.01.2004	11.01.2004		
12.01.2004	16:06	300	305	KSH01A_0300.00_200401121606.ht2	KSH01A_300-305_040112_1_CHir_Q_r.csv	Injection	29.01.2004	12.01.2004		
12.01.2004	17:53	305	310	KSH01A_0305.00_200401121753.ht2	KSH01A_305-310_040112_1_CHir_Q_r.csv	Injection	29.01.2004	13.01.2004		
13.01.2004	08:36	310	315	KSH01A_0310.00_200401130836.ht2	KSH01A_310-315_040113_1_CHir_Q_r.csv	Injection	29.01.2004	13.01.2004		
13.01.2004	10:36	315	320	KSH01A_0315.00_200401131036.ht2	KSH01A_315-320_040113_1_CHir_Q_r.csv	Injection	29.01.2004	13.01.2004		
13.01.2004	14:11	320	325	KSH01A_0320.00_200401131411.ht2	KSH01A_320-325_040113_1_CHir_Q_r.csv	Injection	29.01.2004	13.01.2004		
13.01.2004	15:57	325	330	KSH01A_0325.00_200401131557.ht2	KSH01A_325-330_040113_1_CHir_Q_r.csv	Injection	29.01.2004	13.01.2004		

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATIO	N NO.:]	KSH01A			
TEST- AN	D FI	LEPR	ото	COL	Testorder dated : 2003-12-04					
Teststart		Interval boundaries		Name of Datafiles T		Testtype	Copied to	Plotted	Sign.	
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
13.01.2004	17:41	330	335	KSH01A_0330.00_200401131741.ht2	KSH01A_330-335_040113_1_CHir_Q_r.csv	Injection	29.01.2004	14.01.2004		
14.01.2004	08:15	335	340	KSH01A_0335.00_200401140815.ht2	KSH01A_335-340_040114_1_CHir_Q_r.csv	Injection	29.01.2004	14.01.2004		
14.01.2004	10:08	340	345	KSH01A_0340.00_200401141008.ht2	KSH01A_340-345_040114_1_CHir_Q_r.csv	Injection	29.01.2004	14.01.2004		
14.01.2004	12:09	345	350	KSH01A_0345.00_200401141209.ht2	KSH01A_345-350_040114_1_CHir_Q_r.csv	Injection	29.01.2004	14.01.2004		
14.01.2004	14:28	350	355	KSH01A_0350.00_200401141428.ht2	KSH01A_350-355_040114_1_CHir_Q_r.csv	Injection	29.01.2004	14.01.2004		
14.01.2004	16:25	355	360	KSH01A_0355.00_200401141625.ht2	KSH01A_355-360_040114_1_CHir_Q_r.csv	Injection	29.01.2004	15.01.2004		
15.01.2004	08:27	360	365	KSH01A_0360.00_200401150827.ht2	KSH01A_360-365_040115_1_CHir_Q_r.csv	Injection	29.01.2004	15.01.2004		
15.01.2004	11:01	365	370	KSH01A_0365.00_200401151101.ht2	KSH01A_365-370_040115_1_CHir_Q_r.csv	Injection	29.01.2004	15.01.2004		
15.01.2004	13:29	370	375	KSH01A_0370.00_200401151329.ht2	KSH01A_370-375_040115_1_CHir_Q_r.csv	Injection	29.01.2004	15.01.2004		
15.01.2004	16:10	375	380	KSH01A_0375.00_200401151610.ht2	KSH01A_375-380_040115_1_CHir_Q_r.csv	Injection	29.01.2004	15.01.2004		
15.01.2004	18:06	380	385	KSH01A_0380.00_200401151806.ht2	KSH01A_380-385_040115_1_CHir_Q_r.csv	Injection	29.01.2004	16.01.2004		
16.01.2004	08:24	385	390	KSH01A_0385.00_200401160824.ht2	KSH01A_385-390_040116_1_CHir_Q_r.csv	Injection	29.01.2004	16.01.2004		
16.01.2004	10:32	390	395	KSH01A_0390.00_200401161032.ht2	KSH01A_390-395_040116_1_CHir_Q_r.csv	Injection	29.01.2004	16.01.2004		
16.01.2004	13:04	395	400	KSH01A_0395.00_200401161304.ht2	KSH01A_395-400_040116_1_CHir_Q_r.csv	Injection	29.01.2004	16.01.2004		
16.01.2004	15:09	400	405	KSH01A_0400.00_200401161509.ht2	KSH01A_400-405_040116_1_CHir_Q_r.csv	Injection	29.01.2004	16.01.2004		
16.01.2004	17:37	405	410	KSH01A_0405.00_200401161737.ht2	KSH01A_405-410_040116_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		

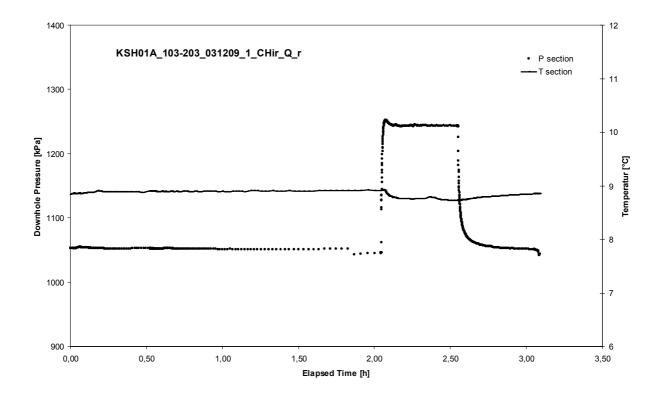
HYDROT	ESTI	NG V	VITH	PSS	DRILLHOLE IDENTIFICATIO	N NO.:]	KSH01A			
TEST- AND FILEPROTOCOL					Testorder dated : 2003-12-04					
Teststart		Interval boundaries		Name of Datafiles		Testtype Copied	Copied to	Plotted	Sign.	
Date	Time	Upper Lower		(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
17.01.2004	08:24	410	415	KSH01A_0410.00_200401170824.ht2	KSH01A_410-415_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	10:22	415	420	KSH01A_0415.00_200401171022.ht2	KSH01A_415-420_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	11:49	420	425	KSH01A_0420.00_200401171149.ht2	KSH01A_420-425_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	14:25	425	430	KSH01A_0425.00_200401171425.ht2	KSH01A_425-430_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	15:36	430	435	KSH01A_0430.00_200401171536.ht2	KSH01A_430-435_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	17:01	435	440	KSH01A_0435.00_200401171701.ht2	KSH01A_435-440_040117_1_CHir_Q_r.csv	Injection	29.01.2004	17.01.2004		
17.01.2004	18:14	440	445	KSH01A_0440.00_200401171814.ht2	KSH01A_440-445_040117_1_CHir_Q_r.csv	Injection	29.01.2004	18.01.2004		
18.01.2004	08:55	445	450	KSH01A_0445.00_200401180855.ht2	KSH01A_445-450_040118_1_CHir_Q_r.csv	Injection	29.01.2004	18.01.2004		
18.01.2004	11:46	450	455	KSH01A_0450.00_200401181146.ht2	KSH01A_450-455_040118_1_CHir_Q_r.csv	Injection	29.01.2004	18.01.2004		
18.01.2004	13:58	455	460	KSH01A_0455.00_200401181358.ht2	KSH01A_455-460_040118_1_CHir_Q_r.csv	Injection	29.01.2004	18.01.2004		
18.01.2004	16:13	460	465	KSH01A_0460.00_200401181613.ht2	KSH01A_460-465_040118_1_CHir_Q_r.csv	Injection	29.01.2004	19.01.2004		
19.01.2004	08:24	465	470	KSH01A_0465.00_200401190826.ht2	KSH01A_465-470_040119_1_CHir_Q_r.csv	Injection	29.01.2004	19.01.2004		
19.01.2004	11:10	470	475	KSH01A_0470.00_200401191110.ht2	KSH01A_470-475_040119_1_CHir_Q_r.csv	Injection	29.01.2004	19.01.2004		
19.01.2004	13:25	475	480	KSH01A_0475.00_200401191325.ht2	KSH01A_475-480_040119_1_CHir_Q_r.csv	Injection	29.01.2004	19.01.2004		
19.01.2004	16:02	480	485	KSH01A_0480.00_200401191602.ht2	KSH01A_480-485_040119_1_CHir_Q_r.csv	Injection	29.01.2004	19.01.2004		
20.01.2004	08:19	485	490	KSH01A_0485.00_200401200819.ht2	KSH01A_485-490_040120_1_CHir_Q_r.csv	Injection	29.01.2004	20.01.2004		

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATIO	N NO.:	KSH01A						
TEST- AND FILEPROTOCOL					Testorder dated : 2003-12-04								
Teststart		Interval boundaries		Name	Name of Datafiles T		Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)					
20.01.2004	10:17	490	495	KSH01A_0490.00_200401201017.ht2	KSH01A_490-495_040120_1_CHir_Q_r.csv	Injection	29.01.2004	20.01.2004					
20.01.2004	12:56	495	500	KSH01A_0495.00_200401201256.ht2	KSH01A_495-500_040120_1_CHir_Q_r.csv	Injection	29.01.2004	20.01.2004					
20.01.2004	14:24	500	505	KSH01A_0500.00_200401201424.ht2	KSH01A_500-505_040120_1_CHir_Q_r.csv	Injection	29.01.2004	20.01.2004					
20.01.2004	17:10	505	510	KSH01A_0505.00_200401201710.ht2	KSH01A_505-510_040120_1_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	08:16	510	515	KSH01A_0510.00_200401210816.ht2	KSH01A_510-515_040121_1_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	09:49	515	520	KSH01A_0515.00_200401210949.ht2	KSH01A_515-520_040121_1_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	09:58	515	520	KSH01A_0515.00_200401210958.ht2	KSH01A_515-520_040121_2_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	13:01	520	525	KSH01A_0520.00_200401211301.ht2	KSH01A_520-525_040121_1_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	14:25	525	530	KSH01A_0525.00_200401211425.ht2	KSH01A_525-530_040121_1_CHir_Q_r.csv	Injection	29.01.2004	21.01.2004					
21.01.2004	15:54	530	535	KSH01A_0530.00_200401211554.ht2	KSH01A_530-535_040121_1_CHir_Q_r.csv	Injection	29.01.2004	22.01.2004					
22.01.2004	08:13	535	540	KSH01A_0535.00_200401220813.ht2	KSH01A_535-540_040122_1_CHir_Q_r.csv	Injection	29.01.2004	22.01.2004					
22.01.2004	09:36	540	545	KSH01A_0540.00_200401220936.ht2	KSH01A_540-545_040122_1_CHir_Q_r.csv	Injection	29.01.2004	22.01.2004					
22.01.2004	13:10	545	550	KSH01A_0545.00_200401221310.ht2	KSH01A_545-550_040122_1_CHir_Q_r.csv	Injection	29.01.2004	22.01.2004					
22.01.2004	15:20	550	555	KSH01A_0550.00_200401221520.ht2	KSH01A_550-555_040122_1_CHir_Q_r.csv	Injection	29.01.2004	22.01.2004					
22.01.2004	17:25	555	560	KSH01A_0555.00_200401221725.ht2	KSH01A_555-560_040122_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004					
23.01.2004	08:19	560	565	KSH01A_0560.00_200401230819.ht2	KSH01A_560-565_040123_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004					

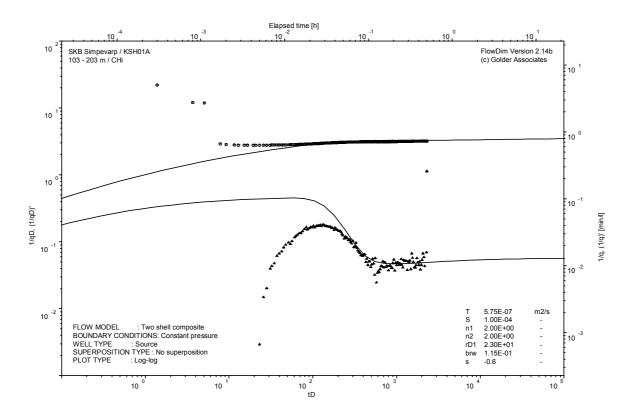
HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATIO	N NO.:]	KSH01A			
TEST- AN	D FI	LEPR	ото	COL	Testorder dated : 2003-12-04					
Teststart		Interval boundaries		Name	Name of Datafiles 7		Copied to	Plotted	Sign.	
Date	Time	Upper Lower		(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
23.01.2004	10:01	565	570	KSH01A_0565.00_200401231001.ht2	KSH01A_565-570_040123_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004		
23.01.2004	11:27	570	575	KSH01A_0570.00_200401231127.ht2	KSH01A_570-575_040123_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004		
23.01.2004	14:12	575	580	KSH01A_0575.00_200401231412.ht2	KSH01A_575-580_040123_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004		
23.01.2004	16:33	580	585	KSH01A_0580.00_200401231633.ht2	KSH01A_580-585_040123_1_CHir_Q_r.csv	Injection	29.01.2004	23.01.2004		
24.01.2004	08:15	585	590	KSH01A_0585.00_200401240815.ht2	KSH01A_585-590_040124_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004		
24.01.2004	10:05	590	595	KSH01A_0590.00_200401241005.ht2	KSH01A_590-595_040124_1_CHir_Q_r.csv	Injection	29.01.2004	24.01.2004		
24.01.2004	13:30	595	600	KSH01A_0595.00_200401241330.ht2	KSH01A_595-600_040124_1_CHir_Q_r.csv	Injection	29.01.2004	24.01.2004		
24.01.2004	15:31	600	605	KSH01A_0600.00_200401241531.ht2	KSH01A_600-605_040124_1_CHir_Q_r.csv	Injection	29.01.2004	24.01.2004		
24.01.2004	17:26	605	610	KSH01A_0605.00_200401241726.ht2	KSH01A_605-610_040124_1_CHir_Q_r.csv	Injection	29.01.2004	25.01.2004		
25.01.2004	08:23	610	615	KSH01A_0610.00_200401250823.ht2	KSH01A_610-615_040125_1_CHir_Q_r.csv	Injection	29.01.2004	25.01.2004		
25.01.2004	11:16	615	620	KSH01A_0615.00_200401251116.ht2	KSH01A_615-620_040125_1_CHir_Q_r.csv	Injection	29.01.2004	25.01.2004		
25.01.2004	13:40	620	625	KSH01A_0620.00_200401251340.ht2	KSH01A_620-625_040125_1_CHir_Q_r.csv	Injection	29.01.2004	25.01.2004		
25.01.2004	15:44	625	630	KSH01A_0625.00_200401251544.ht2	KSH01A_625-630_040125_1_CHir_Q_r.csv	Injection	29.01.2004	25.01.2004		
25.01.2004	17:56	630	635	KSH01A_0630.00_200401251756.ht2	KSH01A_630-635_040125_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004		
26.01.2004	08:16	635	640	KSH01A_0635.00_200401260816.ht2	KSH01A_635-640_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004		
26.01.2004	09:48	640	645	KSH01A_0640.00_200401260948.ht2	KSH01A_640-645_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004		

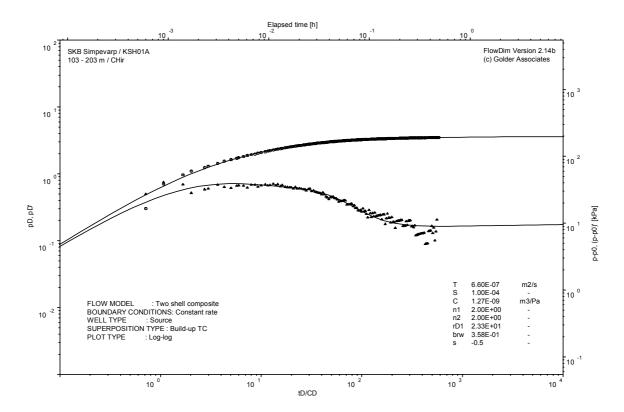

HYDROT	ESTI	NG W	/ITH	PSS	DRILLHOLE IDENTIFICATIO	N NO.:]	.: KSH01A					
TEST- AND FILEPROTOCOL					Testorder dated : 2003-12-04							
Teststart		Interval boundaries		Name	of Datafiles	Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)				
26.01.2004	11:16	645	650	KSH01A_0645.00_200401261116.ht2	KSH01A_645-650_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004				
26.01.2004	13:04	650	655	KSH01A_0650.00_200401261304.ht2	KSH01A_650-655_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004				
26.01.2004	14:32	655	660	KSH01A_0655.00_200401261432.ht2	KSH01A_655-660_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004				
26.01.2004	16:36	660	665	KSH01A_0660.00_200401261636.ht2	KSH01A_660-665_040126_1_CHir_Q_r.csv	Injection	29.01.2004	26.01.2004				
26.01.2004	18:01	665	670	KSH01A_0665.00_200401261801.ht2	KSH01A_665-670_040126_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004				
27.01.2004	08:15	670	675	KSH01A_0670.00_200401270815.ht2	KSH01A_670-675_040127_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004				
27.01.2004	10:26	675	680	KSH01A_0675.00_200401271026.ht2	KSH01A_675-680_040127_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004				
27.01.2004	12:50	680	685	KSH01A_0680.00_200401271250.ht2	KSH01A_680-685_040127_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004				
27.01.2004	16:07	685	690	KSH01A_0685.00_200401271607.ht2	KSH01A_685-690_040127_1_CHir_Q_r.csv	Injection	29.01.2004	27.01.2004				
27.01.2004	17:33	690	695	KSH01A_0690.00_200401271733.ht2	KSH01A_690-695_040127_1_CHir_Q_r.csv	Injection	29.01.2004	28.01.2004				
28.01.2004	08:14	695	700	KSH01A_0695.00_200401280814.ht2	KSH01A_695-700_040128_1_CHir_Q_r.csv	Injection	29.01.2004	28.01.2004				
28.01.2004	10:41	600	605	KSH01A_0600.00_200401281041.ht2	KSH01A_600-605_040128_2_CHir_Q_r.csv	Injection	29.01.2004	28.01.2004				

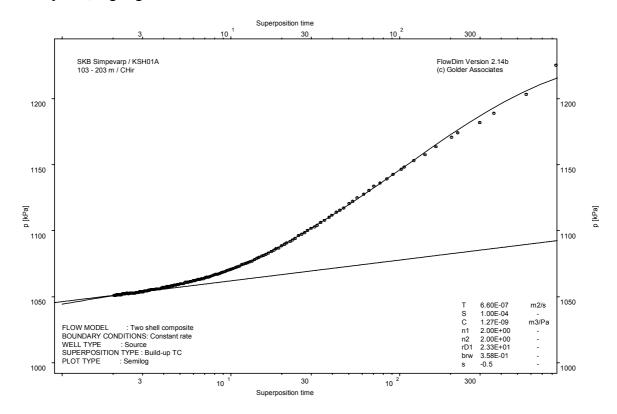
Borehole: KLX02


APPENDIX 2

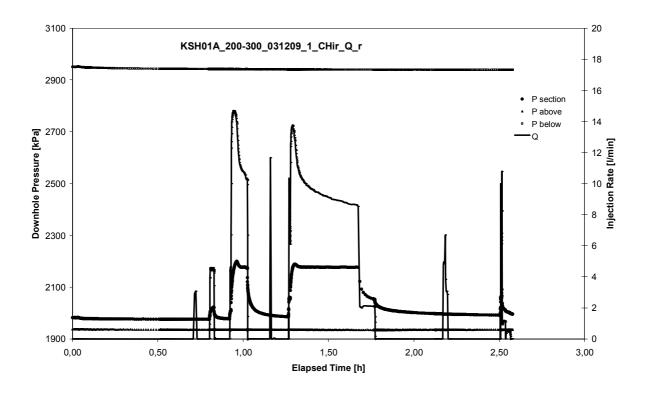
Test Analyses Diagrams


Test 103 – 203 m

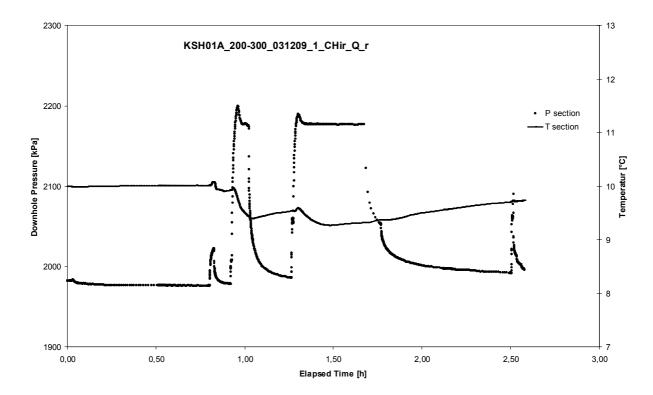

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

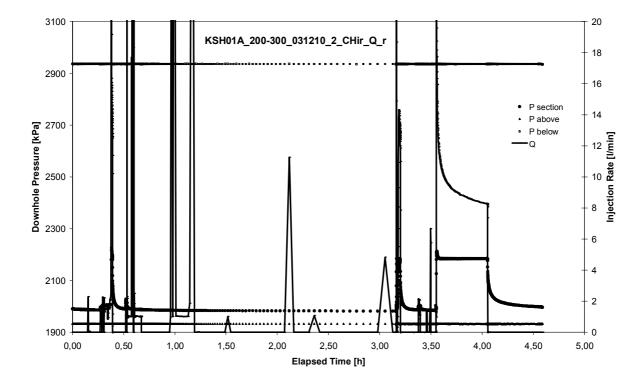
CHI phase; log-log match

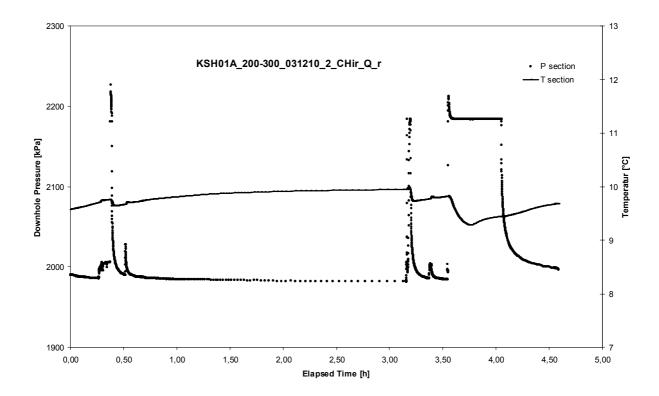


CHIR phase; log-log match

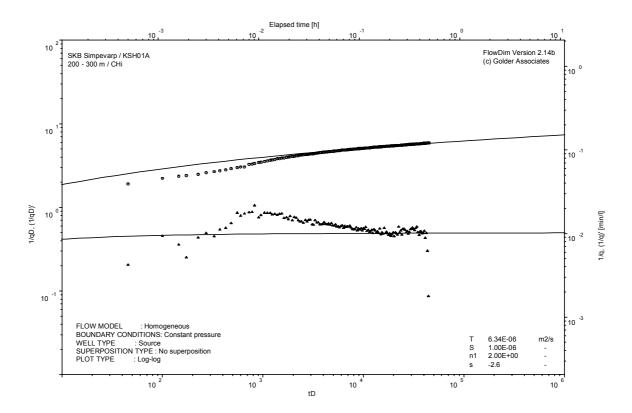


CHIR phase; HORNER match

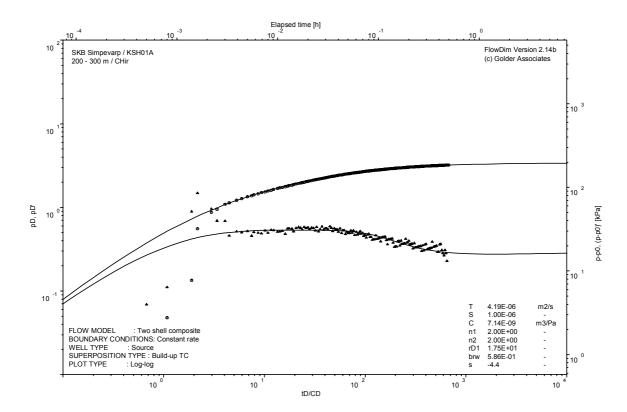

Test 200 – 300 m


Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)



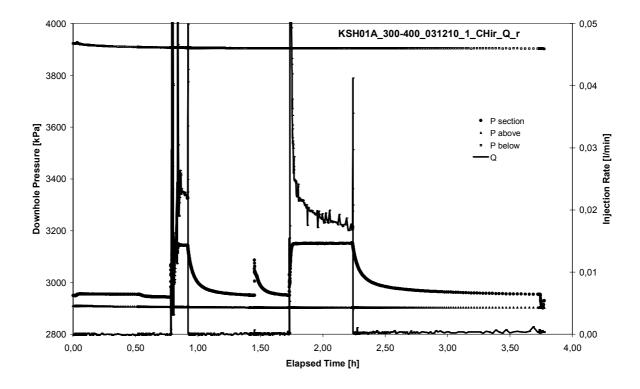
Pressure and flow rate vs. time; cartesian plot (analysed)



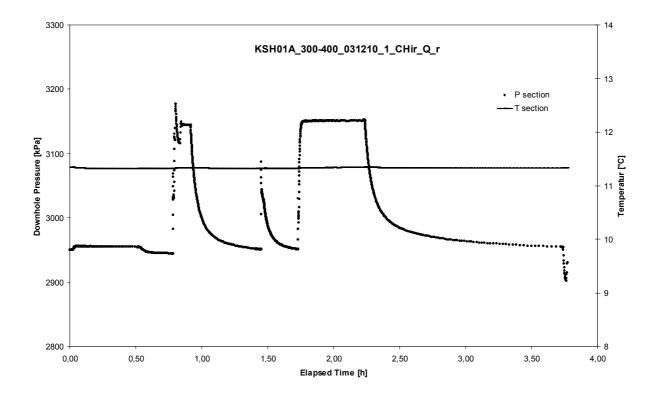
Interval pressure and temperature vs. time; cartesian plot (analysed)

Page 2-2/3

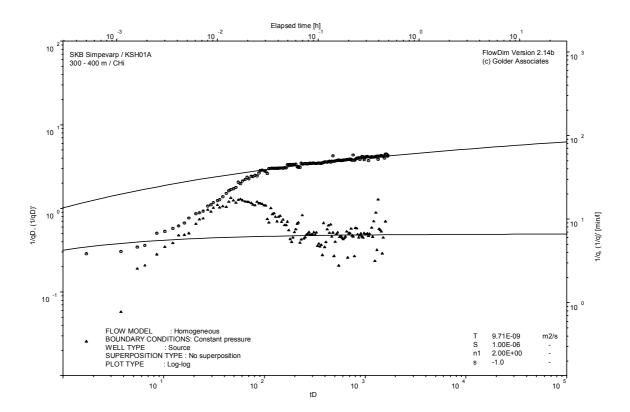
CHI phase; log-log match

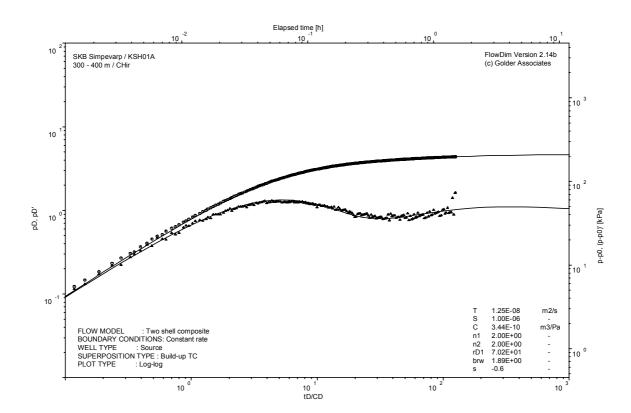


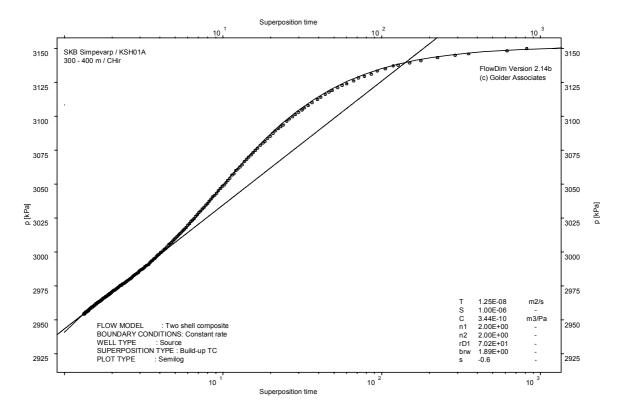
CHIR phase; log-log match



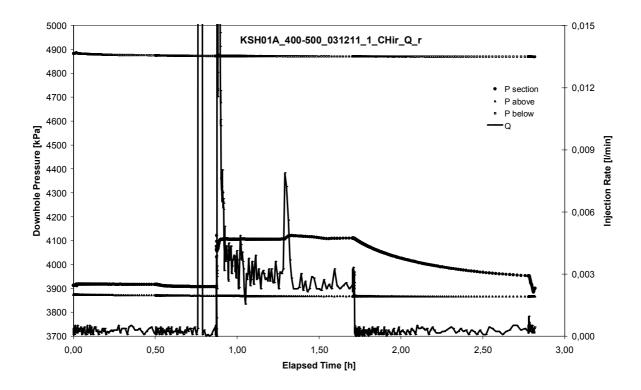
CHIR phase; HORNER match


Test 300 – 400 m

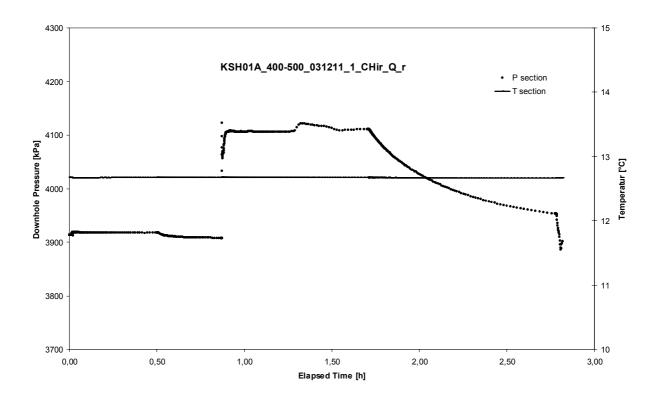

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

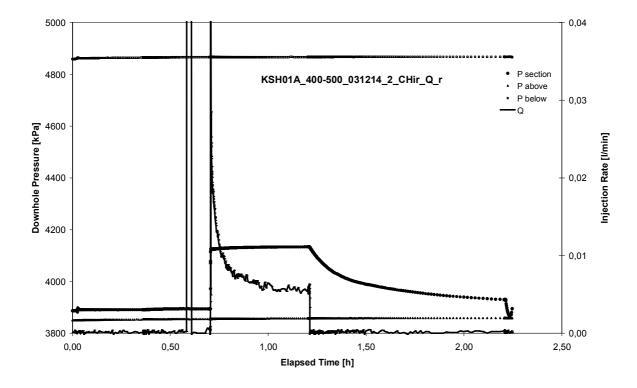
CHI phase; log-log match

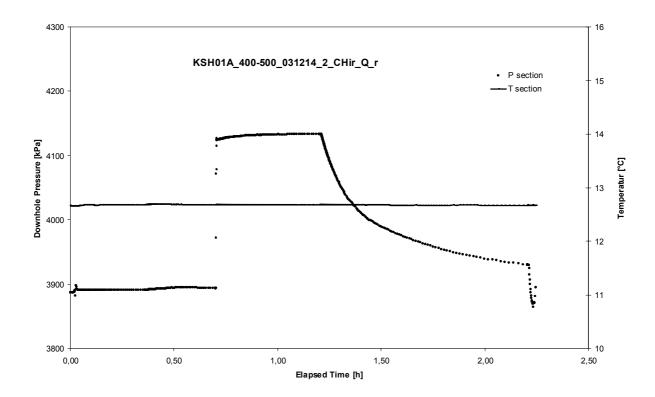


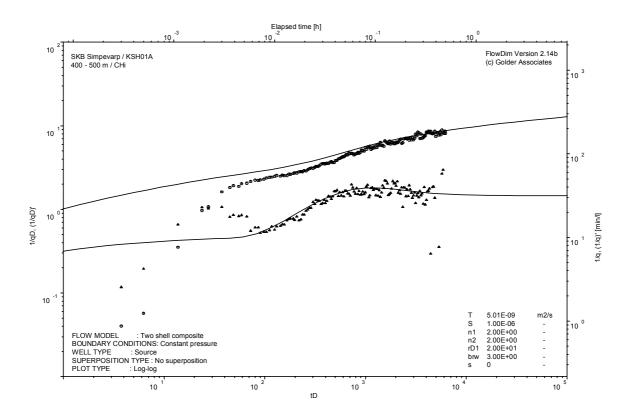
CHIR phase; log-log match

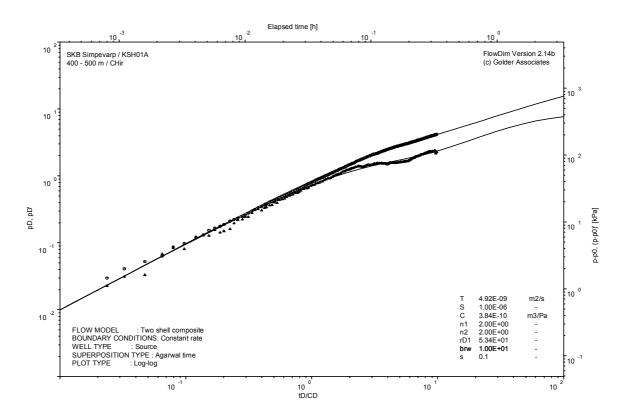


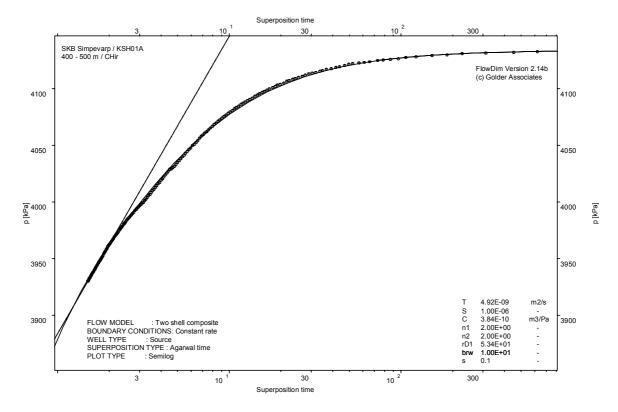
CHIR phase; HORNER match


Test 400 – 500 m

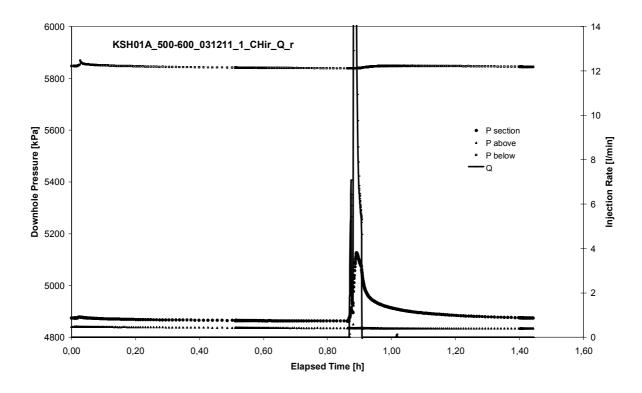

Pressure and flow rate vs. time; cartesian plot (test repeated)


Interval pressure and temperature vs. time; cartesian plot (test repeated)

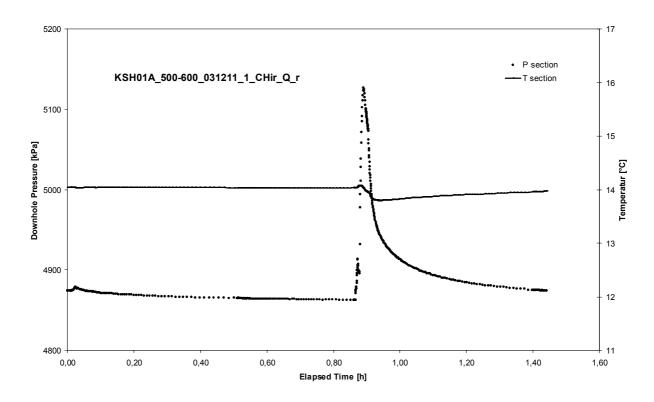

Pressure and flow rate vs. time; cartesian plot (analysed)


Interval pressure and temperature vs. time; cartesian plot (analysed)

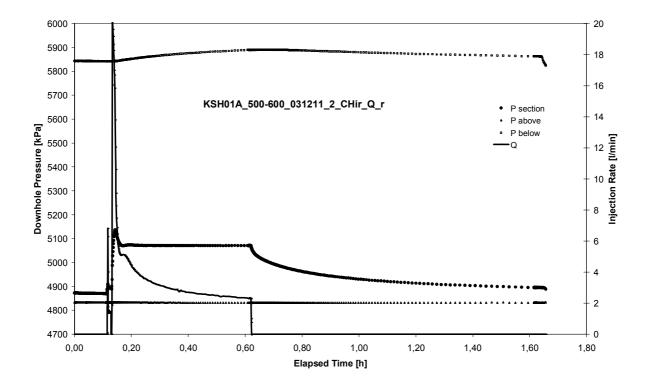
CHI phase; log-log match

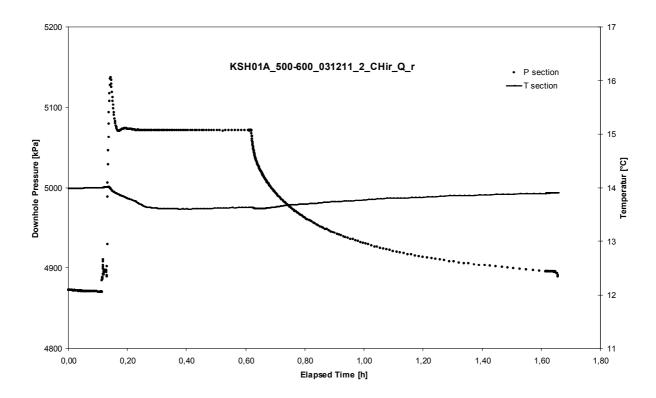


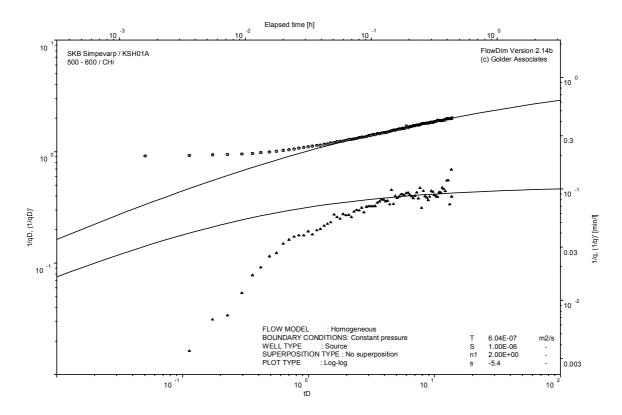
CHIR phase; log-log match

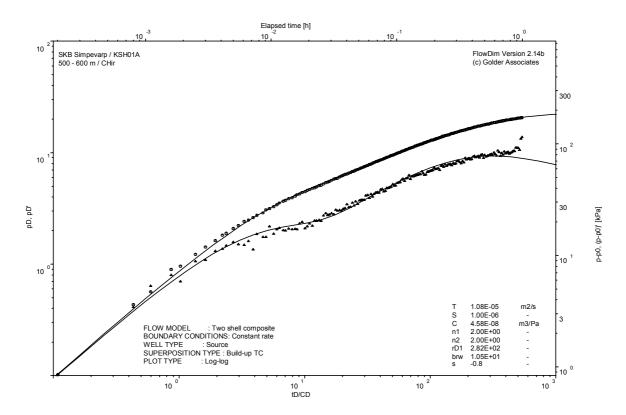


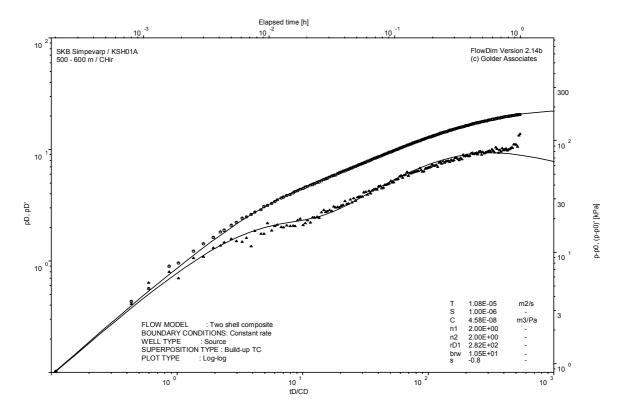
CHIR phase; HORNER match

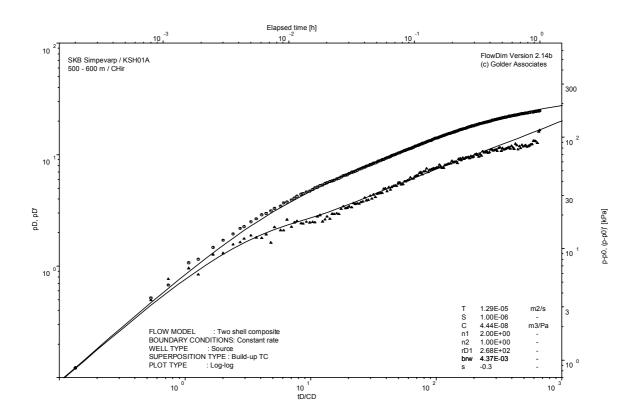

Test 500 – 600 m


Pressure and flow rate vs. time; cartesian plot (test repeated)

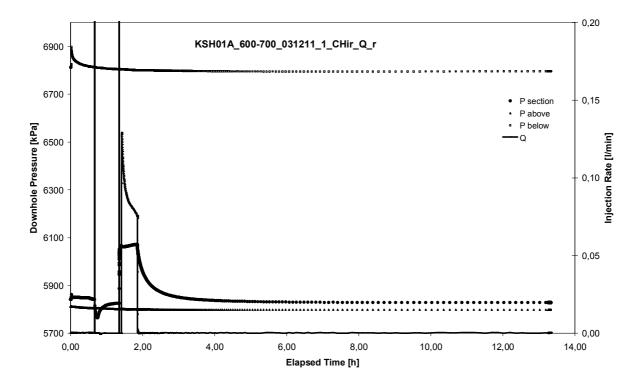

Interval pressure and temperature vs. time; cartesian plot (test repeated)


Pressure and flow rate vs. time; cartesian plot (analysed)

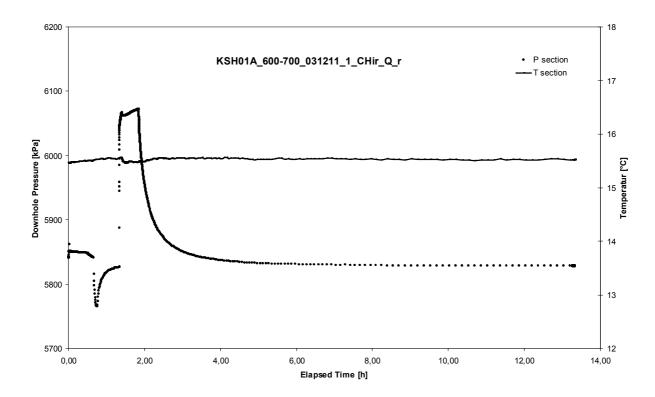

Interval pressure and temperature vs. time; cartesian plot (analysed)


CHI phase; log-log match

CHIR phase; log-log match

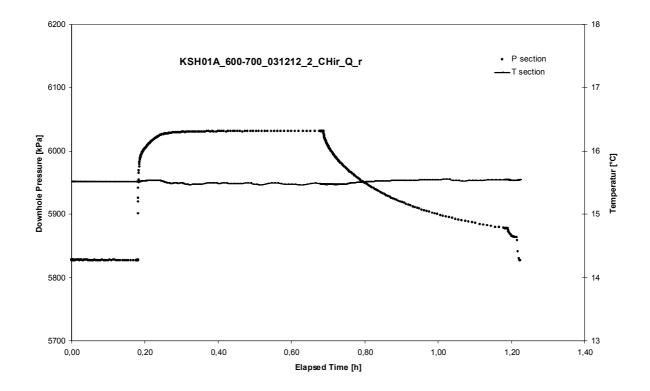


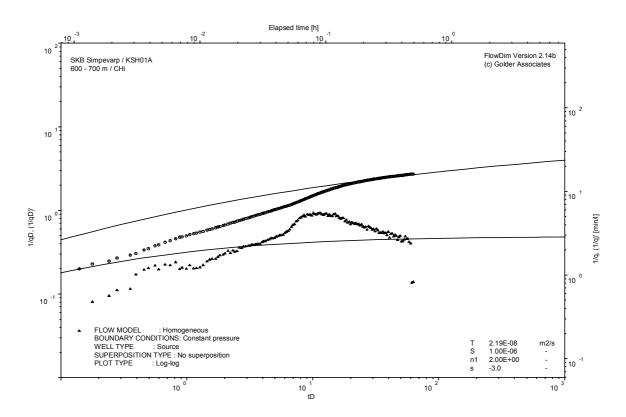
CHIR phase; HORNER match

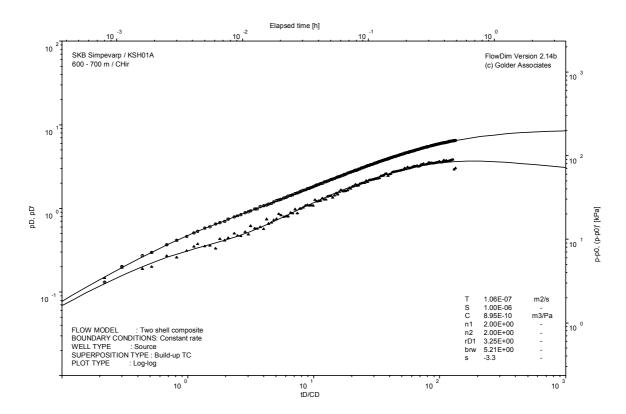


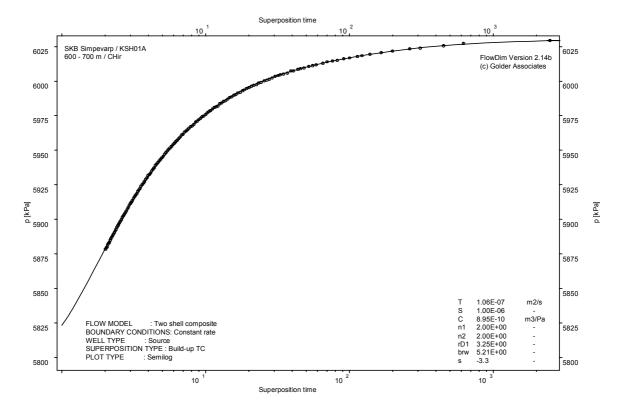
CHIR phase; alternative log-log match (n2=1, linear flow)

Test 600 – 700 m

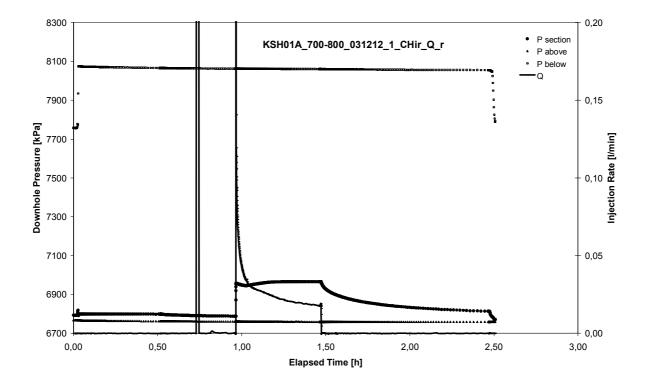

Pressure and flow rate vs. time; cartesian plot (test repeated)


Interval pressure and temperature vs. time; cartesian plot (test repeated)

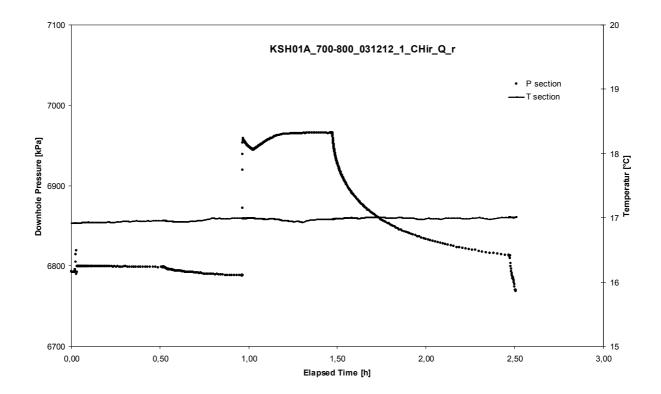

Pressure and flow rate vs. time; cartesian plot (analysed)

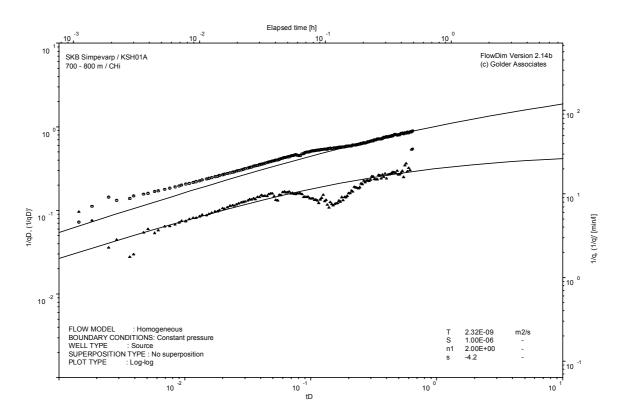

Interval pressure and temperature vs. time; cartesian plot (analysed)

CHI phase; log-log match

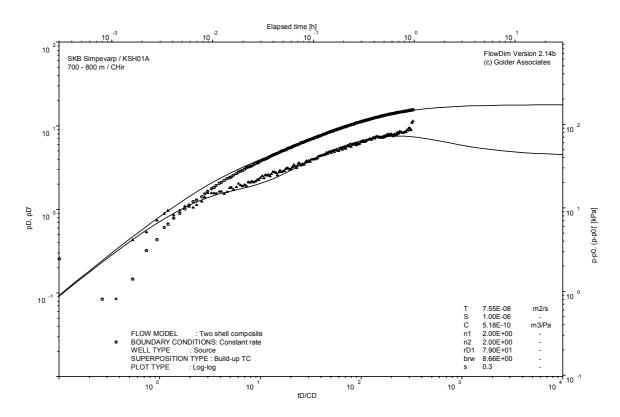


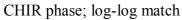
CHIR phase; log-log match

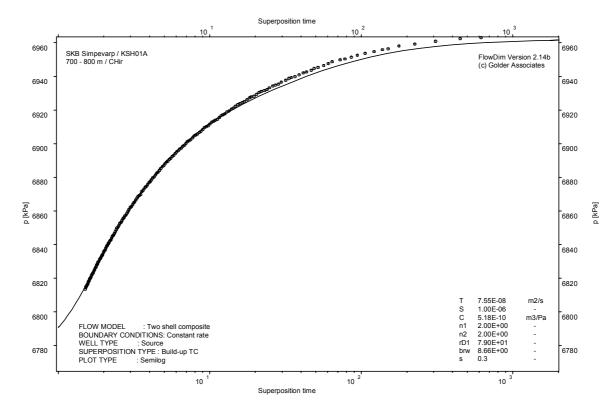


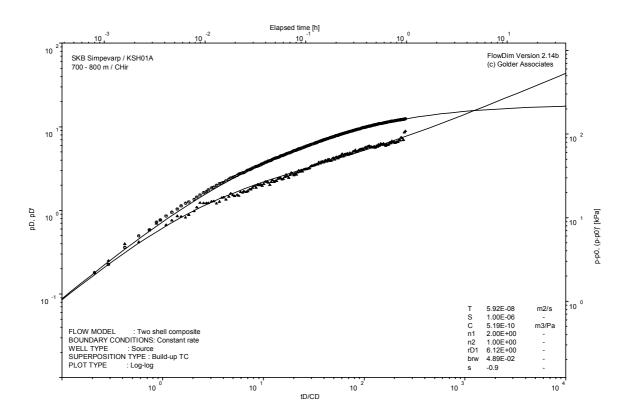

CHIR phase; HORNER match

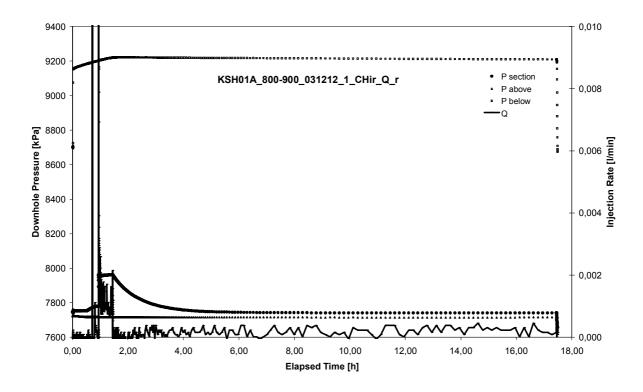
Test 700 – 800 m



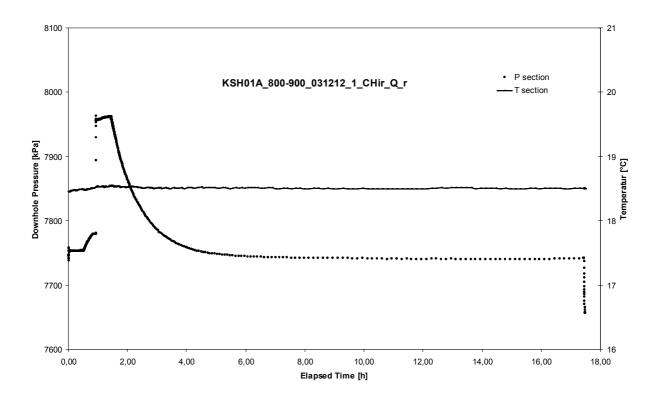

Pressure and flow rate vs. time; cartesian plot

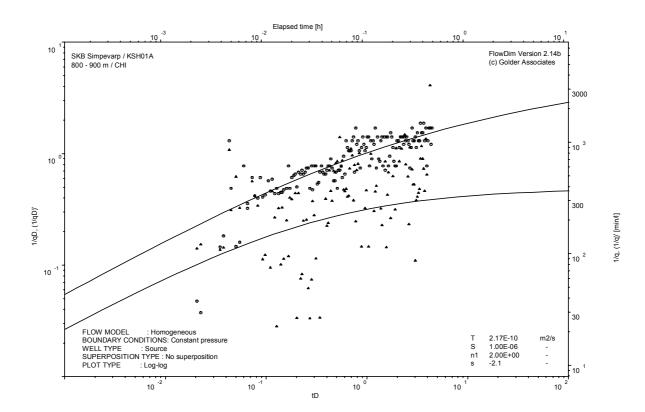



CHI phase; log-log match

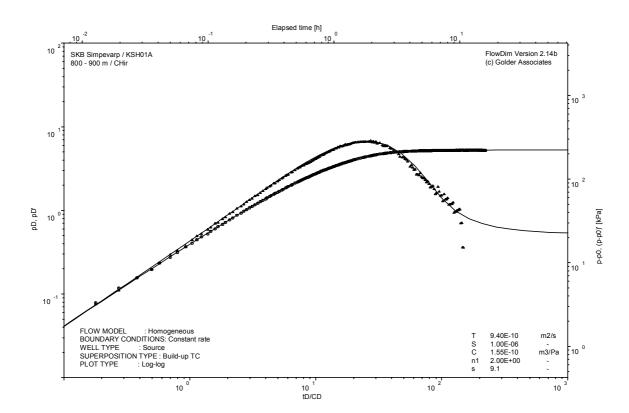


CHIR phase; HORNER match

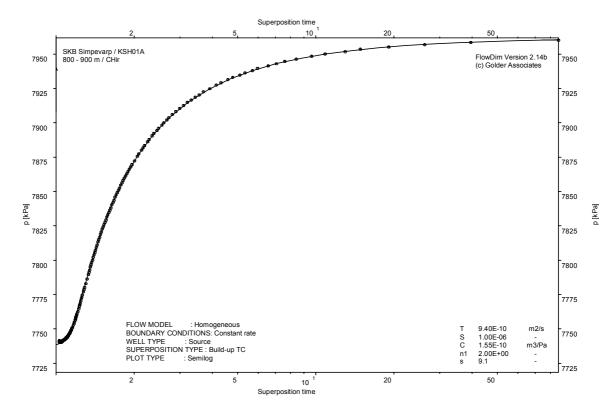



CHIR phase; alternative log-log match (n2=1, linear flow)

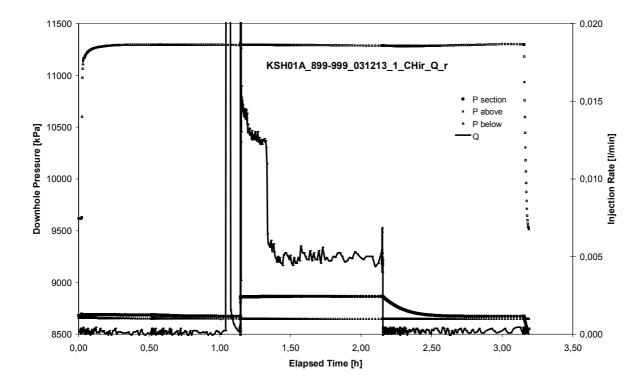
Test 800 – 900 m



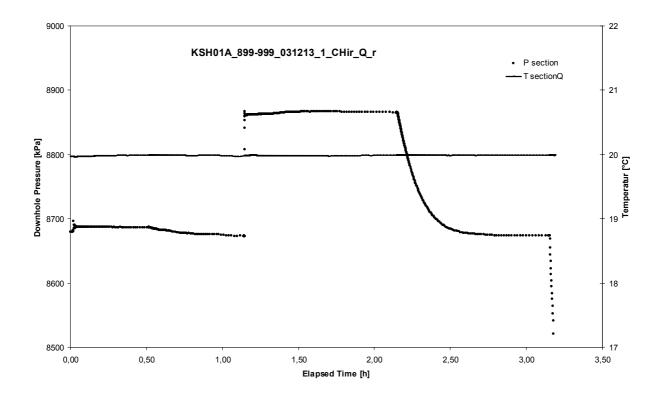
Pressure and flow rate vs. time; cartesian plot



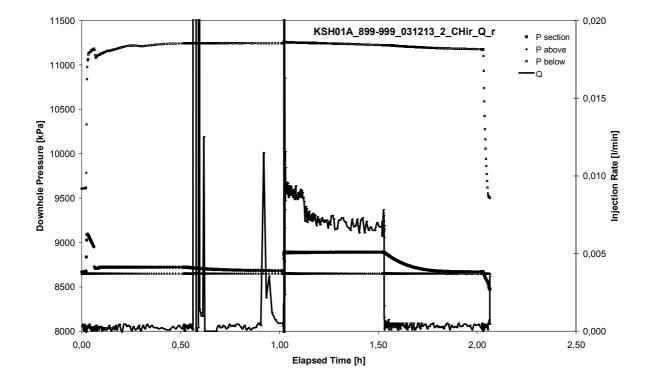
CHI phase; log-log match

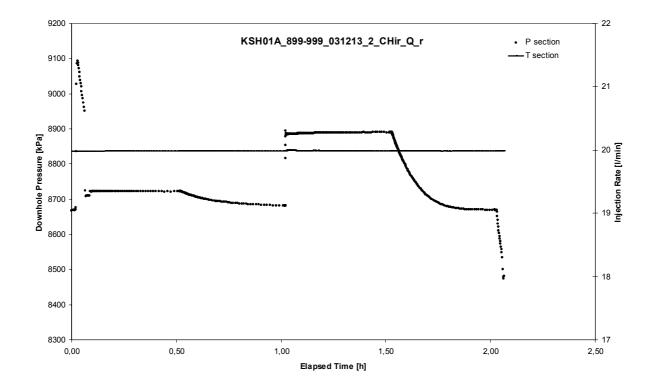


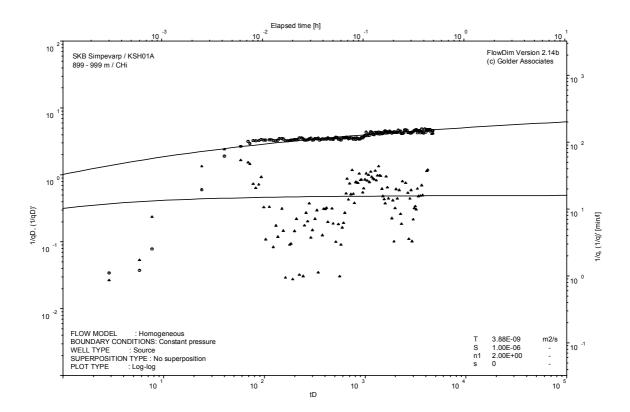
CHIR phase; log-log match

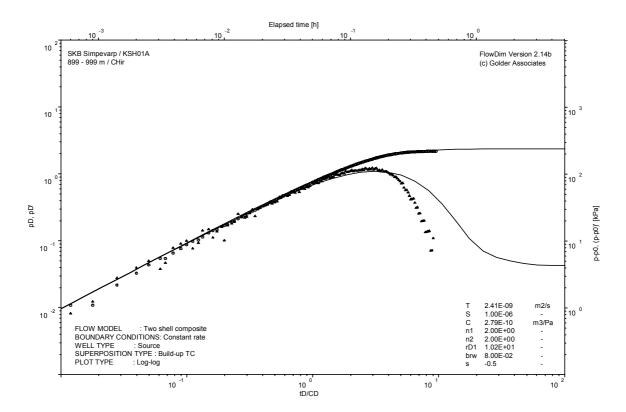


CHIR phase; HORNER match


Test 899 – 999 m

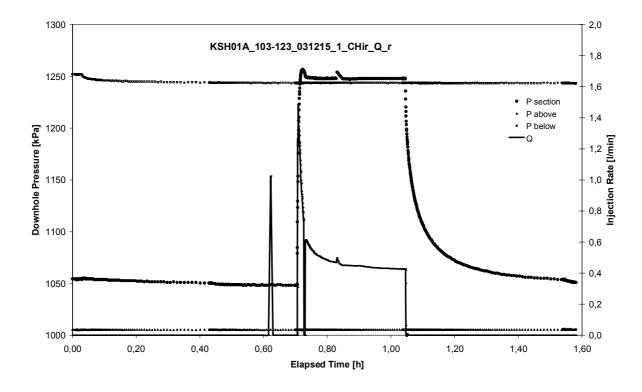

Pressure and flow rate vs. time; cartesian plot (test repeated)


Interval pressure and temperature vs. time; cartesian plot (test repeated)

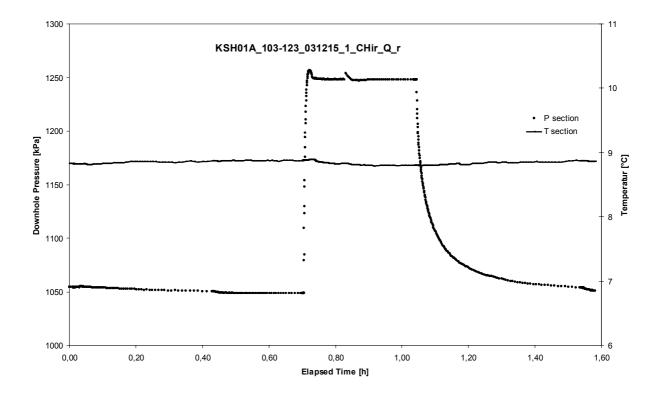

Pressure and flow rate vs. time; cartesian plot (analysed)


Interval pressure and temperature vs. time; cartesian plot (analysed)

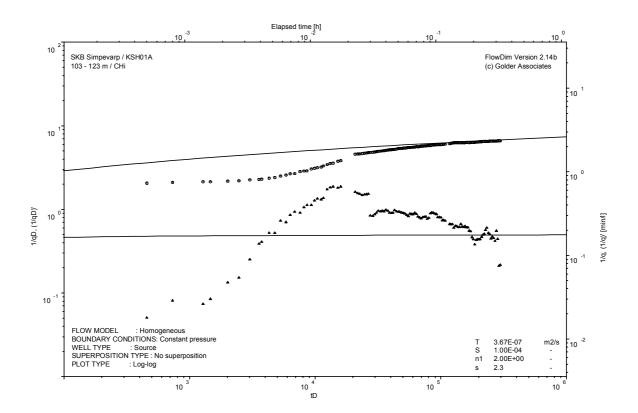
CHI phase; log-log match

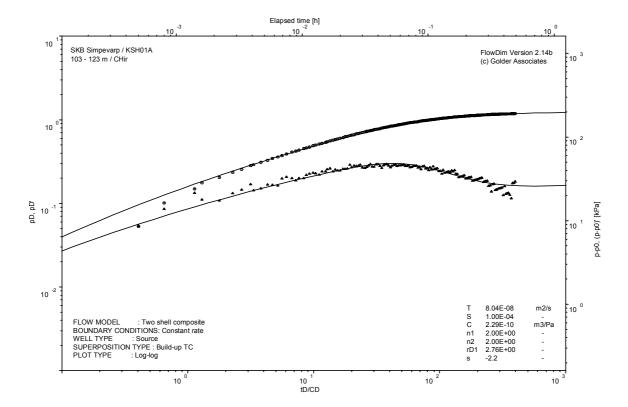


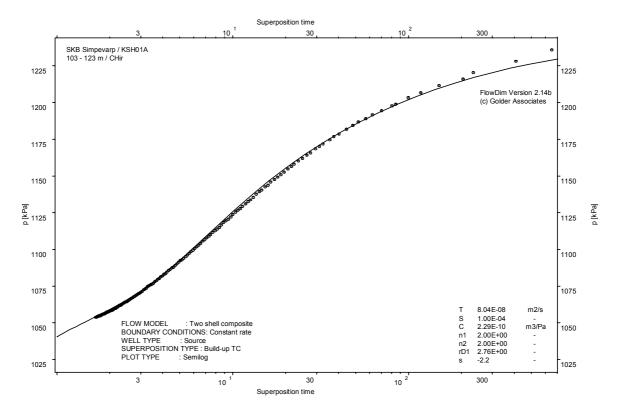
CHIR phase; log-log match



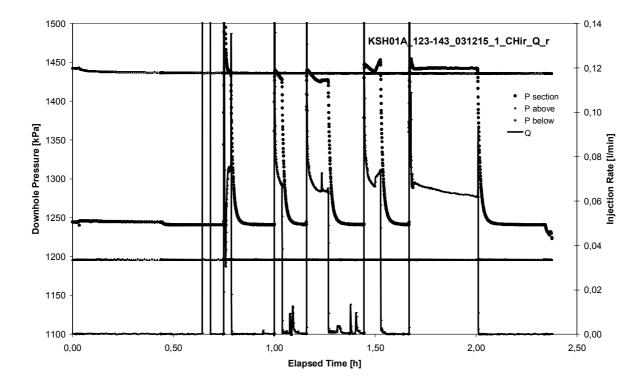
CHIR phase; HORNER match


Test 103 – 123 m

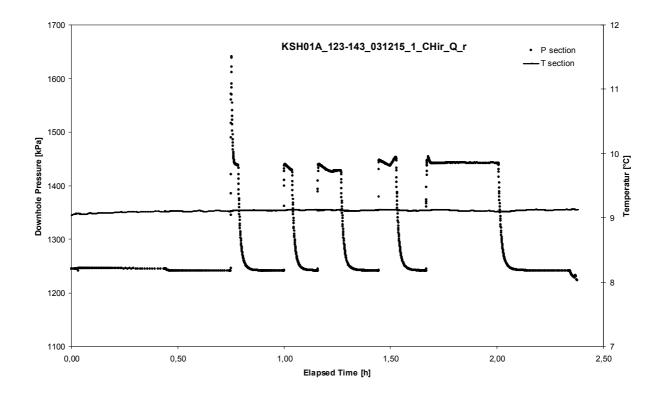

Pressure and flow rate vs. time; cartesian plot

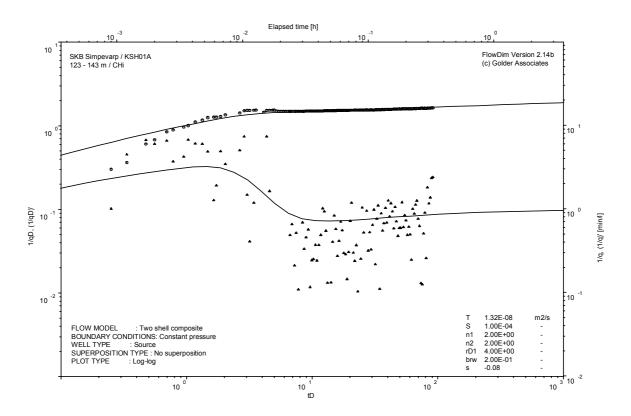

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

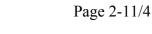


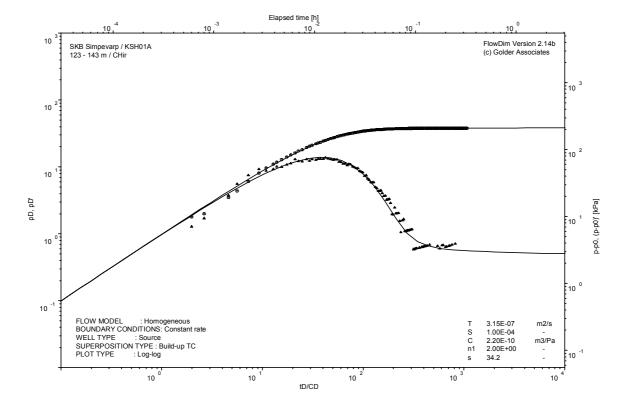
CHIR phase; log-log match

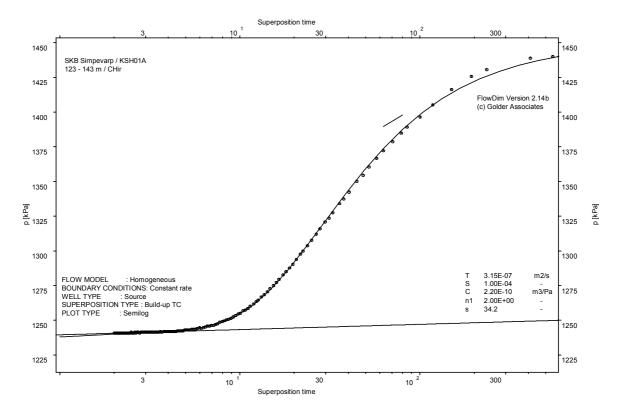



CHIR phase; HORNER match

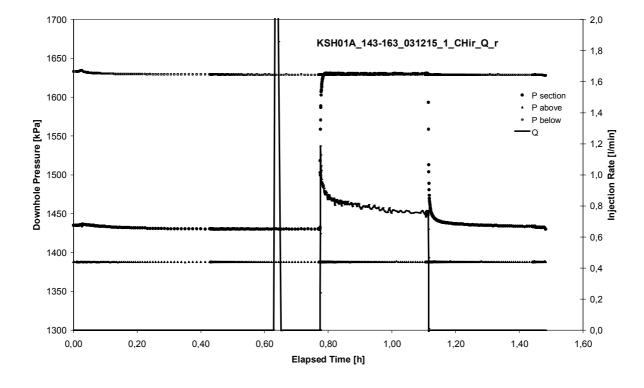
Test 123 – 143 m



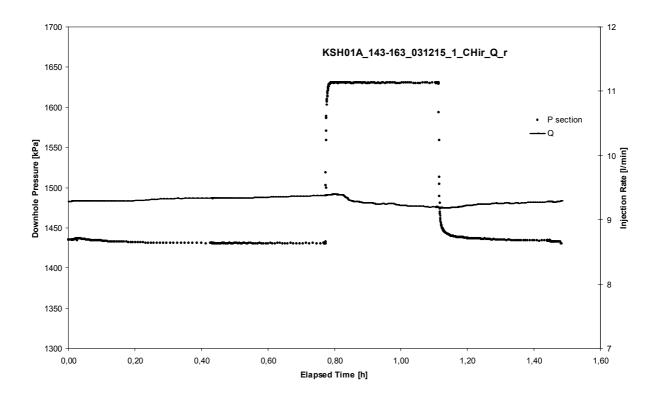

Pressure and flow rate vs. time; cartesian plot



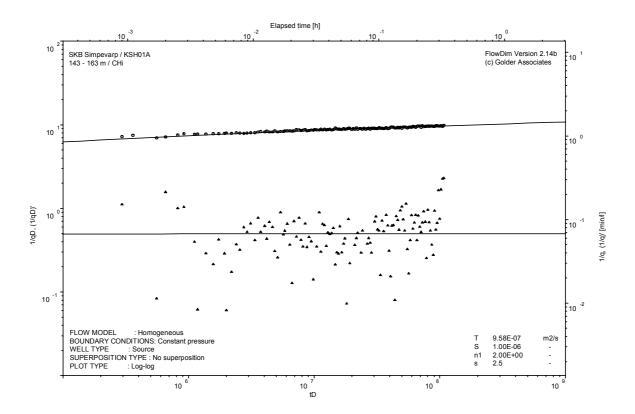
CHI phase; log-log match

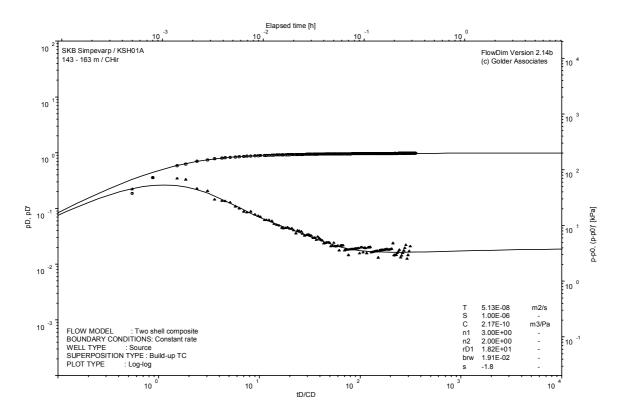


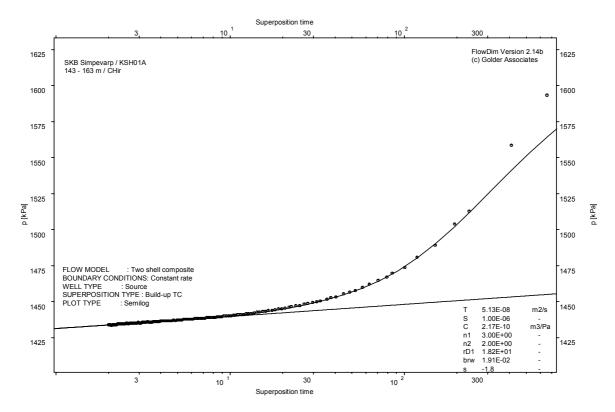
CHIR phase; log-log match



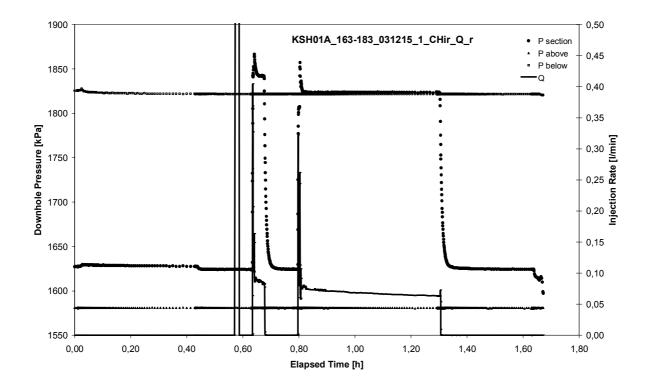
CHIR phase; HORNER match


Test 143 – 163 m

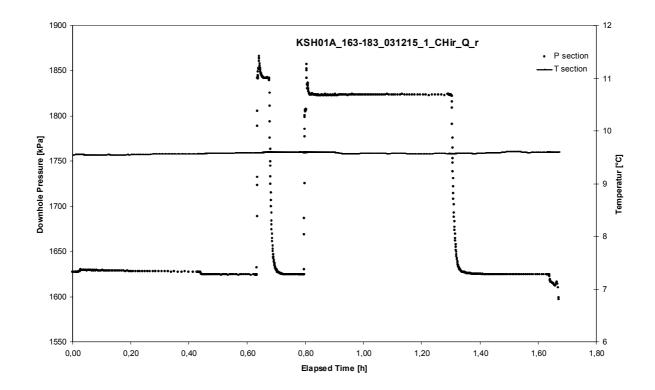

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

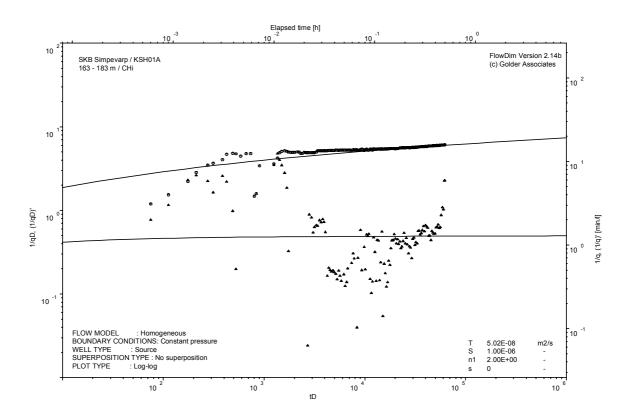
CHI phase; log-log match



CHIR phase; log-log match

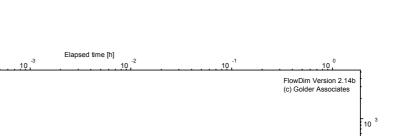


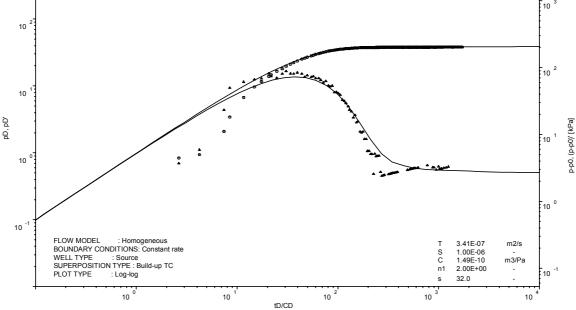
CHIR phase; HORNER match


Test 163 – 183 m

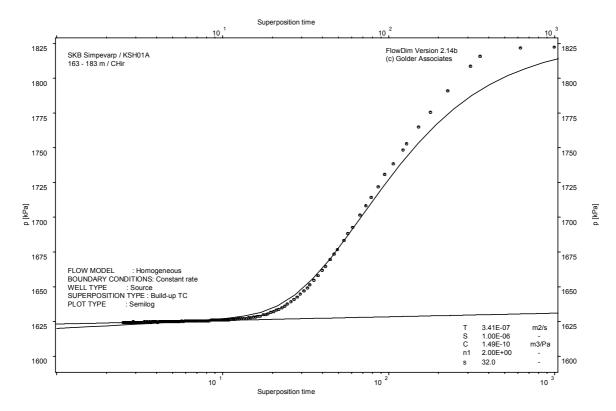
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

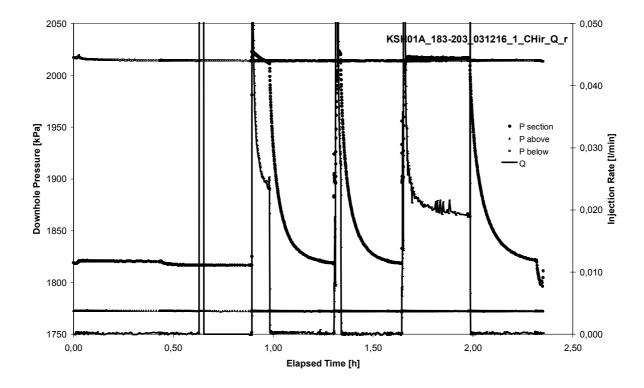



CHI phase; log-log match

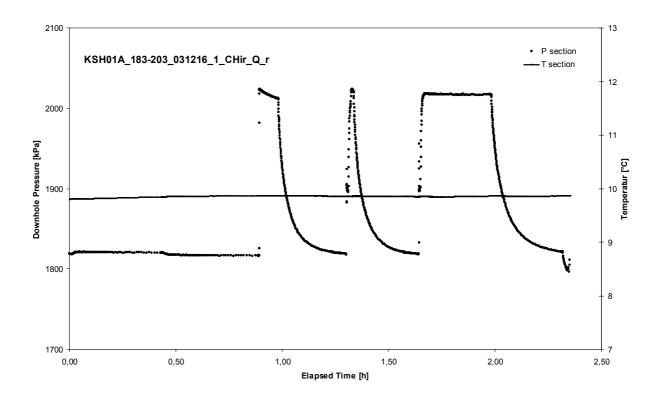
10


10

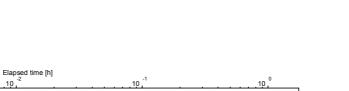
SKB Simpevarp / KSH01A 163 - 183 m / CHir

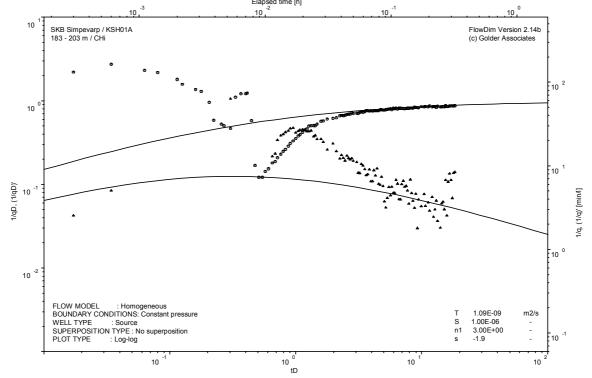


CHIR phase; log-log match

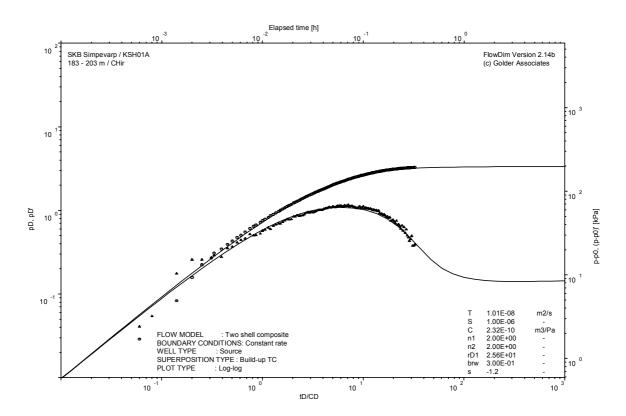


CHIR phase; HORNER match

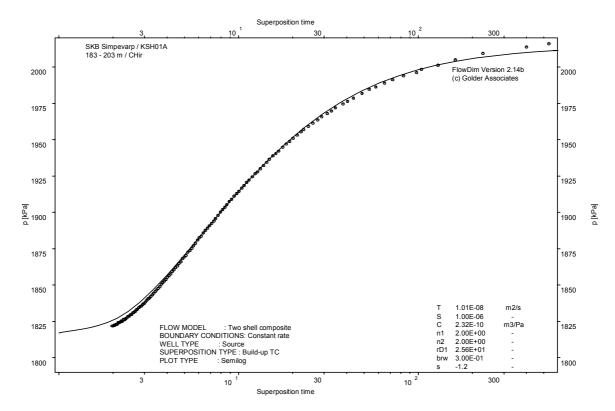

Test 183 – 203 m



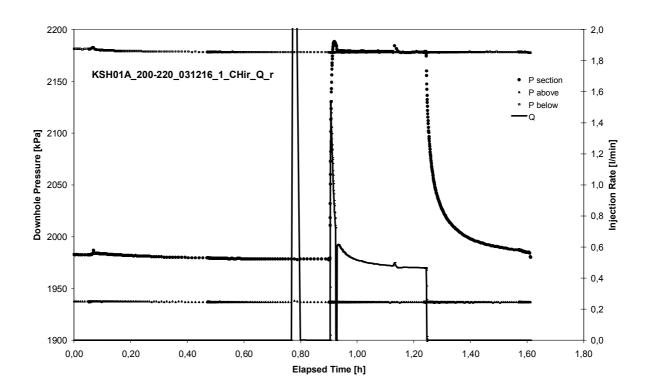
Pressure and flow rate vs. time; cartesian plot



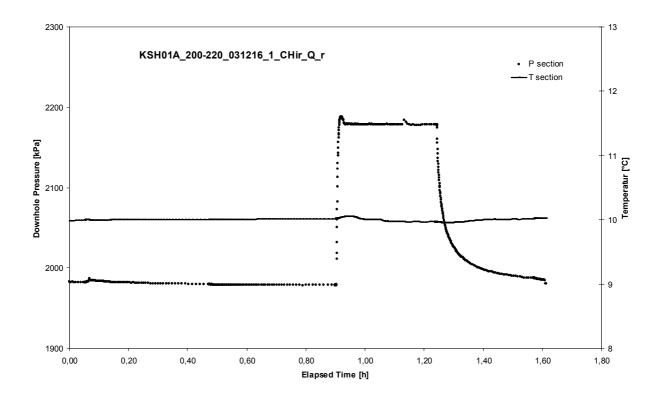
Interval pressure and temperature vs. time; cartesian plot

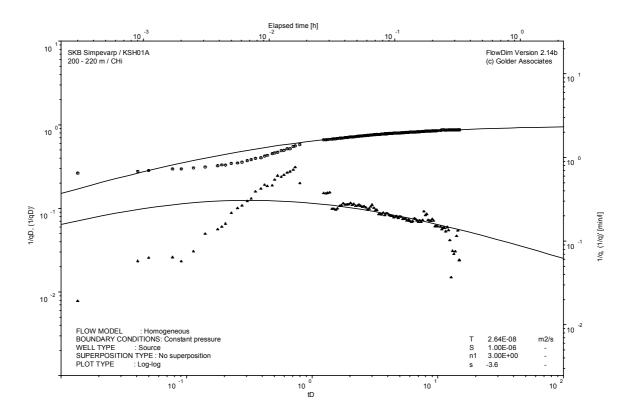


CHI phase; log-log match

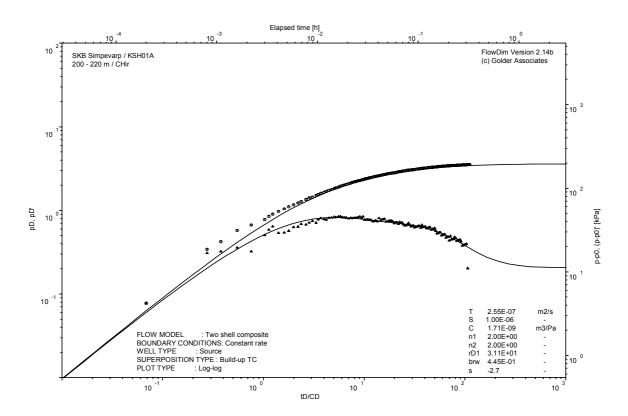


CHIR phase; log-log match

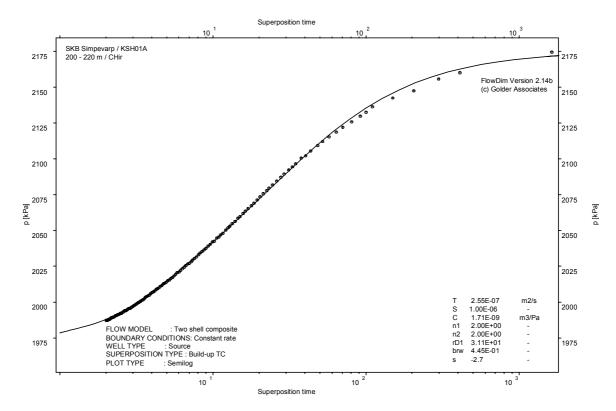



CHIR phase; HORNER match

Test 200 – 220 m

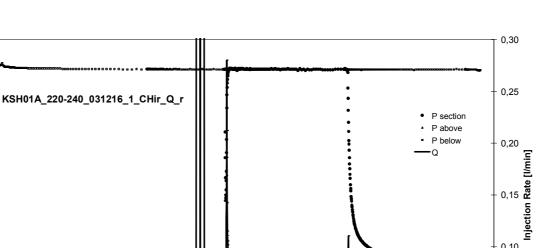


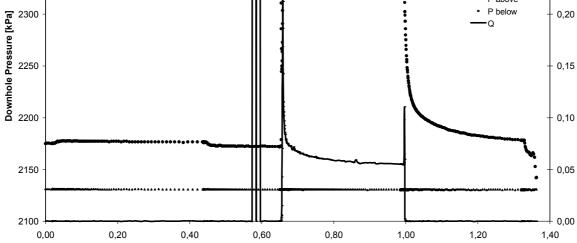
Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match

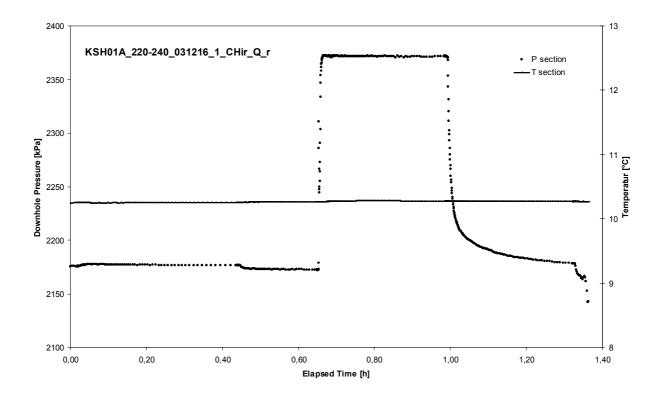
CHIR phase; log-log match

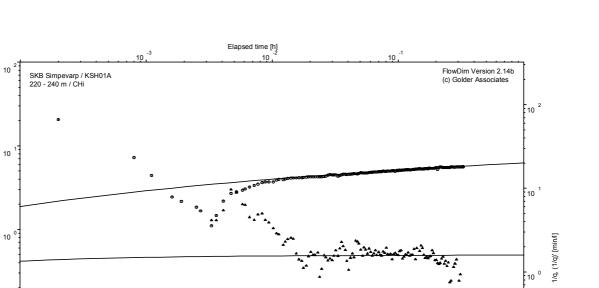



CHIR phase; HORNER match

Test 220 – 240 m

2400


2350



Elapsed Time [h]

Pressure and flow rate vs. time; cartesian plot

10³ tD

CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

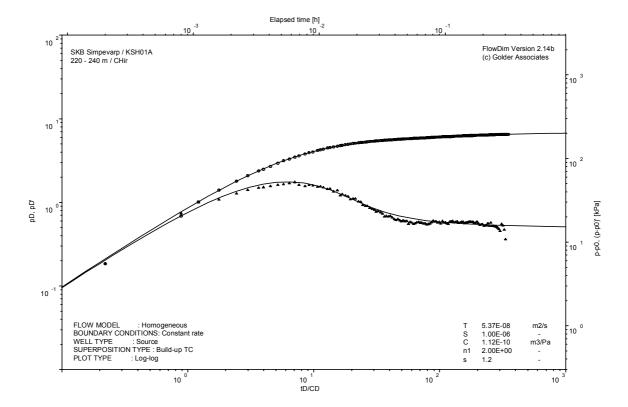
10 2

1/qD, (1/qD)

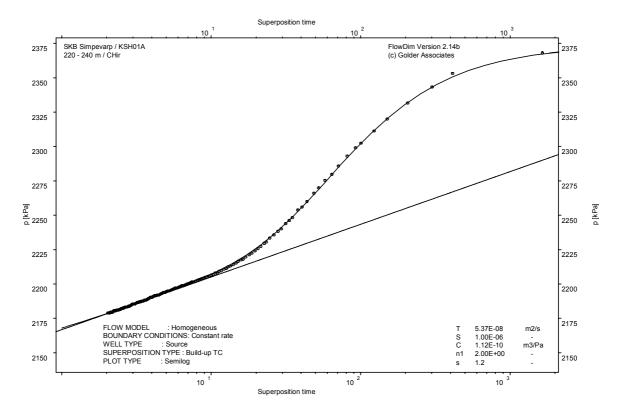
10 -

10 -1

m2/s ---

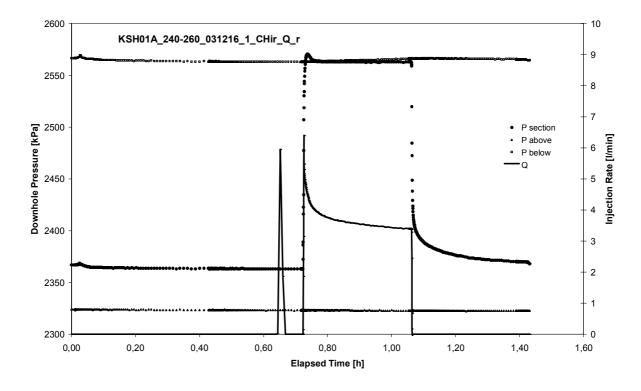

10⁵

••.

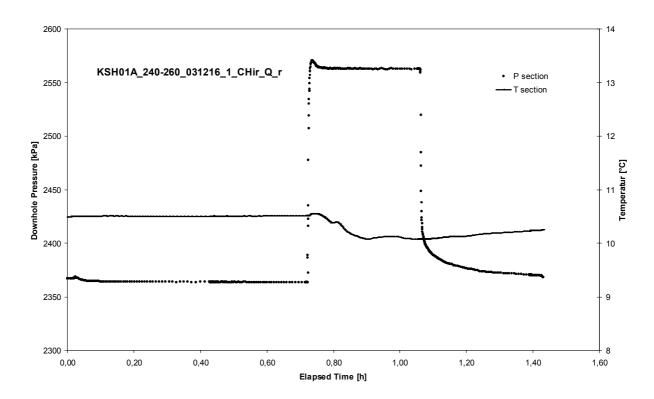

4.04E-08 1.00E-06 2.00E+00 0

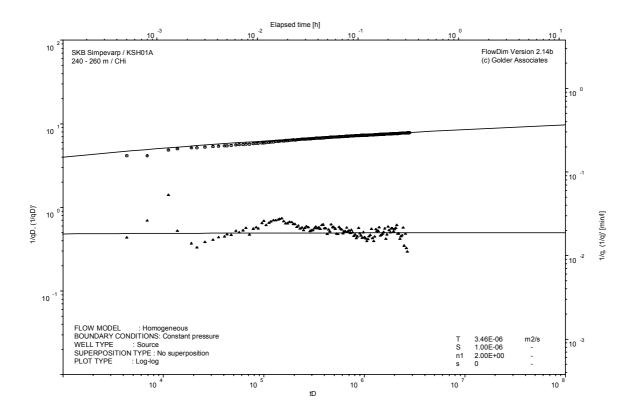
T S n1 s

10 4

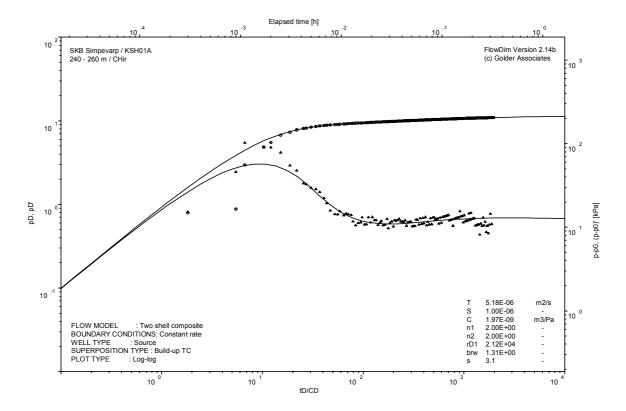


CHIR phase; log-log match

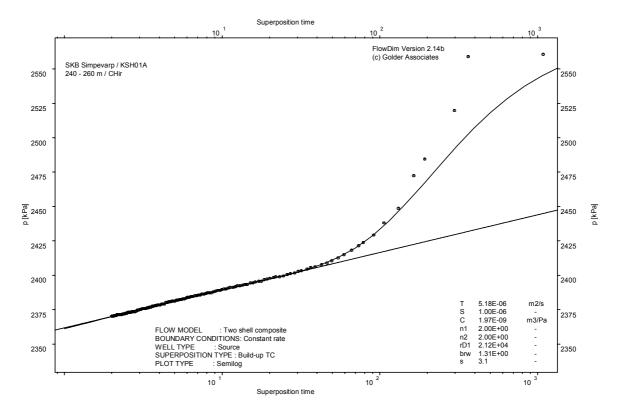



CHIR phase; HORNER match

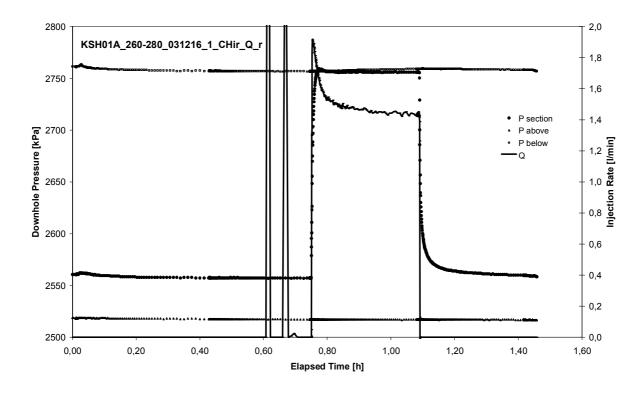
Test 240 – 260 m



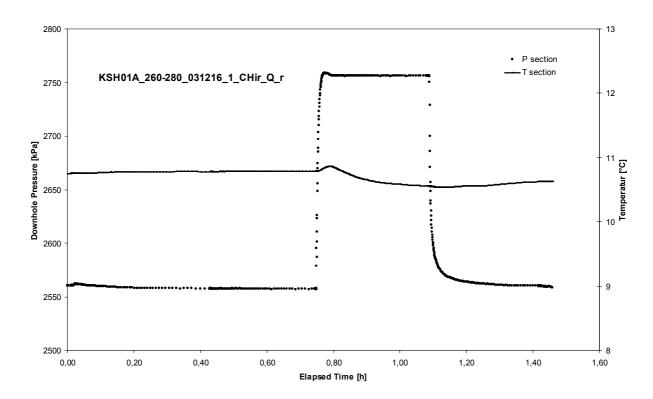
Pressure and flow rate vs. time; cartesian plot

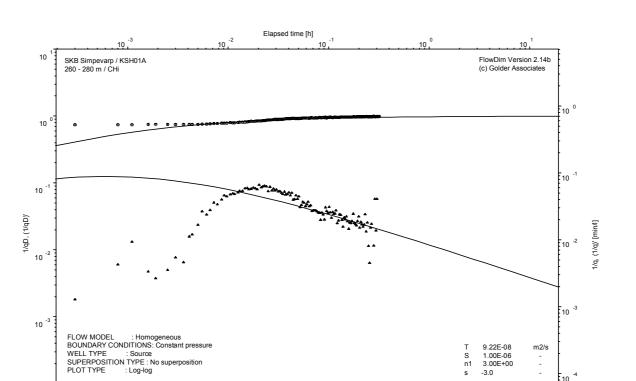


CHI phase; log-log match



CHIR phase; log-log match



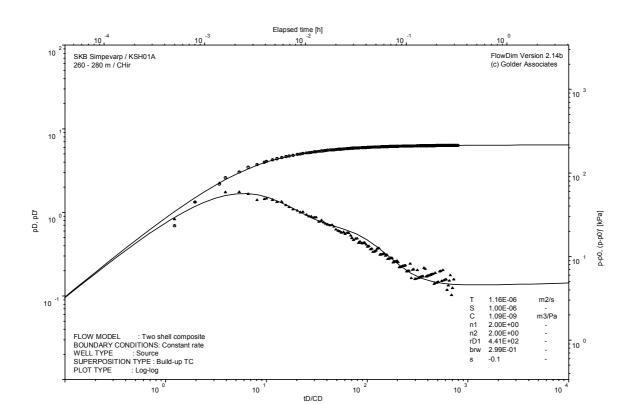

CHIR phase; HORNER match

Test 260 – 280 m

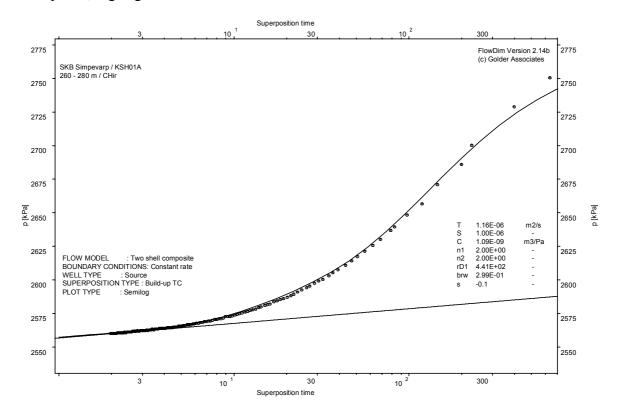
Pressure and flow rate vs. time; cartesian plot

10²

tD

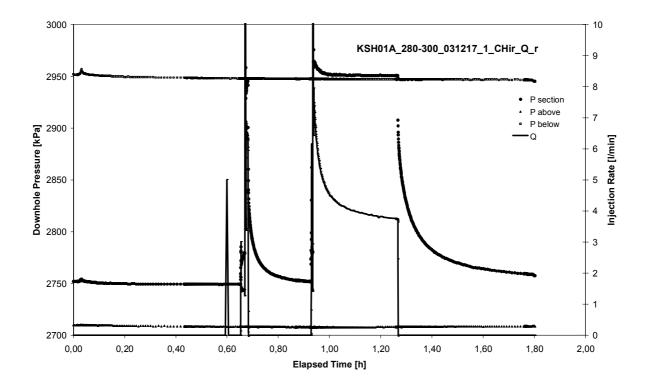

10

CHI phase; log-log match

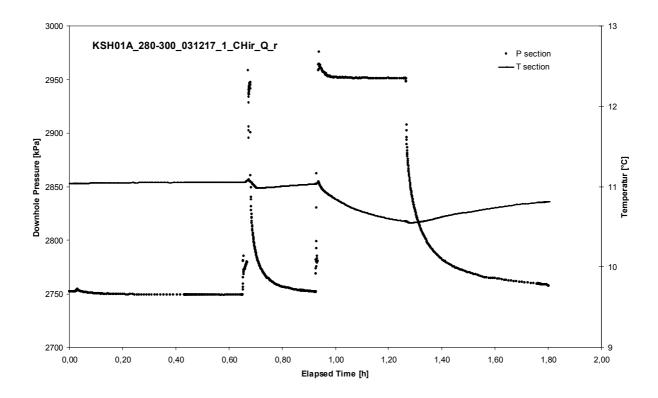

10

10⁴

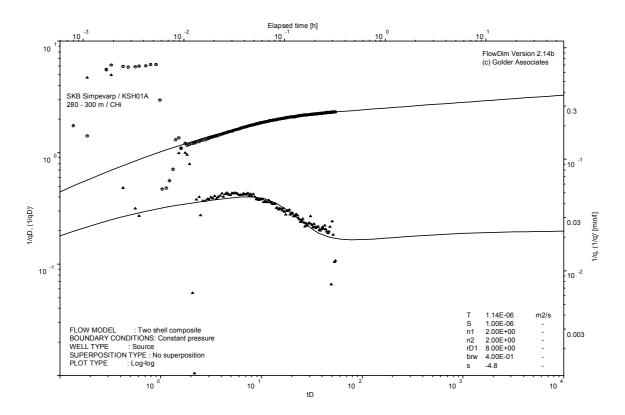
10³

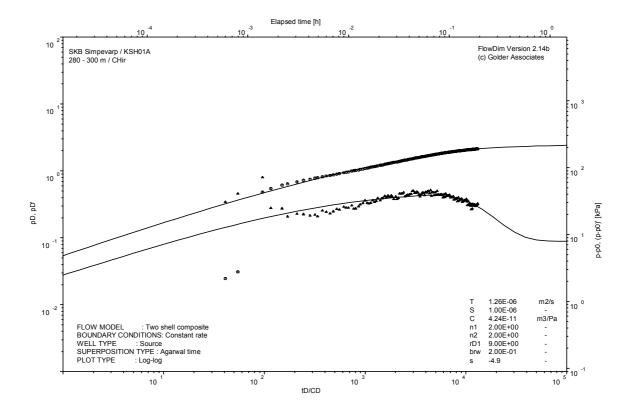


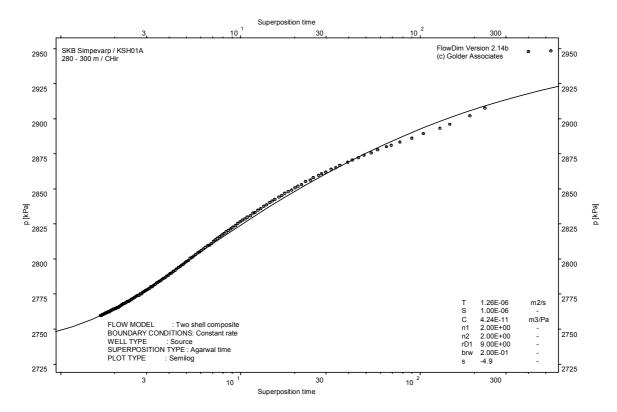
CHIR phase; log-log match



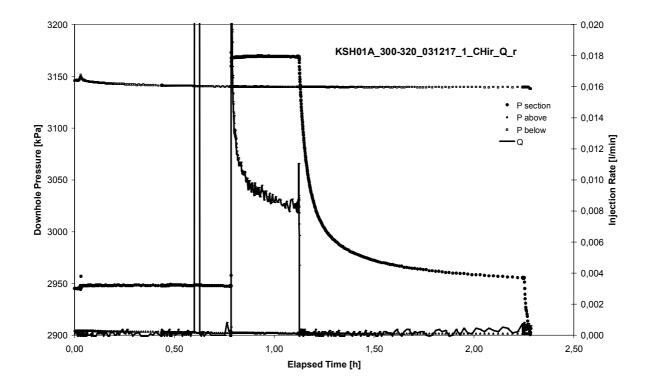
CHIR phase; HORNER match


Test 280 – 300 m

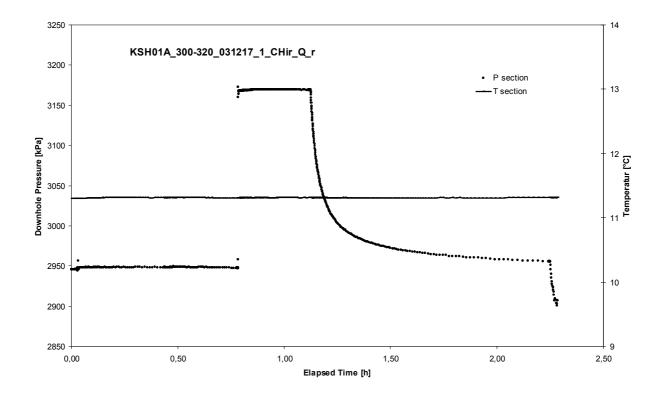

Pressure and flow rate vs. time; cartesian plot

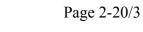

Interval pressure and temperature vs. time; cartesian plot

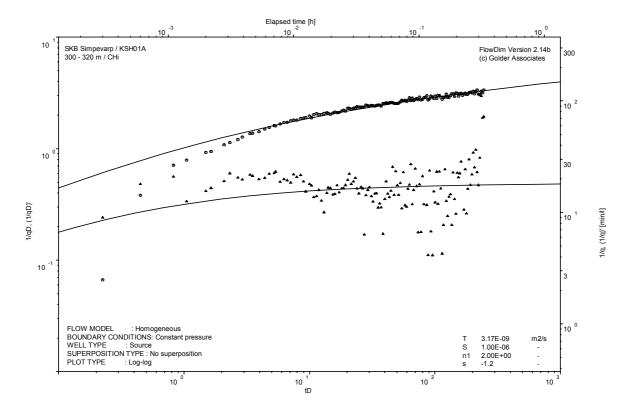
CHI phase; log-log match

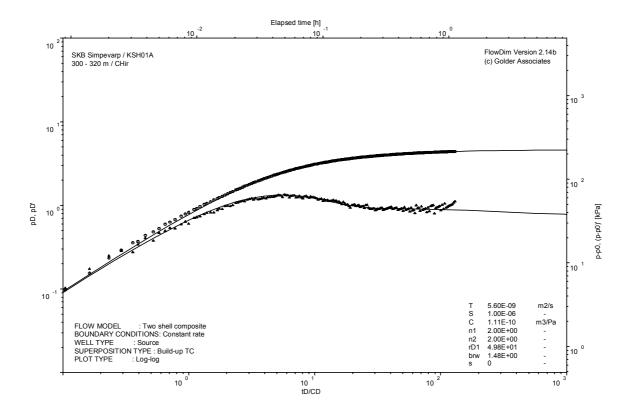


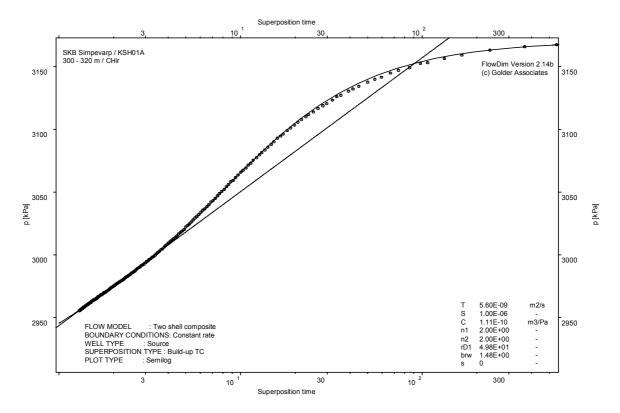
CHIR phase; log-log match



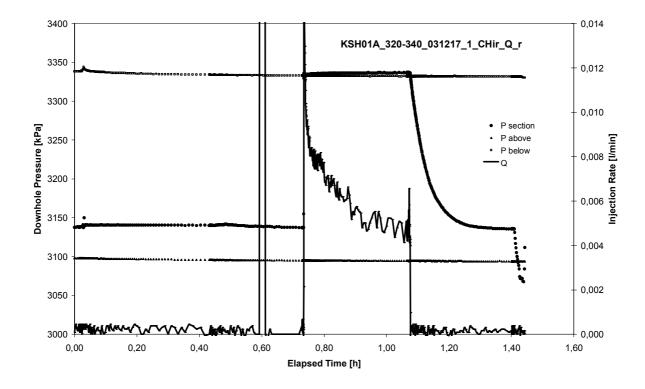

CHIR phase; HORNER match


Test 300 – 320 m

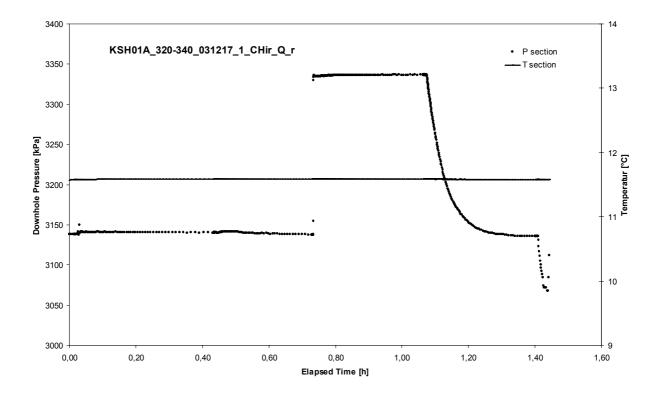

Pressure and flow rate vs. time; cartesian plot

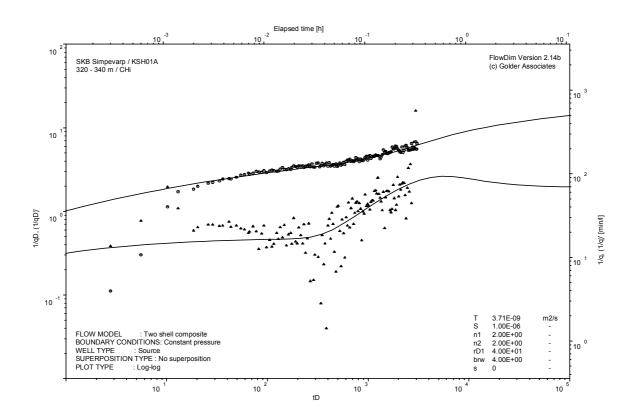


CHI phase; log-log match

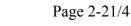


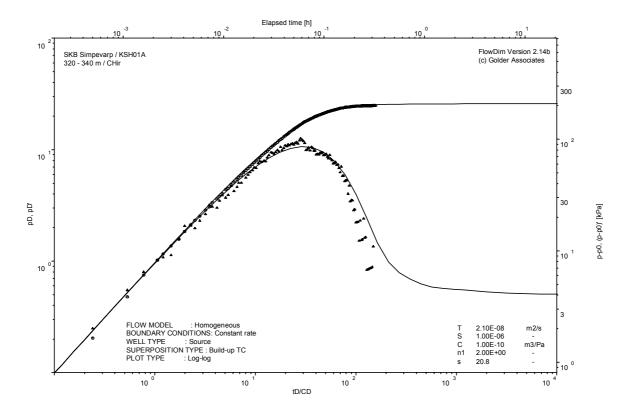
CHIR phase; log-log match

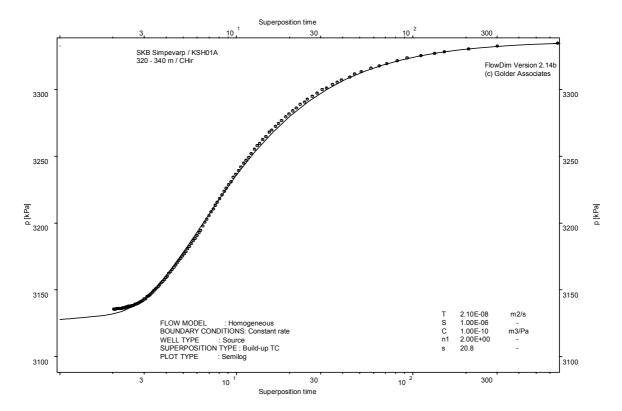



CHIR phase; HORNER match

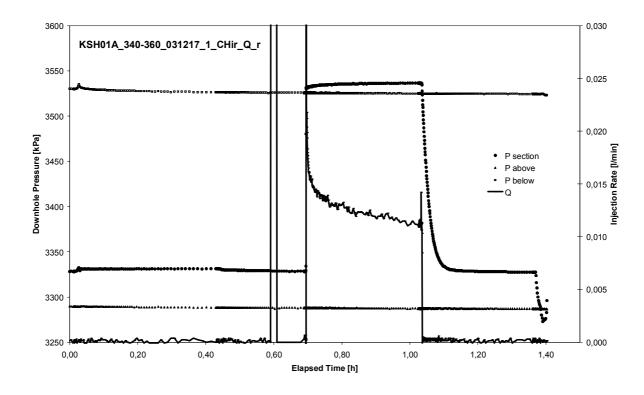
Test 320 – 340 m



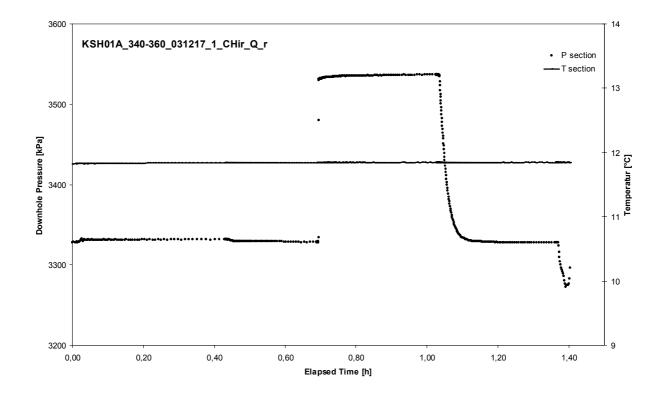

Pressure and flow rate vs. time; cartesian plot)

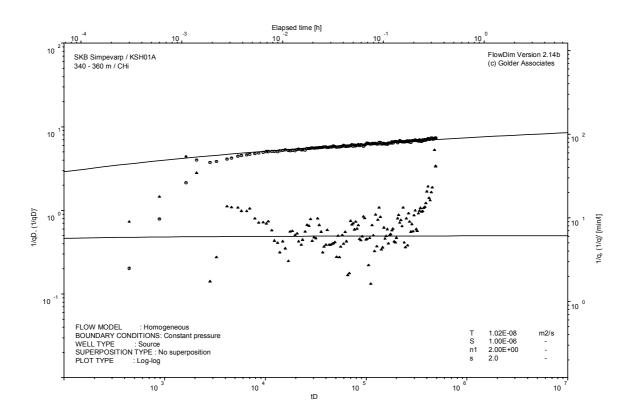


CHI phase; log-log match

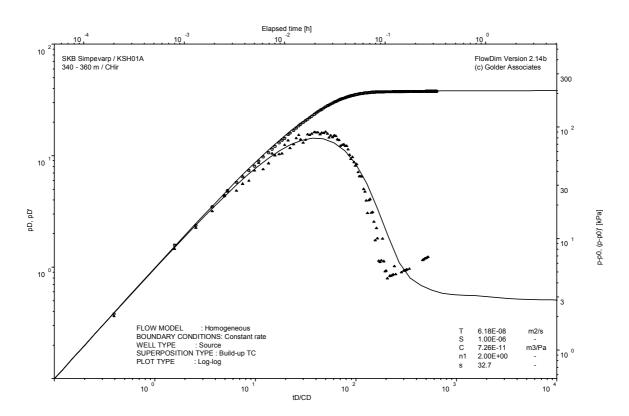


CHIR phase; log-log match

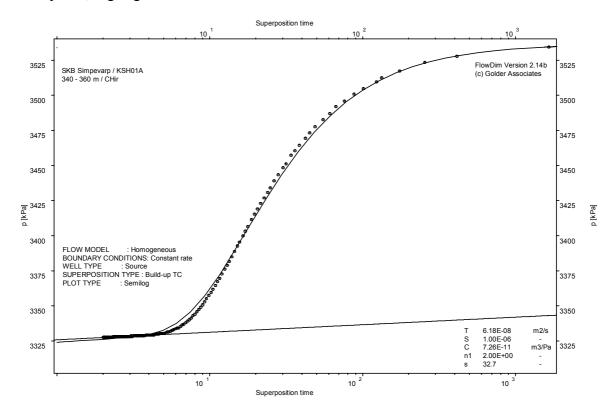



CHIR phase; HORNER match

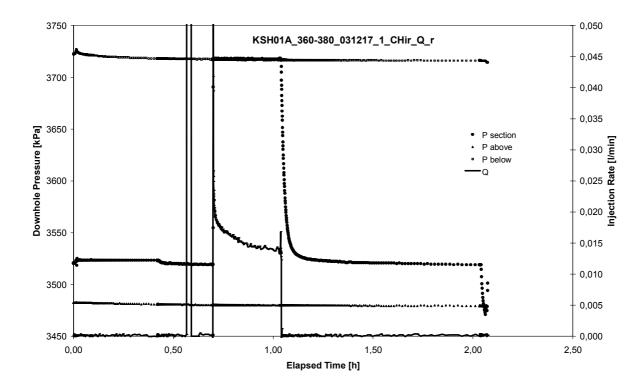
Test 340 – 360 m



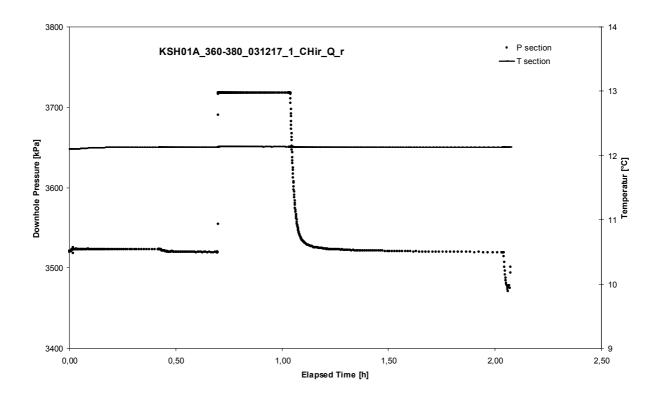
Pressure and flow rate vs. time; cartesian plot



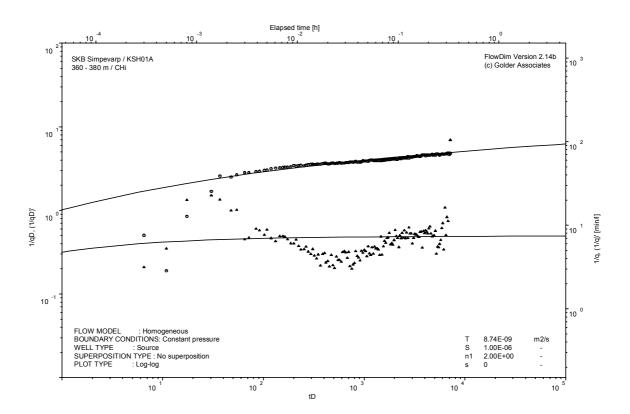
CHI phase; log-log match



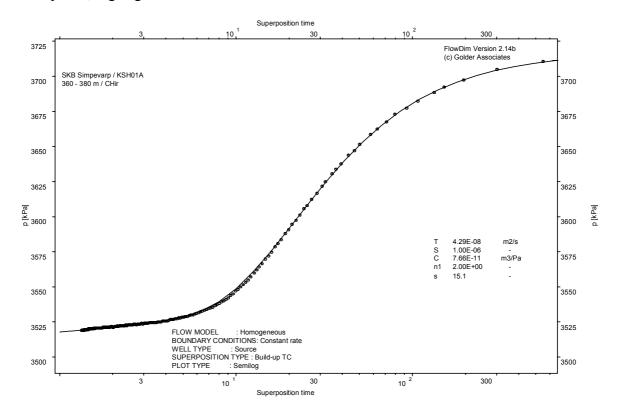
CHIR phase; log-log match



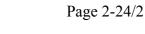
CHIR phase; HORNER match

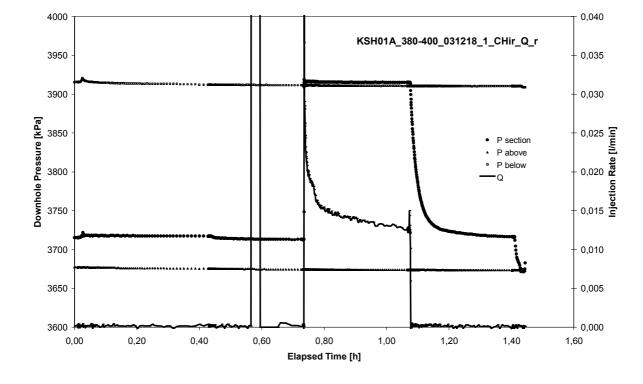

Test 360 – 380 m

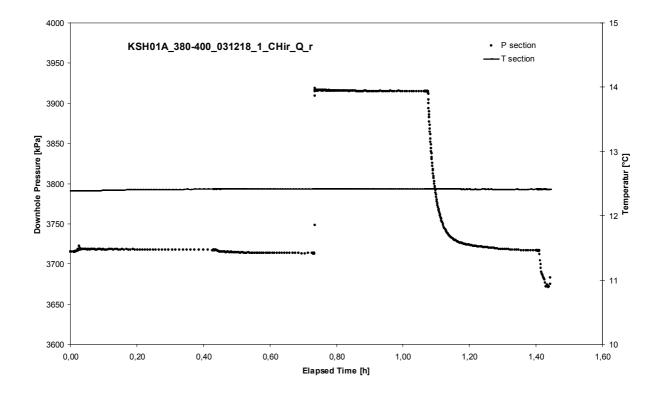

Pressure and flow rate vs. time; cartesian plot

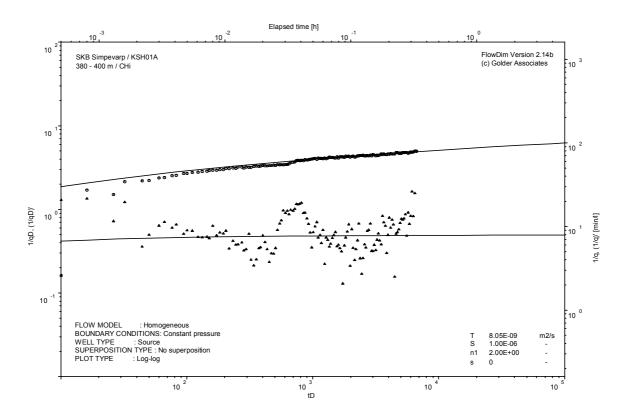

Interval pressure and temperature vs. time; cartesian plot

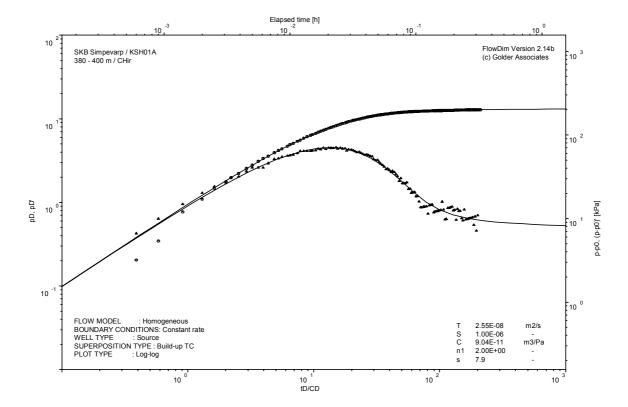
CHI phase; log-log match



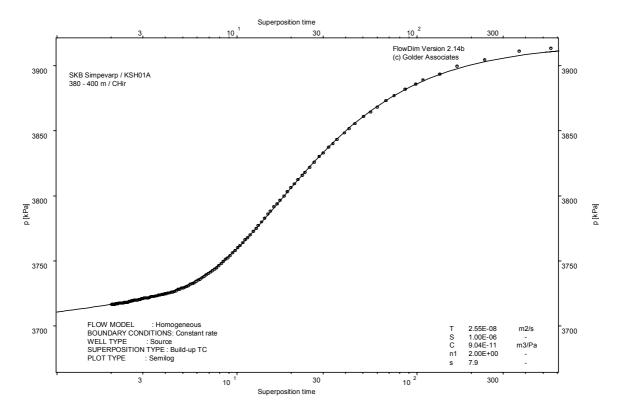

CHIR phase; log-log match


CHIR phase; HORNER match

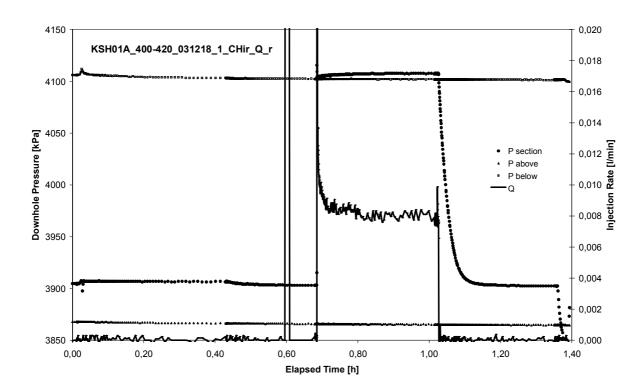

Test 380 – 400 m



Pressure and flow rate vs. time; cartesian plot

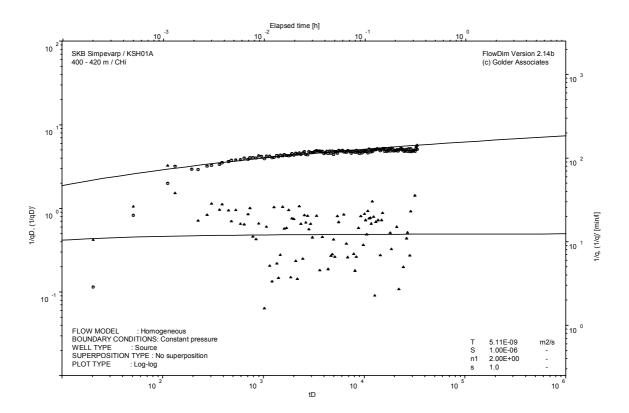


CHI phase; log-log match

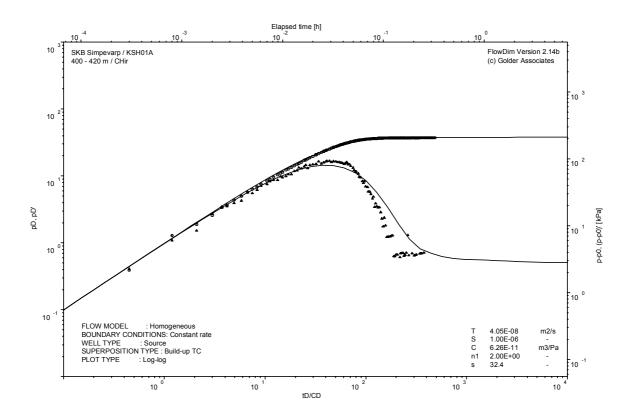


CHIR phase; log-log match

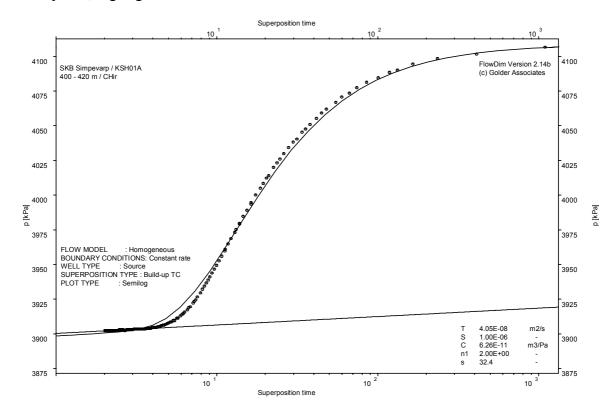



CHIR phase; HORNER match

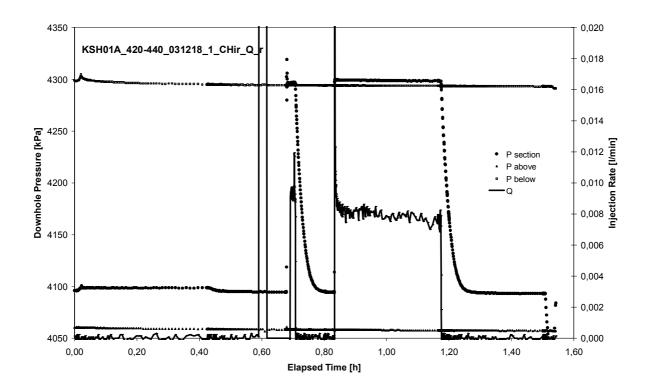
Test 400 – 420 m



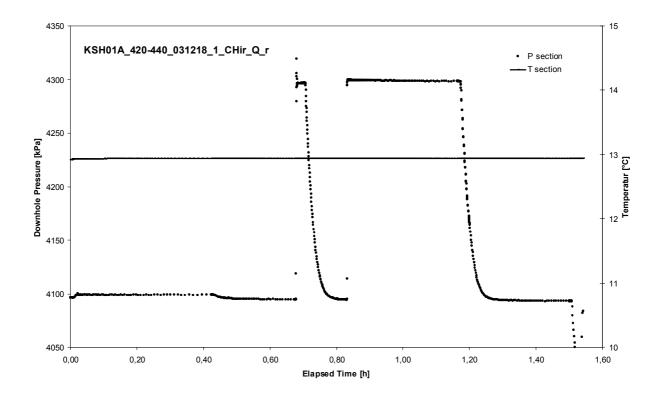
Pressure and flow rate vs. time; cartesian plot

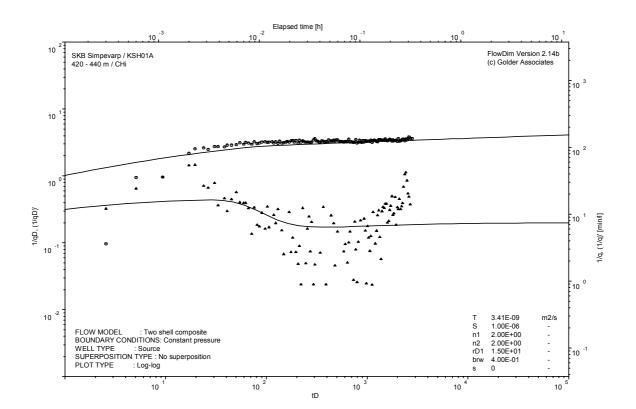


CHI phase; log-log match

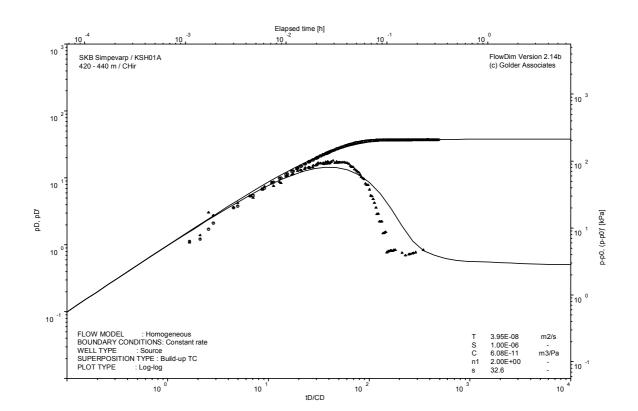


CHIR phase; log-log match

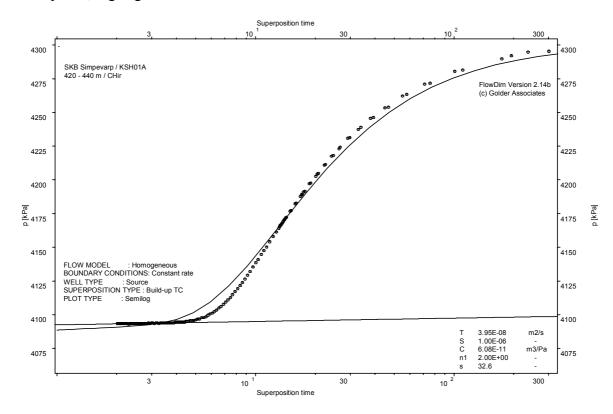



CHIR phase; HORNER match

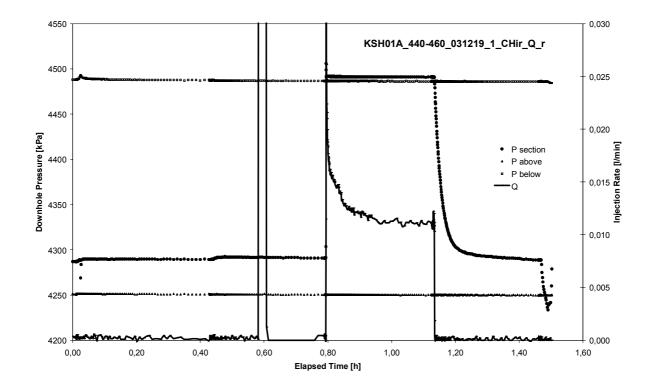
Test 420 – 440 m



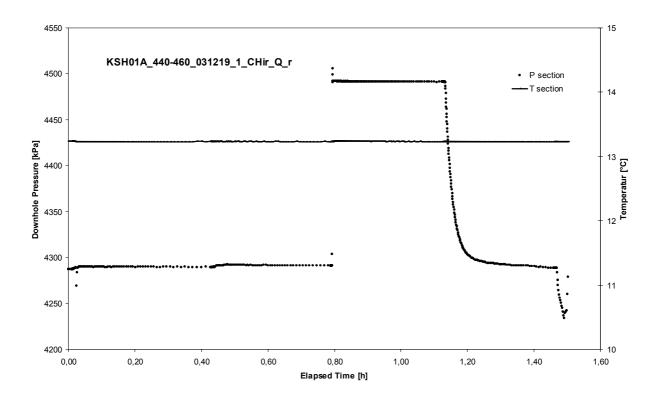
Pressure and flow rate vs. time; cartesian plot



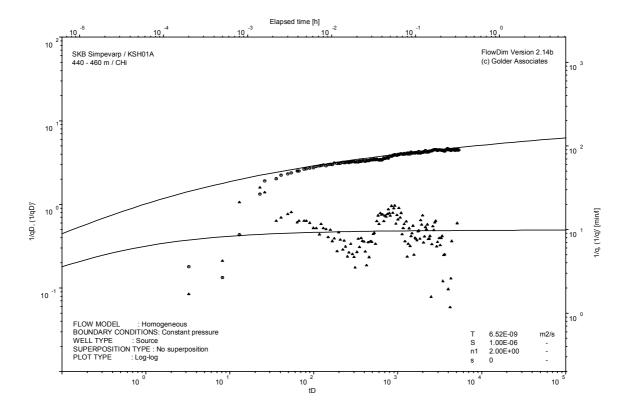
CHI phase; log-log match



CHIR phase; log-log match

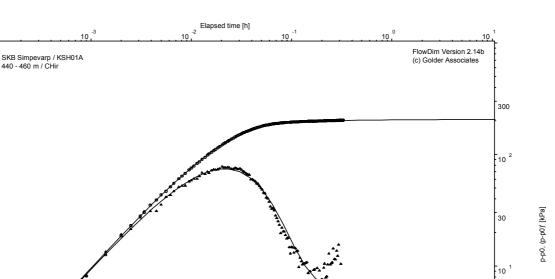


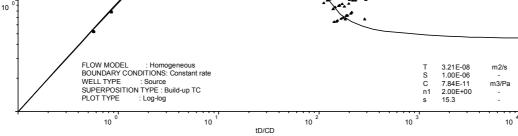
CHIR phase; HORNER match


Test 440 – 460 m

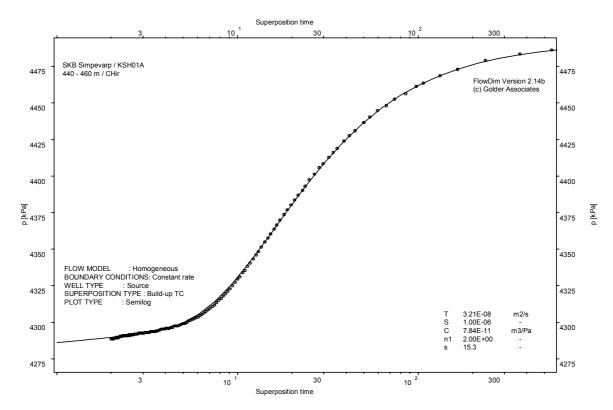
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

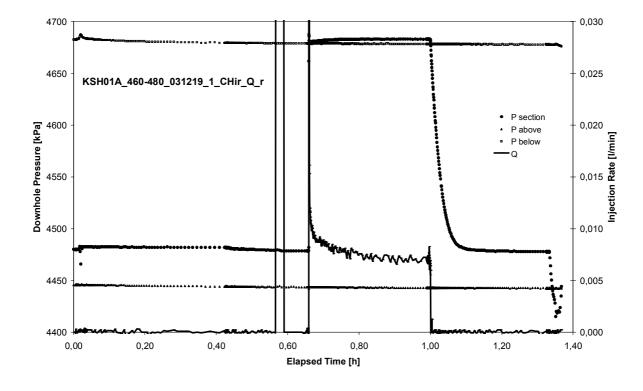


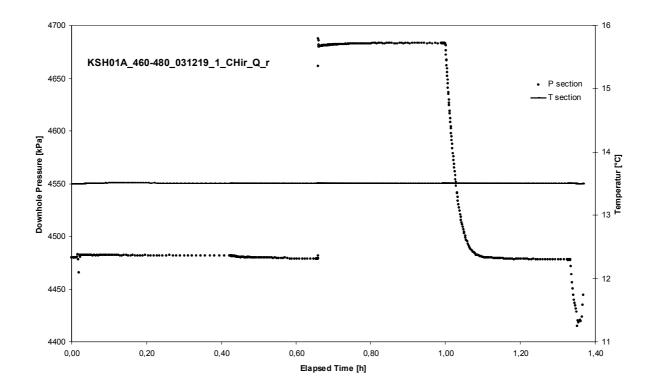

CHI phase; log-log match

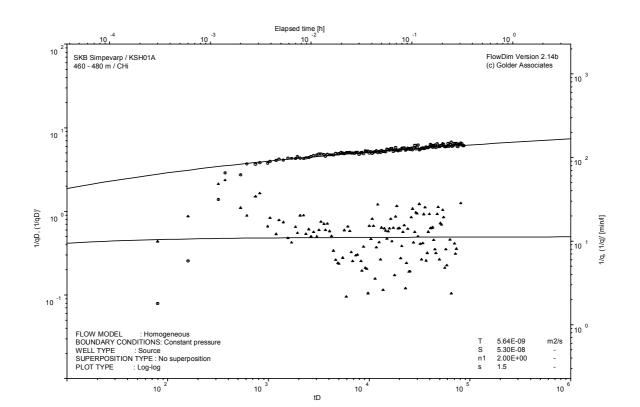
10


10

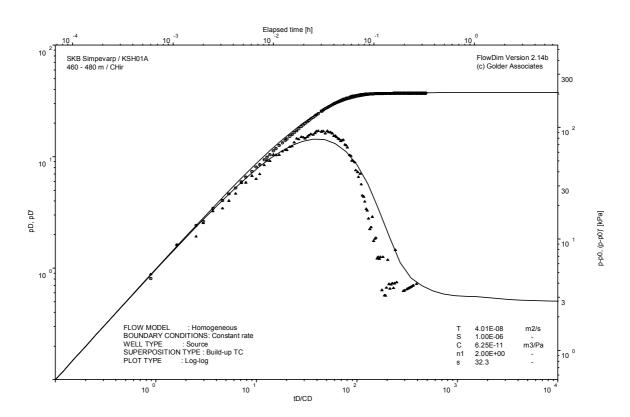
pD, pD'


CHIR phase; log-log match

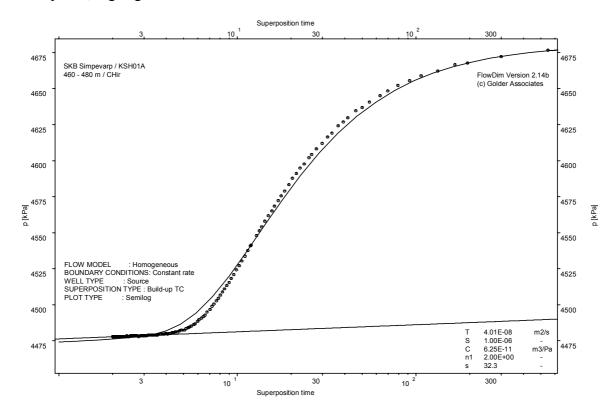

CHIR phase; HORNER match


3

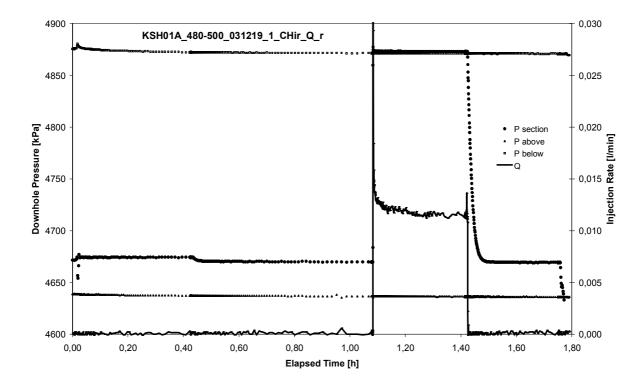
Test 460 – 480 m



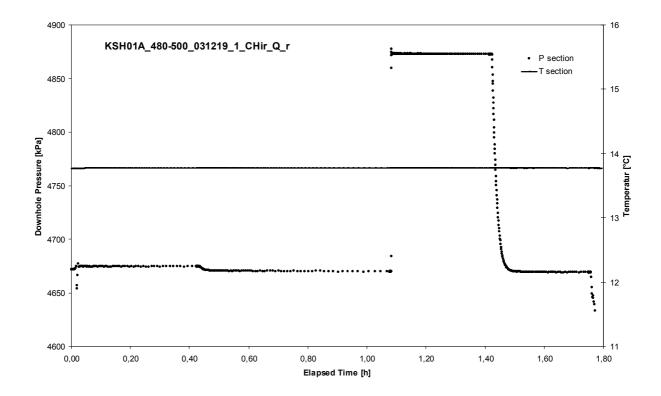
Pressure and flow rate vs. time; cartesian plot

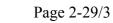


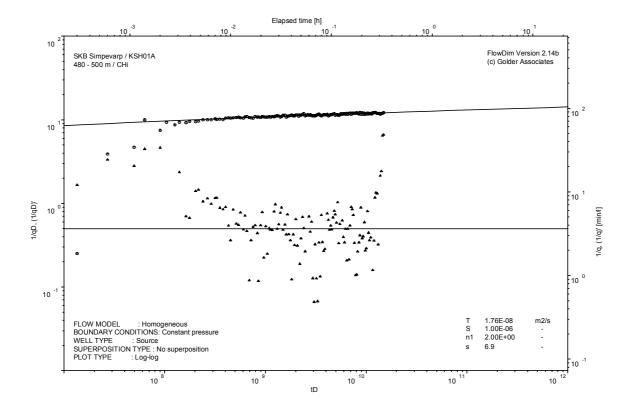
CHI phase; log-log match

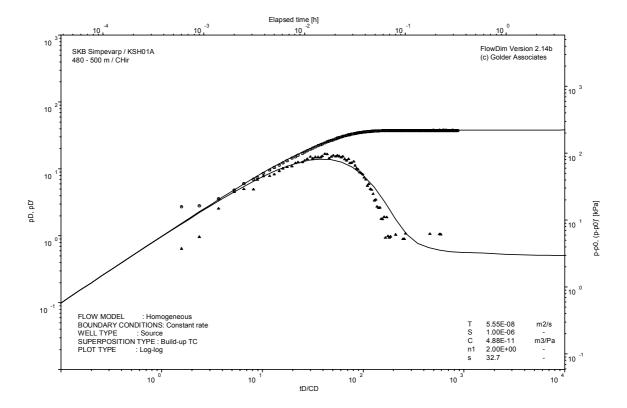


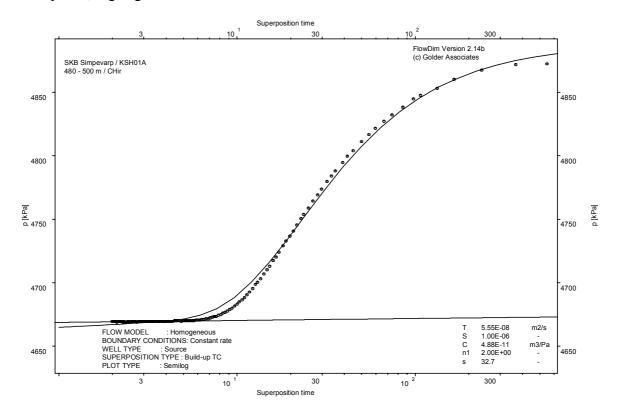
CHIR phase; log-log match



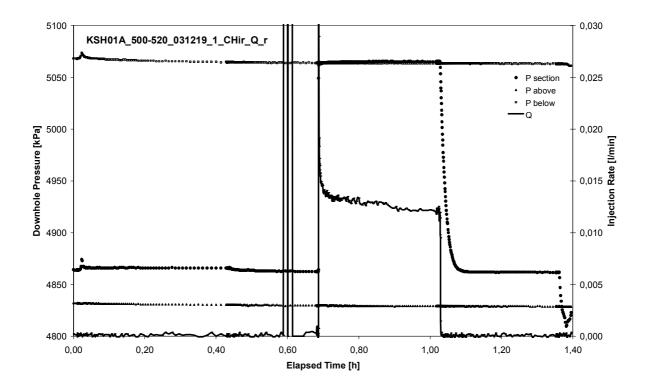

CHIR phase; HORNER match


Test 480 – 500 m

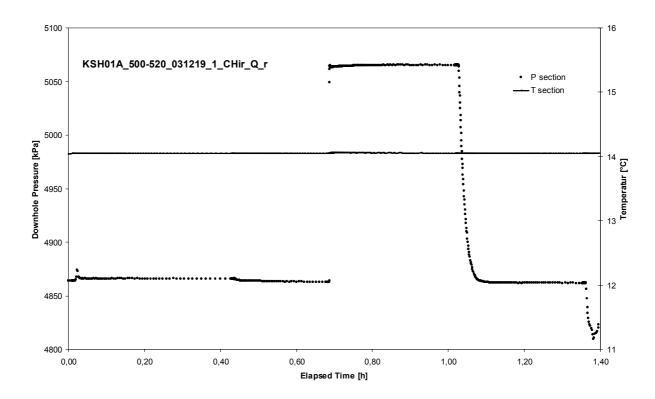

Pressure and flow rate vs. time; cartesian plot

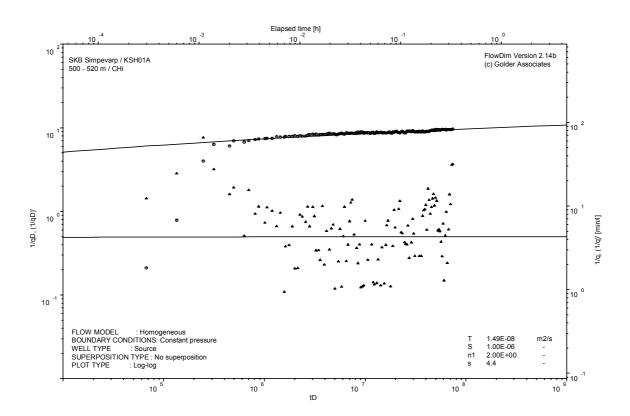


CHI phase; log-log match

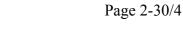


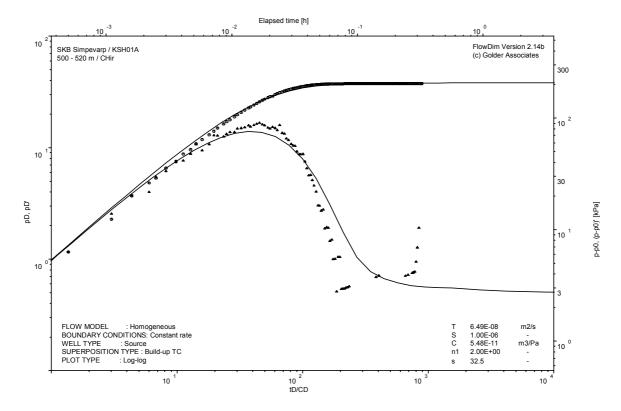
CHIR phase; log-log match

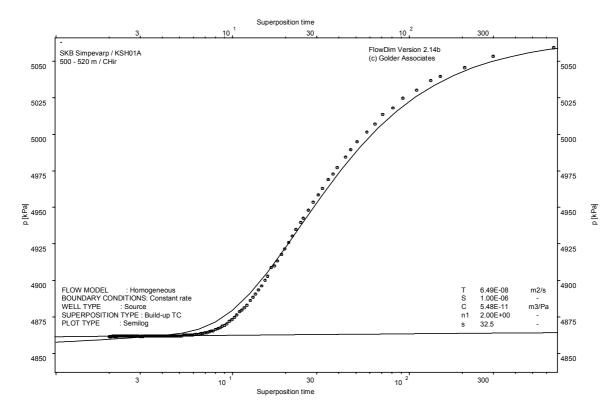



CHIR phase; HORNER match

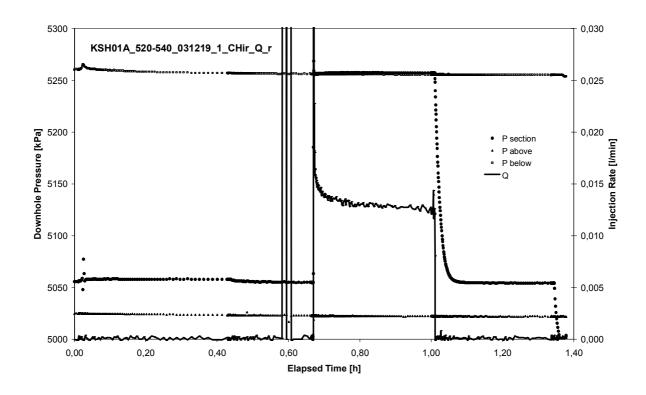
Test 500 – 520 m



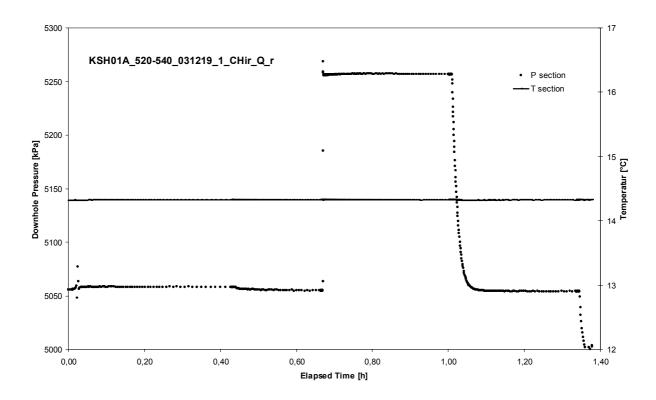

Pressure and flow rate vs. time; cartesian plot

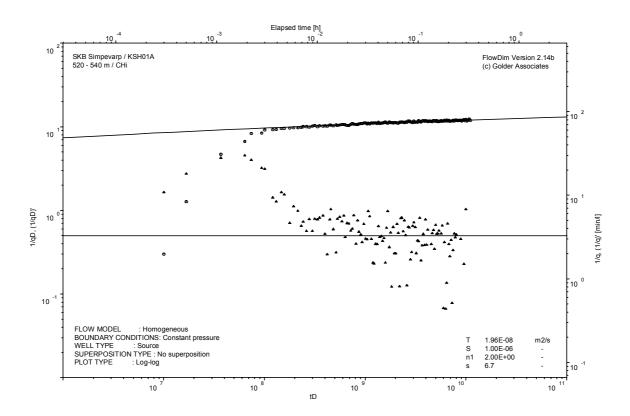


CHI phase; log-log match

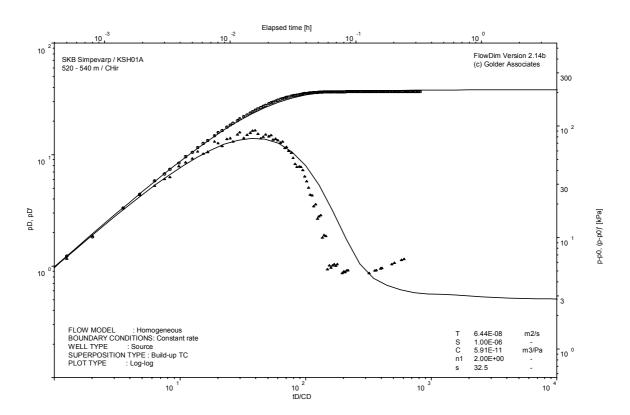


CHIR phase; log-log match

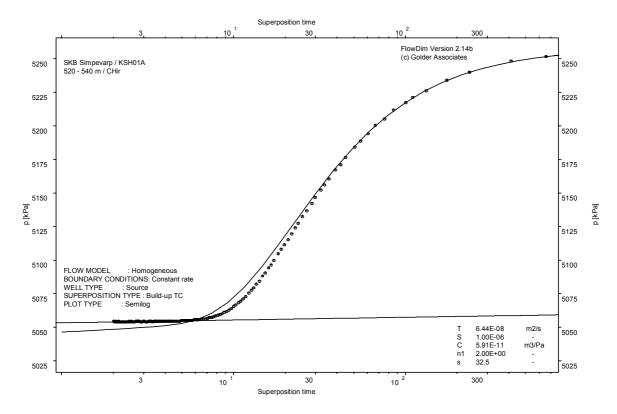



CHIR phase; HORNER match

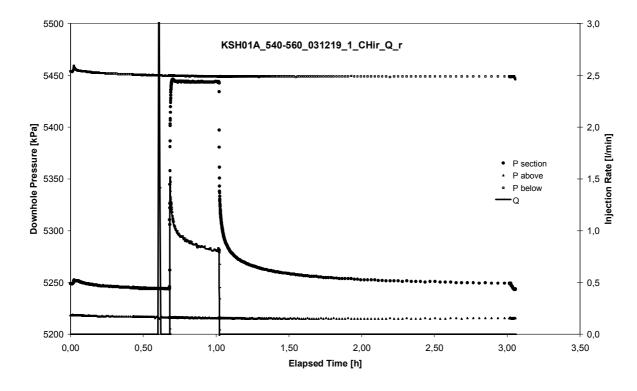
Test 520 – 540 m



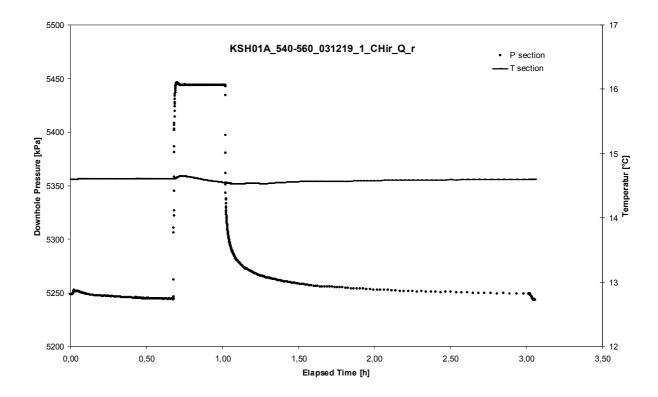
Pressure and flow rate vs. time; cartesian plot

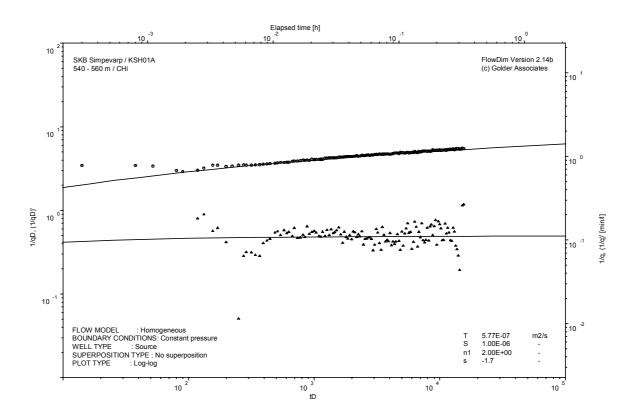


CHI phase; log-log match

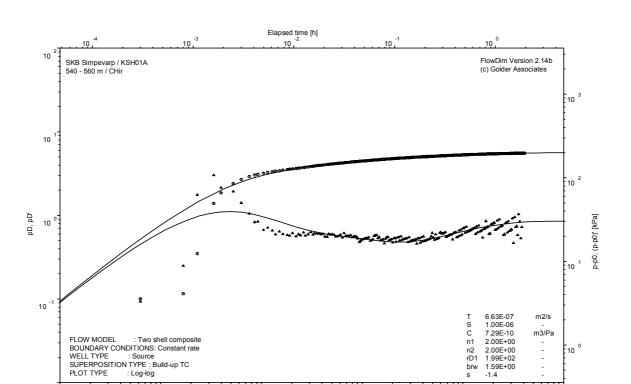


CHIR phase; log-log match




CHIR phase; HORNER match

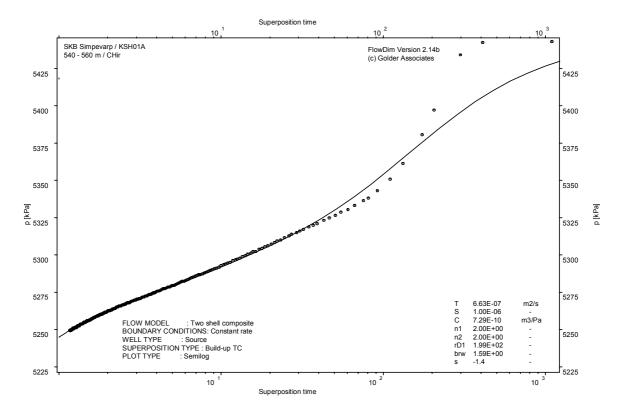
Test 540 – 560 m



Pressure and flow rate vs. time; cartesian plot (analysed)

CHI phase; log-log match

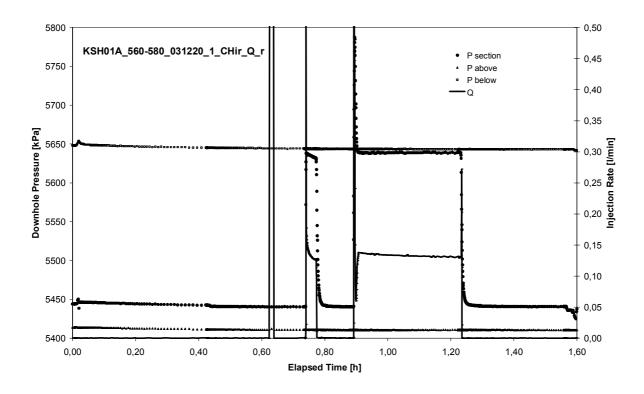
10 2

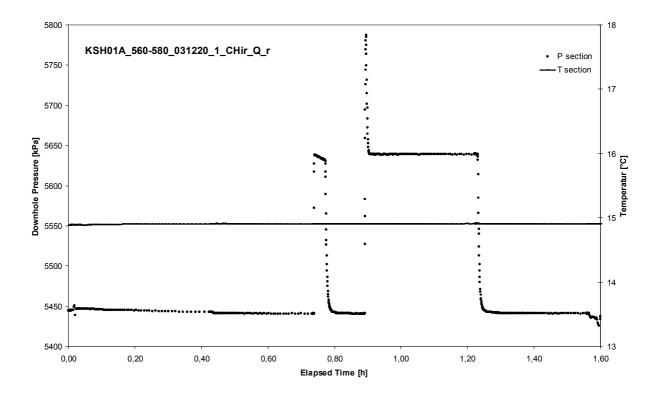

tD/CD

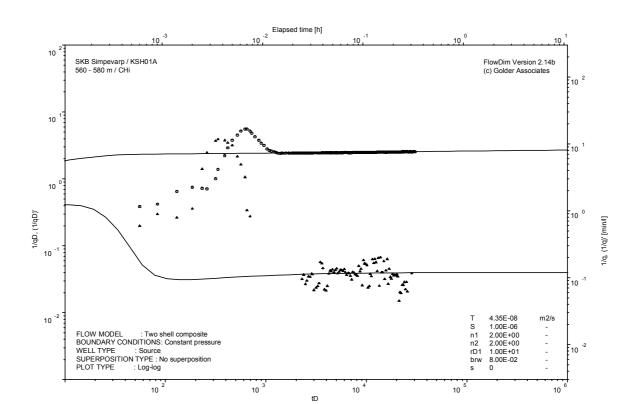
10

CHIR phase; log-log match

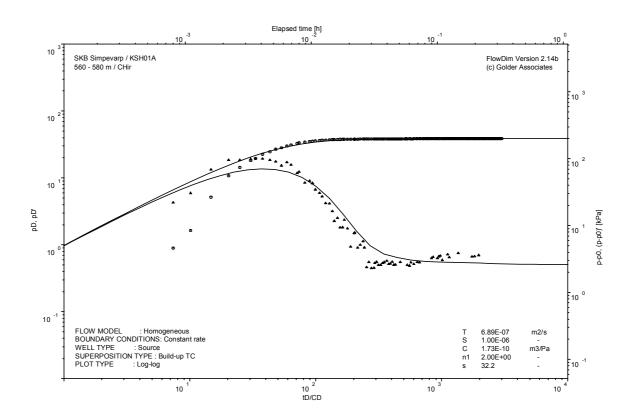
10


10

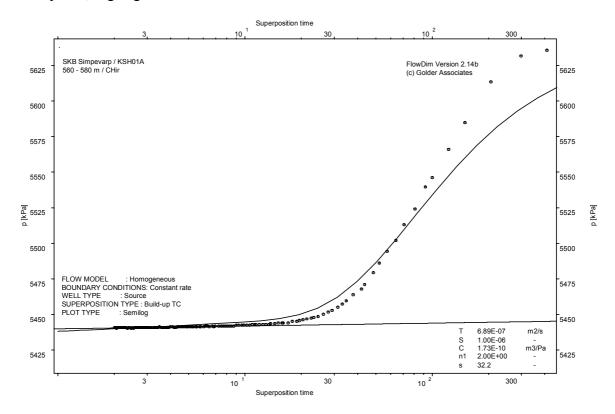

CHIR phase; HORNER match


10 4

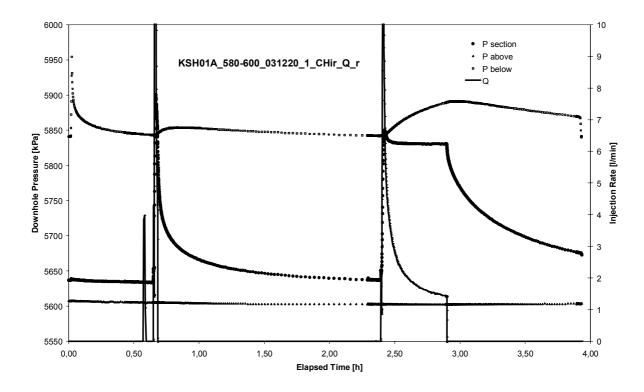
Test 560 – 580 m



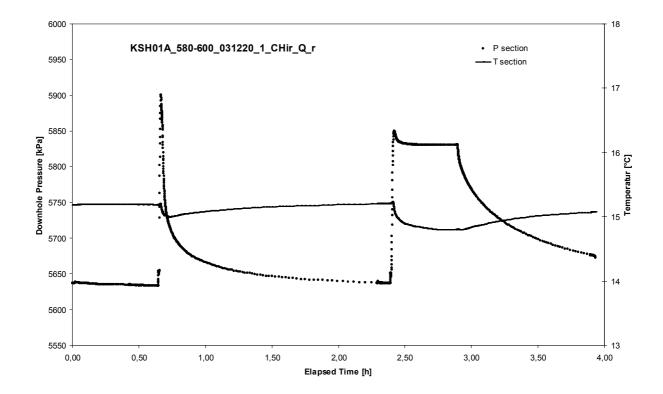
Pressure and flow rate vs. time; cartesian plot

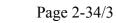


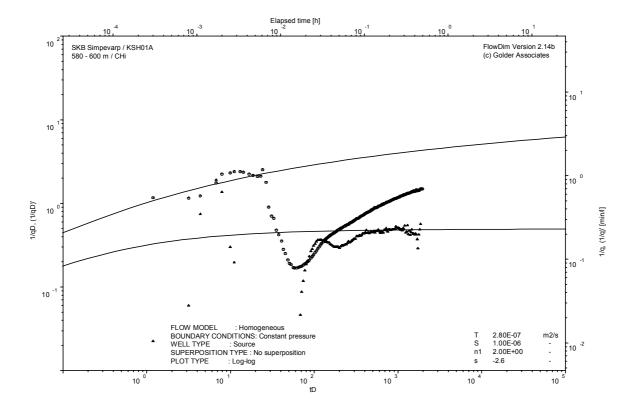
CHI phase; log-log match

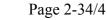


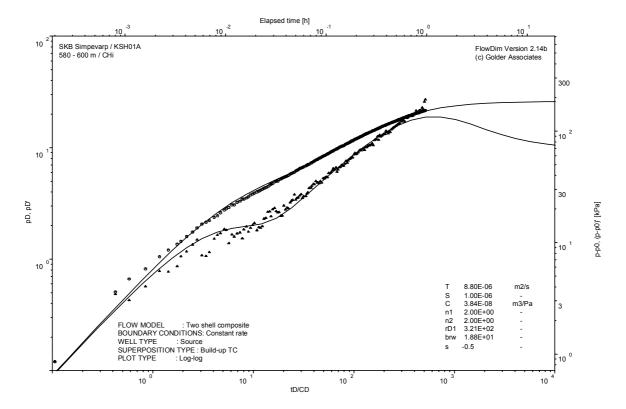
CHIR phase; log-log match

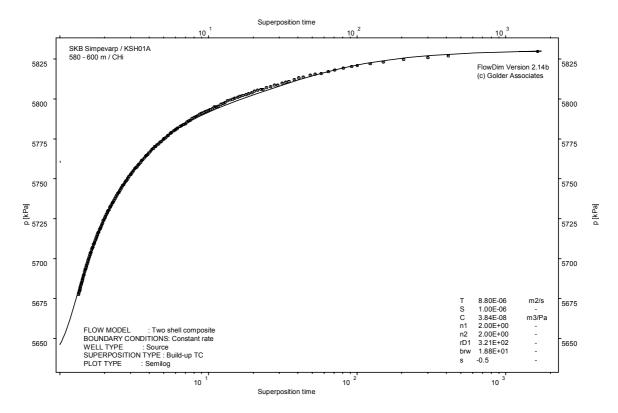



CHIR phase; HORNER match

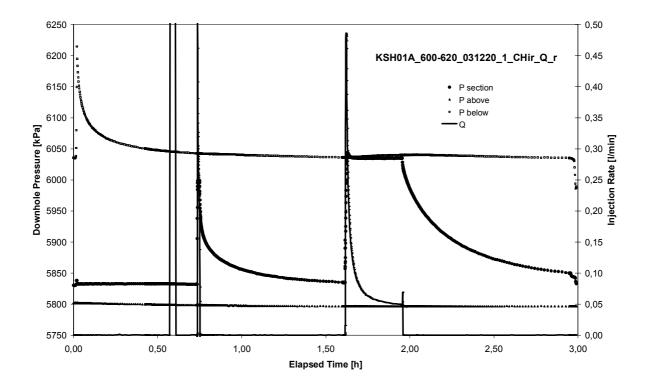

Test 580 – 600 m


Pressure and flow rate vs. time; cartesian plot

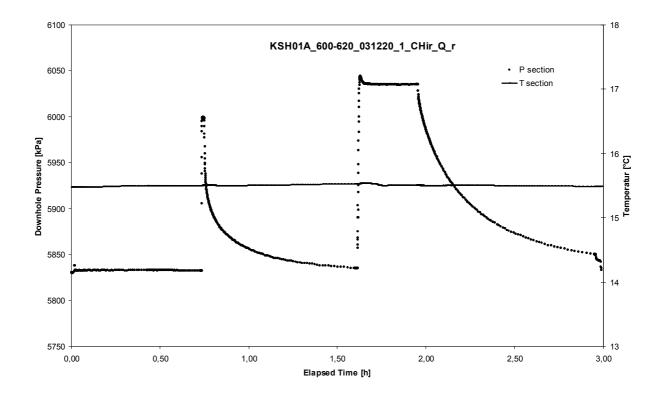


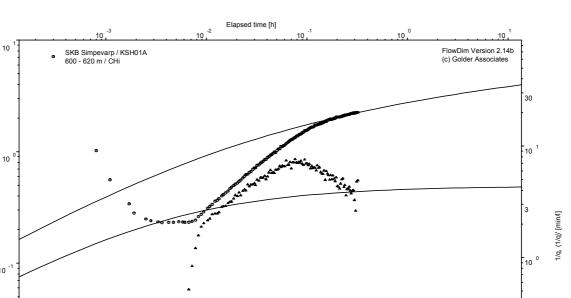


CHI phase; log-log match



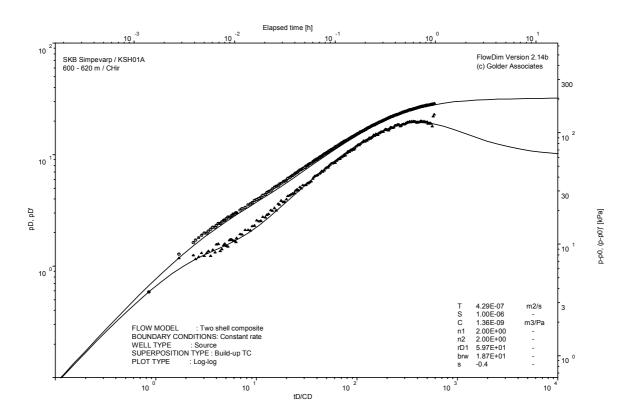
CHIR phase; log-log match



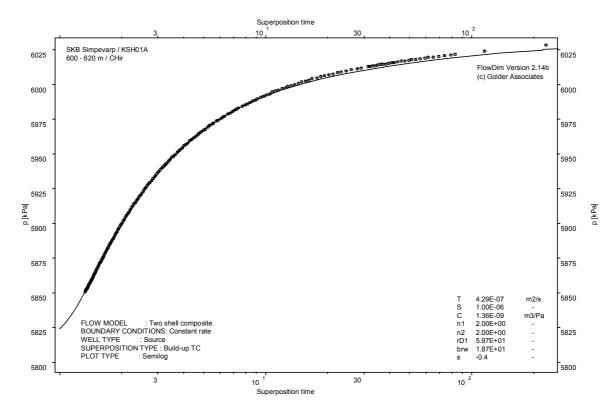

CHIR phase; HORNER match

Test 600 – 620 m

Pressure and flow rate vs. time; cartesian plot

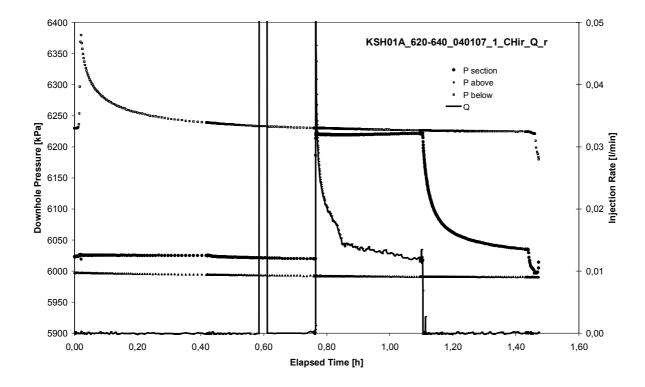


0.3 FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log 1.46E-08 1.00E-06 2.00E+00 -3.1 T S n1 s m2/s --10 2 10⁻¹ 10 0 10 tD

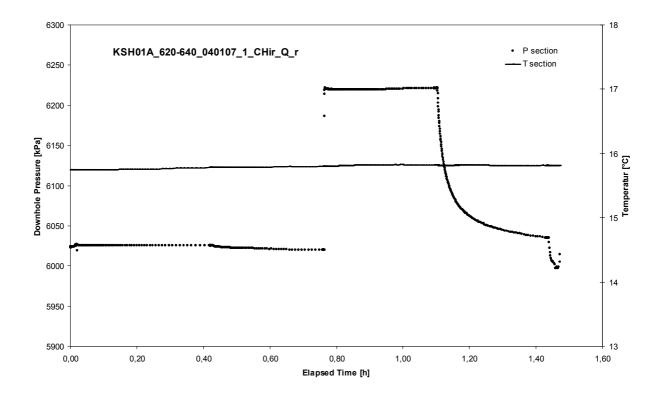

CHI phase; log-log match

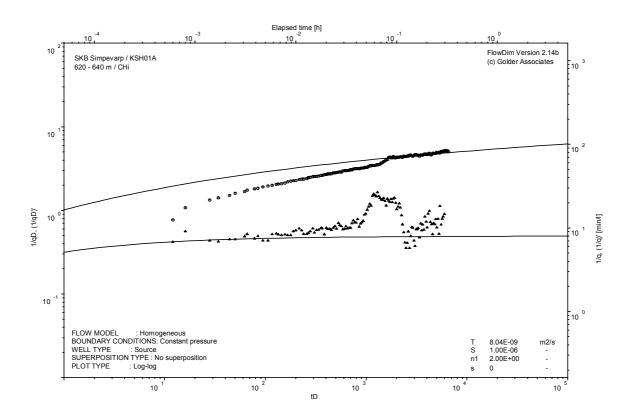
1/qD, (1/qD)

10

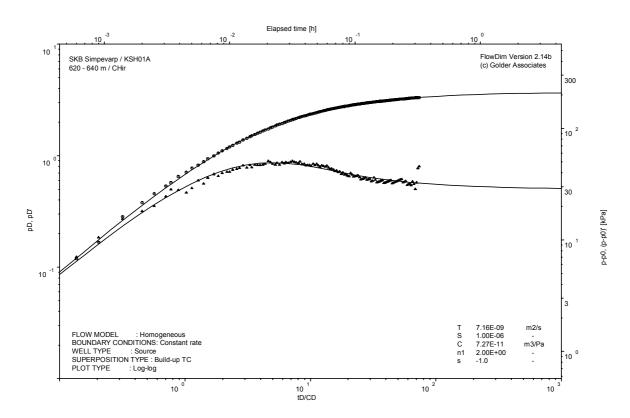


CHIR phase; log-log match

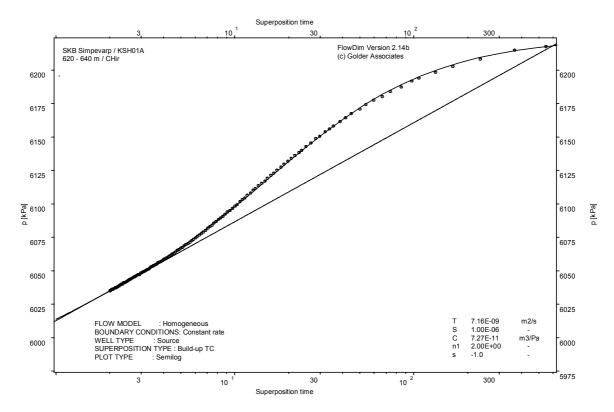



CHIR phase; HORNER match

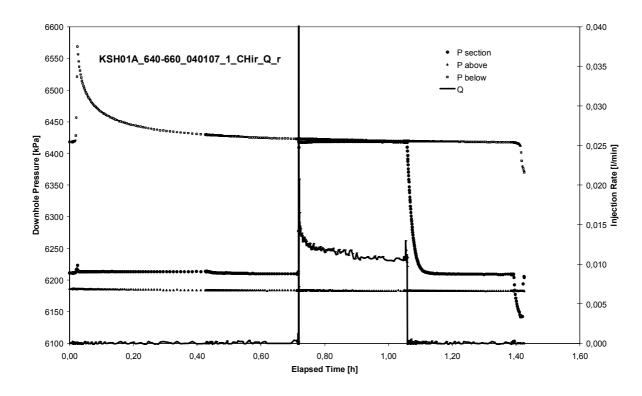
Test 620 – 640 m



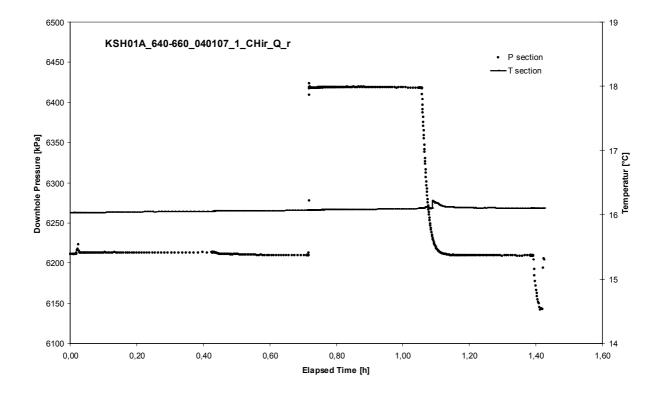
Pressure and flow rate vs. time; cartesian plot



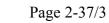
CHI phase; log-log match



CHIR phase; log-log match

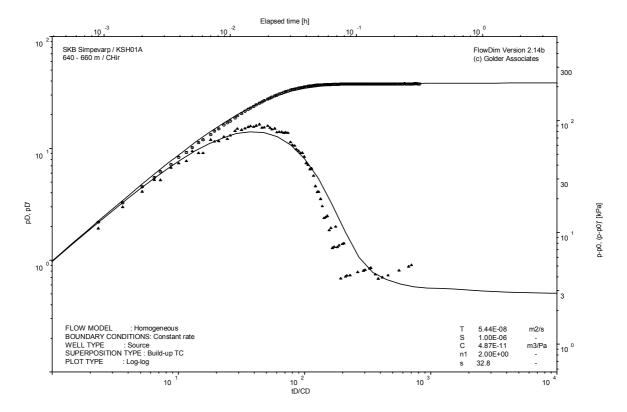


CHIR phase; HORNER match

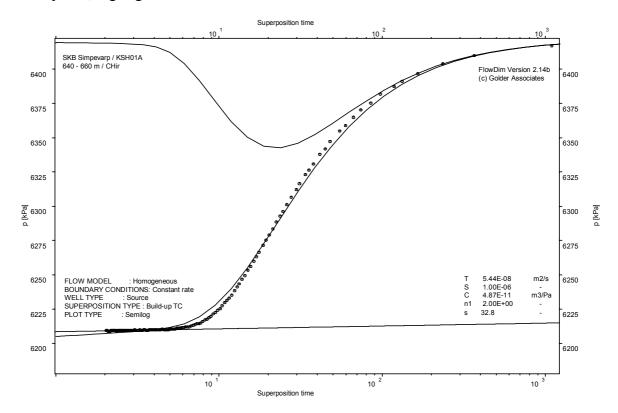

Test 640 – 660 m



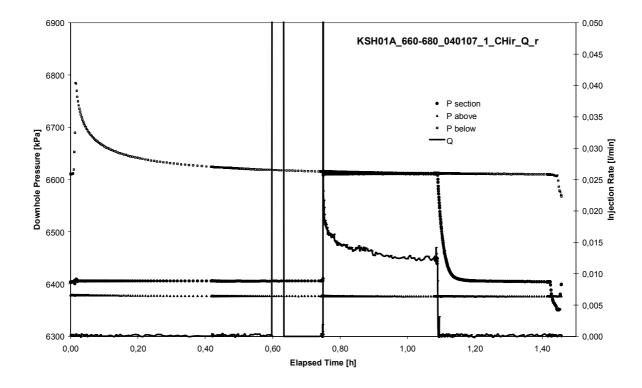
Pressure and flow rate vs. time; cartesian plot



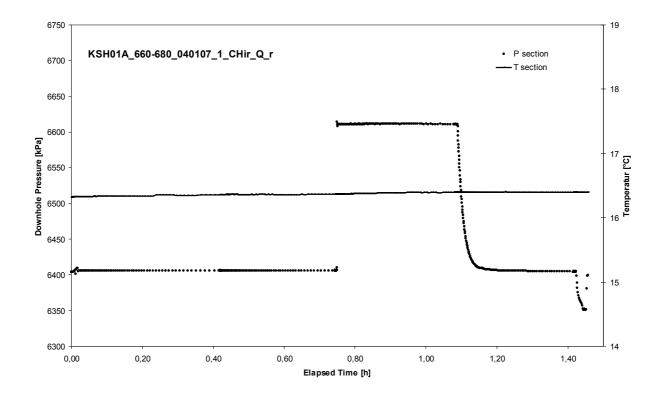
Interval pressure and temperature vs. time; cartesian plot

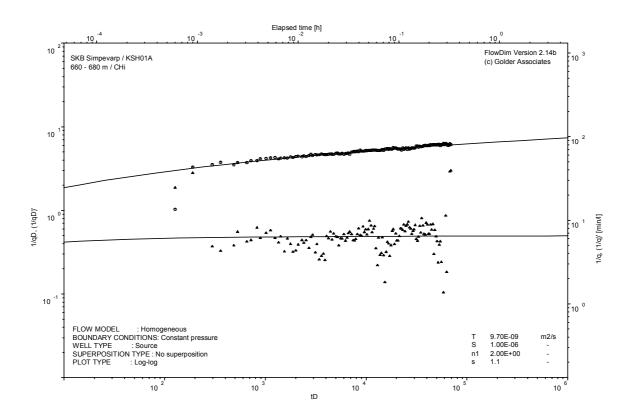


CHI phase; log-log match

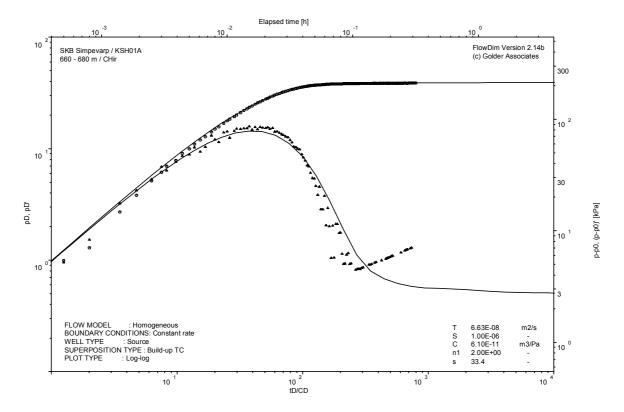


CHIR phase; log-log match

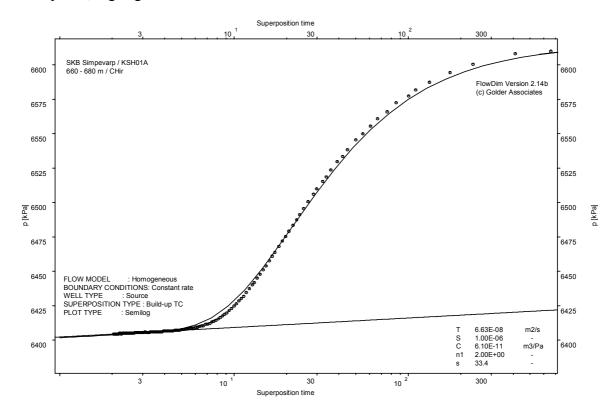



CHIR phase; HORNER match

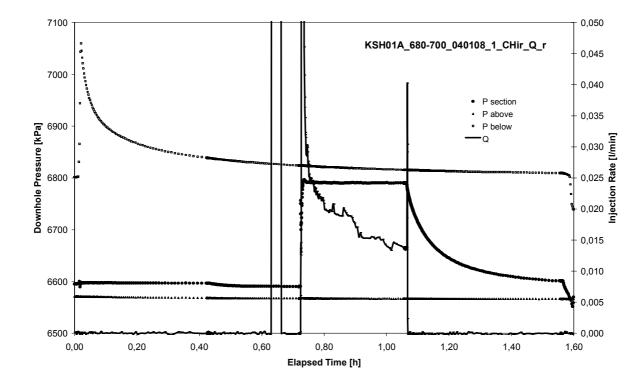
Test 660 – 680 m



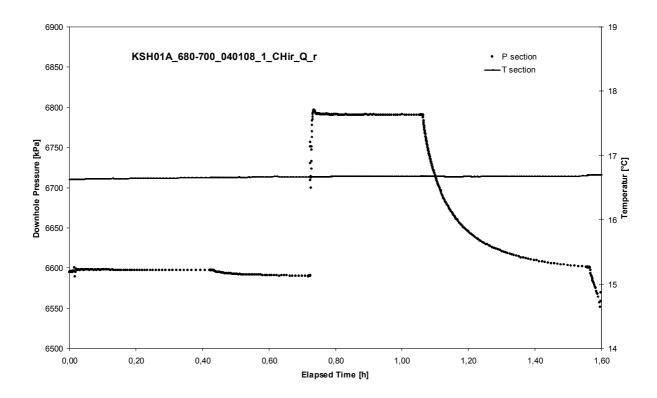
Pressure and flow rate vs. time; cartesian plot

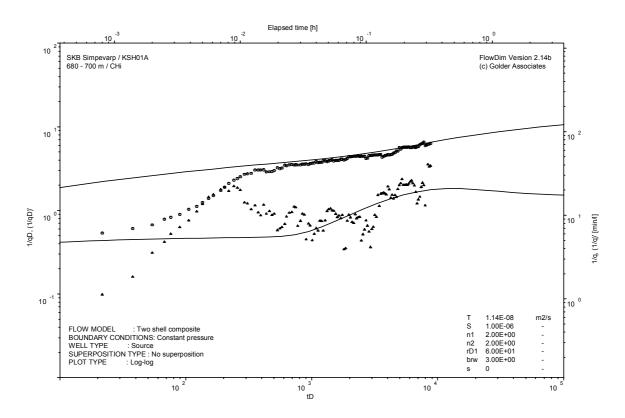


CHI phase; log-log match

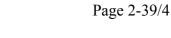


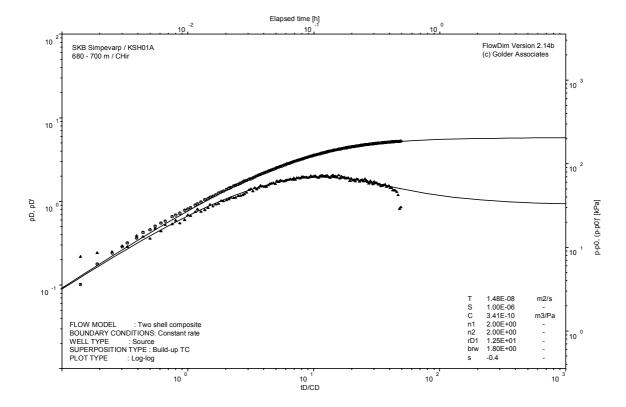
CHIR phase; log-log match

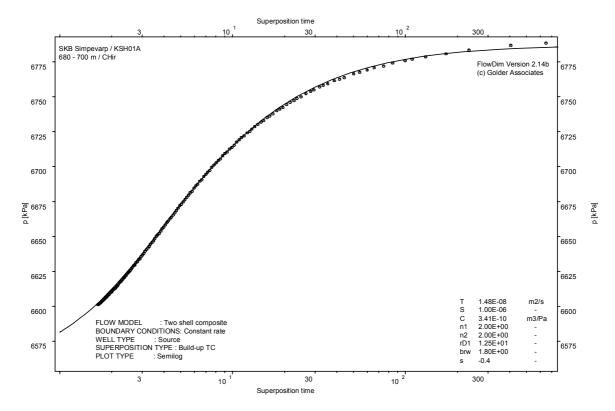



CHIR phase; HORNER match

Test 680 – 700 m



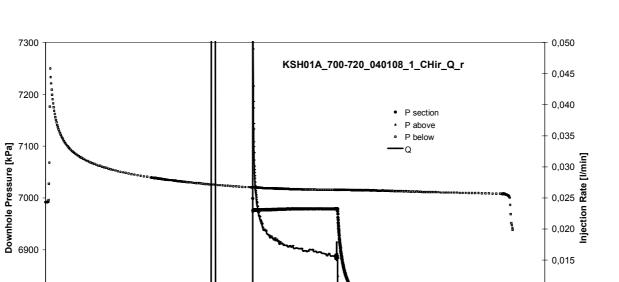

Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match


Test 700 – 720 m

6800

6700

0,00

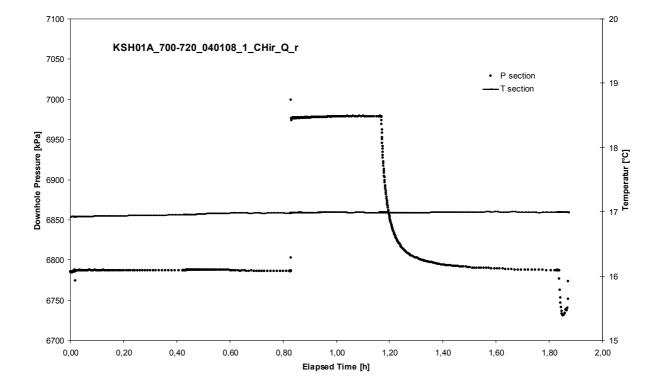
0,20

1,40

1,60

Pressure and flow rate vs. time; cartesian plot

0,40


0,60

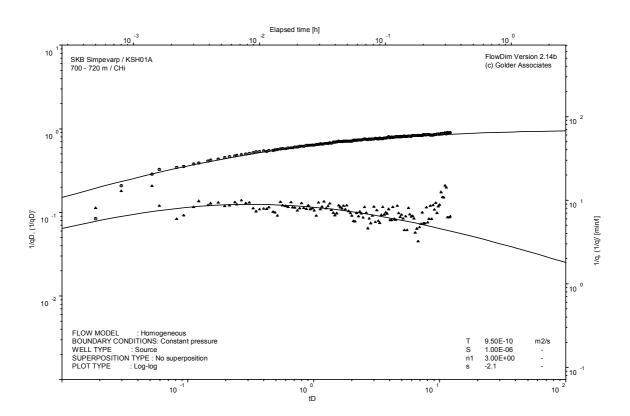
0,80

1,00

Elapsed Time [h]

1,20

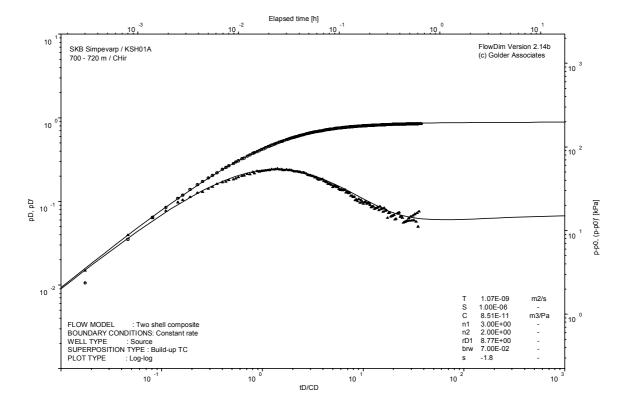
Interval pressure and temperature vs. time; cartesian plot

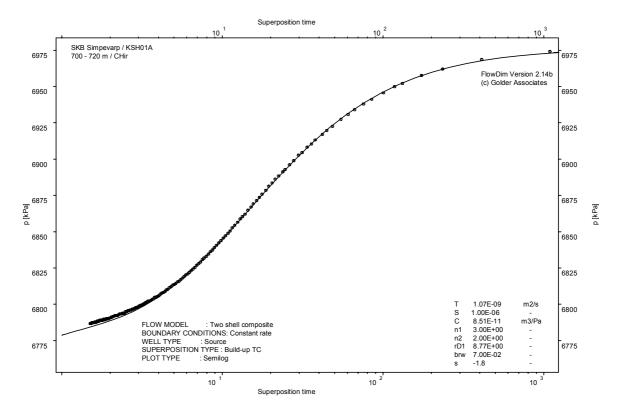

0,010

0,005

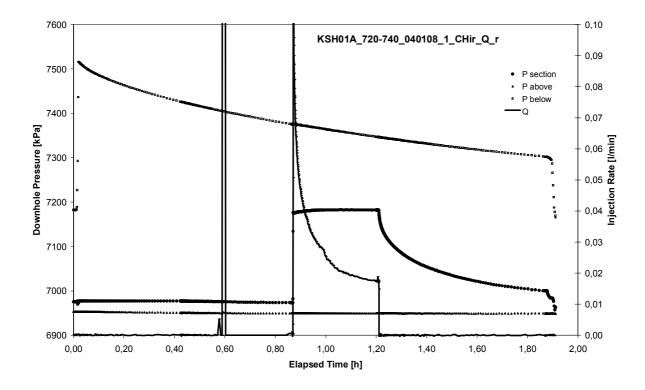
0,000

2,00

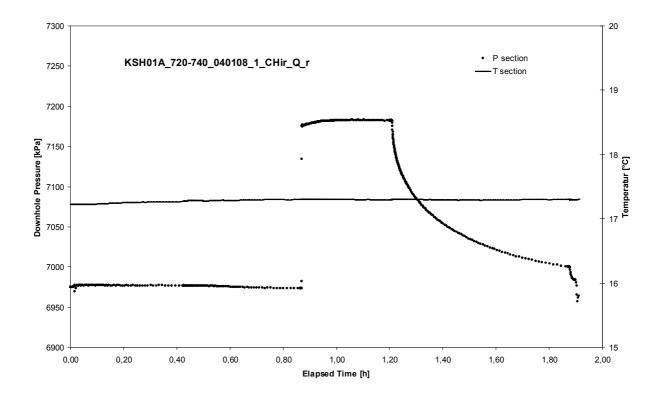

1,80


CHI phase; log-log match

Test:

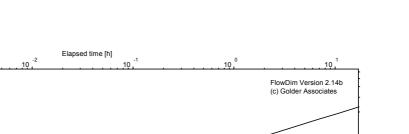


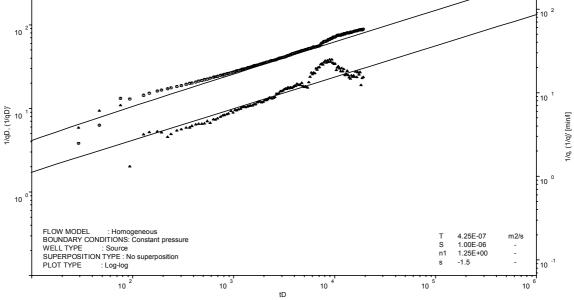
CHIR phase; log-log match



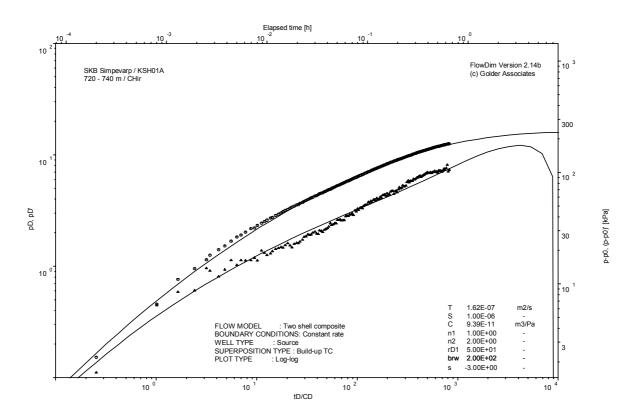
CHIR phase; HORNER match

Test 720 - 740 m

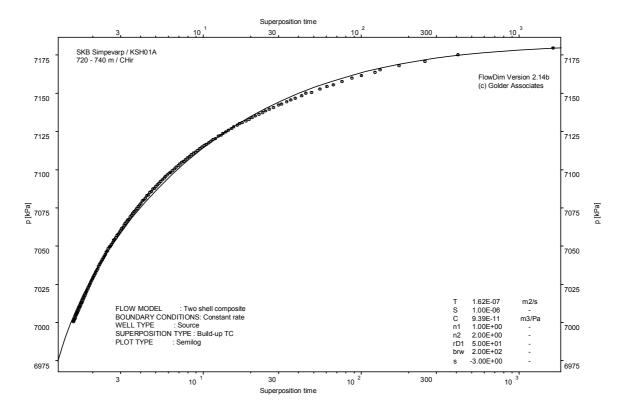

Pressure and flow rate vs. time; cartesian plot



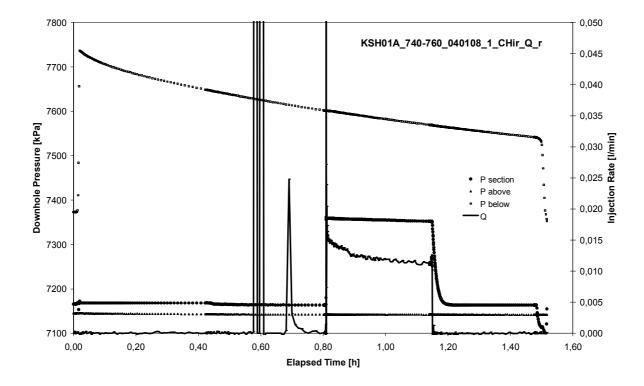
10


<u>10</u>.⁻³

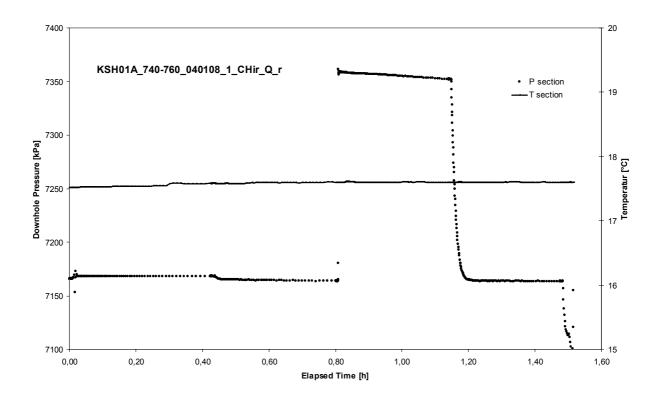
SKB Simpevarp / KSH01A 720 - 740 m / CHi



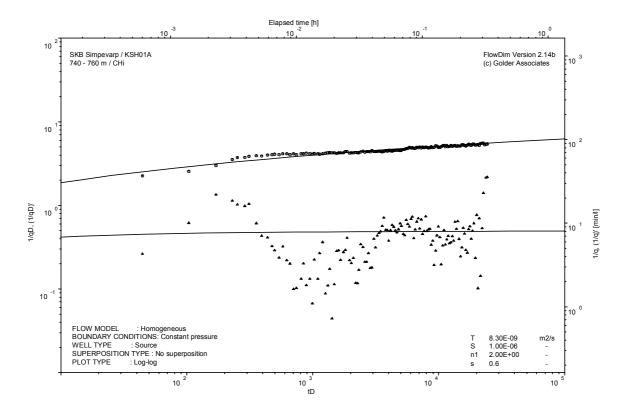
CHI phase; log-log match



CHIR phase; log-log match

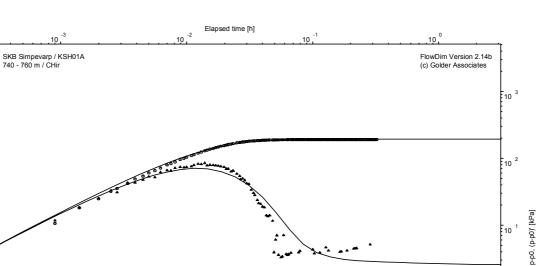


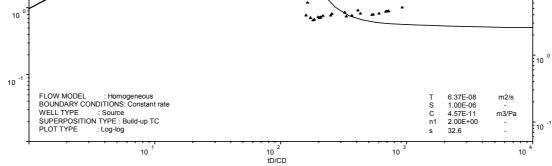
CHIR phase; HORNER match


Test 740 - 760 m

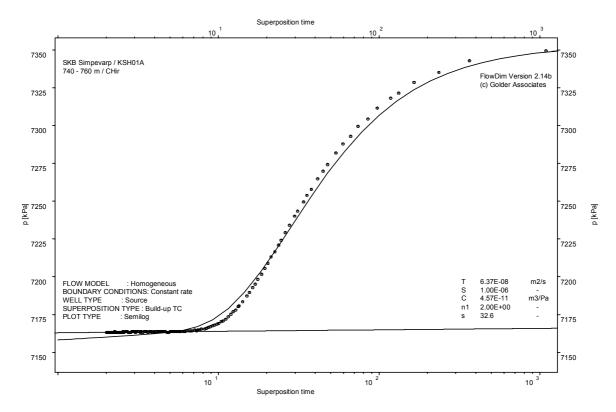
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

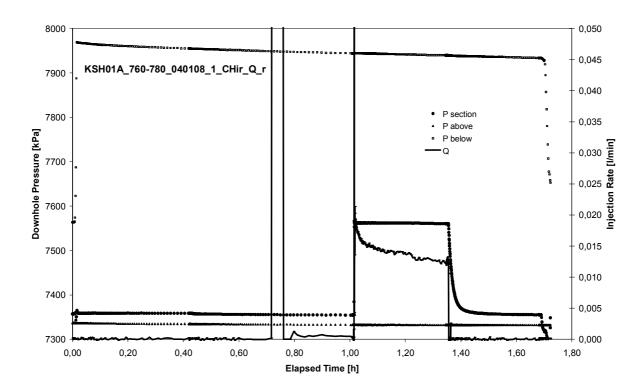

CHI phase; log-log match


10

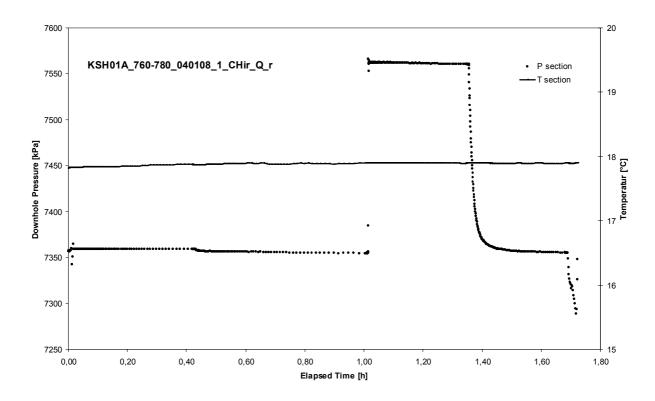
10

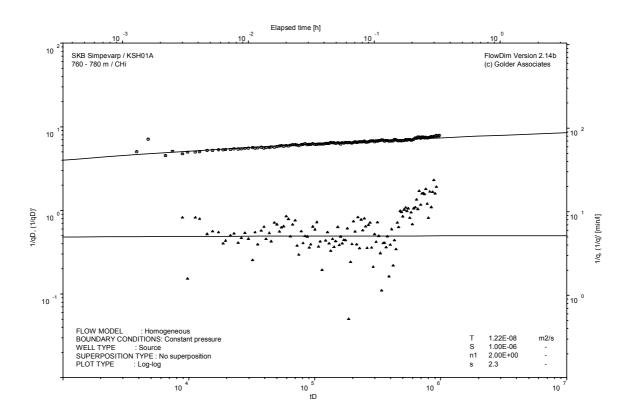

10

pD, pD'

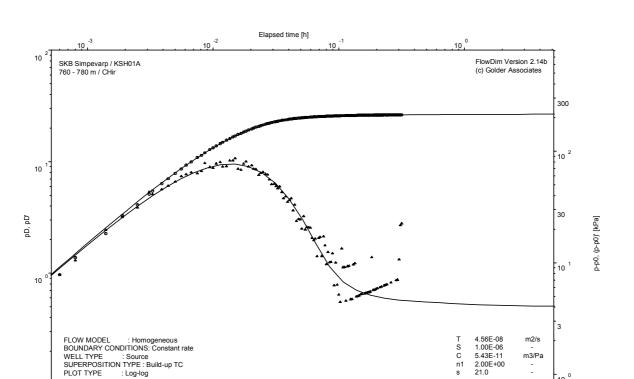


CHIR phase; log-log match



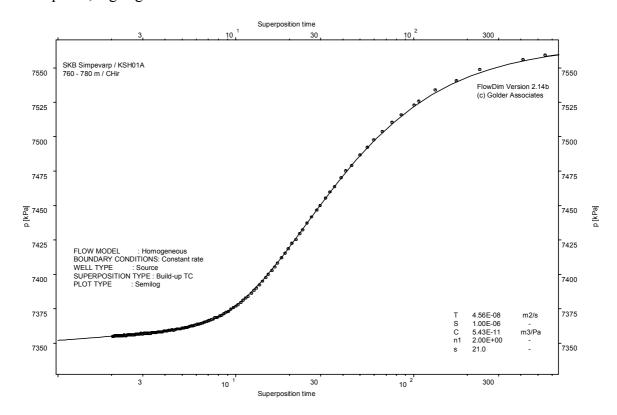

CHIR phase; HORNER match

Test 760 – 780 m



Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

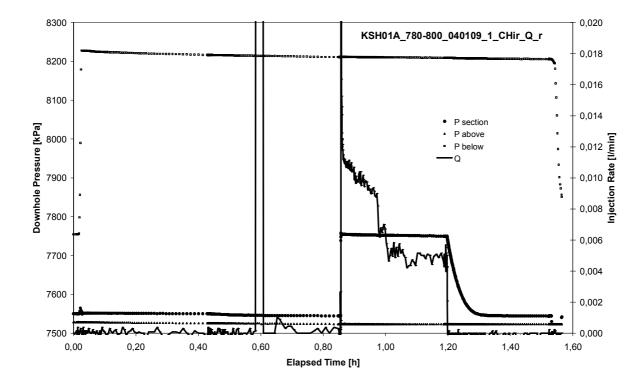


: Log-log

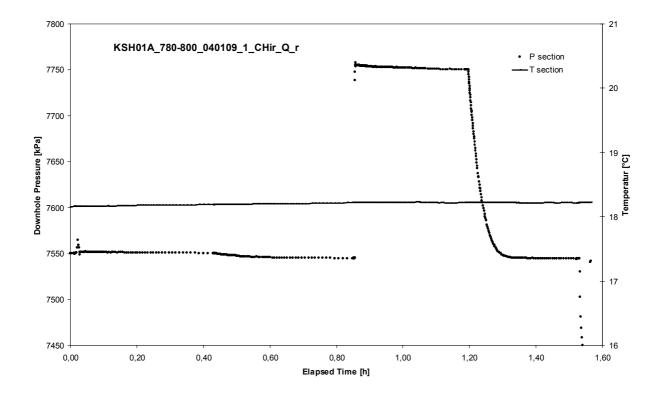
10

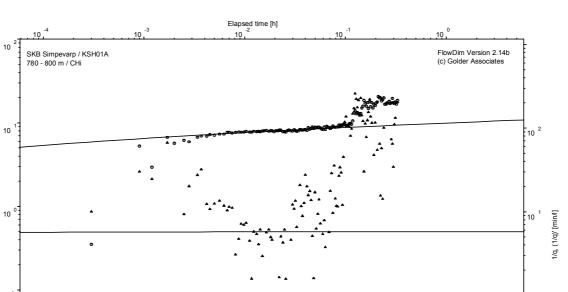
PLOT TYPE

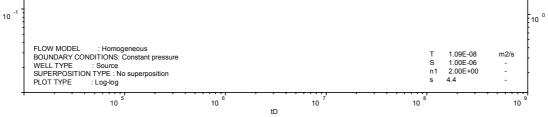
10² tD/CD


10

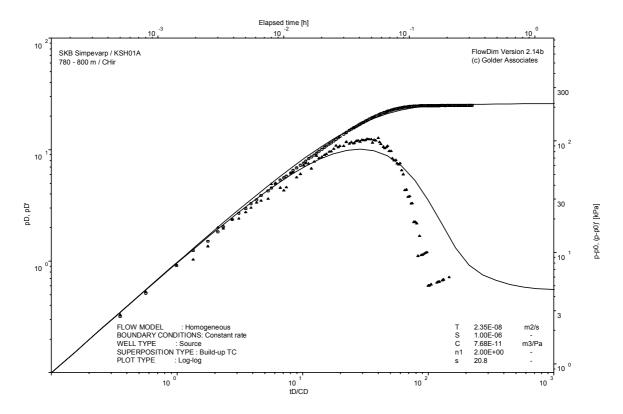
CHIR phase; HORNER match

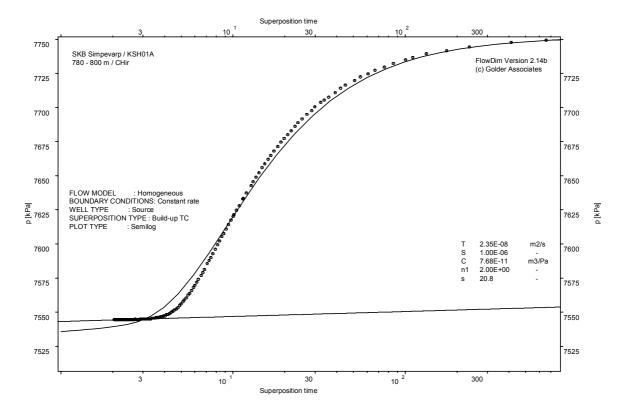

10 0


10


Test 780 – 800 m

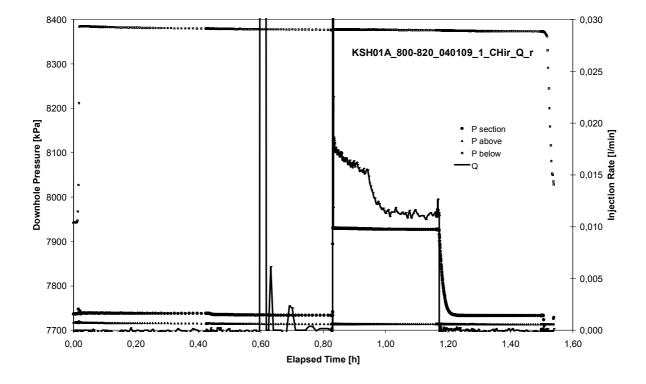
Pressure and flow rate vs. time; cartesian plot



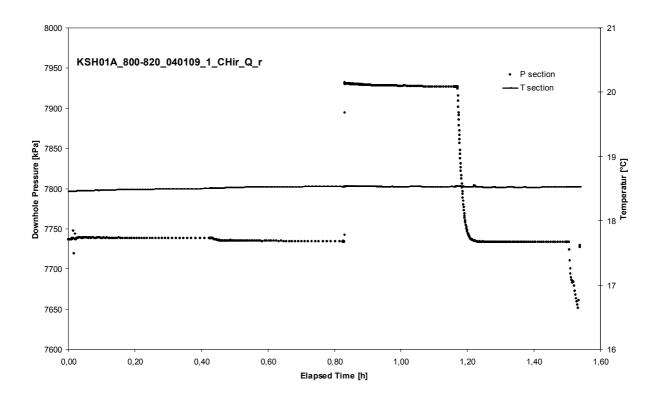


CHI phase; log-log match

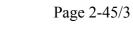
1/qD, (1/qD)'

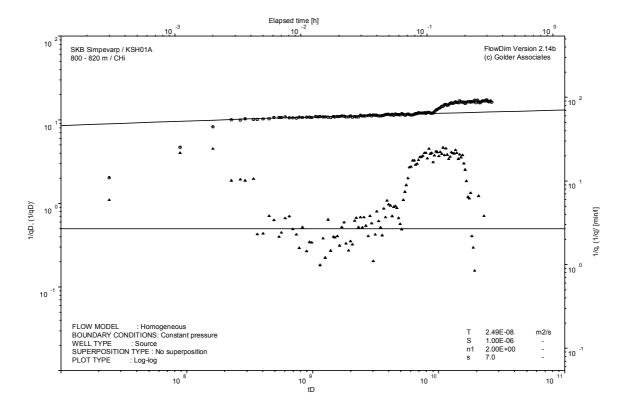


CHIR phase; log-log match

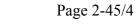


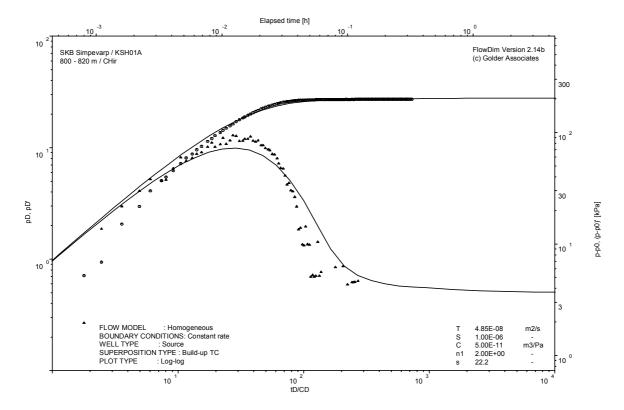
CHIR phase; HORNER match

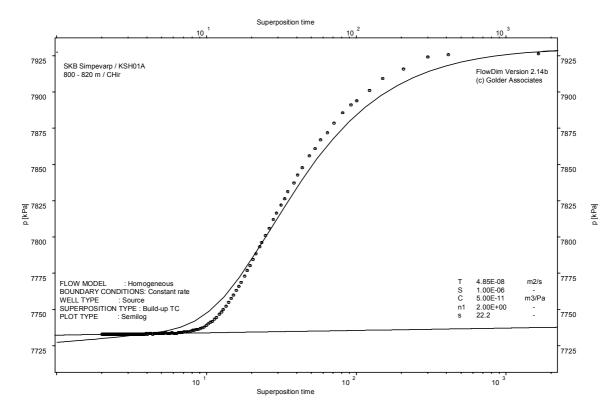

Test 800 – 820 m



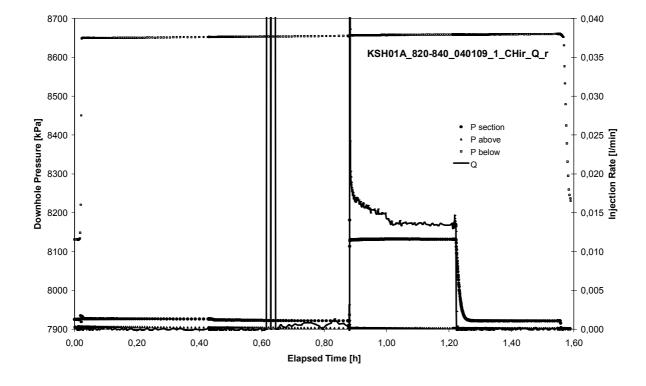
Pressure and flow rate vs. time; cartesian plot



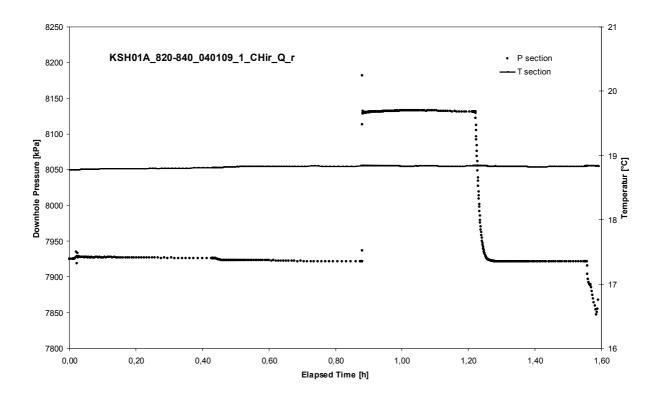

Interval pressure and temperature vs. time; cartesian plot



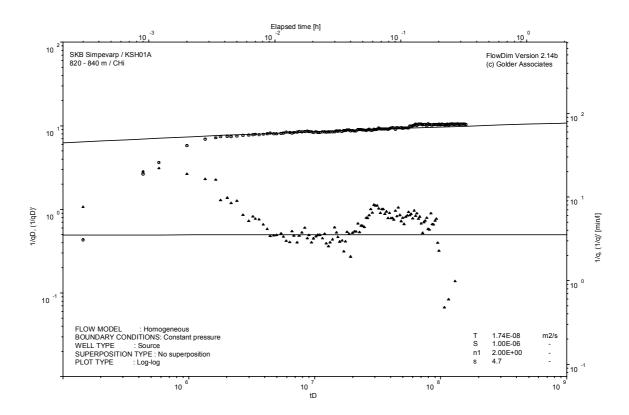
CHI phase; log-log match

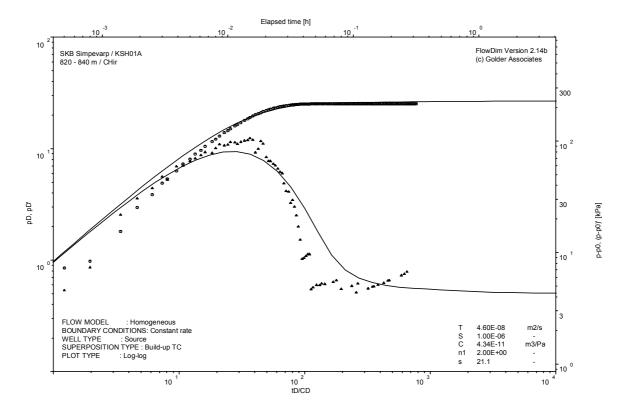


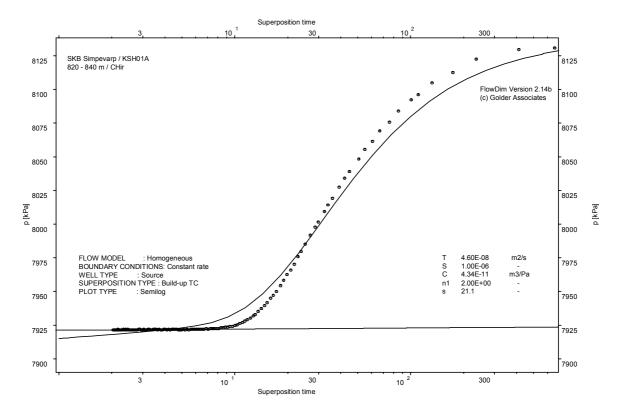
CHIR phase; log-log match



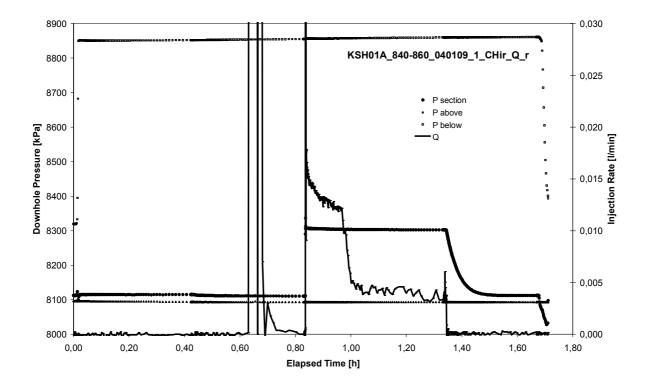
CHIR phase; HORNER match


Test 820 – 840 m

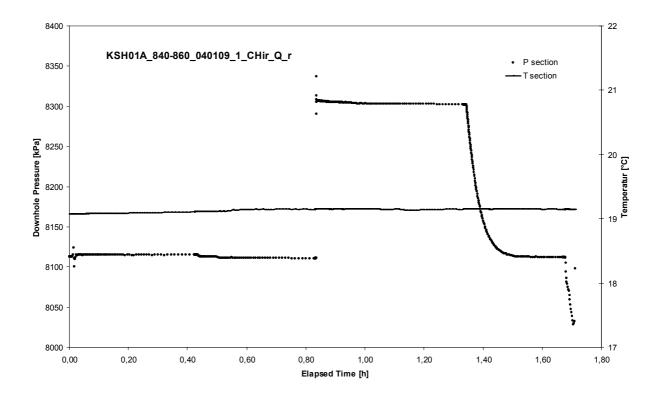

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

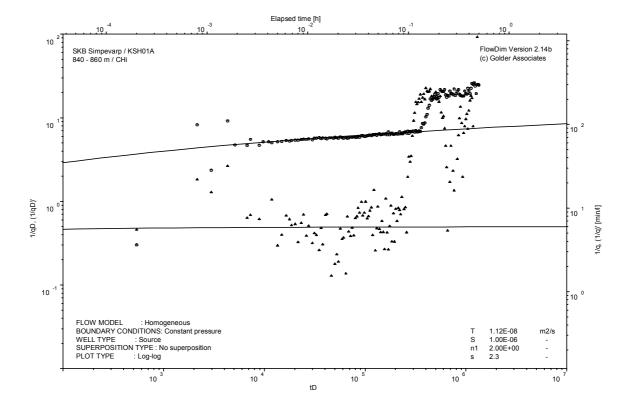
CHI phase; log-log match

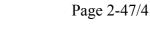


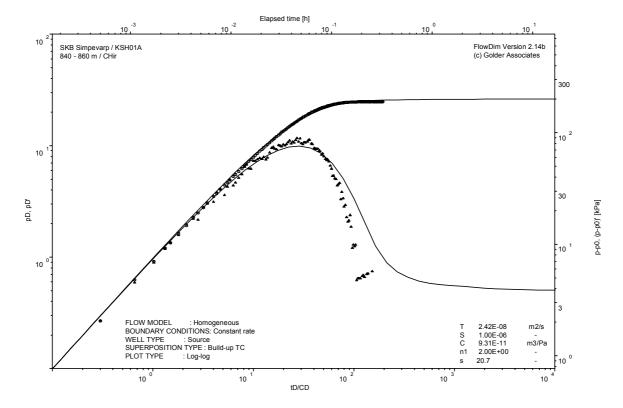
CHIR phase; log-log match

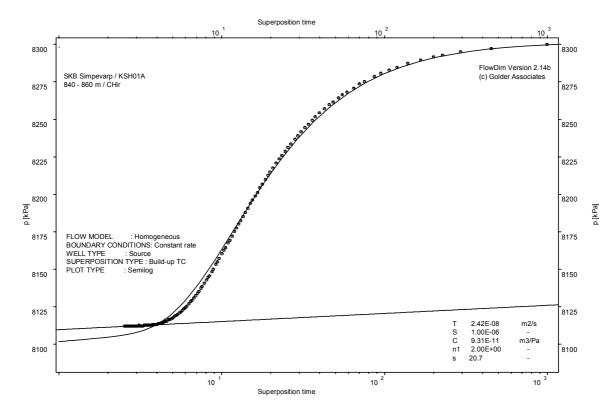


CHIR phase; HORNER match

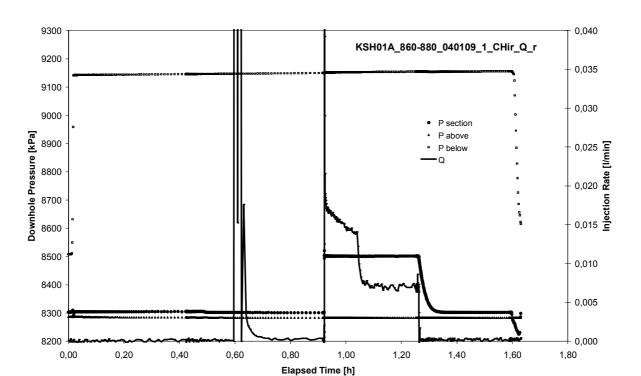

Test 840 – 860 m


Pressure and flow rate vs. time; cartesian plot

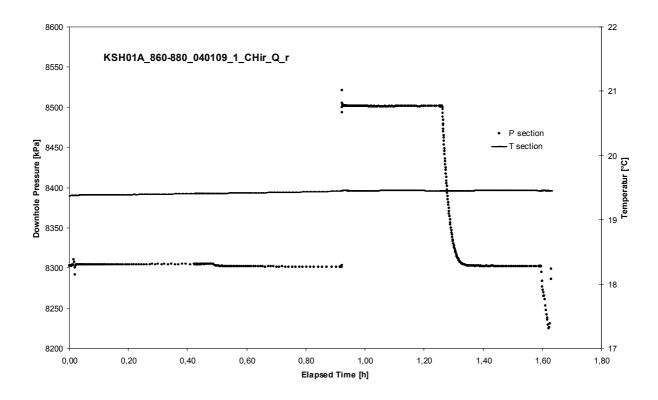


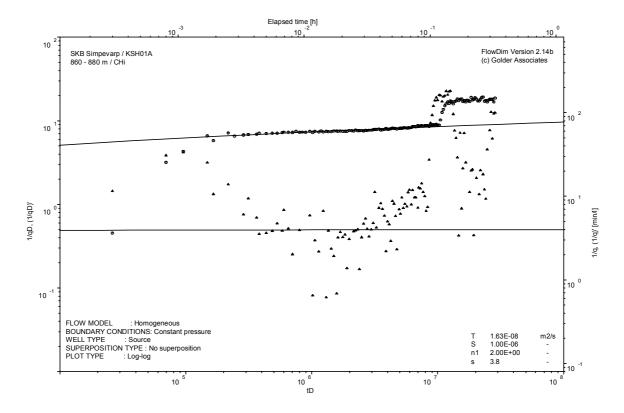


CHI phase; log-log match

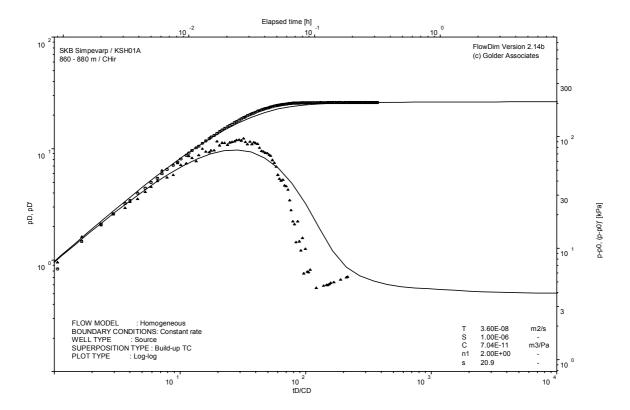


CHIR phase; log-log match

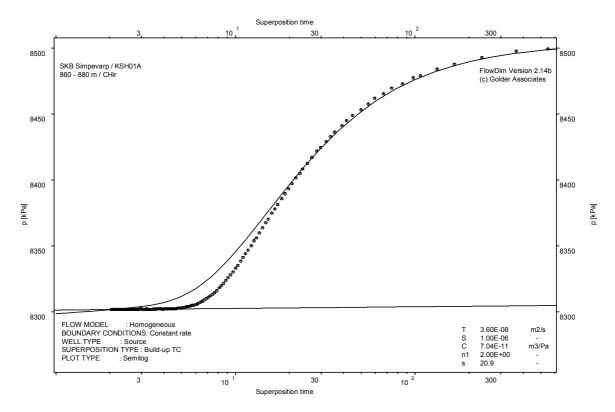



CHIR phase; HORNER match

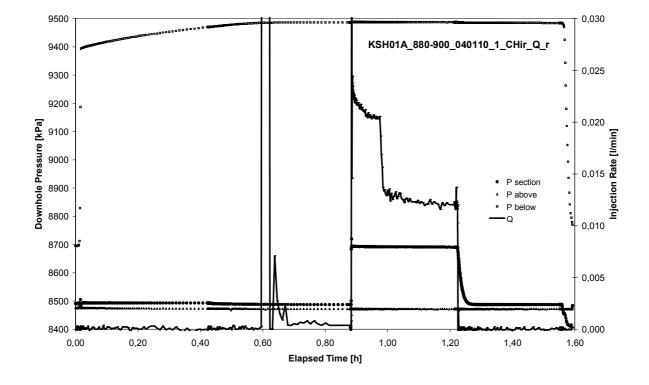
Test 860 – 880 m



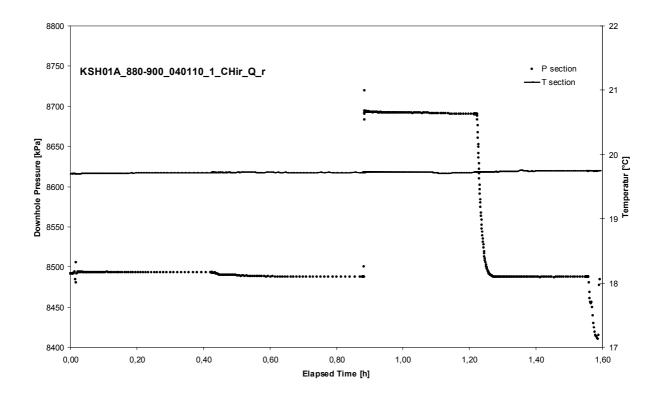
Pressure and flow rate vs. time; cartesian plot

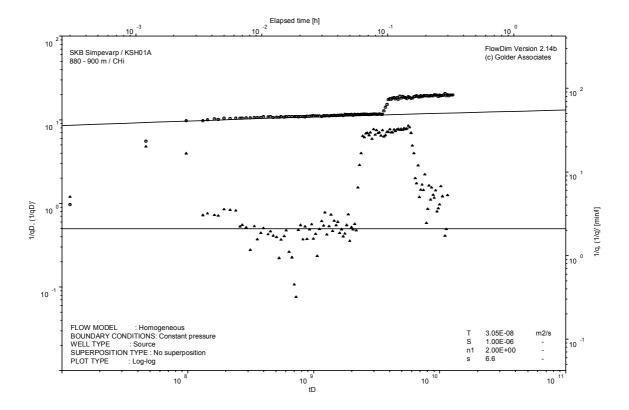


CHI phase; log-log match

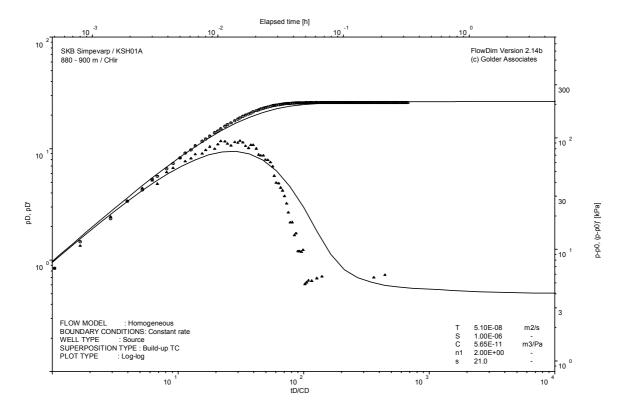


CHIR phase; log-log match

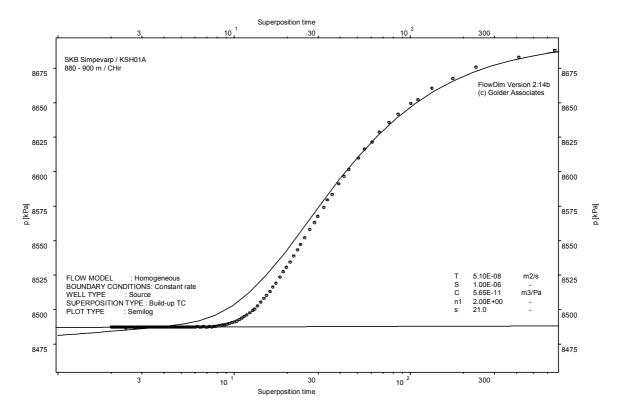



CHIR phase; HORNER match

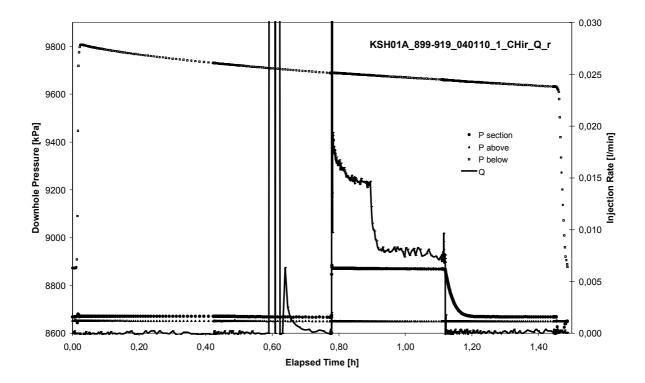
Test 880 – 900 m



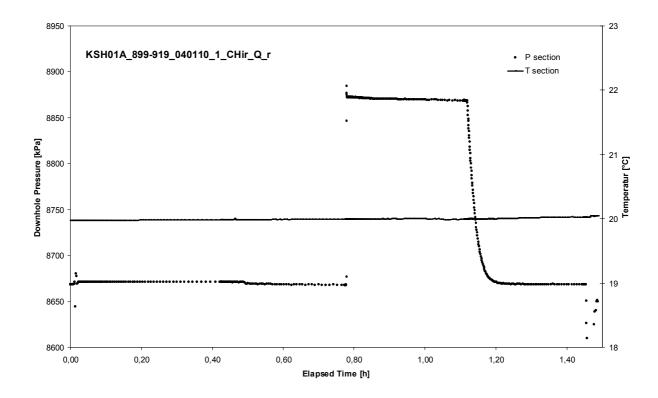
Pressure and flow rate vs. time; cartesian plot

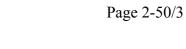


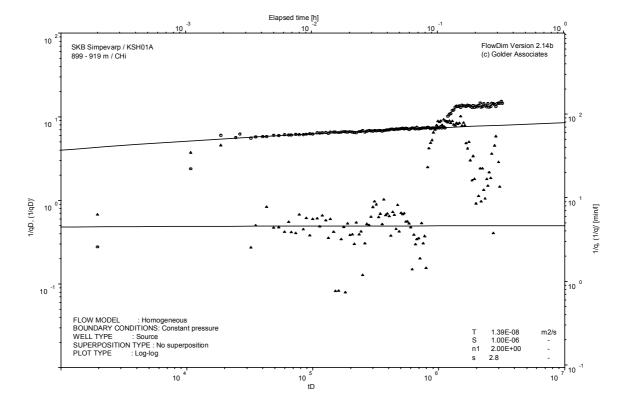
CHI phase; log-log match

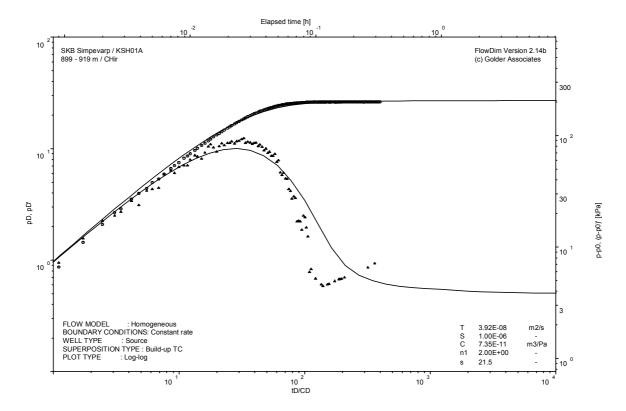


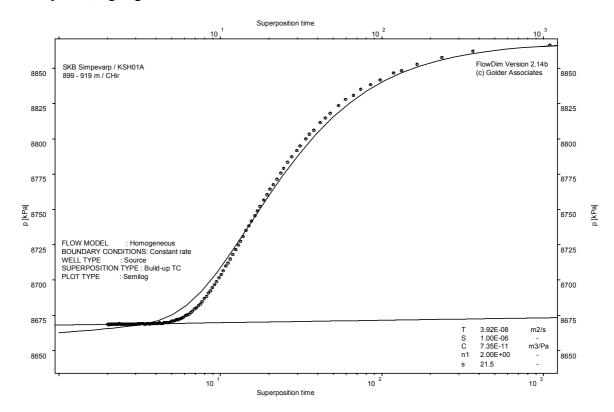
CHIR phase; log-log match



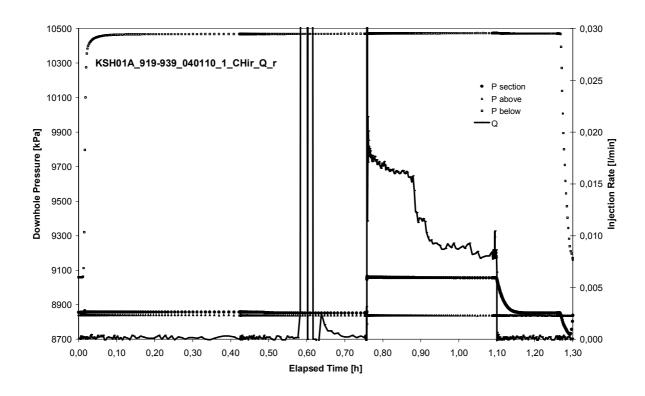

CHIR phase; HORNER match


Test 899 – 919 m

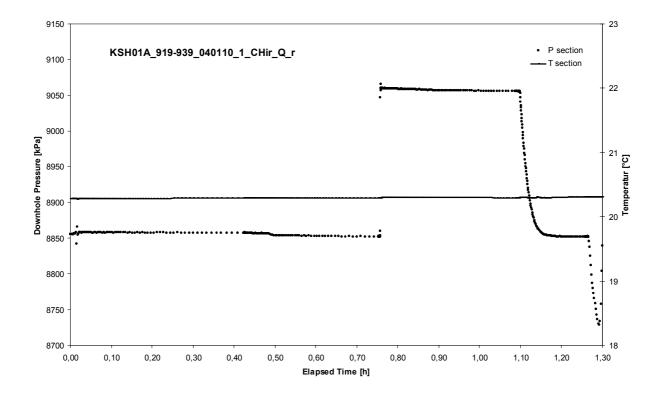

Pressure and flow rate vs. time; cartesian plot

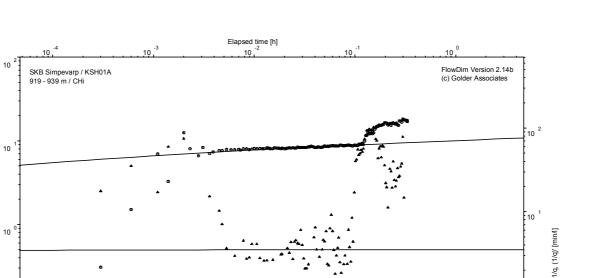


CHI phase; log-log match



CHIR phase; log-log match




CHIR phase; HORNER match

Test 919 – 939 m

Pressure and flow rate vs. time; cartesian plot

10

tD

CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

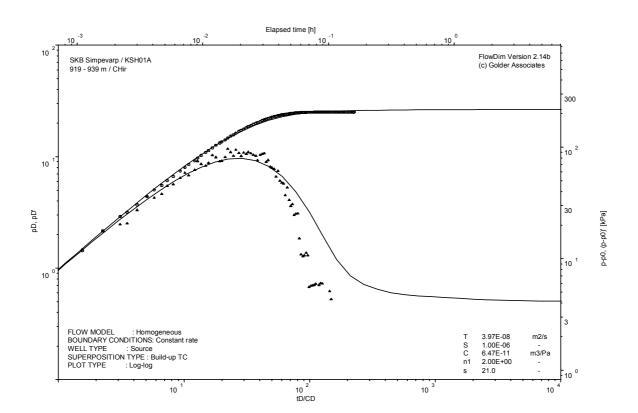
10 5

10 6

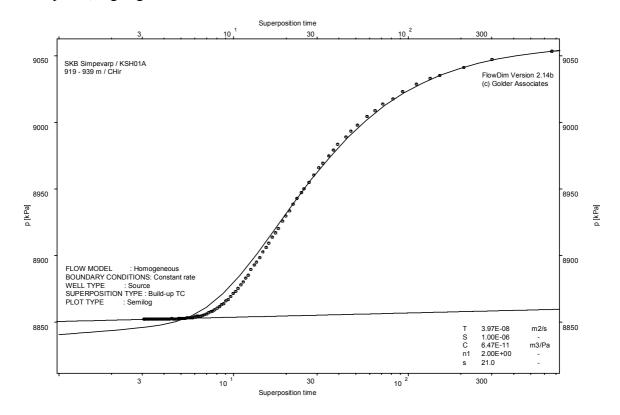
1/qD, (1/qD)'

10 -

10 °

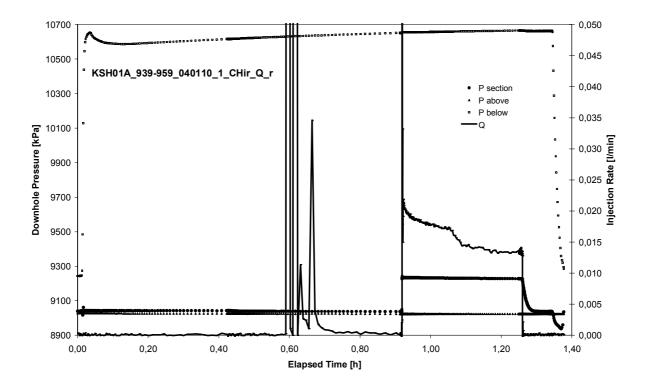

10 10

m2/s ---

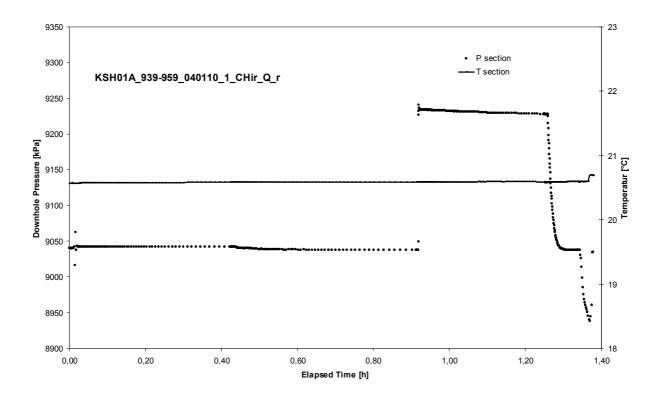

1.81E-08 1.00E-06 2.00E+00 4.2

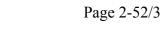
T S n1 s

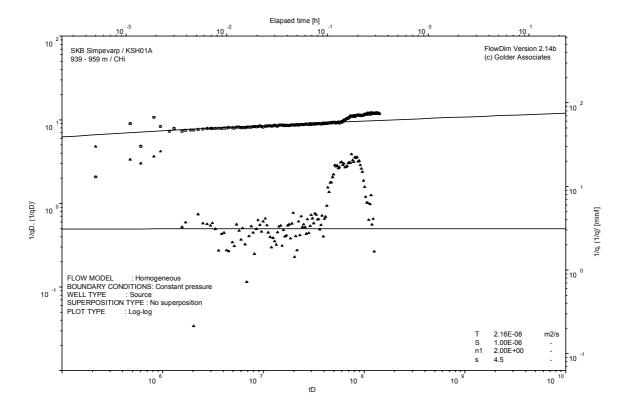
10 8

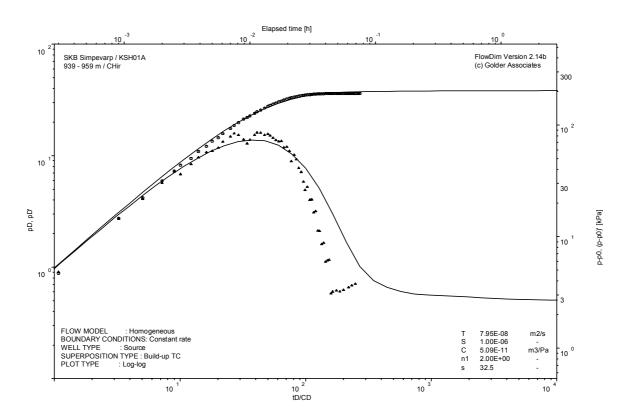


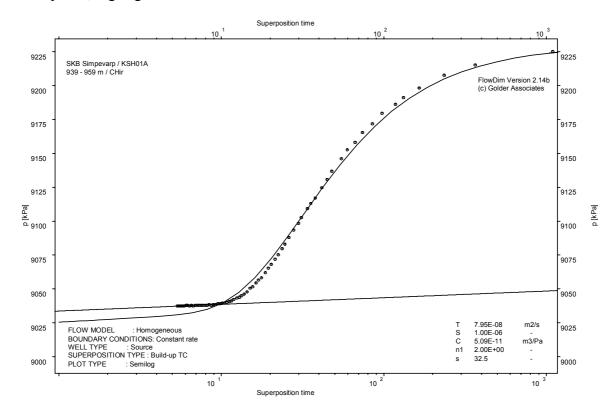
CHIR phase; log-log match



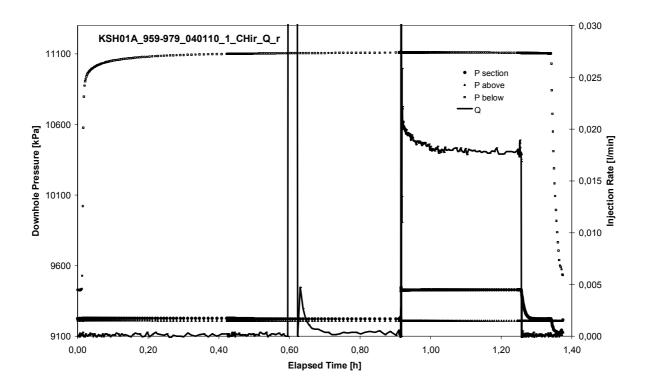

CHIR phase; HORNER match


Test 939 – 959 m

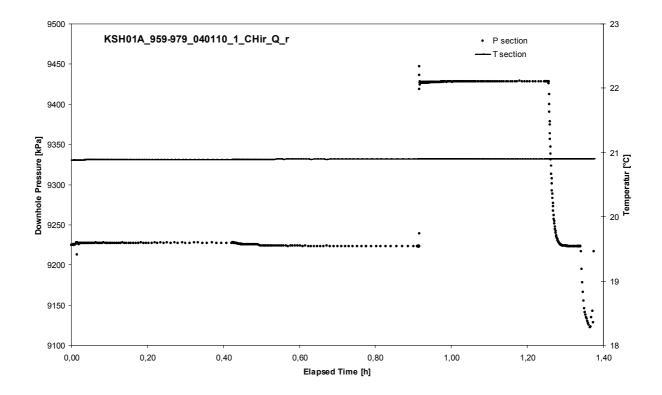

Pressure and flow rate vs. time; cartesian plot

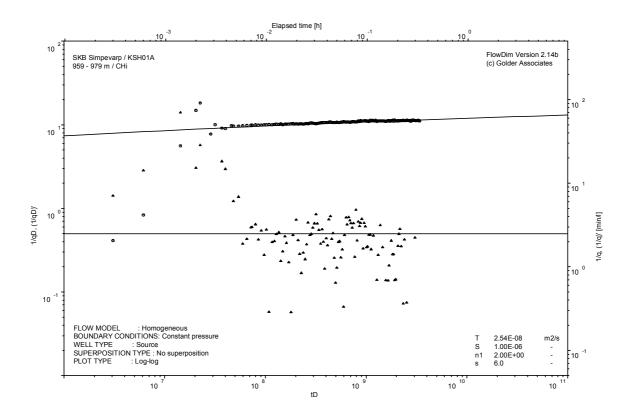


CHI phase; log-log match



CHIR phase; log-log match

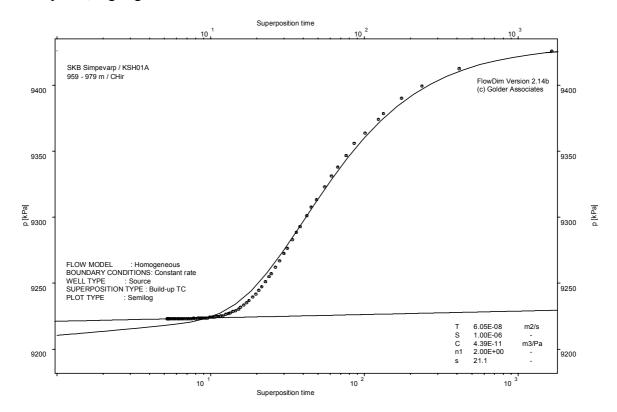



CHIR phase; HORNER match

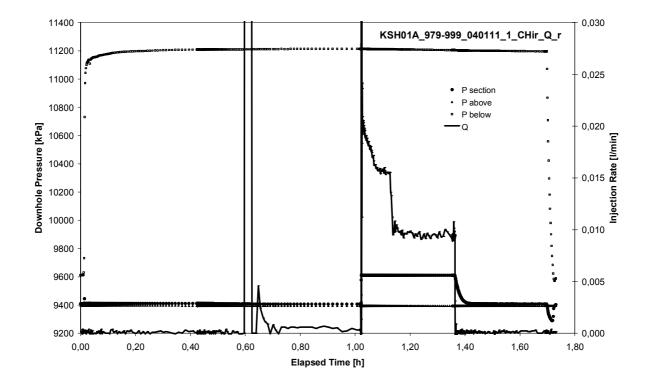
Test 959 – 979 m



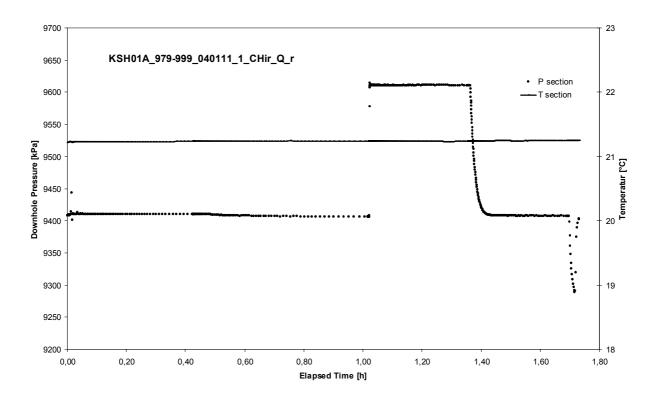
Pressure and flow rate vs. time; cartesian plot

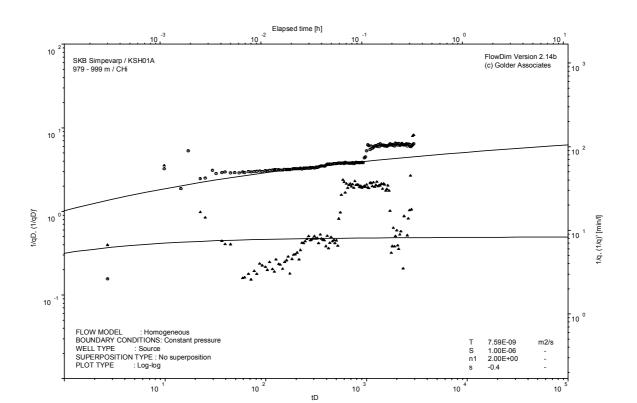


CHI phase; log-log match

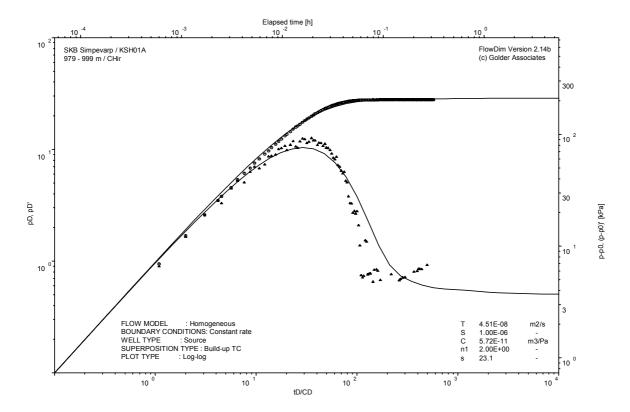


CHIR phase; log-log match

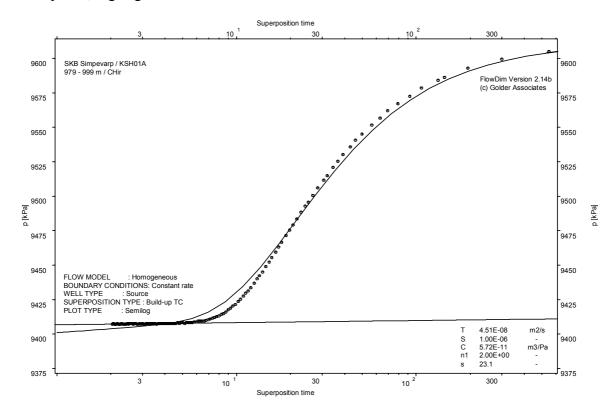



CHIR phase; HORNER match

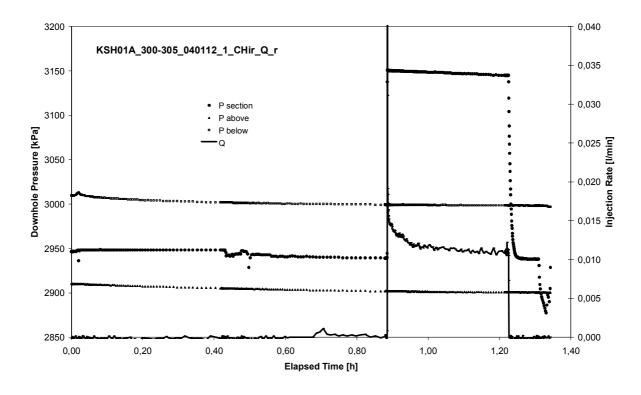
Test 979 – 999 m



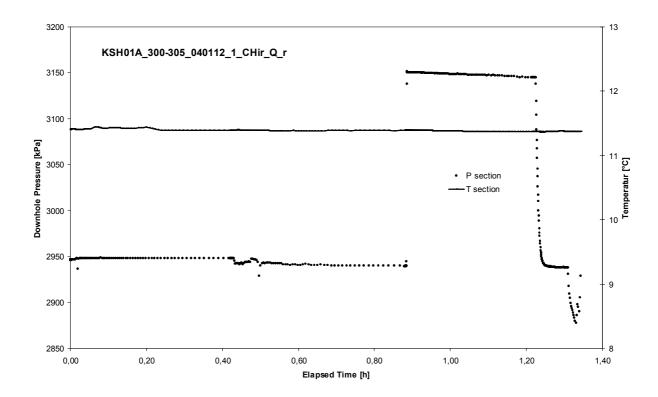
Pressure and flow rate vs. time; cartesian plot



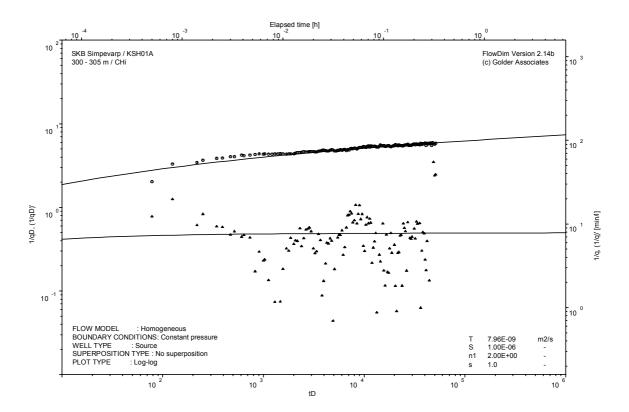
CHI phase; log-log match

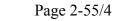


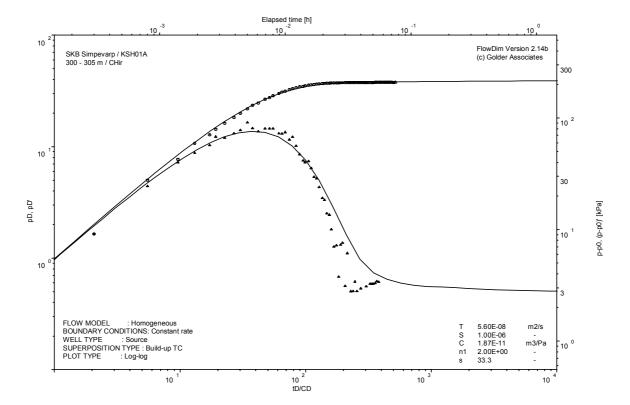
CHIR phase; log-log match



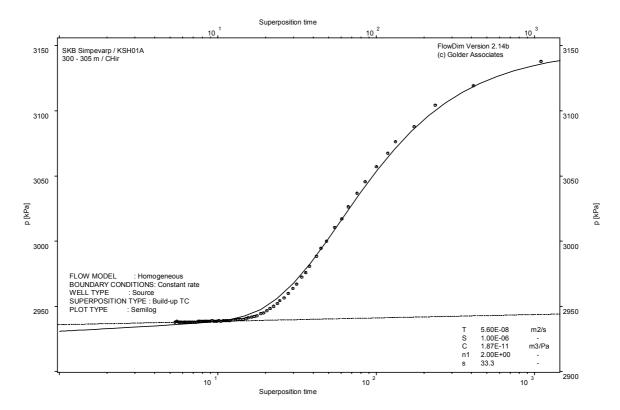
CHIR phase; HORNER match


Test 300 – 305 m

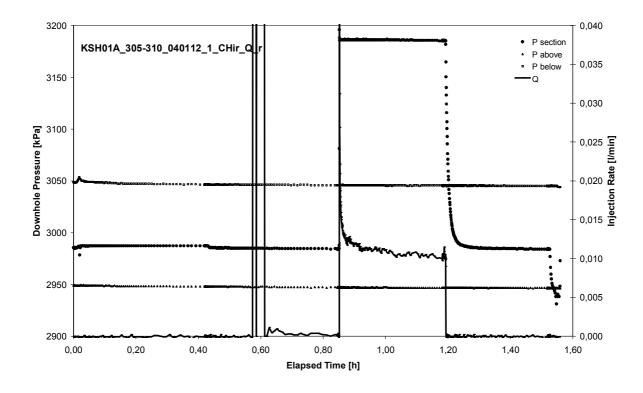

Pressure and flow rate vs. time; cartesian plot



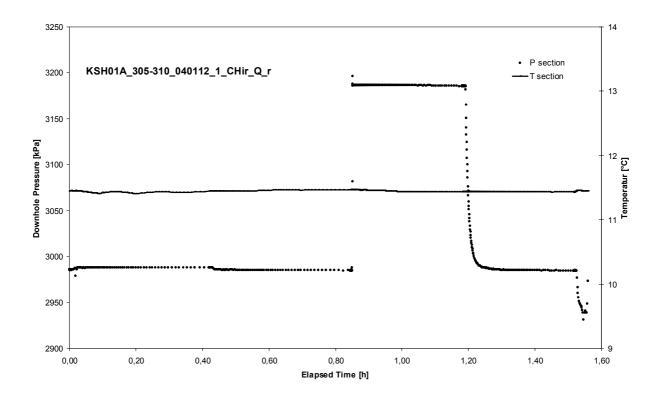
Interval pressure and temperature vs. time; cartesian plot

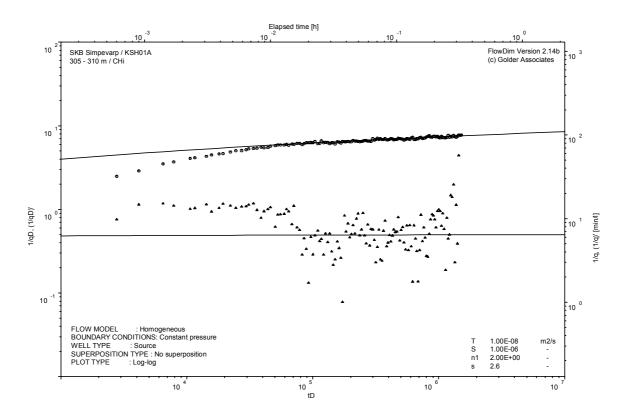


CHI phase; log-log match

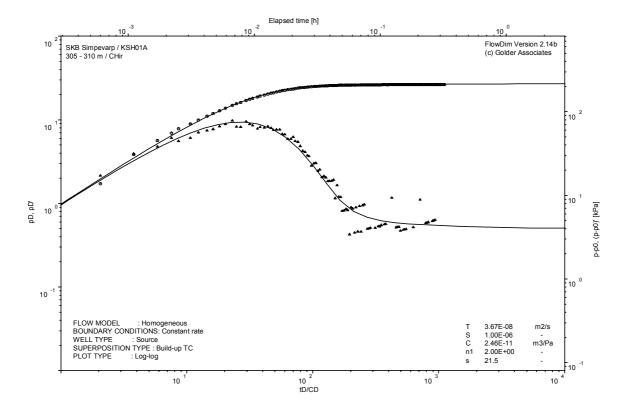


CHIR phase; log-log match

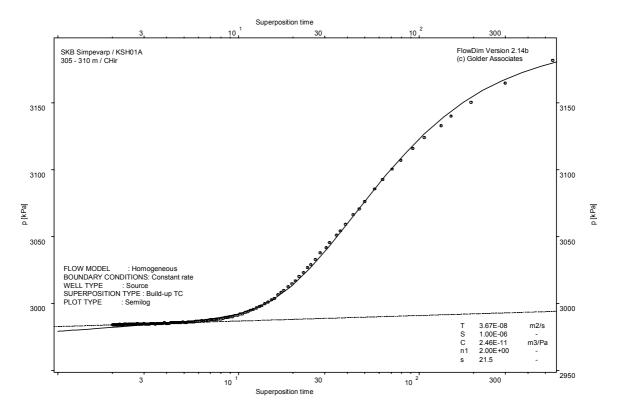



CHIR phase; HORNER match

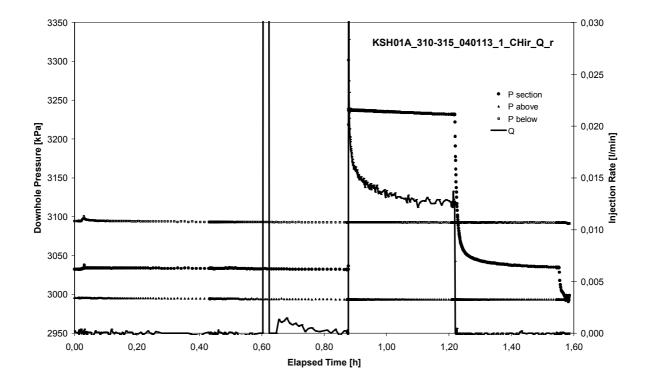
Test 305 – 310 m



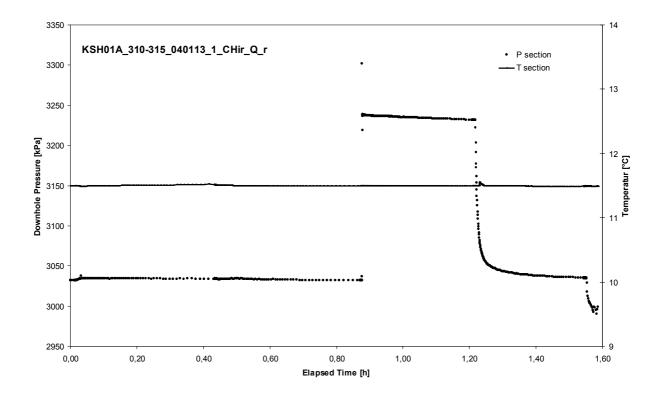
Pressure and flow rate vs. time; cartesian plot

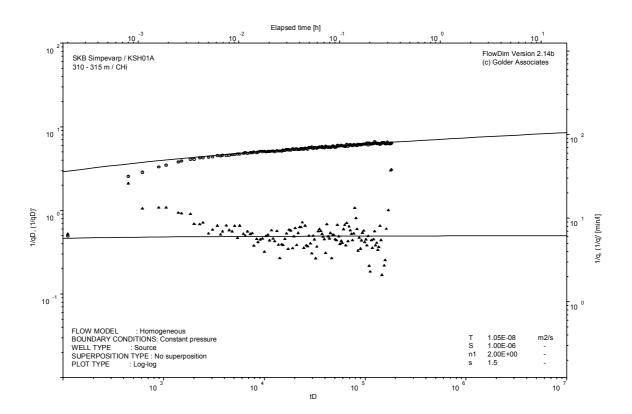


CHI phase; log-log match

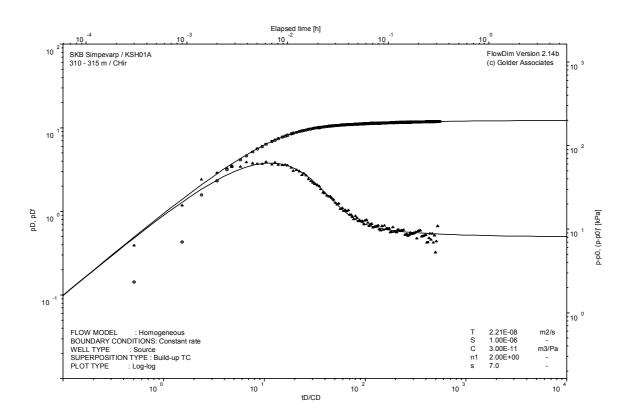


CHIR phase; log-log match

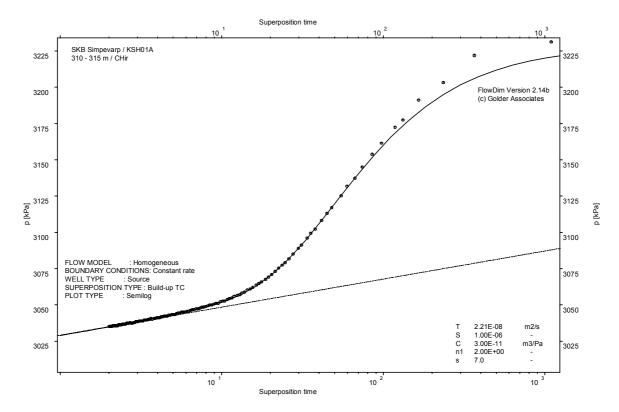



CHIR phase; HORNER match

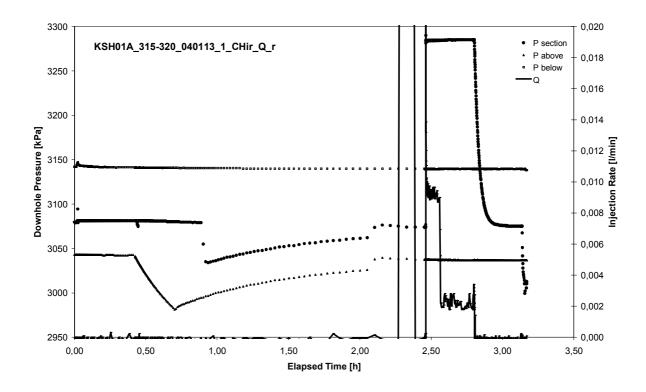
Test 310 – 315 m



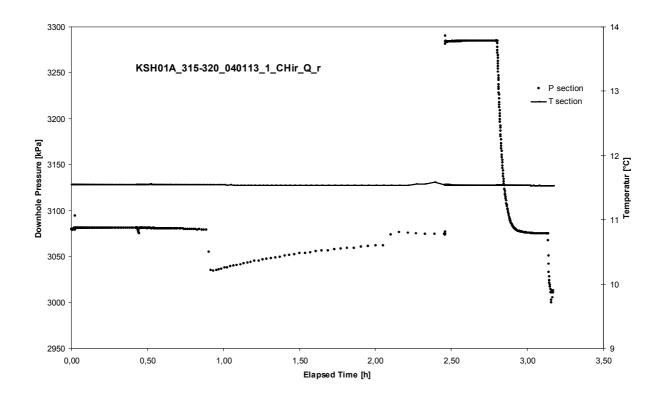
Pressure and flow rate vs. time; cartesian plot

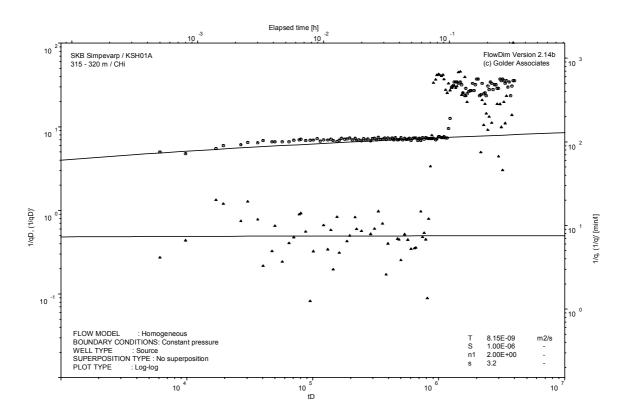


CHI phase; log-log match

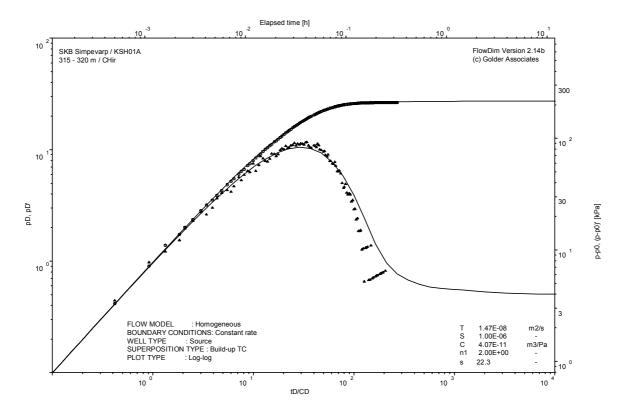


CHIR phase; log-log match

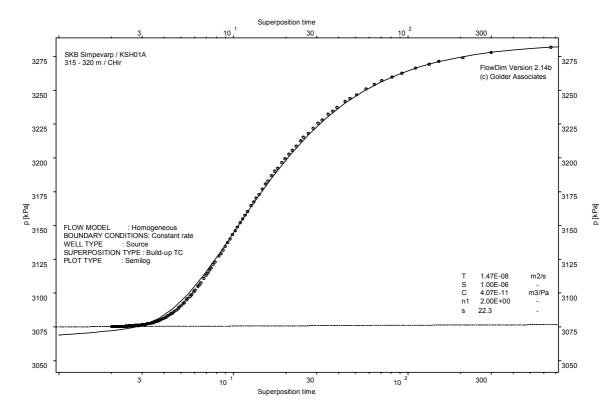



CHIR phase; HORNER match

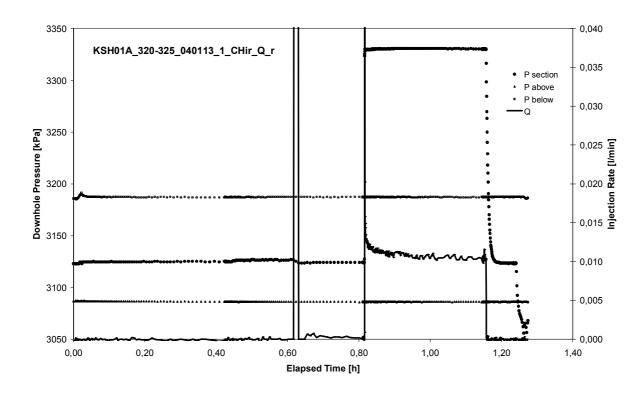
Test 315 – 320 m



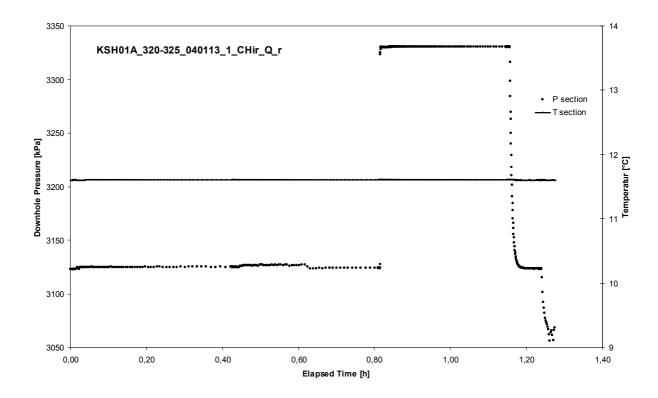
Pressure and flow rate vs. time; cartesian plot

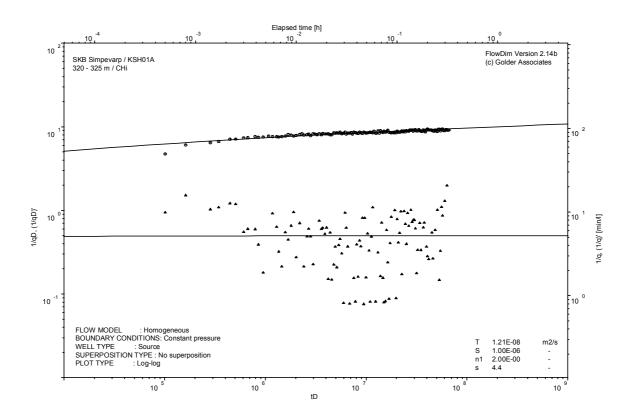


CHI phase; log-log match



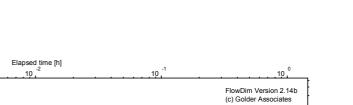
CHIR phase; log-log match

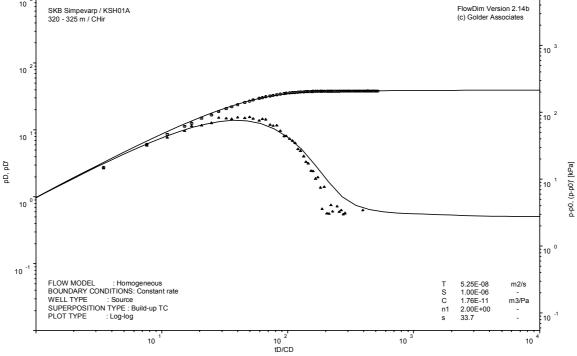



CHIR phase; HORNER match

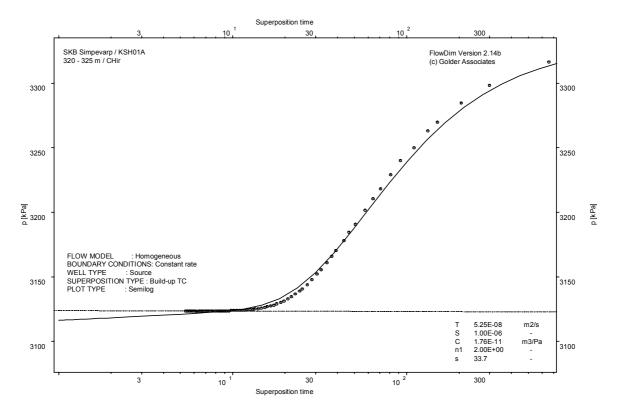
Test 320 – 325 m

Pressure and flow rate vs. time; cartesian plot

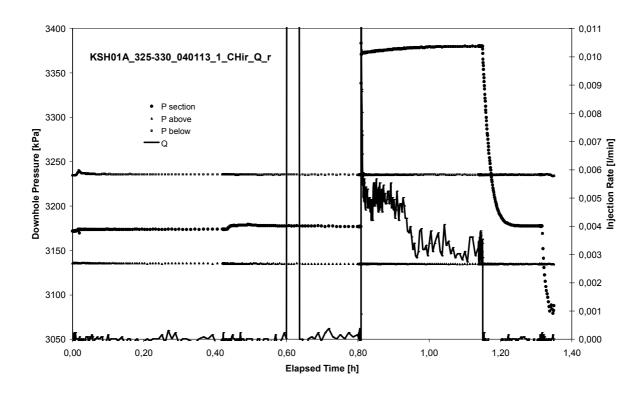




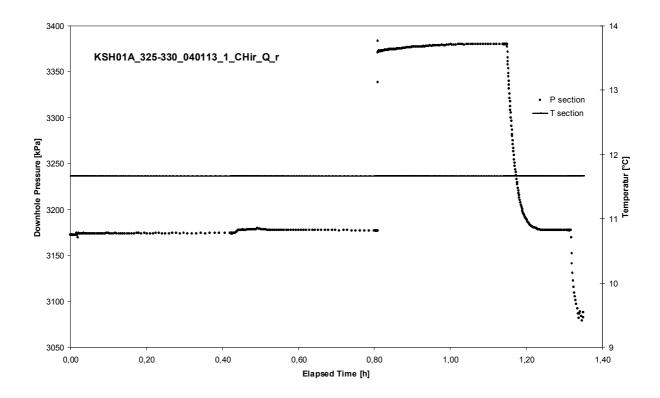
CHI phase; log-log match

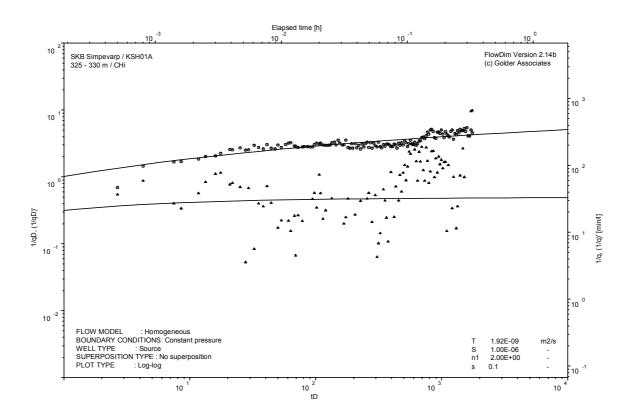

10

<u>10</u>,⁻³

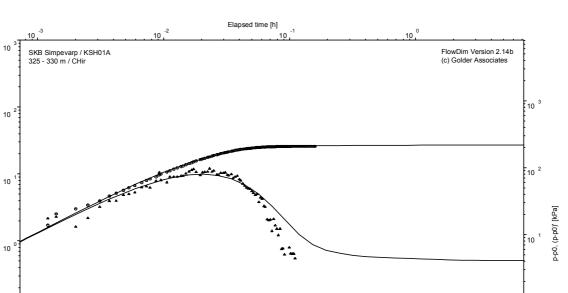


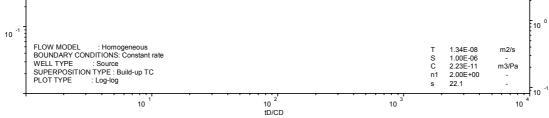
CHIR phase; log-log match

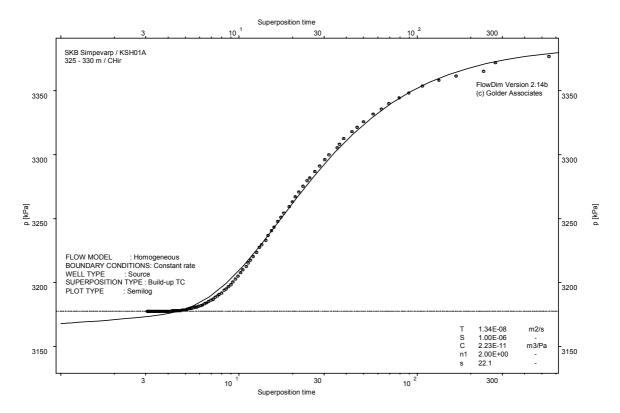


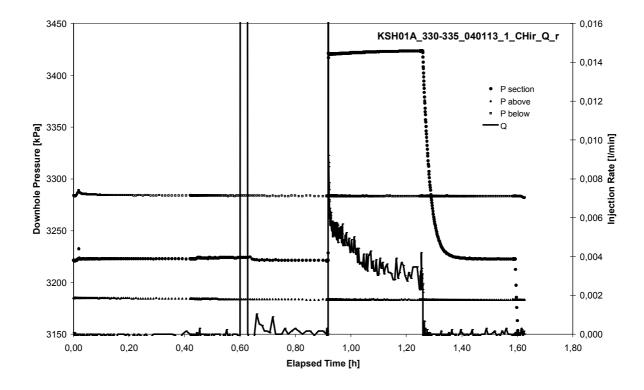

CHIR phase; HORNER match

Test 325 – 330 m

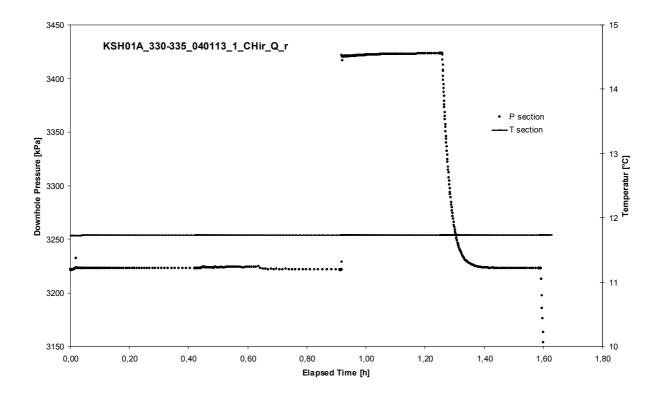



Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

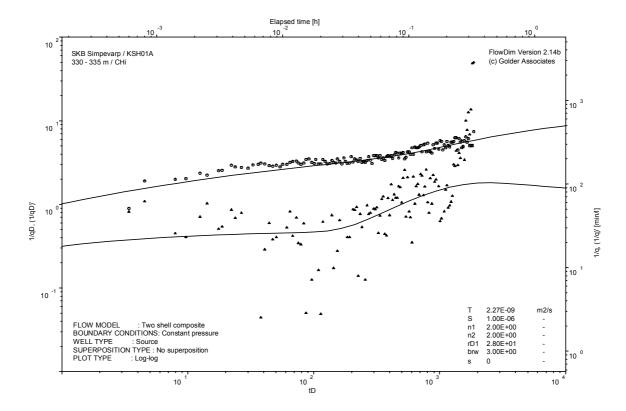

CHIR phase; log-log match

pD, pD'

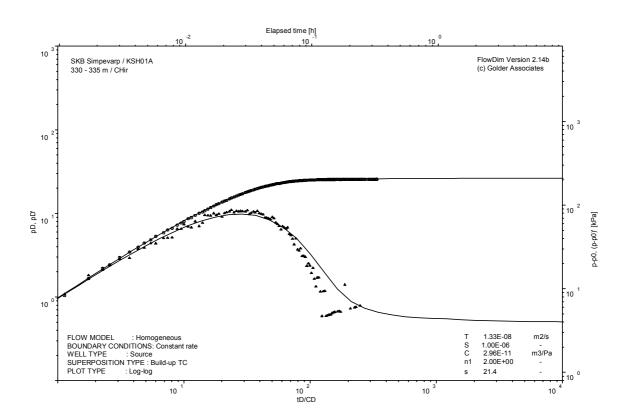


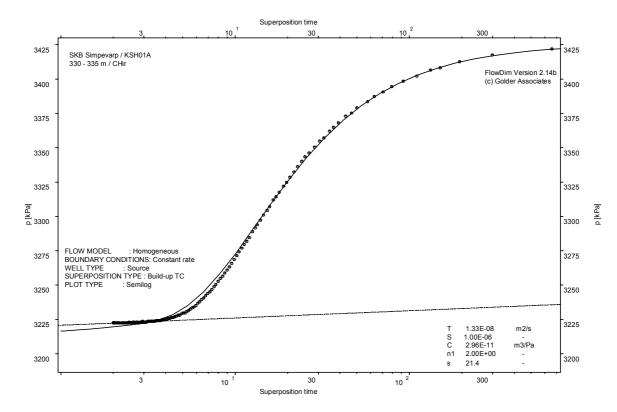
CHIR phase; HORNER match

Test 330 – 335 m

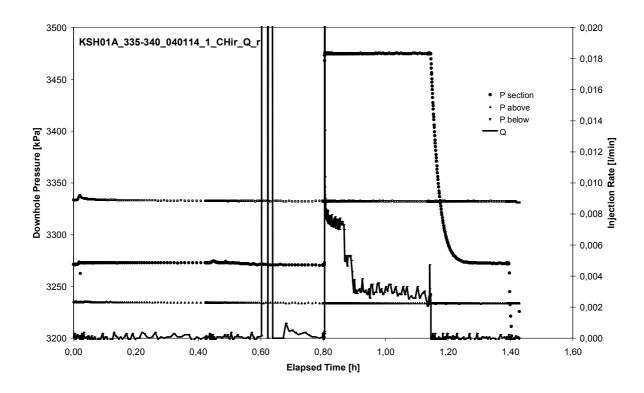


Pressure and flow rate vs. time; cartesian plot

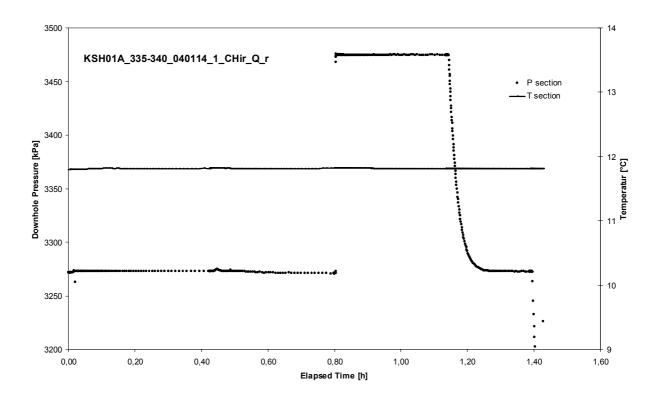


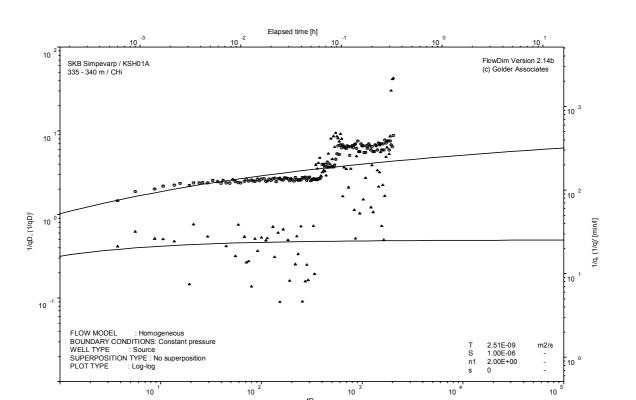

Page 2-61/3

CHI phase; log-log match



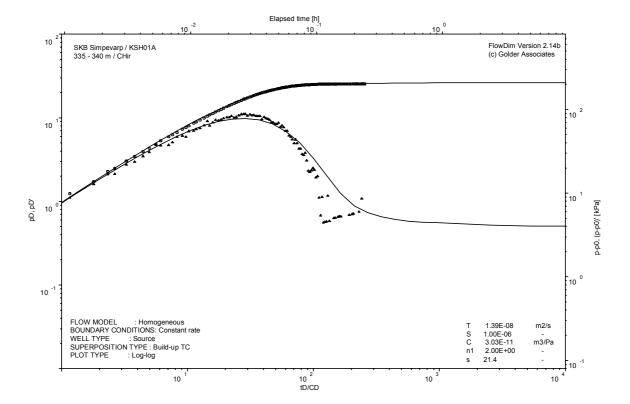
CHIR phase; log-log match

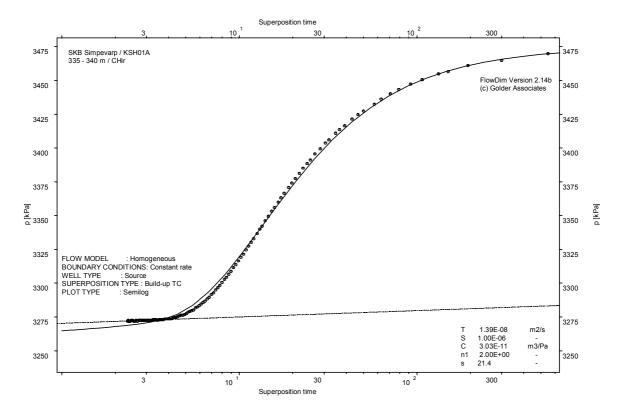



CHIR phase; HORNER match

Test 335 – 340 m

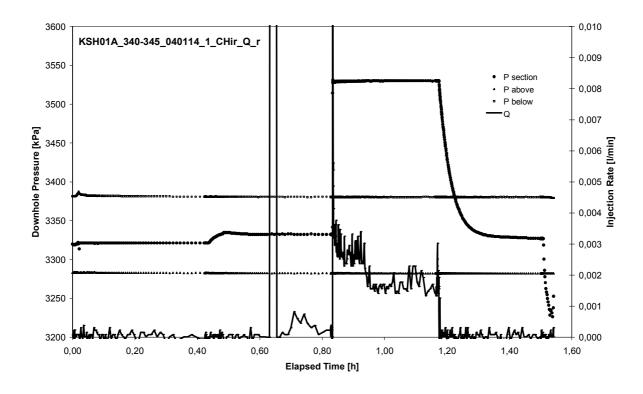
Pressure and flow rate vs. time; cartesian plot



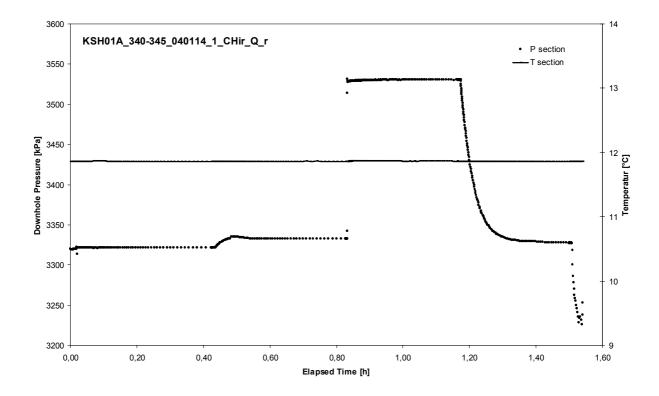

tD

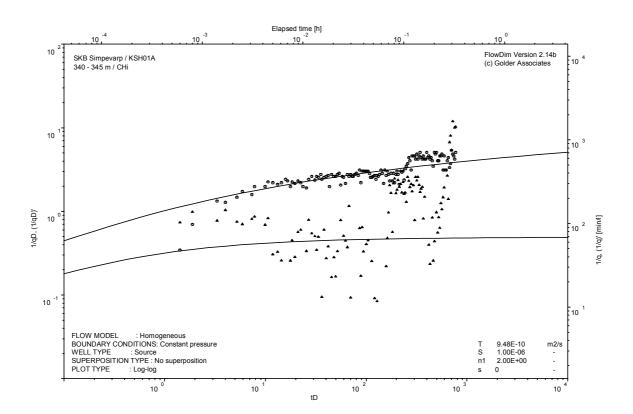
CHI phase; log-log match

10



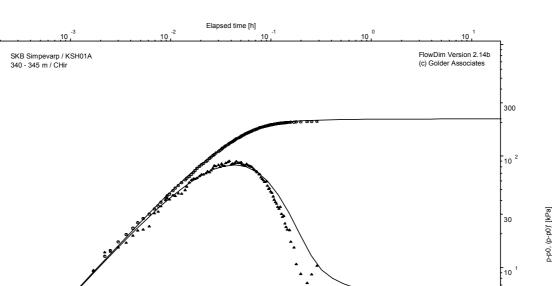
CHIR phase; log-log match

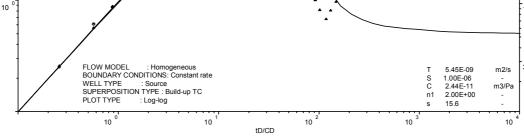



CHIR phase; HORNER match

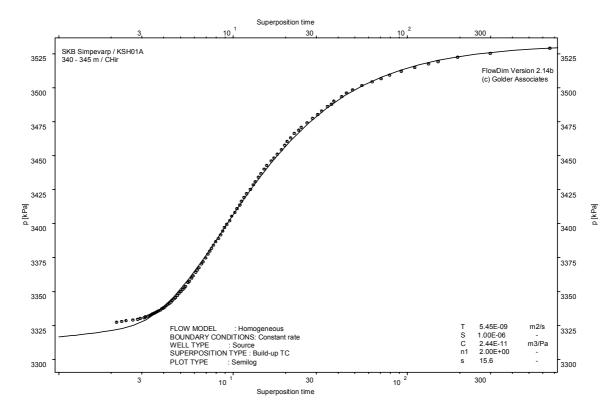
Test 340 – 345 m

Pressure and flow rate vs. time; cartesian plot

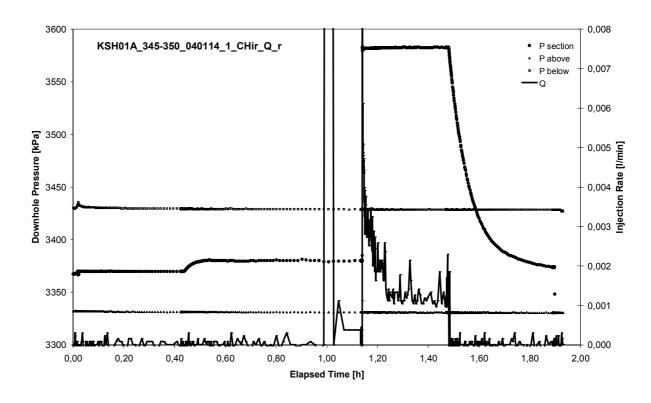



CHI phase; log-log match

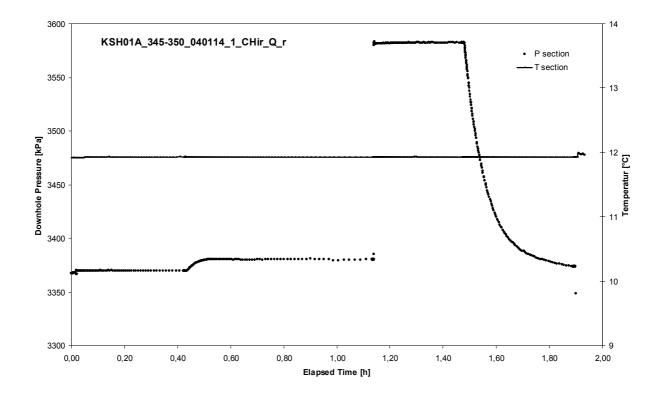
10

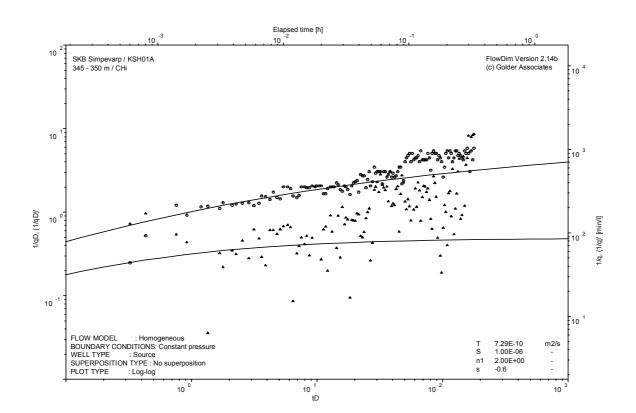

10

pD, pD'

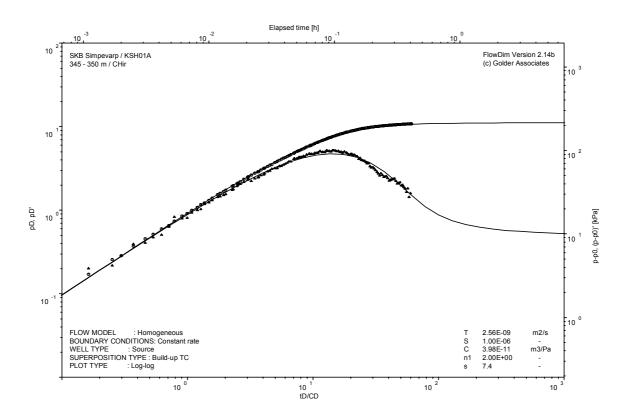


CHIR phase; log-log match

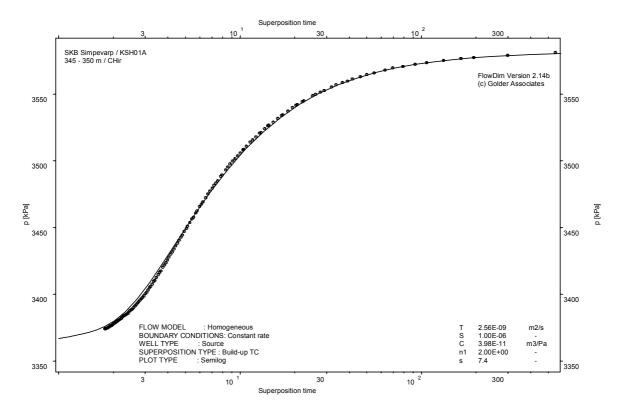


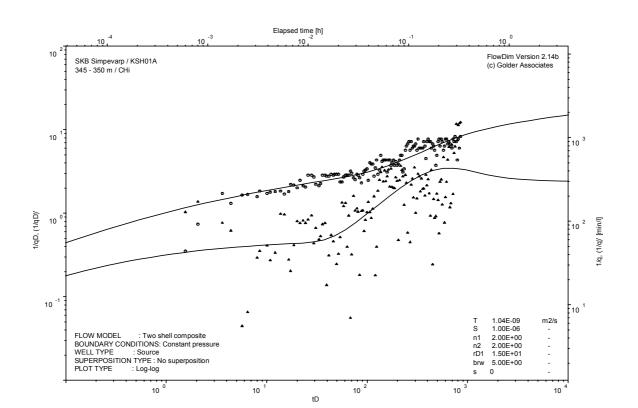

CHIR phase; HORNER match

Test 345 – 350 m

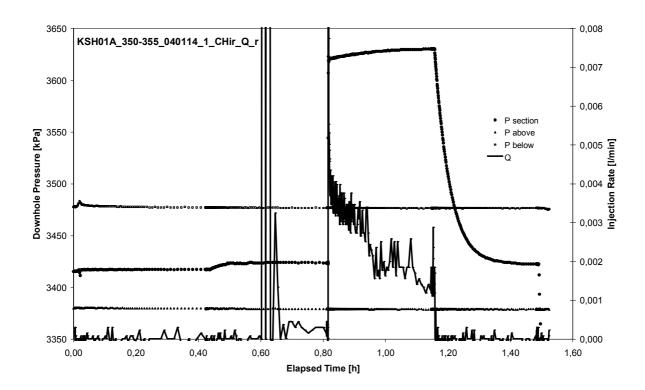


Pressure and flow rate vs. time; cartesian plot

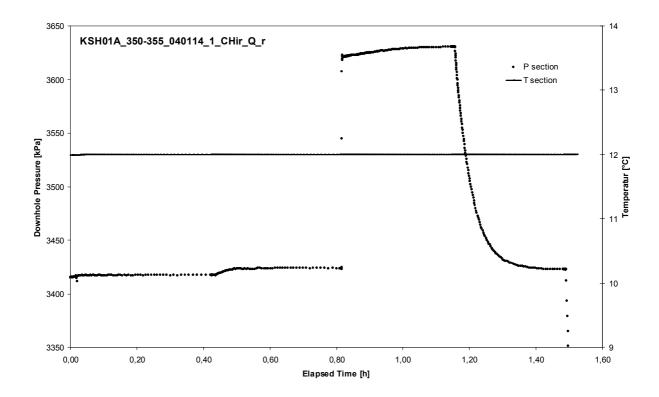


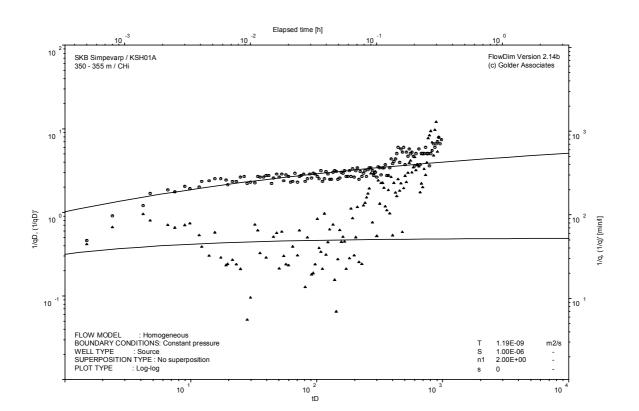

CHI phase; log-log match

CHIR phase; log-log match

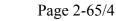


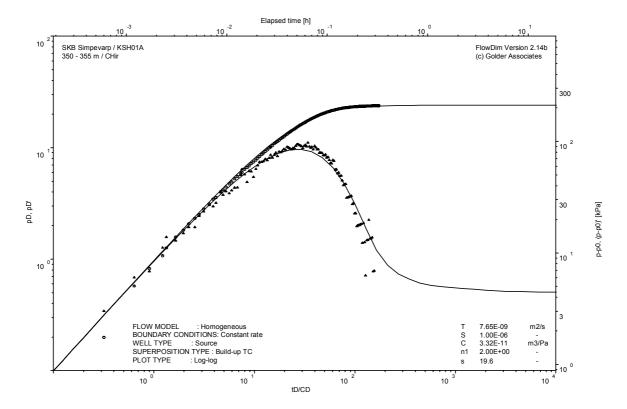
CHIR phase; HORNER match

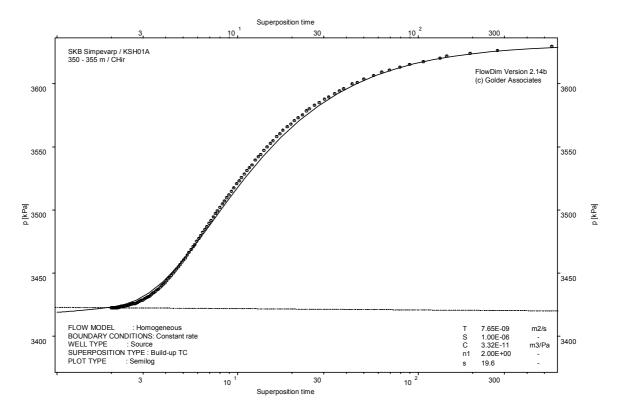



CHI phase, alternative log-log match

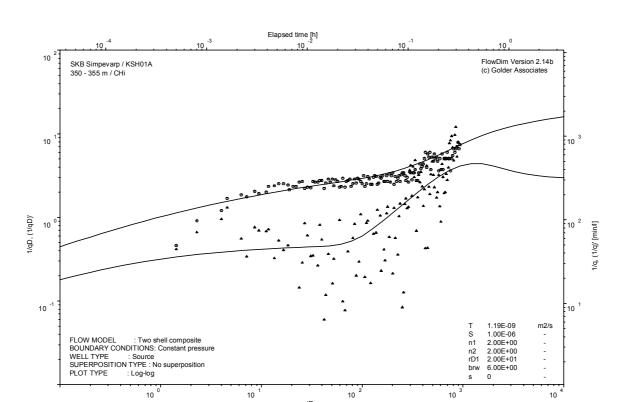
Test 350 – 355 m




Pressure and flow rate vs. time; cartesian plot

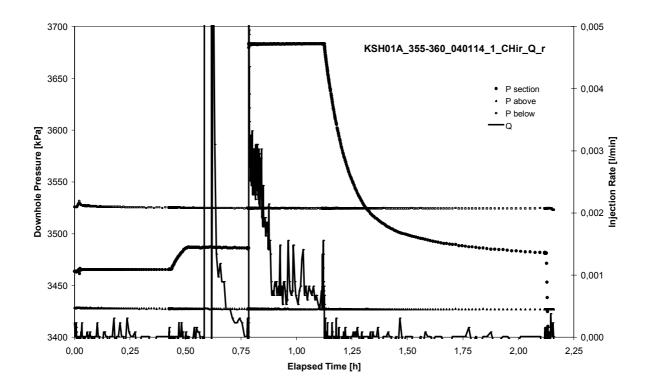


CHI phase; log-log match

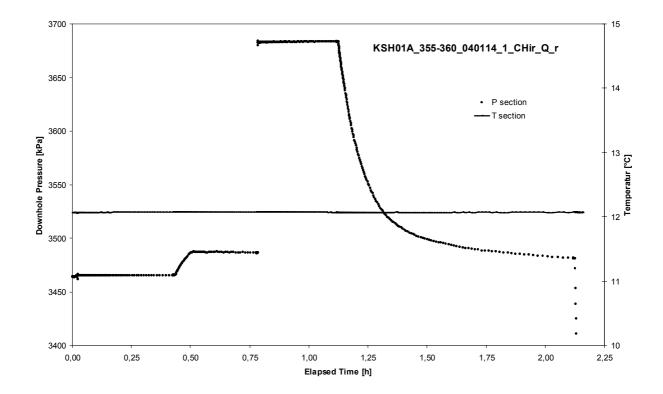


CHIR phase; log-log match

CHIR phase; HORNER match


tD

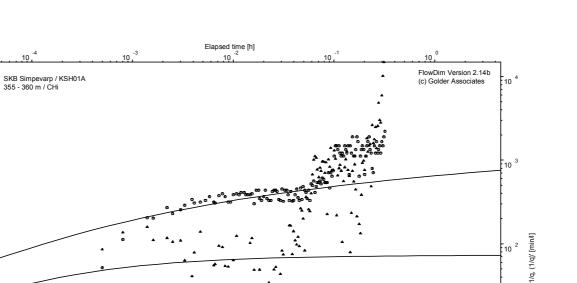
10


10

CHI phase, alternative log-log match

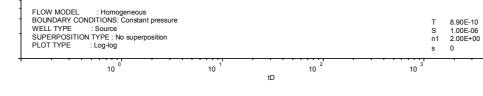
Test 355 – 360 m

Pressure and flow rate vs. time; cartesian plot



10

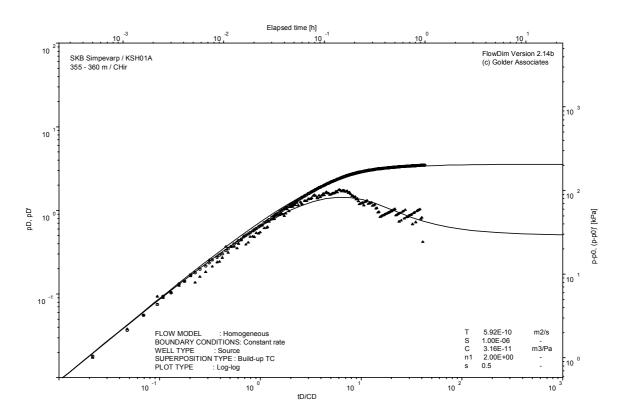
10


1/qD, (1/qD)' 10

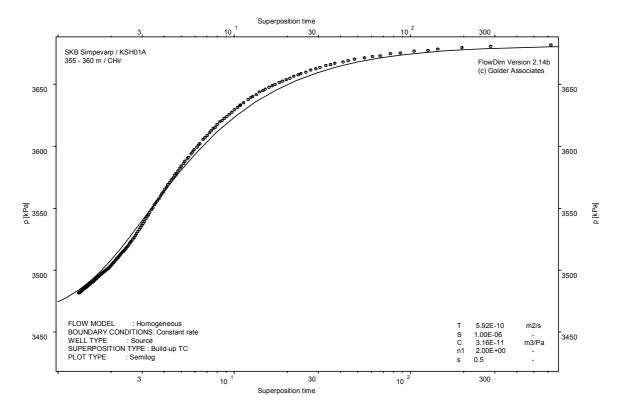
10 -

4 ÷

.

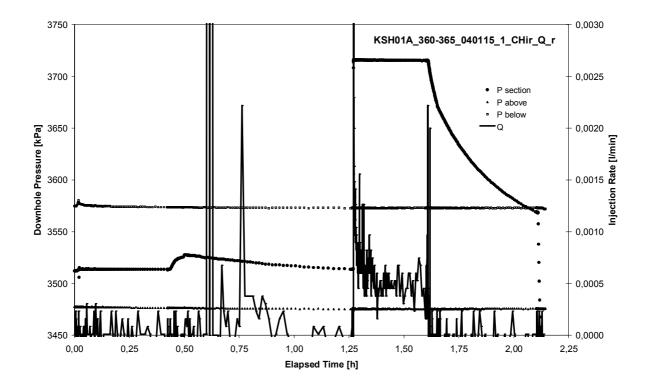


CHI phase; log-log match

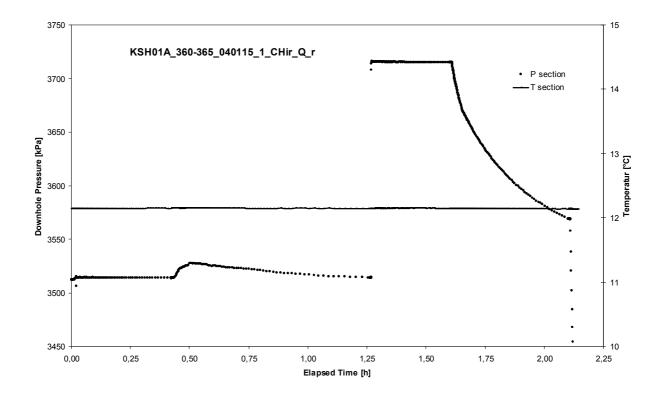

10 1

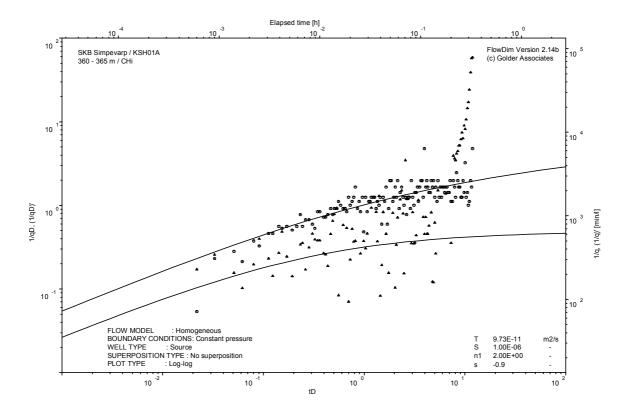
m2/s -

10 4

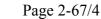


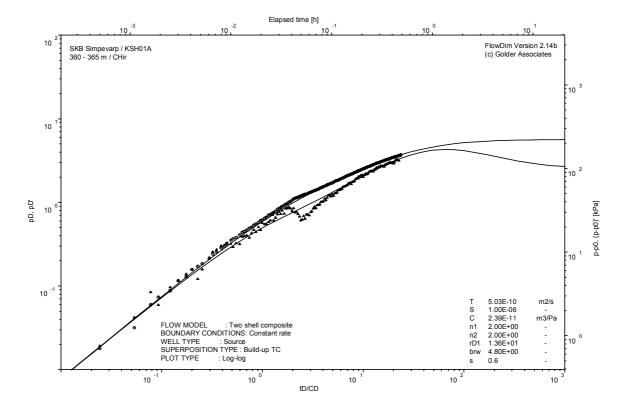
CHIR phase; log-log match

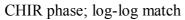


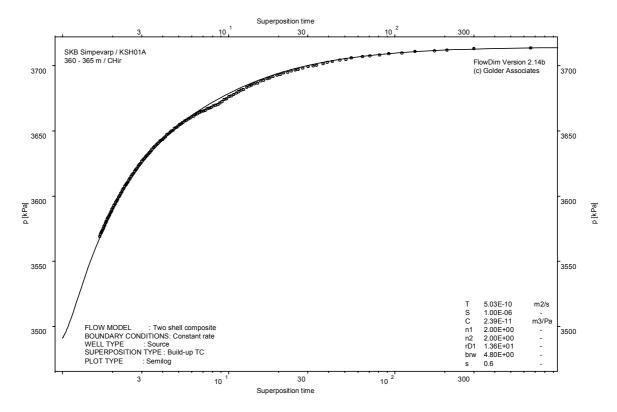

CHIR phase; HORNER match

Test 360 – 365 m

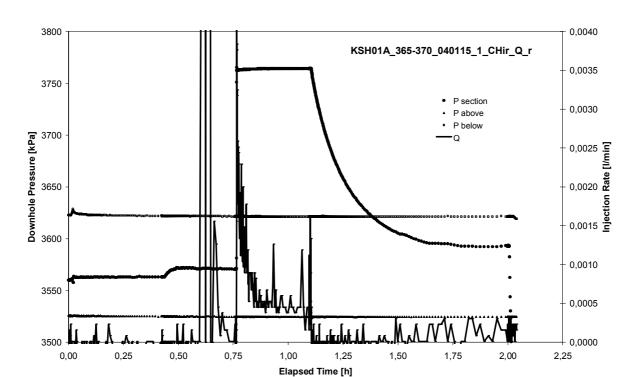


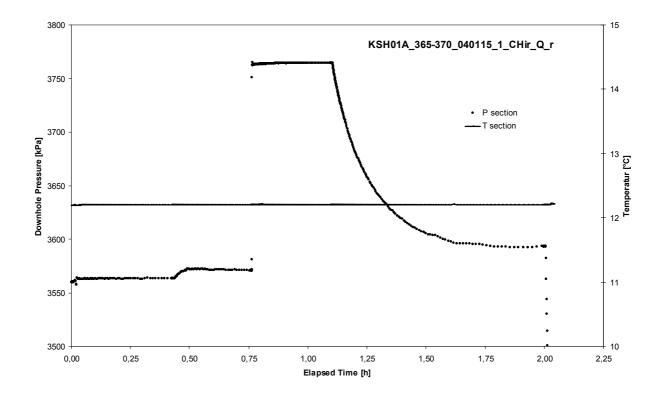

Pressure and flow rate vs. time; cartesian plot



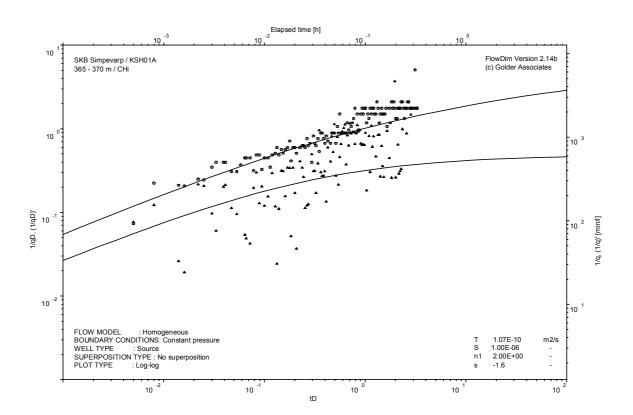


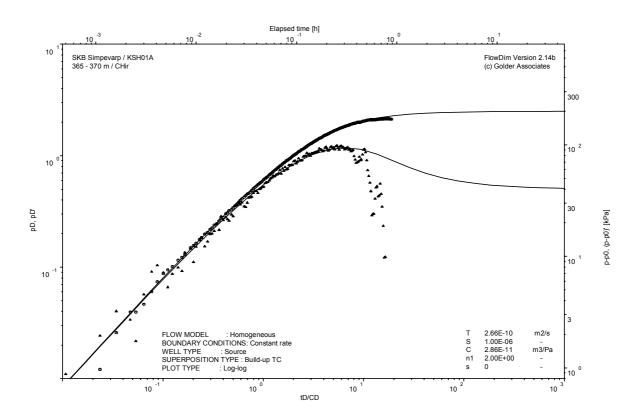
CHI phase; log-log match

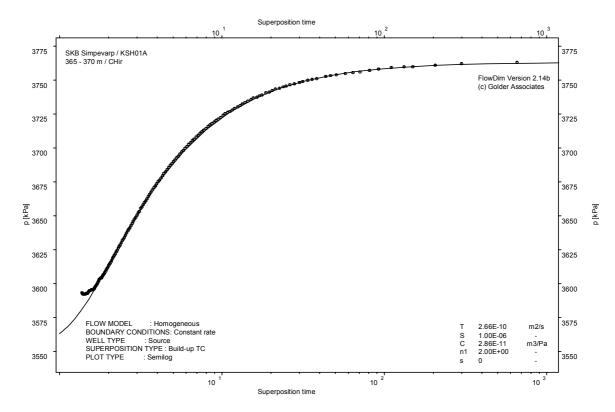




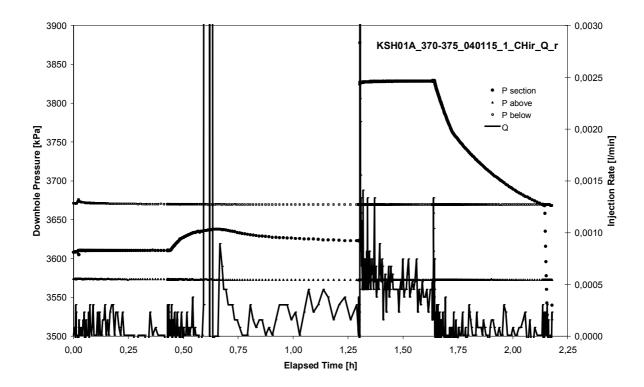
CHIR phase; HORNER match


Test 365 – 370 m

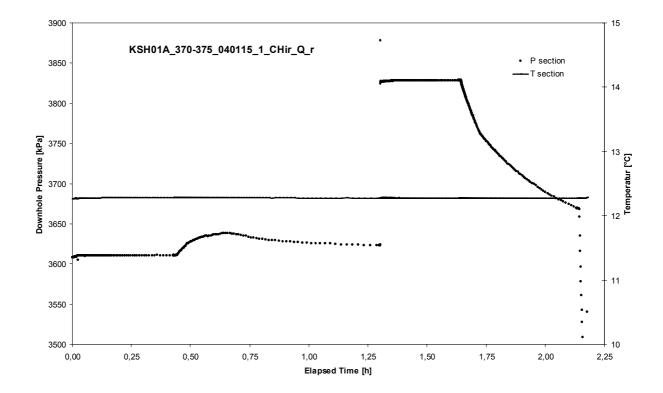

Pressure and flow rate vs. time; cartesian plot

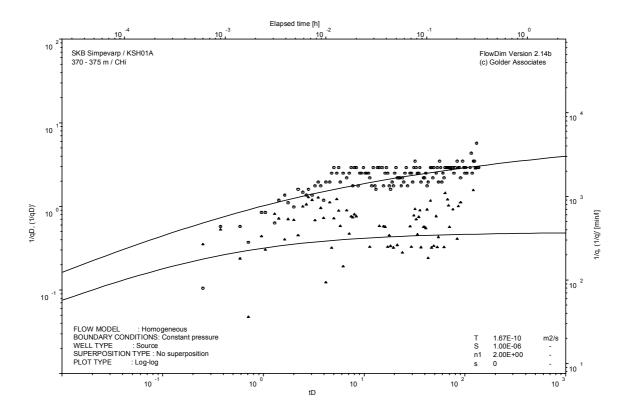

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

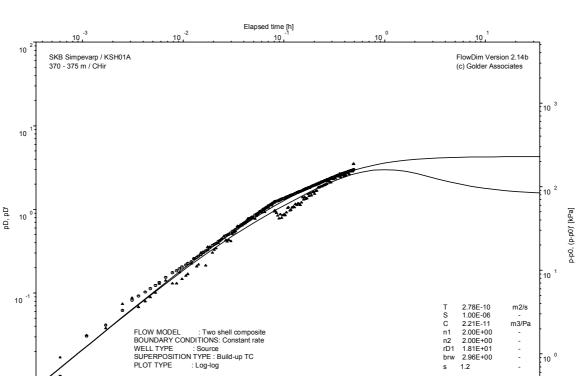


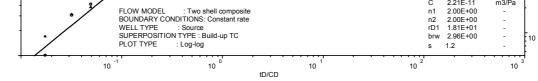
CHIR phase; log-log match

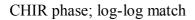


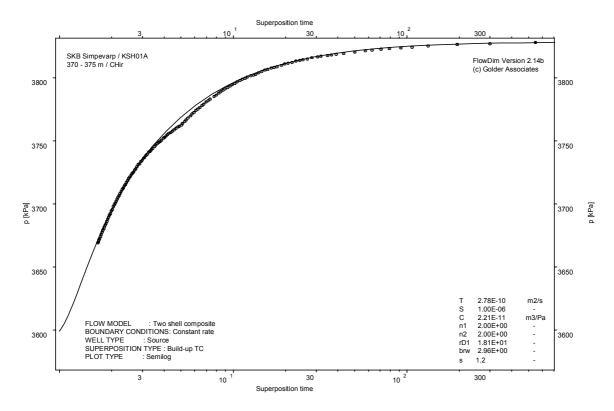

CHIR phase; HORNER match

Test 370 – 375 m

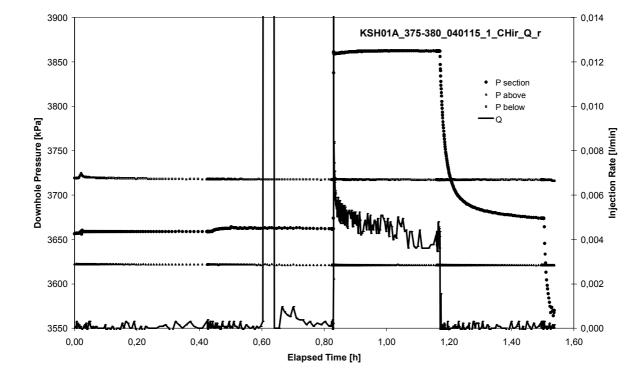



Pressure and flow rate vs. time; cartesian plot

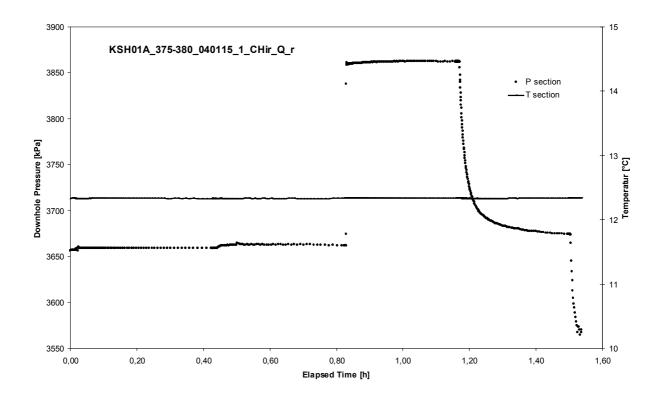


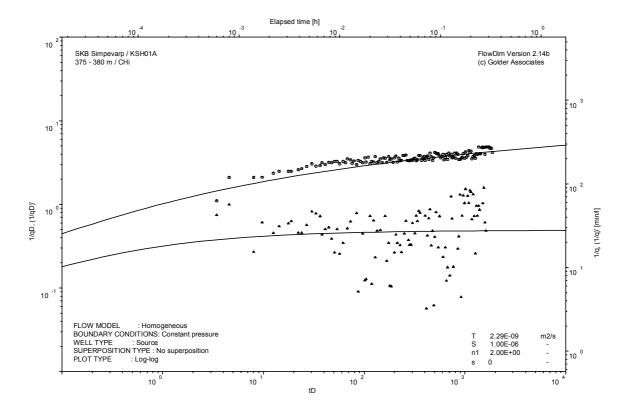


CHI phase; log-log match

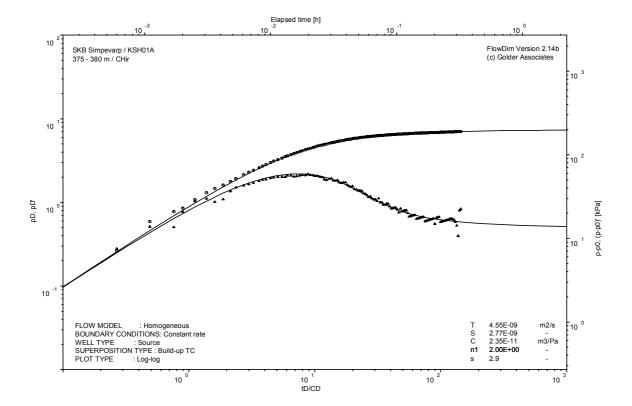


CHIR phase; HORNER match

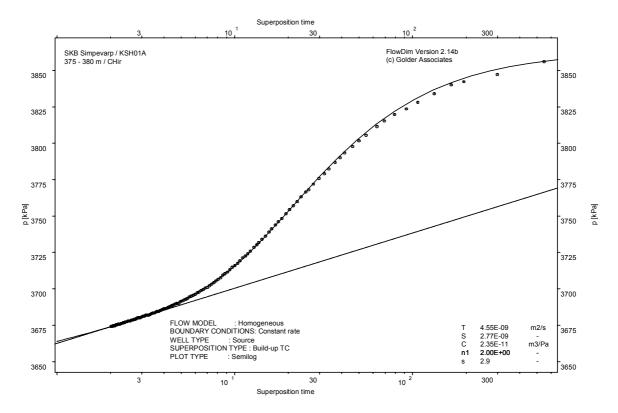

Test 375 – 380 m



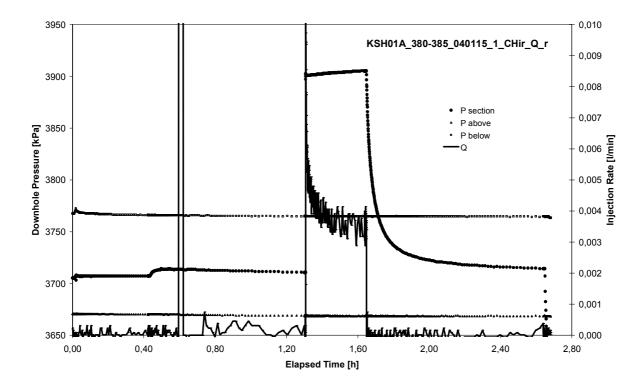
Page 2-70/2



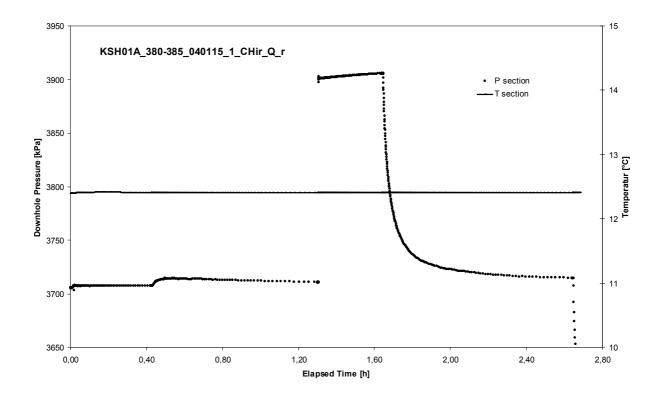
Pressure and flow rate vs. time; cartesian plot

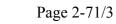


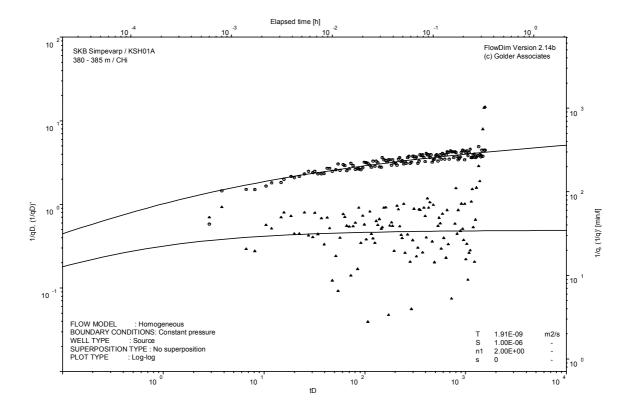
CHI phase; log-log match

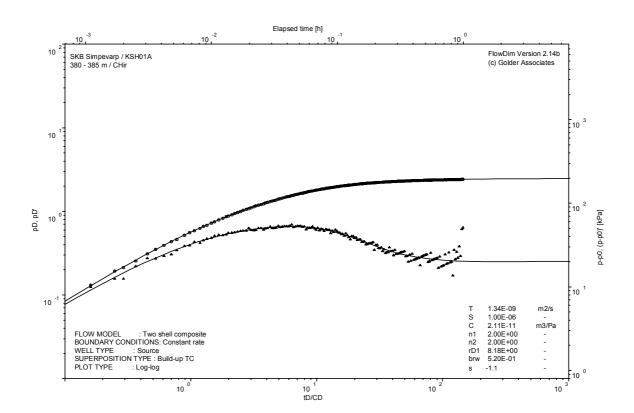


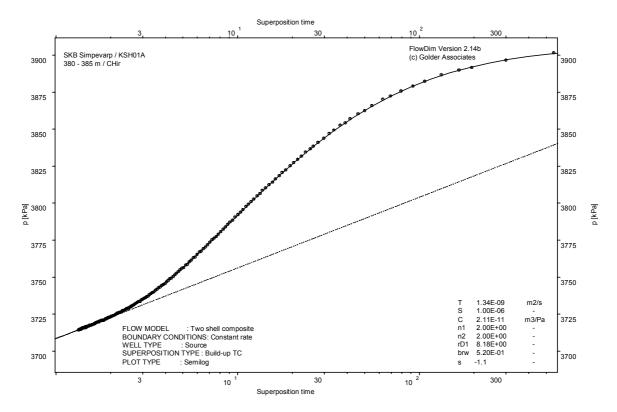
CHIR phase; log-log match



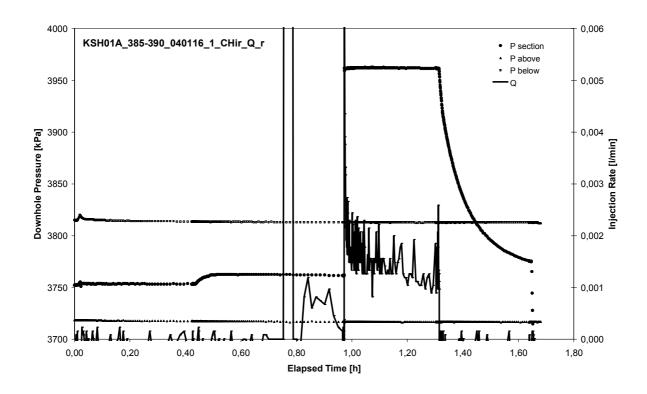

CHIR phase; HORNER match


Test 380 – 385 m

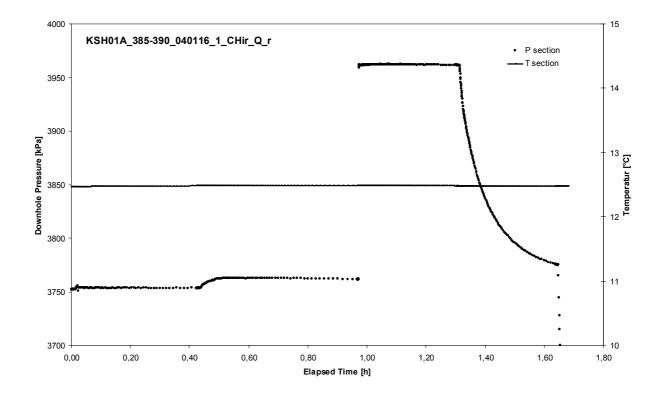

Pressure and flow rate vs. time; cartesian plot

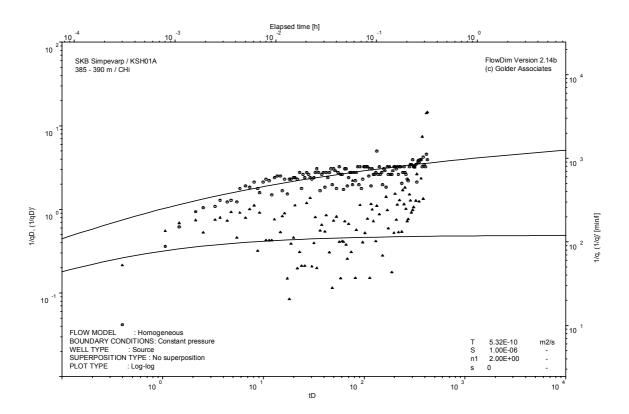


CHI phase; log-log match

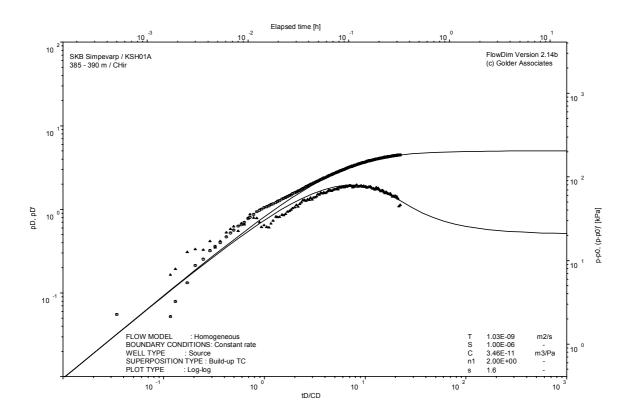


CHIR phase; log-log match

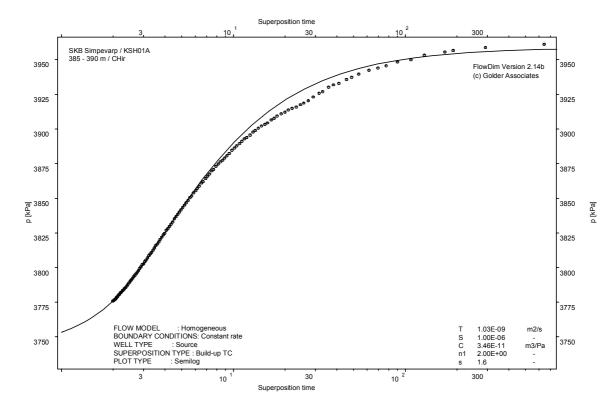



CHIR phase; HORNER match

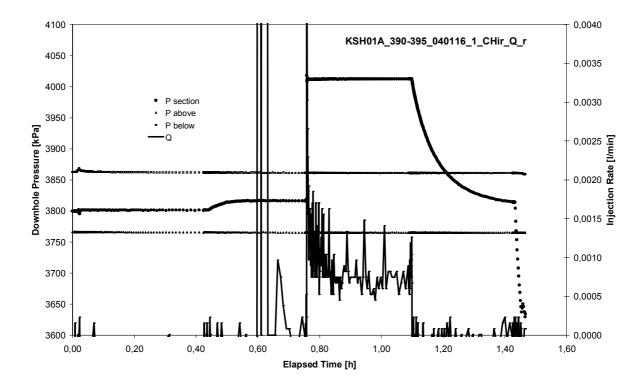
Test 385 – 390 m



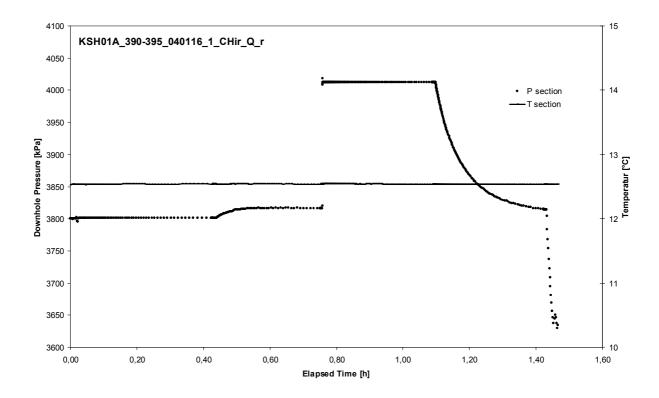
Pressure and flow rate vs. time; cartesian plot

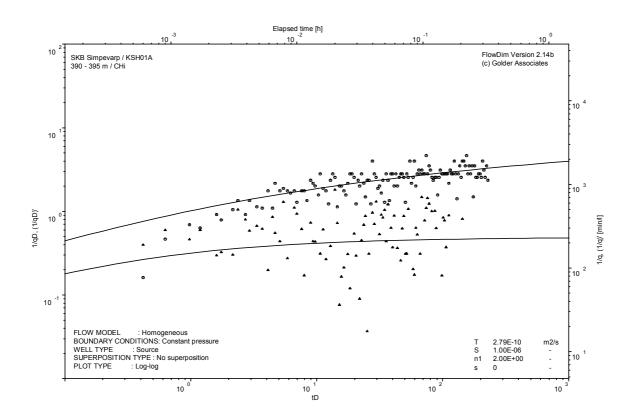


CHI phase; log-log match

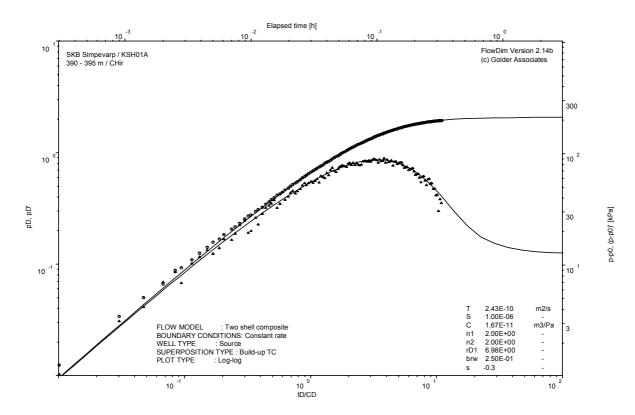


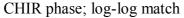
CHIR phase; log-log match

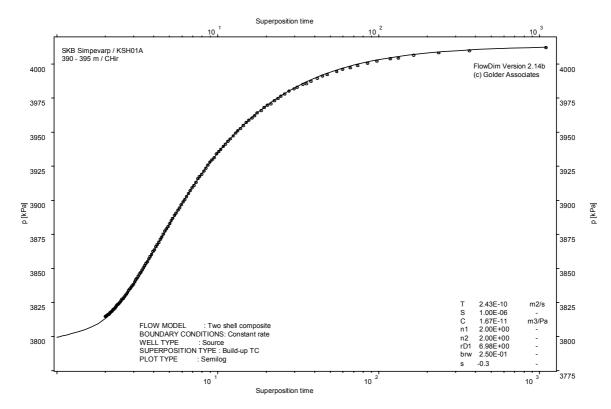



CHIR phase; HORNER match

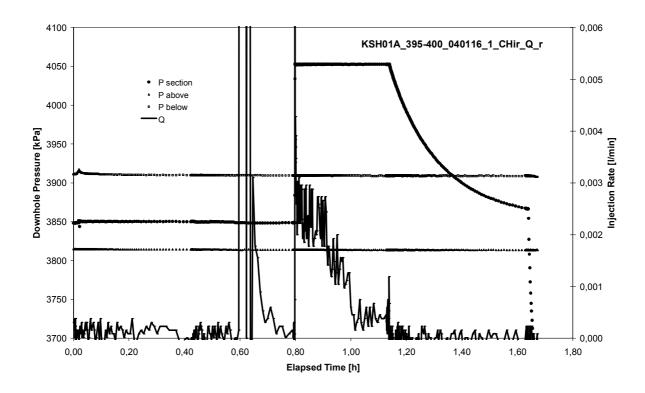
Test 390 – 395 m

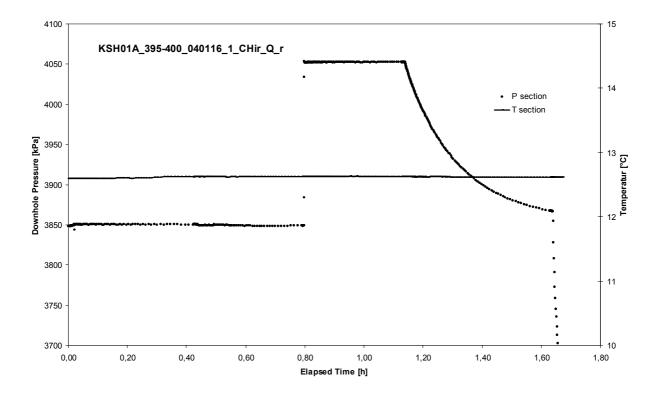


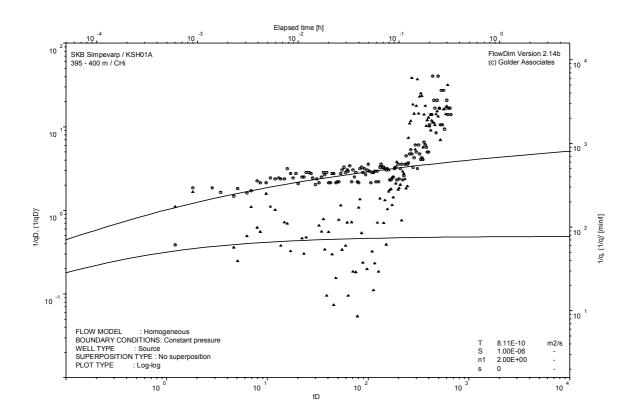

Pressure and flow rate vs. time; cartesian plot



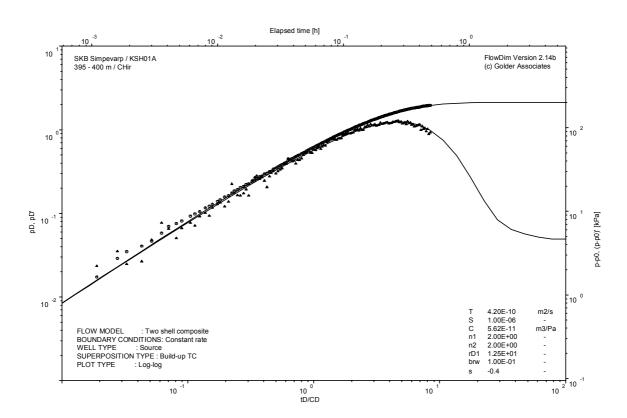
CHI phase; log-log match



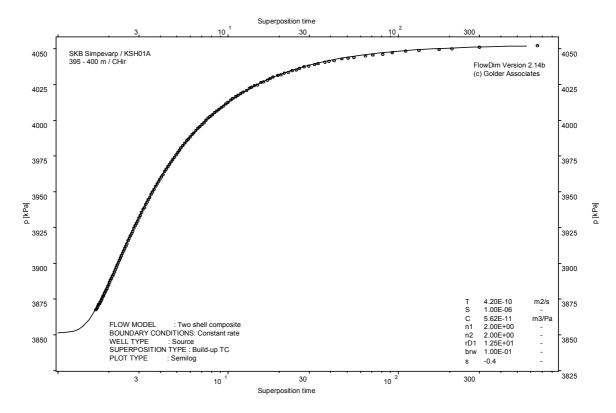



CHIR phase; HORNER match

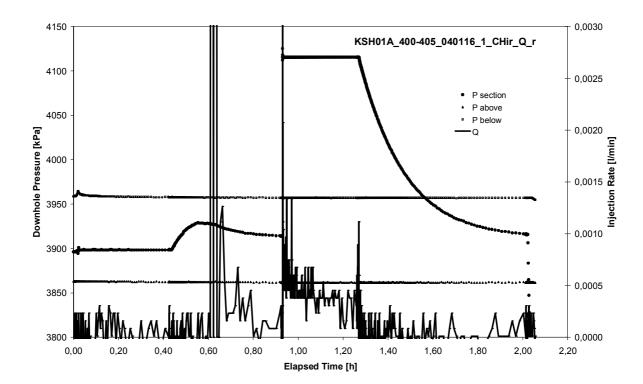
Test 395 – 400 m



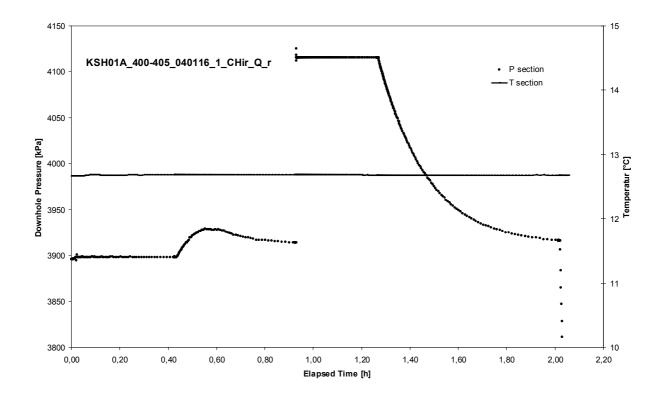
Pressure and flow rate vs. time; cartesian plot



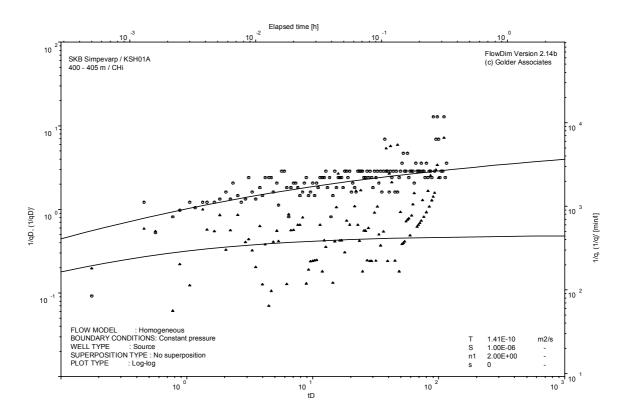
CHI phase; log-log match



CHIR phase; log-log match



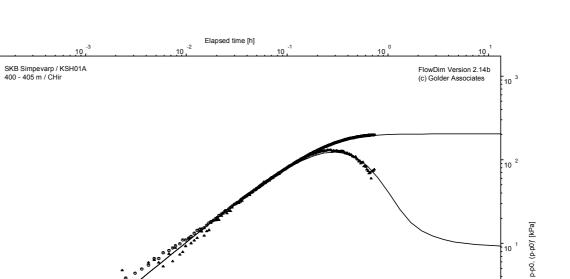
CHIR phase; HORNER match


Test 400 – 405 m

Pressure and flow rate vs. time; cartesian plot

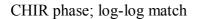
Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match


10

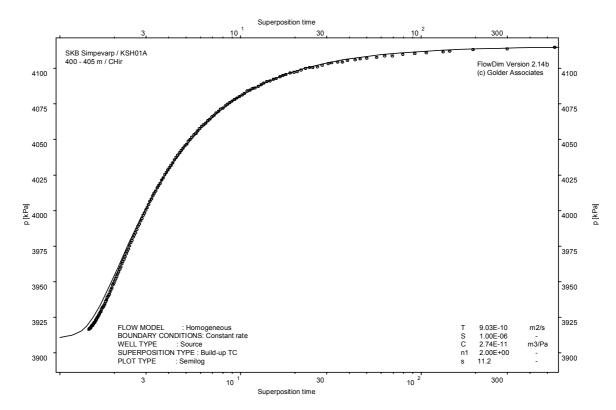
10

10


10

pD, pD'

10


tD/CD

10

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : Build-up TC PLOT TYPE : Log-log

10 0

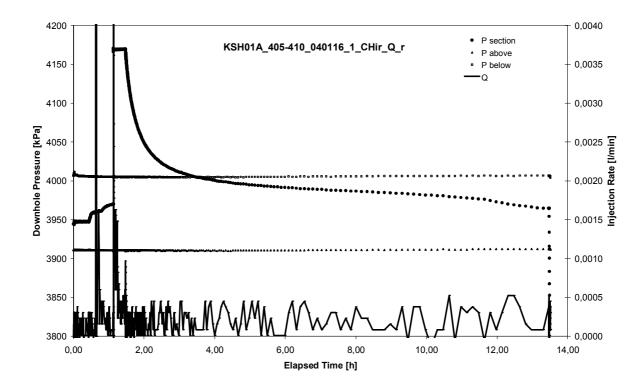
CHIR phase; HORNER match

E10 °

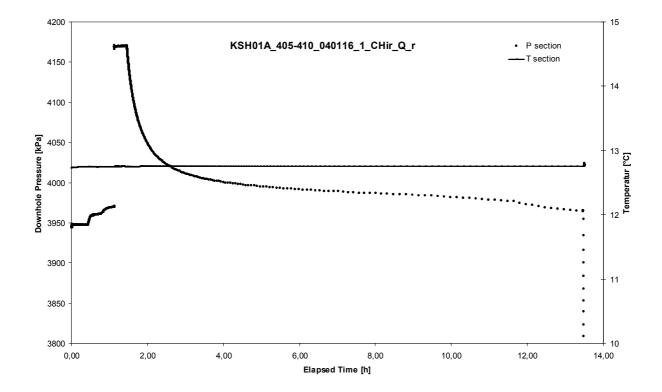
m2/s

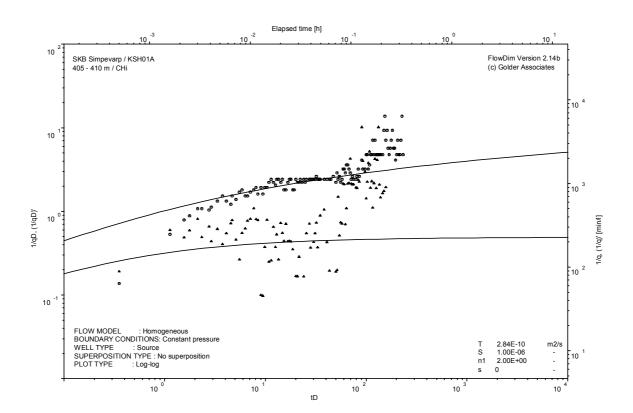
m3/Pa

3

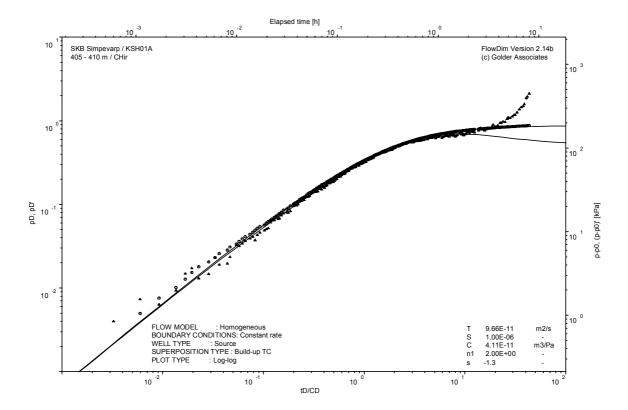

10

9.03E-10 1.00E-06 2.74E-11 2.00E+00 11.2

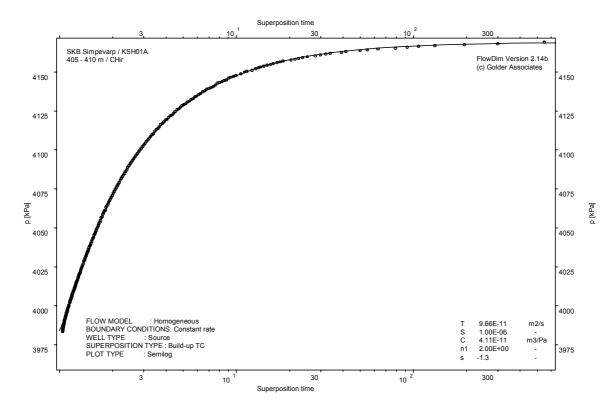

S C n1 s


10

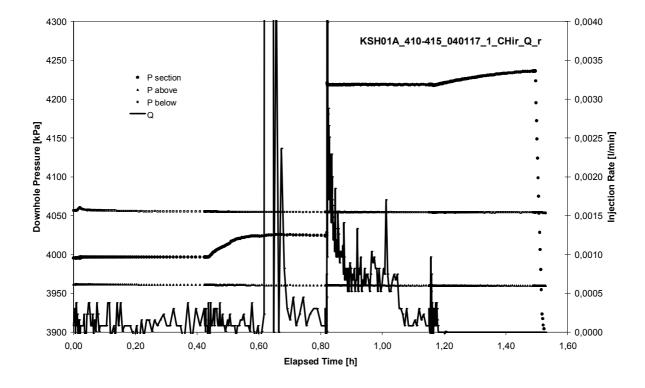
Test 405 – 410 m



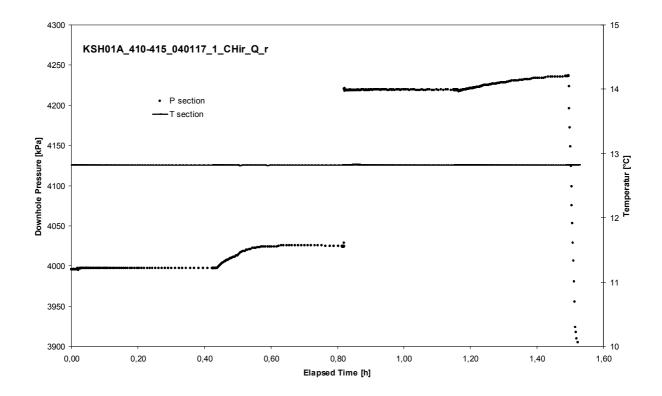
Pressure and flow rate vs. time; cartesian plot

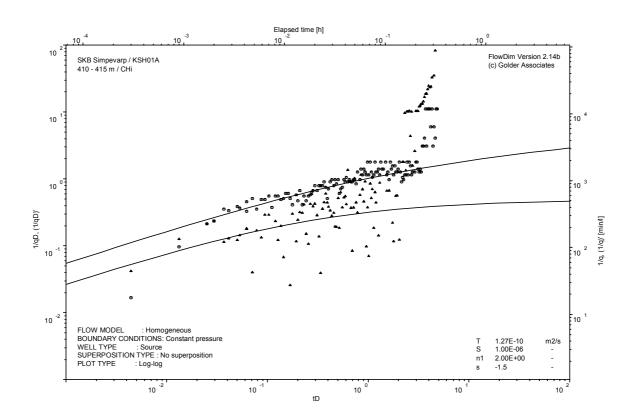


CHI phase; log-log match



CHIR phase; log-log match

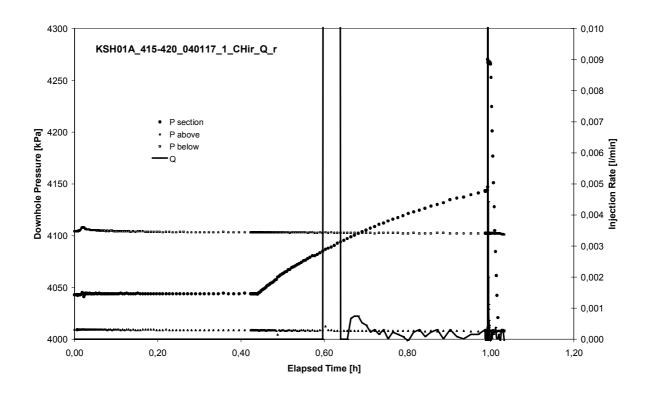



CHIR phase; HORNER match

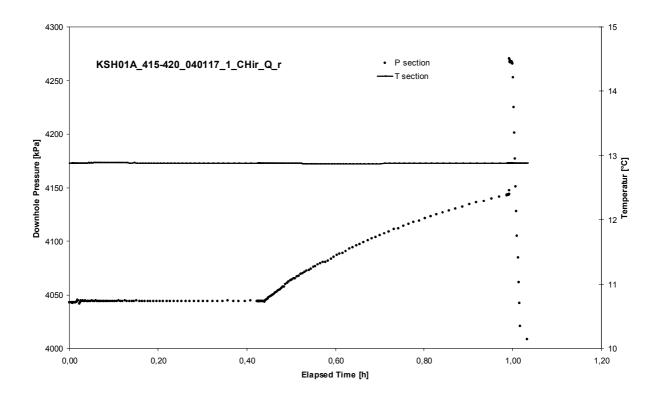
Test 410 – 415 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match


Not Analysed

CHIR phase; log-log match

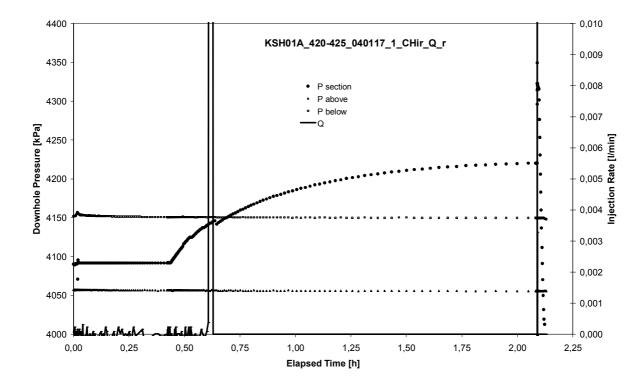

Not Analysed

CHIR phase; HORNER match

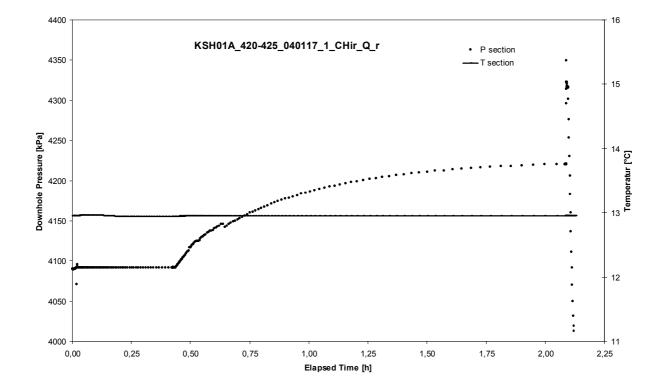
Test 415 – 420 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot


CHI phase; log-log match

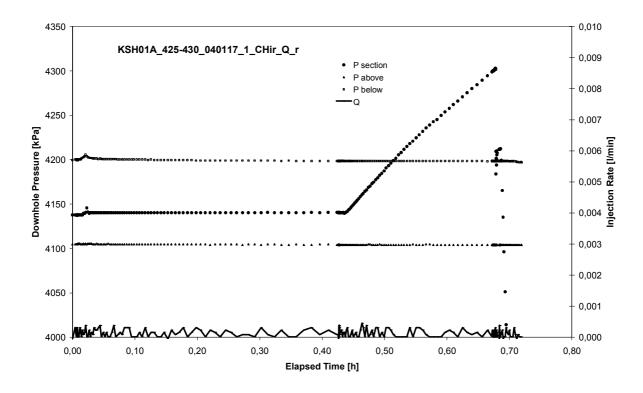
CHIR phase; log-log match


Not Analysed

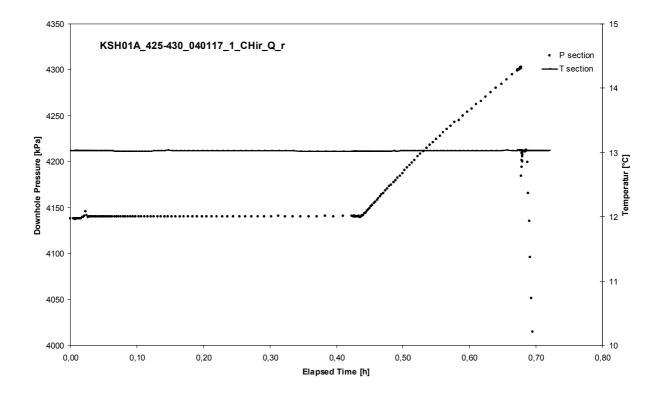
CHIR phase; HORNER match

Test 420 – 425 m

Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

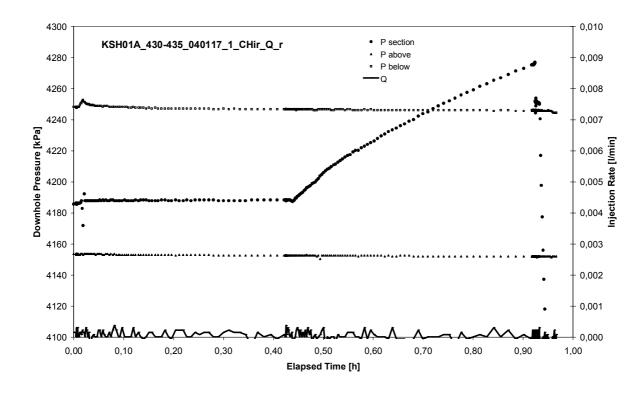
CHIR phase; log-log match


Not Analysed

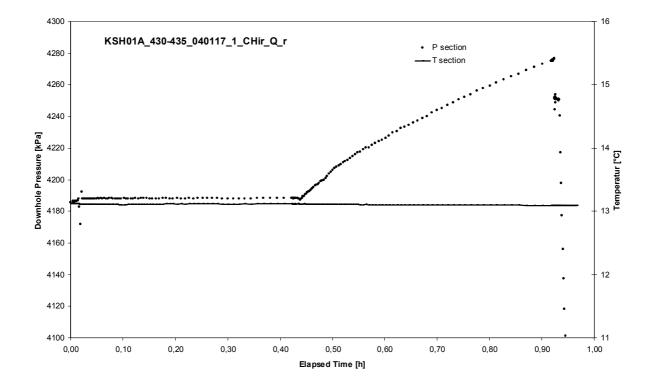
CHIR phase; HORNER match

Test 425 – 430 m

Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

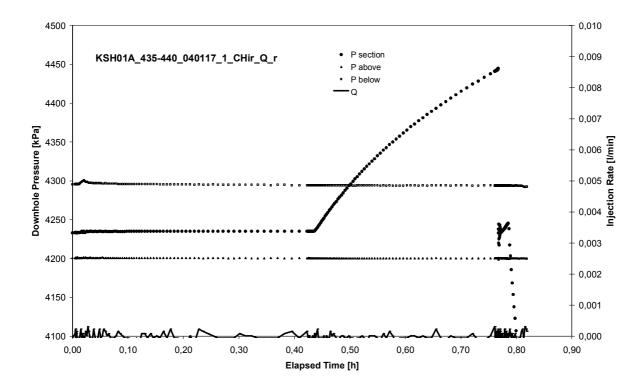
CHIR phase; log-log match


Not Analysed

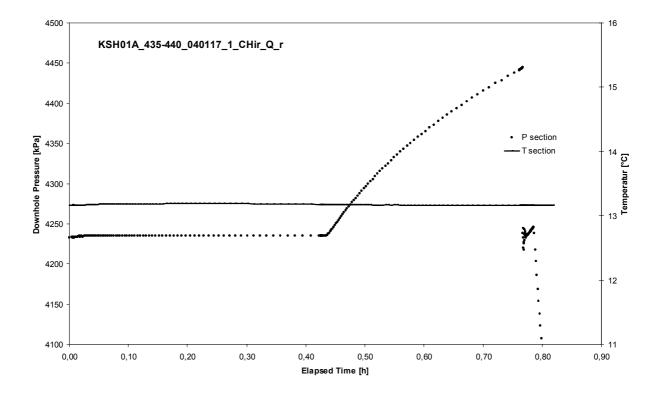
CHIR phase; HORNER match

Test 430 – 435 m

Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

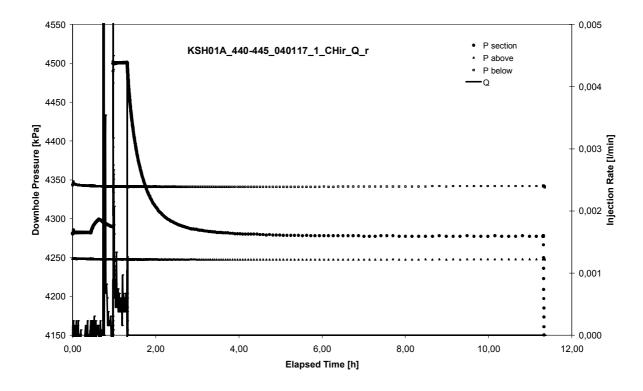
CHIR phase; log-log match


Not Analysed

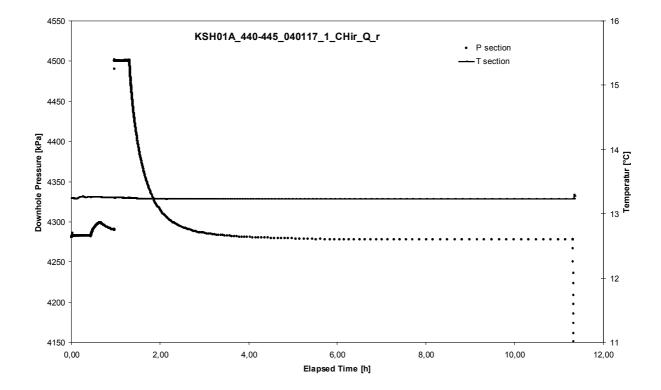
CHIR phase; HORNER match

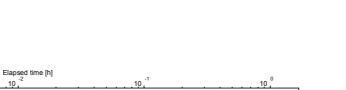
Test 435 – 440 m

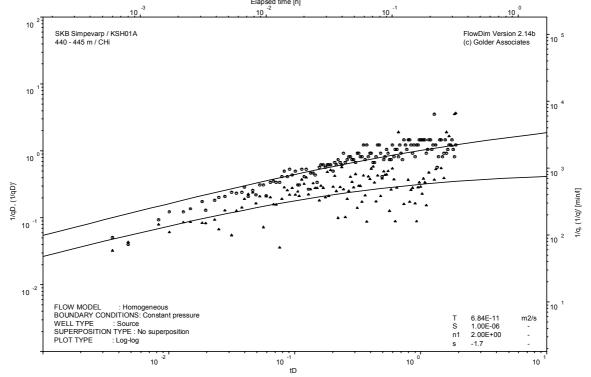
Pressure and flow rate vs. time; cartesian plot

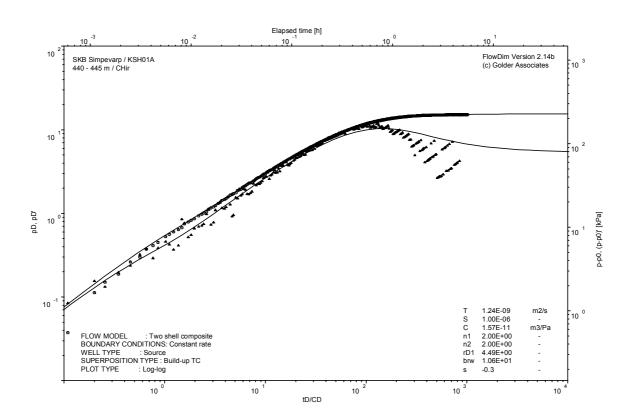

CHI phase; log-log match

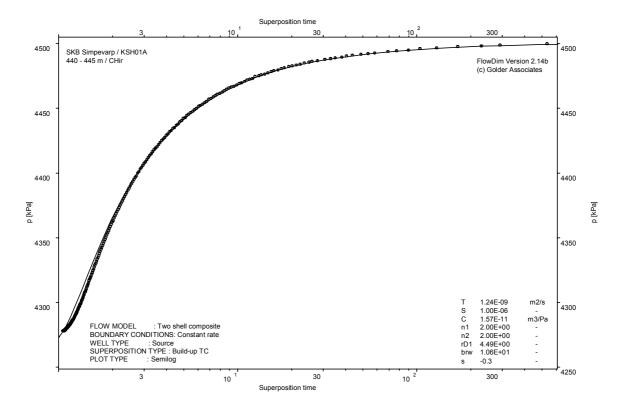
CHIR phase; log-log match


Not Analysed

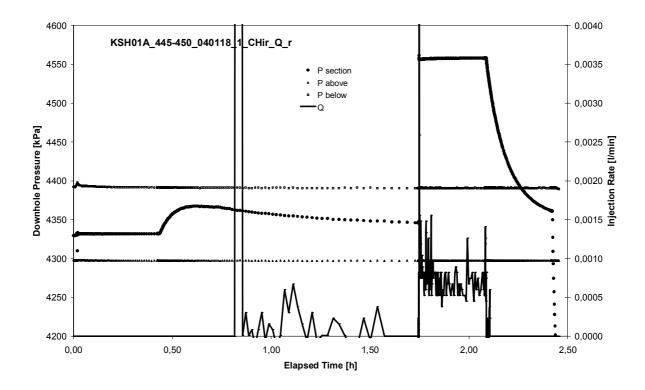

CHIR phase; HORNER match


Test 440 – 445 m

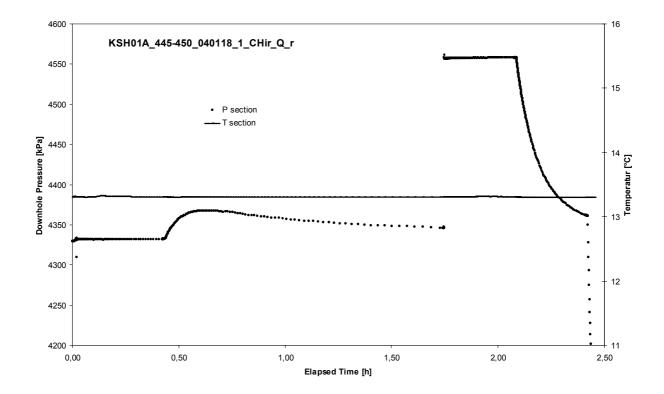

Pressure and flow rate vs. time; cartesian plot

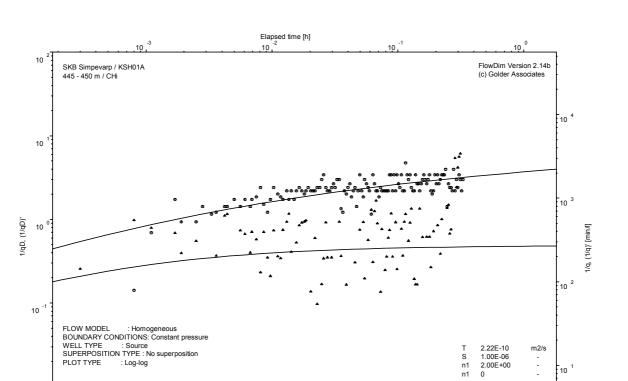


CHI phase; log-log match



CHIR phase; log-log match

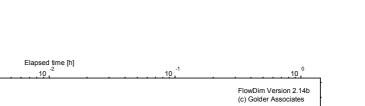


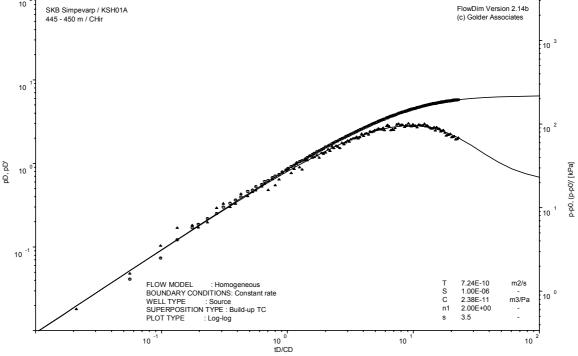

CHIR phase; HORNER match

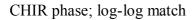
Test 445 – 450 m

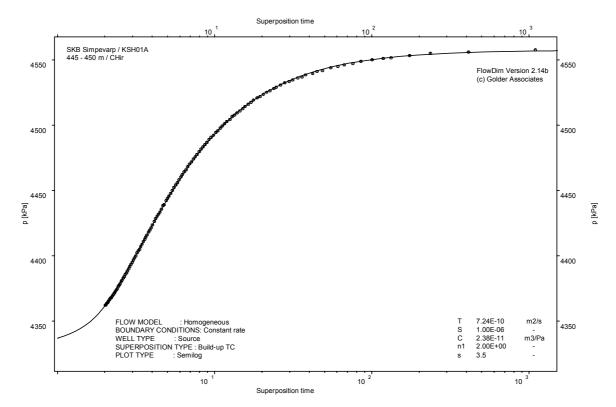
Pressure and flow rate vs. time; cartesian plot

10¹ tD 10²

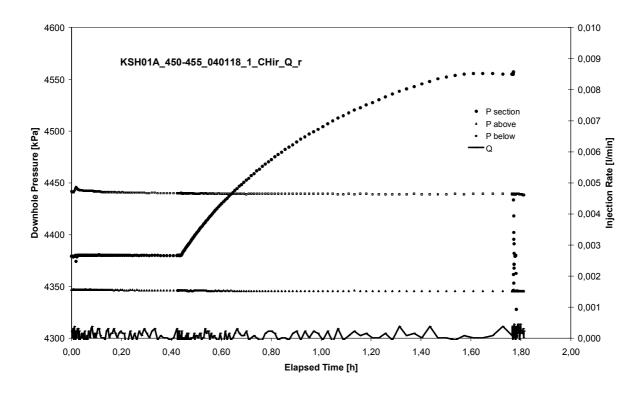

CHI phase; log-log match

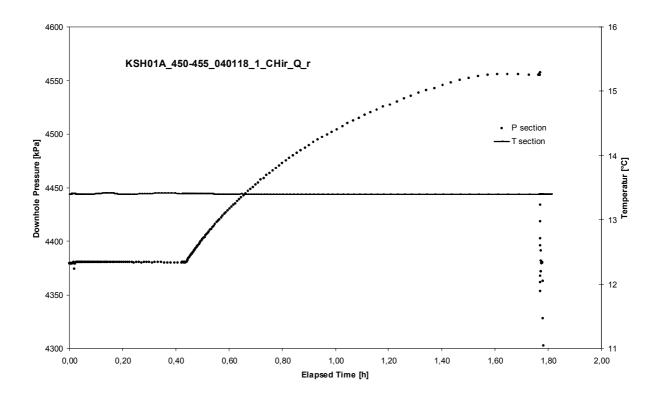

10 0


10³


10

<u>10</u> -3

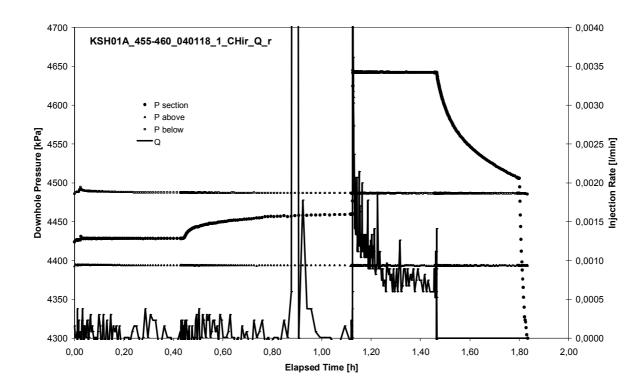




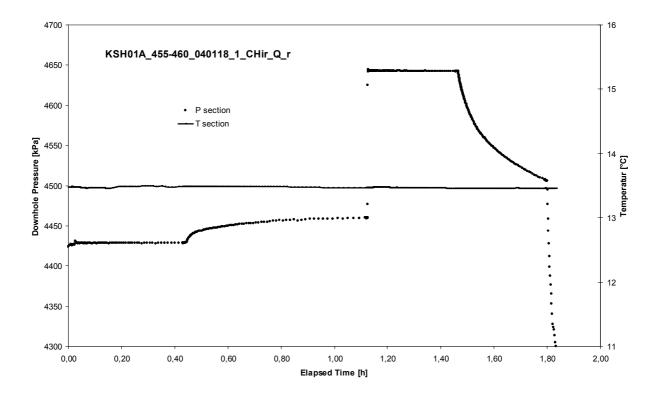
CHIR phase; HORNER match

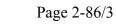
Test 450 – 455 m

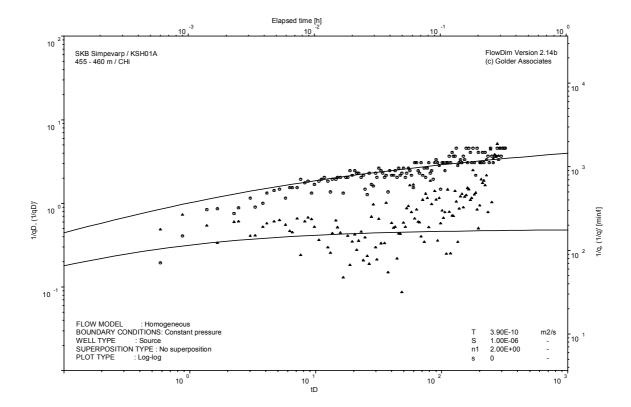
Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

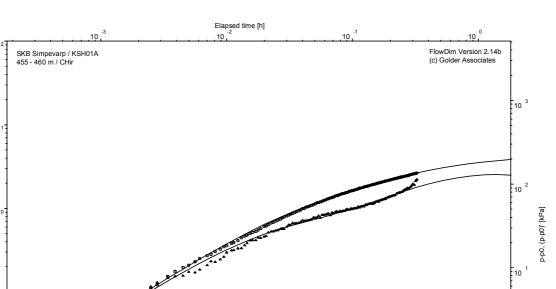
CHIR phase; log-log match

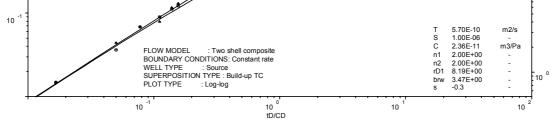

Not Analysed

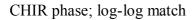

CHIR phase; HORNER match

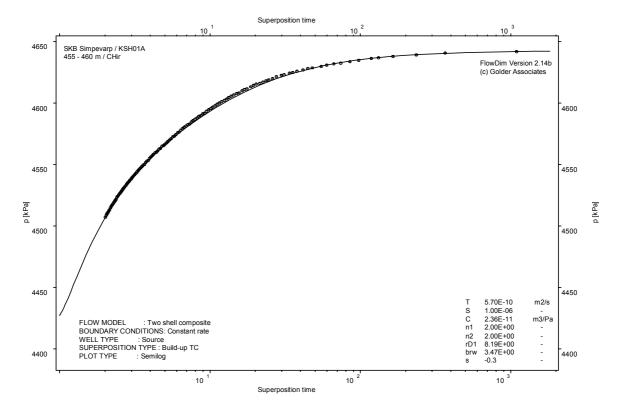

Test 455 – 460 m

Pressure and flow rate vs. time; cartesian plot

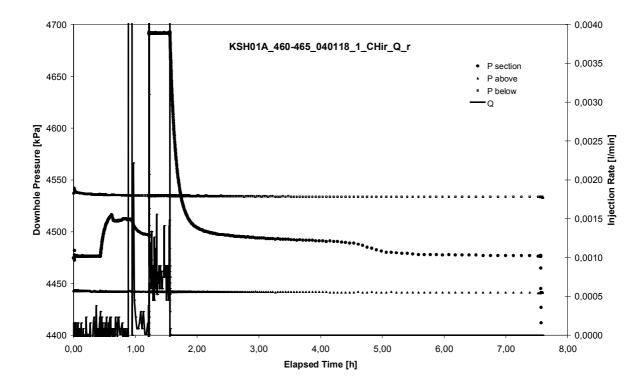

CHI phase; log-log match

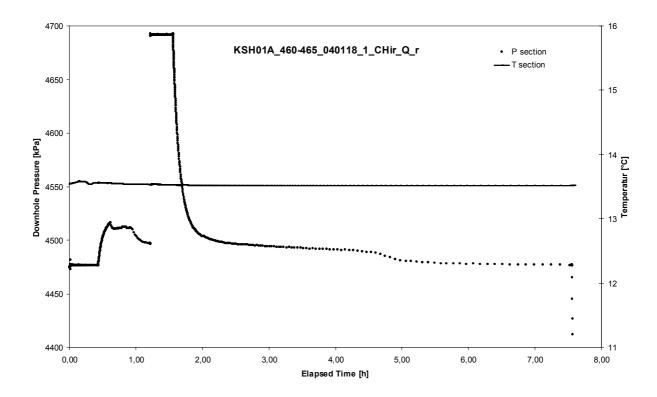

10


10


10

pD, pD'

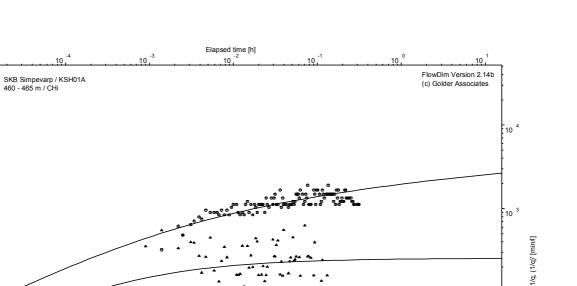




CHIR phase; HORNER match

Test 460 – 465 m

Pressure and flow rate vs. time; cartesian plot



10

10

1/qD, (1/qD)' 0

10

10¹ tD 10²

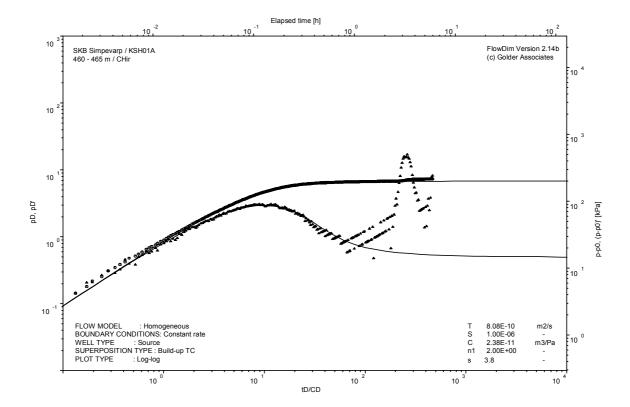
CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

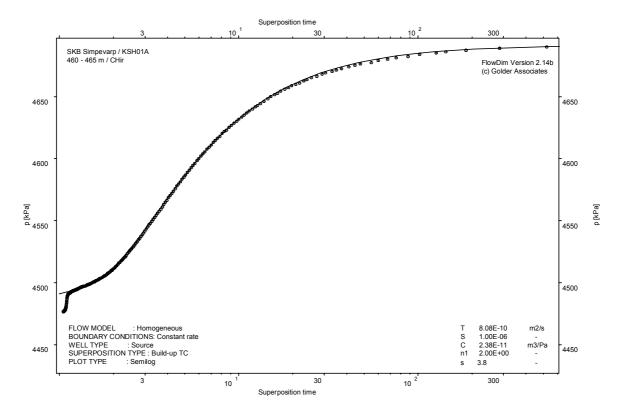
10 0

10 -1

10 ²

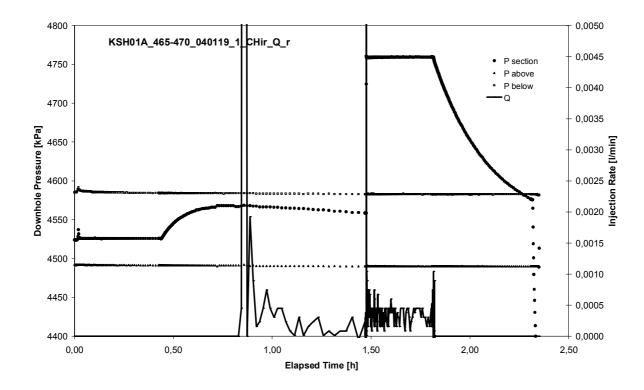

m2/s -----10⁻¹

10 4

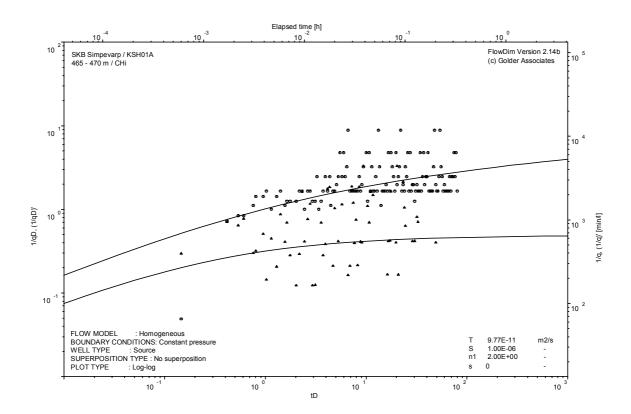

T S n1 s

10 ³

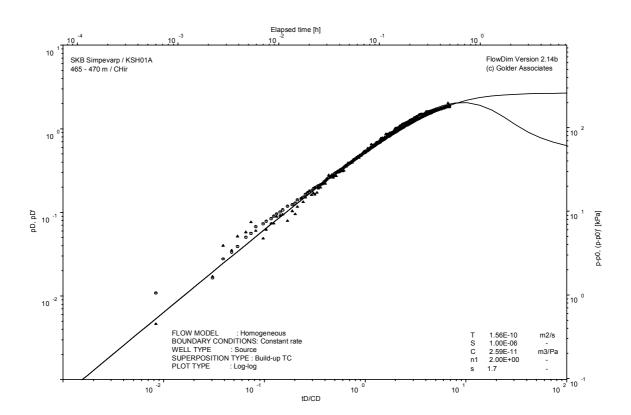
2.57E-10 1.00E-06 2.00E+00 0

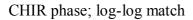


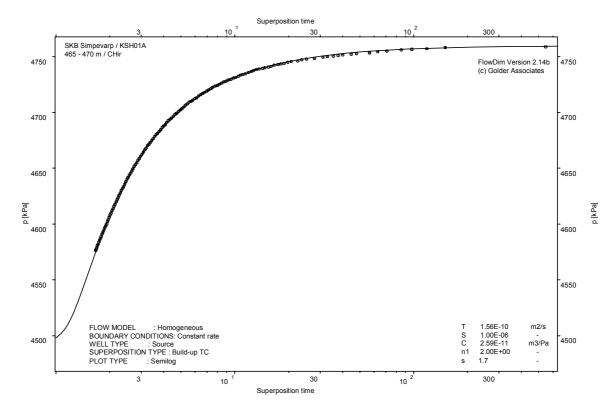
CHIR phase; log-log match


CHIR phase; HORNER match

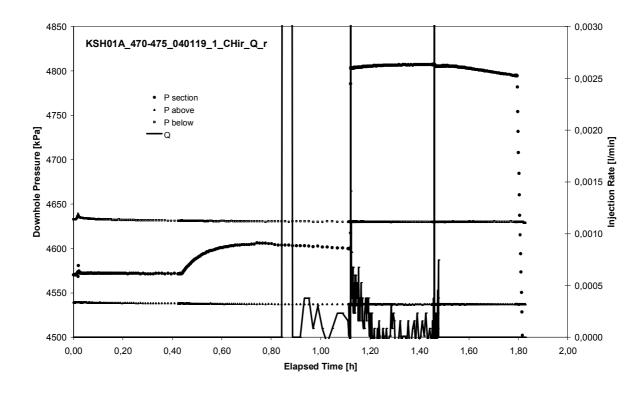
Test 465 – 470 m

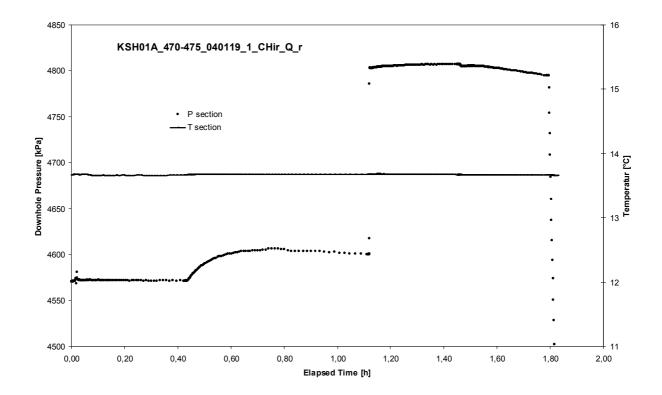



Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match

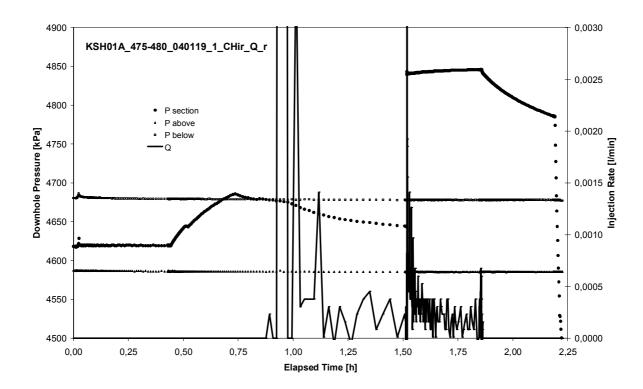




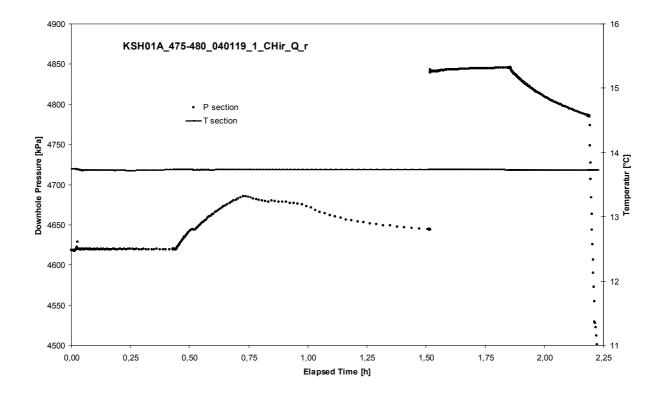
CHIR phase; HORNER match

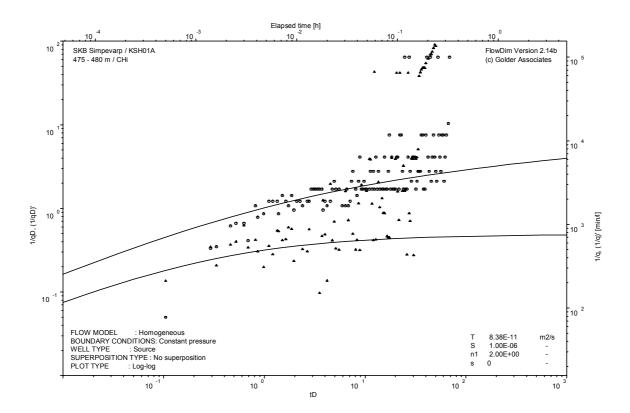
Test 470 – 475 m

Pressure and flow rate vs. time; cartesian plot

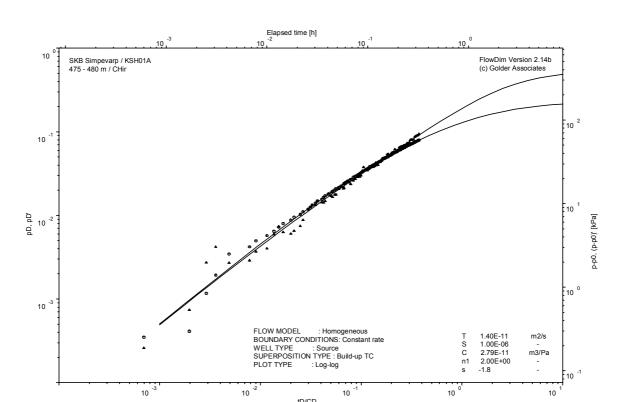

CHI phase; log-log match

CHIR phase; log-log match

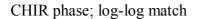

Not Analysed

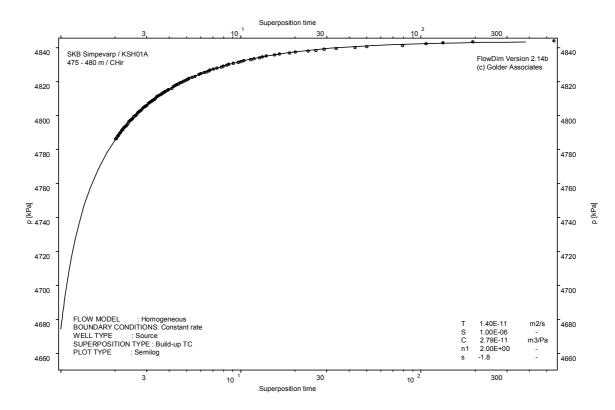

CHIR phase; HORNER match

Test 475 – 480 m

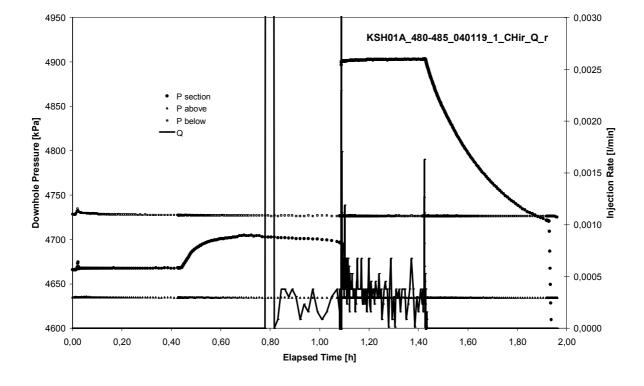


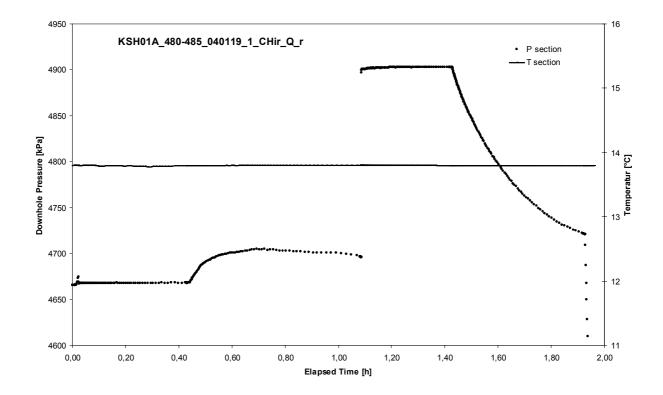
Pressure and flow rate vs. time; cartesian plot



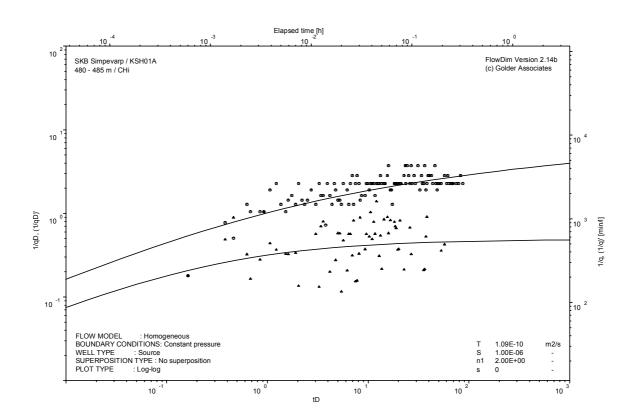


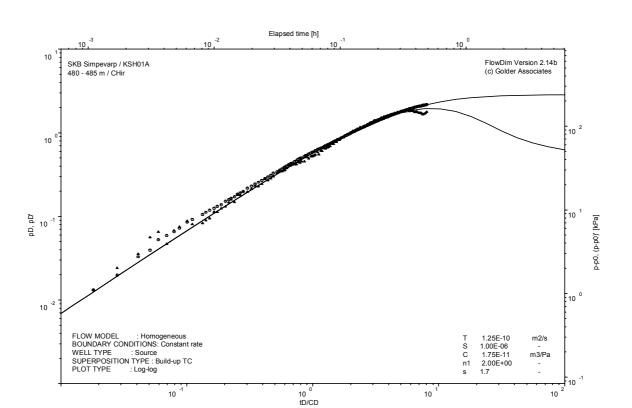
CHI phase; log-log match

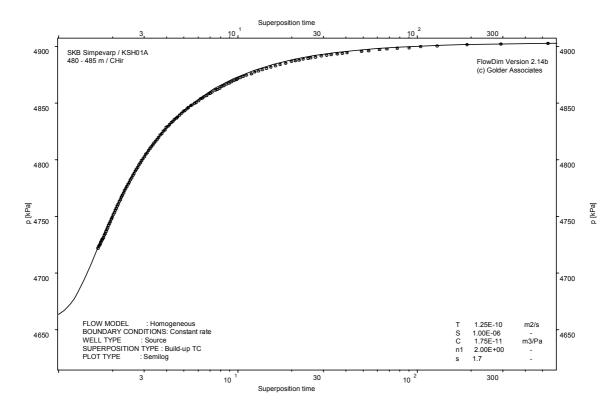

tD/CD



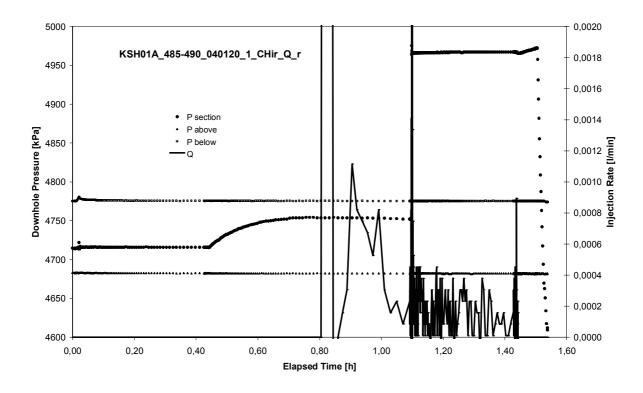
CHIR phase; HORNER match


Test 480 – 485 m

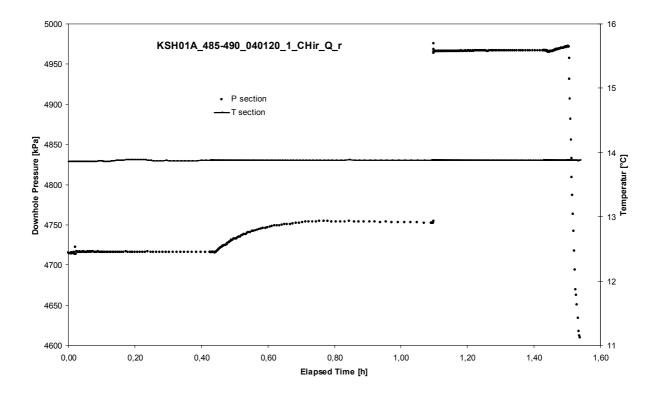

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match



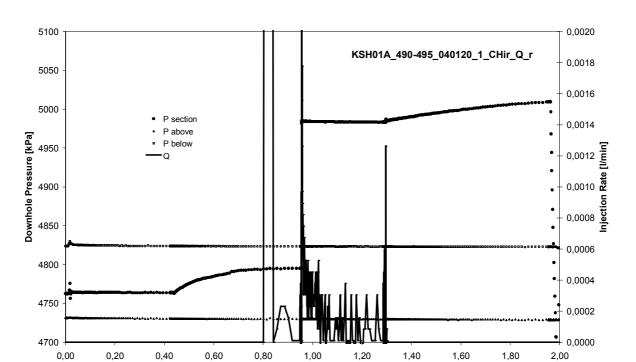
CHIR phase; log-log match



CHIR phase; HORNER match

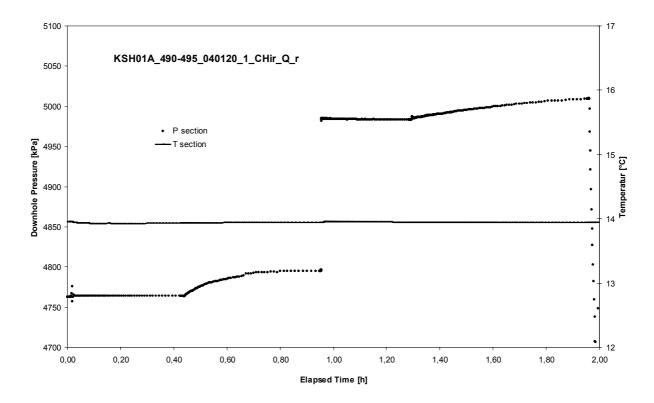
Test 485 – 490 m

Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

CHIR phase; log-log match

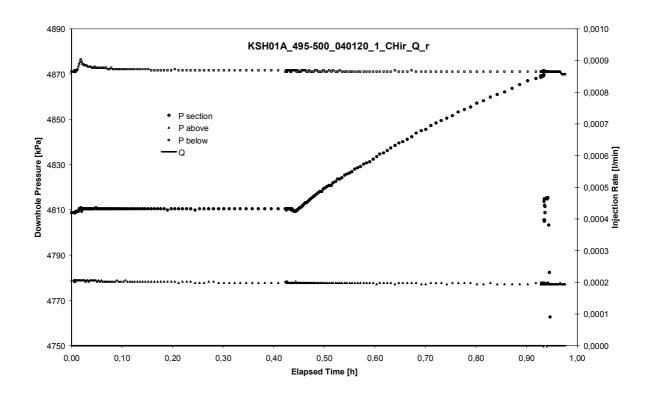
Not Analysed


CHIR phase; HORNER match

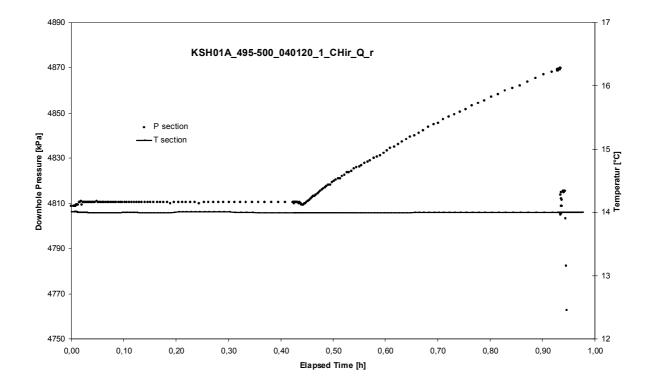
Test 490 – 495 m

Elapsed Time [h]

Pressure and flow rate vs. time; cartesian plot


CHI phase; log-log match

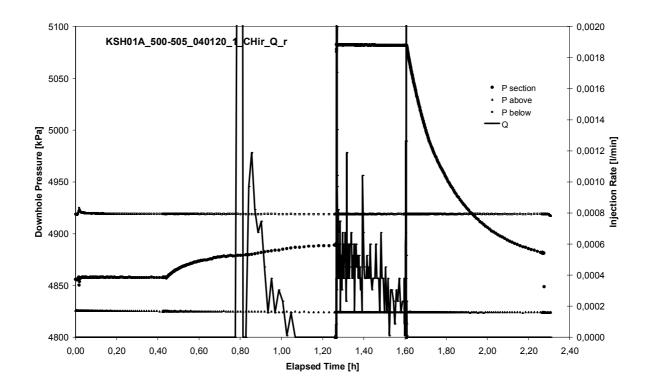
CHIR phase; log-log match


Not Analysed

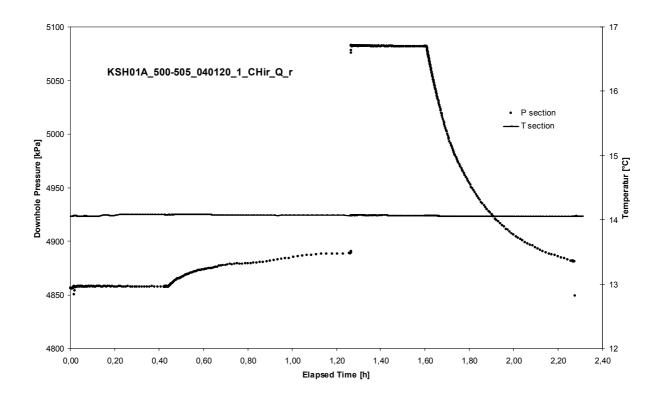
CHIR phase; HORNER match

Test 495 – 500 m

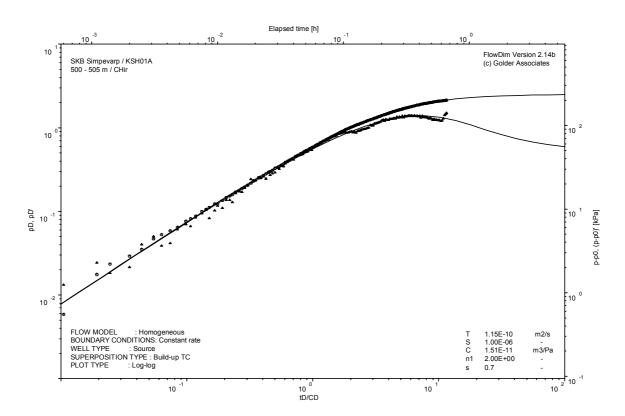
Pressure and flow rate vs. time; cartesian plot

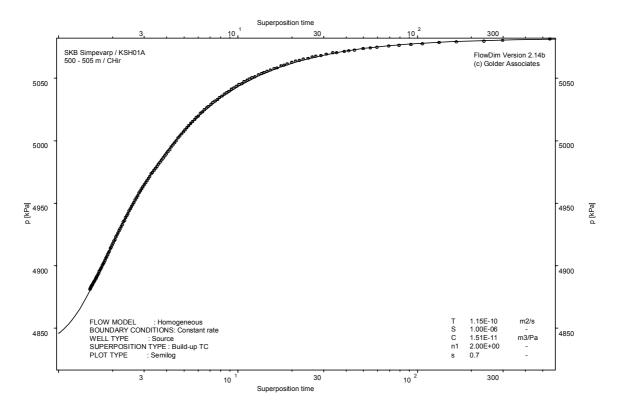

CHI phase; log-log match

CHIR phase; log-log match

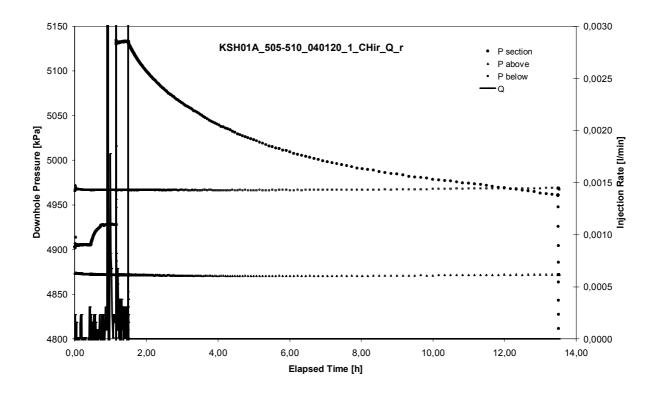

Not Analysed

CHIR phase; HORNER match

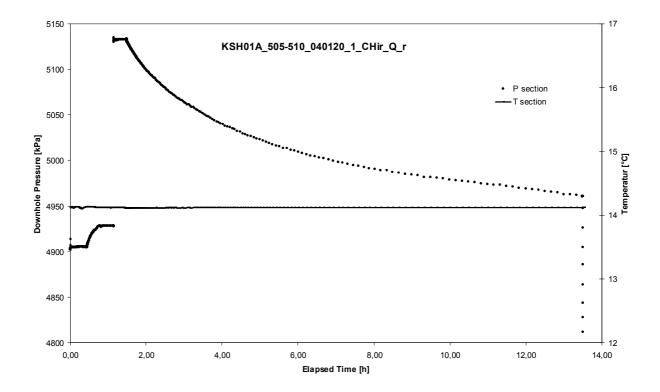

Test 500 – 505 m

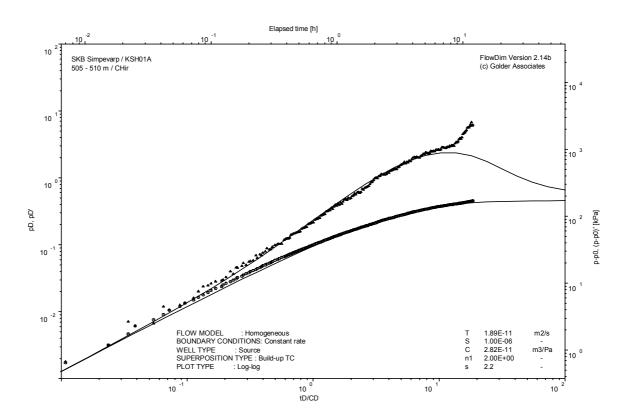

Pressure and flow rate vs. time; cartesian plot

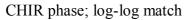
CHI phase; log-log match

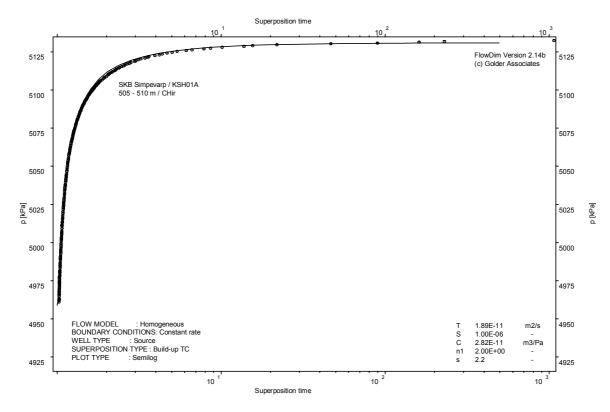


CHIR phase; log-log match

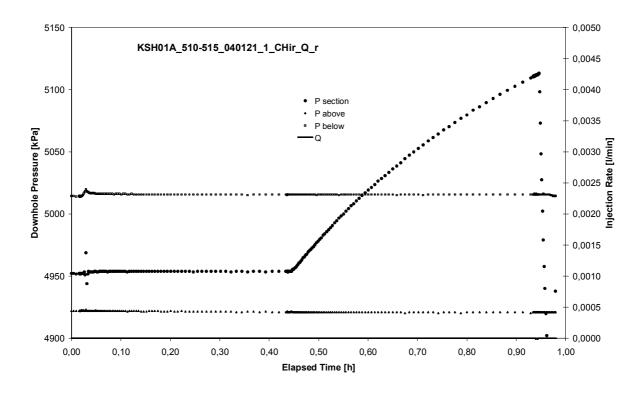


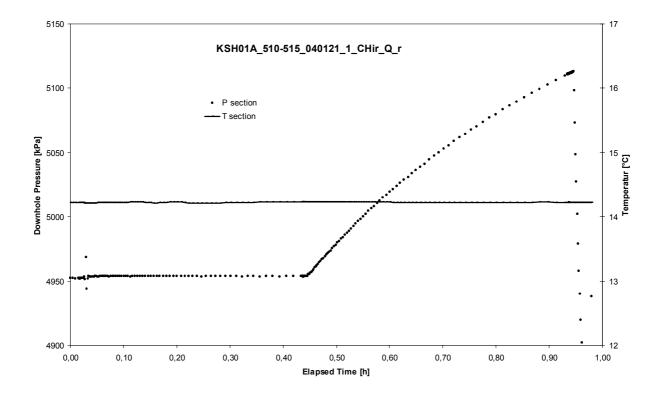

CHIR phase; HORNER match


Test 505 – 510 m



Pressure and flow rate vs. time; cartesian plot

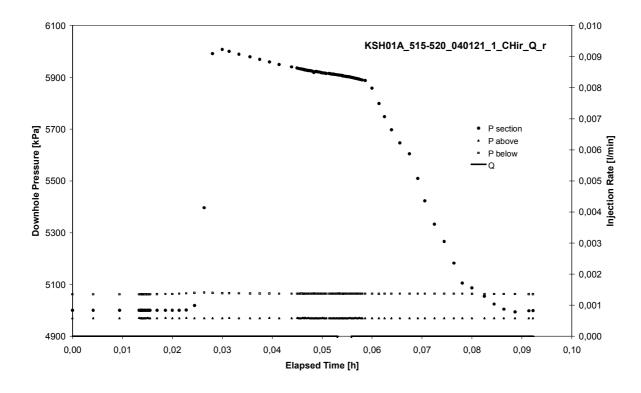




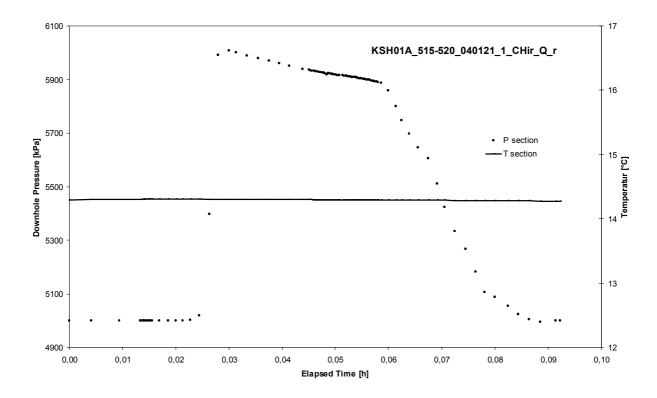
CHIR phase; HORNER match

Test 510 – 515 m

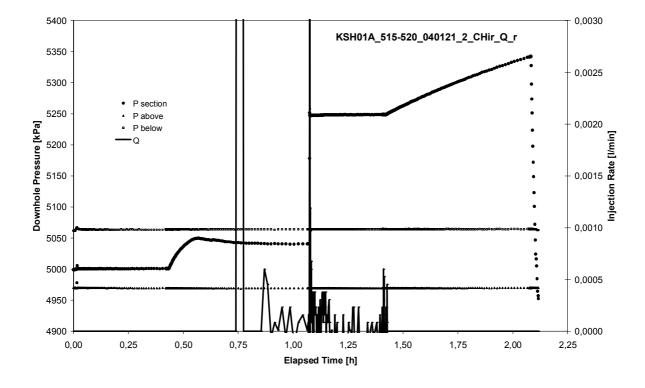
Pressure and flow rate vs. time; cartesian plot

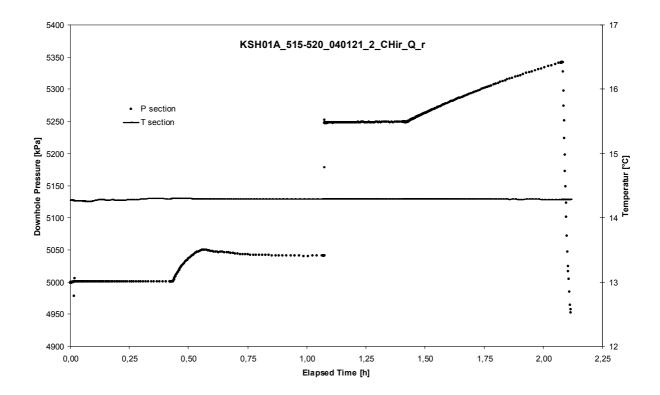


CHIR phase; log-log match


Not Analysed

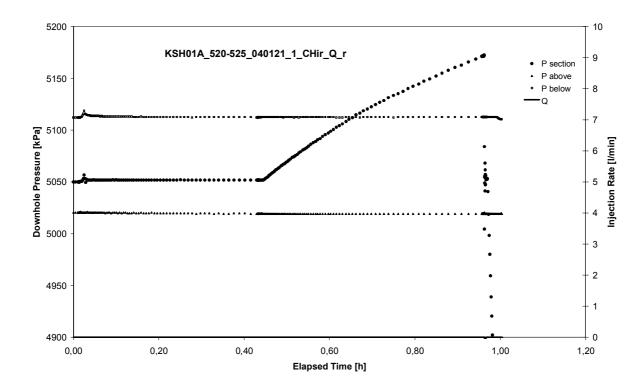
CHIR phase; HORNER match


Test 515 – 520 m

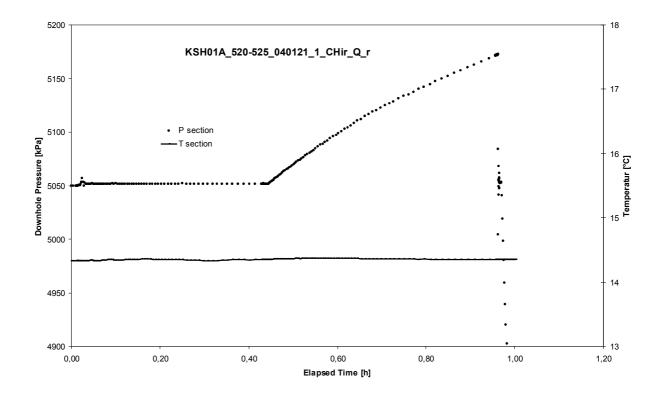

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)



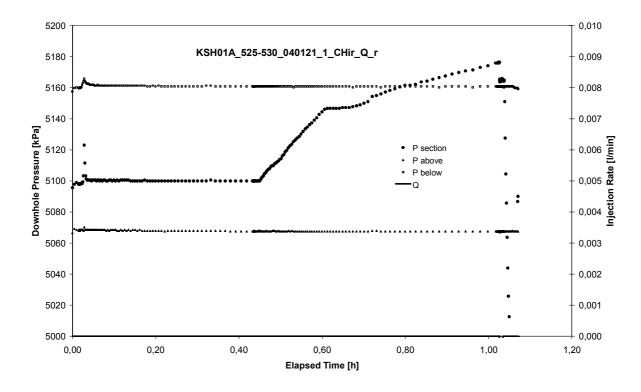
CHIR phase; log-log match


Not Analysed

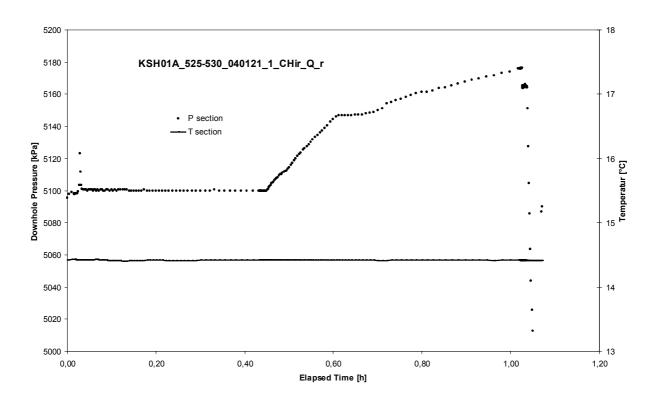
CHIR phase; HORNER match

Test 520 – 525 m

Pressure and flow rate vs. time; cartesian plot



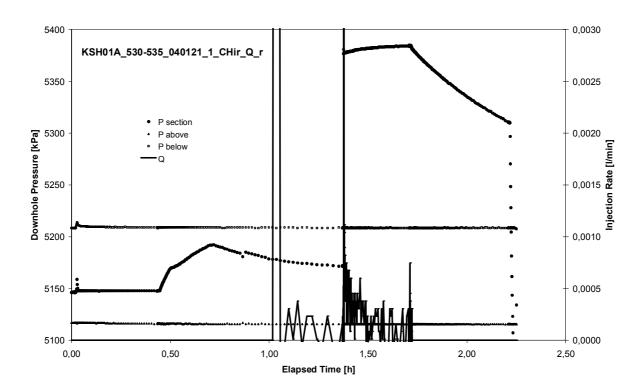
CHIR phase; log-log match


Not Analysed

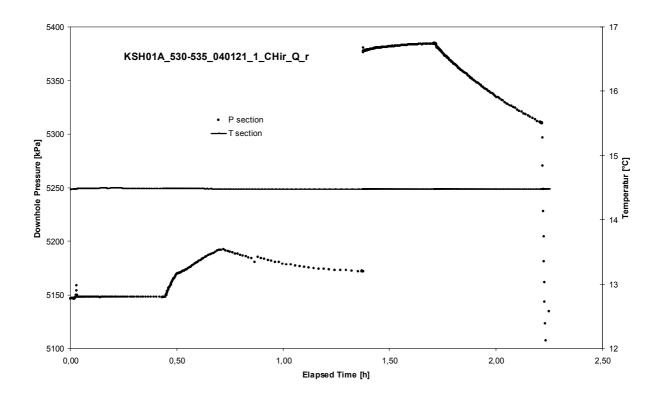
CHIR phase; HORNER match

Test 525 – 530 m

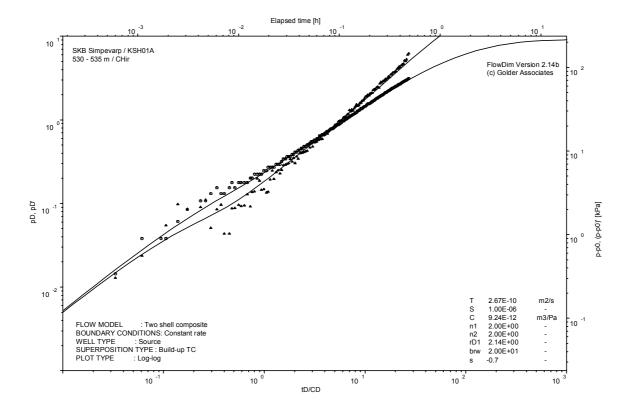
Pressure and flow rate vs. time; cartesian plot



CHIR phase; log-log match

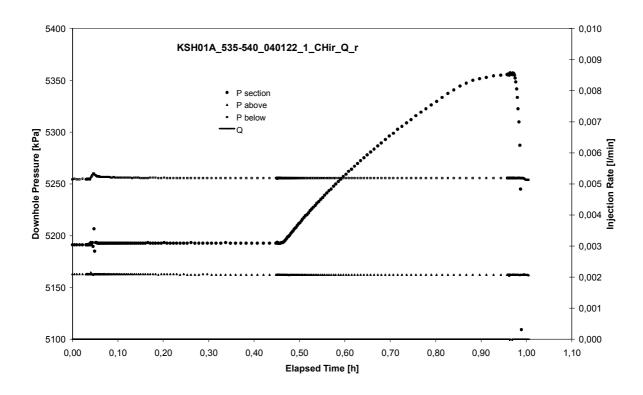

Not Analysed

CHIR phase; HORNER match

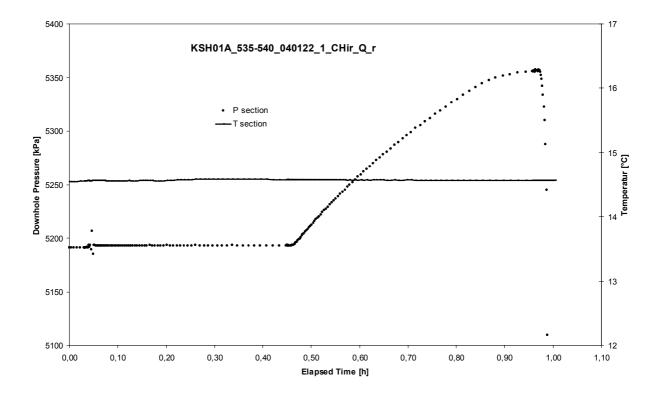

Test 530 – 535 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot



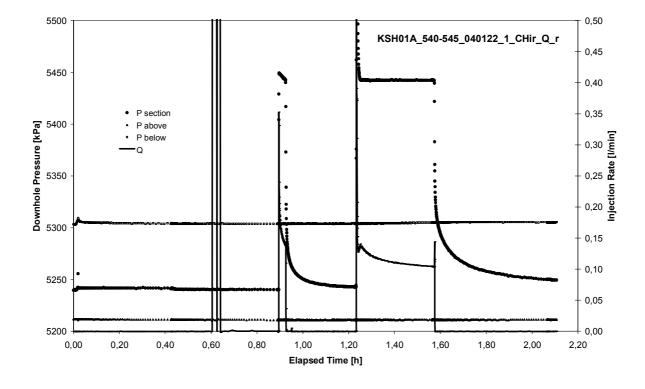
CHIR phase; log-log match



CHIR phase; HORNER match

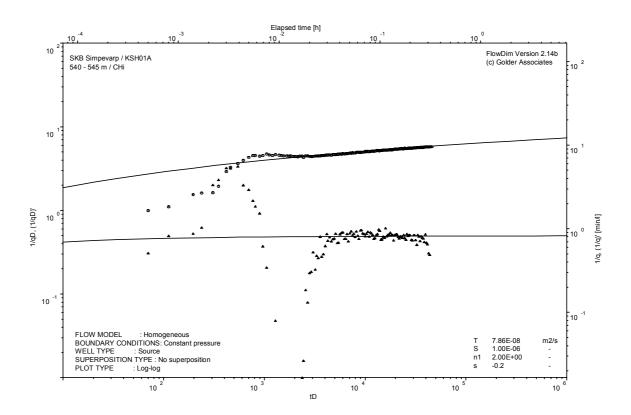
Test 535 – 540 m

Pressure and flow rate vs. time; cartesian plot

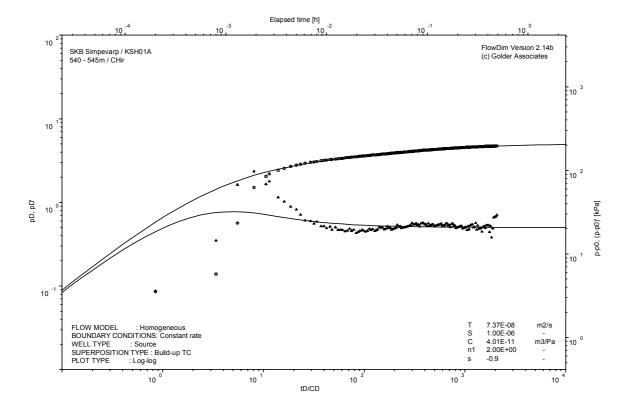


CHIR phase; log-log match

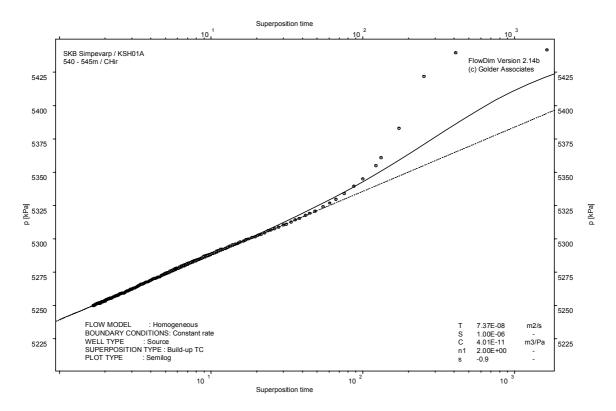
Not Analysed


CHIR phase; HORNER match

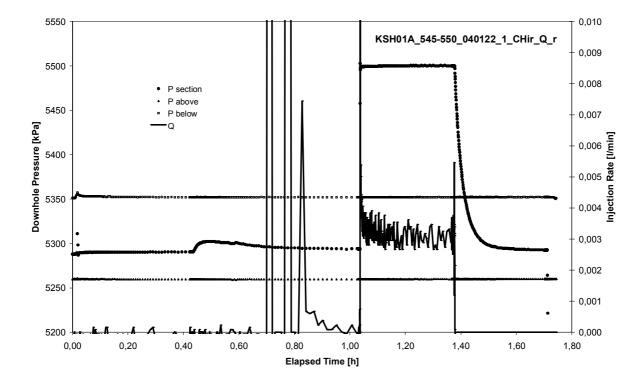
Test 540 – 545 m



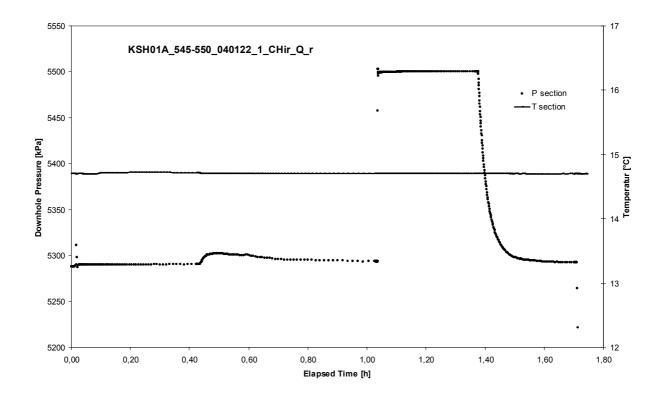
Pressure and flow rate vs. time; cartesian plot

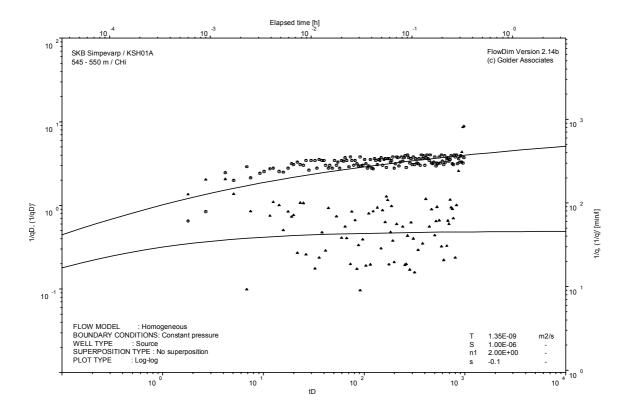


CHI phase; log-log match



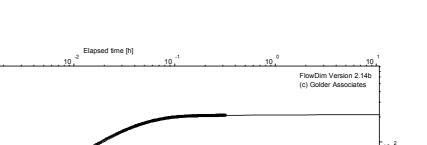
CHIR phase; log-log match

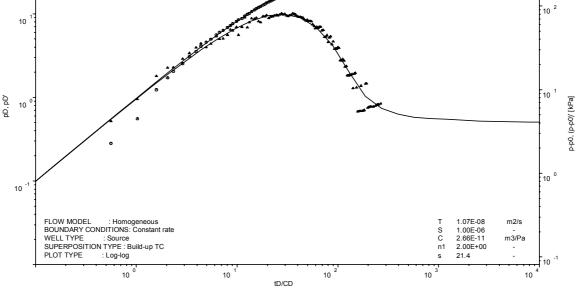



CHIR phase; HORNER match

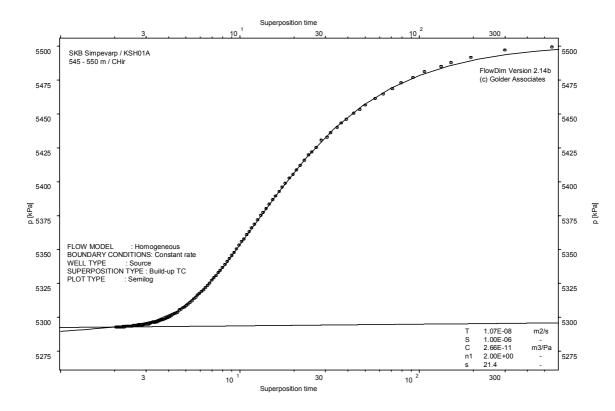
Test 545 – 550 m

Pressure and flow rate vs. time; cartesian plot

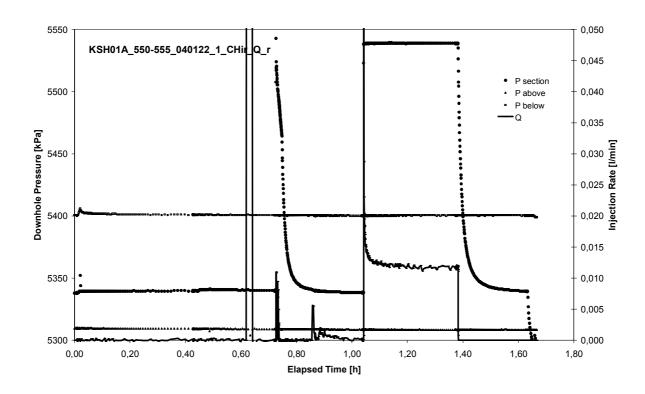



CHI phase; log-log match

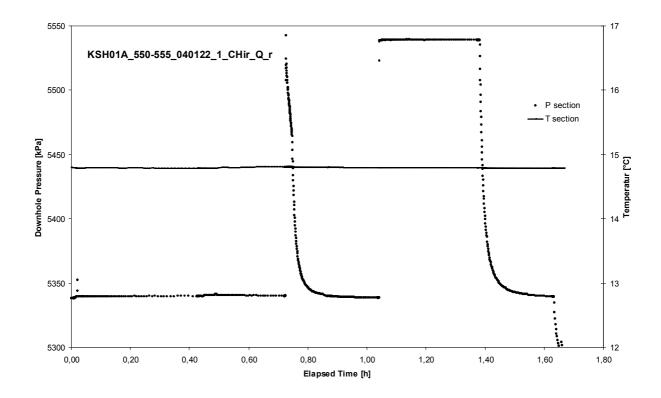
SKB Simpevarp / KSH01A 545 - 550 m / CHir


10

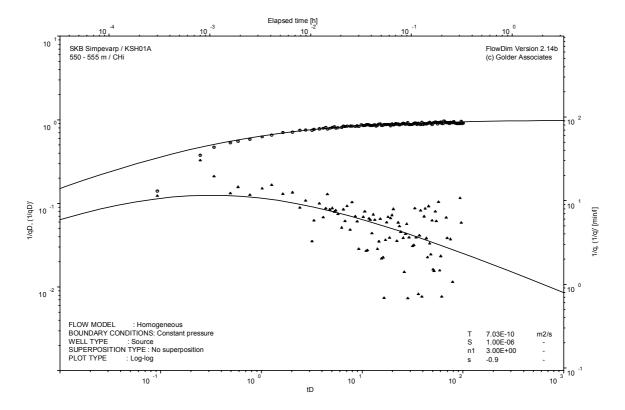
10,-3

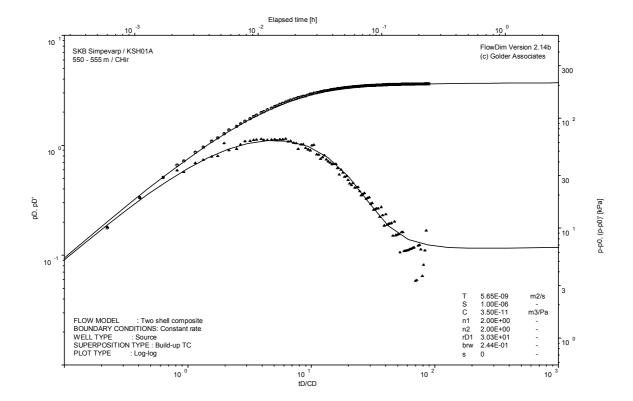


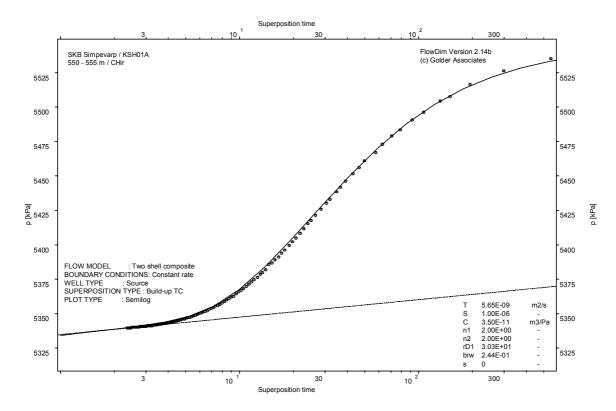
CHIR phase; log-log match



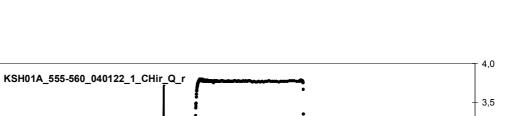
CHIR phase; HORNER match

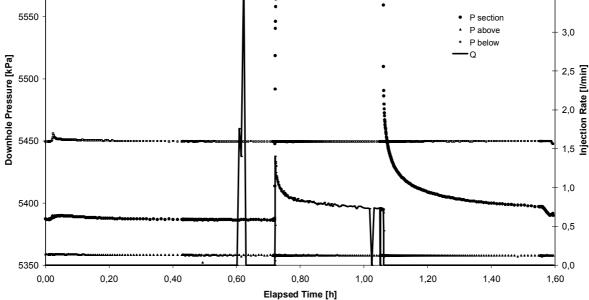

Test 550 – 555 m


Pressure and flow rate vs. time; cartesian plot

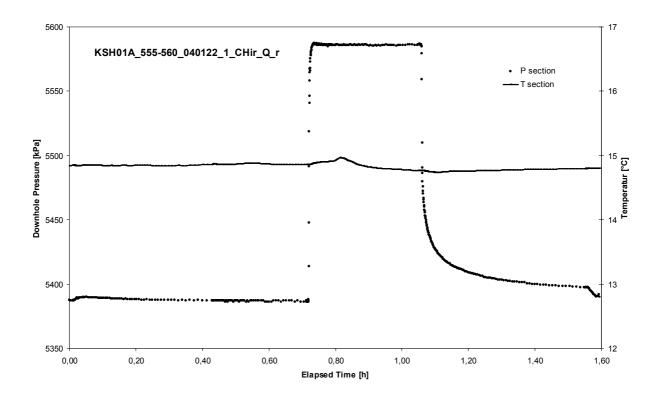

Interval pressure and temperature vs. time; cartesian plot

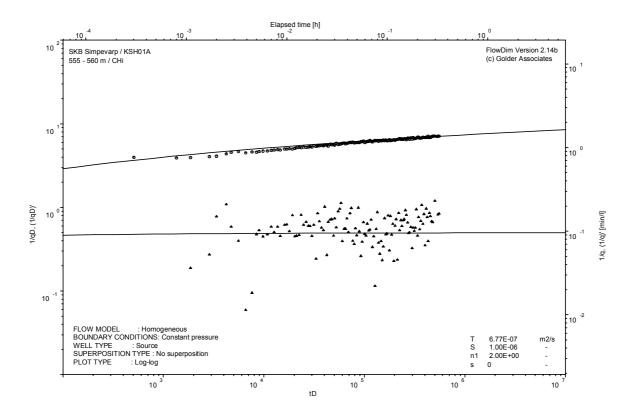
CHI phase; log-log match

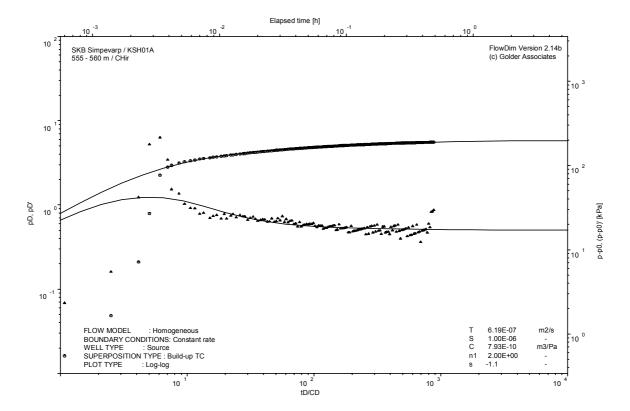

CHIR phase; log-log match



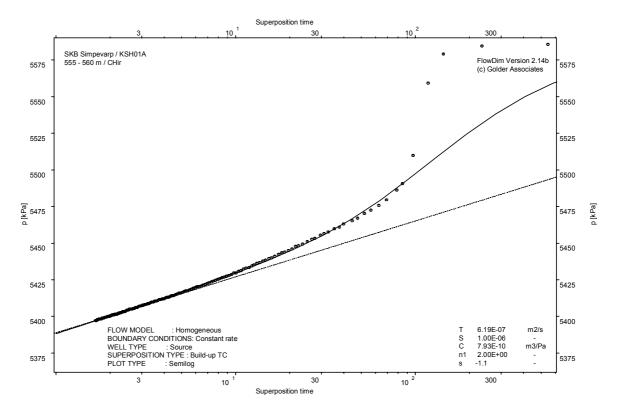
CHIR phase; HORNER match


Test 555 – 560 m

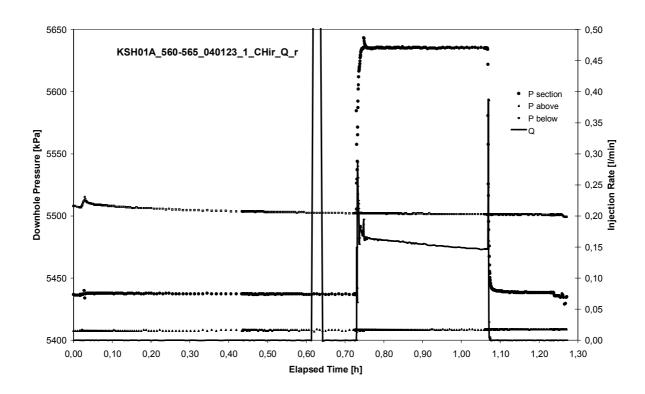

5600



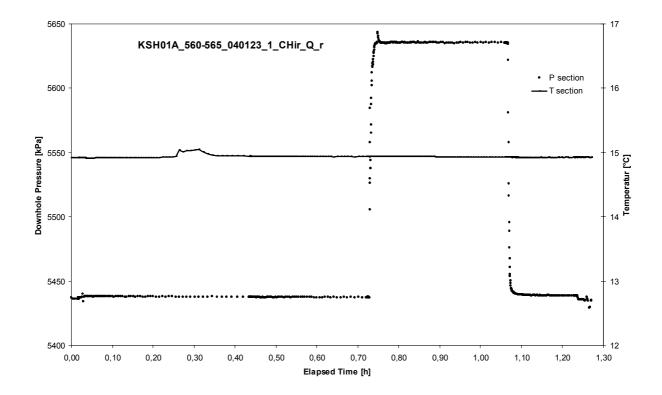
Pressure and flow rate vs. time; cartesian plot

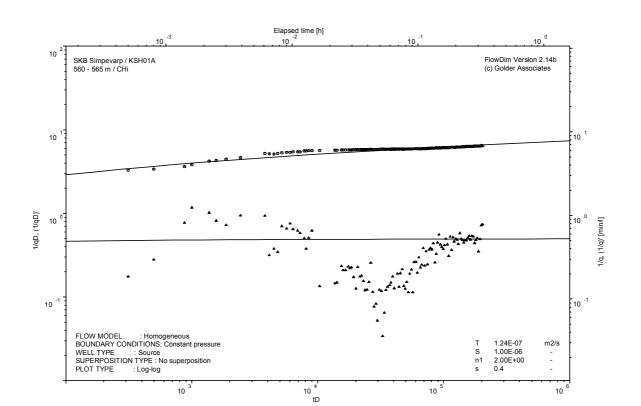


CHI phase; log-log match

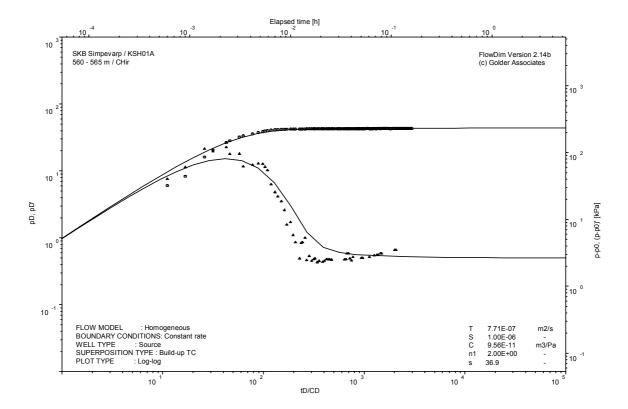


CHIR phase; log-log match

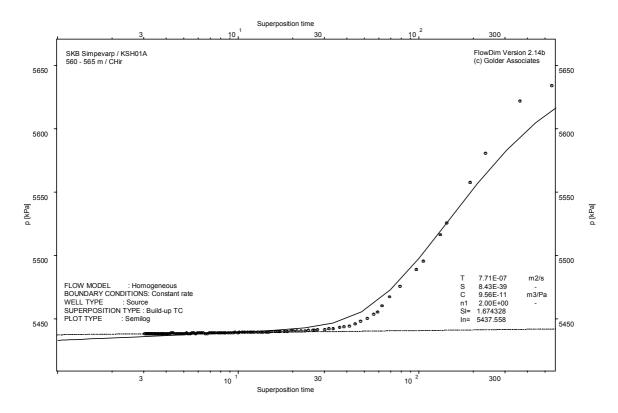



CHIR phase; HORNER match

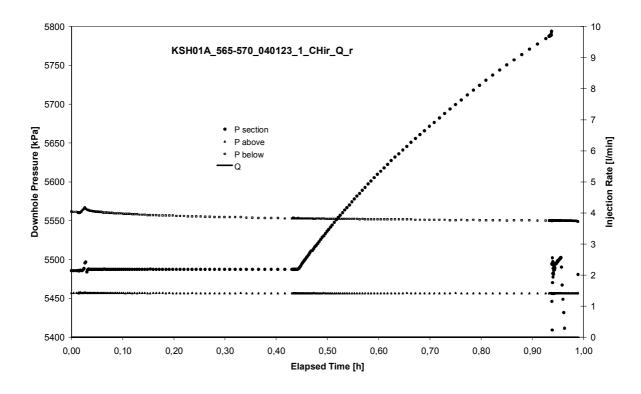
Test 560 – 565 m



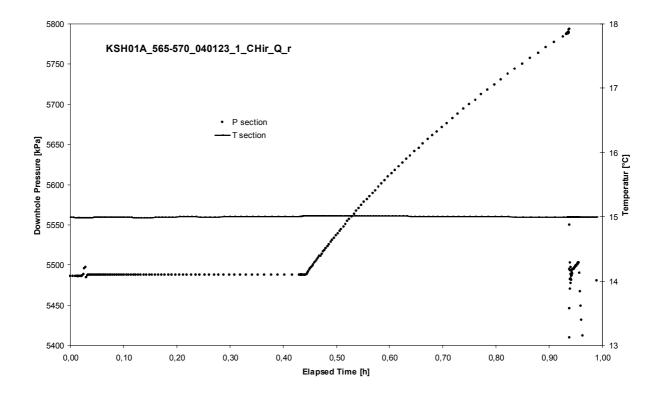
Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match



CHIR phase; log-log match



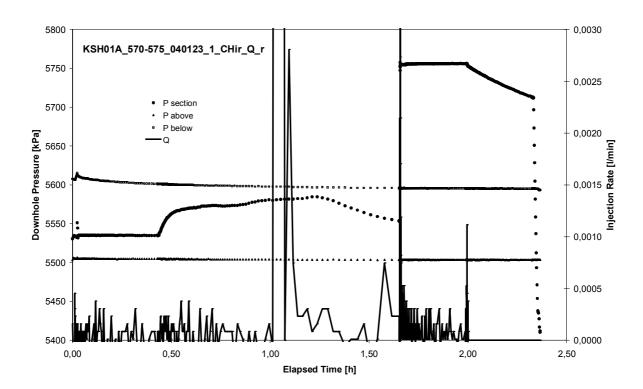
CHIR phase; HORNER match

Test 565 – 570 m

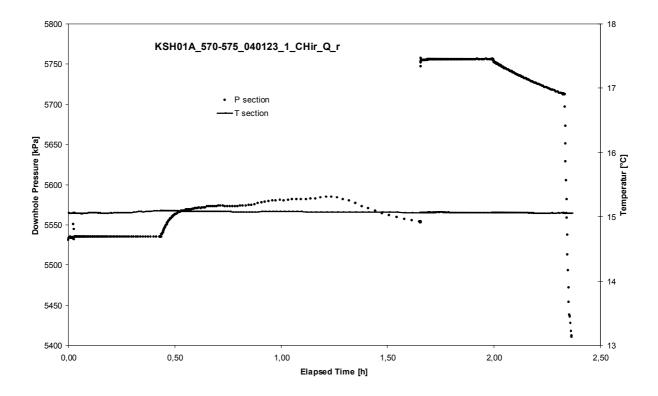
Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match

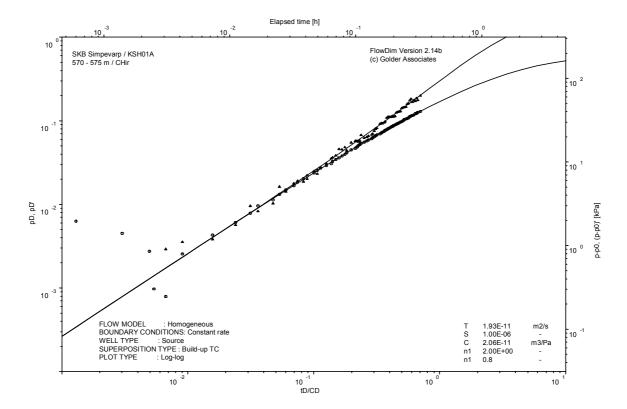

Not Analysed

CHIR phase; log-log match

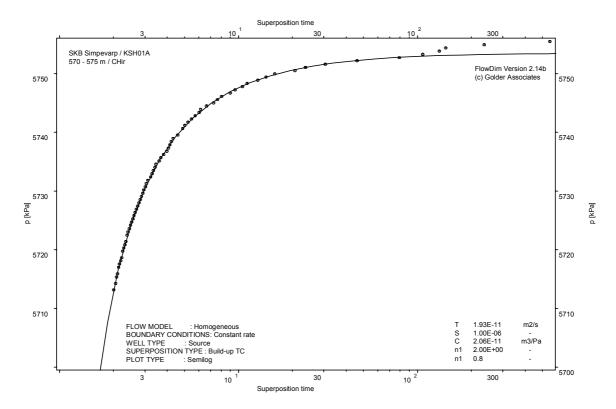

Not Analysed

CHIR phase; HORNER match

Test 570 – 575 m

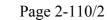


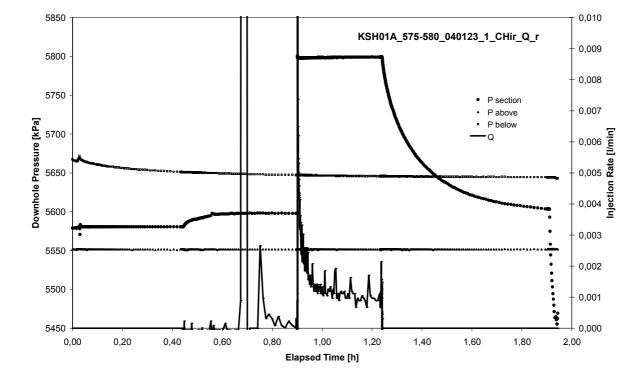
Pressure and flow rate vs. time; cartesian plot

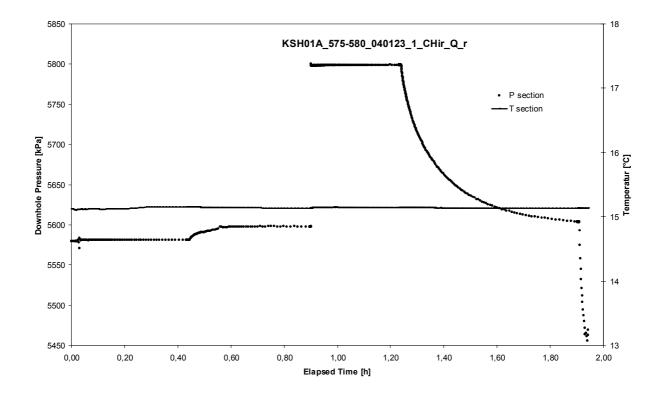


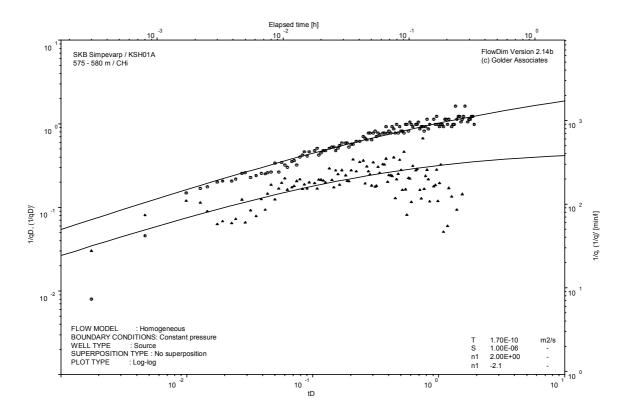
Not Analysed

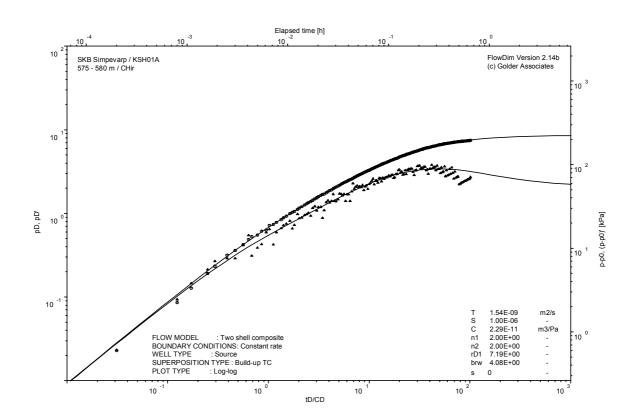
CHI phase; log-log match



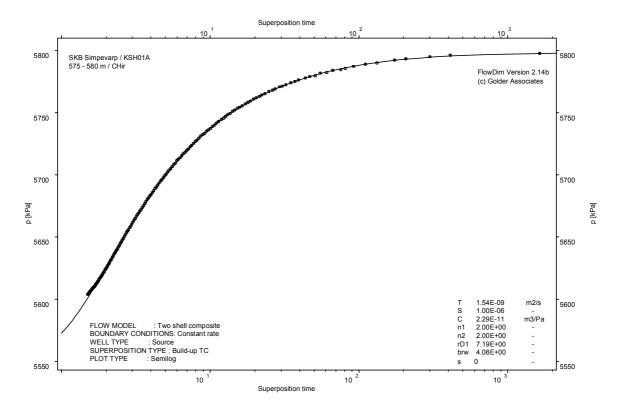

CHIR phase; log-log match


CHIR phase; HORNER match

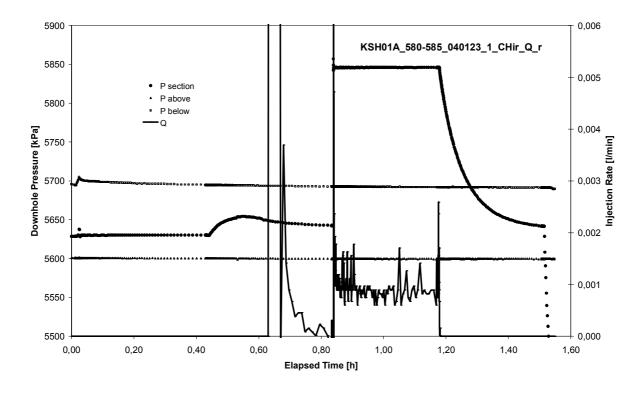

Test 575 – 580 m



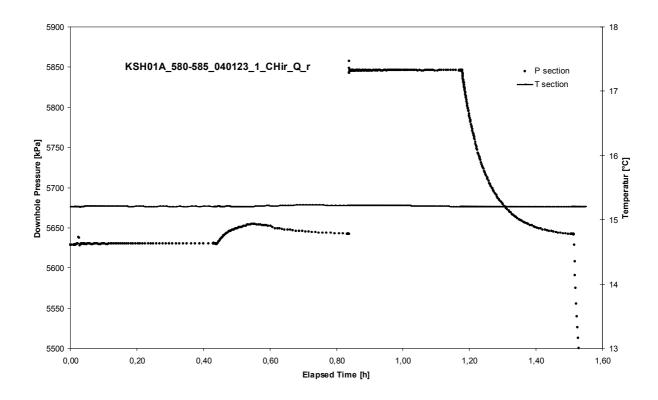
Pressure and flow rate vs. time; cartesian plot

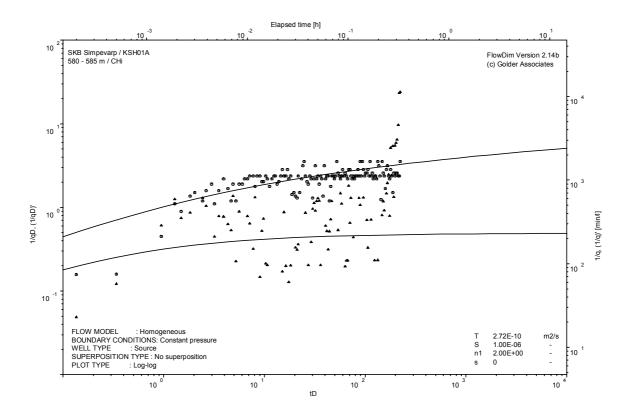


CHI phase; log-log match

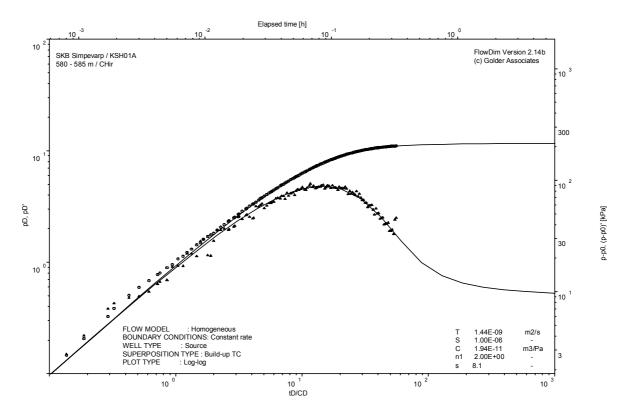


CHIR phase; log-log match

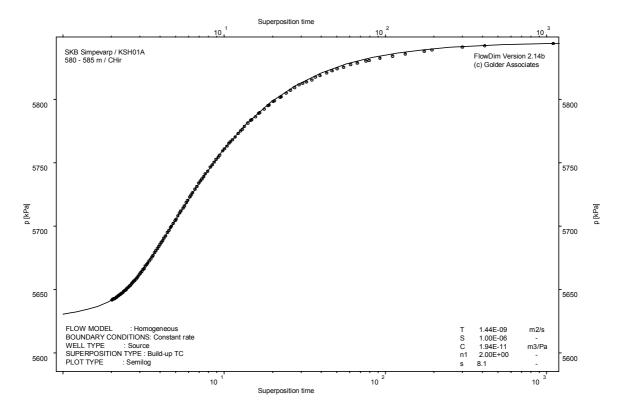



CHIR phase; HORNER match

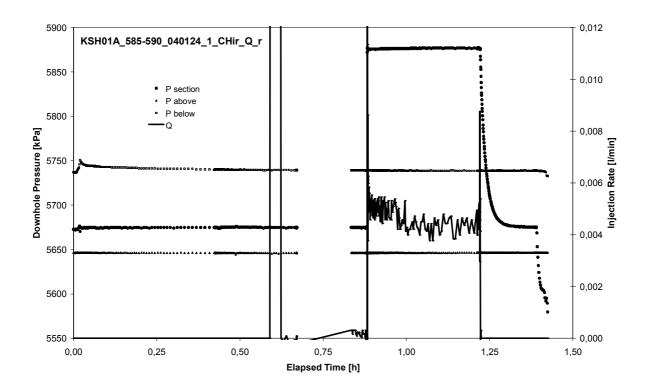
Test 580 – 585 m



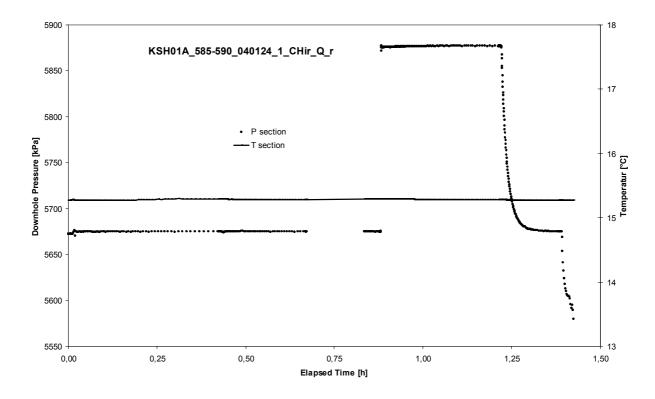
Pressure and flow rate vs. time; cartesian plot

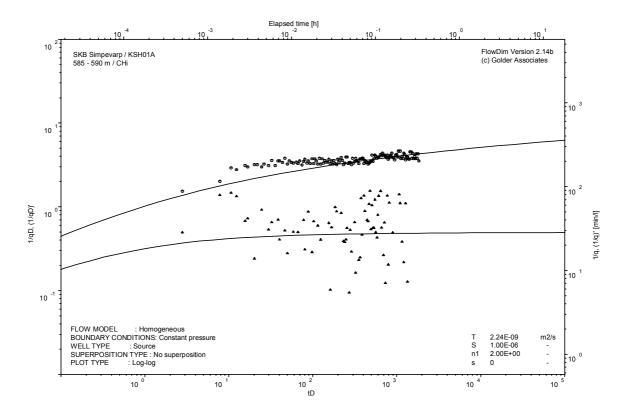


CHI phase; log-log match

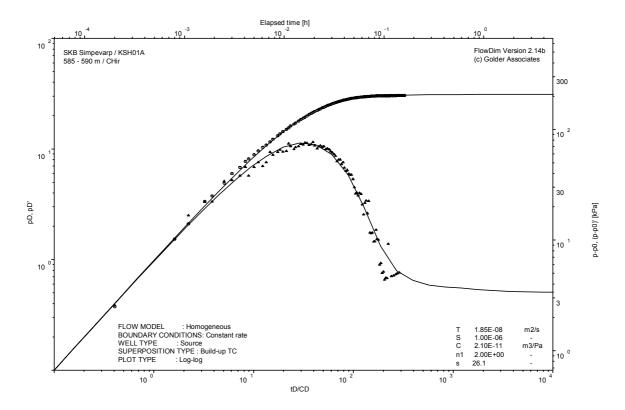


CHIR phase; log-log match

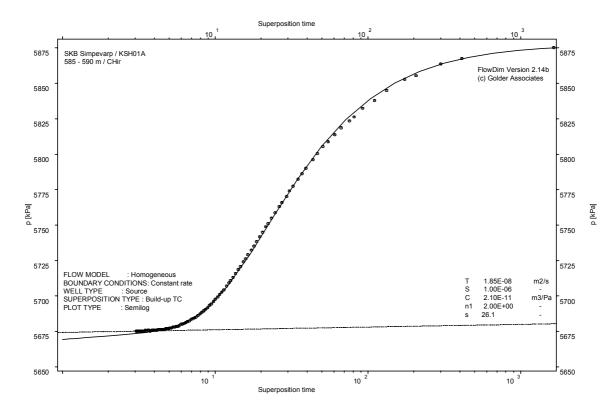



CHIR phase; HORNER match

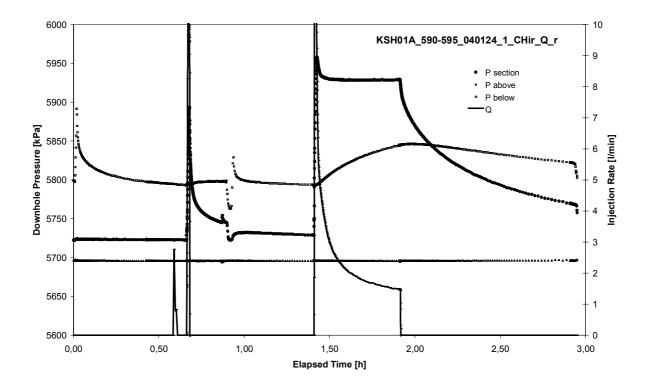
Test 585 – 590 m



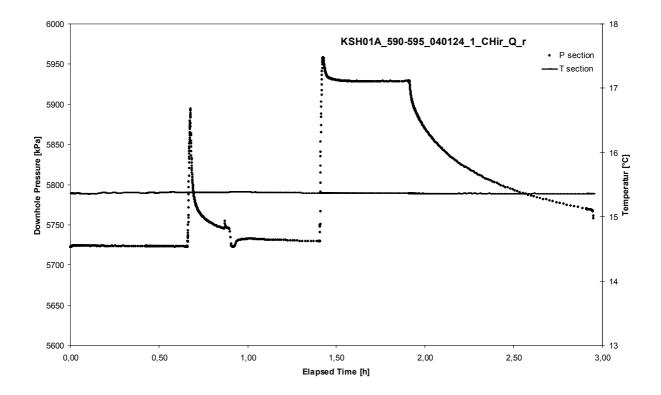
Pressure and flow rate vs. time; cartesian plot



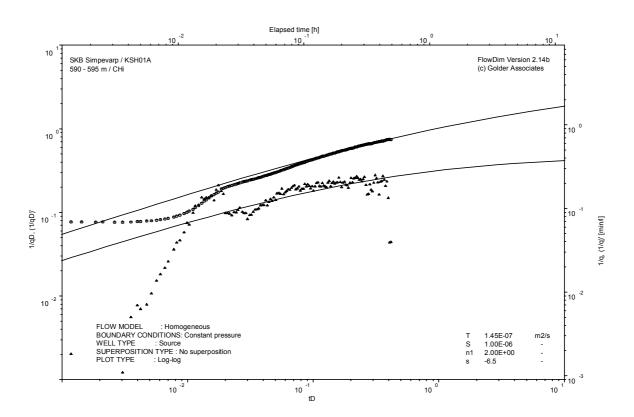
CHI phase; log-log match

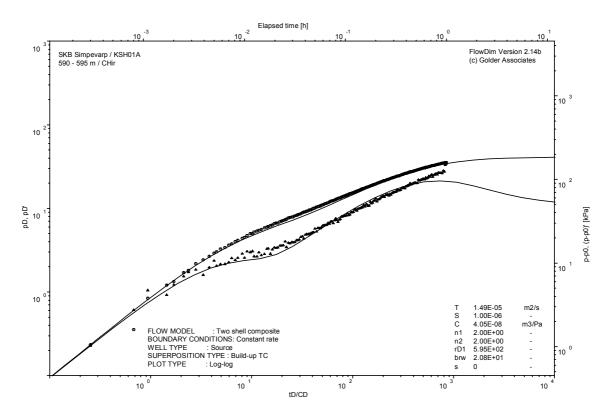


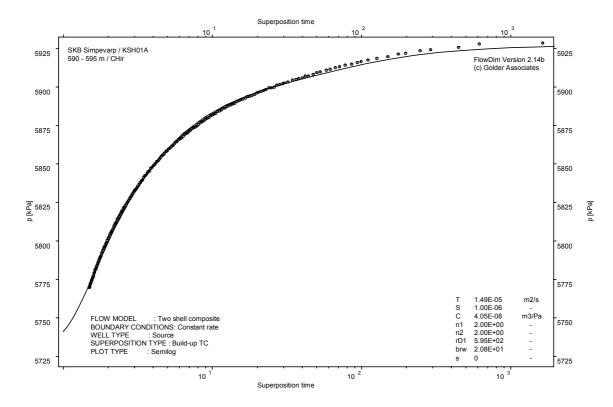
CHIR phase; log-log match

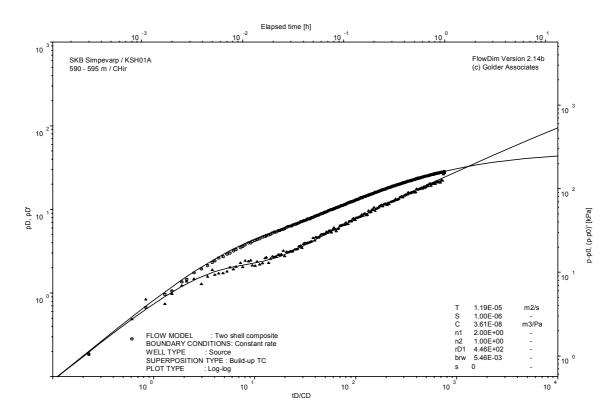


CHIR phase; HORNER match


Test 590 – 595 m

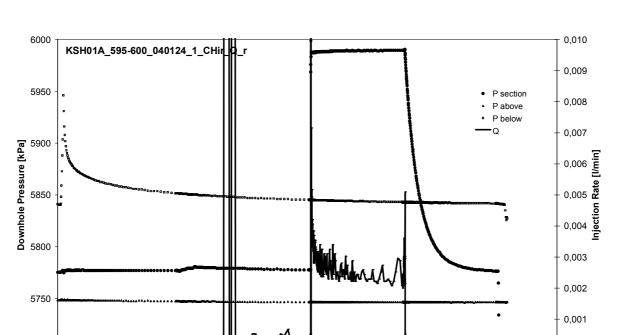

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot


CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match



CHIR phase; alternative log-log match (n2=1, linear flow)

Test 595 – 600 m

5700

0,00

1,00

Elapsed Time [h]

0,80

1,20

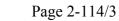
1,40

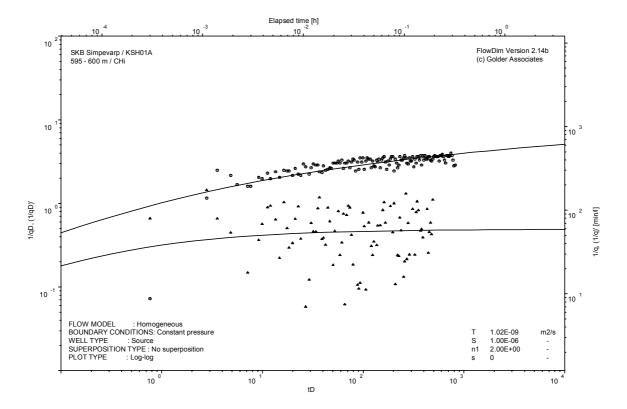

1,60

Pressure and flow rate vs. time; cartesian plot

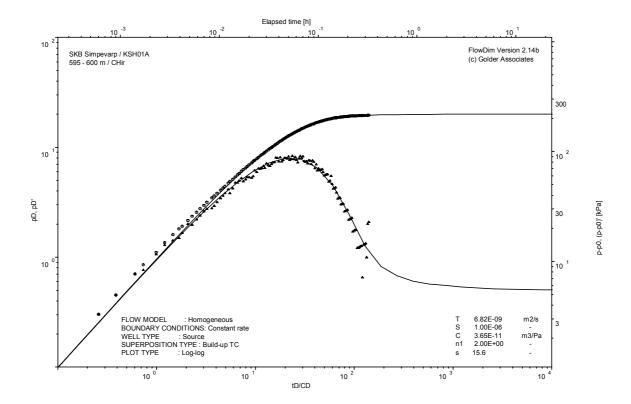
0,20

0,40

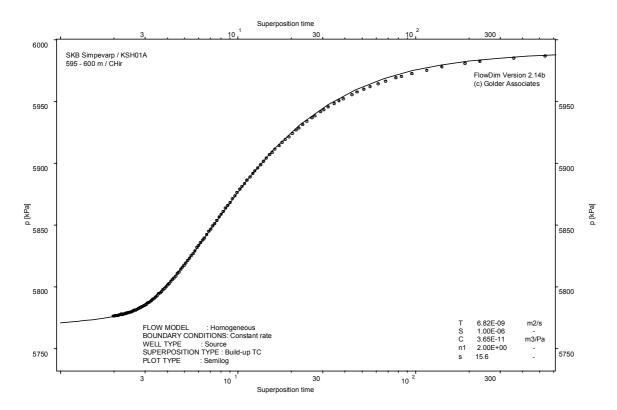

0,60



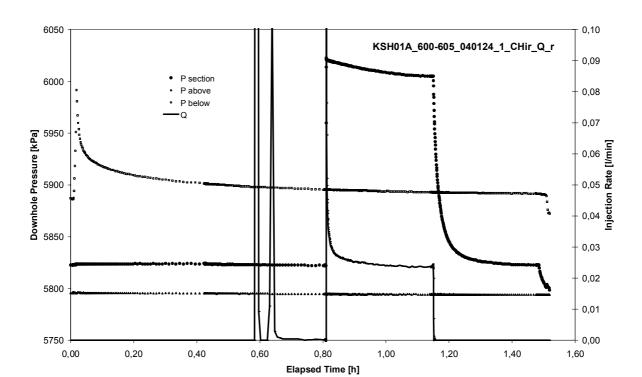
Interval pressure and temperature vs. time; cartesian plot


0,000

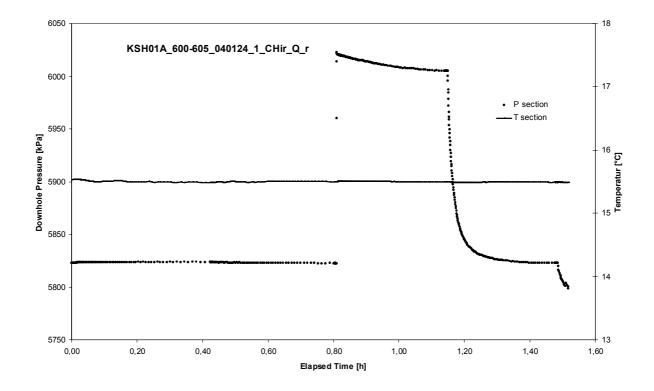
1,80

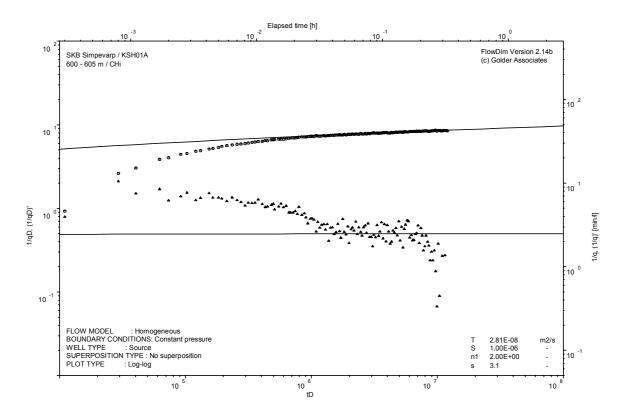


CHI phase; log-log match

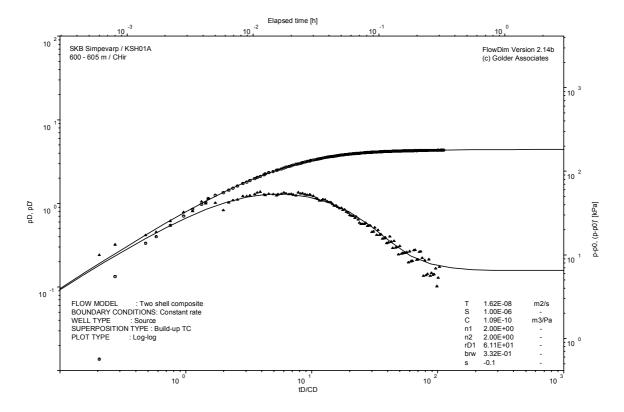


CHIR phase; log-log match

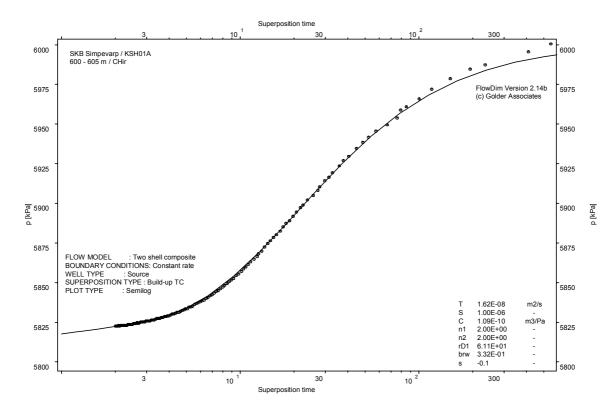



CHIR phase; HORNER match

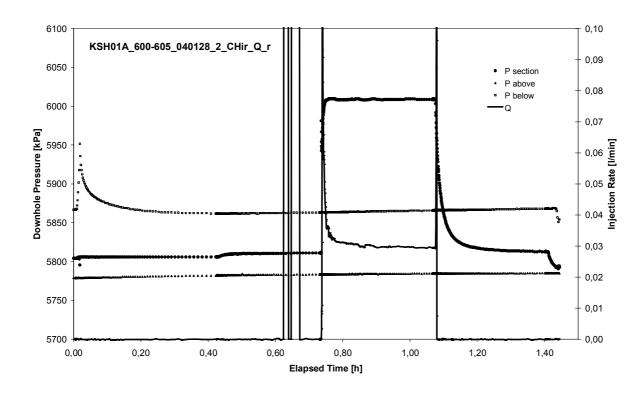
Test 600 – 605 m



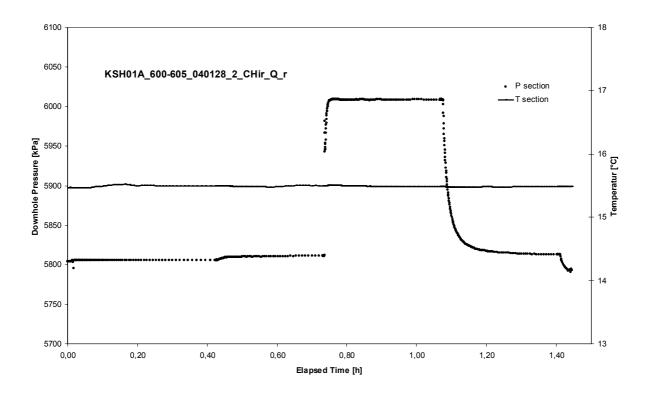
Pressure and flow rate vs. time; cartesian plot

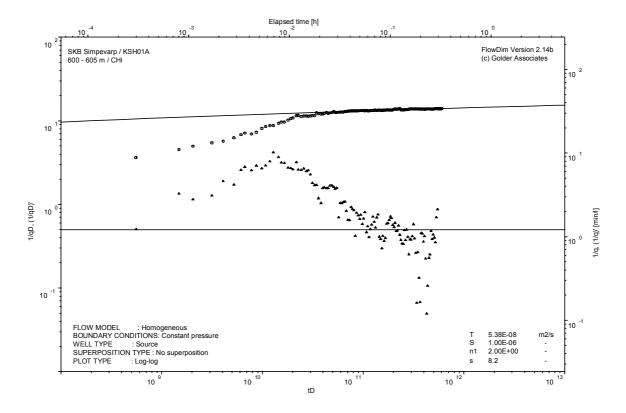


CHI phase; log-log match

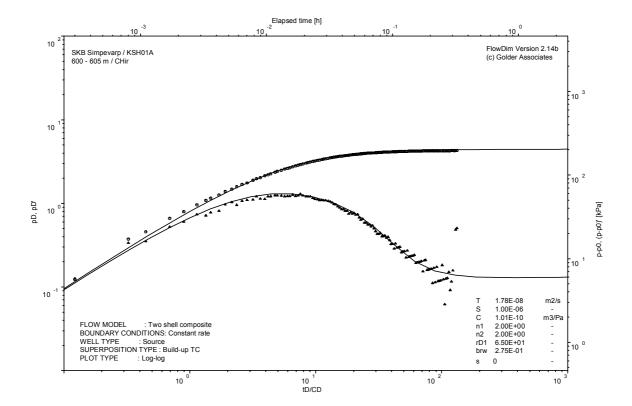


CHIR phase; log-log match

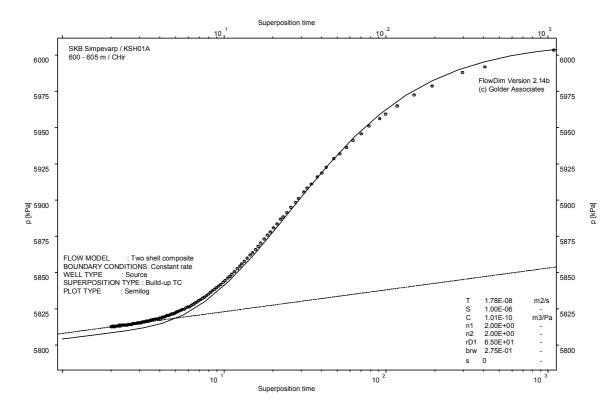



CHIR phase; HORNER match

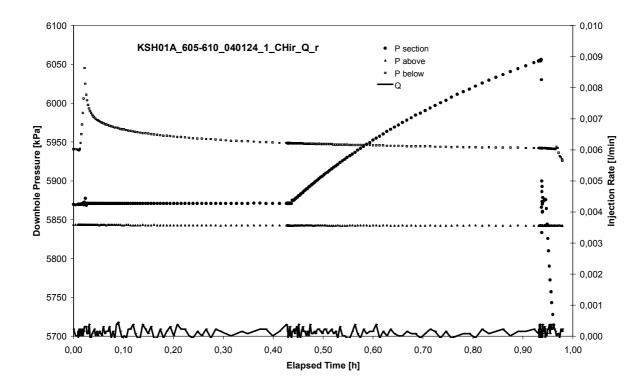
Test 600 – 605 m



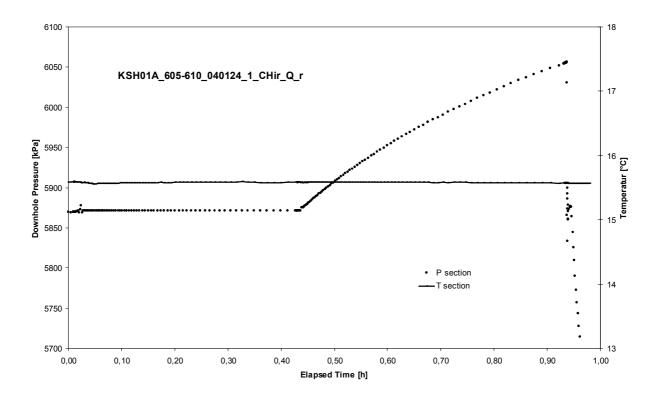
Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match



CHIR phase; log-log match



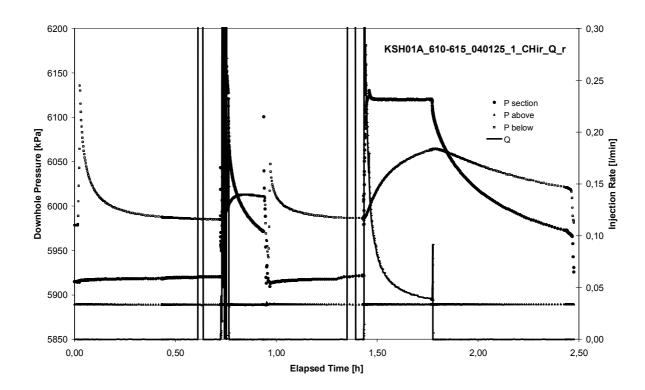
CHIR phase; HORNER match

Test 605 – 610 m

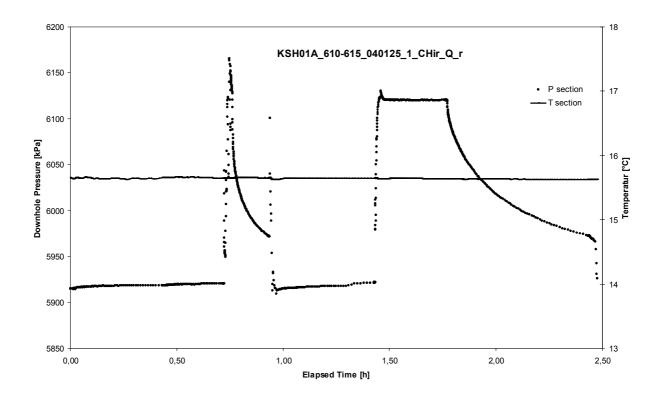
Pressure and flow rate vs. time; cartesian plot

Not Analysed

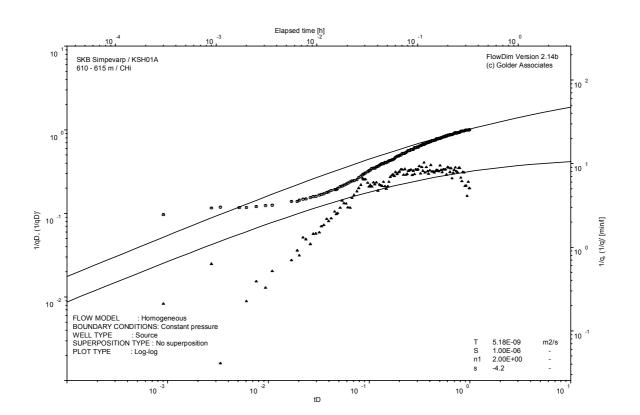
CHI phase; log-log match

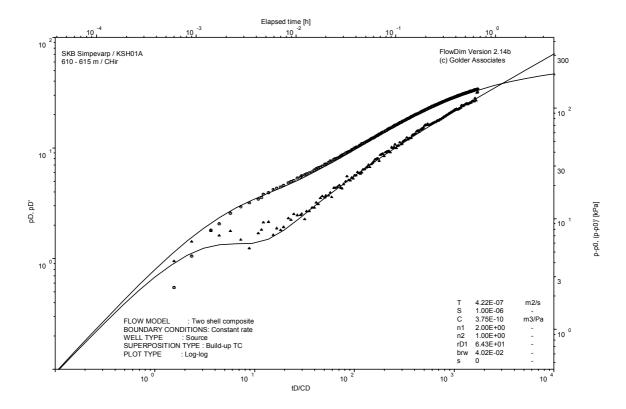

Not Analysed

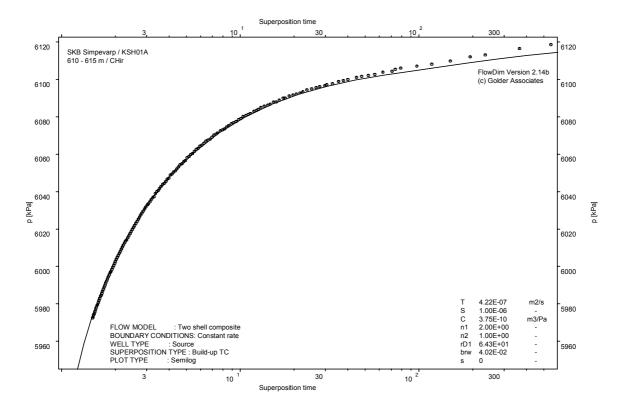
CHIR phase; log-log match


Not Analysed

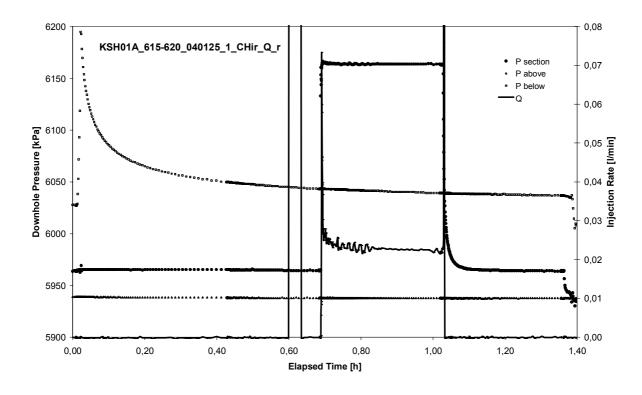
CHIR phase; HORNER match


Test 610 – 615 m

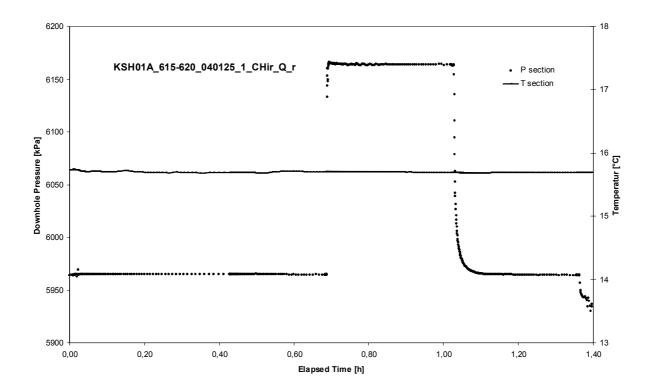

Pressure and flow rate vs. time; cartesian plot

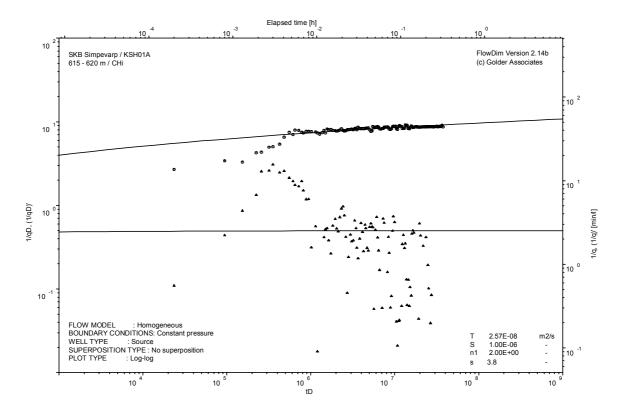

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

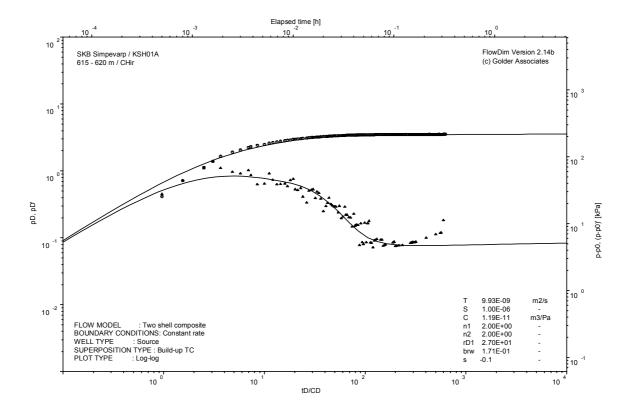


CHIR phase; log-log match

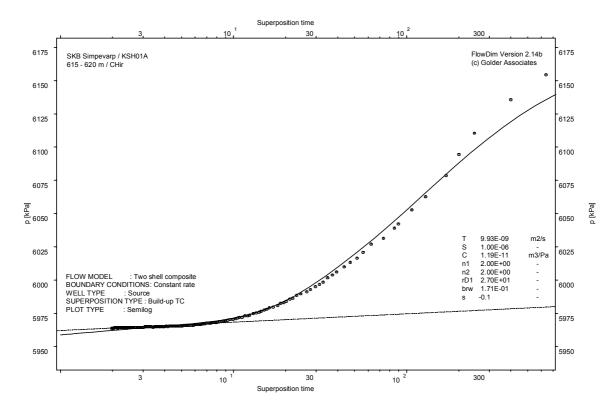



CHIR phase; HORNER match

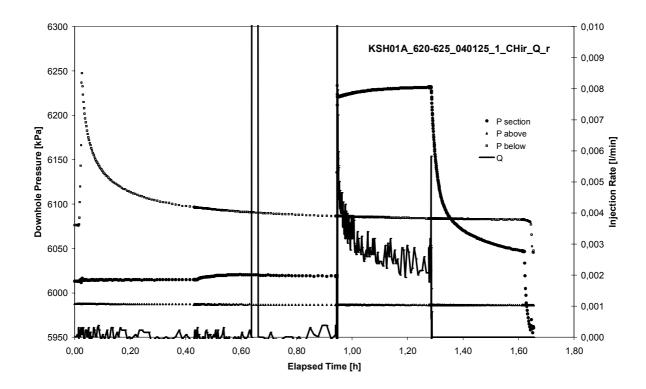
Test 615 – 620 m



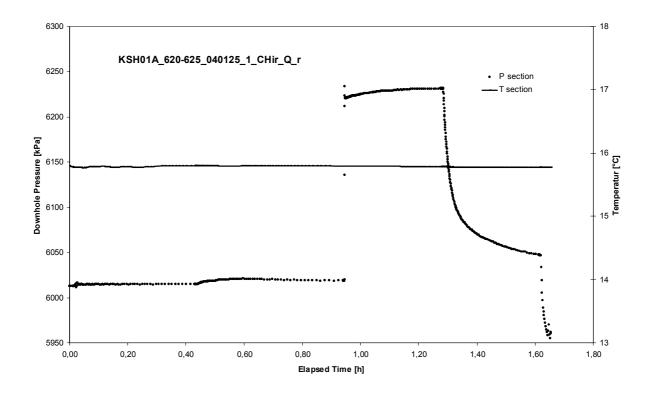
Pressure and flow rate vs. time; cartesian plot

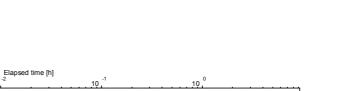


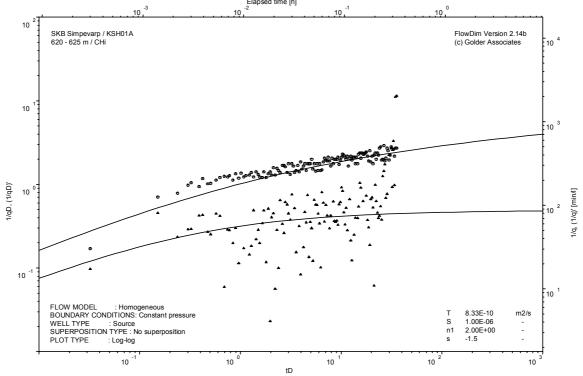
CHI phase; log-log match



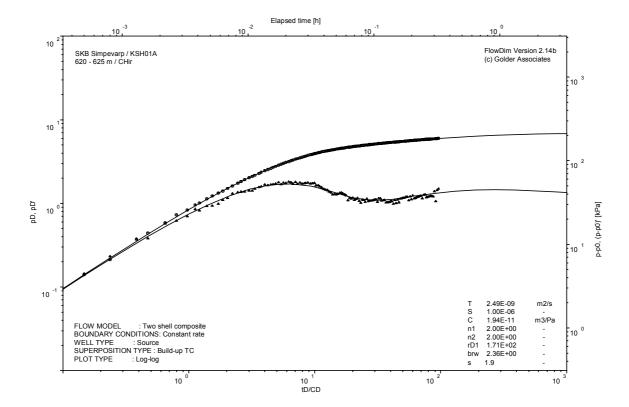
CHIR phase; log-log match

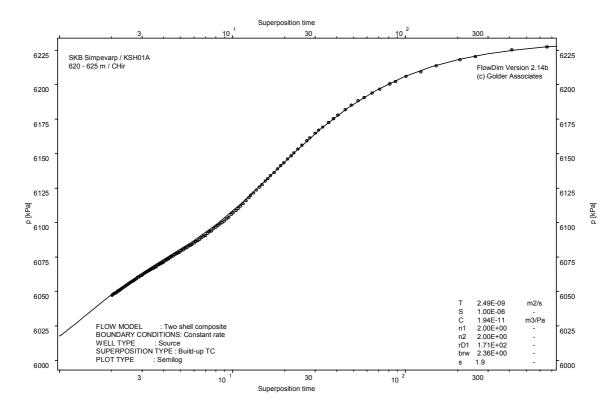



CHIR phase; HORNER match


Test 620 – 625 m

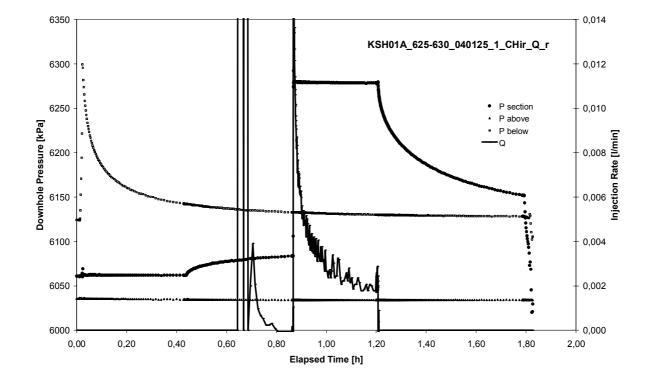
Pressure and flow rate vs. time; cartesian plot



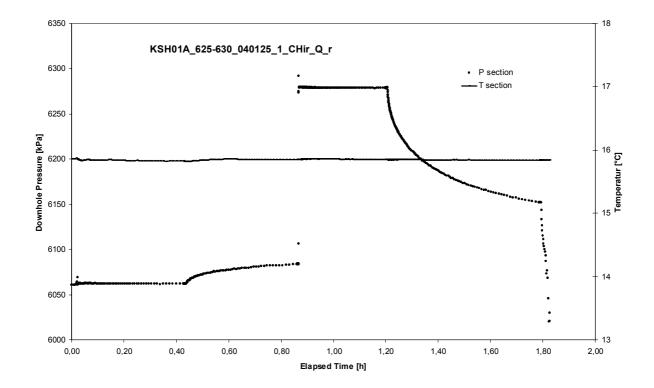


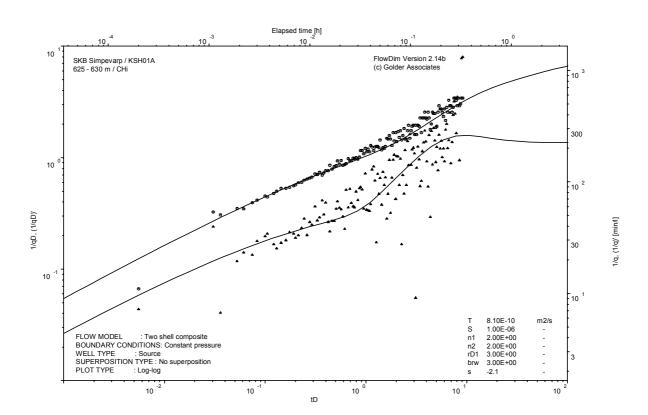
10

CHI phase; log-log match

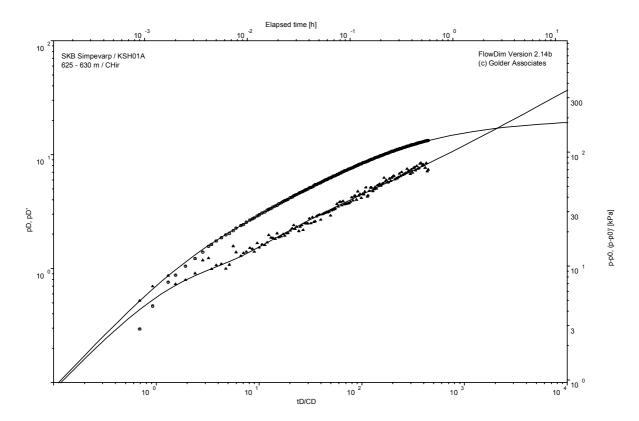


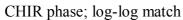
CHIR phase; log-log match

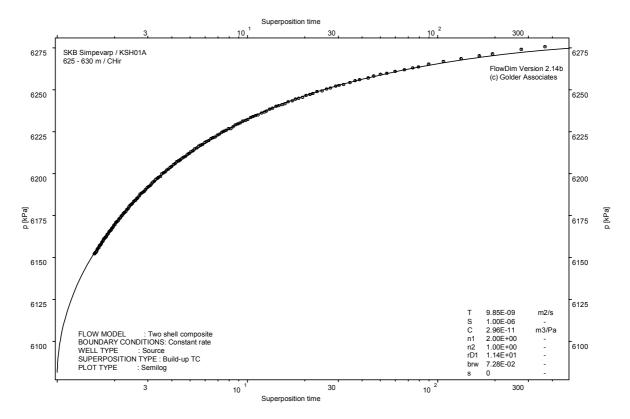



CHIR phase; HORNER match

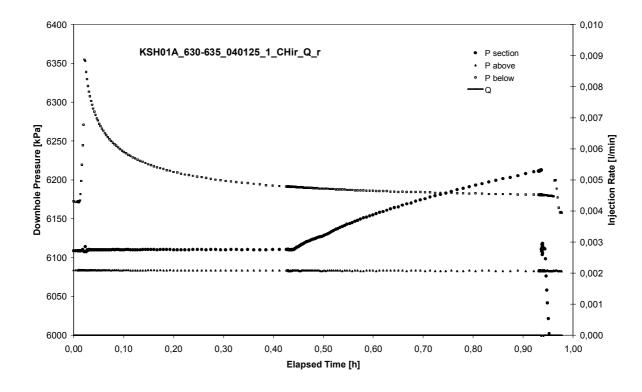
Test 625 – 630 m

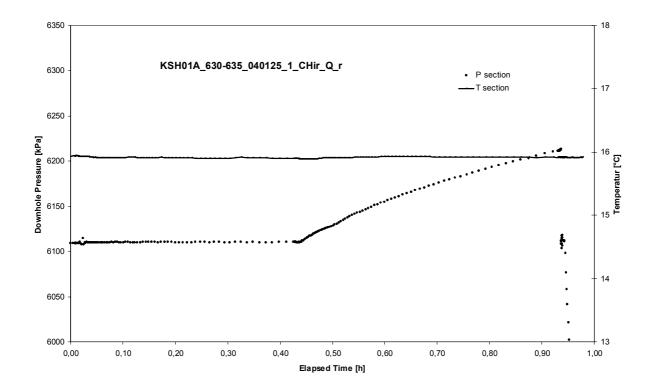



Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match

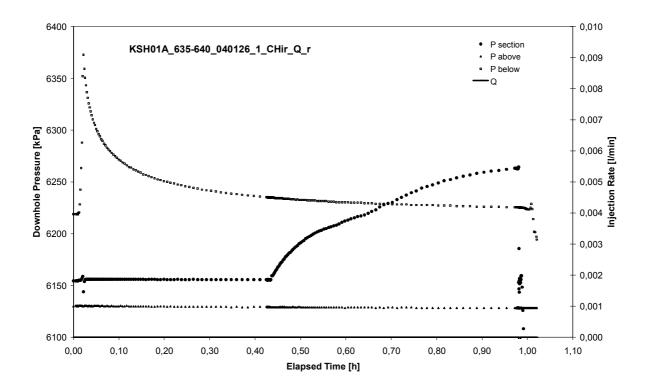




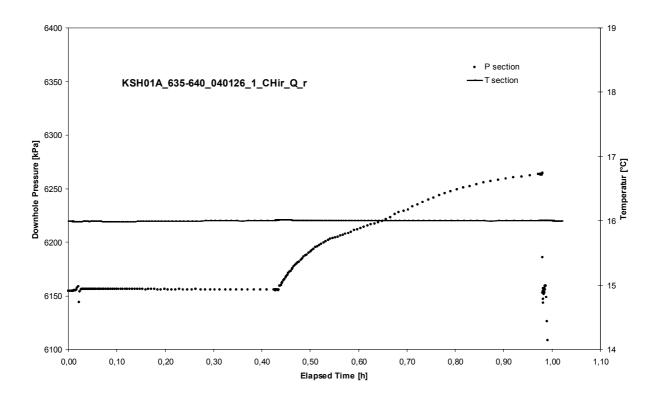
CHIR phase; HORNER match

Test 630 – 635 m

Pressure and flow rate vs. time; cartesian plot


Not Analysed

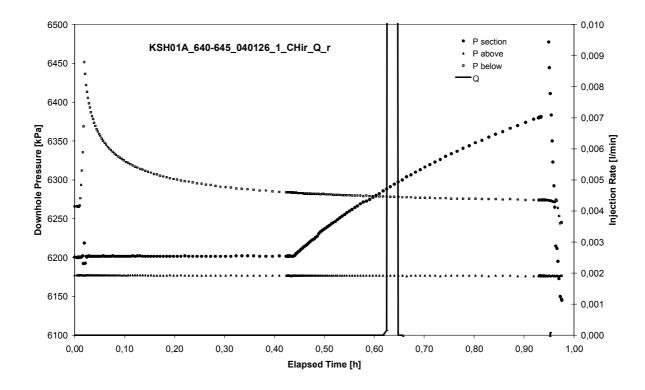
CHI phase; log-log match


CHIR phase; log-log match

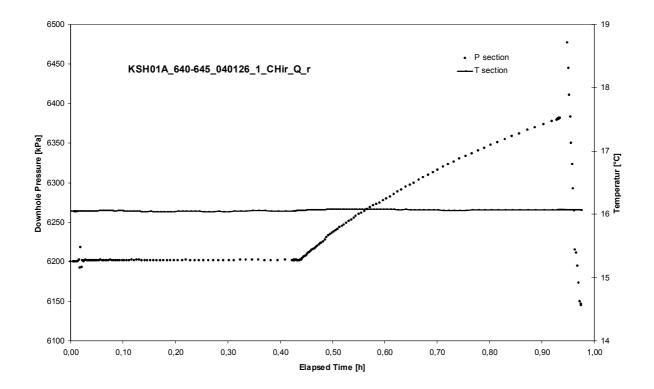
Not Analysed

Test 635 – 640 m

Pressure and flow rate vs. time; cartesian plot

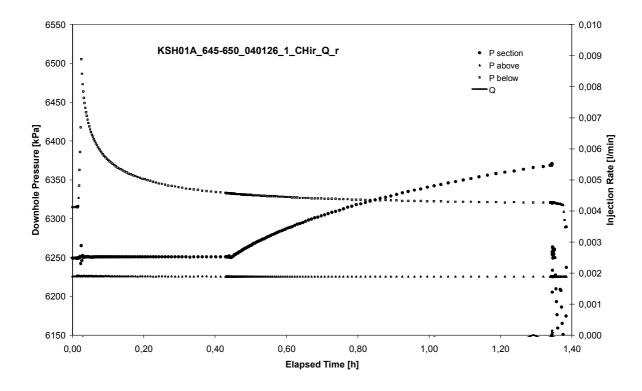


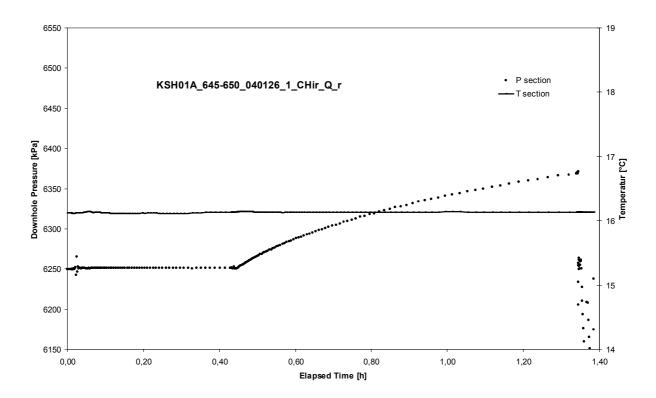
Interval pressure and temperature vs. time; cartesian plot


CHIR phase; log-log match

Not Analysed

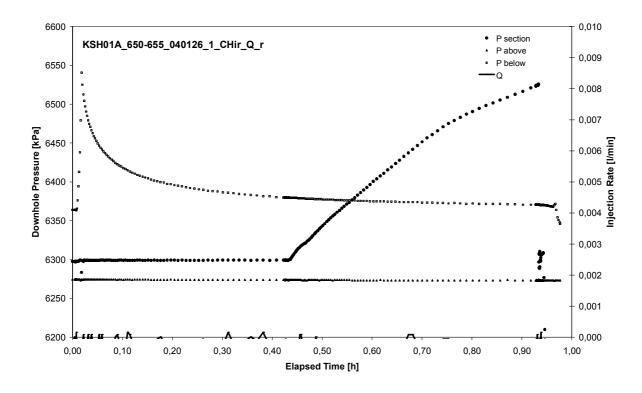
Test 640 – 645 m

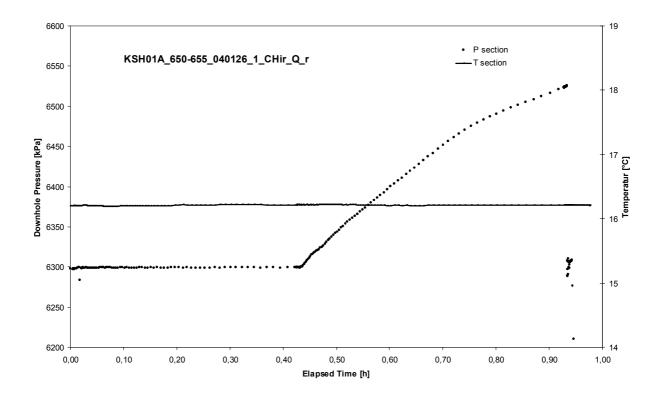

Pressure and flow rate vs. time; cartesian plot


CHIR phase; log-log match

Not Analysed

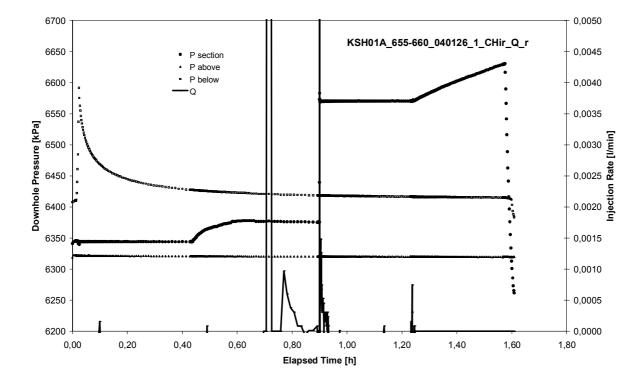
Test 645 – 650 m

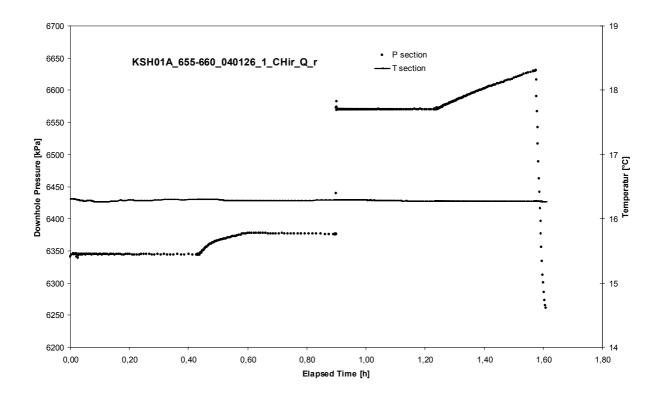

Pressure and flow rate vs. time; cartesian plot


CHIR phase; log-log match

Not Analysed

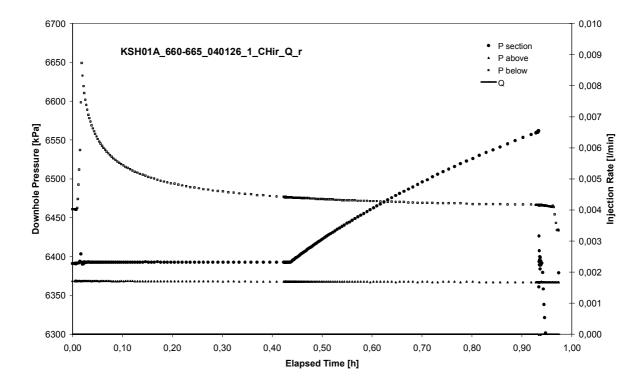
Test 650 – 655 m

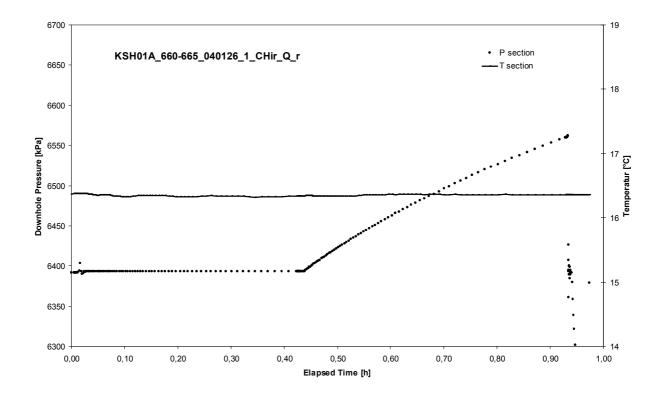

Pressure and flow rate vs. time; cartesian plot


CHIR phase; log-log match

Not Analysed

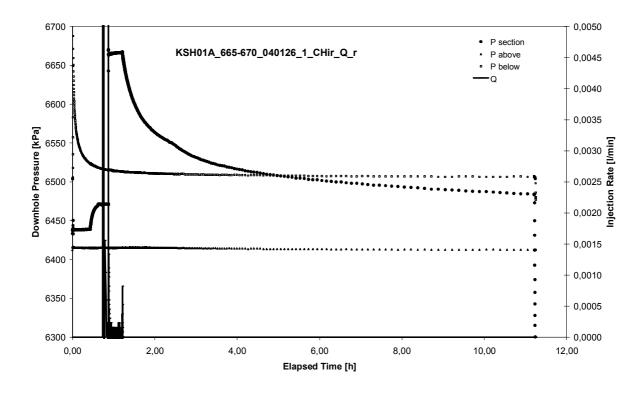
Test 655 – 660 m

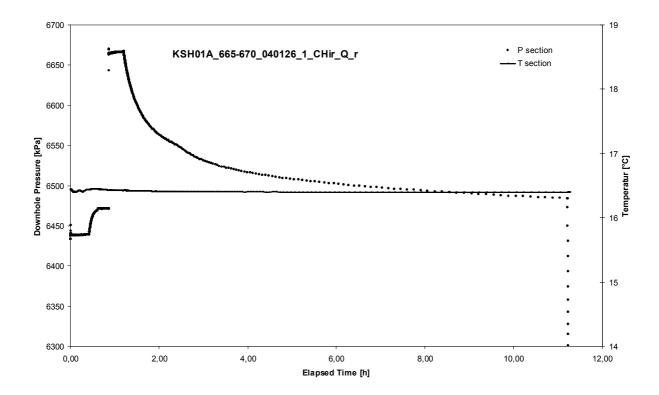

Pressure and flow rate vs. time; cartesian plot

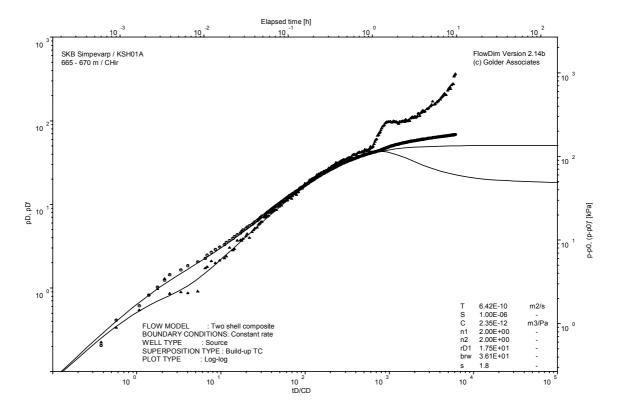

CHIR phase; log-log match

Not Analysed

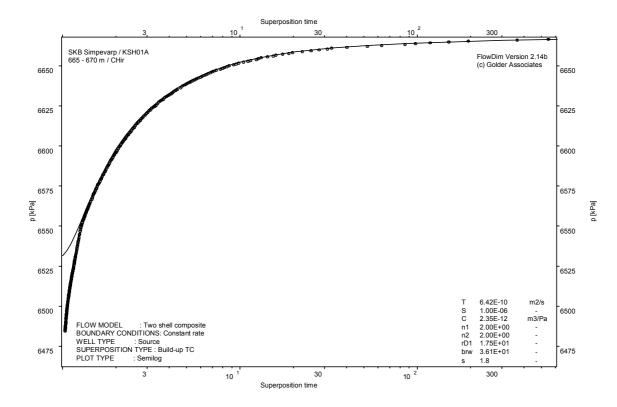
Test 660 – 665 m


Pressure and flow rate vs. time; cartesian plot

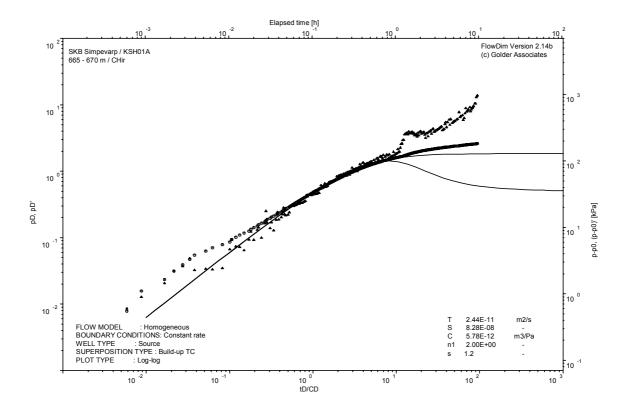

CHIR phase; log-log match


Not Analysed

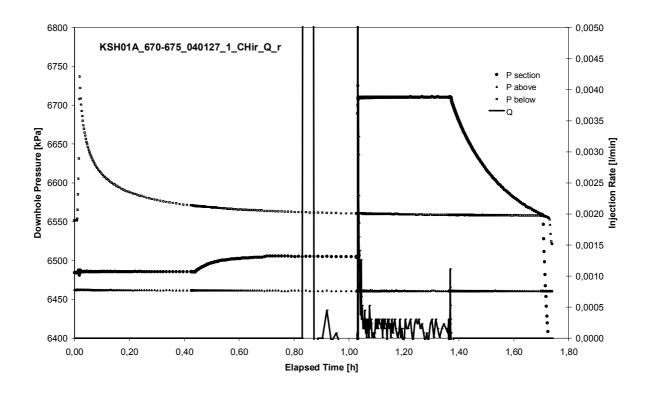
Test 665 – 670 m



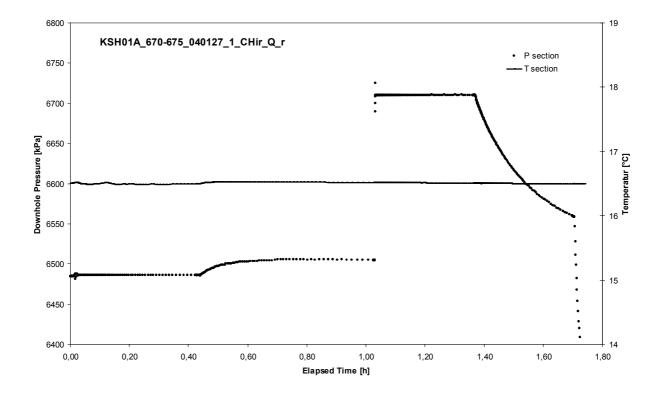
Pressure and flow rate vs. time; cartesian plot

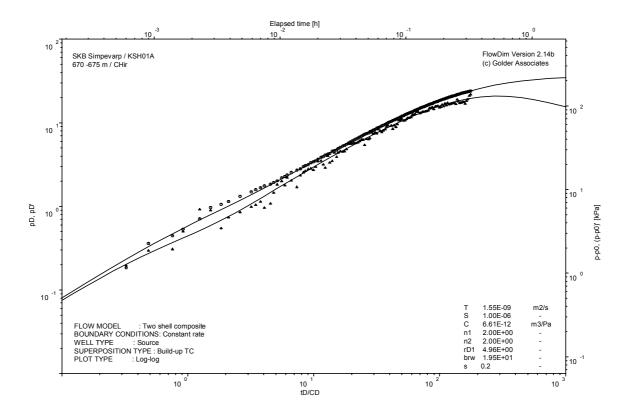


CHIR phase; log-log match

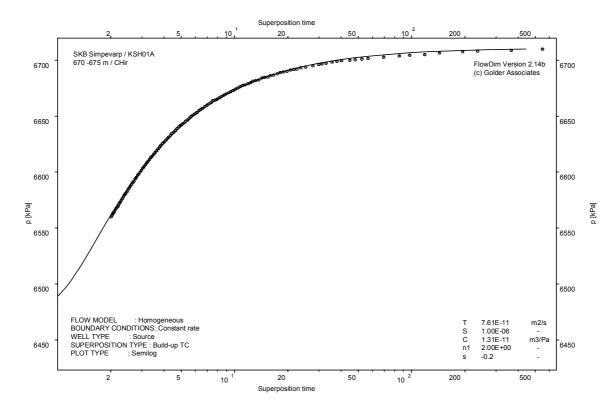


CHIR phase; HORNER match

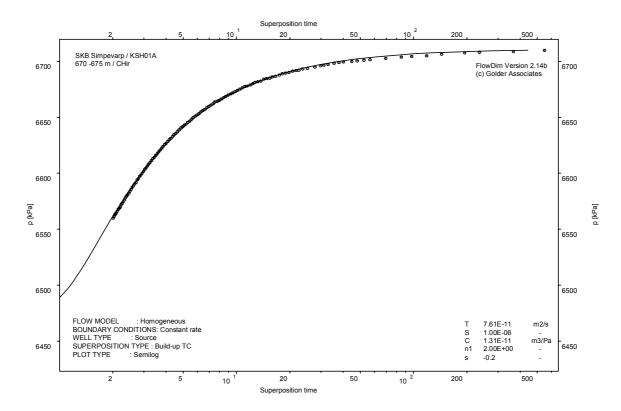



CHIR phase analysed with homogeneous flow model

Test 670 – 675 m

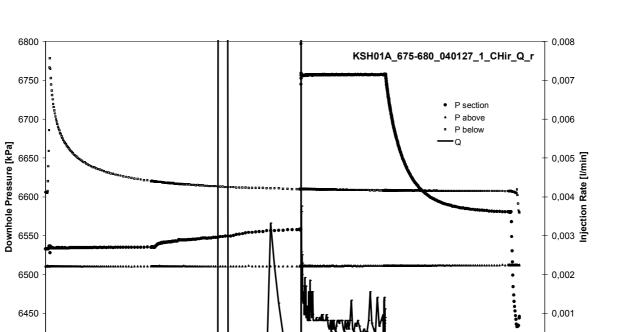


Pressure and flow rate vs. time; cartesian plot



CHIR phase; log-log match

CHIR phase; HORNER match


CHIR phase analysed with homogeneous flow model

Test 675 – 680 m

6450

6400

0,00

1,40

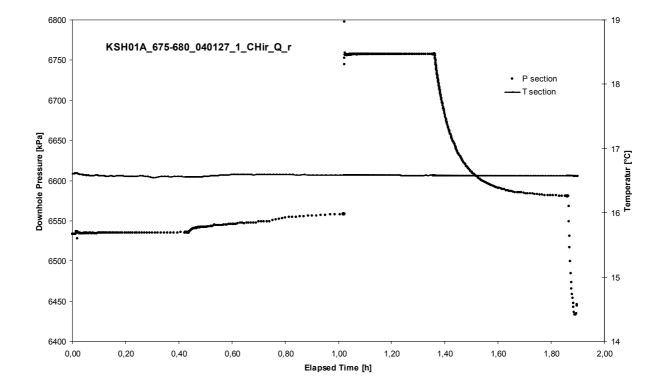
1,60

1,80

Pressure and flow rate vs. time; cartesian plot

0,40

0,60

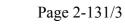

0,80

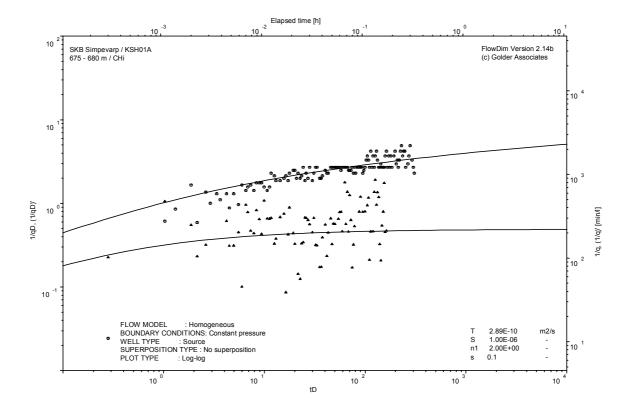
1,00

Elapsed Time [h]

1,20

0,20




Interval pressure and temperature vs. time; cartesian plot

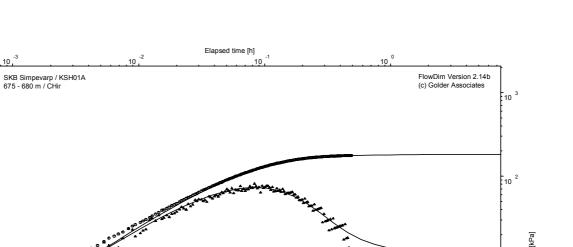
0,001

0,000

2,00

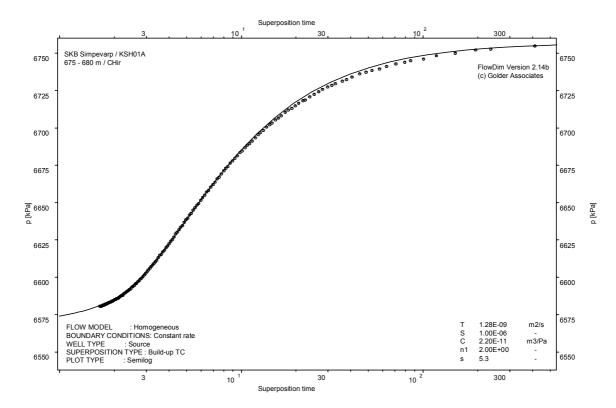
CHI phase; log-log match

10


10

10

pD, pD'


10

10

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : Build-up TC PLOT TYPE : Log-log 10 0 10 10/CD

CHIR phase; log-log match

CHIR phase; HORNER match

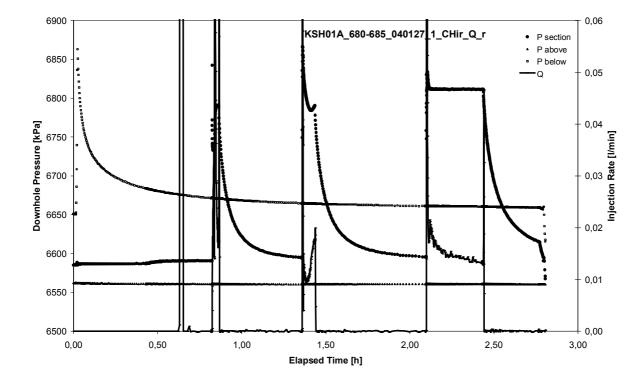
p-p0, (p-p0)' [kPa]

10

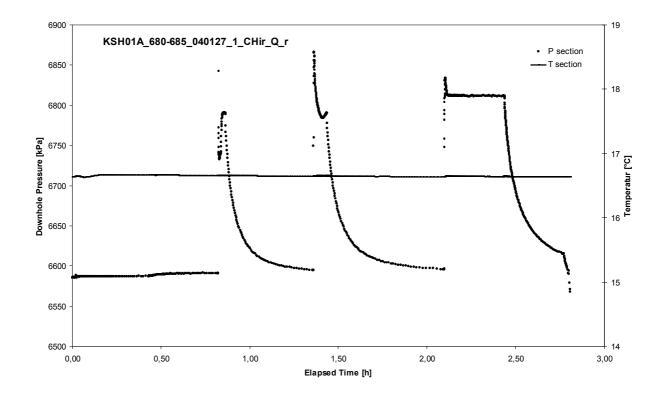
10 0

m2/s

m3/Pa

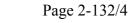

10

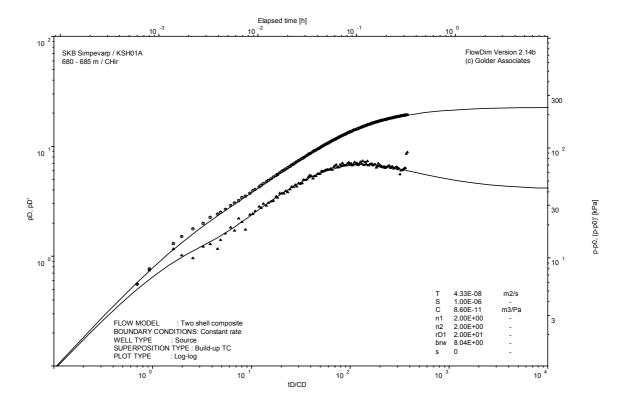
1.28E-09 1.00E-06 2.20E-11 2.00E+00 5.3


S C n1 s

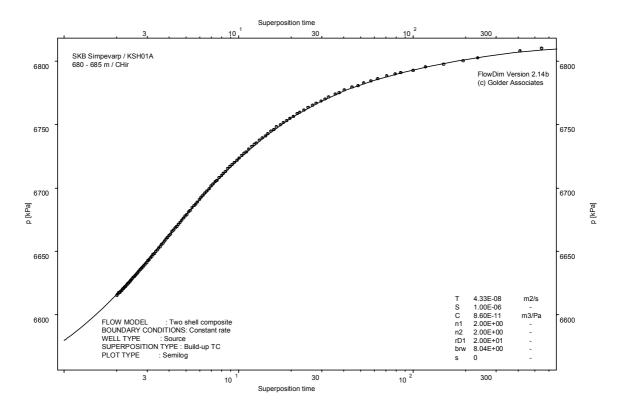
10²

Test 680 – 685 m

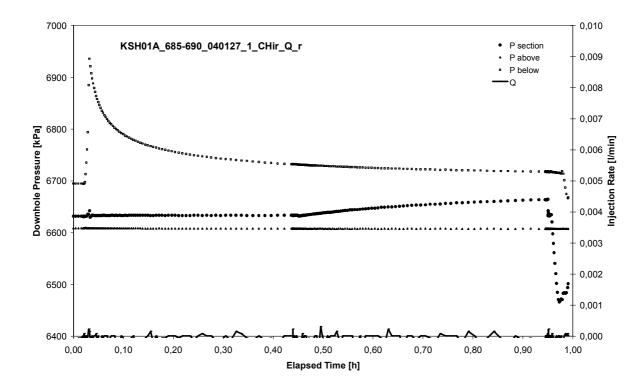

Pressure and flow rate vs. time; cartesian plot



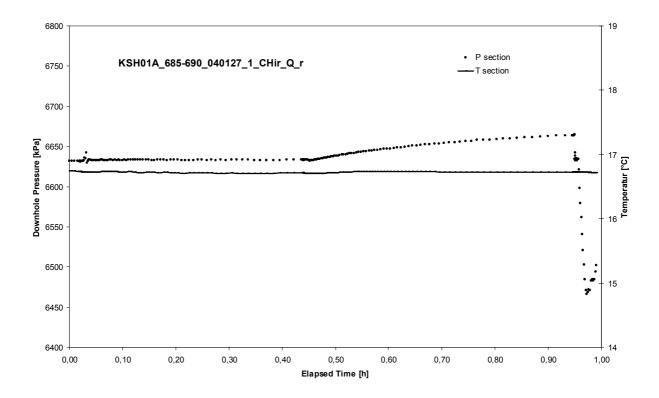
Interval pressure and temperature vs. time; cartesian plot



CHI phase; log-log match



CHIR phase; log-log match

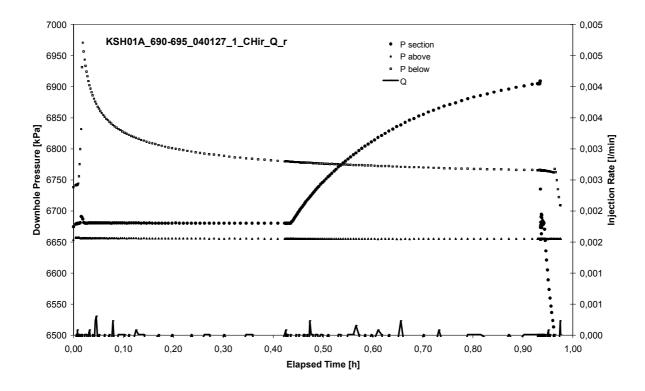


CHIR phase; HORNER match

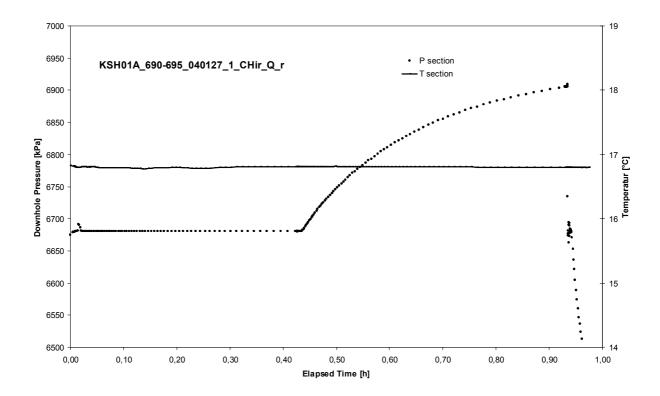
Test 685 – 690 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot


CHI phase; log-log match

CHIR phase; log-log match

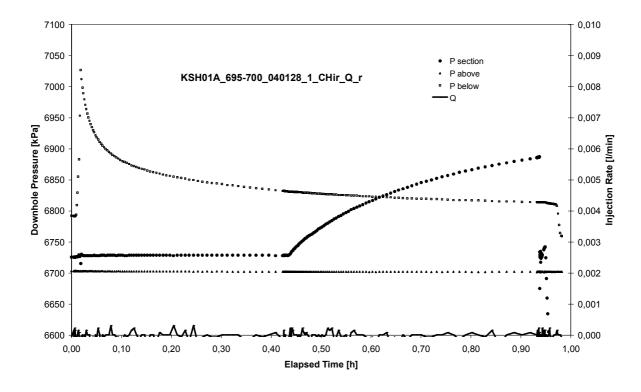

Not Analysed

CHIR phase; HORNER match

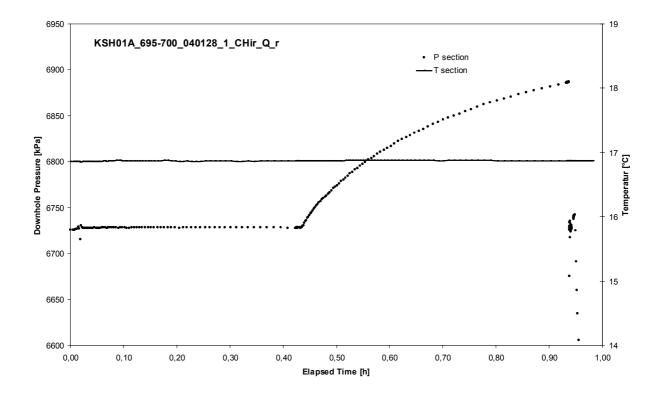
Test 690 – 695 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot


CHI phase; log-log match

CHIR phase; log-log match


Not Analysed

CHIR phase; HORNER match

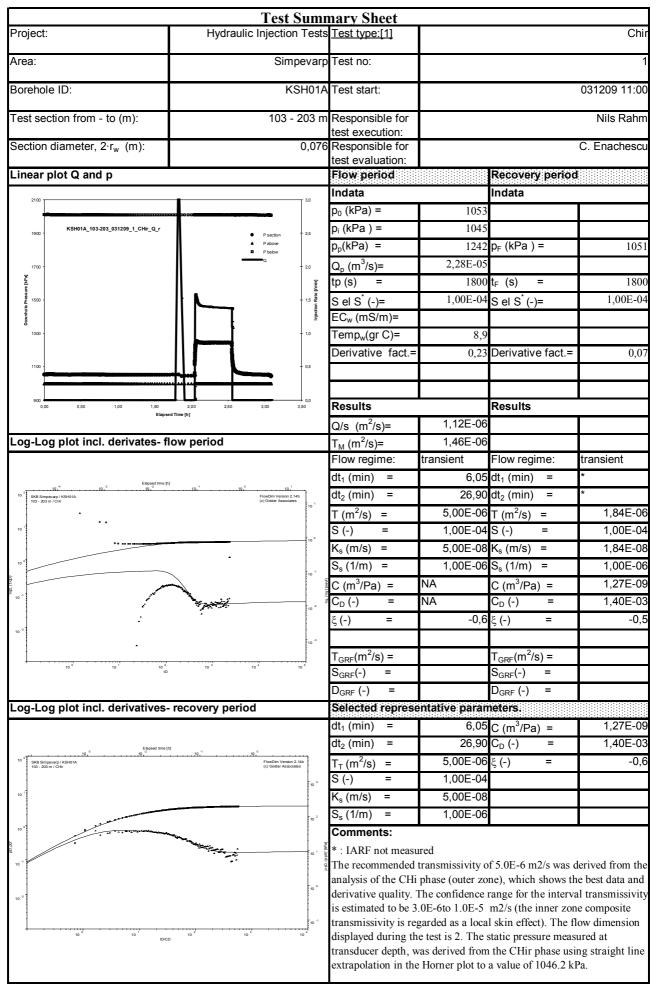
Test 695 – 700 m

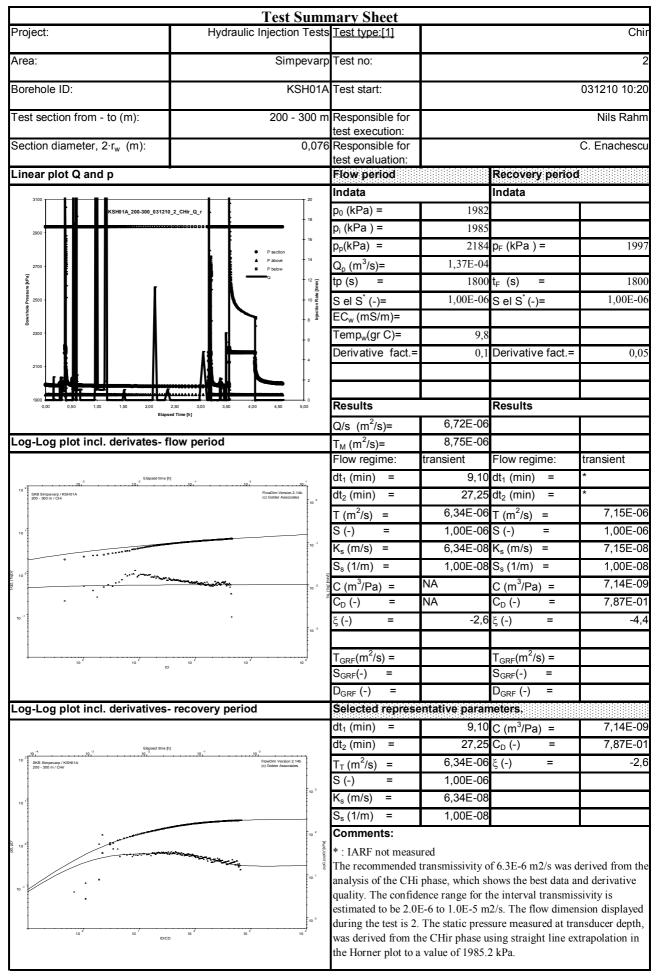
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

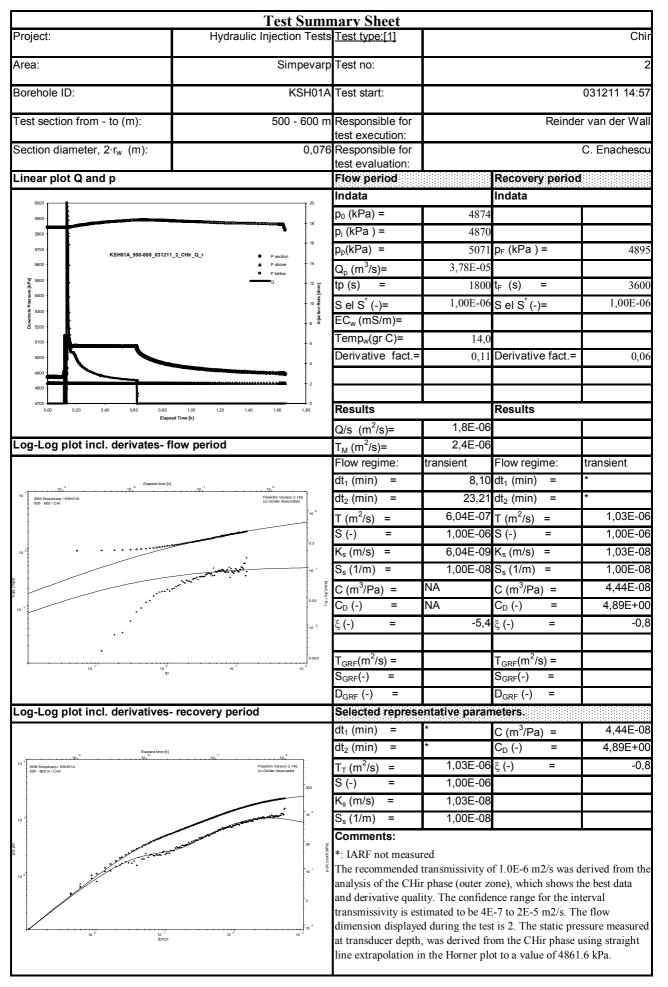
CHIR phase; log-log match

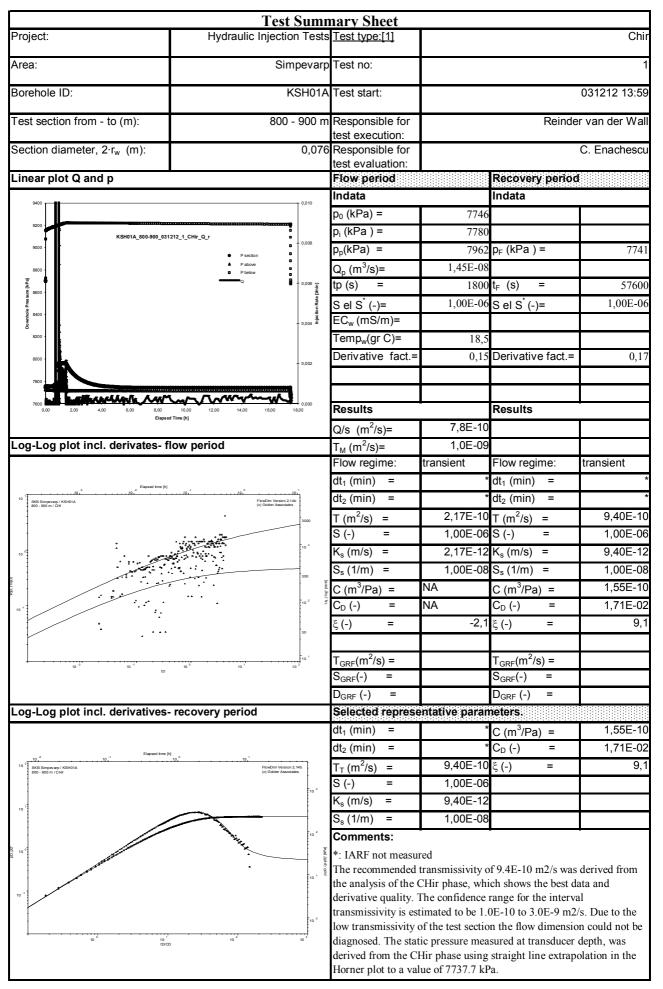

Not Analysed

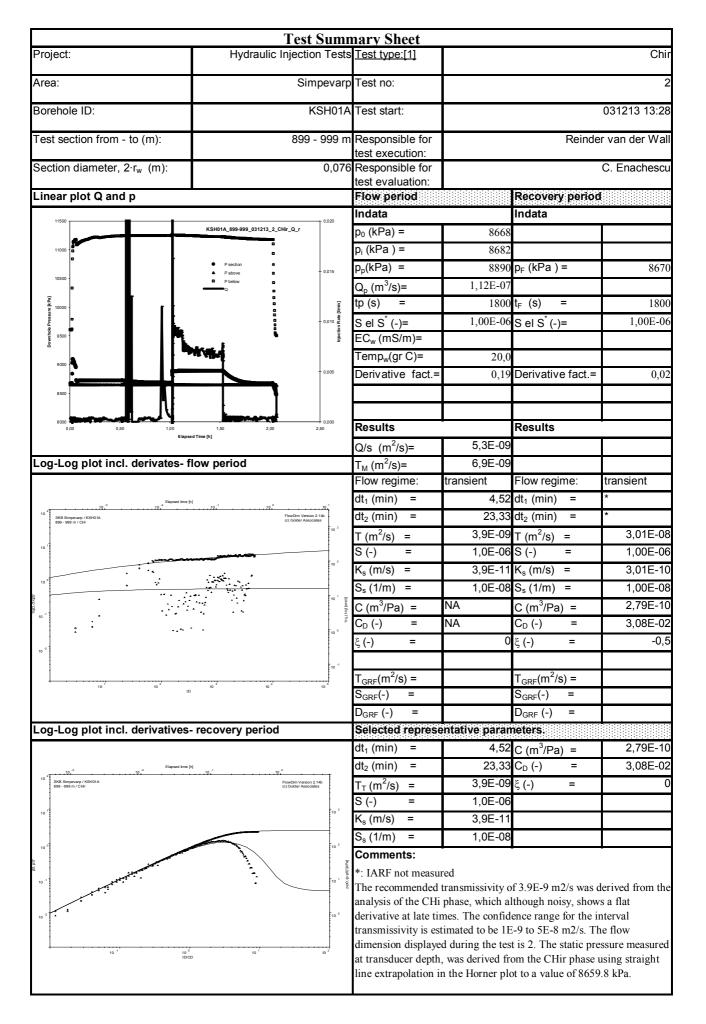

CHIR phase; HORNER match

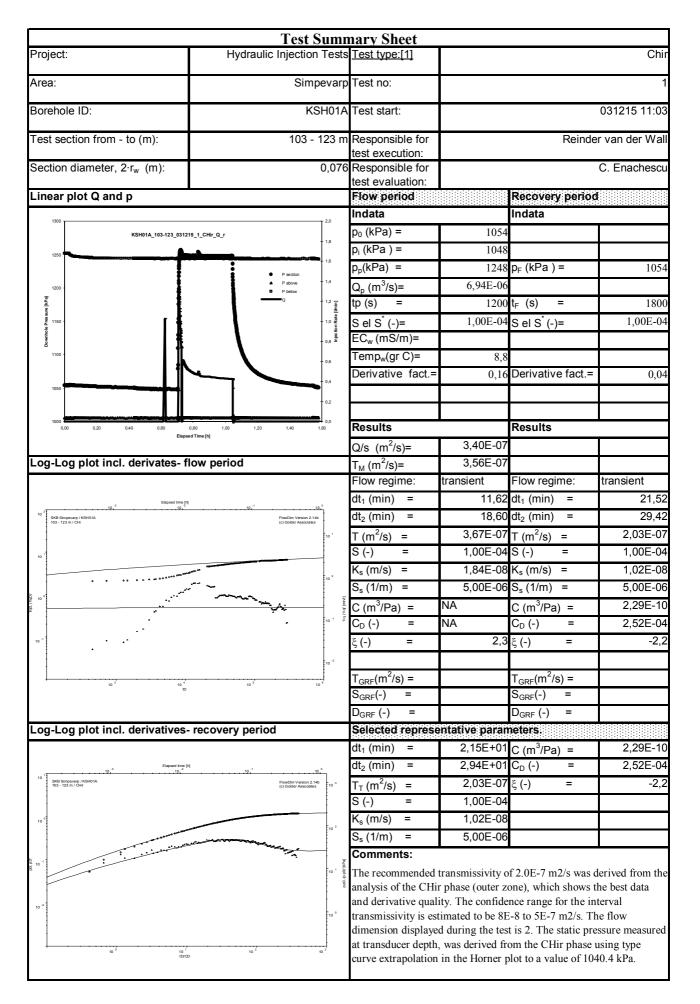
Borehole: KSH01A

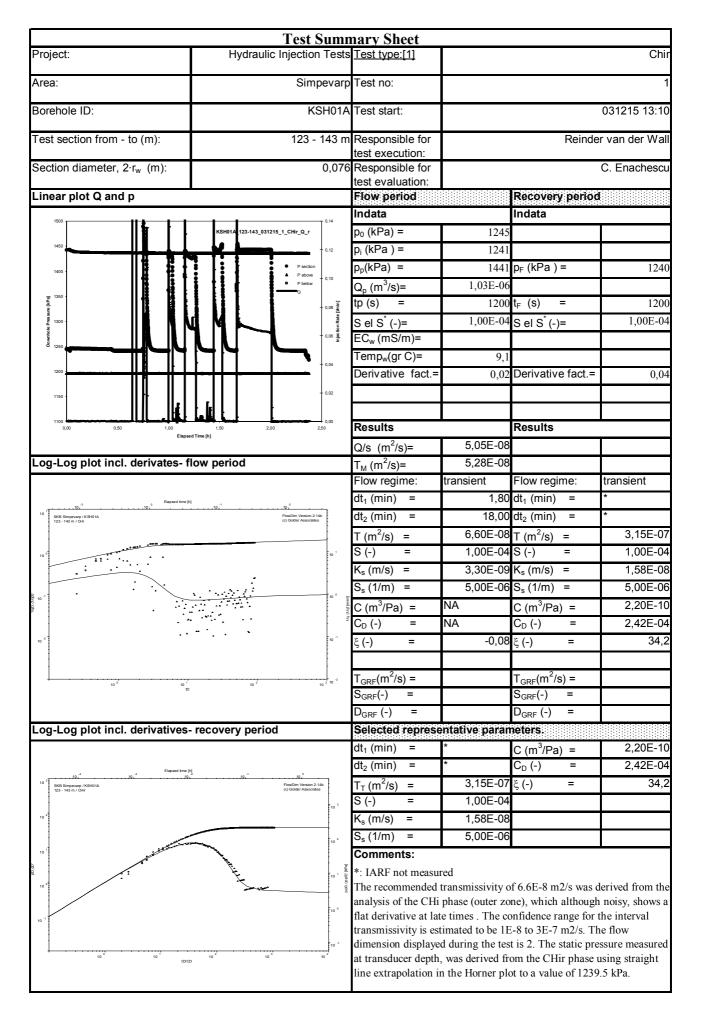
APPENDIX 3

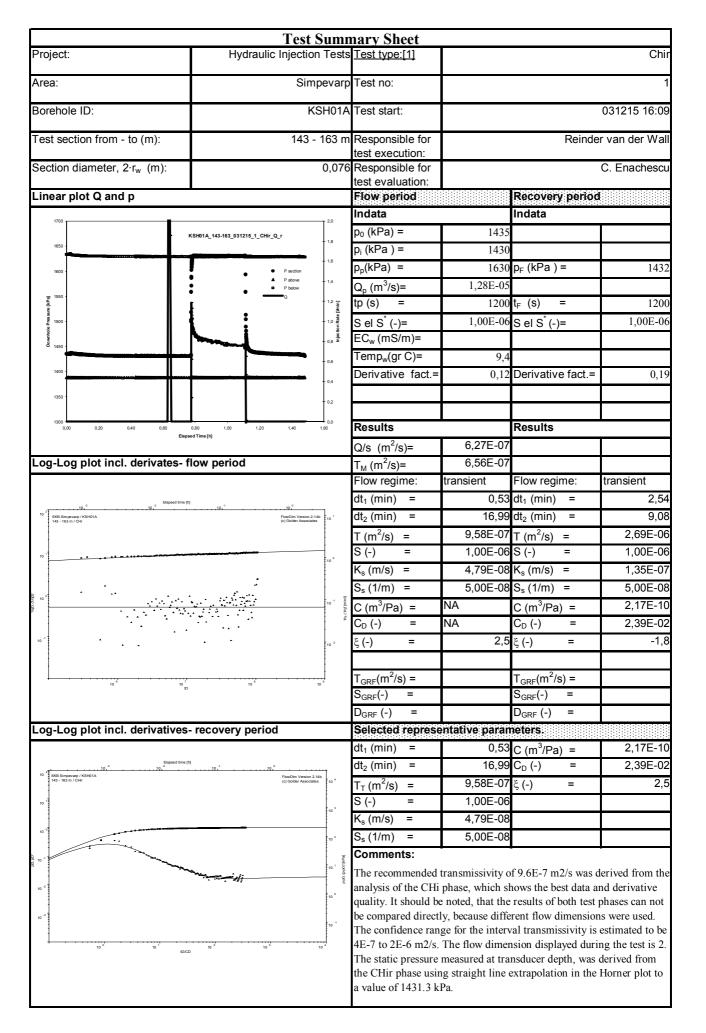

Test Summary Sheets

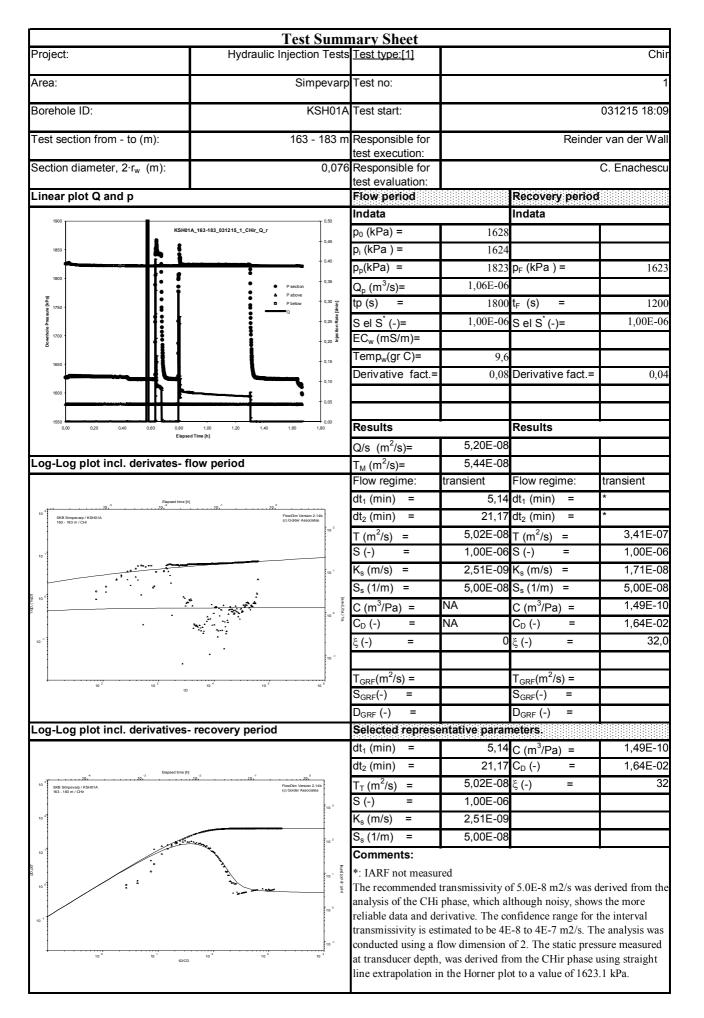

	Tes	t Sumn	nary Sheet				
Project:	Hydraulic Injecti			Chir			
Area:	Simpevarp		Test no:		1		
Borehole ID:	KSH01A		Test start:		031210 16:33		
Test section from - to (m):			Responsible for		Reinder van der Wal		
Section diameter, 2·r _w (m):			test execution: Responsible for	C. Enaches			
			test evaluation:				
Linear plot Q and p			Flow period		Recovery period		
4000 -		1 0.05	Indata		Indata		
4000	KSH01A_300-400_031210_1_CHir_Q_r		p ₀ (kPa) =	2950			
3800			p _i (kPa) =	2951			
	P section	- 0,04	p _p (kPa) =	3152	p _F (kPa) =	2954	
3600 -	P above		$Q_{p} (m^{3}/s) =$	2,90E-07			
	,Q	0,03 g	$d_{\beta}(m, b)$ =	1800	t _F (s) =	5400	
ିକୁ କୁମ୍ବର କ କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର କୁମ୍ବର		2	S el S [*] (-)=		S el S [*] (-)=	1,00E-06	
		ē	EC _w (mS/m)=	-,	5 ei 5 (-)-	-,	
<u>2</u> 3200 -	Mid	- 0,02 -	Temp _w (gr C)=	11.3			
- K.F			Derivative fact.=	,	Derivative fact.=	0,06	
		- 0,01		0,27		0,00	
2800	2,00 2,50 3,00 3,50	4,00	Results		Results		
Elaps	ed Time [h]		Q/s (m²/s)=	1,42E-08			
Log-Log plot incl. derivates- f	flow period		$T_{\rm M} ({\rm m}^2/{\rm s})=$	1,85E-08			
			Flow regime:	transient	Flow regime:	transient	
			dt_1 (min) =		dt_1 (min) =	11,75	
Elapsed time	p, 10, ⁰		dt_2 (min) =		dt_2 (min) =	15,60	
10 SKB Simpevarp / KSH01A 300 - 400 m / CHi	FlowDim Vers (c) Golder As	sion 2.14b 10 3 sociates	/	9,71E-09	- ()	6,61E-09	
Ŧ			T (m ² /s) = S (-) =	1,00E-06	· ,	1,00E-06	
10 1		10 2					
- And - And			$K_{s}(m/s) =$	9,71E-11		6,61E-11	
	•		$S_{s}(1/m) =$		$S_{s}(1/m) =$	1,00E-08	
	<u></u>		$C (m^{3}/Pa) =$	NA	$C (m^{3}/Pa) =$	3,44E-10	
			,	NA	C _D (-) =	3,79E-02	
10 -1		10 0	ξ(-) =	-1,0	ξ(-) =	-0,6	
•			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$		
10 ¹ 10 ²	10 ⁻³ 10 ⁻⁴	10 5	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives- recovery period			Selected represe	ntative parar			
· J =- J C uon uu voo	,		dt_1 (min) =	11,75		3,44E-10	
Elapsed time	. [d]		$dt_1 (min) = dt_2 (min) =$	-	$C_{D}(-) =$	3,79E-02	
10 2 SKB Simpeværp / KSH01A 300 - 400 m / CHir	- 12 ⁰ FibwDim Versi (c) Golder Ass	ion 2.14b	$T_{T} (m^2/s) =$	6,61E-09		-0,6	
		t i	$I_{T} (m^{-}/s) =$ S (-) =	1,00E-06		-0,0	
10 1		t t	$S(-) = K_{s}(m/s) =$	6,61E-11			
		10 2	$S_{s}(1/m) =$	1,00E-08			
10 - Line & Andrew Britishing and a second		10	analysis of the CHin and derivative quali transmissivity is est	r phase (outer z ity. The confide imated to be 5.	of 6.6E-9 m2/s was d one), which shows ti ence range for the in 0E-9 to 2.0E-8 m2/s at is 2. The static pre	he best data terval . The flow	
10 ° 10 °	10 ²	10		, was derived fr	om the CHir phase u	ising straight	

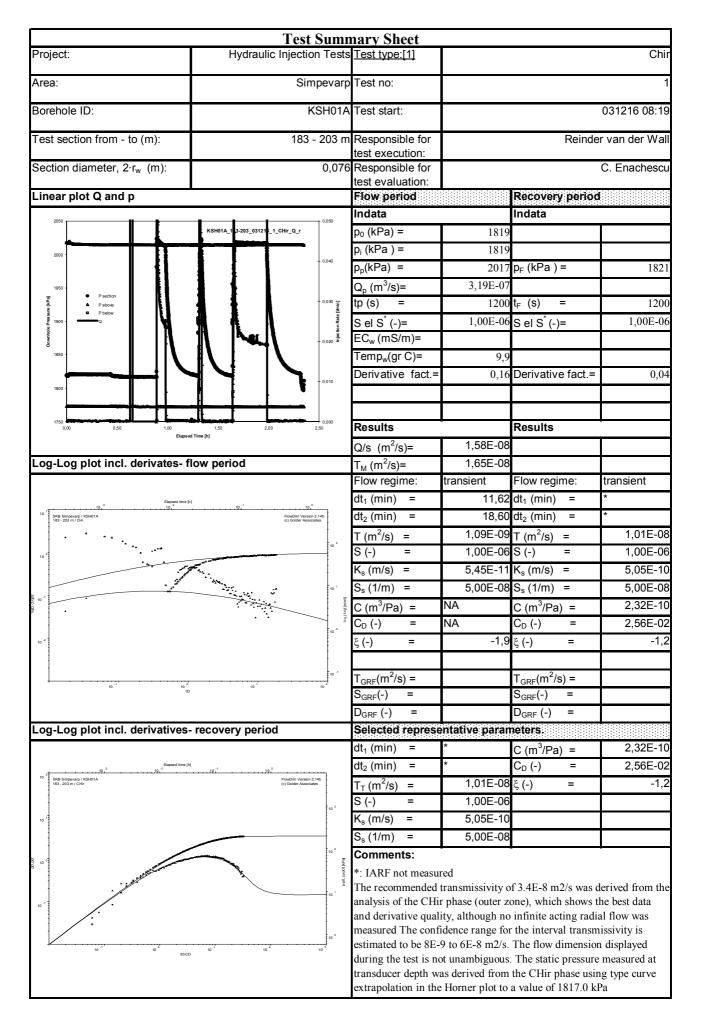

	Te	est Sumn	nary Sheet				
Project:	Hydraulic Injec	ction Tests	Test type:[1]			Chir	
Area:	Simpevarp KSH01A		Test no:			2	
Borehole ID:			Test start:			031214 09:18	
Test section from - to (m):	4		Responsible for test execution:		er van der Wall		
Section diameter, 2·r _w (m):			Responsible for C. Enachescu test evaluation:				
Linear plot Q and p			Flow period		Recovery period	(
			Indata		Indata	**********************	
5000		0,04	p₀ (kPa) =	3887			
4800			p _i (kPa) =	3894			
KSH01A_40	0-500_031214_2_CHir_Q_r	- 0,03	p _p (kPa) =	4134	p _F (kPa) =	3930	
4600 -			Q _p (m ³ /s)=	8,97E-08			
[e KP]	Pabove Pabove	[uim	tp (s) =	1800	t _F (s) =	3600	
हें 2 4400 - 9		in jec tion Rate [timin]	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
Downtrol		In jec 6	EC _w (mS/m)=				
4200 -			Temp _w (gr C)=	12,7			
4000 -		- 0,01	Derivative fact.=	0,32	Derivative fact.=	0,1	
3300		0,00					
0,00 0,50 1,00 Elapsed	1,50 2,00 Time [h]	2,50	Results	0.075.00	Results	1	
I and an ulational devices a	1		Q/s (m ² /s)=	3,67E-09			
Log-Log plot incl. derivates- f	low period		$T_{\rm M} (m^2/s) =$	4,78E-09	Flow regime:	transiant	
			Flow regime: dt₁ (min) =	transient	Flow regime: dt ₁ (min) =	transient *	
Elapsed time (10 ² SKB Simpevarp / KSH0 1A 400 - 500 m / CHi		n Version 2.14b	$dt_1 (min) = dt_2 (min) =$		$dt_1 (min) = dt_2 (min) =$	*	
400 - 500 m / CHi	(c) Gald	ler Associates				4,92E-10	
			T (m ² /s) = S (-) =	1,70E-09 1,00E-06	· · ·	4,92L-10 1,00E-06	
10	and the second s	10 2	K _s (m/s) =	1,70E-11	()	4,92E-12	
0 00 0° 00 00 00 00 00 000000000000000	A CONTRACTOR OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE		$S_{s}(1/m) =$	1,00E-08		1,00E-08	
10 ° · · · · · · · · · · · · · · · · · ·	· · ·	[lum]	C (m ³ /Pa) =	1,00E-00	C (m ³ /Pa) =	3,84E-10	
•	.*	10 ⁻¹ 10 ⁻¹ 10		NA	$C_{D}(-) =$	4,23E-02	
10 1		-	ξ(-) =		ξ(-) =	0,1	
•		10 0	()	-	· / / د	-,.	
	·····		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =		
10 ¹ 10 ² tC	10 ³ 10 ⁴	10 5	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives	- recovery period		Selected represe	entative parar	neters.		
			dt ₁ (min) =	2,42	C (m ³ /Pa) =	3,84E-10	
10_1^-3Elapsed time [h]101010_0		dt ₂ (min) =		C _D (-) =	4,23E-02	
10 ² SKB Simpevarp / KSH01A 400 - 500 m / CHir	FlowDim (c) Gold	n Version 2.14b fer Associates	$T_{T}(m^{2}/s) =$	1,70E-09	ξ(-) =	0	
-		10 3	S (-) =	1,00E-06			
10 1			K _s (m/s) =	1,70E-11			
10 00		10 2	S _s (1/m) =	1,00E-08			
			Comments:	_	-	-	
10 ⁻¹		10 ¹ 20 ⁴ 0	*: IARF not measu				
			The recommended transmissivity of 1.7E-9 m2/s was derived from analysis of the CHi phase (outer zone), which shows the best data				
10 2		10 °			ne), which shows the range for the interval		
					0E-10 to $6E-9$ m2/s.		
10-1 10	10	10 ⁻¹	dimension displaye	d during the tes	t is 2. The static pre	essure measured	
10 ⁻¹ 10 [°] tD/C	D	~			om the CHir phase		
			line extrapolation i	.1 **		71	

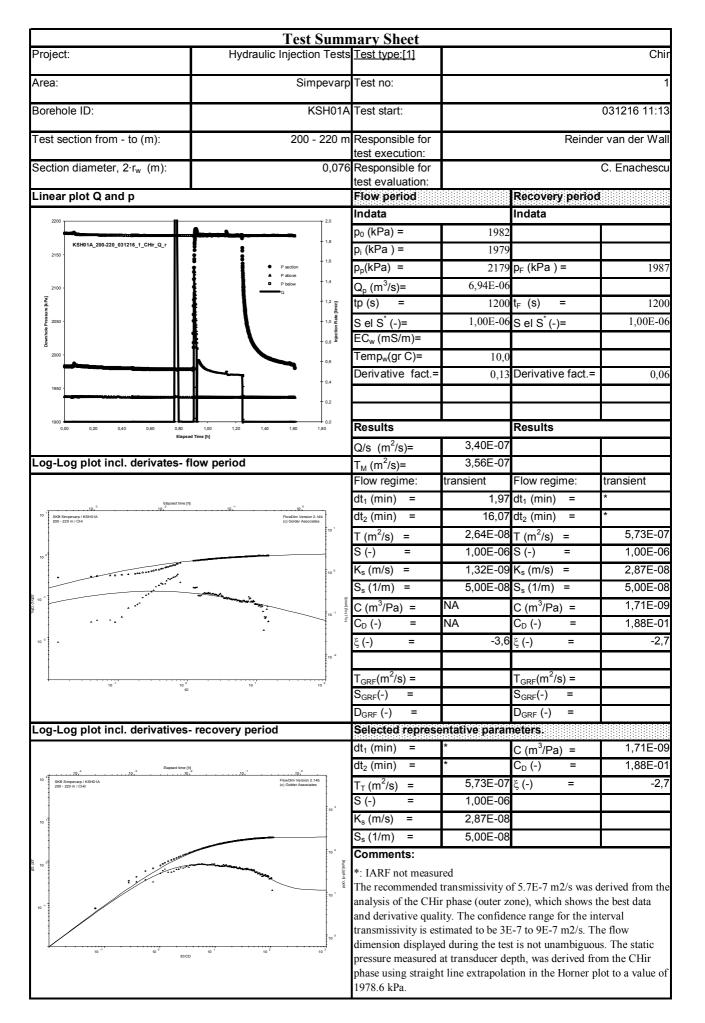


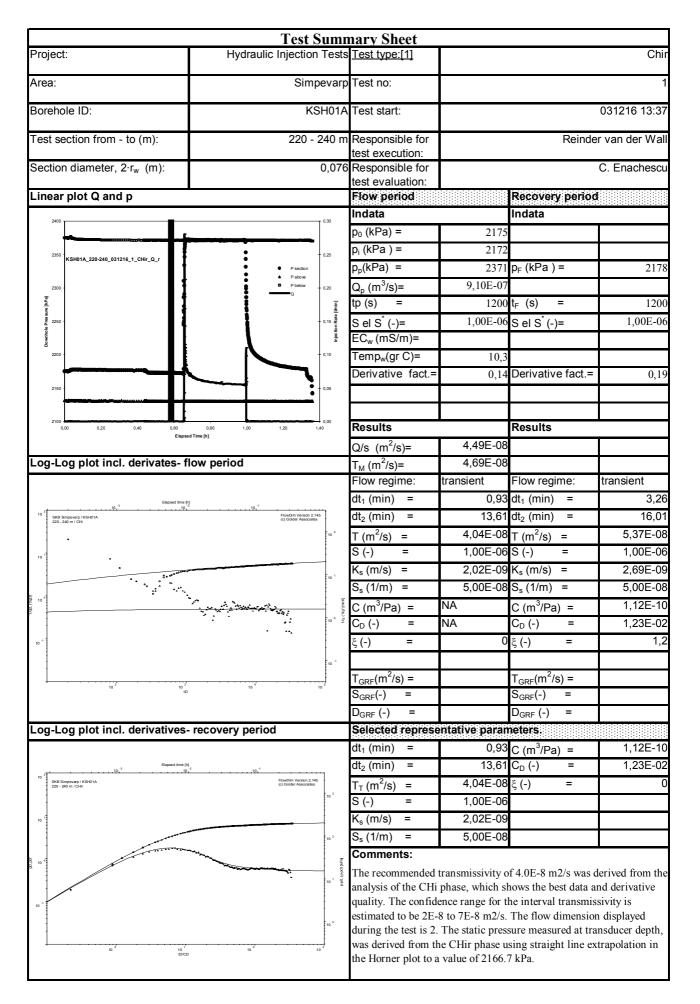

	Tes	st Sumn	nary Sheet				
Project:	Hydraulic Injection Tests		Test type:[1]				Chir
Area:	Simpevarp		Test no:				2
Borehole ID:	KSH01A		Test start:				031212 07:06
Test section from - to (m):			Responsible for		Reinder van der Wall		
Section diameter, 2·r _w (m):			test execution: Responsible for	r C. Enache			
			test evaluation:				
Linear plot Q and p			Flow period		Recovery	period	
6900		0,50	Indata		Indata		1
			p ₀ (kPa) =	5841			
6700 . KSH01A_600-700_0312	12_2_CHir_Q_r	0.40	p _i (kPa) =	5828			
	P section Pahove		p _p (kPa) =		p _F (kPa)=	-	5878
6500 -	P above		Q _p (m ³ /s)=	1,00E-06			
Inte [kba]		- 0,30 [u	tp (s) =		t _F (s) =		1800
8 6300 - 6			S el S [*] (-)=	1,00E-06	S el S [*] (-)=	-	1,00E-06
Downth		0,20 -	EC _w (mS/m)=				
6100 -			Temp _w (gr C)=	15,5			
		- 0,10	Derivative fact.=	0,03	Derivative	fact.=	0,06
5900							
5700 0,00 0,20 0,40 0,60 Elapsed Tir	0,80 1,00 1,20	1,40	Results	-	Results		-
			Q/s (m²/s)=	4,8E-08			
.og-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	6,3E-08			
			Flow regime:	transient	Flow regin	ne:	transient
10 ⁻³ Elapsed time [h]	-1 10 ⁰		dt ₁ (min) =	*	dt₁ (min)	=	*
10 2 SKB Simpevarp / KSH01A 600 - 700 m / CHi	FlowDim V (c) Golder	fersion 2.14b Associates	dt ₂ (min) =	*	dt ₂ (min)	=	*
		10 2	T (m²/s) =	2,19E-08	T (m ² /s)	=	2,03E-08
10 1		10	S (-) =	1,00E-06	S (-)	=	1,00E-06
			K _s (m/s) =	2,19E-10	K _s (m/s)	=	2,03E-10
		10	S _s (1/m) =	1,00E-08	S _s (1/m)	=	1,00E-08
10	and a start of the	(min) (pt	C (m³/Pa) =	NA	C (m ³ /Pa)	=	8,95E-10
· · · · · · · · · · · · · · · · · · ·	•	10 °	C _D (-) =	NA	C _D (-)	=	9,86E-02
10 -1			ξ(-) =	-3,0	ξ(-)	=	-3,3
•							
10 10 10	10 ²		T _{GRF} (m²/s) =		T _{GRF} (m ² /s)) =	
10 ° 10 ¹ 10		10	S _{GRF} (-) =		S _{GRF} (-)	=	
			$D_{GRF}(-) =$		D _{GRF} (-)	=	
og-Log plot incl. derivatives-	recovery period		Selected represe	entative parar			
			dt ₁ (min) =	*	C (m³/Pa)	=	8,95E-10
Elapsed time (h)			dt ₂ (min) =	*	C _D (-)	=	9,86E-02
10 ² SKB Simpevarp / KSH01A 600 - 700 m / CHir	FlowDim \ (c) Golder	E40 3	$T_{T} (m^{2}/s) =$	2,0E-08		=	-3,3
			S (-) =	1,0E-06			
10 1			K _s (m/s) =	2,0E-10			
		10 2	$S_{s}(1/m) =$	1,0E-08			
		~ ~	Comments:				
10°			*: IARF not measu				
and the second		, d	The recommended				
10 -1			analysis of the CHi				
			quality. The confid estimated to be 1E-				
			during the test is 2.				
10 ° 10 ' tD/CD	10 2		was derived from the				
			the Horner plot to a				-
			-				

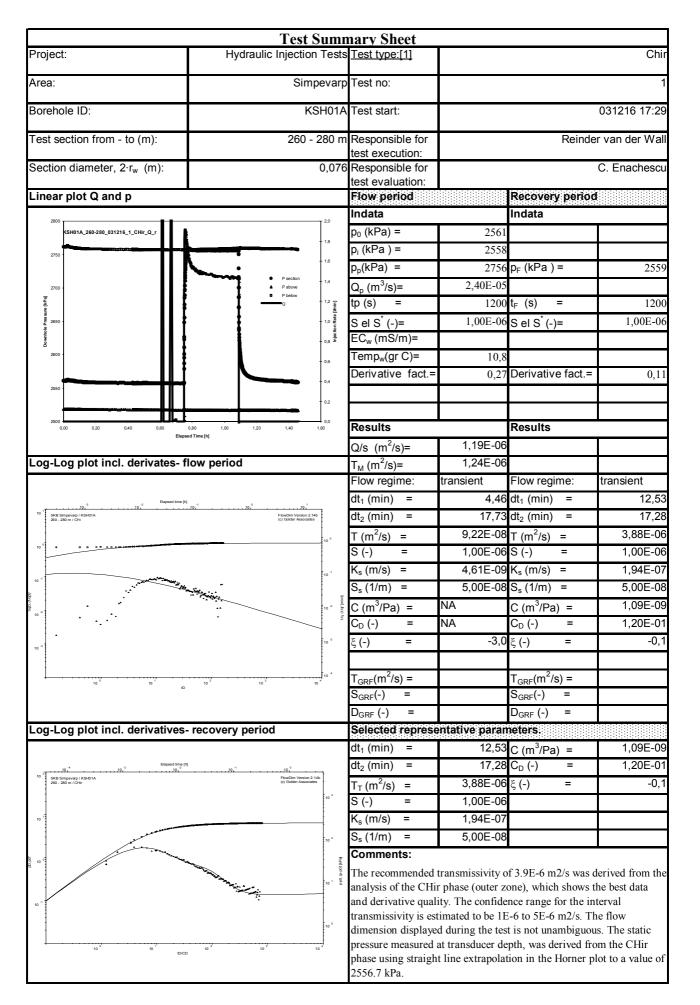

	Test	Sumn	nary Sheet				
Project:	Hydraulic Injection Tests					Chir	
Area:	Simpevarp		Test no:			1	
Borehole ID:	KSH01A		Test start:	031212 10:02			
Test section from - to (m):			Responsible for test execution:		Reinder van der Wall		
Section diameter, 2·r _w (m):		0,076	Responsible for		C. Enachescu		
Linear plot Q and p			test evaluation: Flow period		Recovery period	(
			Indata Indata				
8300	(SH01A_700-800_031212_1_CHir_Q_r	0,20	p ₀ (kPa) =	6793			
8100			p _i (kPa) =	6788			
7900 -		0,15	p _p (kPa) =	6966	p _F (kPa) =	6813	
, , , , , , , , , , , , , , , , , , ,			Q _p (m ³ /s)=	2,92E-07			
हू 7700 - अन्तु श्र		[Vmin]	tp (s) =	1800	t _F (s) =	3600	
2 7500 ·	P section Pabove	- 0,10 Japa ugu ga barang da	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
2 5 7300	Q P below	Injecti	EC _w (mS/m)=				
			Temp _w (gr C)=	17,0			
7100 -	•	- 0,05	Derivative fact.=	0,18	Derivative fact.=	0,07	
6900		0,00					
0,00 0,50 1,00	1,50 2,00 2,50 sed Time [h]	3,00	Results		Results		
			Q/s (m²/s)=	1,6E-08			
Log-Log plot incl. derivates-	flow period		T _M (m²/s)=	2,1E-08			
			Flow regime:	IARF	Flow regime:	IARF	
10 10 10 Elapsed time	.10 ⁻¹	₁	dt_1 (min) =		dt_1 (min) =	*	
10 SKB Simpevarp / KSH01A 700 - 800 m / CH	FlowDim Version 2 (c) Golder Associal	tes	dt_2 (min) =		dt_2 (min) =	*	
		10 2	$T(m^{2}/s) =$	2,32E-09	. ,	8,72E-09	
10 °			S (-) =	1,00E-06	()	1,00E-06	
10 00 00 KR 10000 00 00 00 00 00 00 00 00 00 00 00	A MARKAN A		$K_s (m/s) =$	2,32E-11		8,72E-11	
	and a strange of the second second second second second second second second second second second second second	10	$S_{s}(1/m) =$	1,00E-08		1,00E-08	
· · ·		Ma. (14qf §	C (m ³ /Pa) =	NA	$C (m^{3}/Pa) =$	5,18E-10	
		10 °	.,,	NA	$C_{D}(-) =$	5,71E-02	
10 2		-	ξ(-) =	-4,2	ξ(-) =	0,3	
		10 -1	\mathbf{T} (m ² /s) –		T _{GRF} (m²/s) =		
10 -2 10 -1	10 [°]	10	$T_{GRF}(m^2/s) = S_{GRF}(-) =$		$I_{GRF}(m / s) =$ $S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives	- recovery period		Selected represe	ntative parar			
			dt ₁ (min) =	*	C (m ³ /Pa) =	5,18E-10	
Flansed time	Ps.		dt_2 (min) =	*	$C_{D}(-) =$	5,71E-02	
10 ² SKB Simpevarp / KSH01A 700-800 m / CHr	FlowDir Version	2.14b	$T_T (m^2/s) =$	8,7E-09		0,3	
700 - 800 m / CHir	(u) Souder ASSOCI		S(-) =	1,0E-06		5,0	
10 1	- mai	10 2	$K_s (m/s) =$	8,7E-11			
		_	$S_{s}(1/m) =$	1,0E-08			
and a state of the			Comments:	.,			
10 ° * * * * * * * * *		10 ¹ [e ₂],(od	*: IARF not measur	red			
		0,094	The recommended transmissivity of 8.7E-9 m2/s was derived fro				
10 1		10 °	analysis of the CHi	r phase (outer z	one), which shows t	he best data	
					ence range for the in E-9 to 8E-8 m2/s. Th		
					to 8E-8 m2/s. If		
10 [°] 10 ¹	10 ² 10 ³	10 4 10 -1			om the CHir phase u		
tD			at transducer depth	, was ucrived in	oni the crin phase t	ising type	

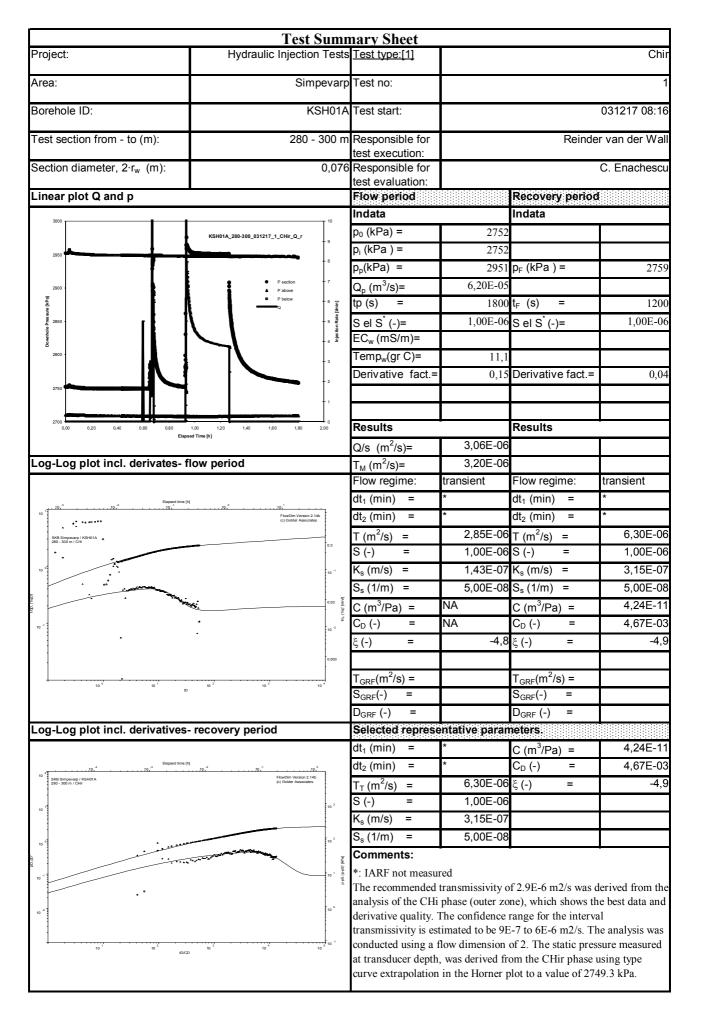


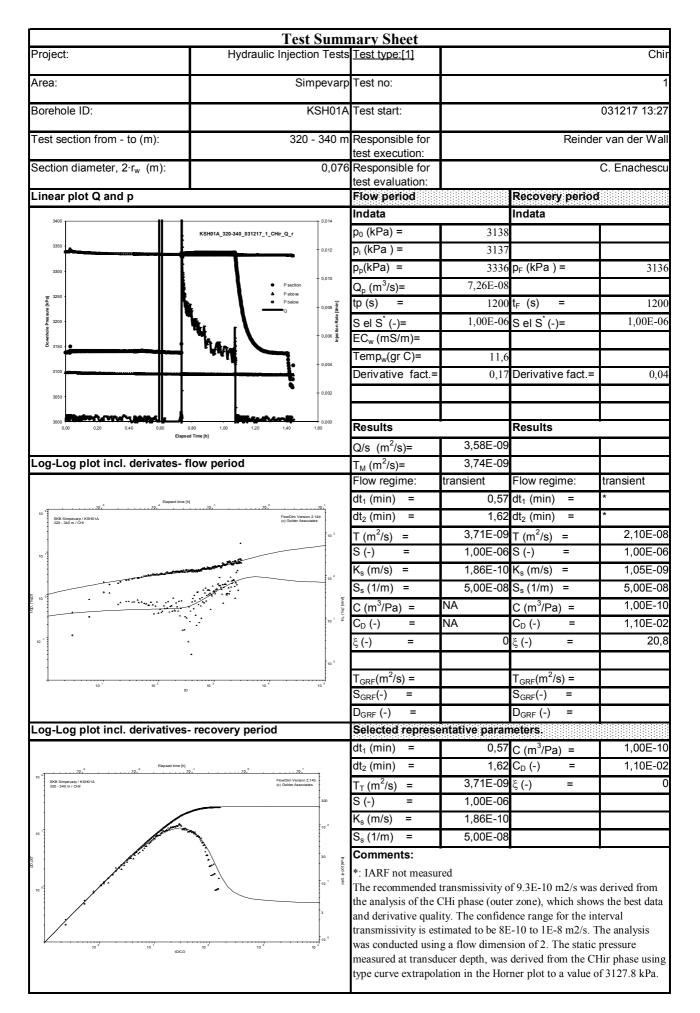


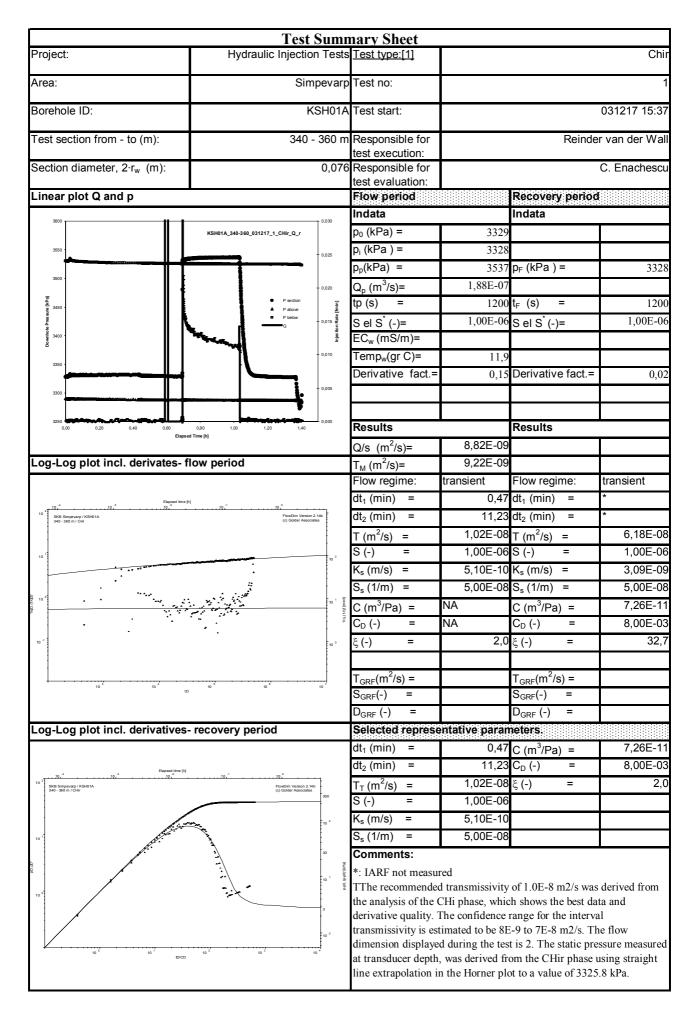


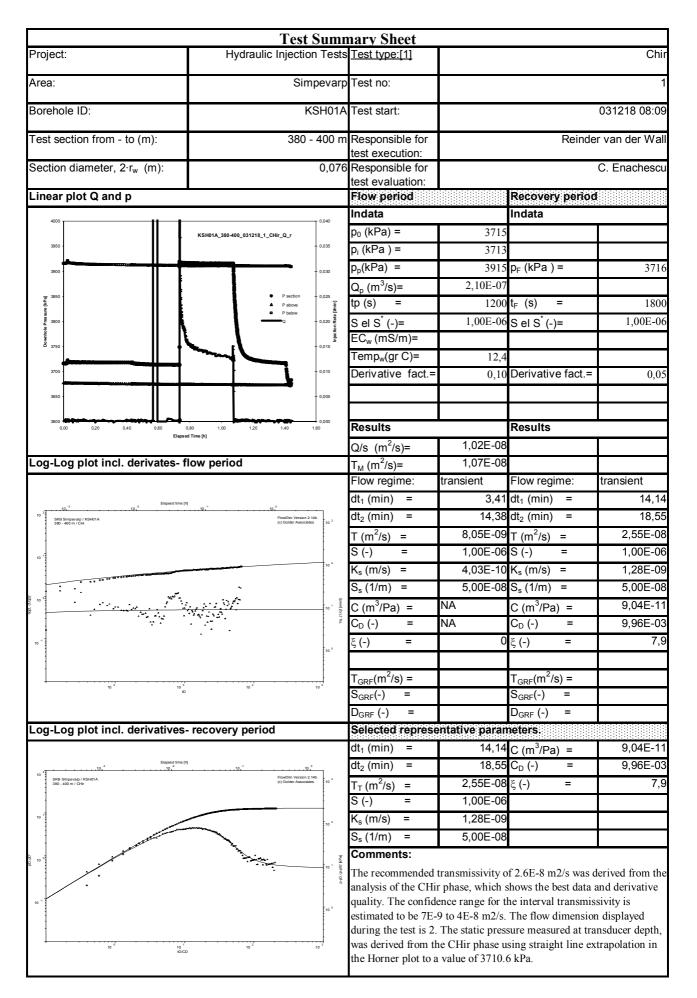


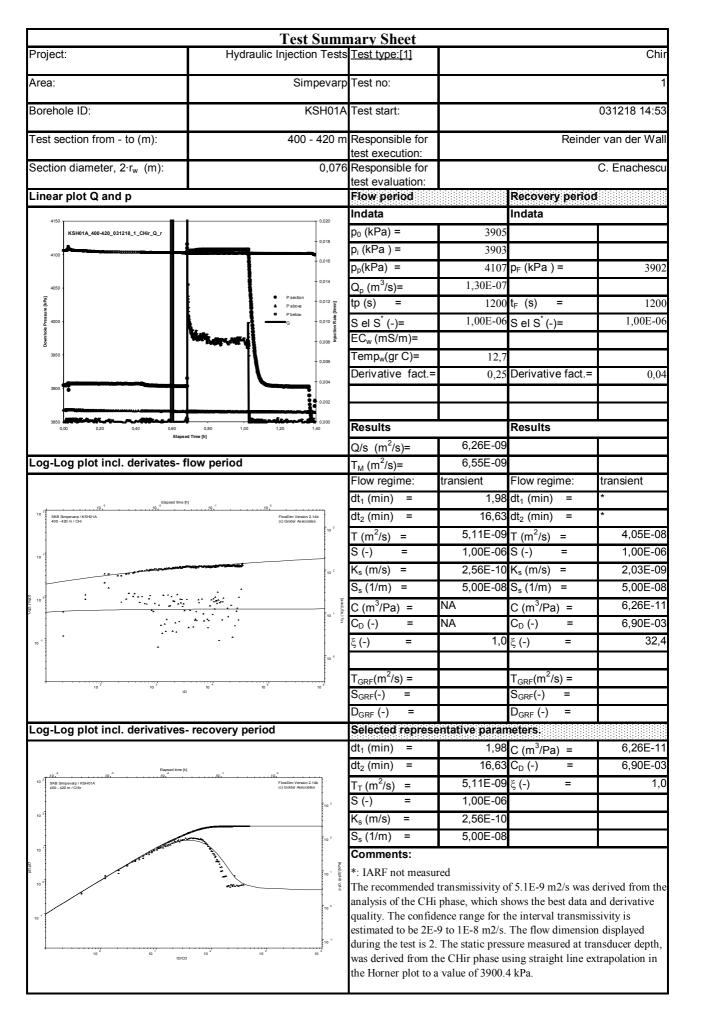


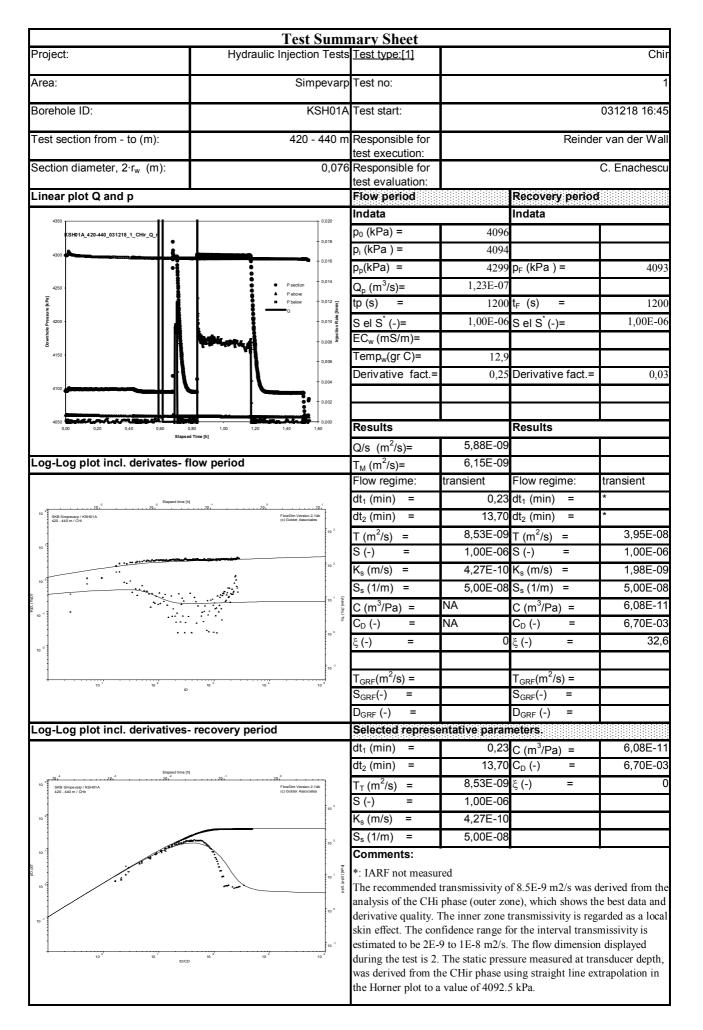


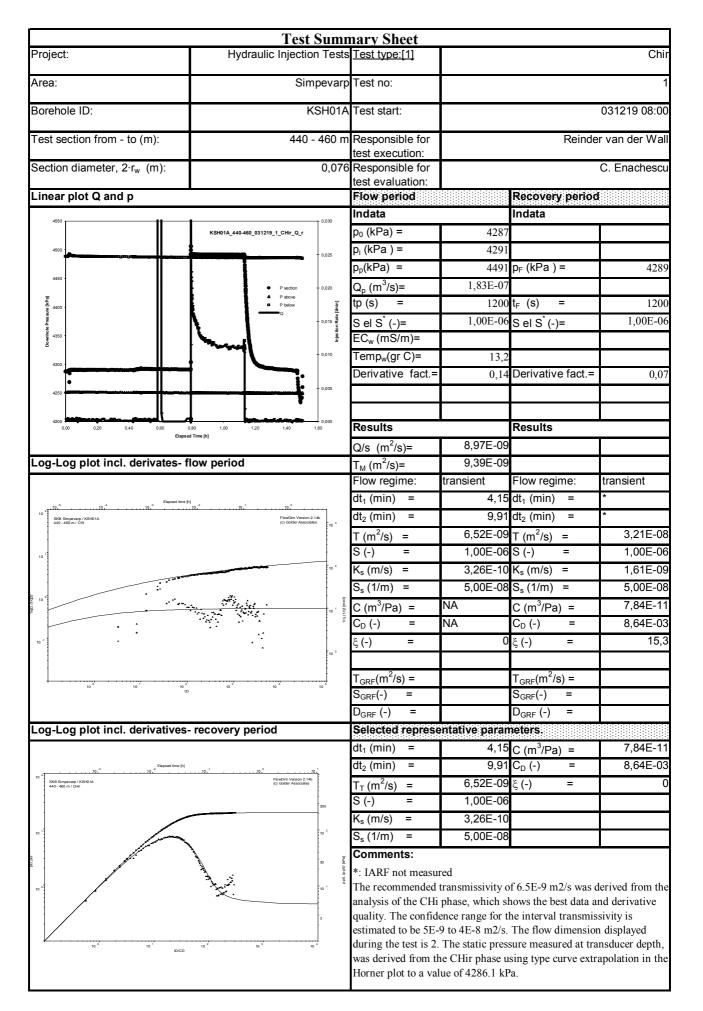


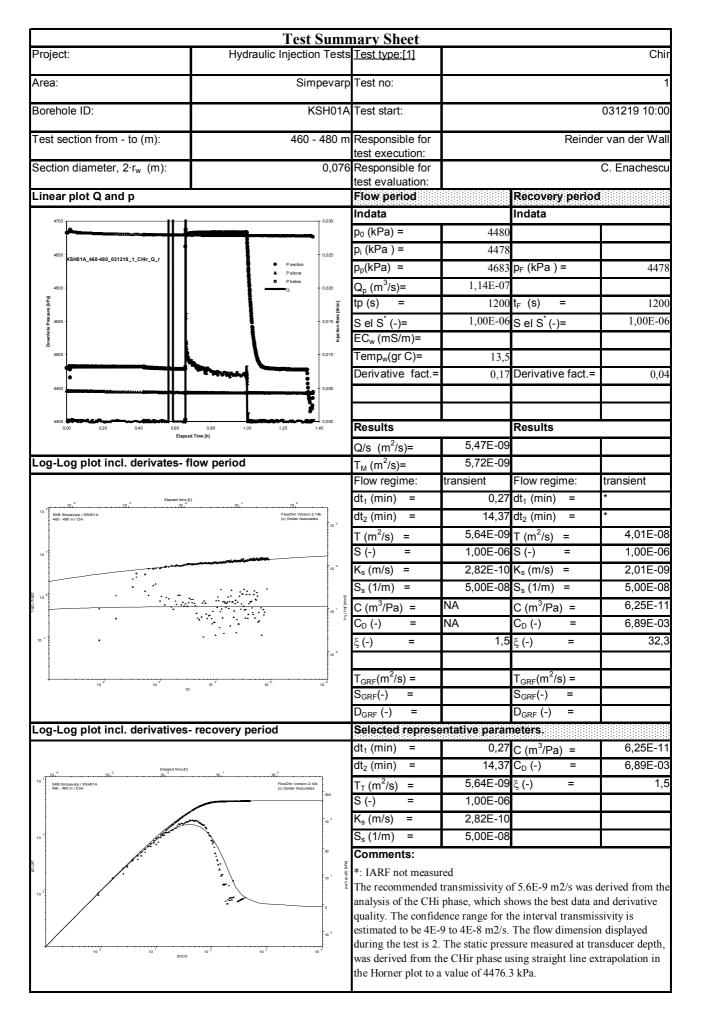

		nary Sheet				
Project:	Hydraulic Injection Tests		Chi			
Area:	Simpevarp	Test no:				
Borehole ID:	KSH01A	Test start:		031216 15:34		
Test section from - to (m):		Responsible for		Reinde	r van der Wal	
		test execution:				
Section diameter, 2·r _w (m):	0,076	Responsible for		C. Enachescu		
Linear plot Q and p		test evaluation:	test evaluation:			
		Flow period Recovery period Indata				
2600 KSH01A_240-260_031216_1_CHir_Q_r	10	p ₀ (kPa) =	2367	inuata		
		p ₀ (kPa) = p _i (kPa) =				
2550	- 8	$p_i(kPa) =$ $p_p(kPa) =$	2363	n (kDa) -	226	
	Psedion 7	•		p _F (kPa) =	236	
2500 - R	▲ P above	$Q_p (m^3/s) =$	5,61E-05	t (a) -	120	
[k ba]	• • • • • • • • • • • • • • • • • • •	tp (s) =		t _F (s) =	120	
ଣ୍ଟୁ 2450 - ଜୁ ହୁ	● + 5 22 ●	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0	
	- 4 9	EC _w (mS/m)=				
2400 -	3	Temp _w (gr C)=	10,5			
2350 -	2	Derivative fact.=	0,1	Derivative fact.=	0,0	
<u></u>						
2300 0,00 0,20 0,40 0,60 0,80 Elapsed Tir	1,00 1,20 1,40 1,60	Results			Results	
		Q/s (m ² /s)=	2,77E-06			
.og-Log plot incl. derivates- flow	<i>w</i> period	T _M (m ² /s)=	2,90E-06			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time [h]	10 ⁻¹ 10 ⁰ 10 ¹	dt ₁ (min) =	1,66	dt ₁ (min) =	1,3	
10 2 SKB Simpevarp / KSH01A 240 - 260 m / CH1	FlowDim Version 2.14b (c) Golder Associates	dt ₂ (min) =	17,77	dt ₂ (min) =	17,7	
	10 °	$T(m^{2}/s) =$	3,46E-06	T (m ² /s) =	5,18E-0	
10 1		S (-) =	1,00E-06	S (-) =	1,00E-0	
• • • • • • • • • • • • • • • • • • •		$K_s (m/s) =$	1,73E-07	K _s (m/s) =	2,59E-0	
•	10 -1	$S_{s}(1/m) =$	5,00E-08	S _s (1/m) =	5,00E-0	
10		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,97E-0	
	ت ب 10 ⁻² ب	C _D (-) =	NA	C _D (-) =	2,17E-0	
10 -1		ξ(-) =	0	ξ(-) =	3,	
	10 -3					
10 4 10 5	10 ⁶ 10 ⁷ 10 ⁸	T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =		
10		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
.og-Log plot incl. derivatives- re	covery period	Selected represe	entative parar	neters.		
		dt ₁ (min) =	1,39	C (m ³ /Pa) =	1,97E-0	
Elapsed time [h]	2, ⁻²	dt ₂ (min) =		C _D (-) =	2,17E-0	
10 SKB Simpevarp / KSH01A 240 - 260 m / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	5,18E-06	ξ(-) =	3,	
		S (-) =	1,00E-06			
10 1		$K_s (m/s) =$	2,59E-07			
	10 2	$S_{s}(1/m) =$	5,00E-08			
		Comments:				
10 *	10 ' G		transmissivity	of 3.5E-6 m2/s was d	lerived from th	
				hows the best data a		
10 -1		quality. The confid	ence range for t	he interval transmis	sivity is	
	10 °			The flow dimension		
		during the test is 2.				
10 ^{°,} 10 ^{°,} EDCD	10 ⁻² 10 ⁻² 10 ⁻²		ne CHir phase u	sing straight line ex		

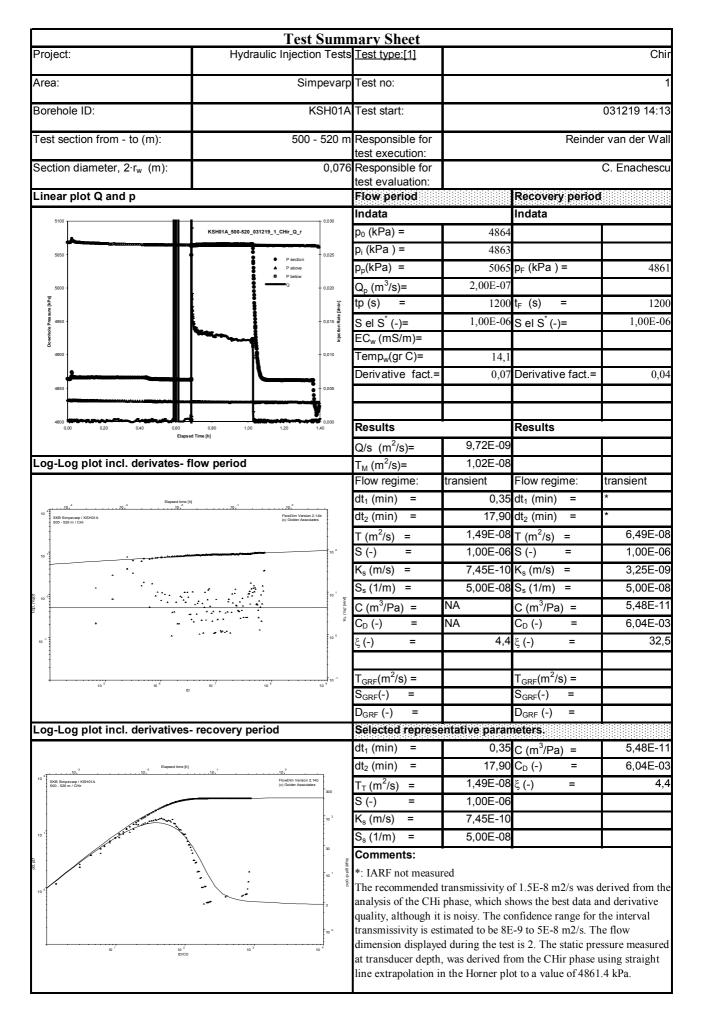


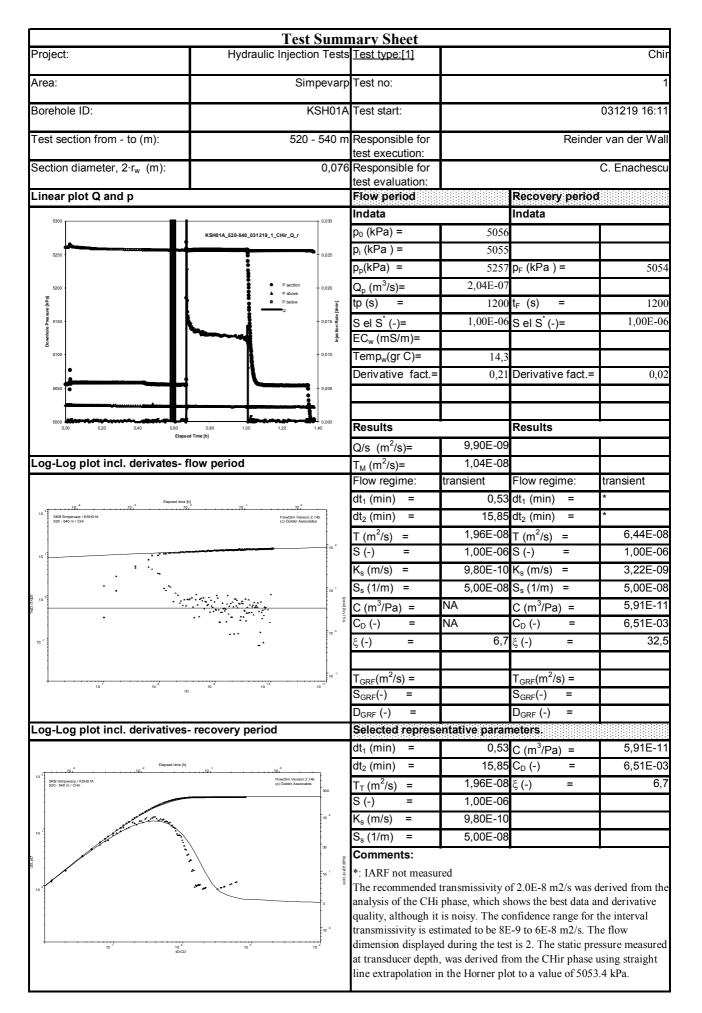

	Test Sum	mary Sheet					
Project:	Hydraulic Injection Test				Chir		
Area:	Simpeyar	p Test no:			1		
Arou.	ompeva	p rest no.			I		
Borehole ID:	KSH01	A Test start:	031217 10:41				
Test section from - to (m):	300 - 320 ı	n Responsible for		Reinde	er van der Wall		
		test execution:					
Section diameter, $2 \cdot r_w$ (m):	0,07	6 Responsible for test evaluation:		C. Enachescu			
Linear plot Q and p		Flow period		Recovery period	f		
3200 -	T 0.020	Indata		Indata			
	KSH01A 200.320 031217 1 CHir O r	p ₀ (kPa) =	2945				
3150	- UJ 18	p _i (kPa) =	2947				
	- 0,016	p _p (kPa) =		p _F (kPa) =	2956		
3100 -	P section	Q _p (m ³ /s)=	1,36E-07				
ure [kb a]	P above P below 0,012 E	tp (s) =	1200	t _F (s) =	4080		
8 3050 -	- 0,010 BE	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06		
Downish Constraints	- 0.003 E	EC _w (mS/m)=					
3000 -	- 0,006	Temp _w (gr C)=	11,3				
	- 0,004	Derivative fact.=	0,12	Derivative fact.=	0,06		
	0,002						
2900		Desults		Descrite			
0,00 0,50 1,00 Elapsed	1,50 2,00 2,50 Time [h]	Results	Results 6,03E-09				
Log-Log plot incl. derivates- fl	ow period	$Q/s (m^2/s) =$	6,30E-09				
Log-Log plot mel. denvales- n		T _M (m ² /s)= Flow regime:	transient	Flow regime:	transient		
		dt_1 (min) =		dt_1 (min) =	12,80		
Elapsed time (h)		$dt_2 (min) =$		dt_2 (min) =	58,36		
10 SKB Simpevarp / KSH01A 300 - 320 m / CHI	FlowDim Version 2.14b (c) Golder Associates 300	$T (m^2/s) =$	3,17E-09		5,60E-09		
-	north and the second second second second second second second second second second second second second second	S (-) =	1,00E-06		1,00E-06		
10 °	A	$K_s (m/s) =$		$K_s (m/s) =$	2,80E-10		
	30	$S_{s}(1/m) =$	5,00E-08		5,00E-08		
	10	$C (m^3/Pa) =$	NA	$C (m^{3}/Pa) =$	1,11E-10		
10 -1	· · _ ·	$\frac{c_{e_{p}}}{C_{D}}(-) =$	NA	$C_{D}(-) =$	1,22E-02		
•	3	ξ(-) =	-1,2	ξ(-) =	C		
	10 ⁰						
10 10 10	10 ² 10 ³	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
10 ⁰ 10 ¹ 1D	10 10	S _{GRF} (-) =		S _{GRF} (-) =			
		$D_{GRF}(-) =$		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period	Selected represe					
		dt_1 (min) =		C (m ³ /Pa) =	1,11E-10		
Elapsed time [h]	1 10, 0 FlowDim Version 2.14b	dt_2 (min) =		C _D (-) =	1,22E-02		
SKB Simpevarp / KSH01A 300 - 320 m / CHir	(c) Golder Associates	$T_T (m^2/s) =$	5,60E-09		C		
	10 3	S (-) =	1,00E-06				
10 5		$K_s (m/s) =$	2,80E-10				
	10 ²	$S_s(1/m) =$	5,00E-08				
10 ⁻²		Comments:	·····		1		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10			of 3.2E-9 m2/s was of hows the best data a			
	10			he interval transmis			
10 -1	I	quantity. The comma					
10		estimated to be 1E-		The flow dimension			
10 " 0" 000	10 ⁰	estimated to be 1E- during the test is 2.	. The static pres	The flow dimension sure measured at transing straight line ex	insducer depth,		

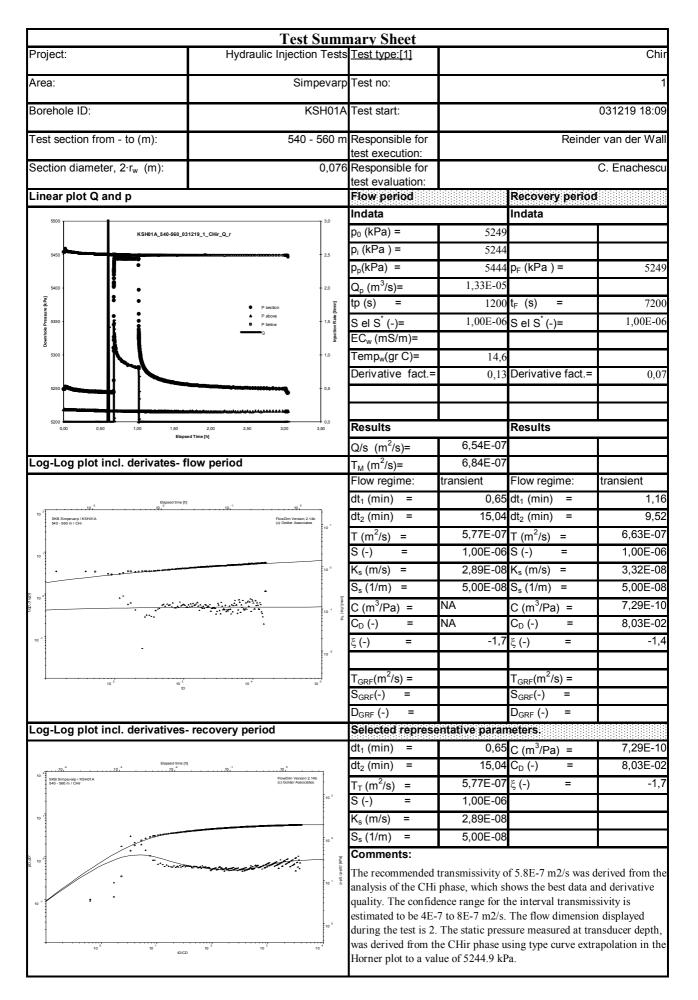


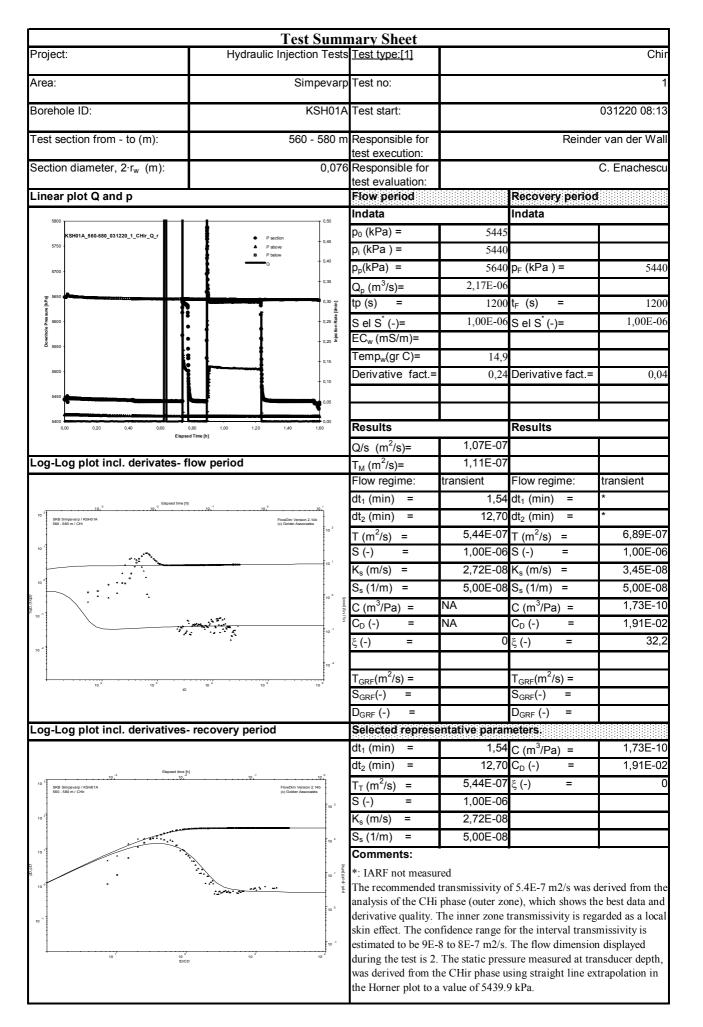


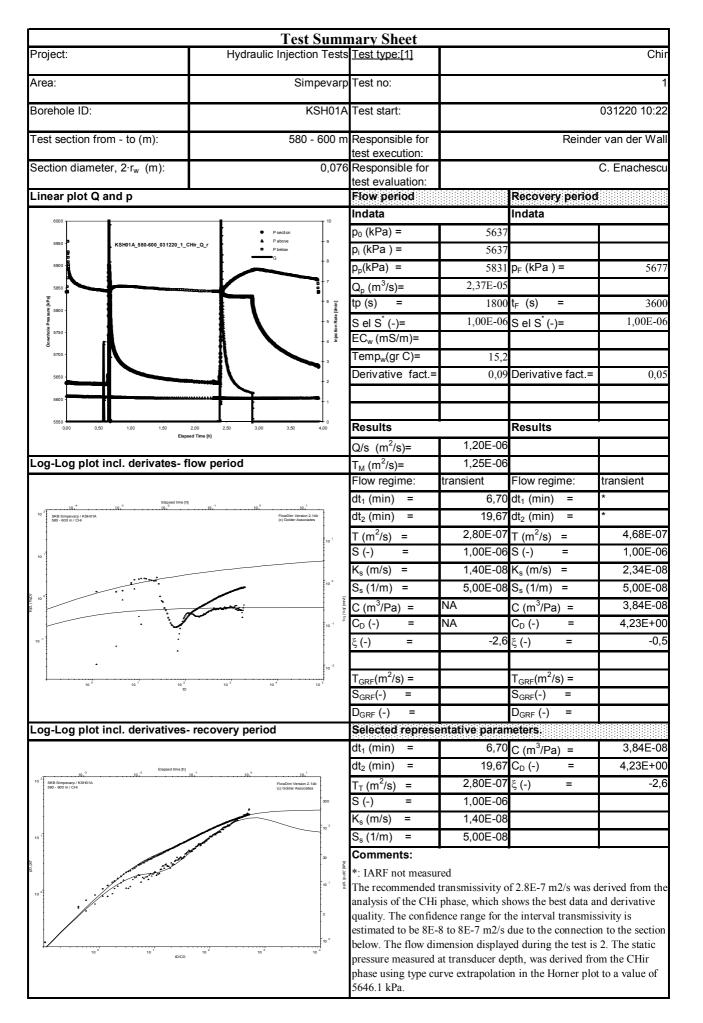

		mary Sheet				
Project:	Hydraulic Injection Test	s <u>Test type:[1]</u>			Chi	
Area:	Simpevar	p Test no:				
Borehole ID:	KSH01/	A Test start:		031217 17:3		
Test section from - to (m):	360 - 380 r	n Responsible for		Reinder van der Wa		
Section diameter, 2·r _w (m):	0.07	test execution: 6 Responsible for			C. Enachescu	
	0,07	test evaluation:			C. Enachesc	
inear plot Q and p		Flow period	Recovery period			
3750 -	τ 0.050	Indata		Indata		
	_031217_1_CHir_Q_r	p ₀ (kPa) =	3521			
3700	- 0,045	p _i (kPa) =	3519			
	- 0,040	p _p (kPa) =	3718	р _ғ (kРа) =	351	
3650 -	 0,035 P section 	$Q_{p} (m^{3}/s) =$	2,28E-07	7		
[edy]	Pabove 0,030 P below	tp(s) =	1200	t _F (s) =	180	
58 3600 -		S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0	
o vnito lo	월 - 0,020 트	$EC_w (mS/m) =$				
3550	+ 0,015	Temp _w (gr C)=	12,1			
		Derivative fact.=	0,15	Derivative fact.=	0,0	
3500 -	0,010				,	
	0,005					
	1,50 2,00 2,50	Results		Results		
Elapsed T		$Q/s (m^2/s) =$	1,13E-08			
og-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	1,18E-08			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =		dt_1 (min) =	*	
Elapsed time [h]	10, ⁻¹ 10, ⁰ FlowDim Version 2.14b	dt_2 (min) =		dt_2 (min) =	*	
SKB Simpevarp / KSH01A 360 - 380 m / CHi	(c) Golder Associates 10		8,74E-09		4,29E-0	
		T (m ² /s) = S (-) =	1,00E-06	. ,	1,00E-0	
10	10 ²		4,37E-10		2,15E-0	
2 2				$S_s(11/S) =$ $S_s(1/m) =$		
10 °	م المراجع مع مع مع	es ()			5,00E-0	
· · · · · · · · · · · · · · · · · · ·	10	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	7,66E-1	
· · · · · ·	4° 4	$C_{\rm D}(-) =$	NA	C _D (-) =	8,44E-0	
ро ⁻⁴	10 °	ξ(-) =	0	ξ(-) =	15	
		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =		
10 ¹ 10 ² tD	10 ⁻⁵ 10 ⁻⁴ 10 ⁻⁵	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
og-Log plot incl. derivatives-	recovery period	Selected represe	ntative parar			
		dt ₁ (min) =	4,91		7,66E-1	
		dt_2 (min) =	-	$C_{D}(-) =$	8,44E-0	
^{10,⁴} ,, 10, ³ ,, 10, ² skR Simpevam / KSH01A		$T_{T} (m^{2}/s) =$	8,74E-09			
0 SKB Simpevarp / KSH01A 360 - 380 m / CHir	FlowDim Version 2:14b (c) Golder Associates	S(-) =	1,00E-06			
	300	$K_s (m/s) =$	4,37E-10			
		$S_{s}(1/m) =$	5,00E-08			
		Comments:	0,002 00			
	30	*: IARF not measure	rod			
	And the state			of 8.7E-9 m2/s was o	derived from th	
10 °	10			hows the best data a		
		quality. The confid	ence range for t	he interval transmis	ssivity is	
	3			The flow dimensio		
10 [°] 10 ¹	10 ² 10 ³ 10 ⁴ 10 [°]			sure measured at tra		
tD/CD		was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3517.8 kPa.				
		riorner pior to a val	ue of 551/.0 Kl	а.		

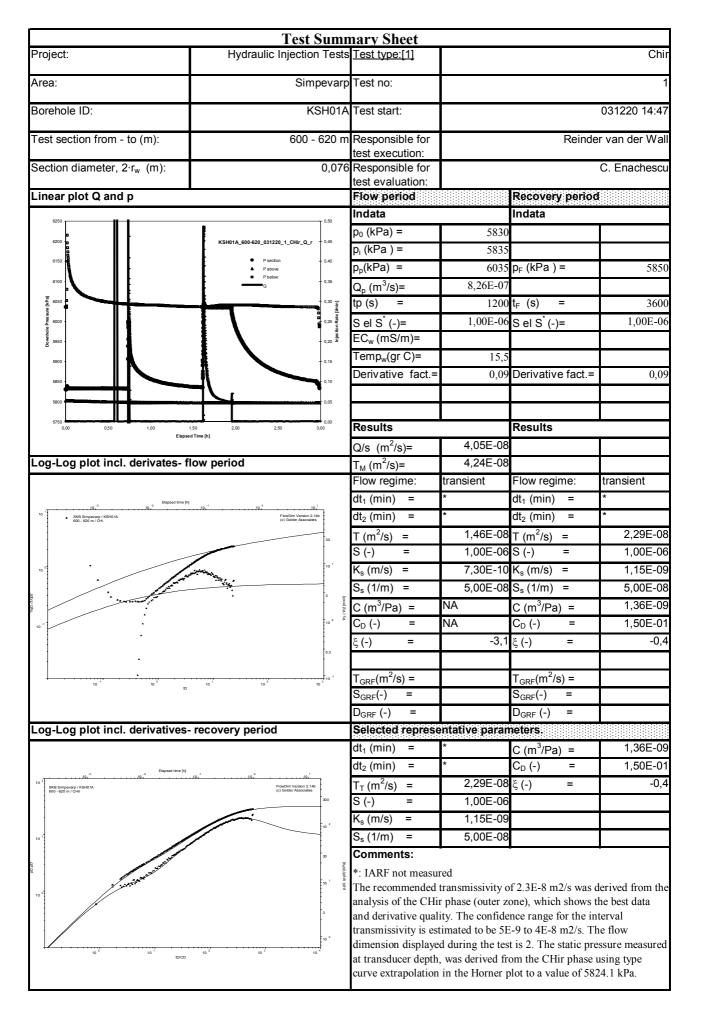


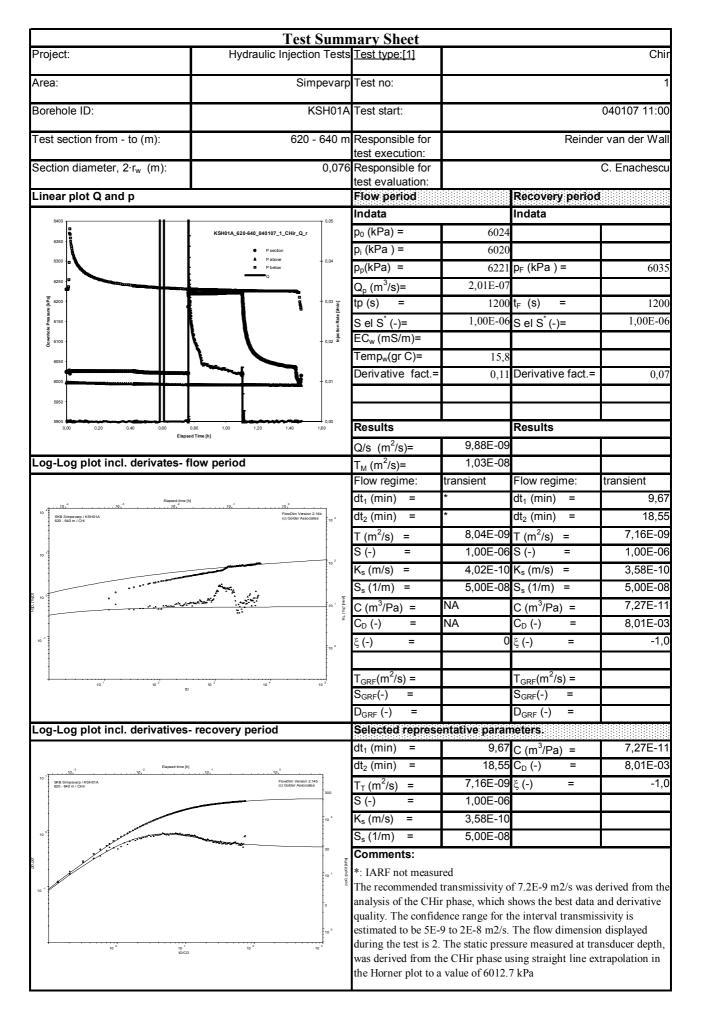


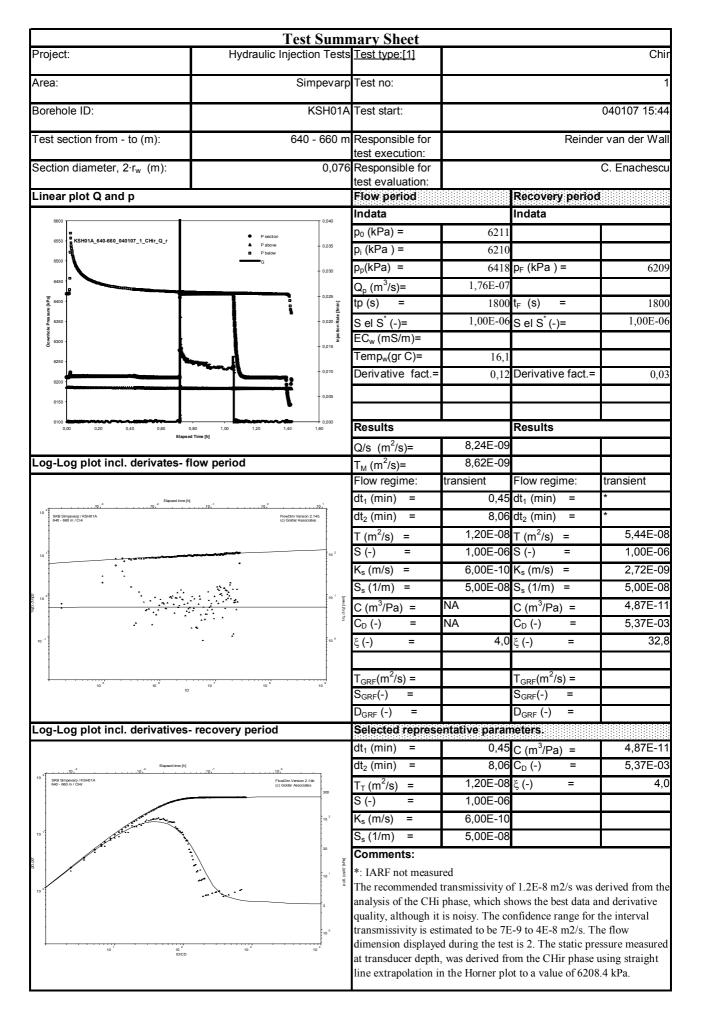


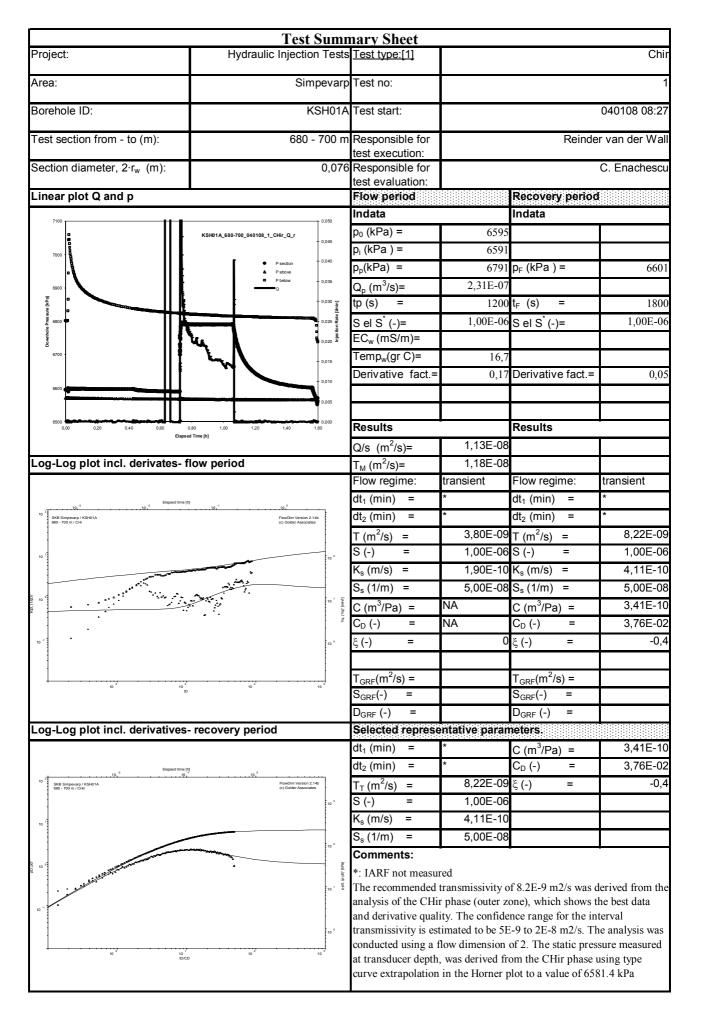


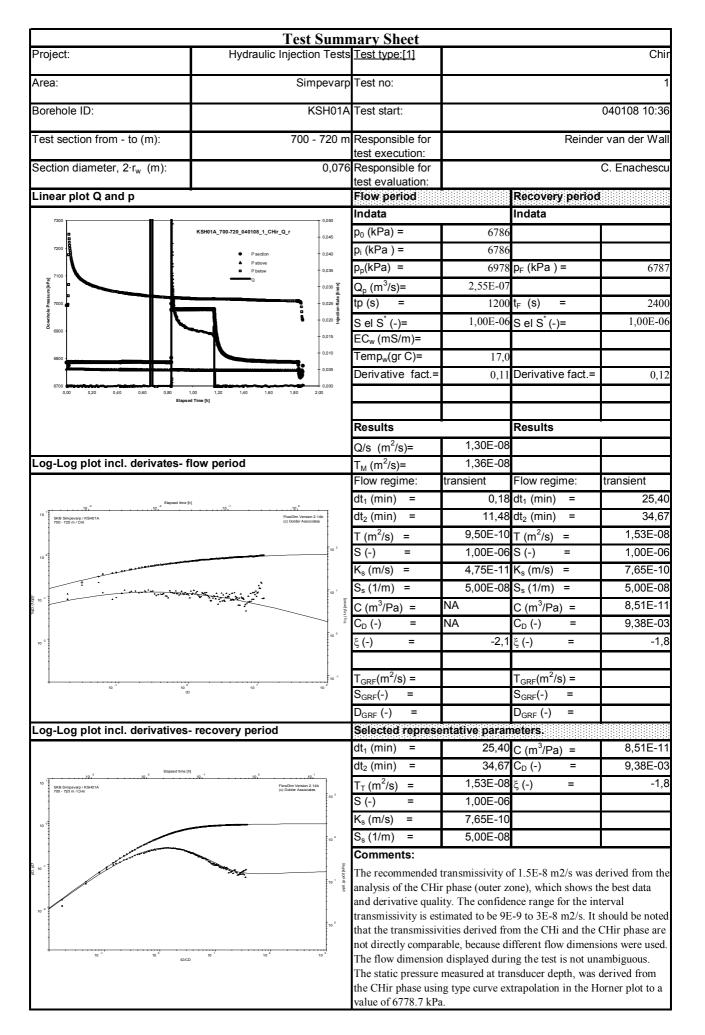

	Test	Sumn	nary Sheet				
Project:	Hydraulic Injectior					Chi	
Area:	Simpevarp		Test no:		1		
Borehole ID:	KSH01A		Test start:		031219 11:53		
Test section from - to (m):	480 - 500 m		Responsible for		Reinde	er van der Wal	
Castion diameter 0 r. (m):		0.070	test execution: Responsible for	C. Enceberge			
Section diameter, $2 \cdot r_w$ (m):		0,076	test evaluation:	C. Enachesc			
Linear plot Q and p			Flow period		Recovery period		
4900 -		- 0,030	Indata		Indata		
KSH01A_480-500_031219_1_CHir_Q_r			p ₀ (kPa) =	4672			
4850 -		- 0,025	p _i (kPa) =	4670			
			p _p (kPa) =	4873	p _F (kPa) =	466	
4800 -	P section	- 0,020	Q _p (m ³ /s)=	1,92E-07			
[e d la la la la la la la la la la la la la	P above P below	[nim]	tp (s) =	1200	t _F (s) =	1200	
ق 4750 -	• • • • •	- 0,015 g	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0	
Do witho k	Marcal I	In jection	EC _w (mS/m)=				
4700 -		- 0,010	Temp _w (gr C)=	13,8			
4650		- 0,005	Derivative fact.=	0,22	Derivative fact.=	0,02	
4600 0,00 0,20 0,40 0,60 0,80 Elapsed	1,00 1,20 1,40 1,60 1	₩ 0,000 1,80	Results		Results		
			Q/s (m ² /s)=	9,26E-09			
_og-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	9,68E-09			
			Flow regime:	transient	Flow regime:	transient	
Elapsed time (h)	10 ⁻¹	.	dt ₁ (min) =	0,57	dt_1 (min) =	*	
10 SKB Simpevarp / KSH01A 480 - 500 m / CHi	FlowDim Version 2 (c) Golder Associat	tab tes	dt_2 (min) =		dt ₂ (min) =	*	
			T (m²/s) =	1,76E-08		5,55E-08	
10 1	م اليكار بري انيم •	10 2	S (-) =	1,00E-06	S (-) =	1,00E-0	
	:		$K_s (m/s) =$	8,80E-10	K _s (m/s) =	2,78E-0	
10 °		10 ¹	$S_{s}(1/m) =$	5,00E-08	S _s (1/m) =	5,00E-08	
		uiul],(by1)	C (m³/Pa) =	NA	C (m³/Pa) =	4,88E-1	
•	· . ·	₹ 10 °	C _D (-) =	NA	C _D (-) =	5,38E-0	
10 1		10	ξ(-) =	6,9	ξ(-) =	32,	
10 ⁰ 10 ⁰	10 ¹⁰ 10 ¹¹	10 ⁻¹	T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =		
ťD			S _{GRF} (-) =		S _{GRF} (-) =		
			$D_{GRF}(-) =$		D _{GRF} (-) =		
_og-Log plot incl. derivatives-	recovery period		Selected represe	entative parar	neters.		
			dt ₁ (min) =	0,57	0 (iii /i u)	4,88E-1	
10_1 ⁻⁴ 10_1 ⁻³ Elapsed time [h]	10, ⁻¹	_ . _	dt ₂ (min) =		C _D (-) =	5,38E-0	
10 SKB Simpevarp / KSH01A 480 - 500 m / CHir	FilowDim Version 2.14 (c) Golder Associates	4b 1	$T_{T} (m^{2}/s) =$	1,76E-08		6,9	
		10 3	S (-) =	1,00E-06			
10		_	K _s (m/s) =	8,80E-10			
	and the second sec	10 2	$S_{s}(1/m) =$	5,00E-08			
	A A A A A A A A A A A A A A A A A A A	7	Comments:				
	**	[월권] 10 ¹ (연·여	*: IARF not measure				
· ·		- od			of 1.8E-8 m2/s was o		
		10 0			hows the best data a he interval transmis		
		ł			The flow dimension		
1	· · · · · · · · · · · · · · · · · · ·	10 -1	during the test is 2.	The static pres	sure measured at tra	insducer depth,	
10 ⁰ 10 ¹ tD/CD	10 ² 10 ³	10 "		ne CHir phase u	sing straight line ex		
			the Horner plot to a				

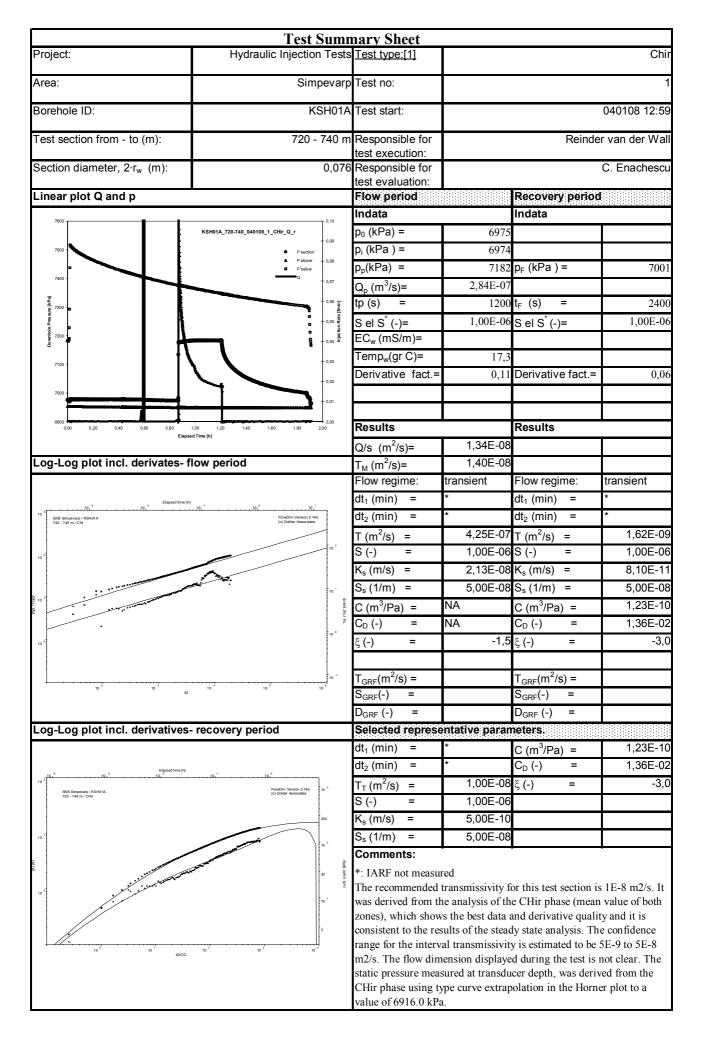


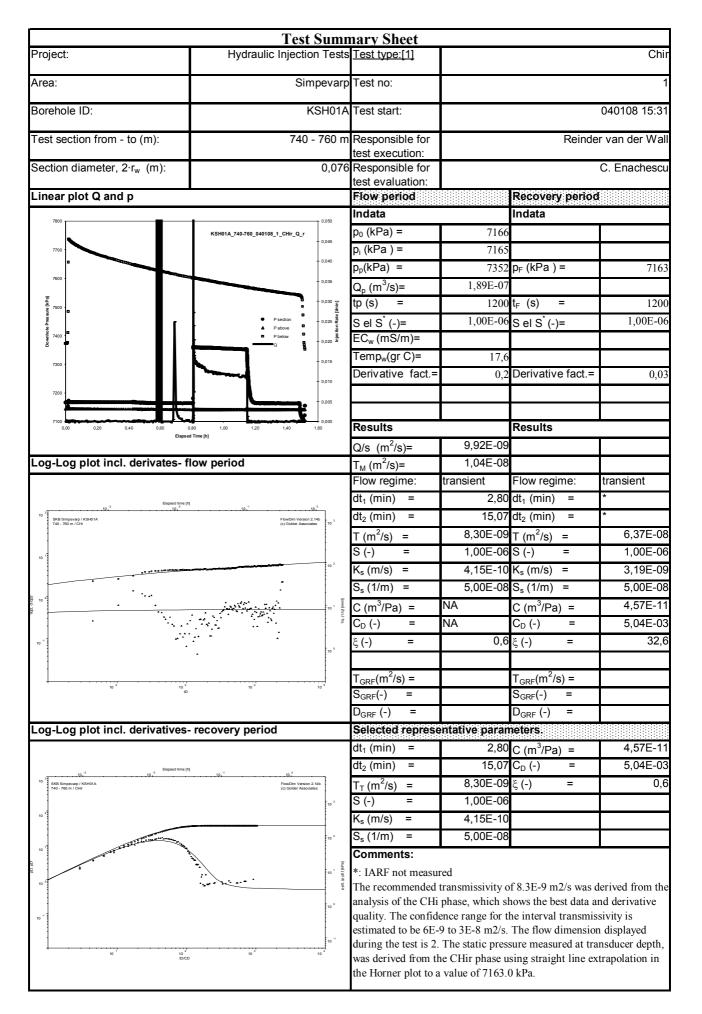


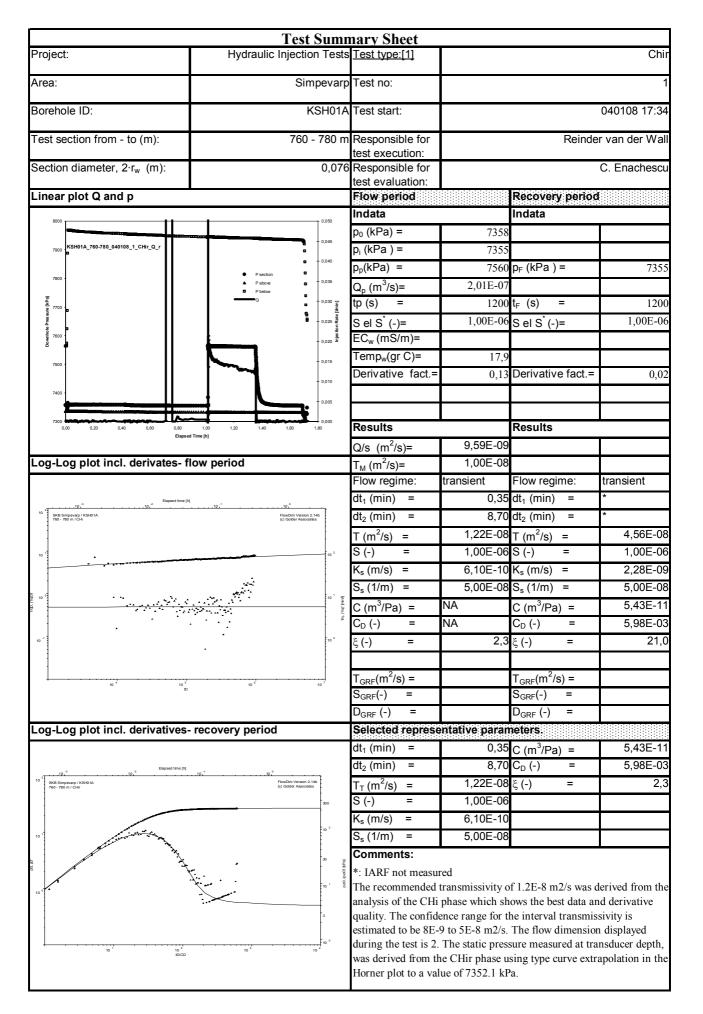


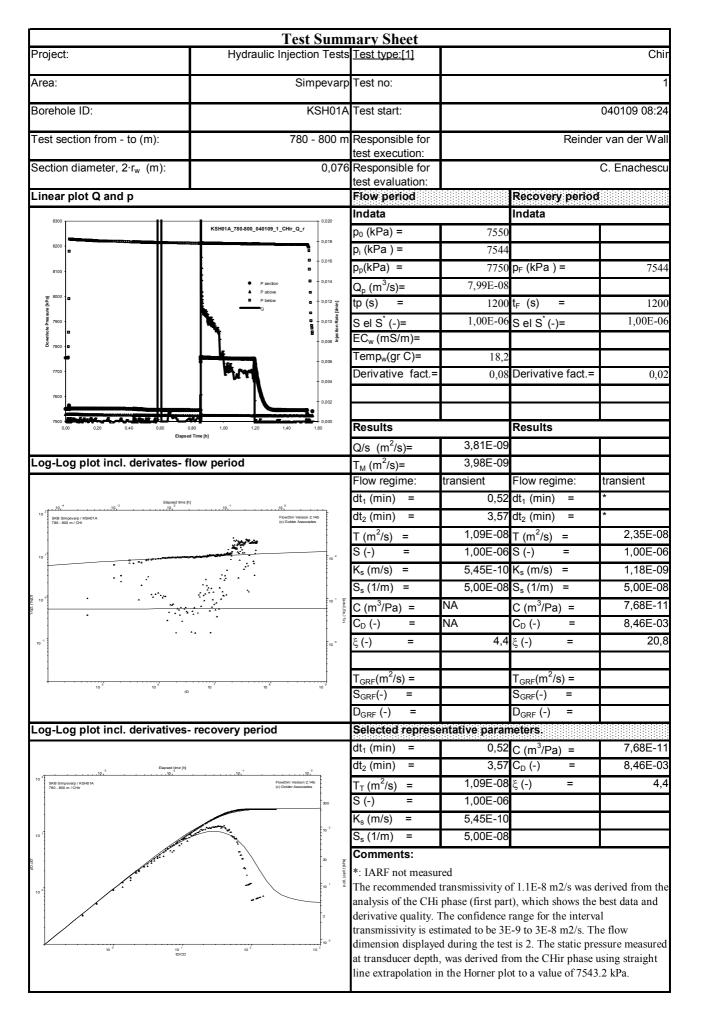


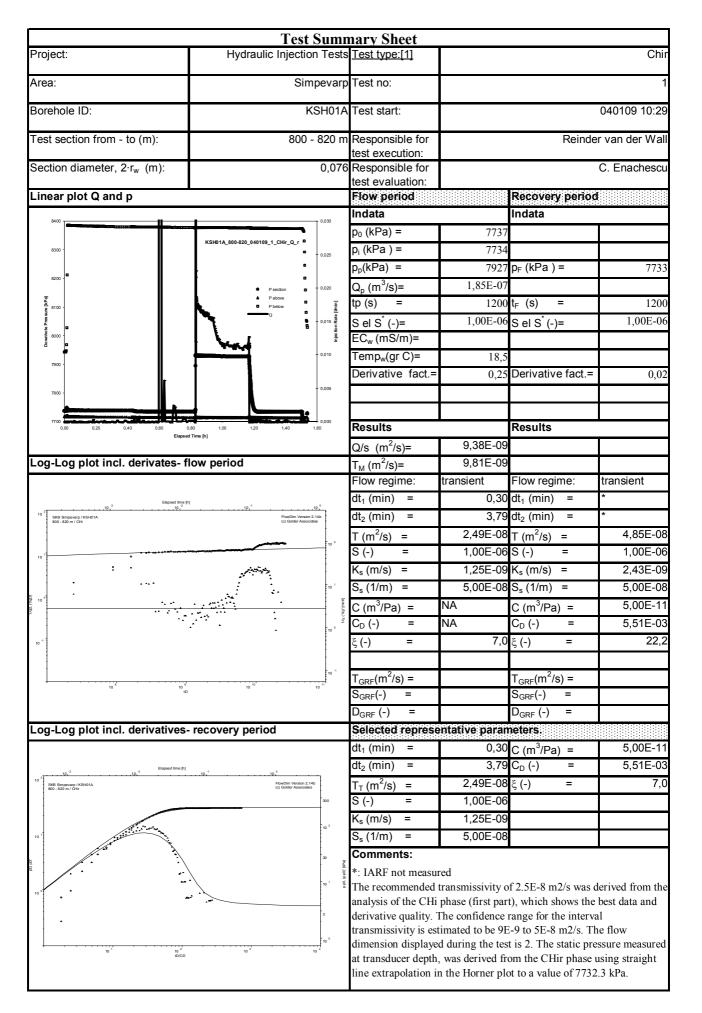


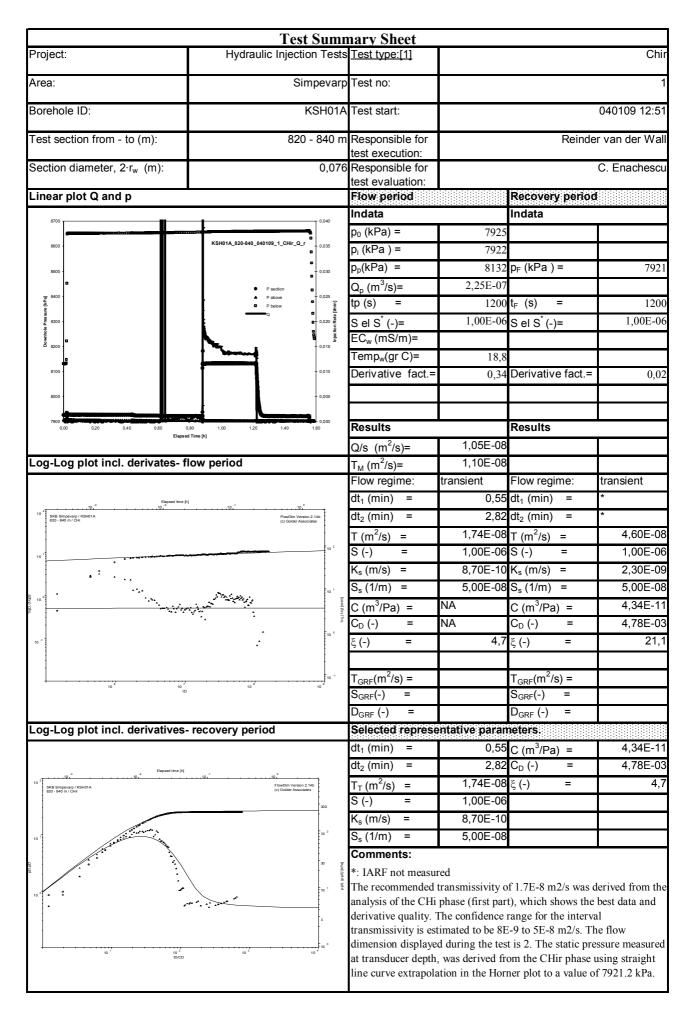


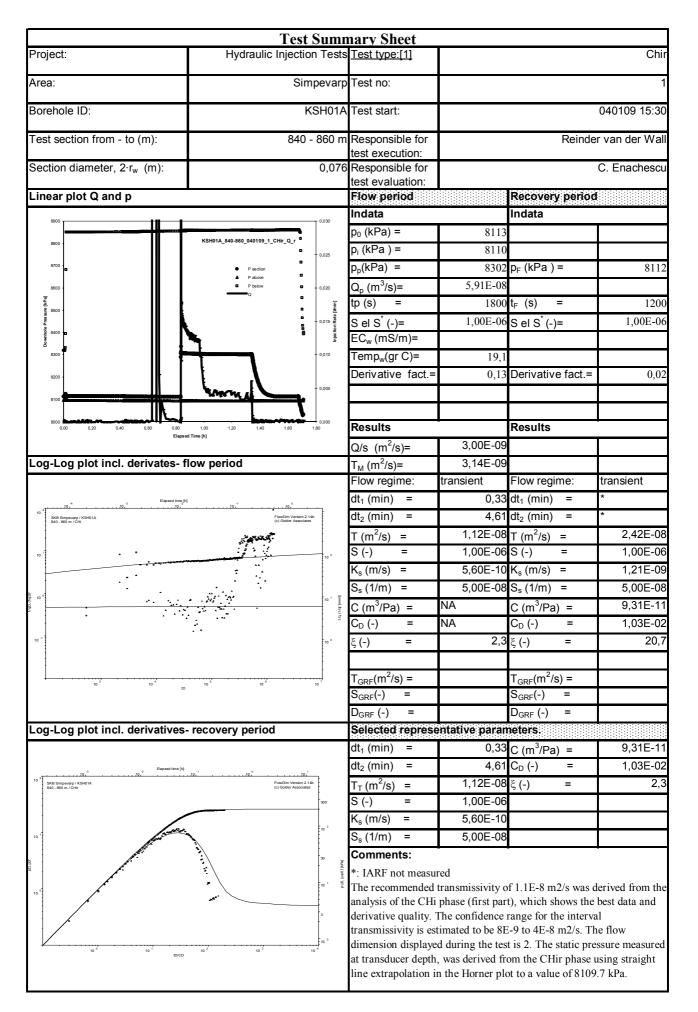


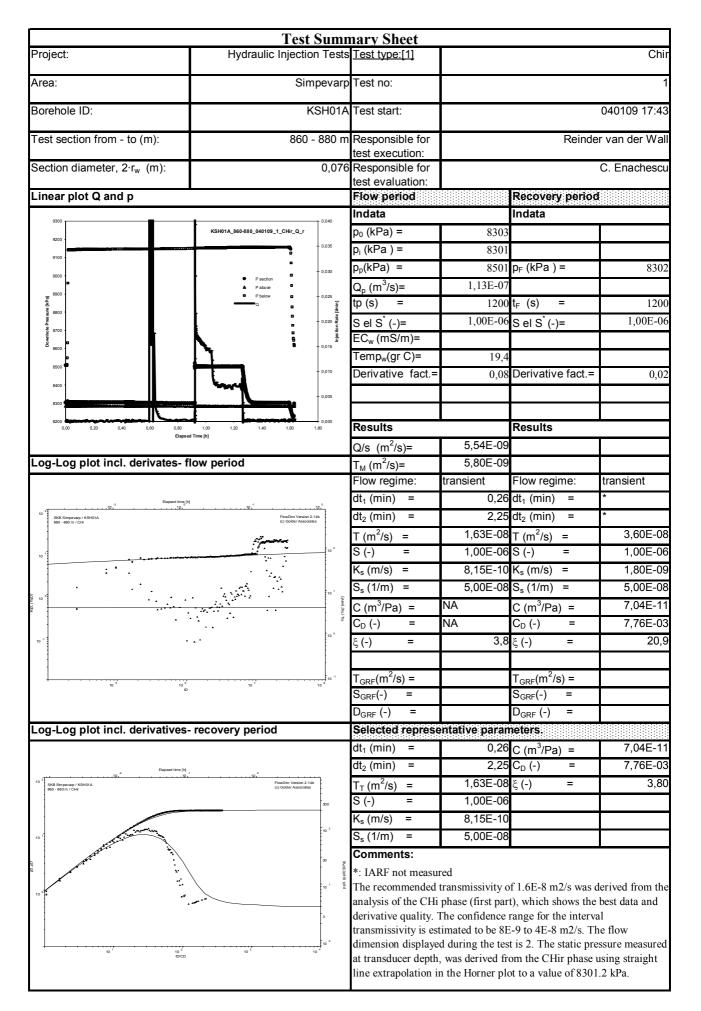


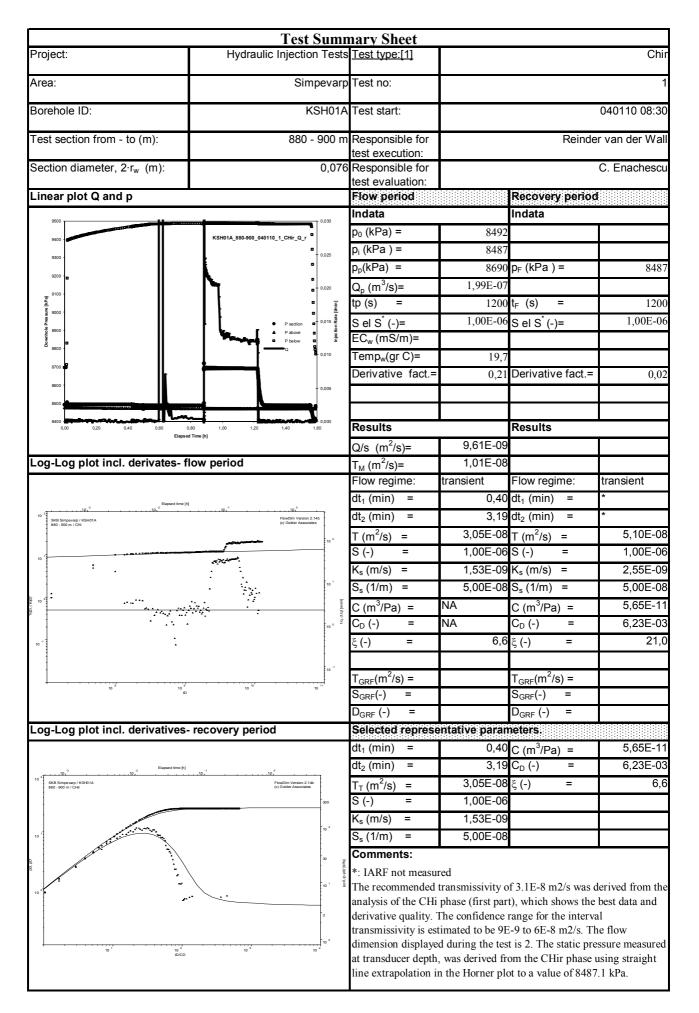




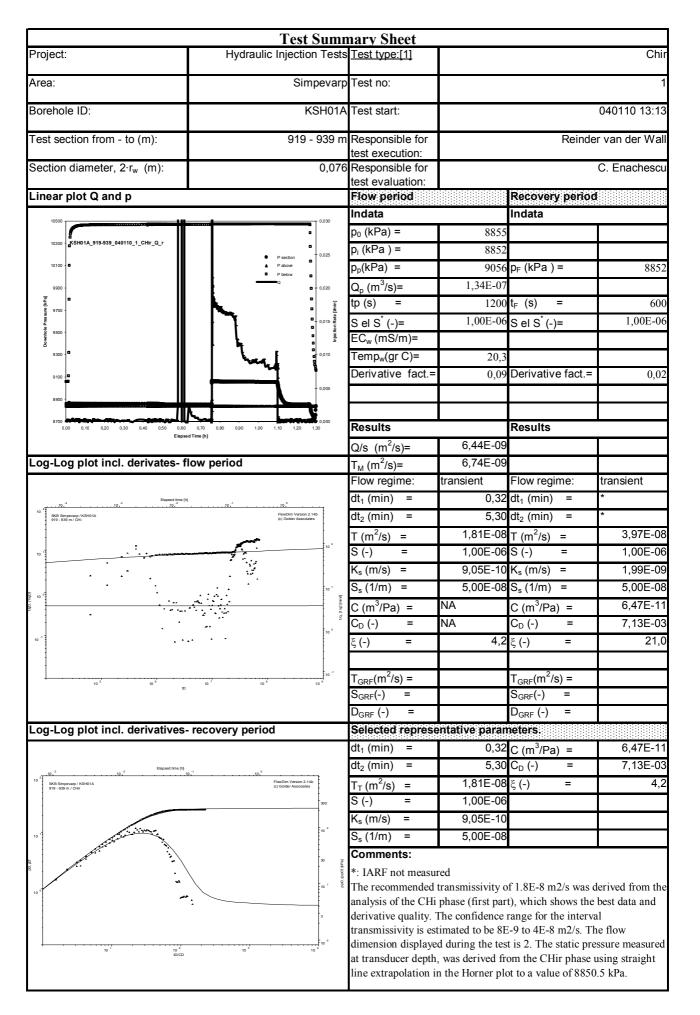


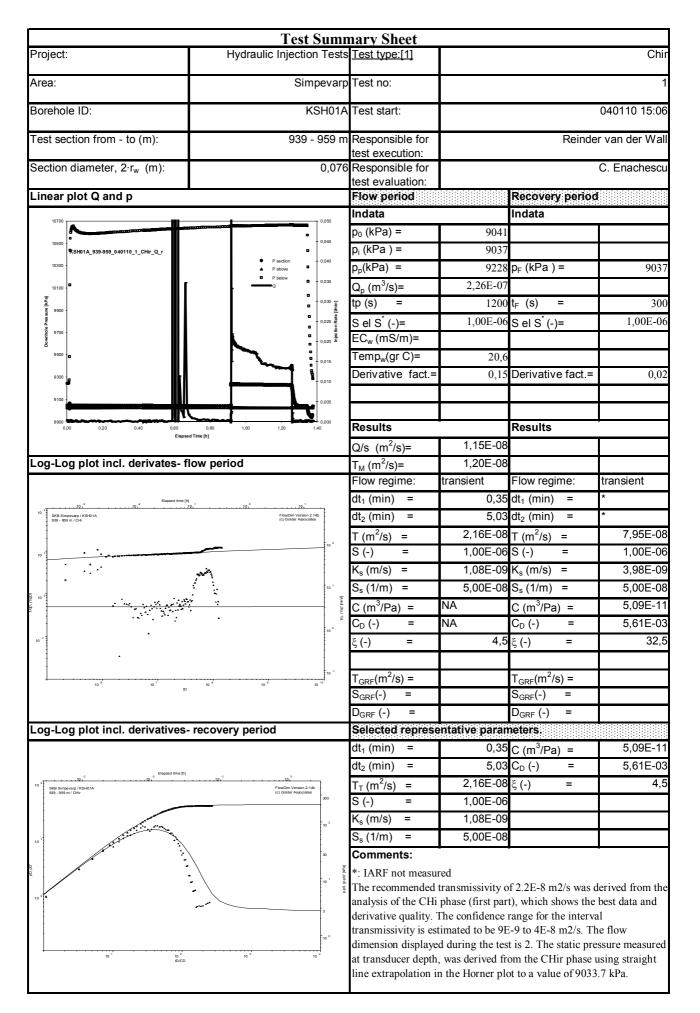


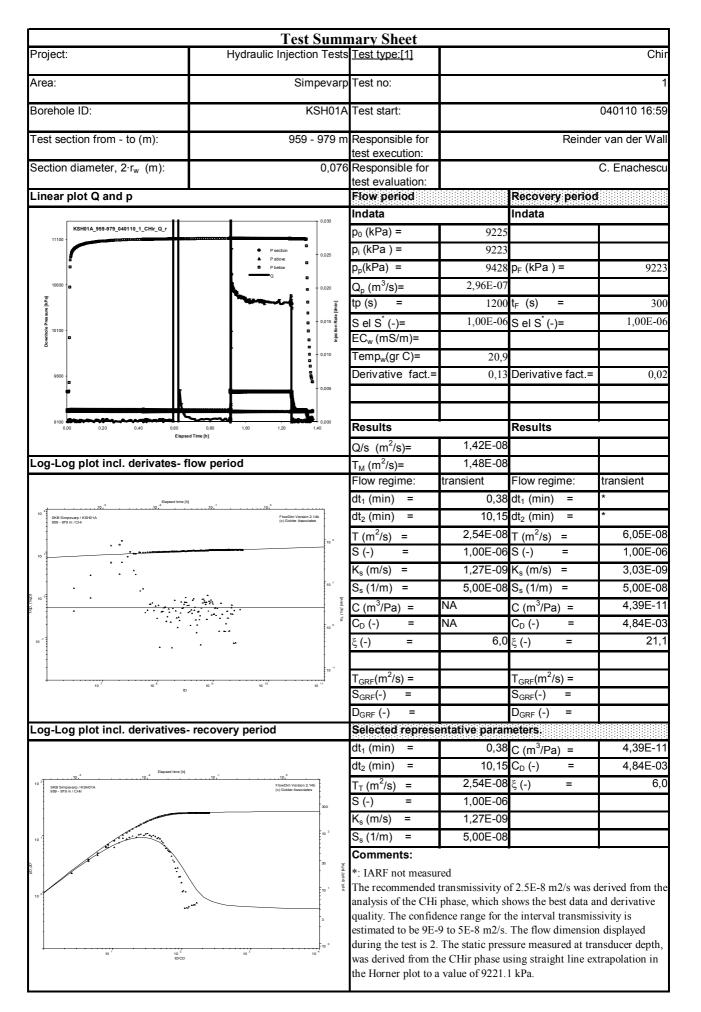


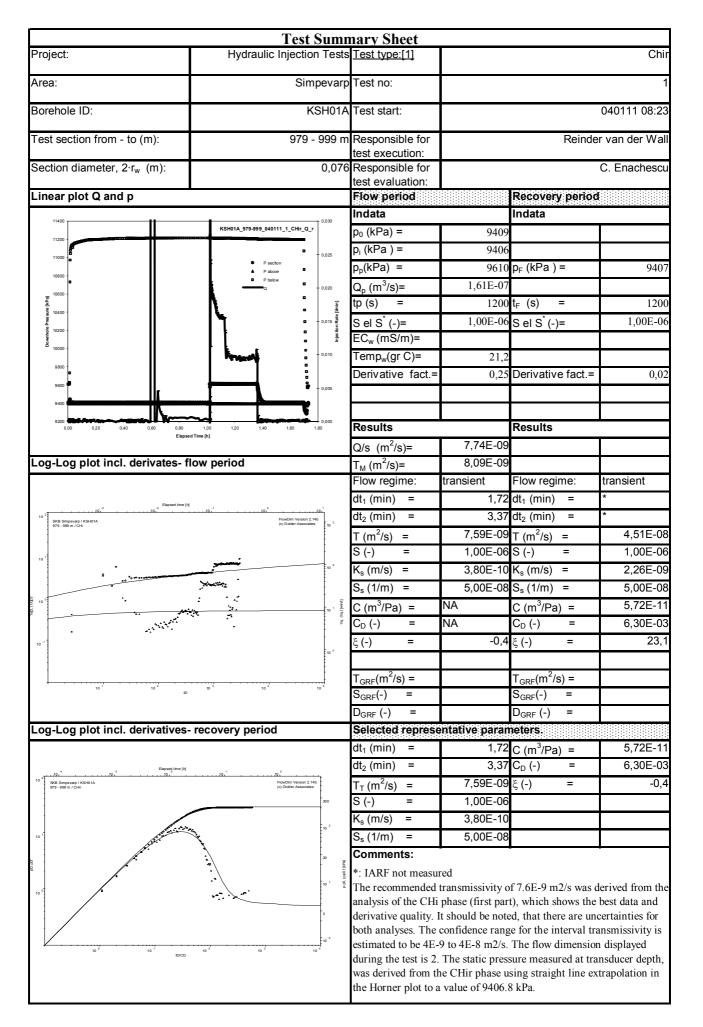


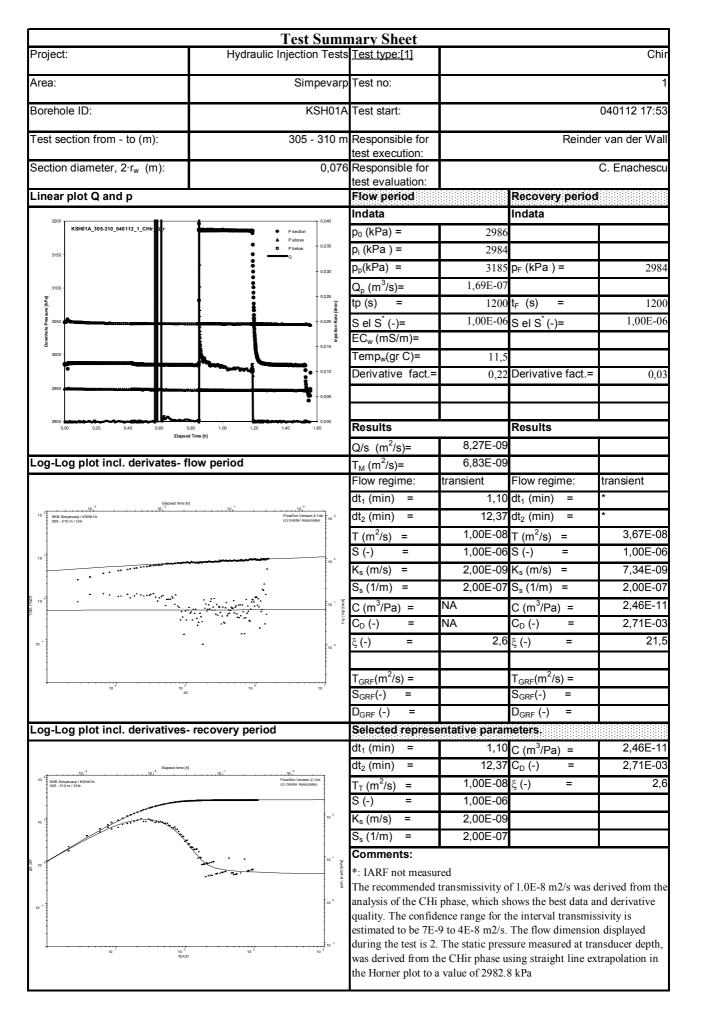


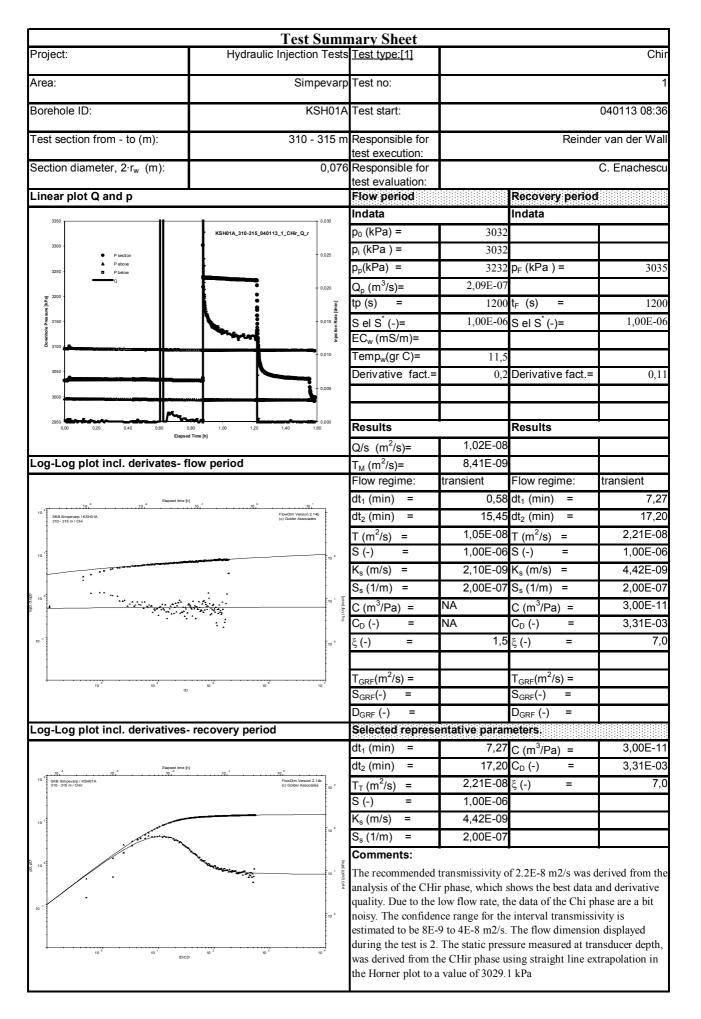


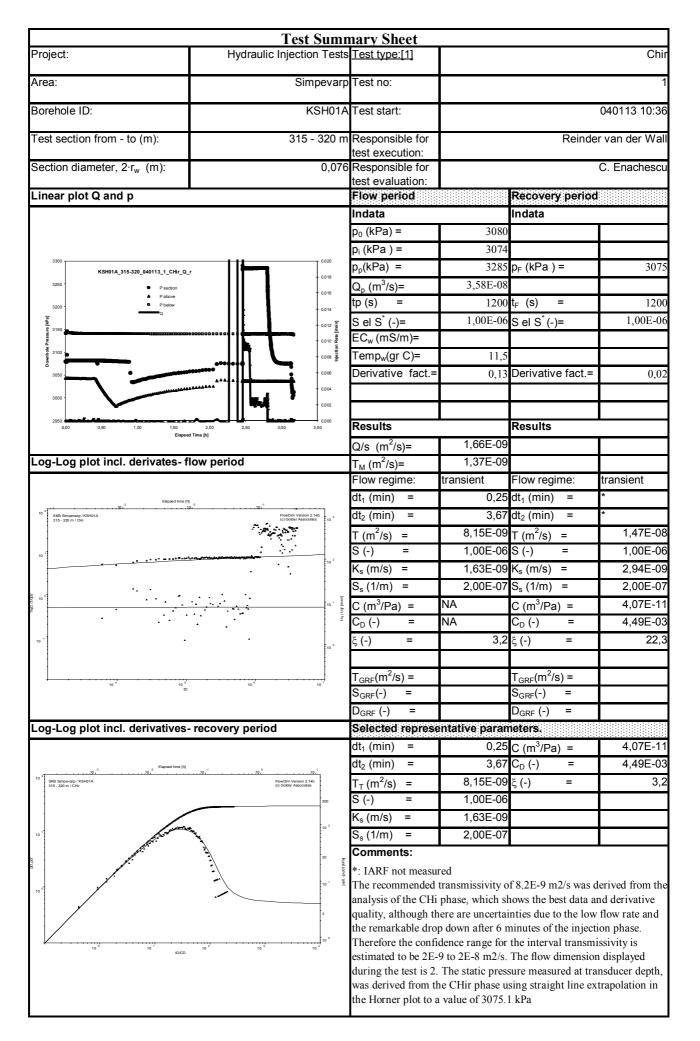


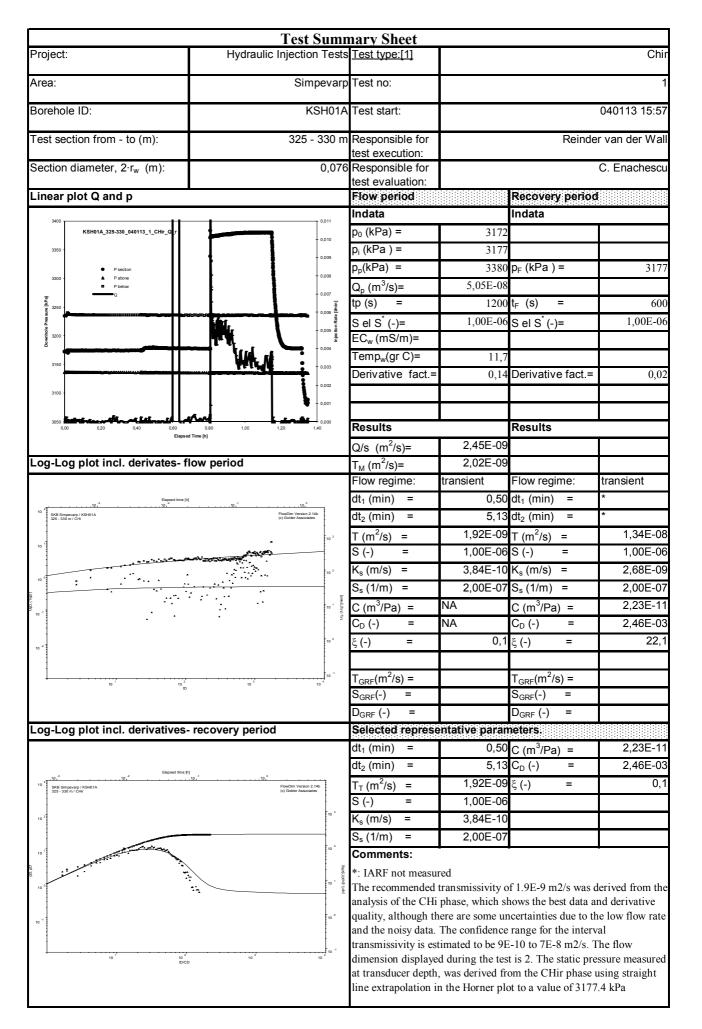


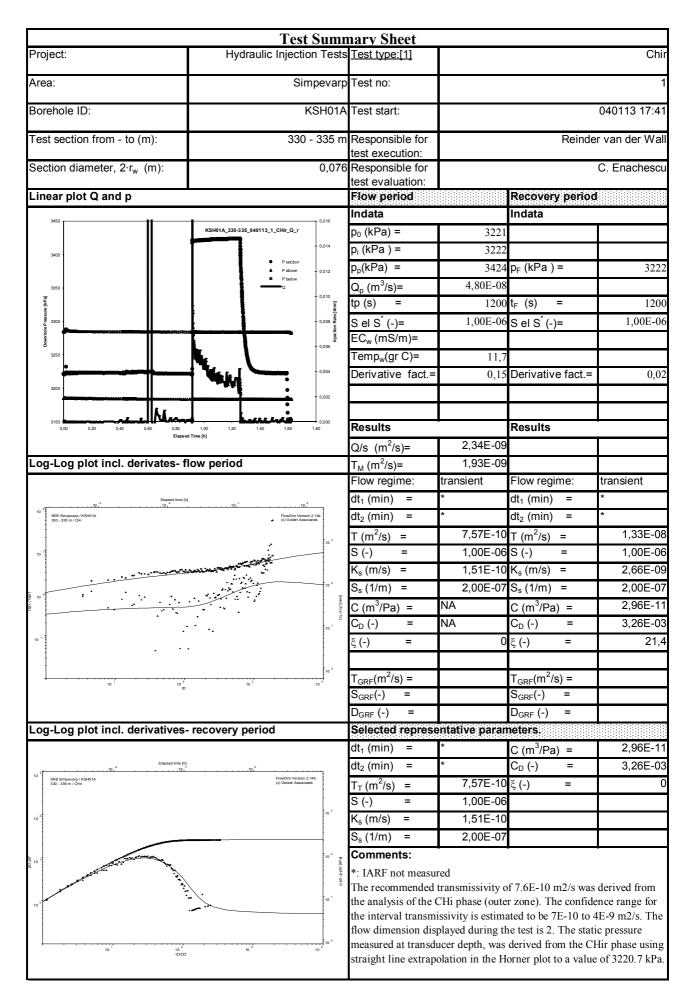


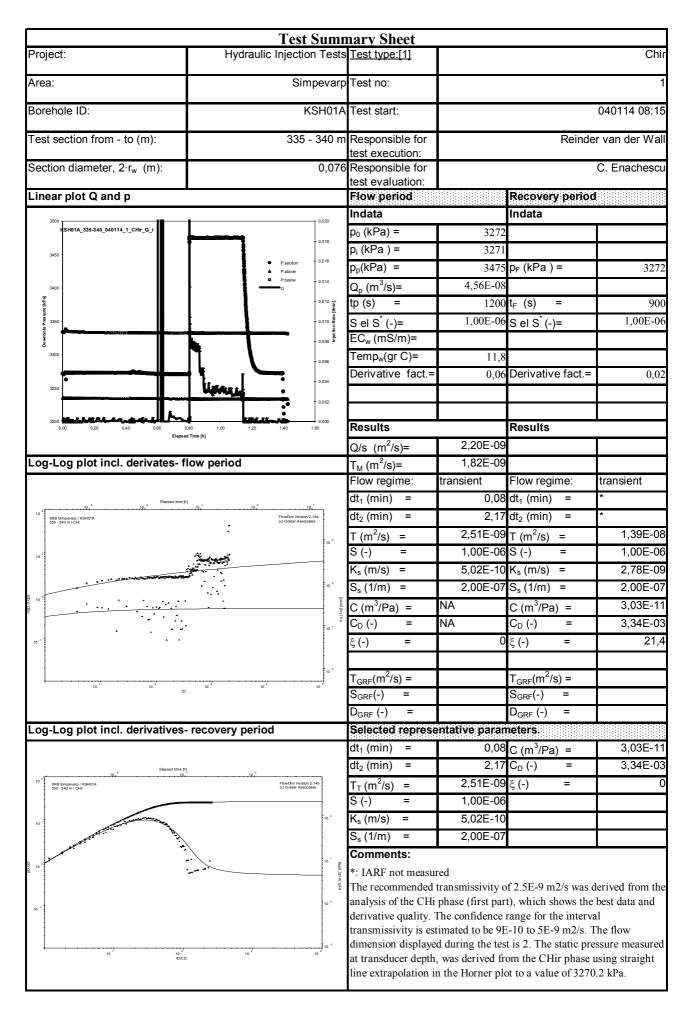


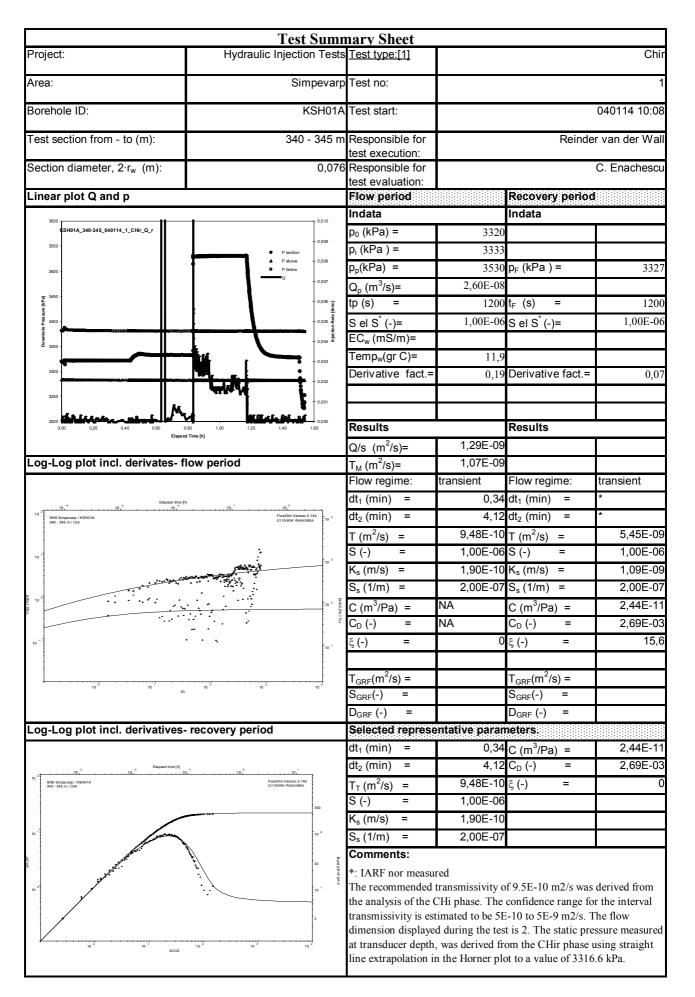


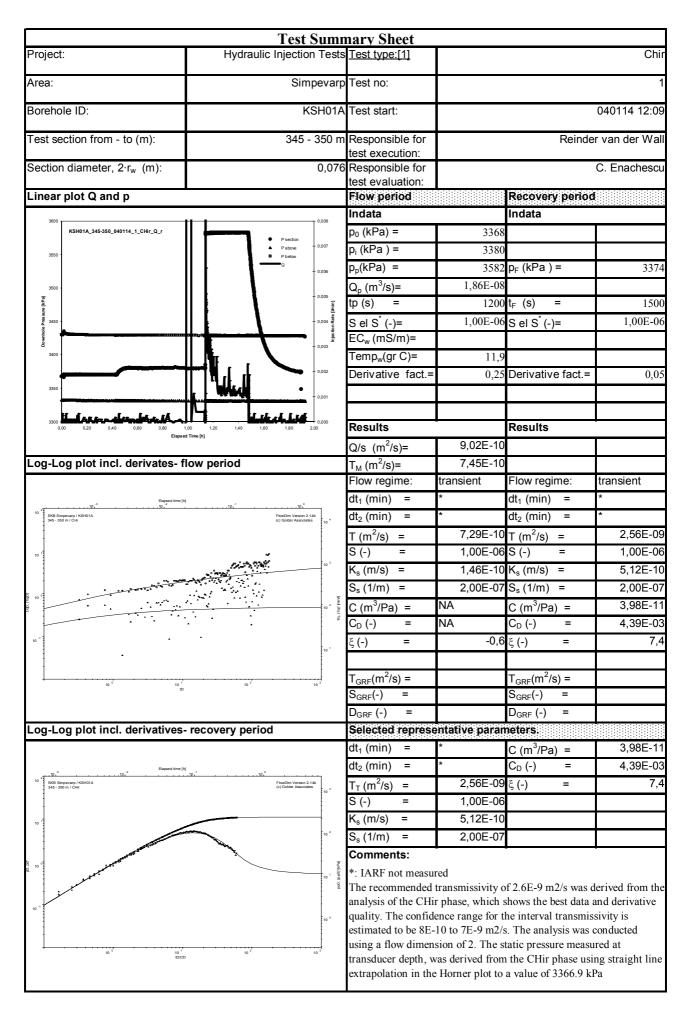


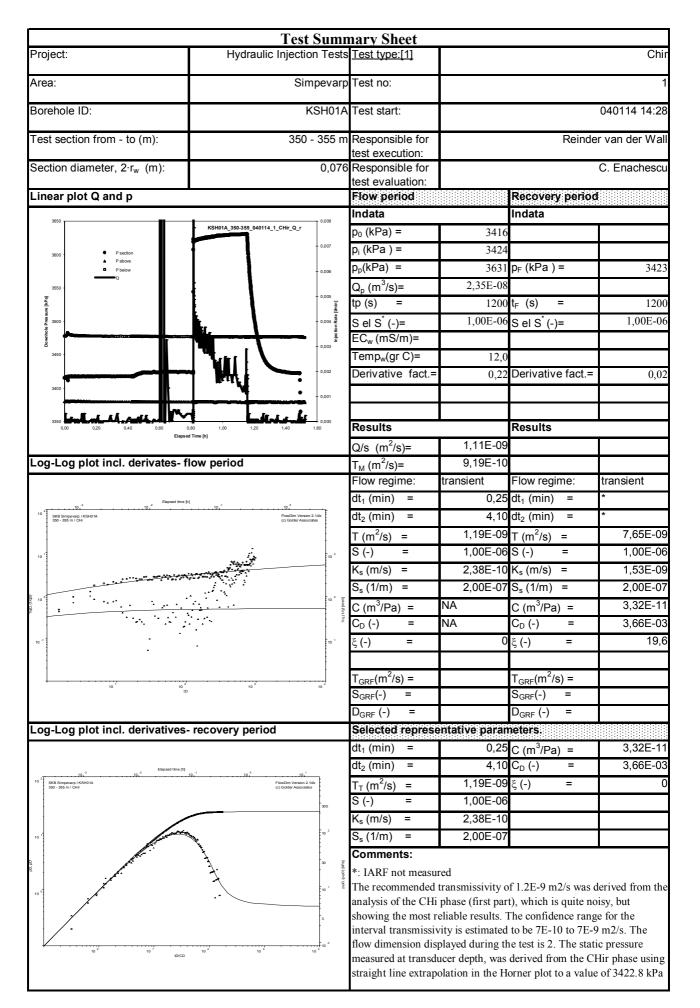

	Test Sumn	nary Sheet				
Project:	Hydraulic Injection Tests	Test type:[1]			Chi	
Area:	Simpevarp	Test no:				
Borehole ID:	KSH01A	Test start:			040112 16:06	
Test section from - to (m):	300 - 305 m	Responsible for		Reinde	er van der Wal	
		test execution:				
Section diameter, 2·r _w (m):	0,076	Responsible for		C. Enachescu		
_inear plot Q and p		test evaluation: Flow period		Recovery period	6	
		Indata		Indata		
3200	0,040	$p_0 (kPa) =$	2947	indulu		
KSH01A_300-305_040112_1_CHir_Q_r	- 0,035	p _i (kPa) =	2939			
		$p_p(kPa) =$		p _F (kPa) =	293	
P section	0,030		1,79E-07	p _F (Ri a) =	293	
e P below	0,025	$\frac{Q_p (m^3/s)}{tp (s)} =$		t _F (s) =	30	
[сд.) 3050 -	الله الله عرفي 10,020 مع				1,00E-0	
	- U.22) %	S el S [*] (-)= EC _w (mS/m)=	1,00E-00	S el S [*] (-)=	1,00E-0	
	0,015		11.4			
2950		Temp _w (gr C)=	11,4	Devisedise feet	0.0	
2900		Derivative fact.=	0,12	Derivative fact.=	0,0	
A	- 0,005					
2850 0,00 0,20 0,40 0,60 Elapsed Tim	0,80 1,00 1,20 1,40 met[h]	Results		Results	1	
and an ulational desirates fla		Q/s (m ² /s)=	8,50E-09			
-og-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	7,01E-09			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time [h]		dt_1 (min) =		dt_1 (min) =	*	
10 SKB Simpevarp / KSH01A 300 - 305 m / CHI	FlowDim Version 2.14b (c) Golder Associates 10 3	dt_2 (min) =		dt_2 (min) =	*	
		$T(m^{2}/s) =$	7,96E-09		5,60E-08	
10 1	10 ²	S (-) =	1,00E-06		1,00E-0	
<u> </u>		$K_s (m/s) =$	1,59E-09		1,12E-0	
10 0		$S_{s}(1/m) =$		$S_{s}(1/m) =$	2,00E-0	
	10 ⁻¹ 10 ⁻¹	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,87E-1	
	24	C _D (-) =	NA	C _D (-) =	2,06E-0	
10 ⁻¹	10 °	ξ(-) =	1,0	ξ(-) =	33,	
		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =		
10 ^{-2'} 10 ^{-2'} 10	10 ⁴ 10 ⁵ 10 ⁶	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
_og-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative parar			
		dt ₁ (min) =		C (m ³ /Pa) =	1,87E-1	
Elapsed time [h]		dt_2 (min) =		$C_{D}(-) =$	2,06E-0	
10 ²	FlowDim Version 2.14b	$T_{T} (m^2/s) =$	7,96E-09		1,	
SKB Simpevarp / KSH01A 300 - 305 m / CHir	(c) Golder Associates 300	S (-) =	1,00E-06		.,	
10 million and 10 million	- 10 ²	$K_s (m/s) =$	1,59E-09			
10 1		$S_{s}(1/m) =$	2,00E-07			
	30	Comments:	,			
*: IARF not measured						
	10 ¹ 01	The recommended		of 8.0E-9 m2/s was o	derived from th	
10	· · · · · · · · · · · · · · · · · · ·	analysis of the CHi	phase, which s	hows the best data a	nd derivative	
1		quality. The confide				
					n dian loriod	
	10 °	estimated to be 5E- during the test is 2				
10 ¹ 0 ¹ 00		during the test is 2.	The static pres		insducer depth,	

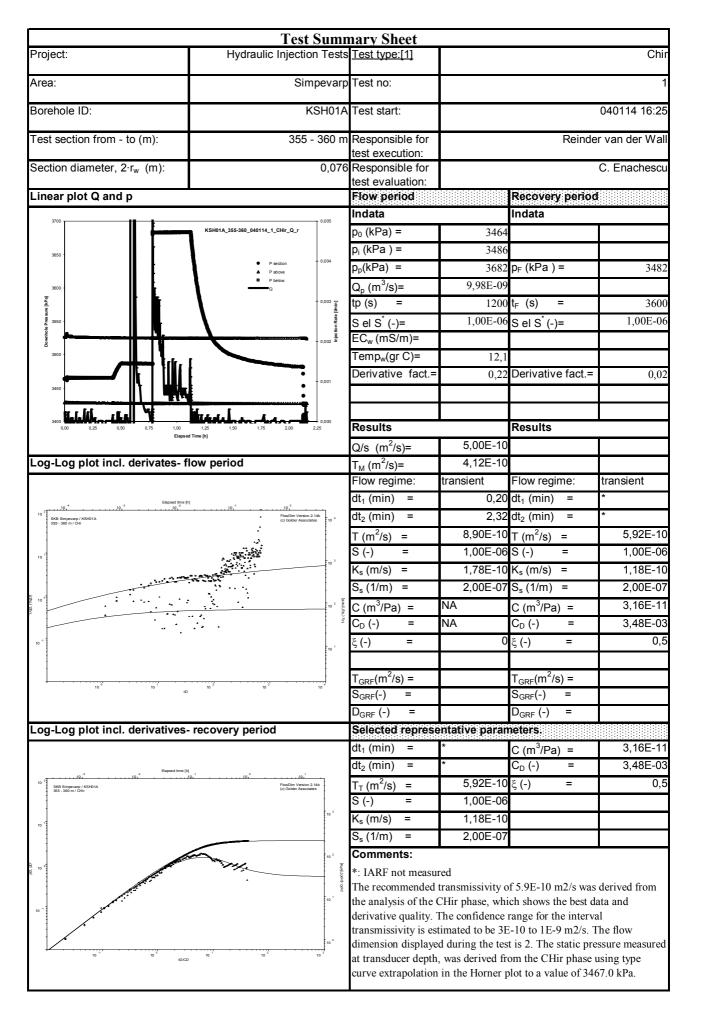


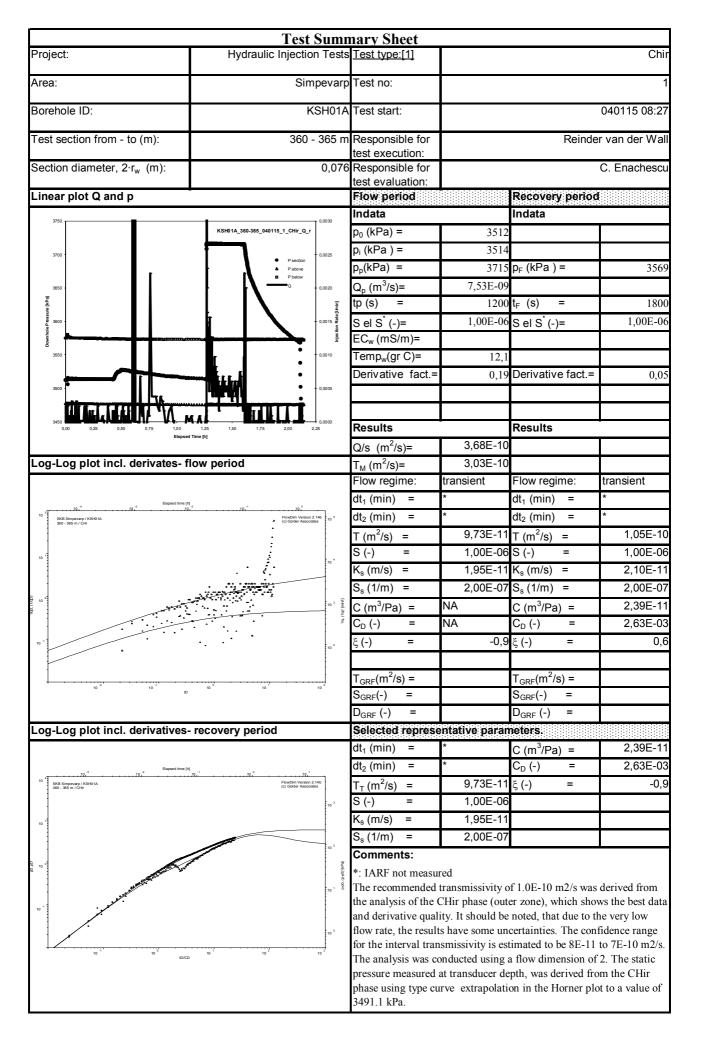


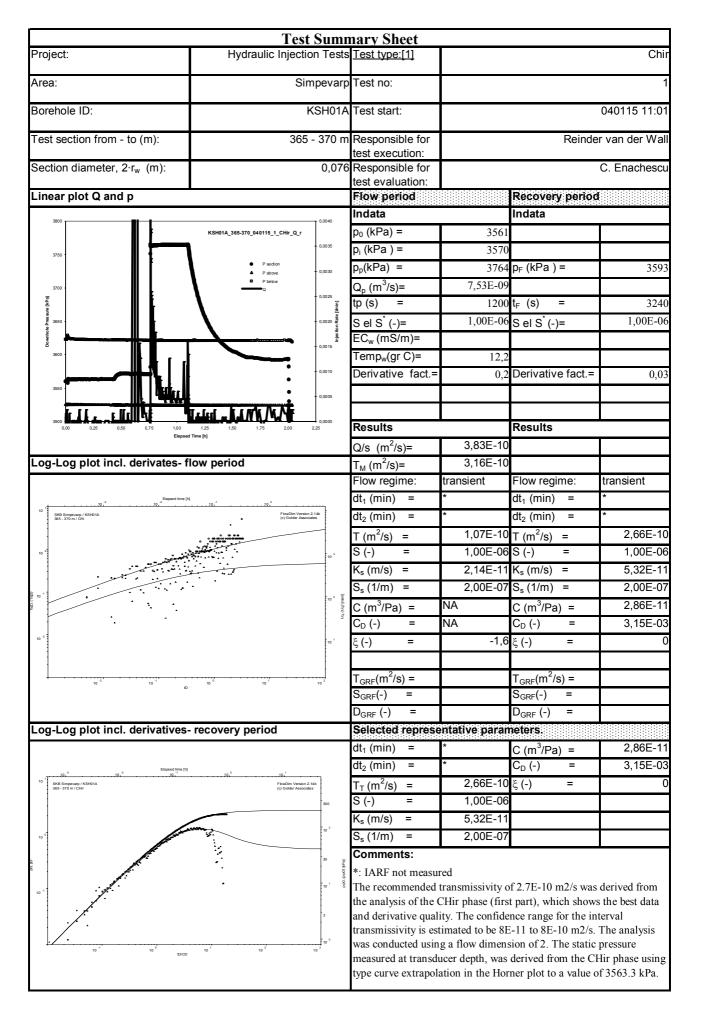


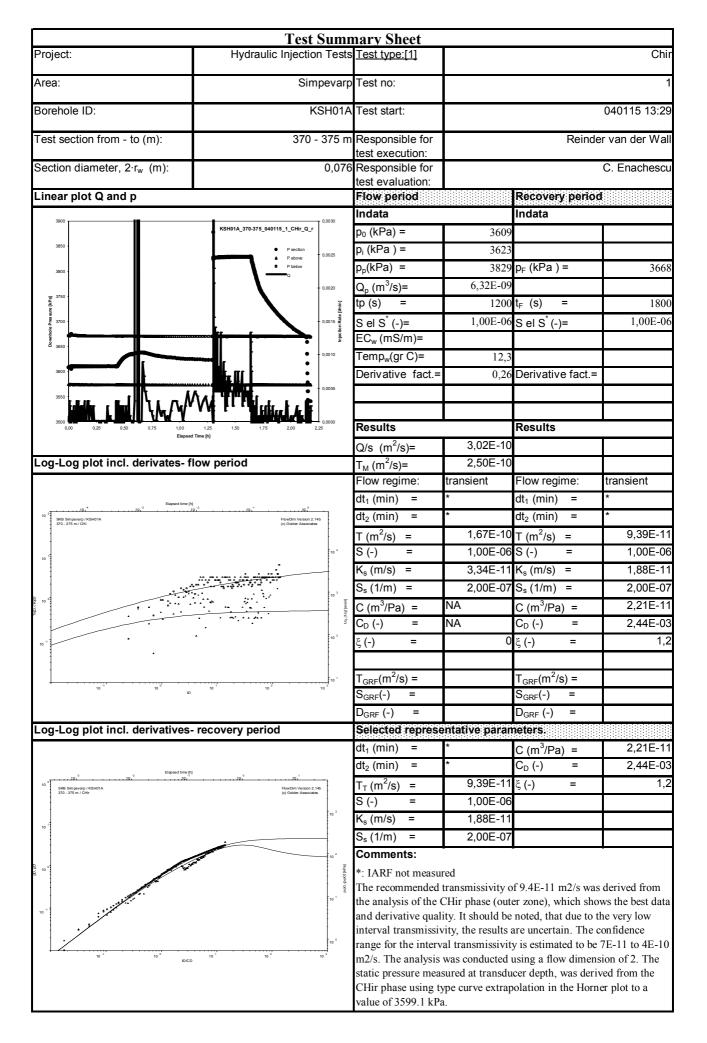

sts <u>Test type:[1]</u> rp Test no: IA Test start: m Responsible for test execution: 76 Responsible for			Chir 1	
IA Test start: m Responsible for test execution:			1	
m Responsible for test execution:				
test execution:			040113 14:11	
		Reinder van der Wa		
		C. Enacheso		
test evaluation:				
Flow period		Recovery period	ļ	
Indata		Indata		
	_			
5 F 5		p _F (kPa) =	3124	
		,	300	
000(=)=	1,00E-06	S el S (-)=	1,00E-00	
= = w ()				
	,			
Derivative fact.=	0,14	Derivative fact.=	0,03	
	-			
	6,76E-09			
	transient	-	transient	
. ,			*	
			*	
		· · /	5,25E-08	
	-	()	1,00E-0	
			1,05E-08	
			2,00E-0	
5		, ,	1,76E-1	
C _D (-) =			1,94E-0	
ξ(-) =	4,4	ξ(-) =	33,	
T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =		
S _{GRF} (-) =		S _{GRF} (-) =		
$D_{GRF}(-) =$		D _{GRF} (-) =		
Selected represe	entative parar	neters.		
dt ₁ (min) =			1,76E-1	
dt_2 (min) =			1,94E-03	
$T_T (m^2/s) =$			4,4	
S (-) =				
$K_s (m/s) =$				
	2,00E-07			
[°] Comments:				
*: IARF not measured				
transmissivity is es	timated to be 7H	E-9 to 6E-8 m2/s. Th	ne flow	
	For the transmissivity is est $For the transmissivity is est For the transmissivity is est For the transmissivity is est For the transmissive transmissi$		$\begin{tabular}{ c c c c c c } \hline p_p(kPa) = & 3124 \\ \hline p_p(kPa) = & 3330 & p_F(kPa) = \\ \hline Q_p(m^3/s) = & 1,72E-07 \\ \hline tp(s) = & 1200 & t_F(s) = \\ \hline SelS'(-) = & 1,00E-06 & SelS'(-) = \\ \hline EC_w(mS/m) = & \\ \hline Temp_w(grC) = & 11,6 \\ \hline Derivative fact. = & 0,14 & Derivative fact. = \\ \hline & & \\ \hline & & \\ \hline Results & Results \\ \hline Q/s(m^2/s) = & 8,19E-09 \\ \hline T_M(m^2/s) = & 6,76E-09 \\ \hline Flow regime: & transient & Flow regime: \\ \hline dt_1(min) = & 0,18 & dt_1(min) = \\ \hline dt_2(min) = & 13,31 & dt_2(min) = \\ \hline T(m^2/s) = & 1,21E-08 & T(m^2/s) = \\ \hline S(-) = & 1,00E-06 & S(-) = \\ \hline K_s(m/s) = & 2,42E-09 & K_s(m/s) = \\ \hline S_s(1/m) = & 2,00E-07 & S_s(1/m) = \\ \hline C(m^3/Pa) = & NA & C(m^3/Pa) = \\ \hline C_D(-) = & NA & C_D(-) = \\ \hline \hline G_{RF}(-) = & D_{GRF}(-) = \\ \hline D_{GRF}(-) = & D_{GRF}(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & C(m^3/Pa) = \\ \hline T_T(m^2/s) = & T_{3,31} & C_D(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & C(m^3/Pa) = \\ \hline T_T(m^2/s) = & 1,21E-08 & C(m^3/Pa) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 2,42E-09 & \\ \hline T_T(m^2/s) = & 2,42E-09 & \\ \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline T_T(m^2/s) = & 1,21E-08 & \xi(-) = \\ \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 2,00E-07 & \\ \hline \hline T_T(m^2/s) = & 1,00E-06 & \\ \hline \hline T_T(m^2/s) = & 1,00E-06 & \\ $	

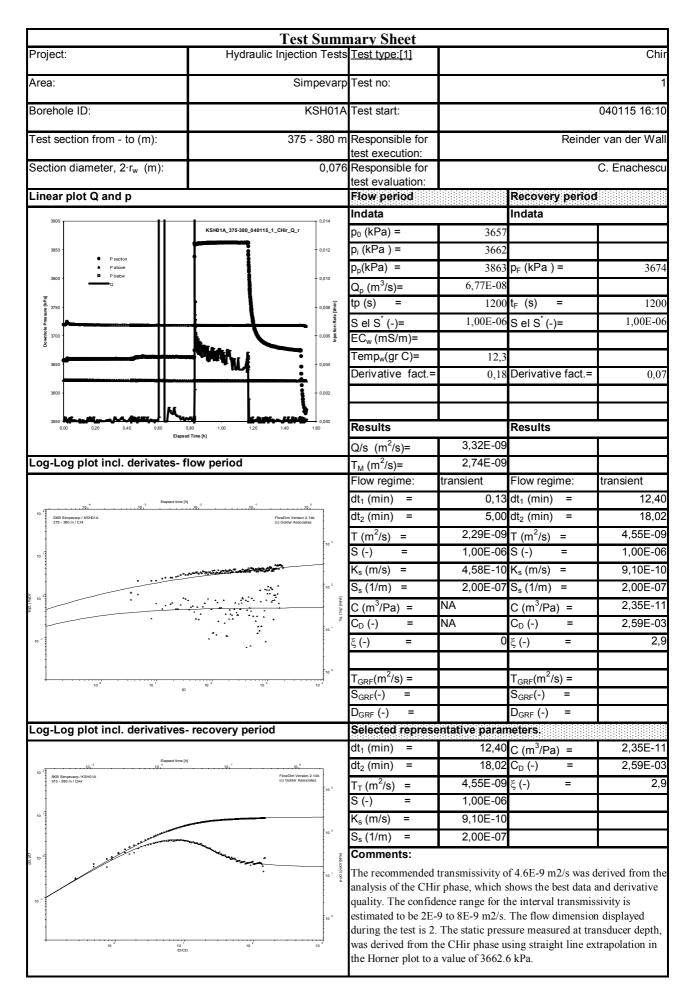


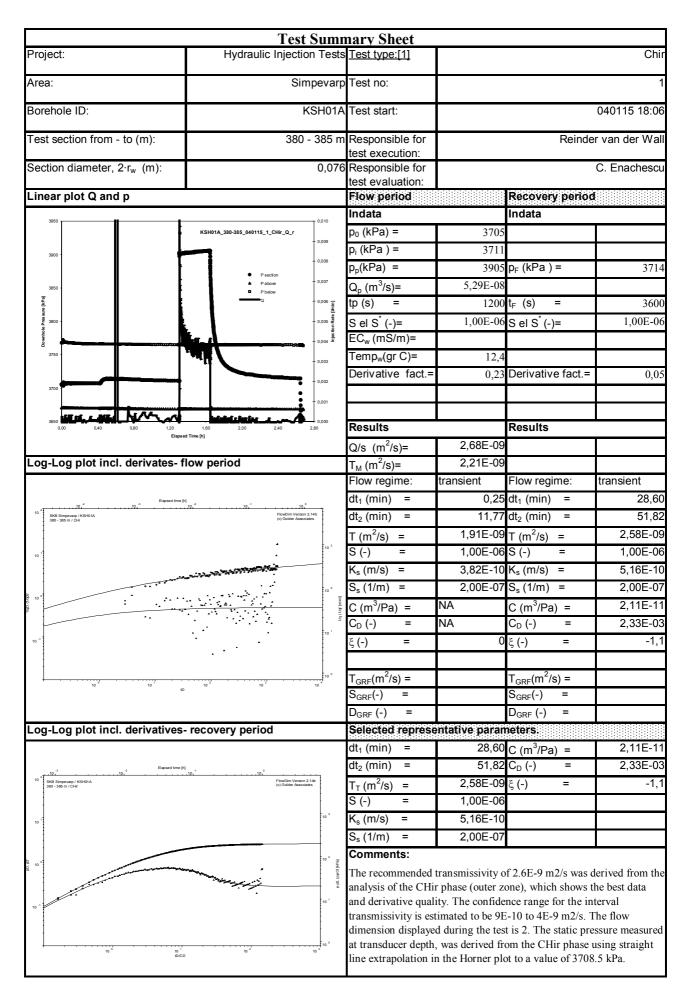


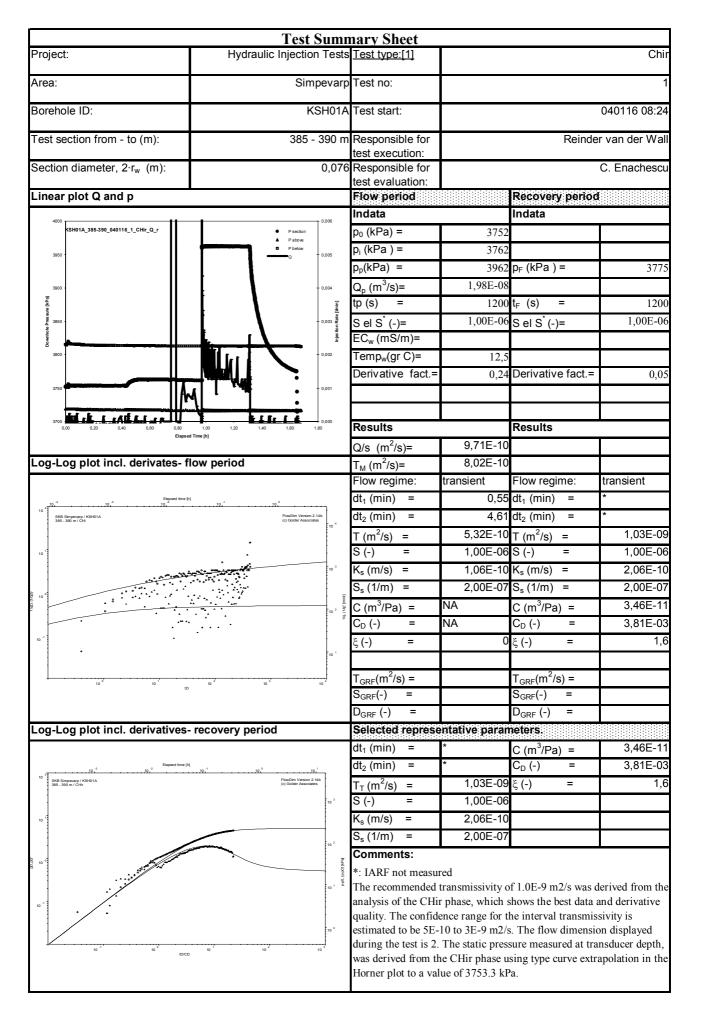


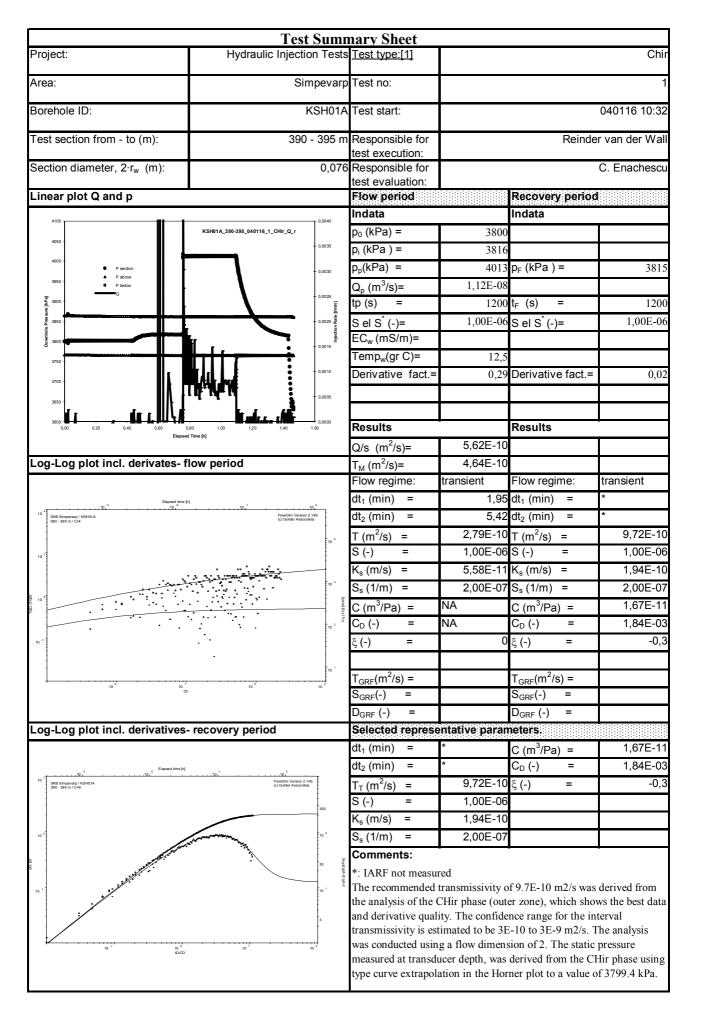


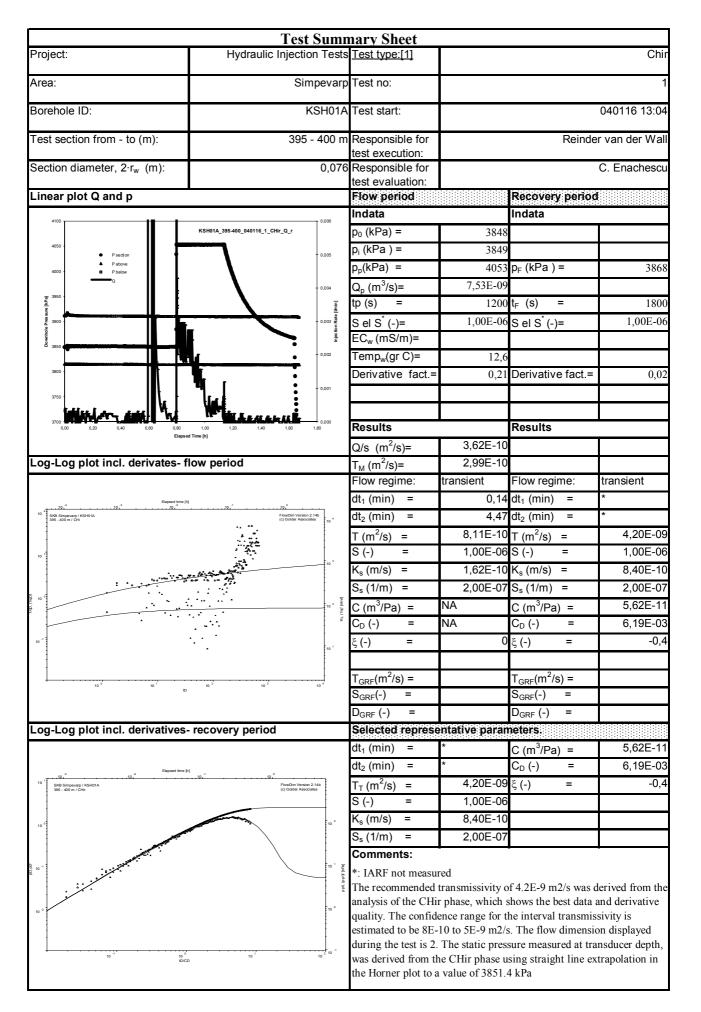


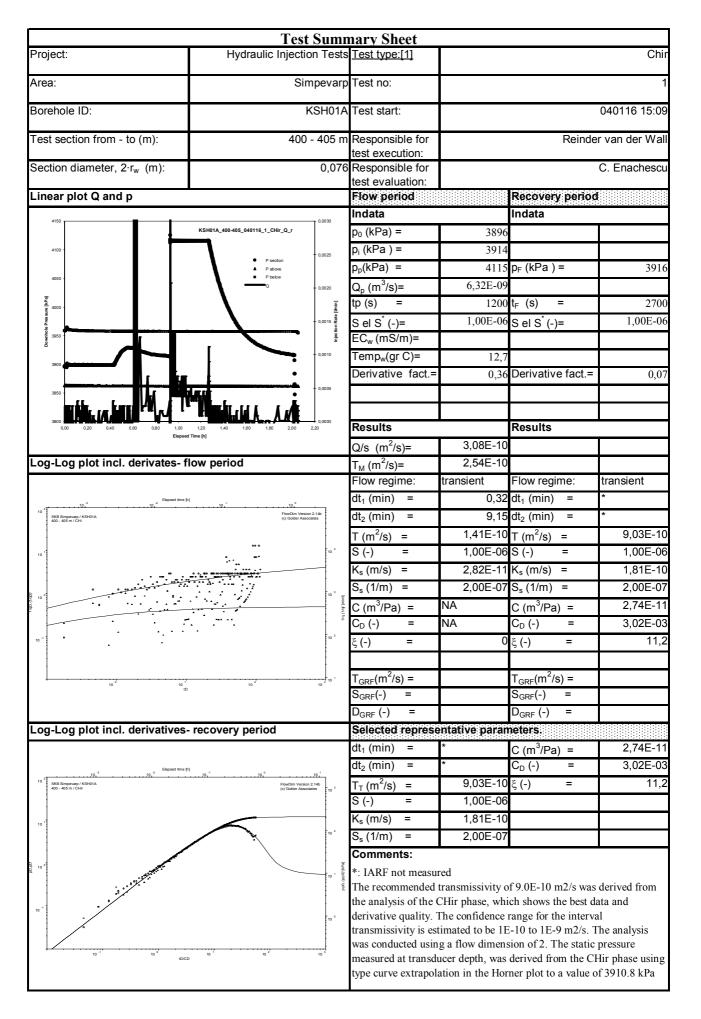


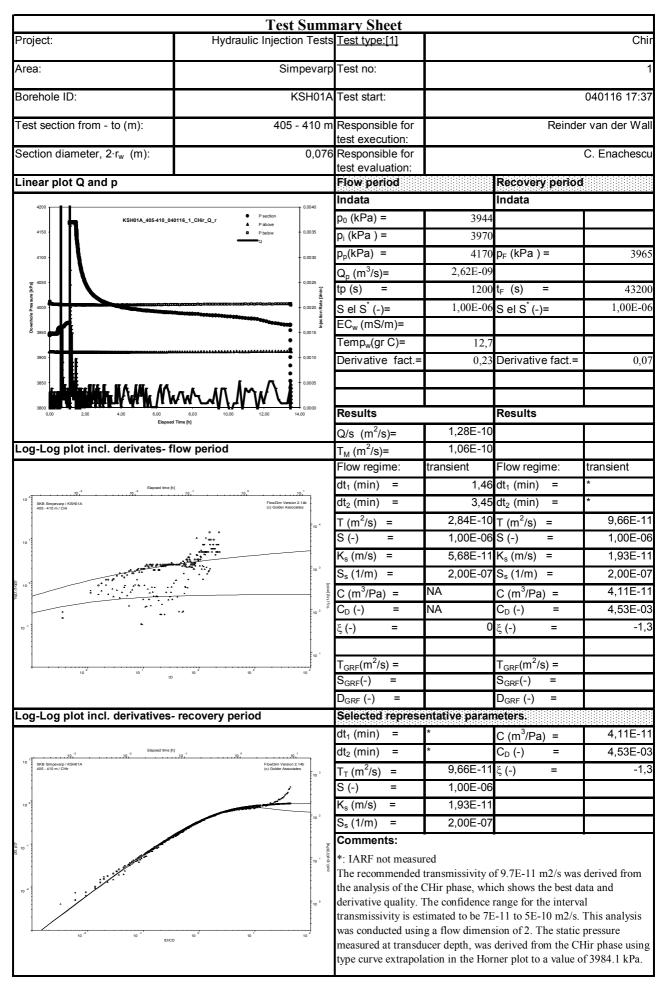


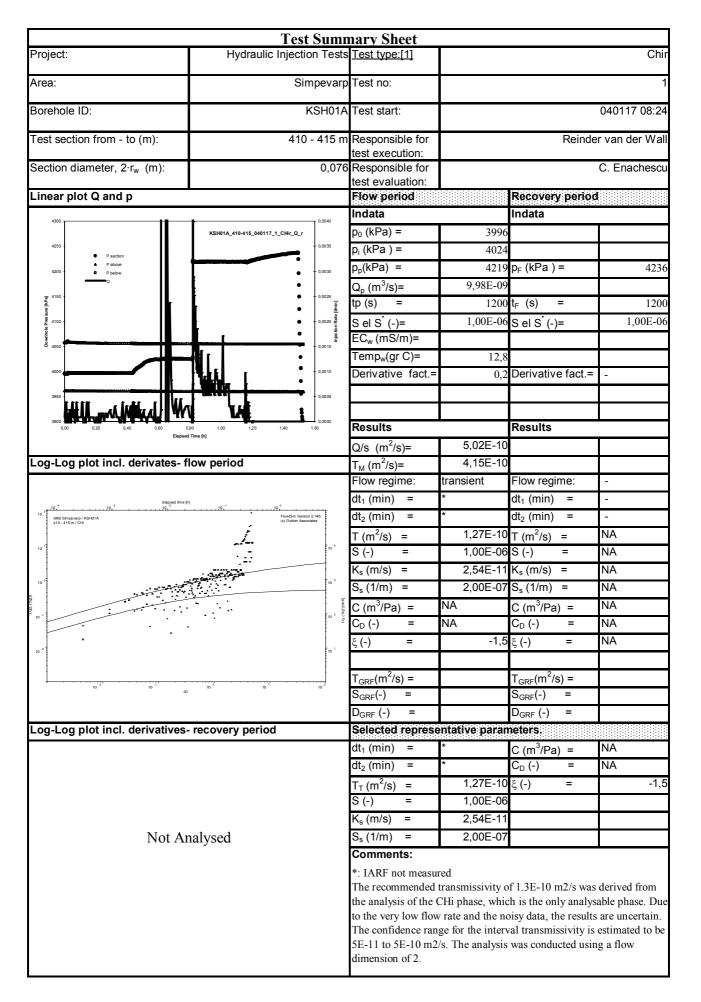


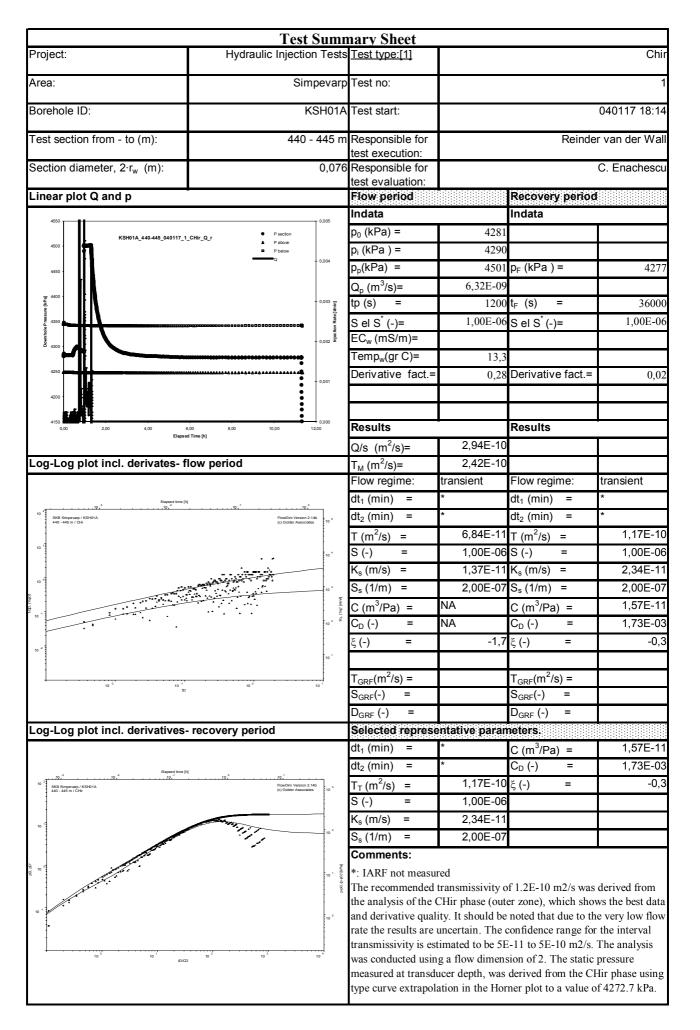


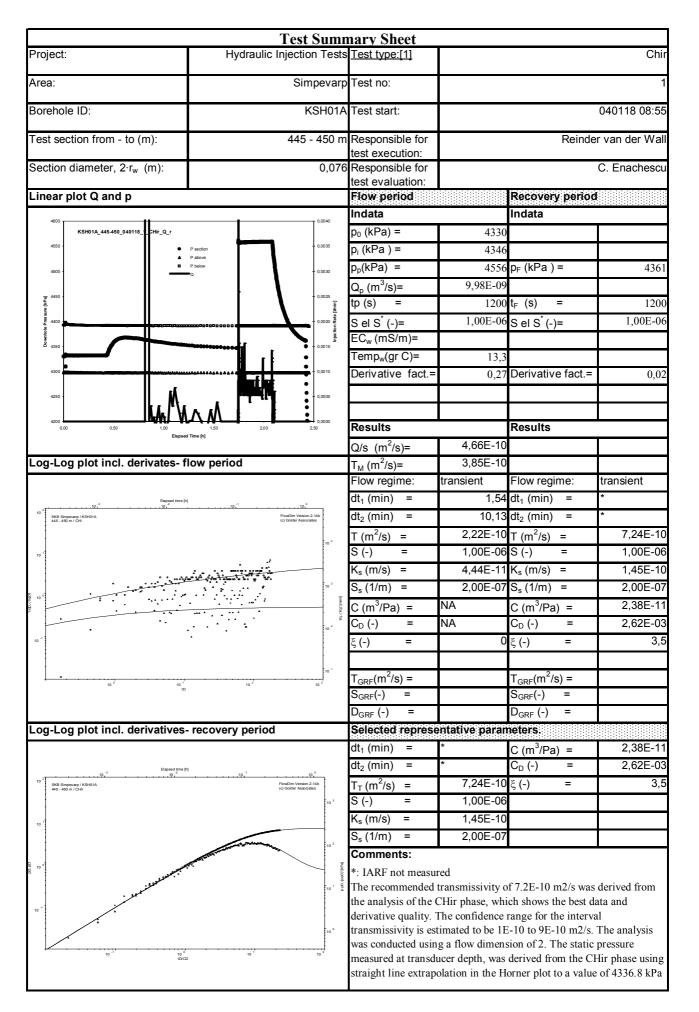




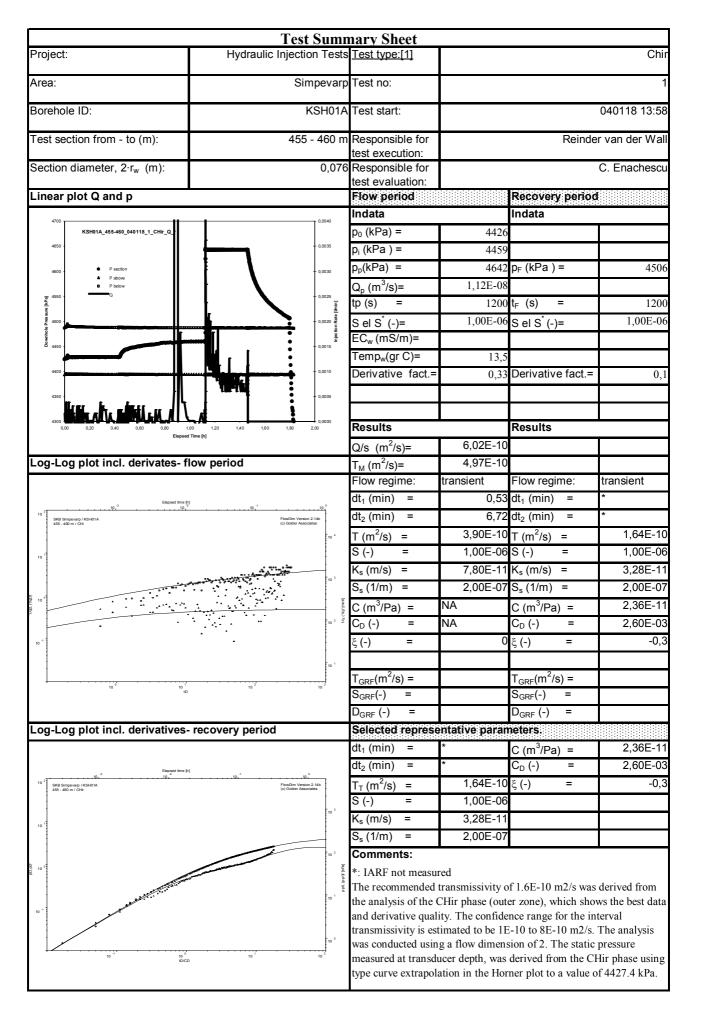


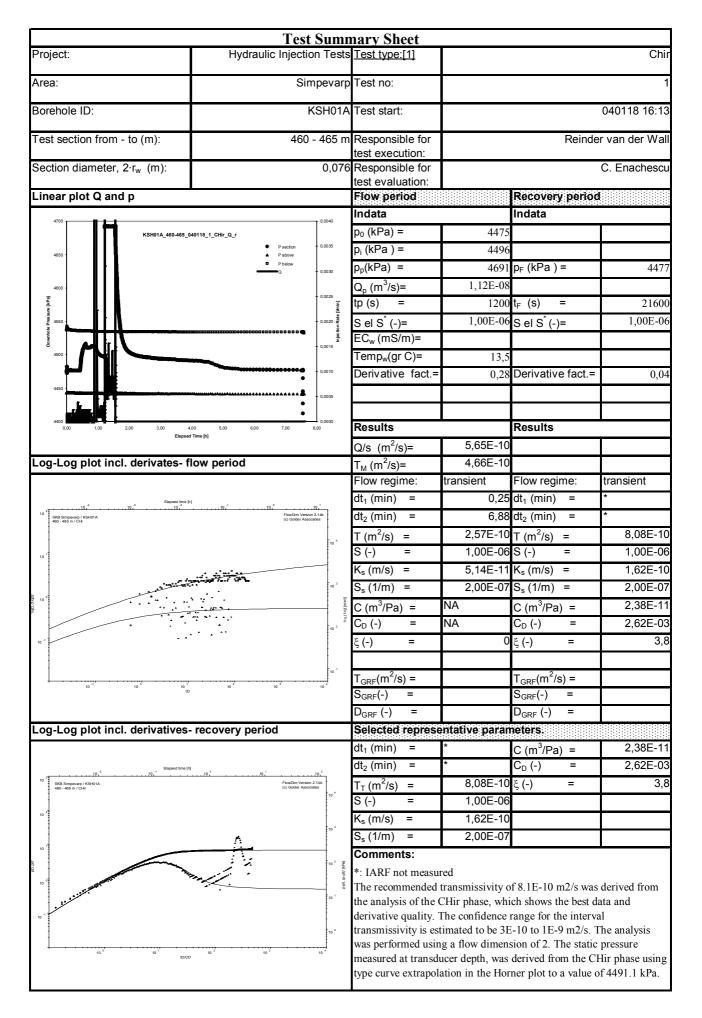


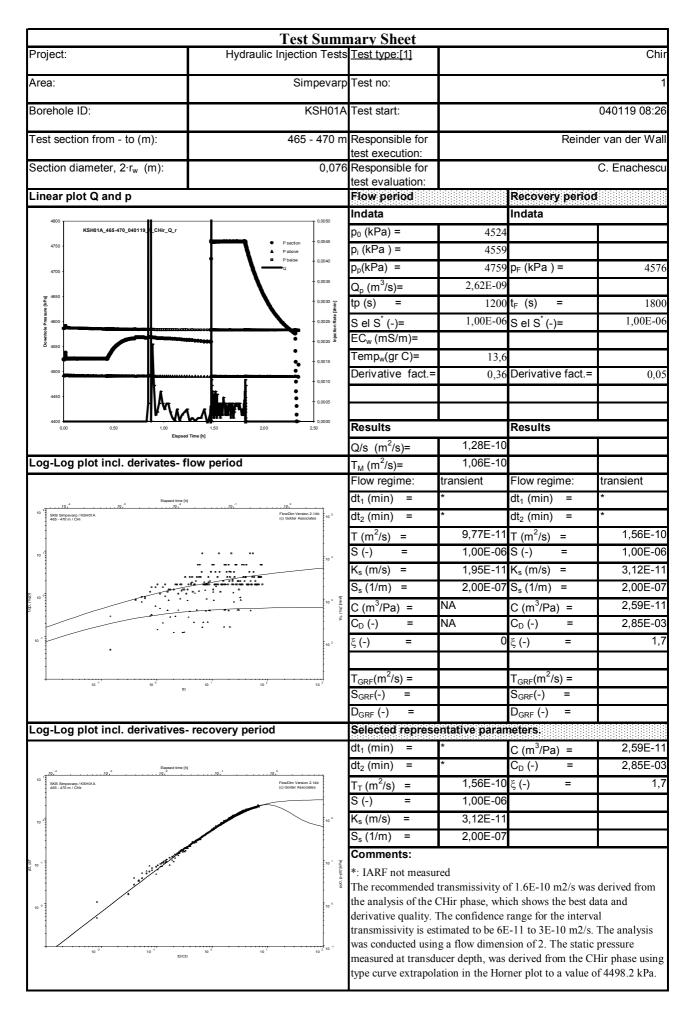

	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040117 10:22
					040111 10.22
Test section from - to (m):		Responsible for test execution:		Reinde	r van der Wall
Section diameter, 2·r _w (m):		Responsible for			C. Enachescu
	test evaluation:				
Linear plot Q and p		Flow period		Recovery period	
4300	0,010	Indata		Indata	
KSH01A_415-420_040117_1_CHir_Q_r	- 0,09	p ₀ (kPa) =	4043		
4250 -	- 0.008	p _i (kPa) =	-		
P section	0.007	p _p (kPa) =	-	p _F (kPa) =	-
4200 - B P below		$Q_p (m^3/s) =$	-		
dX] uns	- 0.006 대 별	tp (s) =	-	t _F (s) =	-
Герд) от 150 - 4 4150 - 4 4150 -		S el S [*] (-)=	-	S el S [*] (-)=	-
	2 40.0 -	EC _w (mS/m)=			
4100	0,003	Temp _w (gr C)=	12,9		
4050	• - 0,002	Derivative fact.=	-	Derivative fact.=	-
	0,001				
4000		Desculto		Deculto	
0,00 0,20 0,40 0,60 Elapsed T		Results		Results	
Log-Log plot incl. derivates- flo	w pariod	$Q/s (m^2/s) =$	-		
Log-Log plot incl: derivates- inc	ow period	T _M (m²/s)= Flow regime:		Flow regime:	transiant
		-	transient		transient
		$dt_1 (min) = dt_2 (min) = $	-	. ,	-
			- NA	44 <u>2</u> ()	- NA
		T (m²/s) = S (-) =	NA	$T (m^2/s) =$ S (-) =	NA
		S (-) = K _s (m/s) =	NA	$S(-) = K_s(m/s) =$	NA
Not Ana	alwood	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Alla	aryseu	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C (m /Pa) = C_D (-) =$	NA	$C (m /Pa) = C_D (-) =$	NA
			NA		NA
		ξ(-) =		ξ(-) =	
		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =	
		$I_{GRF}(m / s) =$ $S_{GRF}(-) =$		$I_{GRF}(m / s) =$ $S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative naran		
		dt_1 (min) =	-	C (m ³ /Pa) =	NA
		$dt_1(mn) =$ $dt_2(min) =$	-	$C (m /Pa) = C_D (-) =$	NA
		$T_T (m^2/s) =$	- NA	ξ(-) =	NA
		S(-) =	NA	יוו כי	
		K _s (m/s) =	NA		
Not Analysed		$S_{s}(1/m) =$	NA		
		Comments:			
		Based on the test re transmissivity is lo	esponse (prolong wer than 1E-11	ged packer complian m2/s.	ce) the interval

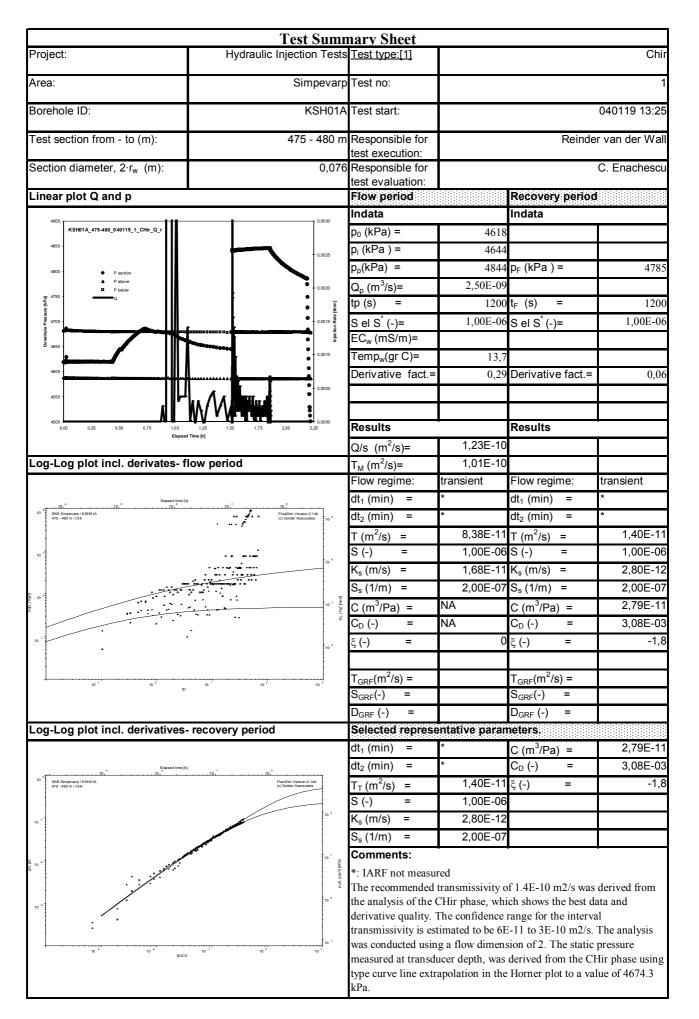

	Test S	umn	nary Sheet			
Project:	Hydraulic Injection					Chi
Area:	Simp	evarp	Test no:			
Borehole ID:	KS	H01A	Test start:	040117 11		040117 11:49
Test section from - to (m):	420 - 4		Responsible for		Reinde	r van der Wal
			test execution:			
Section diameter, 2·r _w (m):			Responsible for test evaluation:			C. Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata	************************	Indata	•.•.•.•.•.•.•.•.•.•.•.•.
4400 KSH01A_420-	125_040117_1_CHir_Q_r	0,010	p ₀ (kPa) =	4090		
4350 -	• •	0.009	p _i (kPa) =	-		
● P 4300 - ▲ P	section + (p _p (kPa) =	-	p _F (kPa) =	-
4300 ·	below - (0,007	$Q_{p} (m^{3}/s) =$	-	FT (- 7	
ब 4250 - इ.		0,006 [uju]	$\frac{d_p(m/s)}{tp(s)} =$	-	t _F (s) =	-
ि 4/200 - 		2	S el S [*] (-)=	-	s el S [*] (-)=	-
er alle alle alle alle alle alle alle al		ьğ	EC _w (mS/m)=	-	S el S (-)=	-
å 4150 			$EC_w (IIIS/III) =$ Temp _w (gr C)=	13,0		
4100	•	0,003	Derivative fact.=	-	Derivative fact.=	-
		0,002	Derivative lact	-		-
4050		0,001				
4000 Markets _ Millio		0,000	D			
0,00 0,25 0,50 0,75 1,00 Elapsed T	1,25 1,50 1,75 2,00 2,25 ime [h]	5	Results		Results	1
			Q/s (m²/s)=	-		
_og-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	-		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	-	dt ₁ (min) =	-
			dt ₂ (min) =	-	dt ₂ (min) =	-
			T (m²/s) =	NA	T (m²/s) =	NA
			S (-) =	NA	S (-) =	NA
			K _s (m/s) =	NA	$K_s (m/s) =$	NA
Not Ana	alysed		S _s (1/m) =	NA	S _s (1/m) =	NA
	5		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA
			$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			5()		5()	
			T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative naran		
	sectory portion		dt_1 (min) =	-	C (m ³ /Pa) =	NA
			$dt_1 (min) =$ $dt_2 (min) =$	-	$C_{D}(-) =$	NA
				- NA		NA
			$T_T (m^2/s) =$ S (-) =	NA	ξ(-) =	- 1975
			- ()			
Ът	1 1		$K_s (m/s) =$	NA		
Not Analysed			S _s (1/m) =	NA		
			Comments:			
		transmissivity is lo		ged packer complian m2/s.		

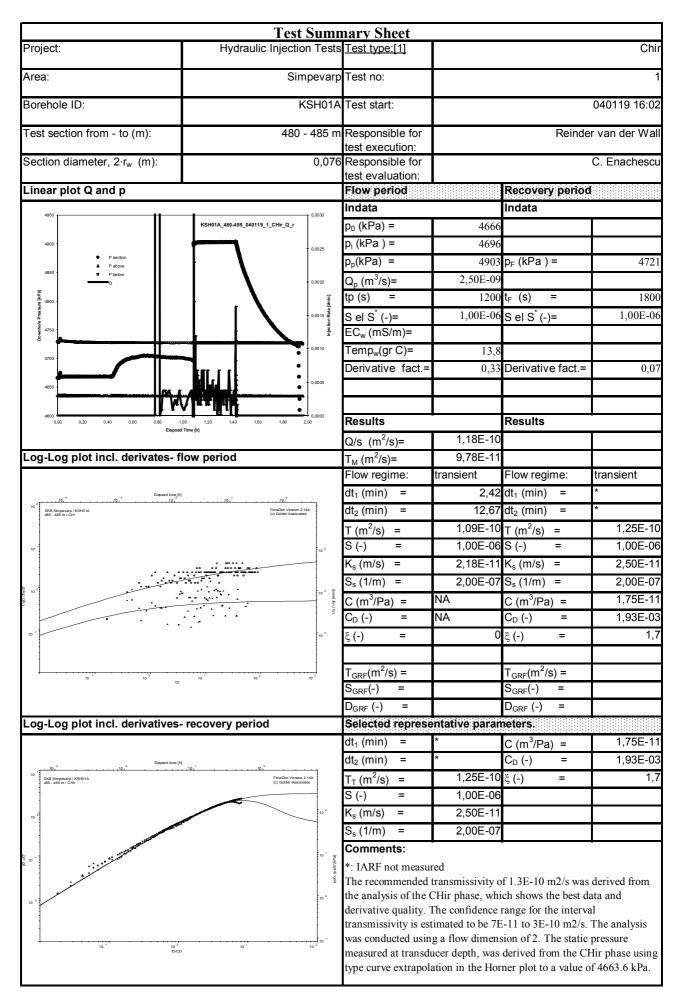
	I CSU Dunn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040117 14:25
Test section from - to (m):	425 - 430 m	425 - 430 m Responsible for Reinc		Reinde	r van der Wall
		test execution:			
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Indata		Indata	
4350	0,010	p ₀ (kPa) =	4138		1
KSH01A_425-430_040117_1_CHir_Q_r	• P section - 0,009	p ₀ (kPa) =			
4300 -	P above P below O.008		-		
4250 -	- 0.007	p _p (kPa) =	-	p _F (kPa) =	-
@		$Q_p (m^3/s) =$	-		
		tp (s) =	-	t _F (s) =	-
		S el S [*] (-)=	-	S el S [*] (-)=	-
	• • • • • • • • • •	EC _w (mS/m)=			
4100	0.003	Temp _w (gr C)=	13,0		
	- 0,002	Derivative fact.=	-	Derivative fact.=	-
4050 -	• 0,001				
0,00 0,10 0,20 0,30 0,4 Elapsed		Results		Results	1
		Q/s (m²/s)=	-		
Log-Log plot incl. derivates- fle	ow period	T _M (m ² /s)=	-		
		Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	-	dt_1 (min) =	-
		dt ₂ (min) =	-	dt_2 (min) =	-
		T (m²/s) =	NA	T (m ² /s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.	
		dt ₁ (min) =		C (m ³ /Pa) =	NA
		dt_2 (min) =	-	$C_{D}(-) =$	NA
		$T_{T} (m^2/s) =$	NA	$\xi(-) =$	NA
		S (-) =	NA	21/	
		$K_s (m/s) =$	NA		
Not An	alvsed	$S_{s}(1/m) =$	NA		
		S _s (1/m) = NA Comments:			
				ged packer complian m2/s.	ce) the interval


	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chi
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A	Test start:			040117 15:30
Test section from - to (m):	430 - 435 m	Responsible for	Reinder van der Wa		
		test execution:			<u> </u>
Section diameter, 2·r _w (m):		Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata	*****************************	Indata	•.•.•.•.•.•.•.•.•.•.•.•.
4300 KSH01A_430-435_040117_1_CHir_Q_r	P section	p ₀ (kPa) =	4186		
4280 -	P below	p _i (kPa) =	-		
4260 -	0,008	p _p (kPa) =	-	p _F (kPa) =	-
4240 -	0,007	$Q_{p} (m^{3}/s) =$	-	FT (- 7	
د بر 4220 -	• - 0.005 [F	$\frac{d_p(m/s)}{tp(s)} =$	-	t _F (s) =	-
		S el S [*] (-)=	-	u⊧ (0) S el S [*] (-)=	-
		S er S (-)= EC _w (mS/m)=		5 5 5 (-)-	
-	•	Temp _w (gr C)=	13,1		
		Derivative fact.=	-	Derivative fact.=	-
4140 -	• 0,002	Denvalive Taci	-	Derivative lact	-
4120 -	0,001				
		Results		Results	
Elapsed Tir	ne [h]	$Q/s (m^2/s)=$	-		
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} ({\rm m}^2/{\rm s})=$	-		
	in ponioù	Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	-	dt_1 (min) =	-
		dt_2 (min) =	-	$dt_2 (min) =$	-
			NA	2	NA
		T (m ² /s) = S (-) =	NA	T (m²/s) = S (-) =	NA
		$S(-) = K_s(m/s) =$	NA	$S(-) = K_s(m/s) =$	NA
Not Ano		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Ana	llysed		NA		NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_{D}(-) =$		$C_{D}(-) =$	
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	entative paran		
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt ₂ (min) =	-	C _D (-) =	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		$K_s (m/s) =$	NA		
Not Ana	lvsed	$S_{s}(1/m) =$	NA		
1.0071110	·	Comments:			1
		Based on the test re transmissivity is lo		ged packer complian m2/s.	ce) the interva


	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chi
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040117 17:01
Test section from - to (m):	435 - 440 m	Responsible for		Reinder van der Wa	
		test execution:			
Section diameter, 2·r _w (m):		Responsible for test evaluation:	C. Enacheso		C. Enachescu
Linear plot Q and p			Recovery period	[
		Indata	<u>·:·:·:·:·:·:·:·:·:·:·:</u>	Indata	<u></u>
4500 KSH01A_435-440_040117_1_CH	r_Q_r	p₀ (kPa) =	4233		
4450 -	e0.00	p _i (kPa) =	-		
P section Pabove	0,008	p _p (kPa) =	-	p _F (kPa) =	-
P below	0,007	$Q_{p} (m^{3}/s) =$	-		
ৰ 4350 - শ্ৰু	0.006 gi	tp(s) =	-	t _F (s) =	-
		S el S [*] (-)=	-	S el S [*] (-)=	-
		EC _w (mS/m)=		\/	
ă 4250 -	0,003	Temp _w (gr C)=	13,2		
		Derivative fact.=		Derivative fact.=	-
4150 -	- 0,002				
4 I DU -	0,001				
4100 0,00 0,10 0,20 0,30 0,40	0,50 0,60 0,70 0,80 0,90	Results		Results	
Elapsed Tir	se [h]	Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	-		
	•	Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	-	dt_1 (min) =	-
		dt_2 (min) =	-	dt_2 (min) =	-
		$T(m^2/s) =$	NA	$T (m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not Ana	lysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Ivot And	irysea	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_{D}(-) =$	NA		NA
			NA	ξ(-) =	NA
		ξ(-) =		ς(-) –	
		T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
		$I_{GRF}(m / s) =$ $S_{GRF}(-) =$		$S_{GRF}(m/s) =$ $S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative naran]
		dt_1 (min) =	analive paran		NA
		$dt_1 (min) = dt_2 (min) =$	-	C (m ³ /Pa) = C _D (-) =	NA
			- NA		NA
		$T_T (m^2/s) =$ S (-) =	NA	ξ(-) =	
		S (-) = K _s (m/s) =	NA NA		
NT_4 A	hused	$\frac{\kappa_{s}(m/s)}{S_{s}(1/m)} =$	NA		ļ
Not Ana	nyseu	$S_s(1/m) =$ Comments:	NA I		
				ged packer complian	
		transmissivity is lo			,




	Test Sum	mary Sheet				
Project:	Hydraulic Injection Test				Chii	
Area:	Simpevar	p Test no:			1	
Borehole ID:	KSH01A	A Test start:		040118 11:46		
Test section from - to (m):	450 - 455 n	n Responsible for		Reinder van der Wall		
	0.07	test execution:				
Section diameter, 2·r _w (m):	0,076	6 Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p		Flow period		Recovery period	[
		Indata	<u></u>	Indata	<u></u>	
4600	0,010	p ₀ (kPa) =	4379			
KSH01A_450-455_040118_1_CHir_Q_r	- 0,09	p _i (kPa) =	-			
4550 '	0,008	$p_p(kPa) =$	-	p _F (kPa) =	-	
4500 -	P section P above 0,007	$Q_{p} (m^{3}/s) =$	-	FT X - 7		
• P below		$\frac{d_p (m/s)^2}{tp (s)} =$	-	t _F (s) =	-	
U ang 94450	- 0,005 E	S el S [*] (-)=	-	s el S [*] (-)=	-	
Fed1 unitsed 4450		S el S (-)= EC _w (mS/m)=		<u> </u>		
4400 -		Temp _w (gr C)=	13,4			
	0,003	Derivative fact.=	,	Derivative fact.=	-	
4350 - 0.002		Denvalive Taci	-	Derivative fact	-	
	• 0,001					
	1,20 1,40 1,60 1,80 2,00	Results		Results		
0,00 0,20 0,40 0,80 0,80 1,00 Elapsed Ti				Results		
less les platinet derivates fle		Q/s $(m^{2}/s)=$	-			
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	-		4	
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	-	dt_1 (min) =	-	
		dt_2 (min) =	-	dt_2 (min) =	-	
		T (m²/s) =	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not Ana	ılysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	NA	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		T _{GRF} (m ² /s) =		$T_{GRF}(m^2/s) =$		
		S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	entative paran	neters.		
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA	
		dt ₂ (min) =	-	C _D (-) =	NA	
		$T_T (m^2/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Ana	ılysed	$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test re transmissivity is lo		ged packer complian m2/s.	ice) the interva	



	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chii
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A	Test start:			040119 11:10
Test section from - to (m):	470 - 475 m	Responsible for		Reinde	r van der Wal
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for			C. Enachescu
	0,010	test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
4850	0,0030	Indata		Indata	
KSH01A_470-475_040119_1_CHir_Q_r		p ₀ (kPa) =	4571		
4800 -	0,0025	p _i (kPa) =	4600		
P section P above		p _p (kPa) =	4806	p _F (kPa) =	4794
4750 - P below	0,0020	Q _p (m ³ /s)=	3,33E-09		
ह दे 4700 -	● <u></u>	tp (s) =	1200	t _F (s) =	1200
₹ 4700 - 8 4700 - 8 450 - 4 450 -	• [iiiii] • 0.0015 tu	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-00
4650 ·		$EC_w (mS/m) =$		00.0()	
	0,0010	Temp _w (gr C)=	13,7		
4600	••{ } •	Derivative fact.=	,	Derivative fact.=	-
4550	• 0,0005				
4500 .000 0,20 0,40 0,60 0,80 1,00	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Results		Results	
Elapsed T	ime [ħ]	Q/s (m ² /s)=	1,59E-10		
Log-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	1,31E-10		
	en poned	Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		$dt_2 (min) =$	-	dt_2 (min) =	-
			NA		NA
		T (m²/s) = S (-) =	NA	T (m ² /s) = S (-) =	NA
		S (-) = K _s (m/s) =	NA	$S(-) = K_s(m/s) =$	NA
NI-t Am	- 1 d	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not An	alysed				
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		0		0	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	ļ
		S _{GRF} (-) =		S _{GRF} (-) =	ļ
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe			
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA
		$dt_2 (min) =$	NA	C _D (-) =	NA
		T _T (m²/s) =	NA	ξ(-) =	NA
		S (-) =	NA		
		$K_s (m/s) =$	NA		
Not An	alysed	S _s (1/m) =	NA		
		Comments:			
		Based on the very la lower than 1E-10 n		es, the interval trans	smissivity is

	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040120 08:19
Test section from - to (m):		Responsible for		Reinde	r van der Wall
Section diameter, 2·r _w (m):		test execution: Responsible for			C. Enachescu
Section diameter, 21 _w (m).		test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
5000	τ 0.0020	Indata		Indata	
KSH01A_485-490_040120_1_CHir_Q_r		p ₀ (kPa) =	4714		
4950 -	0,0018	p _i (kPa) =	4752		
4900 -	- 0,00 16	p _p (kPa) =	4967	p _F (kPa) =	4972
● P section ▲ P above	• 0,0014	$Q_{p} (m^{3}/s) =$	2,62E-09		
© 4850 - ■ P below	● ● ^{0,0012} ਵ	tp(s) =	1200	t _F (s) =	240
8 8 4800 -	년. 9 0,0010 문	S el S [*] (-)=		S el S [*] (-)=	1,00E-00
€ 4500 - C - C - C - C - C - C - C - C - C -		$EC_w (mS/m) =$,		,
ă 4750 -		Temp _w (gr C)=	13,9		
4700 -	• + 0.0006	Derivative fact.=	-	Derivative fact.=	-
				2 0	
4650 -					
4600	1,00 1,20 1,40 1,60	Results		Results	
Elapsed Time		Q/s (m ² /s)=	1,20E-10		
Log-Log plot incl. derivates- flow	w period	$T_{\rm M} (m^2/s) =$	9,90E-11		
	r poliou	Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		$dt_1 (min) =$ $dt_2 (min) =$	-	$dt_1 (min) =$ $dt_2 (min) =$	-
			NA		NA
		T (m²/s) = S (-) =	NA	T (m ² /s) = S (-) =	NA
		$S(-) = K_s(m/s) =$	NA	$S(-) = K_s(m/s) =$	NA
Not Anal	larged	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Anal	lysed	2 ()	NA		
		C (m ³ /Pa) =		C (m ³ /Pa) =	NA
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
		ξ(-) =	NA	ξ(-) =	NA
		2		2	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		S _{GRF} (-) =	ļ	$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- re	covery period	Selected represe			Γκια
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA
		$dt_2 (min) =$	-	$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		$K_s (m/s) =$	NA		
Not Anal	ysed	$S_s(1/m) =$	NA		
		Comments:	~		
		Based on the very l than 1E-10 m2/s.	ow flow rate, th	e interval transmissi	ivity is lower

	Test Summ	nary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A	Test start:		040120 10:	
Test section from - to (m):	490 - 495 m	Responsible for		Reinde	r van der Wal
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for			C. Enachescu
Section diameter, $2 T_W$ (iii).	0,070	test evaluation:			C. LINACHESCU
Linear plot Q and p		Flow period		Recovery period	[
5100	T 0,0020	Indata		Indata	
	KSH01A_490-495_040120_1_CHir_Q_r	p ₀ (kPa) =	4763		
5050 -	- 0,0018	p _i (kPa) =	4796		
5000 -	0,0016	p _p (kPa) =	4983	p _F (kPa) =	5009
P section P above	0,0014	$Q_{p} (m^{3}/s) =$	1,42E-09		
د 4950 - ۲۰ P below - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲۰ - ۲	•- 0.0012 <u>=</u>	tp(s) =	1200	t _F (s) =	2400
8 8 4900 - 4	●+ 0.0012 [u] ult 3 ● ●+ 0.0010 12 2	S el S [*] (-)=		S el S [*] (-)=	1,00E-06
, and the second s	● 0,0008 E	$EC_w (mS/m) =$,		,
₿ ₄₈₅₀ -		Temp _w (gr C)=	13,9		
4800 -	0,0006	Derivative fact.=	,	Derivative fact.=	-
	• 0,0004			20	
4750	- 0,0002				
4700 .00 0,20 0,40 0,60 0,80 1,0	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Results		Results	
Elapsed 1		$Q/s (m^2/s)=$	7,39E-11	Results	
Log-Log plot incl. derivates- fl	aw period		6,10E-11		
Log-Log plot men derivates- m	ow period	T _M (m²/s)= Flow regime:	- 0,102-11	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		$dt_1(min) =$ $dt_2(min) =$	-		-
			- NA)	- NA
		$T (m^2/s) =$ S (-) =		$T (m^2/s) =$ S (-) =	
		5()	NA	2()	NA
	1 1	$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative parar		
5 - 5 F	- - - - - - - - - - -	dt ₁ (min) =	-	C (m ³ /Pa) =	
		dt_2 (min) =	-	$C_{D}(-) =$	
		$T_T (m^2/s) =$	NA	ξ(-) =	
		S(-) =	NA	<u>הואכ</u>	
		$K_s (m/s) =$	NA		
Not An	alved	$S_{s}(1/m) =$	NA		
not All	aryseu	Comments:			
			ow flow rate, th	e interval transmiss	ivity is lower

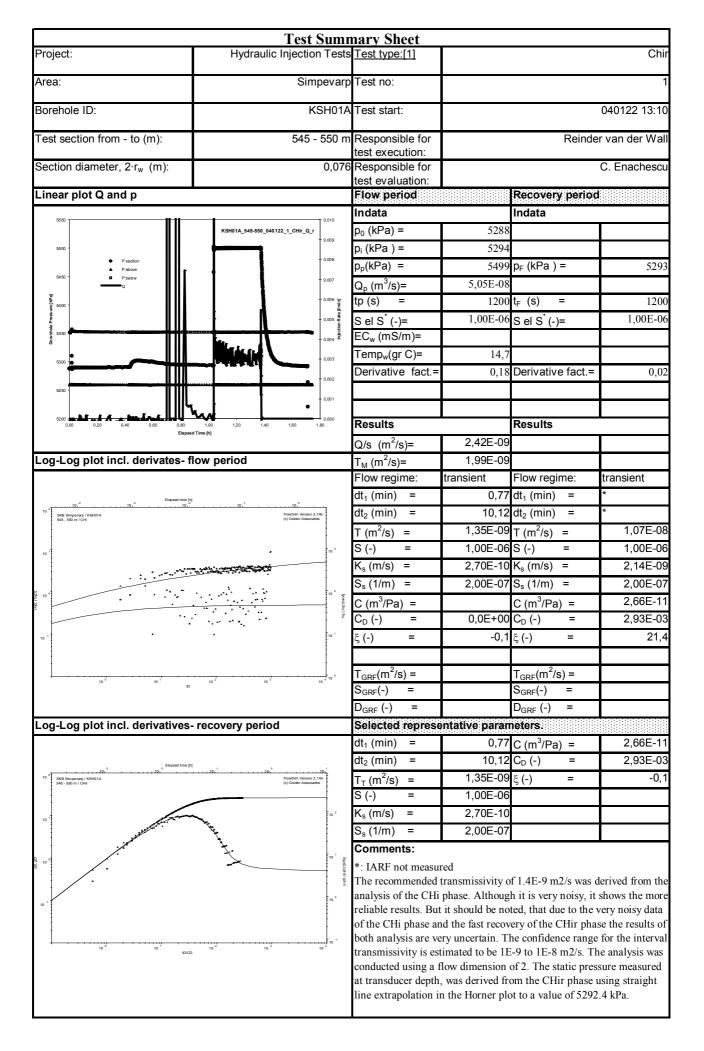
	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:	040120 12:		
Dorenole ID.					040120 12.50
Test section from - to (m):		Responsible for test execution:		Reinde	r van der Wall
Section diameter, 2·r _w (m):	neter, 2·r _w (m): 0,076				C. Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
4890	0,0010	Indata	•	Indata	
KSH01A_495-500_0	140120_1_CHir_Q_r + 0,0009	p ₀ (kPa) =	4809		
4870		p _i (kPa) =	-		
4850 P section	and the second se	p _p (kPa) =	-	p _F (kPa) =	-
Pabove Pbelow	0,0007	Q _p (m ³ /s)=	-		
(4800	0,0006 E	tp (s) =	-	t _F (s) =	-
10 Press	9	S el S [*] (-)=	-	S el S [*] (-)=	-
4810 4 810		EC _w (mS/m)=			
4790 -	- 0,0003	Temp _w (gr C)=	14,0		
- ve v		Derivative fact.=	-	Derivative fact.=	-
4770 -					
	• 0,0001				
4750 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Elegeso Time [b]		Results		Results	
		Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	-		
		Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		dt_2 (min) =	-	dt_2 (min) =	-
		$T (m^2/s) =$	NA	$T (m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	$K_s (m/s) =$	NA
Not Ana	lyced	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Alla	llysed	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
			NA		NA
		ξ(-) =	NA	ξ(-) =	INA
		$T (m^2/c) =$		$T_{(m^2/c)} =$	
		$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$		$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$	
Log-Log plot incl. derivatives- i	acovery period	D _{GRF} (-) = Selected represe	htofilia and a		
Log-Log plot incl. derivatives- I	ecovery period				
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA
		$dt_2 (min) =$	-	$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		$K_s (m/s) =$	NA		
Not Ana	alysed	$S_{s}(1/m) =$	NA		
		Comments:			
		Based on the test re transmissivity is lo	sponse (prolong wer than 1E-11	ged packer complian m2/s.	ce) the interval

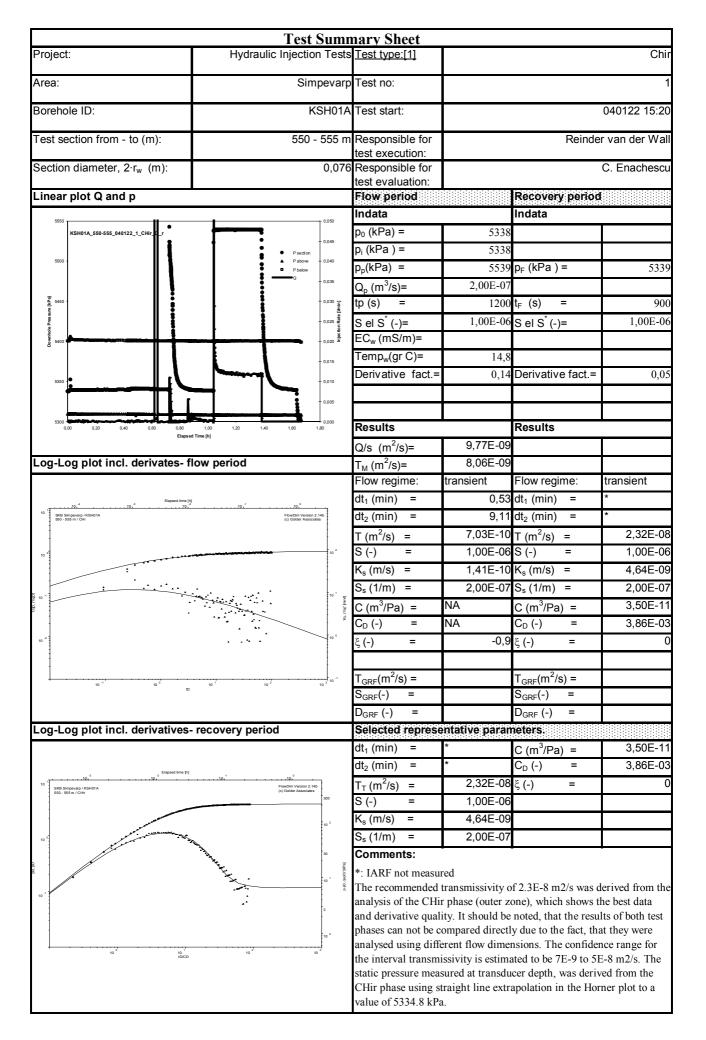
	Test	Sumn	nary Sheet			
Project:	Hydraulic Injectio	n Tests	Test type:[1]			Chir
Area:	Sim	npevarp	Test no:			
Borehole ID:	K	SH01A	Test start:			040120 14:24
Test section from - to (m):	500 -	- 505 m	Responsible for		Reinde	r van der Wall
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for			C. Enachescu
		0,070	test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
5100	ł	T 0,0020	Indata		Indata	
KSH01A_500-505_040120 _CHir_Q_r		0.0018	p ₀ (kPa) =	4856		
5050 -	Psection	- 0,0016	p _i (kPa) =	4889		
	▲ P above ■ P below		p _p (kPa) =	5082	p _F (kPa) =	4881
5000 -	· · · · · · · · · · · · · · · · · · ·	0,0014	Q _p (m ³ /s)=	3,87E-09		
[다 신 신 전 4950 -		0,0012 [u	tp (s) =	1200	t _F (s) =	2400
ଞ୍ 4950 - କୁ		0,00 10 00,0 -	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
		- 0,0008 L	EC _w (mS/m)=			
4900 -		0,0006	Temp _w (gr C)=	14,1		
4550		- 0,0004	Derivative fact.=	-	Derivative fact.=	0,05
 m		- 0,00 02				
4800		2,40	Results		Results	
			Q/s (m²/s)=	1,97E-10		
_og-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	1,62E-10		
			Flow regime:	-	Flow regime:	transient
			dt ₁ (min) =	-	dt ₁ (min) =	*
			dt ₂ (min) =	-	dt ₂ (min) =	*
			T (m²/s) =	NA	T (m ² /s) =	1,15E-10
			S (-) =	NA	S (-) =	1,00E-06
			K _s (m/s) =	NA	K _s (m/s) =	2,30E-11
Not An	alysed		S _s (1/m) =	NA	S _s (1/m) =	2,00E-07
			C (m³/Pa) =	NA	C (m ³ /Pa) =	1,51E-11
			C _D (-) =	NA	C _D (-) =	1,66E-03
			ξ(-) =	NA	ξ(-) =	0,7
			T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
			S _{GRF} (-) =		S _{GRF} (-) =	
			$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	
			dt ₁ (min) =	*	C (m ³ /Pa) =	1,51E-11
Bapsed time [b]			dt ₂ (min) =	*	C _D (-) =	1,66E-03
10 SKB Simpevarp / KSH01A 500 - 505 m / CHir	FlowDim Version 2 (c) Golder Associat	2.14b tes	$T_{T} (m^{2}/s) =$	1,15E-10		0,7
			S (-) =	1,00E-06		
10 *		10 2	$K_s (m/s) =$	2,30E-11		
			S _s (1/m) =	2,00E-07		
		10 1 2	Comments:			
10 A A A A A A A A A A A A A A A A A A A		(d-d)	*: IARF not measur			
		. ⁰⁶			of 1.2E-10 m2/s was ich shows the best da	
10 -2		10 0			range for the interva	
					E-11 to $6E-10 \text{ m}2/\text{s}$.	
10-1 10	10	10 2 10 -1	was conducted usin	g a flow dimen	sion of 2. The static	pressure
10 ⁻¹ 10 ⁰ 10/1	10				derived from the CI	
			type curve extrapol	ation in the Hor	mer plot to a value o	1 4845.8 kPa.

	Test	Sumn	nary Sheet			
Project:	Hydraulic Injection	on Tests	Test type:[1]			Chir
Area:	Sin	npevarp	Test no:			
Borehole ID:	ŀ	KSH01A	Test start:			040120 17:10
Test section from - to (m):	505	- 510 m	Responsible for		Reinde	r van der Wall
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for			C. Enachescu
Section diameter, 2 ⁿ _w (m).		0,070	test evaluation:			C. Lindenescu
Linear plot Q and p			Flow period		Recovery period	[
5150			Indata		Indata	
KSH01A_505-510_04012	0_1_CHir_Q_r Psection	0,0030	p₀ (kPa) =	4903		
5100 -	P above P below	0,0025	p _i (kPa) =	4928		
	a	0,0025	p _p (kPa) =	5133	p _F (kPa) =	4961
5050		- 0,0020	$Q_{p} (m^{3}/s) =$	2,62E-09		
2 5 5000			tp(s) =		t _F (s) =	43200
[64] 6000		- 0,0015 B	S el S [*] (-)=		S el S [*] (-)=	1,00E-06
9 9 4950 -		hjection Rate [tmin]	$EC_w (mS/m) =$	-,	0010 (-)-	-,
ă La	•	- 0,0010	Temp _w (gr C)=	14,1		
4900	•		Derivative fact.=	,	Derivative fact.=	0,05
4850	•	0,0005				0,00
	•					
4800	8,00 10,00 12,00	0,0000	Results		Results	
Elapsed Ti	ime [h]		$Q/s (m^2/s)=$	1,25E-10		
og-Log plot incl. derivates- flo	ow period		$T{M} (m^{2}/s) =$	1,03E-10		
			Flow regime:	-	Flow regime:	transient
			dt_1 (min) =	-	dt_1 (min) =	*
			dt_2 (min) =	-	dt_2 (min) =	*
				NA	2	1,89E-11
			T (m²/s) = S (-) =	NA	T (m²/s) = S (-) =	1,00E-06
			K _s (m/s) =	NA	K _s (m/s) =	3,78E-12
Not Ana	alward		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2,00E-07
Not Alla	alyseu		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2,82E-11
			C (m /Pa) = C _D (-) =	NA	$C (m /Pa) = C_D (-) =$	3,11E-03
				NA		2,2
			ξ(-) =		ξ(-) =	۷,۷
			\mathbf{T} (m ² (a) –		τ (m ² /m) -	
			$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$		T _{GRF} (m ² /s) = S _{GRF} (-) =	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntativo naran		
	poliou		dt_1 (min) =	*	C (m ³ /Pa) =	2,82E-11
2 Elapsed time [h]			$dt_1(mn) =$ $dt_2(min) =$	*	$C (m /Pa) = C_D (-) =$	3,11E-03
10 2 10 10 2 5KB Simpewarp / KSH01A 505 - 510 m / CHir	10 °	.14b es	$T_T (m^2/s) =$	1,89E-11		2,2
	ing merinan shakha han	10 4	$I_{T} (m^{-}/s) =$ S (-) =	1,89E-11 1,00E-06		2,2
10 1	<u>}</u>	ļ	S (-) = K _s (m/s) =	3,78E-12		
		10 3	$S_{s}(1/m) =$	2,00E-07		
			$S_s(1/m) =$ Comments:	2,00E-07		
10 °		10 ² [e_a]	*: IARF not measu	rod		
101		ž ž		101		
10 ⁻¹		10 ²			of 1.9E-11 m2/s was	derived from
		044) 044	The recommended	transmissivity o	of 1.9E-11 m2/s was and on the very low i	
		_	The recommended the analysis of the the confidence rang	transmissivity o CHir phase. Bas ge for the interva	ed on the very low i al transmissivity is e	njection rates, estimated to be
s"		_	The recommended the analysis of the the confidence rang 1E-10 m2/s or lowe	transmissivity o CHir phase. Bas ge for the interva er. The analysis	ed on the very low i al transmissivity is e was conducted usin	njection rates, estimated to be g a flow
8 ⁻	10 '	10 1	The recommended the analysis of the (the confidence rang 1E-10 m2/s or lowe dimension of 2. Th	transmissivity o CHir phase. Bas ge for the interva er. The analysis e static pressure	ed on the very low i al transmissivity is e	njection rates, estimated to be g a flow ucer depth, was

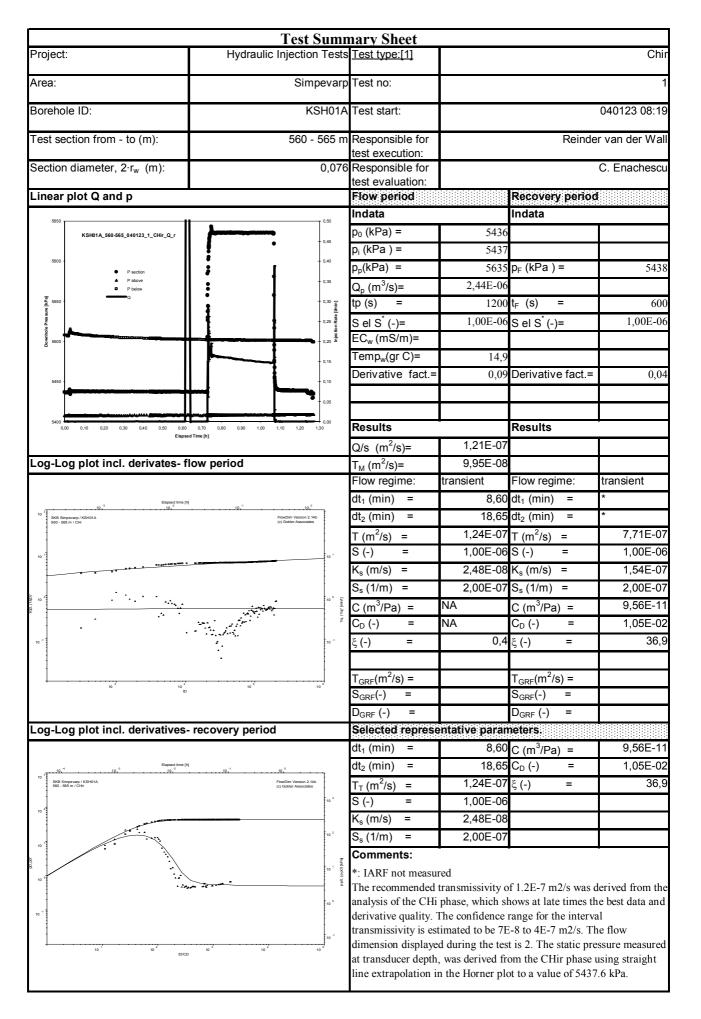
	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chir
Area:	Simpevarp	Test no:			1
					0.10101.00.10
Borehole ID:	KSH01A	Test start:			040121 08:16
Test section from - to (m):	510 - 515 m	Responsible for		Reinde	r van der Wall
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for			C. Enachescu
Section diameter, $2^{-1}w$ (m).	0,076	test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
5150		Indata		Indata	
KSH01A_510-515_040121_1_CHir_Q_r	0,0045	p ₀ (kPa) =	4952		
		p _i (kPa) =	-		
5100 - ● P: ▲ P:	section above	p _p (kPa) =	-	p _F (kPa) =	-
Q	below 0,0035	Q _p (m ³ /s)=	-		
	• 0,0030 <u>E</u>	tp (s) =	-	t _F (s) =	-
		S el S [*] (-)=	-	S el S [*] (-)=	-
2 5000 -	• - 0,0020 ²	EC _w (mS/m)=			
. /	• 0,0015	Temp _w (gr C)=	14,2		
4950	• .0010	Derivative fact.=	-	Derivative fact.=	-
	+ 0,0005				
4900	0,0000	_		_	
0,00 0,10 0,20 0,30 0,40 0,50 Elapsed Tir	0,60 0,70 0,80 0,90 1,00			Results	
		Q/s (m^{2}/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	-		
		Flow regime:	-	Flow regime:	-
		$dt_1 (min) =$	-	$dt_1 (min) =$	-
		$dt_2 (min) =$	-	$dt_2 (min) =$	-
		$T (m^2/s) =$ S (-) =	NA	$T (m^2/s) =$ S (-) =	NA
		5()	NA	e ()	NA
Not And	1d	$K_{s} (m/s) =$ $S_{s} (1/m) =$	NA NA	$K_s (m/s) =$ $S_s (1/m) =$	NA NA
Not Ana	liysed		NA		NA
		C (m ³ /Pa) = C _D (-) =	NA	C (m ³ /Pa) = C _D (-) =	NA
			NA		NA
		ξ(-) =		ξ(-) =	
		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative paran		
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	$C_{D}(-) =$	NA
		$T_T (m^2/s) =$	NA	ξ(-) =	NA
		S (-) =	NA	/	
		$K_s (m/s) =$	NA		
Not Ana	alysed	$S_{s}(1/m) =$	NA		
	5	Comments:			
		Based on the test re transmissivity is lo		ged packer complian m2/s.	ice) the interval

sts <u>Test type:[1]</u> arp Test no: 11A Test start: 0 m Responsible for test execution: 076 Responsible for test evaluation: Flow period Indata		Reinde	Chir 2 040121 09:58 er van der Wal
 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 11A Test start: 		Reinde	
0 m Responsible for test execution: 076 Responsible for test evaluation: Flow period Indata		Reinde	
test execution: 76 Responsible for test evaluation: Flow period Indata		Reinde	r van der Wal
076 Responsible for test evaluation: Flow period Indata			
Flow period Indata			C. Enachescu
Indata			
		Recovery period	f
	•	Indata	-
	_		Ļ
	_		5342
$Q_{p} (m^{3}/s) =$			
iu tp (s) =	1200	t _F (s) =	2400
s el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-00
[≌] EC _w (mS/m)=			
Temp _w (gr C)=	14,3		
Derivative fact.=	= _	Derivative fact.=	-
Results		Results	<u> </u>
Q/s $(m^{2}/s)=$	6,68E-11		1
	5,52E-11		
	-	Flow regime:	-
	-	-	-
	-		-
	NA		
		. ,	NA
			NA
ς (⁻) –		ς (⁻) –	
$T (m^2/c) =$		$T_{m}^{2}(n) =$	+
$S_{OPT}(-) =$		$S_{OPF}(-) =$	
	entative naran		
	<u> </u>		NA
			NA
			NA
		s(-) –	
			╉─────
			<u> </u>
	NA .		
	low flow rate, th	e interval transmiss	ivity is lower
	$\begin{array}{c} \begin{array}{c} \mbox{tp} (s) & = \\ \mbox{Sel S}^{(-)=} \\ \mbox{EC}_w (mS/m)= \\ \mbox{Temp}_w (gr C)= \\ \mbox{Derivative fact.}= \\ \m$	$ \begin{array}{c} \begin{array}{c} p_i \left(kPa \right) = & 5041 \\ p_p (kPa) = & 5249 \\ Q_p \left(m^3/s \right) = & 1,42E-09 \\ tp \left(s \right) = & 1200 \\ \hline S \ el \ s^* \left(- \right) = & 1,00E-06 \\ \hline EC_w \left(mS/m \right) = & \\ \hline Temp_w (gr \ C) = & 14,3 \\ \hline Derivative \ fact. = & - \\ \hline & \\ \hline & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	$ \begin{array}{c c} \hline p_{i} (kPa) = & 5041 \\ \hline p_{p}(kPa) = & 5249 \\ \hline p_{F} (kPa) = & 1,42E-09 \\ \hline tp (s) = & 1,00E-06 \\ \hline s el s'(-)= & 1,00E-06 \\ \hline s el s'(-)= & 1,00E-06 \\ \hline s el s'(-)= & 14,3 \\ \hline \hline Temp_w(gr C)= & 14,3 \\ \hline Temp_w(gr C)= & 14,3 \\ \hline Derivative fact.= & - \\ \hline \hline \\ \hline \\ Results & Results \\ \hline Q/s (m^{2}/s)= & 6,68E-11 \\ \hline T_{M} (m^{2}/s)= & 5,52E-11 \\ \hline \hline \\ Flow regime: & - & Flow regime: \\ dt_{1} (min) = & - & dt_{2} (min) = \\ \hline \\ t(m^{2}/s) = & NA & T (m^{2}/s) = \\ \hline \\ S (-) = & NA & S (-) = \\ \hline \\ K_{s} (m/s) = & NA & S_{s} (1/m) = \\ \hline \\ C (m^{3}/Pa) = & NA & C (m^{3}/Pa) = \\ \hline \\ C_{D} (-) = & NA & C_{D} (-) = \\ \hline \\ \hline \\ \hline \\ \hline \\ C_{RF}(m^{2}/s) = & NA & C (m^{3}/Pa) = \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$

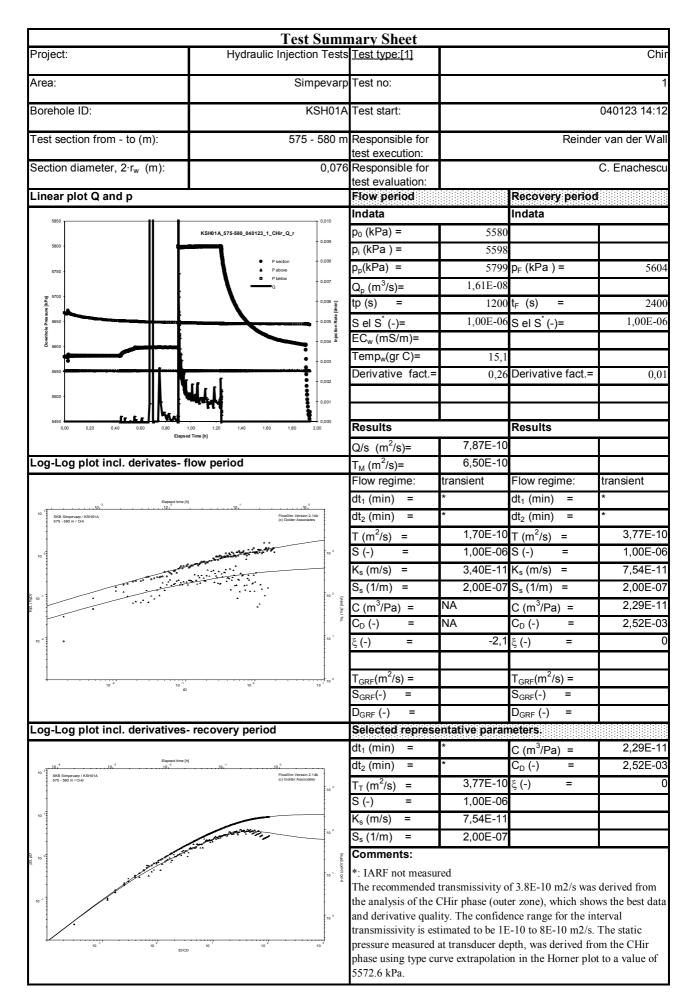

	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040121 13:01
Test section from - to (m):		Responsible for test execution:		Reinde	r van der Wall
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plat Q and p		test evaluation:		Berneterster	
Linear plot Q and p		Flow period Indata		Recovery period Indata	
5200	¹⁰	p ₀ (kPa) =	5050		
KSH01A_520-525_040121_1_CHir_Q	P section 9	p ₀ (kr a) = p _i (kPa) =	-		
5150 -	P above P below 8	$p_p(kPa) =$	-	p _F (kPa) =	-
5100	- 7	$Q_p (m^3/s) =$	-		-
	•	$\frac{d_p(m/s)}{ds} =$	-	t _F (s) =	-
5050 S050	6 [Giruh] 5 5 4 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	S el S [*] (-)=	-	s el S [*] (-)=	-
		$EC_w (mS/m) =$		Sei S (-)-	
£ 5000 -	•	Temp _w (gr C)=	14,4		
	• * *	Derivative fact.=	,	Derivative fact.=	-
4950 -	2				
	• 1				
4900		Results		Results	
Elapsed T	ime [h]	Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	-		
		Flow regime:	-	Flow regime:	-
		dt ₁ (min) =	-	dt ₁ (min) =	-
		dt ₂ (min) =	-	dt ₂ (min) =	-
		T (m²/s) =	NA	T (m ² /s) =	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	K _s (m/s) =	NA
Not Ana	lysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA		NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$	<u> </u>	$T_{GRF}(m^2/s) =$	
		S _{GRF} (-) =		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe			Ινα
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA
		$dt_2 (min) =$	- NA	$C_{D}(-) =$	NA NA
		T _⊤ (m ² /s) = S (-) =	NA	ξ(-) =	
		S (-) – K _s (m/s) =	NA		
Not Ana	lysed	$R_{s}(11/S) = S_{s}(1/m) =$	NA		
INOU AIR	nystu	Comments:			
				ged packer complian m2/s.	ce) the interval

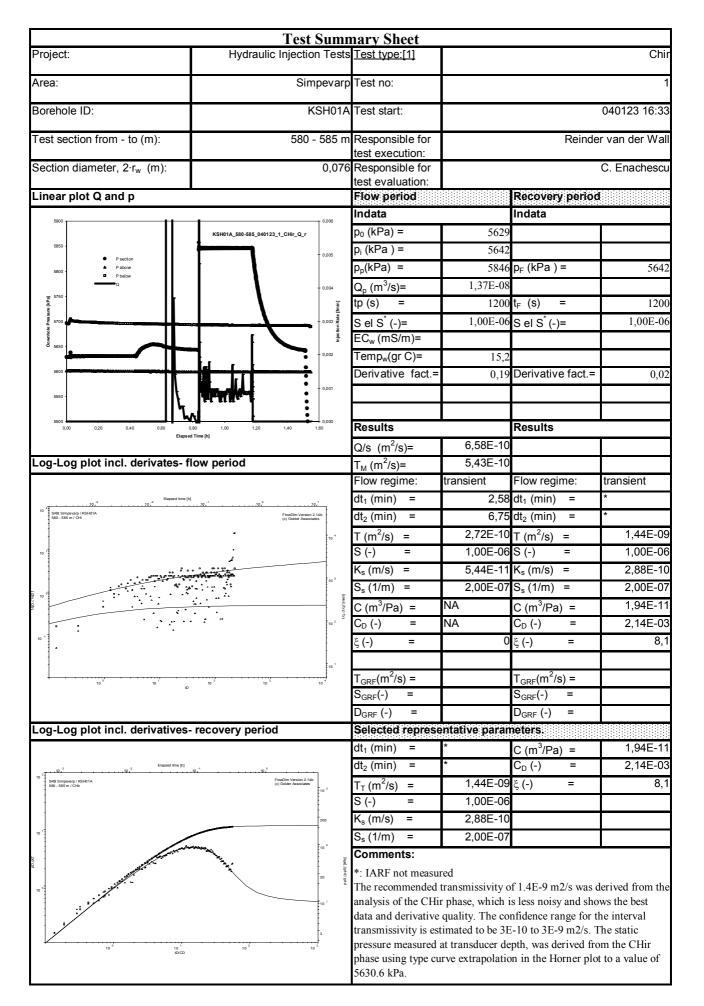

		nary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A Test start:				040121 14:25
Test section from - to (m):	525 520 m	Responsible for		Doindo	r van der Wal
rest section nom - to (m).	525 - 550 11	test execution:		Reinde	
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	
		Indata		Indata	
5200	0,010	p ₀ (kPa) =	5098	indata	
5180 - KSH01A_525-530_040121_1_C	Hir_Q_r + 0,009	p ₀ (kPa) =	-		
5160		$p_p(kPa) =$	-	p _F (kPa) =	-
5140 -	- 0,007	$\frac{Q_{p}(m^{3}/s)}{Q_{p}(m^{3}/s)} =$	-	ρ _F (κι α) –	-
€ 5120 •	• P section • 0,006 -	$\frac{d_p (m/s)}{tp (s)} =$	-	t _F (s) =	-
GS120 4 4 4 4 4 4 4 4 4		s el S [*] (-)=	-	u⊧ (0) S el S [*] (-)=	-
		EC _w (mS/m)=	-	S el S (-)=	-
§ 5080 -		$Temp_w(gr C)=$	14,4		
5060 -	• 0,003	Derivative fact.=	-	Derivative fact.=	-
5040 -	• 0.002	Derivative fact	-	Derivative fact	-
5020 -	• 0,001				
5000	0,000	Results		Results	
Elapsed Tim		$Q/s (m^2/s)=$	-	Results	
Log-Log plot incl. derivates- flo	w period		-		
		T _M (m ² /s)= Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		$dt_2 (min) =$	-	$dt_1 (min) =$ $dt_2 (min) =$	-
			- NA		NA
		T (m ² /s) = S (-) =	NA	T (m²/s) = S (-) =	NA
		$K_{s} (m/s) =$	NA	$K_{s}(m/s) =$	NA
Not Ana	lycod	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Alla	ilyseu	$C_{s}(1/11) = C(m^{3}/Pa) =$	NA	C (m ³ /Pa) =	NA
			NA	C (m /Pa) = C _D (-) =	NA
			NA		NA
		ξ(-) =		ξ(-) =	
		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative naran		
		dt_1 (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	$C_{D}(-) =$	NA
			NA	ξ(-) =	NA
		$T_T (m^2/s) =$ S (-) =	NA	५(⁻) −	
		$K_{s}(m/s) =$	NA		
Not Ana	lysed	$S_{s}(1/m) =$	NA		
INUL AIId	nystu	Comments:			
			anonas (mailas	ged packer complian	a) the inter-1
		transmissivity is lo			

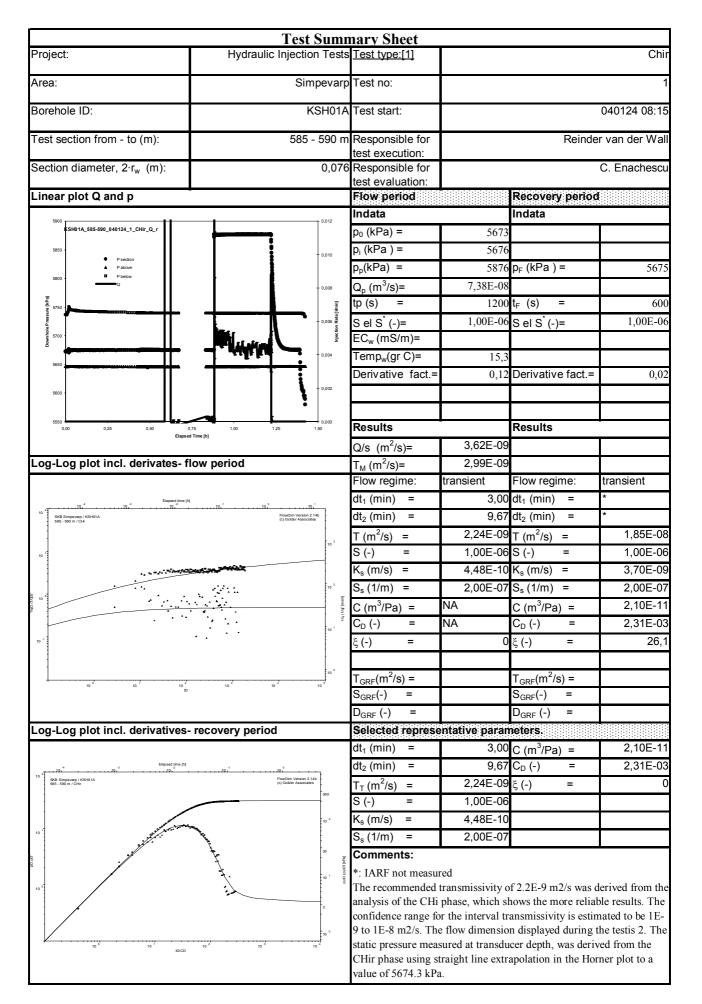
	Test Sum	mary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevar	o Test no:			
Borehole ID:	KSH01A	Test start:			040121 15:54
Test section from - to (m):	530 - 535 n	Responsible for		Reinde	er van der Wal
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for			C. Enachescu
	0,010	test evaluation:			O. Endoneso
Linear plot Q and p		Flow period		Recovery period	(
5400	0,0030	Indata		Indata	
KSH01A_530-535_040121_1_CHir_Q_r		p ₀ (kPa) =	5147		
5350 -	0,0025	p _i (kPa) =	5172		
		p _p (kPa) =	5384	p _F (kPa) =	531
P section 5300 •	0,0020	Q _p (m ³ /s)=	2,62E-09		
e P bebw	● mil.	tp (s) =	1200	t _F (s) =	180
5250 -	- 0,0015	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0
Do writho le	Piere tree tree tree tree tree tree tree	EC _w (mS/m)=			
5200	- 0,0010	Temp _w (gr C)=	14,5		
		Derivative fact.=	-	Derivative fact.=	
	1,50 2,00 2,50 0,0000	Results		Results	
Elapsed	Time [h]	Q/s (m²/s)=	1,21E-10		
.og-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	9,99E-11		
		Flow regime:	-	Flow regime:	transient
		dt_1 (min) =	-	dt_1 (min) =	*
		dt_2 (min) =	-	dt_2 (min) =	*
		$T (m^2/s) =$	NA	$T (m^2/s) =$	1,33E-1
		S (-) =	NA	S (-) =	1,00E-0
		$K_s (m/s) =$	NA	$K_s (m/s) =$	2,66E-1
Not An	alvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2,00E-0
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	9,24E-1
			NA	$C_{D}(-) =$	1,02E-0
		ξ(-) =	NA	ξ(-) =	-0,
		2		2	
		$T_{GRF}(m^2/s) =$	<u> </u>	$T_{GRF}(m^2/s) =$	<u> </u>
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	ļ
.og-Log plot incl. derivatives-	recovery pariod	D _{GRF} (-) = Selected represe	ntativo nore	D _{GRF} (-) =	
.og-Log plot mol. derivatives-		dt_1 (min) =	*		9,24E-1
Elacsed time (h)		$dt_1 (min) = dt_2 (min) =$	*	C (m ³ /Pa) = C _D (-) =	9,24E-1 1,02E-0
10 SKB Simpevarp / KSH01A 530 - 535 m / CHIr	10, ⁻¹		1,33E-11	C D()	1,02E-0 -0,
530 - 535 m / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_T (m^2/s) =$ S (-) =	1,33E-11 1,00E-06		-0,
		S (-) = K _s (m/s) =	2,66E-12		
10	10 1	$S_{s}(1/m) =$	2,00E-12 2,00E-07		
بالمعظيم ومستغذه والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ والمستغذ		Comments:	2,00E-07		
10 ⁻¹	10 ⁻	* IARE not manage	red		
· · ·	10° Š	*: IARF not measure The recommended		of 1.3E-11 m2/s was	derived from
10 2				er zone). Based on t	
	10 -1	injection rates, the	confidence rang	ge for the interval tra	ansmissivity is
				er. The analysis was static pressure meas	
		lucing a tlow dimon	sion of 2 The	static pressure measure	sured at
10 ⁻¹ 10 [°] tD/CD	10 ¹ 10 ² 10 ³			the CHir phase usi	


Project:	I bushes die beie stien. Te ste				
	Hydraulic Injection Tests	Test type:[1]			Chi
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A	Test start:			040122 08:13
Test section from - to (m):		Responsible for		Reinde	r van der Wal
Section diameter, 2·r _w (m):		test execution: Responsible for			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	ļ
5400	0,010	Indata		Indata	
KSH01A_535-540_040122_1_CHir_	- 0.009	p ₀ (kPa) =	5191		
5350 - Rection	0.008	p _i (kPa) =	-		
■ P sector		p _p (kPa) =	-	p _F (kPa) =	-
5300Q	0,007	Q _p (m ³ /s)=	-		
	0,006 [u] H	tp (s) =	-	t _F (s) =	-
5250 5250		S el S [*] (-)=	-	S el S [*] (-)=	-
Do writio le		EC _w (mS/m)=		· · · ·	
5200	- 0,003	Temp _w (gr C)=	14,6		<u> </u>
		Derivative fact.=	-	Derivative fact.=	-
5150 -					
	- 0,001				
5100 .00 0,10 0,20 0,30 0,40 0,50	0,000 0,70 0,80 0,90 1,00 1,10	Results		Results	
Elapsed Tir	ne [h]	Q/s (m²/s)=	-		
og-Log plot incl. derivates- flo	w period	$T{\rm M} (m^2/s) =$	-		
		Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		$dt_2 (min) =$	-	dt_2 (min) =	-
			NA		NA
		T (m ² /s) = S (-) =	NA	T (m ² /s) = S (-) =	NA
			NA		NA
NT-4 Au	1	$K_s(m/s) =$		$K_s (m/s) =$	
Not Ana	liysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
			NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T_{1} (m ² /r) -		\mathbf{T} (\mathbf{r} ² (\mathbf{r}) =	
		$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$		$T_{GRF}(m^2/s) = S_{GFF}(-) =$	
		- 01(1 ()		- 011 ()	
on Log plating derivative -	acovery period	$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe			
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA
		$dt_2 (min) =$	-	$C_D(-) =$	NA
		$T_T(m^2/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
Not Ana	lysed		NA		
		Comments:			
		Based on the test re transmissivity is low		ged packer complian m2/s.	ce) the interva

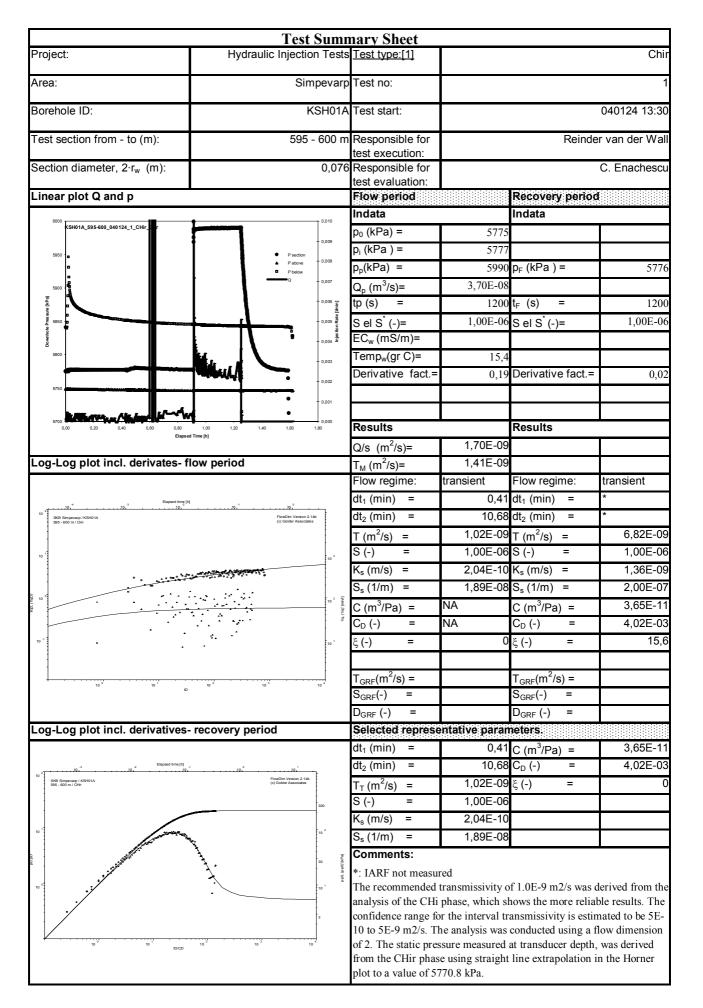
			nary Sheet				
Project:	Hydraulic Injection T	Fests	Test type:[1]			Chi	
Area:	Simpe	evarp	Test no:			1	
Borehole ID:	KSF	H01A	Test start:		040122 0		
Test section from - to (m):	540 - 54	45 m	Responsible for	Reinder van der		r van der Wal	
Contian diamatar 2 r (m):	0	076	test execution: Responsible for			C. Enachescu	
Section diameter, $2 \cdot r_w$ (m):	U		test evaluation:			C. Enachescu	
Linear plot Q and p			Flow period		Recovery period		
			Indata	<u></u>	Indata	•:•:•:•:•:•:•:•:•:•:•:•:•:•:•	
5500	KSH01A_540-545_040122_1_CHir_Q_r	1,50	p₀ (kPa) =	5240			
	+ a	,45	p _i (kPa) =	5243			
5450		,40	$p_p(kPa) =$		p _F (kPa) =	525	
P section	• •	,35	$Q_p (m^3/s) =$	1,73E-06		525	
5400 · ▲ Pabove	•	.30 =	$\frac{Q_p (m/s)}{tp (s)} =$		t _F (s) =	180	
		.30 [min] 00,0				1,00E-0	
2 3350 - 2 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I I	5	S el S [*] (-)= EC _w (mS/m)=	1,00E-00	S el S [*] (-)=	1,00E-0	
Å	[†] °	1,20 II		14.0			
		1,15	Temp _w (gr C)=	14,6	Derivetive feet -	0	
5250		l,10	Derivative fact.=	0,15	Derivative fact.=	0,	
		1,05	Dec. He		Dec. He		
0,00 0,20 0,40 0,60 0,80 1,00 Elapsed T	1,20 1,40 1,60 1,80 2,00 2,20 Time [h]		Results	0.405.00	Results		
			Q/s (m²/s)=	8,48E-08			
.og-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	7,00E-08			
			Flow regime:	transient	Flow regime:	transient	
5			dt ₁ (min) =		dt ₁ (min) =	3,6	
10 SKB Simpevarp / KSH01A 540 - 545 m / CHI	FlowDim Version 2.14b (c) Golder Associates	10 2	dt ₂ (min) =		dt ₂ (min) =	25,4	
	-		T (m²/s) =	7,86E-08	· · /	7,37E-0	
10 1			S (-) =	1,00E-06	S (-) =	1,00E-0	
8* 2*		10 1	$K_s (m/s) =$	1,57E-08	$K_s (m/s) =$	1,47E-0	
	-	_	$S_{s}(1/m) =$	2,00E-07	S _s (1/m) =	2,00E-0	
10 °	1940 in the second	0 0 10 (hinh)	C (m³/Pa) =	NA	C (m ³ /Pa) =	4,01E-1	
	*	14	C _D (-) =	NA	C _D (-) =	4,42E-0	
10 -1	ļ	10 -1	ξ(-) =	-0,2	ξ(-) =	-0,	
		10					
· · · · · · · · · · · · · · · · · · ·	10 ⁴ 10 ⁵ 10 ⁶		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =		
10 ² 10 ³ tD	10 ⁴ 10 ⁵ 10 ⁶		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
.og-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran			
			dt ₁ (min) =		C (m ³ /Pa) =	4,01E-1	
Eapsed time (h)	2 an -1 0		dt_2 (min) =		$C_{D}(-) =$	4,42E-0	
10 SKB Simpevany / KSH01A 540 - 545m / CHir	FlowDim Version 2.14b (c) Golder Associates		$T_{T} (m^2/s) =$	7,37E-08		-0,	
	ļ	10 3	$S_{T}(m/s) =$	1,00E-06		-0,	
10 1			S (-) = K _s (m/s) =	1,00E-00 1,47E-08			
			$R_{s}(11/S) = S_{s}(1/m) =$	2,00E-07			
		10 2	Comments:	2,00E-07			
		(Real) (pd-d	The recommended analysis of the CHii quality. The confide estimated to be 5E- during the test is 2.	r phase, which s ence range for th 8 to 9E-8 m2/s. The static press	f 7.4E-8 m2/s was d shows the best data a he interval transmis The flow dimensior sure measured at tra sing straight line ex	and derivative sivity is n displayed nsducer depth,	
. 10 ° 10 ' 10 LOCD	10 ² 10 ³ 10 ⁴		the Horner plot to a			aporation m	

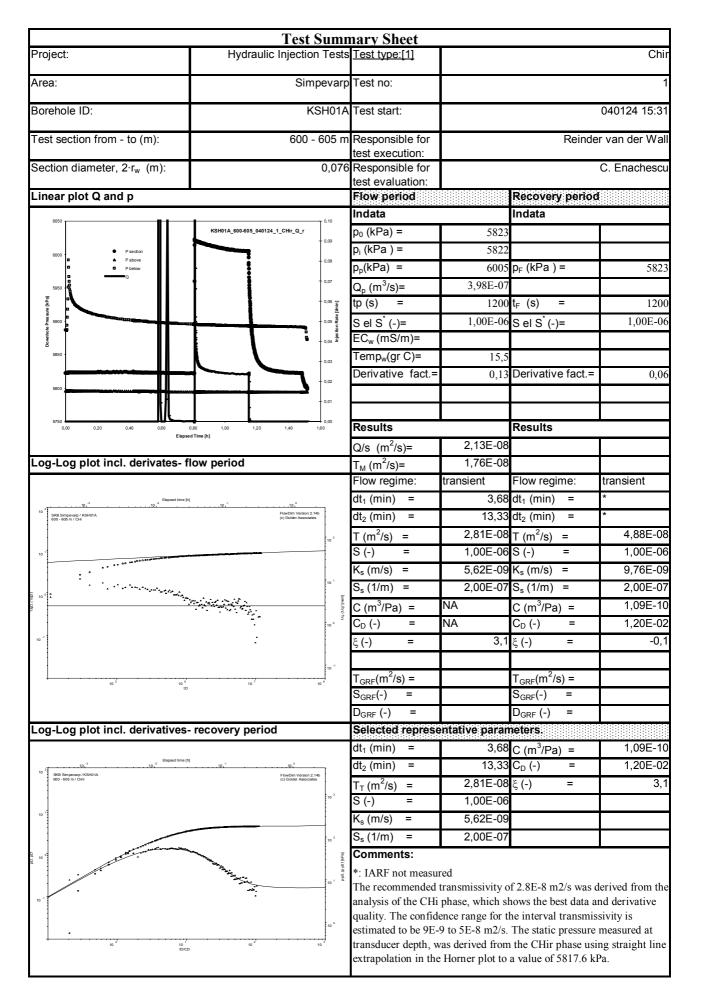


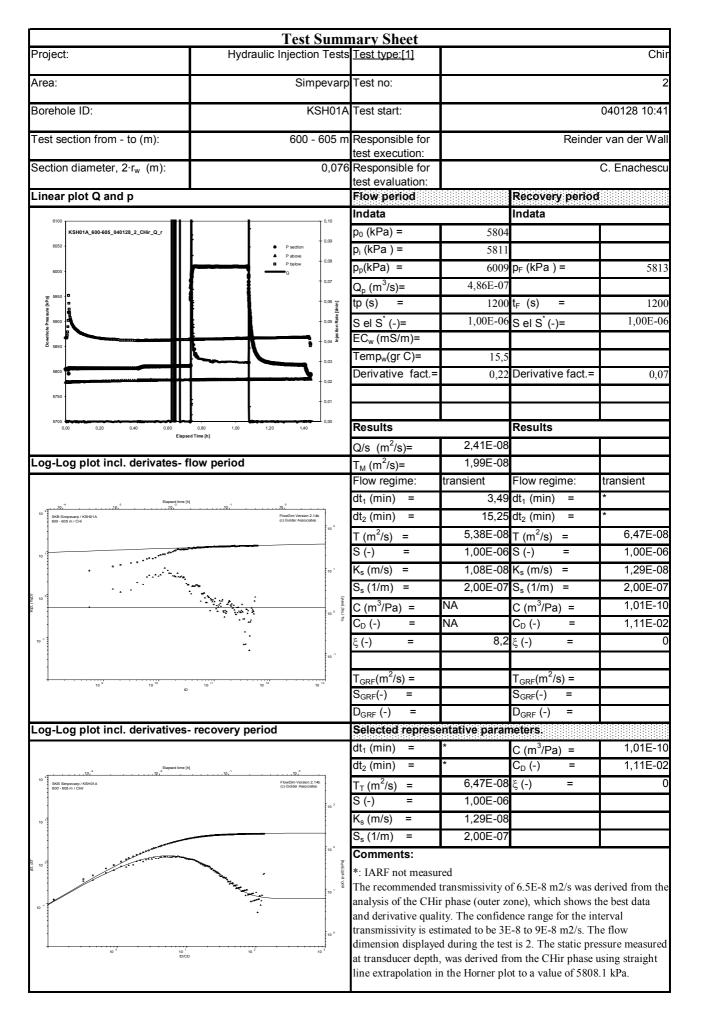

			nary Sheet				
Project:	Hydraulic Injection	n Tests	Test type:[1]			Chi	
Area:	Sim	pevarp	Test no:				
Borehole ID:	K	SH01A	Test start:		040122 17:25		
Test section from - to (m):	555 -	560 m	Responsible for		Reinde	r van der Wal	
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for			C. Enachescu	
		0,070	test evaluation:				
Linear plot Q and p			Flow period		Recovery period		
5600 T		- 4,0	Indata		Indata		
KSH01A_555-560_040122_1_CHir_Q_r			p ₀ (kPa) =	5387			
	•	3,5	p _i (kPa) =	5386			
5550 -	P section Pabove	3,0	p _p (kPa) =	5586	p _F (kPa) =	539	
· ·	P below		Q _p (m ³ /s)=	1,21E-05			
₹ 5500 ·	•	- 2,5 	tp (s) =	1200	t _F (s) =	180	
6 00 - ●	i	- 2,0 Lunin	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0	
e og under som som som som som som som som som som		Injection	$EC_w (mS/m) =$				
		- 1,5	Temp _w (gr C)=	14,9			
		- 1,0	Derivative fact.=	0.11	Derivative fact.=	0,0	
5400		0.5		,		,	
		0,5					
5350 0,00 0,20 0,40 0,60 0,80 Elapsed Time		0,0 1,60	Results		Results		
Elapsed i ime	[n]		Q/s (m²/s)=	5,93E-07			
.og-Log plot incl. derivates- flow	/ period		T _M (m²/s)=	4,89E-07			
			Flow regime:	transient	Flow regime:	transient	
Elapsed time [h]			dt ₁ (min) =	0,30	dt ₁ (min) =	1,6	
10 ⁻¹	10, ⁻¹ 10, ⁰ FlowDim Version 2.14 (c) Golder Associates		dt ₂ (min) =	12,60	dt ₂ (min) =	27,3	
		10 1	T (m²/s) =	6,77E-07	T (m ² /s) =	6,19E-0	
10 13		_	S (-) =	1,00E-06	S (-) =	1,00E-0	
• • • • • • • • • • • • • • • • • • •		10 0	$K_s (m/s) =$	1,35E-07	$K_s(m/s) =$	1,24E-0	
		-	S _s (1/m) =	2,00E-07	S _s (1/m) =	2,00E-0	
10 0		10-1 .0	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	7,93E-1	
		14. (V	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	8,74E-0	
10 -1	•	-	ξ(-) =	0	ξ(-) =	-1,	
		10 -2	5()		5()	,	
			T _{GRF} (m²/s) =		T _{GRF} (m²/s) =		
10 ³ 10 ⁴	10 ⁶ 10 ⁶ 1	10 7	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
.og-Log plot incl. derivatives- re	coverv period		Selected represe	ntative paran			
			dt ₁ (min) =		C (m ³ /Pa) =	7,93E-1	
	-1 40		dt_2 (min) =		$C_{D}(-) =$	8,74E-0	
Elapsed time [h]				,50		-1,	
10 2 5.65 Smp / KSH01A 555 - 560 m / CHr	FlowDim Version 2.1 (c) Golder Associated	14b 15	$T_{T}(m^{2}/s) =$	6.19E-07	ξ(-) =		
	FlowClm Version 2.1 (c) Golder Associate	14b ss	T _⊤ (m ² /s) = S (-) =	6,19E-07 1.00E-06	- ()	,	
	PFowdim Venion 2. (c) Gidder Associate	5	S (-) =	1,00E-06	- ()		
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Postfin Venion 2- (c) Gøder Associate	10 3	S (-) = K _s (m/s) =	1,00E-06 1,24E-07	- ()		
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Poscher Vention 2- (c) Odder Associate	5	$S(-) = K_{s}(m/s) = S_{s}(1/m) =$	1,00E-06	- ()		
0 19.3 Subovery / ISBO IA 55 - 560 m / CHIF 55 - 560 m / CHIF	Fordin Venice 2 (c) Oddar Associate	10 ³	$S(-) = K_{s}(m/s) = S_{s}(1/m) = $ Comments:	1,00E-06 1,24E-07 2,00E-07		arived from the	
19. ⁴	Poston Ventor 2- (c) Suster Associate	10 3	$S(-) = K_{s}(m/s) = S_{s}(1/m) = Comments:$ The recommended	1,00E-06 1,24E-07 2,00E-07 transmissivity c	f 6.2E-7 m2/s was d		
19. ⁴	Fordin Venior 2- (c) Odder Associate	10 ³	S(-) = $K_s(m/s) =$ $S_s(1/m) =$ Comments: The recommended analysis of the CHin	1,00E-06 1,24E-07 2,00E-07 transmissivity c r phase, which s		and derivative	
10 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	Fordin Ventor 2- (c) Galar Associate	10 10 10 10 10 10 10 10 10 10 10 10 10 1	S(-) = $K_s(m/s) =$ $S_s(1/m) =$ Comments: The recommended analysis of the CHir quality. The confide estimated to be 5E-	1,00E-06 1,24E-07 2,00E-07 transmissivity c r phase, which s ence range for t 7 to 8E-7 m2/s.	of 6.2E-7 m2/s was d shows the best data a he interval transmis The flow dimensior	and derivative sivity is a displayed	
10 ⁻ 10 ⁻	Poetin Venice 2- (c) Sator Annotat	10 ³	S(-) = $K_s(m/s) =$ $S_s(1/m) =$ Comments: The recommended analysis of the CHii quality. The confide estimated to be 5E- during the test is 2.	1,00E-06 1,24E-07 2,00E-07 transmissivity c r phase, which s ence range for t 7 to 8E-7 m2/s. The static pres	of 6.2E-7 m2/s was d shows the best data a he interval transmis The flow dimensior sure measured at tra	and derivative sivity is a displayed nsducer depth,	
10 ¹⁰ ² ¹⁰ ² ¹⁵ ² ¹⁵ ² ¹⁵ ² ¹⁵	Poston Venso 2 1 (c) Data Associate	10 10 10 10 10 10 10 10 10 10 10 10 10 1	S(-) = $K_s(m/s) =$ $S_s(1/m) =$ Comments: The recommended analysis of the CHii quality. The confide estimated to be 5E- during the test is 2.	1,00E-06 1,24E-07 2,00E-07 transmissivity of r phase, which s ence range for t 7 to 8E-7 m2/s. The static pres ne CHir phase u	of 6.2E-7 m2/s was d shows the best data a he interval transmis The flow dimensior sure measured at tra sing straight line ex	and derivative sivity is a displayed nsducer depth,	

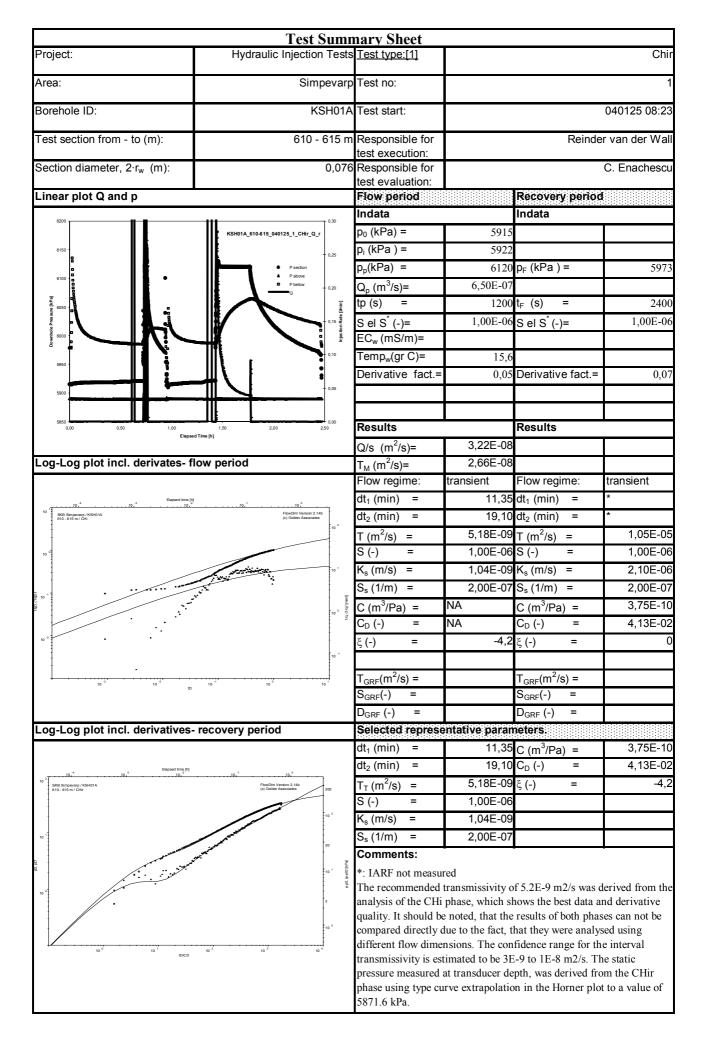


	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040123 10:01
Test section from - to (m):	565 - 570 m	Responsible for		Reinde	r van der Wall
		test execution:			
Section diameter, 2·r _w (m):		Responsible for			C. Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	
		Indata		Indata	
5800	10	p ₀ (kPa) =	5486		
KSH01A_565-570_040123_1_CHir_(p _i (kPa) =	-		
	8	$p_p(kPa) =$	-	p _F (kPa) =	-
5700 - P section	7	$Q_p (m^3/s) =$	-	Pr (··· -·)	
ਡ 5650 - ▲ Pabove ਦੁ ੈ ₽ below	6 g	$\frac{d_p(m/s)}{tp(s)} =$	-	t _F (s) =	-
	s con Rate (mon	S el S [*] (-)=	-	S el S [*] (-)=	-
with the second s	h)ec to n	$EC_w (mS/m) =$		Sei S (-)-	
å 5550 -		Temp _w (gr C)=	15,0		
5500 -		Derivative fact.=		Derivative fact.=	-
				20	
5450	● = 1				
5400	0,60 0,70 0,80 0,90 1,00	Results		Results	
Elapsed T	ime [h]	Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	-		
	•	Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		dt_2 (min) =	-	dt_2 (min) =	-
		$T (m^2/s) =$	NA	$T (m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not Ana		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_D(-) =$	NA		NA
		ξ(-) =	NA	ξ(-) =	NA
		5()		5()	
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	entative parar		
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	$C_{\rm D}(-) =$	NA
		$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA	- ` '	
		K _s (m/s) =	NA		
Not Ana	lvsed	$S_{s}(1/m) =$	NA		
	ر	Comments:	<u>.</u>		1
		Based on the test re transmissivity is lo		ged packer complian m2/s.	ce) the interval

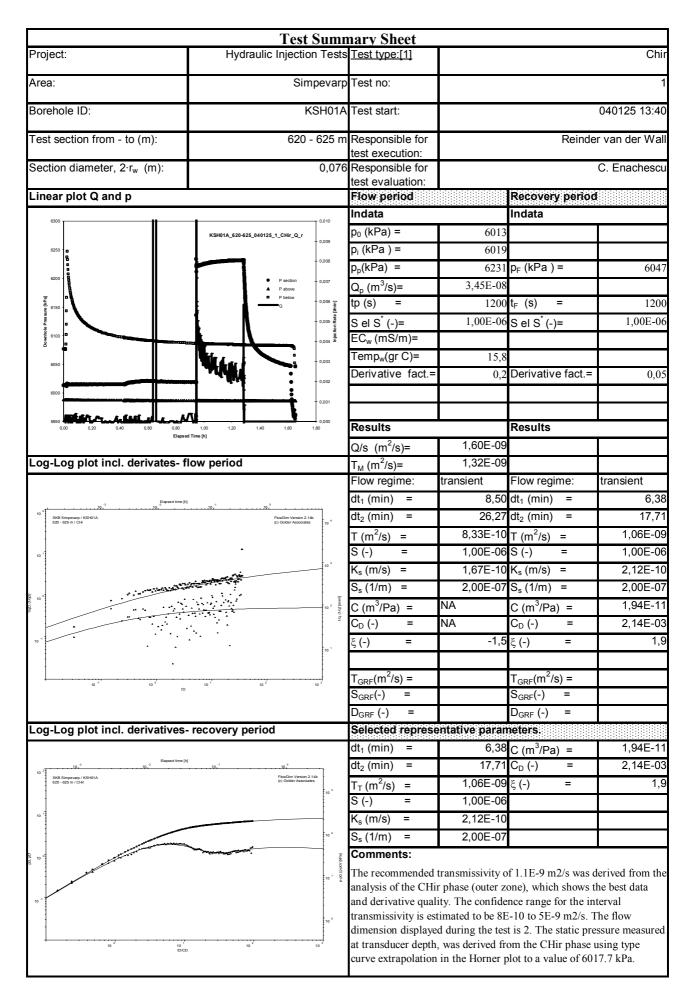

	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040123 11:27
Test section from - to (m):	570 575 m	Responsible for		Peinde	r van der Wall
rest section from - to (m).	570 - 575 III	test execution:	Reinder van d		
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
		test evaluation:			
Linear plot Q and p		Flow period Indata		Recovery period Indata	
5800	0,0030			Indata	
KSH01A_570-575_040123_1_CHir_Q_r		p ₀ (kPa) =	5533		
 Durder 	- 0,0025	p _i (kPa) =	5554	$p_{\rm c}$ (kDa) =	5710
5700 - P above		$p_p(kPa) =$		p _F (kPa) =	5712
₹ 5650Q	- 0,0020	$Q_p (m^3/s) =$ tp (s) =	1,42E-09	t₋ (s) =	1200
		(°)		ф (0)	1200
		S el S [*] (-)= EC _w (mS/m)=	1,00E-06	S el S [*] (-)=	1,00E-06
Å 5550 8		$EC_w (IIIS/III) =$ Temp _w (gr C)=	1.5.1		
5500	A14444.6.8.4.4.4.	Derivative fact.=	15,1	Derivative fact.=	0,05
	0.0005	Derivative fact	-	Derivative fact	0,03
		Results		Results	
Elapsed T	ine (n)	Q/s (m²/s)=	6,88E-11		
Log-Log plot incl. derivates- fle	ow period	$T_{M} (m^{2}/s) =$	5,68E-11		
		Flow regime:	-	Flow regime:	transient
		dt ₁ (min) =	-	dt ₁ (min) =	*
		dt ₂ (min) =	-	dt ₂ (min) =	*
		T (m²/s) =	NA	T (m²/s) =	1,93E-11
		S (-) =	NA	S (-) =	1,00E-06
		K _s (m/s) =	NA	K _s (m/s) =	3,86E-12
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	2,00E-07
	•	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2,06E-11
		C _D (-) =	NA	C _D (-) =	2,27E-03
		ξ(-) =	NA	ξ(-) =	0,8
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
		$S_{GRF}(-) =$		S _{GRF} (-) =	
				S _{GRF} (-) = D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	S _{GRF} (-) =	entative paran	D _{GRF} (-) =	
	recovery period	$S_{GRF}(-) = D_{GRF}(-) =$	entative paran *	D _{GRF} (-) = neters:	2,06E-11
Elapad time (N)		S _{GRF} (-) = D _{GRF} (-) = Selected represe	ntative paran * *	D _{GRF} (-) =	2,06E-11 2,27E-03
	recovery period	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ntative paran * * 1,93E-11	D _{GRF} (-) = neters C (m ³ /Pa) = C _D (-) =	
10 3 KB Simpevary / KB+01A 570 - 575 m / Chtr		$S_{GRF}(-) =$ $D_{GRF}(-) =$ Selected represe $dt_1 (min) =$ $dt_2 (min) =$	*	$D_{GRF}(-) =$ neters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$	2,27E-03
Elapsed time (N)	FlowOm Version 2.140 (c) Cobler Association	$\begin{array}{llllllllllllllllllllllllllllllllllll$	* * 1,93E-11	$D_{GRF}(-) =$ neters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$	2,27E-03
10 3 KB Simpevary / KB+01A 570 - 575 m / Chtr		$\begin{array}{llllllllllllllllllllllllllllllllllll$	* 1,93E-11 1,00E-06	$D_{GRF}(-) =$ neters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$	2,27E-03
10 568 Simperarp / KSH0 1A 570 - 575 m / CHr	19 ¹ FlowOm Version 2.46 (c) Goder Associates 10 ² 10 ² 10 ¹	$\begin{array}{llllllllllllllllllllllllllllllllllll$	* * 1,93E-11 1,00E-06 3,86E-12	$D_{GRF}(-) =$ neters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$	2,27E-03
10 10 10 10 10 10 10 10 10 10	FlowOm Version 2.140 (c) Cobler Association	$\begin{array}{llllllllllllllllllllllllllllllllllll$	* 1,93E-11 1,00E-06 3,86E-12 2,00E-07	$D_{GRF}(-) =$ neters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$	2,27E-03
10 10 10 10 10 10 10 10 10 10	FloadOm Version 2.140 (c) Doble Associates (c) Dobl	$\begin{array}{llllllllllllllllllllllllllllllllllll$	* 1,93E-11 1,00E-06 3,86E-12 2,00E-07 red transmissivity o	$D_{GRF}(-) =$ setters $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$ f 1.9E-11 m2/s was	2,27E-03 0,8 derived from
10 10 10 10 10 10 10 10 10 10	10 ⁻¹ Floridin Version 2.14b (1) Dodde Associates 10 ⁻² 10 ⁻¹ 10 ⁻¹ 10 ⁻¹	$\begin{array}{llllllllllllllllllllllllllllllllllll$	* 1,93E-11 1,00E-06 3,86E-12 2,00E-07 red transmissivity o CHir phase, whi	$D_{GRF}(-) =$ setters $C (m^{3}/Pa) =$ $C_{D}(-) =$ $\xi(-) =$ f 1.9E-11 m2/s was ch is the only analyze	2,27E-03 0,8 derived from sable phase.
10 10 500 500 400 400 100 100 100 100 100 100 100 1	FloadOm Version 2.140 (c) Doble Associates (c) Dobl	$\begin{array}{l} S_{GRF}(-) &= \\ \hline D_{GRF}(-) &= \\ \hline \textbf{Selected represent } \\ \textbf{Selected represent } \\ \textbf{dt}_1 (min) &= \\ \hline \textbf{dt}_2 (min) &= \\ \hline \textbf{dt}_2 (min) &= \\ \hline \textbf{T}_T (m^2/s) &= \\ \hline \textbf{S} (-) &= \\ \hline \textbf{K}_s (m/s) &= \\ \hline \textbf{S}_s (1/m) &= \\ \hline \textbf{Comments:} \\ \hline \textbf{*: IARF not measu } \\ \hline \textbf{The recommended } \\ \hline \textbf{the analysis of the } \textbf{0} \\ \hline \textbf{The confidence ran } \end{array}$	* 1,93E-11 1,00E-06 3,86E-12 2,00E-07 red transmissivity o CHir phase, whi ge for the interv	$D_{GRF}(-) =$ netters $C (m^{3}/Pa) =$ $C_{D}(-) =$ $\xi(-) =$ f 1.9E-11 m2/s was ch is the only analy val transmissivity is	2,27E-03 0,8 derived from sable phase. estimated to be
10 10 10 10 10 10 10 10 10 10	10 ⁻¹ Floridin Version 2.14b (1) Dodde Associates 10 ⁻² 10 ⁻¹ 10 ⁻¹ 10 ⁻¹	$\begin{array}{l} S_{GRF}(-) &= \\ \hline D_{GRF}(-) &= \\ \hline \textbf{Selected repress} \\ \hline \textbf{dt}_1 (min) &= \\ \hline \textbf{dt}_2 (min) &= \\ \hline \textbf{dt}_2 (min) &= \\ \hline \textbf{T}_T (m^2/s) &= \\ \hline \textbf{S} (-) &= \\ \hline \textbf{K}_s (m/s) &= \\ \hline \textbf{S}_s (1/m) &= \\ \hline \textbf{Comments:} \\ \hline \textbf{*: IARF not measu} \\ \hline \textbf{The recommended} \\ \hline \textbf{the analysis of the 0} \\ \hline \textbf{The confidence ran} \\ \hline \textbf{8E-12 to 8E-11 m2} \end{array}$	* 1,93E-11 1,00E-06 3,86E-12 2,00E-07 red transmissivity o CHir phase, whi ge for the interv /s. The static pro-	$D_{GRF}(-) =$ setters $C (m^{3}/Pa) =$ $C_{D}(-) =$ $\xi(-) =$ f 1.9E-11 m2/s was ch is the only analyze	2,27E-03 0,8 derived from sable phase. estimated to be ransducer

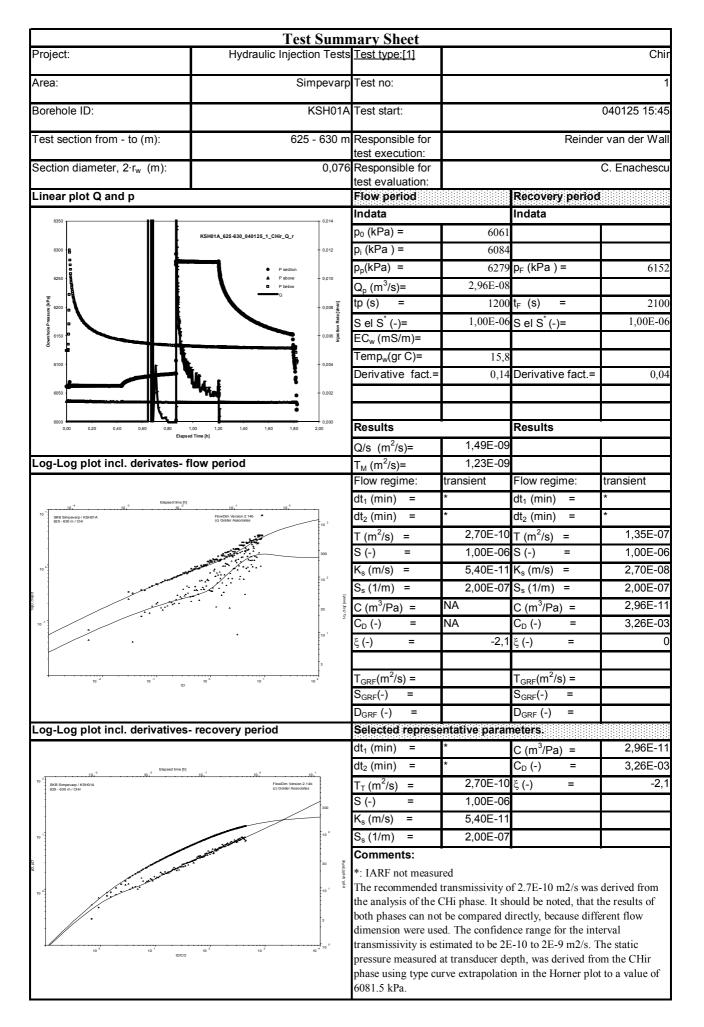





Test Sum	mary Sheet				
Project: Hydraulic Injection Test				Chir	
Area: Simpevar	Test no:			1	
Borehole ID: KSH014	Test start:		040124 10:		
Test section from - to (m): 590 - 595 n	n Responsible for	Peinder van der		er van der Wall	
	test execution:		Reinde		
Section diameter, $2 \cdot r_w$ (m): 0,076	6 Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p			1		
8000 10	Indata	<u>······················</u>	Indata		
KSH01A_590-595_040124_1_CHir_Q_r	p ₀ (kPa) =	5724			
5550 - P section	p _i (kPa) =	5729			
Second Package - 8 Secon	p _p (kPa) =	5929	p _F (kPa) =	5768	
	Q _p (m ³ /s)=	2,39E-05			
Research France Parameter Para	tp (s) =		t _F (s) =	3600	
	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
	EC _w (mS/m)=				
	Temp _w (gr C)=	15,4			
	Derivative fact.=	0,02	Derivative fact.=	0,06	
0,00 0,50 1,00 1,50 2,00 2,50 3,00 Elapsed Time (h.)	Results	1,17E-06	Results		
Log-Log plot incl. derivates- flow period	$Q/s (m^2/s) =$	9,68E-07			
Log-Log plot met. derivates- now period	T _M (m ² /s)= Flow regime:	transient	Flow regime:	transient	
	dt_1 (min) =		dt_1 (min) =	*	
Bigged time pi 0 10 502 Single pi / KBH0 A Fload Time pi / KBH0 A 00 503 Single pi / KBH0 A Fload Time pi / KBH0 A 00 504 Of the Associates Fload Time pi / KBH0 A	$dt_2 (min) =$		dt_2 (min) =	*	
500 - 565 m / CH (c) Golder Associates	$T(m^2/s) =$	1,45E-07	· · ·	7,16E-07	
10 ⁵	S (-) =	1,00E-06	· · /	1,00E-06	
	K_{s} (m/s) =	2,90E-08		1,43E-07	
and the second sec	$S_{s}(1/m) =$	2,00E-07		2,00E-07	
	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	4,05E-08	
	C _D (-) =	NA	C _D (-) =	4,46E+00	
10 °	ξ(-) =	-6,5	ξ(-) =	0	
	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
	S _{GRF} (-) =		S _{GRF} (-) =		
	$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives- recovery period	Selected represe	entative paran			
	dt_1 (min) =	*	C (m ³ /Pa) =	4,05E-08	
21	dt_2 (min) =	-	$C_{\rm D}(-) =$	4,46E+00	
10 ³ SKB Simpevarp / KSH01A 590 - 596 m / CHr (c) Golder Associates	$T_T(m^2/s) =$	7,16E-07		0	
10 3	S(-) =	1,00E-06			
10 ²	$\frac{K_{s} (m/s)}{S_{s} (1/m)} =$	1,43E-07 2,00E-07			
10 ²	Comments:	2,00E-07			
10	*: IARF not measu	rad			
			of 7.2E-7 m2/s was o	derived from the	
10' a	analysis of the CHi	r phase (outer z	one), which shows t	the best data	
			noted, that the resu		
10°			be compared directly different flow dime		
			ansmissivity is estir		
	7 to 1E-6 m2/s. Th	e static pressure	measured at transd	ucer depth, was	
			type curve extrapol	ation in the	
	Horner plot to a va	lue of 5741.2 kF	'a.		







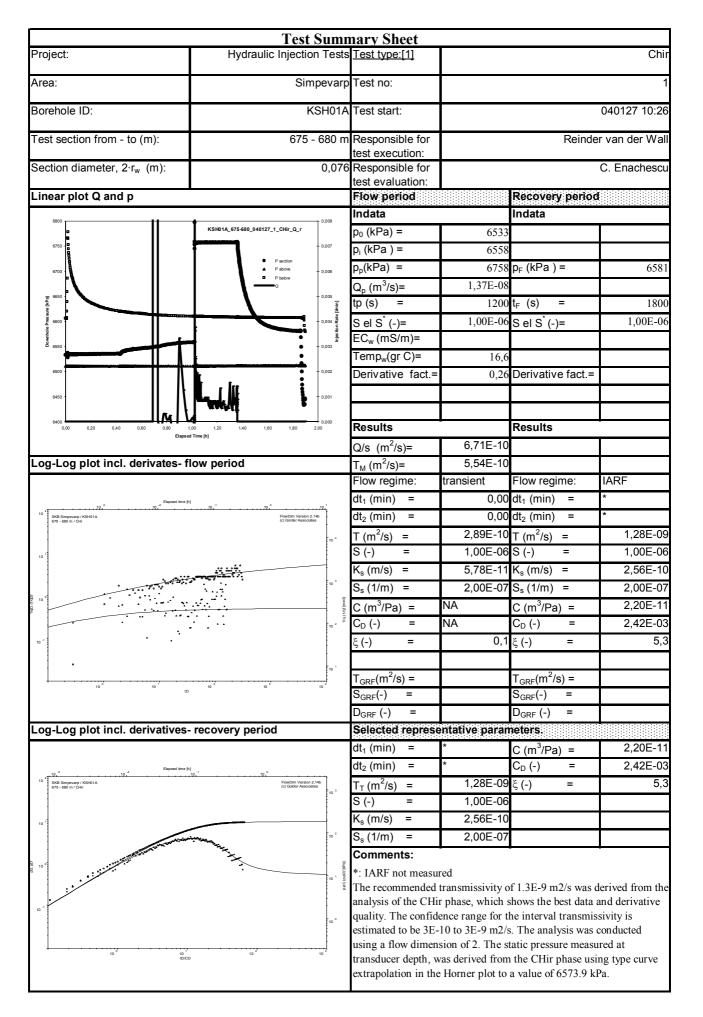
	Test Sumn	nary Sheet				
Project:	Hydraulic Injection Tests	Test type:[1]			Chir	
Area:	Simpevarp	Test no:			1	
Borehole ID:	KSH01A	Test start:			040124 17:26	
Test section from - to (m):	605 - 610 m	Responsible for		Reinde	r van der Wall	
		test execution:				
Section diameter, 2·r _w (m):		Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
6100	0,010	p ₀ (kPa) =	5869	indutu		
KSH01A_605-610_040124_1_CHir_Q_r	P section P above 0,009	p ₀ (kPa) =	-			
• .e	Q 0,008	$p_p(kPa) =$	-	p _F (kPa) =	-	
6000 6 000	0,007	•	-	ρ _F (κr a) -	-	
		$\frac{Q_p (m^3/s)}{tp (s)} =$		t _⊏ (s) =		
5450 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,006 g g		-		-	
8 5900 - 2		S el S [*] (-)=	-	S el S [*] (-)=	-	
5850 -		EC _w (mS/m)=				
	0,003	Temp _w (gr C)=	15,6			
5800 -	0,002	Derivative fact.=	-	Derivative fact.=	-	
5750 -	0,001					
and a still of the section of the se	Manna Mar					
0,00 0,10 0,20 0,30 0,40 0,50 Elapsed Tim	0,60 0,70 0,80 0,90 1,00	Results		Results		
		Q/s (m²/s)=	-			
Log-Log plot incl. derivates- flo	w period	T _M (m²/s)=	-			
		Flow regime:	-	Flow regime:	-	
		dt ₁ (min) =	-	dt ₁ (min) =	-	
		dt ₂ (min) =	-	dt ₂ (min) =	-	
		T (m²/s) =	NA	T (m ² /s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not Ana	lvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
		$\frac{C_{\rm D}(-)}{C_{\rm D}(-)} =$	NA	· · ·	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		ς(-) –		ς (-)		
		$T \left(re^{2}/c\right) =$		$T \left(re^{2}/r\right) =$		
		$T_{GRF}(m^2/s) = S_{GRF}(-) =$		$T_{GRF}(m^2/s) = S_{GPF}(-) =$		
			 	- 011 ()		
log log plot incl. derivatives	covory poriod	D _{GRF} (-) = Selected represe	ontoficial adda			
Log-Log plot incl. derivatives- re	ecovery period				<u></u> Гыл	
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA	
		$dt_2 (min) =$	-	$C_{D}(-) =$	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Ana	lysed	$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test re transmissivity is lo		ged packer complian m2/s.	ce) the interval	

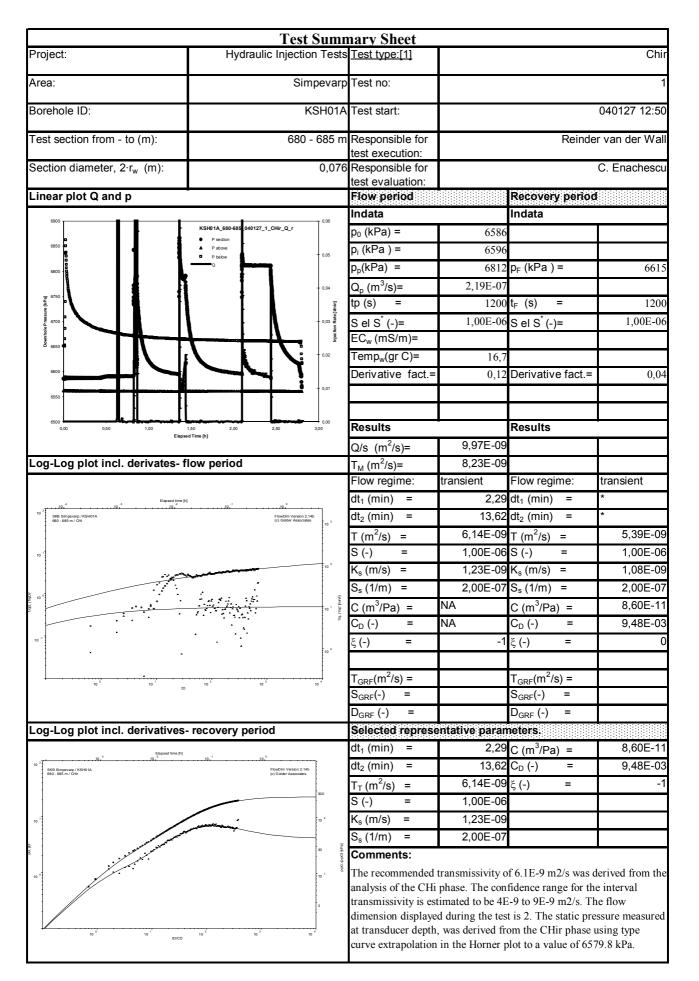
	Test Sum	mary Sheet				
Project:	Hydraulic Injection Test	s <u>Test type:[1]</u>			Chi	
Area:	Simpevar	p Test no:			1	
Borehole ID:	KSH01/	A Test start:			040125 17:56	
Test section from - to (m):	630 - 635 n	n Responsible for		Reinder van der W		
	0.07	test execution:			<u> </u>	
Section diameter, 2·r _w (m):	0,07	6 Responsible for test evaluation:			C. Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata	<u></u>	Indata	<u></u>	
	0,010	p ₀ (kPa) =	6109			
KSH01A_630-635_040125_1_CHir_Q_r	P section − 0,009 P above	p _i (kPa) =	-			
6300 -	• P below • • • 0,008	$p_p(kPa) =$	-	p _F (kPa) =	-	
	- 0,007	$Q_{p} (m^{3}/s) =$	-			
<u>€</u> ⁶²⁵⁰ .	0.00	$\frac{dq_p}{dt}$ (s) =	-	t _F (s) =	-	
		S el S [*] (-)=	-	S el S [*] (-)=	-	
		$EC_w (mS/m) =$		5 6 5 (-)-		
8 ₆₁₅₀ -		Temp _w (gr C)=	15,9			
6100	0,003	Derivative fact.=		Derivative fact.=	-	
	• 0,002	20				
6050 -	• 0,001					
6000	0,000	Results		Results		
Elapsed Tir		$Q/s (m^2/s)=$	-	Results		
og-Log plot incl. derivates- flo	w period	$T{\rm M} (m^2/s) =$	-			
		Flow regime:	-	Flow regime:	-	
		dt_1 (min) =	-	dt_1 (min) =	-	
		$dt_1 (min) = dt_2 (min) =$	-	$dt_1 (min) =$ $dt_2 (min) =$	-	
			- NA		- NA	
		$T (m^2/s) =$ S (-) =	NA	T (m ² /s) = S (-) =	NA	
					NA	
Not Arra	1d	$K_{s} (m/s) =$ $S_{s} (1/m) =$	NA NA	$K_{s} (m/s) =$ $S_{s} (1/m) =$	NA	
Not Ana	llysed					
		$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	NA NA	
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA NA	
		ξ(-) =	NA	ξ(-) =	NA	
		- (2)		- (2)	 	
		$T_{GRF}(m^2/s) =$	ļ	$T_{GRF}(m^2/s) =$	ļ	
		$S_{GRF}(-) =$	 	$S_{GRF}(-) =$	ļ	
Log-Log plot incl. derivatives- r	acovery period	- GRP ()		D _{GRF} (-) =		
Log-Log plot incl. derivatives- r	ecovery period	Selected represe dt ₁ (min) =	<u></u>		ΝΑ	
			-	C (m ³ /Pa) = C _D (-) =	NA NA	
		- 2 ()	- NA	В()	NA	
		$T_T (m^2/s) =$ S (-) =		ξ(-) =	INA	
		- ()	NA		ļ	
XT / 4	lange d	$K_{s} (m/s) =$	NA		ļ	
Not Ana	uysea	S _s (1/m) = Comments:	NA			
			······································		· · · · · · · · · · · · · · · · · · ·	
		Based on the test re transmissivity is lo		ged packer complian m2/s	ice) the interval	
		a unionniosi vity is 10				

	Test Sur	nmary Sheet				
Project:	Hydraulic Injection Te	sts <u>Test type:[1]</u>			Chir	
Area:	Simpeva	arp Test no:			1	
Borehole ID:	KSH0	1A Test start:			040126 08:16	
Test section from - to (m):	635 - 640	m Responsible for		Reinder van der Wa		
Section diameter, 2·r _w (m):	0.0	test execution: 76 Responsible for			C. Enachescu	
	-,-	test evaluation:				
Linear plot Q and p		Flow period		Recovery period	(
6400	T 0,010	Indata		Indata		
KSH01A_635-640_040126_1_CHir_Q_r	P section P above 0,009	p ₀ (kPa) =	6154			
6350 -	P below Q 0.008	p _i (kPa) =	-			
	- 0,008	p _p (kPa) =	-	p _F (kPa) =	-	
6300 -	- 0,007	$Q_{p} (m^{3}/s) =$	-			
	- 0,005	tp (s) =	-	t _F (s) =	-	
	0,005	S el S [*] (-)=	-	S el S [*] (-)=	-	
	0,004					
6200	0.003	Temp _w (gr C)=	16,0			
	•	Derivative fact.=	-	Derivative fact.=	-	
6150	- 0.002					
	0.001					
6100 0,00 0,10 0,20 0,30 0,40 0,50	0,000	Results		Results		
Elapsed Tim	e [h]	Q/s (m ² /s)=	-			
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	-			
		Flow regime:	_	Flow regime:	-	
		dt_1 (min) =	-	dt_1 (min) =	-	
		dt_2 (min) =	-	dt_2 (min) =	-	
		2	NA	2	NA	
		T (m²/s) = S (-) =	NA	T (m²/s) = S (-) =	NA	
		$K_{s} (m/s) =$	NA		NA	
	11			s ()		
Not Ana	lysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		T (² /)		$T \left(r^{2}\right)$		
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	 	
		$S_{GRF}(-) =$	 	$S_{GRF}(-) =$	 	
on Lon plating deriveting		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives- r	ecovery period	Selected repres			Ινια	
		dt_1 (min) =	-	C (m ³ /Pa) =	NA	
		dt_2 (min) =	-	C _D (-) =	NA	
		$T_T (m^2/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Ana	lysed	$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test r transmissivity is lo		ged packer compliar m2/s.	nce) the interval	

	Test Summ	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040126 09:48
Test section from - to (m):	640 - 645 m	Responsible for		Reinde	r van der Wall
		test execution:			
Section diameter, 2·r _w (m):	0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	[
		Indata		Indata	
6500 KSH01A_640-645_040126_1_CHir_Q_r	0,010	p ₀ (kPa) =	6200		
6450 - B	▲ P above - 0,009 ■ P below ●	p _i (kPa) =	-		
6400 - g	Q • 0,008	$p_p(kPa) =$	-	p _F (kPa) =	-
	0,007	$\overline{Q_p(m^3/s)}=$	-		
قع ⁶³⁵⁰ -	0.006	tp(s) =	-	t _F (s) =	-
	0.005 a	S el S [*] (-)=	-	S el S [*] (-)=	-
		$EC_w (mS/m) =$			
ă ₆₂₅₀ -		Temp _w (gr C)=	16,1		
6200	• • • • • •		-	Derivative fact.=	-
6150					
0150 -	0,001				
6100 0,00 0,10 0,20 0,30 0,40 0,50	0,000	Results		Results	
Elapsed Tim	e [h]	Q/s (m ² /s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	-		
		Flow regime:	-	Flow regime:	-
		dt ₁ (min) =	-	dt ₁ (min) =	-
		dt ₂ (min) =	-	dt ₂ (min) =	-
		T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	K _s (m/s) =	NA
Not Ana	lysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =	l
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	l
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	ecovery period	Selected represe	ntative paran	neters.	•
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt ₂ (min) =	-	C _D (-) =	NA
		$T_T (m^2/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
Not Ana	lysed	S _s (1/m) =	NA		
	-	Comments:	-	-	•
		Based on the test re transmissivity is low		ged packer complian m2/s.	the interval

	Test Sum	nary Sheet			
Project:	Hydraulic Injection Tests				Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:	040126 1		040126 11:16
Test section from - to (m):	645 - 650 m	Responsible for		Reinde	r van der Wall
		test execution:			
Section diameter, 2·r _w (m):	0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata	***********************	Indata	
6550	0,010	p ₀ (kPa) =	6249		
KSH01A_645-650_040126_1_CHir_Q	Lr ● P section = 0,009 ▲ P above	p _i (kPa) =	-		
6450 1 B	P below Q	$p_p(kPa) =$	-	p _F (kPa) =	-
-	- 0,007	$Q_{p} (m^{3}/s) =$	-	FT X - 7	
중 6400 - 윤	- 0.006 E	$\frac{d_p(m/s)}{tp(s)} =$	-	t _F (s) =	-
		S el S [*] (-)=	-	S el S [*] (-)=	-
		$EC_w (mS/m) =$		383(-)-	
² ₆₃₀₀ .	•	Temp _w (gr C)=	16,1		
6250	8 - 0,003	Derivative fact.=		Derivative fact.=	-
		Denvalive lact	-	Derivative lact	-
6200 -	0.001				
6150	0,000	Results		Results	
Elapsed			-	Results	
Log-Log plot incl. derivates- fl	ownoriad	Q/s (m ² /s)=	-		
Log-Log plot men derivates- m		T _M (m²/s)= Flow regime:	-	Flow regime:	-
		-		-	
		dt_1 (min) =	-	$dt_1 (min) =$	-
		$dt_2 (min) =$	-	$dt_2 (min) =$	-
		$T(m^2/s) =$	NA	$T(m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
			NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =	
		S _{GRF} (-) =		S _{GRF} (-) =	
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	C _D (-) =	NA
		T _⊤ (m²/s) =	NA	ξ(-) =	NA
Not Analysed		S (-) =	NA		
		K _s (m/s) =	NA		
		S _s (1/m) =	NA		
		Comments:			
		Based on the test re transmissivity is low		ged packer complian m2/s.	ce) the interval


	Test Sumn	nary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A	Test start:			040126 13:04
Test section from - to (m):	650 - 655 m	Responsible for		Reinde	r van der Wal
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for			C. Enachescu
		test evaluation:			O. LINCOLOGIC
Linear plot Q and p		Flow period		Recovery period	
6600	T 0,010	Indata		Indata	
KSH01A_650-655_040126_1_CHir_Q_r	P section	p ₀ (kPa) =	6298		
6550 ·		p _i (kPa) =	-		
6500 -	- 0,008	p _p (kPa) =	-	p _F (kPa) =	-
-8	0,007	Q _p (m ³ /s)=	-		
e 6450 e	- 0,005 g	tp (s) =	-	t _F (s) =	-
	on Rate (2	S el S [*] (-)=	-	S el S [*] (-)=	-
	× ×	EC _w (mS/m)=		· · · ·	l
- 600	- 0.003	Temp _w (gr C)=	16,2		
6300	?	Derivative fact.=	-	Derivative fact.=	-
6250 -					
	- 0,001				
6200 🕊 🕮 🖆 🔔 📩 🚽 🔔 📥 🗛 💭 💆 💆 0,00 0,10 0,20 0,30 0,40 0,50 Elapsed Tim	0,60 0,70 0,80 0,90 1,00	Results		Results	
		Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flow	w period	T _M (m²/s)=	-		
		Flow regime:	-	Flow regime:	-
		dt ₁ (min) =	-	dt ₁ (min) =	-
		dt ₂ (min) =	-	dt ₂ (min) =	-
		T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not Ana	lysed	S _s (1/m) =	NA	S _s (1/m) =	NA
	-	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	ecovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt ₂ (min) =	-	C _D (-) =	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
Not Analysed		S _s (1/m) =	NA		
		Comments:			
		Based on the test re transmissivity is lo		ged packer complian m2/s.	the interva


	Test Sumn	nary Sheet			
Project: Hydraul	ic Injection Tests	Test type:[1]			Chi
Area:	Simpevarp	Test no:			
Borehole ID:	KSH01A T				040126 14:32
Test section from - to (m):	655 - 660 m	Responsible for test execution:		Reinde	r van der Wa
Section diameter, 2·r _w (m):	0.076	Responsible for			C. Enachesc
	0,070	test evaluation:			C. Enachood
Linear plot Q and p		Flow period		Recovery period	
6700	T 0,0050	Indata		Indata	
KSH01A_655-660_040126	_1_CHir_Q_r	p ₀ (kPa) =	6345		
▲ P above	/	p _i (kPa) =	6376		
	0,0040	p _p (kPa) =	6570	p _F (kPa) =	663
esso - 6	0,0035	$Q_{p} (m^{3}/s) =$	1,67E-09		
₽ 6500 -	• 0,0030 j	tp (s) =	1200	t _F (s) =	120
	0,0025 B	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-0
\$ 6400 1		EC _w (mS/m)=			
6350	• 0,0015	Temp _w (gr C)=	16,3		
		Derivative fact.=	-	Derivative fact.=	-
6300 -	0,0010				
6250 -	- 0,00.05				
6200 0,20 0,40 0,60 0,80 1,00 1,20 1,40	1,60 1,80	Results		Results	
Elapsed Time (h)		Q/s (m²/s)=	8,43E-11		
.og-Log plot incl. derivates- flow period		$T_{\rm M} ({\rm m}^2/{\rm s})=$	6,96E-11		
		Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	_
		dt_2 (min) =	-	dt_2 (min) =	-
		$T (m^2/s) =$	NA	$T (m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	K _s (m/s) =	NA
Not Analysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Analysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		()	NA	$C (m /Pa) = C_D (-) =$	NA
		.,	NA		NA
		ξ(-) =	INA	ξ(-) =	NA
		2. \		2. \	
		$T_{GRF}(m^2/s) = S_{GRF}(-) =$		$T_{GRF}(m^2/s) = S_{CPF}(-) =$	
		- GRF()		- GRE()	
og-Log plot incl. derivatives- recovery perio	ba	Selected represe			
		$dt_1 (min) =$	-	C (m ³ /Pa) =	NA
		$dt_2 (min) =$		$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S(-) =	NA		
Not Analysed		$K_s (m/s) =$	NA		
		S _s (1/m) = Comments:	NA		
		The steady state and	s of this calculat	ucted using a flow rations should be seen section.	

	Test Sum	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chi
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040126 16:36
Test section from - to (m):	660 - 665 m	Responsible for test execution:		Reinde	r van der Wal
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
6700	0,010	Indata		Indata	
KSH01A_660-665_040126_1_CHir_Q_r	 P section A P above 0,009 	p ₀ (kPa) =	6391		
	P below 0,008	p _i (kPa) =	-		
6600 - 4		p _p (kPa) =	-	p _F (kPa) =	-
₹ 6650	0,007	Q _p (m ³ /s)=	-		
	0,006 II	tp (s) =	-	t _F (s) =	-
	- 0.005 g	S el S [*] (-)=	-	S el S [*] (-)=	-
6450 ·		EC _w (mS/m)=			
	0,003	Temp _w (gr C)=	16,4		
6400	• + 0.002	Derivative fact.=	-	Derivative fact.=	-
6350 -					
6300	0,00				
0,00 0,10 0,20 0,30 0,40 0,50 Elapsed Tim	0,60 0,70 0,80 0,90 1,00	Results		Results	
		Q/s (m²/s)=	-		
_og-Log plot incl. derivates- flo	w period	T _M (m ² /s)=	-		
		Flow regime:	-	Flow regime:	-
		dt ₁ (min) =	-	dt ₁ (min) =	-
		dt ₂ (min) =	-	dt ₂ (min) =	-
		T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not Ana	lysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$	Ì	D _{GRF} (-) =	
_og-Log plot incl. derivatives- r	ecovery period	Selected represe	entative parar		•
		dt ₁ (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	$C_{\rm D}(-) =$	NA
		$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA	- ` '	
		$K_s (m/s) =$	NA		
Not Ana	lvsed	$S_{s}(1/m) =$	NA		
1101 14110		Comments:			
			snonse (prolong	ged packer complian	ce) the interva
		transmissivity is lo			

Chin 1 18:01 er Wal chescu
er Wal
er Wal
hescu
<u></u>
6486
36000
00E-06
0,07
- ,
nt
'8E-11
0E-06
6E-12
0E-07
85E-12
9E-04
1,8
85E-12
9E-04
9⊑-04 1,8
1,0
from
outer
on this
inge of s. The
<i></i> 1110
using
kPa
5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	Test Sum	nary Sheet			
Project:	Hydraulic Injection Tests	Test type:[1]			Chir
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040127 08:15
Test section from - to (m):	670 - 675 m	Responsible for		Reinde	r van der Wall
		test execution:			0. Easthann
Section diameter, 2·r _w (m):	0,076	Responsible for test evaluation:			C. Enachescu
Linear plot Q and p		Flow period		Recovery period	
6800	0,0050	Indata		Indata	
KSH01A_670-675_040127_1_CHir_Q_r	 P section A P above = 0,0045 	p ₀ (kPa) =	6485		
6750 -	P below	p _i (kPa) =	6505		
6700 -		p _p (kPa) =	6710	p _F (kPa) =	6558
- 6550	- 0,0035 -	Q _p (m ³ /s)=	2,62E-09		
	- ^{0,0030} 대표	tp (s) =		t _F (s) =	1200
P 0550	- 0.0025 ag	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
\$ p 2 6550	0,0020	EC _w (mS/m)=			
6500 -	0,0015	Temp _w (gr C)=	16,5	Device time foot -	0.02
	0,0010	Derivative fact.=	-	Derivative fact.=	0,02
6450 -	0,0005				
6400 0.00 0.20 0.40 0.60 0.80	1,00 1,20 1,40 1,60 1,80	Results		Results	
Elapsed Tin		$Q/s (m^2/s)=$	1,25E-10		
Log-Log plot incl. derivates- flo	w period	$T_{\rm M} ({\rm m}^2/{\rm s})=$	1,03E-10		
	•	Flow regime:	-	Flow regime:	transient
		dt_1 (min) =	-	dt ₁ (min) =	*
		dt ₂ (min) =	-	dt ₂ (min) =	*
		$T (m^2/s) =$	NA	T (m ² /s) =	7,61E-11
		S (-) =	NA	S (-) =	1,00E-06
		K _s (m/s) =	NA	$K_s (m/s) =$	1,52E-11
Not Ana	alysed	S _s (1/m) =	NA	S _s (1/m) =	2,00E-07
		C (m³/Pa) =	NA	C (m ³ /Pa) =	1,31E-11
		C _D (-) =	NA	C _D (-) =	1,44E-03
		ξ(-) =	NA	ξ(-) =	-0,2
		2		2	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$ $D_{GPF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	D _{GRF} (-) = Selected represe	ntativo narar	= 61(1 ()	
		dt_1 (min) =	*	C (m ³ /Pa) =	1,31E-11
		dt_2 (min) =	*	$C_{D}(-) =$	1,44E-03
10 ⁻³ 5KB Simpevarp / KSH01A 670 - 675 m / CHir	10, ⁻¹ 10, ⁰ FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	7,61E-11		-0,2
1 b/u b/b m/ CHIr	(c) Guider Associates	S (-) =	1,00E-06		
10	10 ²	K _s (m/s) =	1,52E-11		
		S _s (1/m) =	2,00E-07		
b	10 ¹	Comments:			
		*: IARF not measured			
	10 °			of 7.6E-11 m2/s was g the homogeneous	
10 -1				low injection rates	
		measurement range	e of flowmeter),	the interval transmi	ssivity is lower
10 ⁰ 10 10CD	10 ⁻¹			n of 2 was used for t	
(D)CD				nsducer depth, was trapolation in the H	
		value of 6489.1 kPa			piot to u

	Test Sumr	nary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:		040127 16:07	
Test section from - to (m):	685 - 690 m	Responsible for		Reinde	r van der Wal
		test execution:			
Section diameter, 2·r _w (m):	0,076	Responsible for			C. Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	
		Indata		Indata	
7000 KSH01A_685-690_040127_1_CHir_C	0,010	p ₀ (kPa) =	6632		
	▲ Pabove - 0,009 ■ Pbelow	p _i (kPa) =	-		
6900 - 1	- 0,008	$p_p(kPa) =$	-	p _F (kPa) =	-
6800	- 0,007	$\frac{Q_{p} (m^{3}/s)}{Q_{p} (m^{3}/s)} =$	-	FT (- 7	
	+ 0.006 E	$\frac{dq_p(m,rs)}{tp(s)} =$	-	t _F (s) =	-
	E - 0.005 &	S el S [*] (-)=	-	s el S [*] (-)=	-
ownho le		$EC_w (mS/m) =$		⊂ oi o (-)-	
6600		Temp _w (gr C)=	16,7		
	•	Derivative fact.=		Derivative fact.=	-
6500 -	+ 0,002				
	0,001				
		Results		Results	
Elapsed Ti	me (n)	Q/s (m²/s)=	-		
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	-		
		Flow regime:	-	Flow regime:	-
		dt ₁ (min) =	-	dt ₁ (min) =	-
		dt ₂ (min) =	-	dt ₂ (min) =	-
		T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	K _s (m/s) =	NA
Not Ana	alysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m ³ /Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =	
		S _{GRF} (-) =		S _{GRF} (-) =	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- r	ecovery period	Selected represe			T
		dt_1 (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	C _D (-) =	NA
		$T_T (m^2/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
5		$S_{s}(1/m) =$	NA		
		Comments:			
		Based on the test re transmissivity is low		ged packer complian m2/s.	ce) the inferva

Hydraulic Injection Tests Simpevarp				Chir
Simpevarp	Toot no:			
	Simpevarp Test no:			1
KSH01A	Test start:			040127 17:33
690 - 695 m Responsible for			Reinde	r van der Wall
				C. Enachescu
	test evaluation:			
₋inear plot Q and p			Recovery period	
- 0.005	Indata		Indata	
	p₀ (kPa) =	6680		
B abava		-		
Q0,004		_	n₋ (kPa) =	-
0,004	•		p _F (κι α) –	-
			t (-) -	
		-		-
		-	S el S (-)=	-
• 0,002 ⁸				
0,002	Temp _w (gr C)=	,		
• •	Derivative fact.=	-	Derivative fact.=	-
0,001				
0,60 0,70 0,80 0,90 1,00	Results		Results	
		-		
period		_		
peniou			Elow rogimo:	-
	-			
				-
				-
	. ,			NA
	S (-) =	NA	S (-) =	NA
	$K_s (m/s) =$	NA	K _s (m/s) =	NA
sed	S _s (1/m) =	NA	S _s (1/m) =	NA
	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
	,	NA	· ,	NA
				NA
	<u>ج ()</u>		5()	
	\mathbf{T} (m ² /s)		τ (m ² (x)	
overy period		intative paran		
		-	C (m ³ /Pa) =	NA
	dt ₂ (min) =	-	C _D (-) =	NA
	T _T (m²/s) =	NA	ξ(-) =	NA
		NA		
	K _s (m/s) =	NA		
rsed				
Not Analysed				I
				ce) the interval
	overy period	Flow period $P = dom P = do$	$0,076 \text{ Responsible for test evaluation:}$ Flow period $f(kPa) = 6680$ $p(kPa) = - p_{p}(kPa)$	$0,076 Responsible for test evaluation: Recovery period Recovery period Recovery period Recovery period p_0 (kPa) = p_0(kPa) = 0.680p_0 (kPa) = - p_p $

	Test Sum	nary Sheet			
Project:	Hydraulic Injection Tests				Chi
Area:	Simpevarp	Test no:			1
Borehole ID:	KSH01A	Test start:			040128 08:14
Test section from - to (m):	695 - 700 m	Responsible for		Reinde	r van der Wal
Section diameter, 2·r _w (m):	0,076	test execution: Responsible for			C. Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
7100	0,010	Indata		Indata	
7050 -	Departies 0,009	p ₀ (kPa) =	6726		
KSH01A_695-700_040128_1_CHir_	Q_r ▲ P above	p _i (kPa) =	-		
7000 -	P below + 0,008	p _p (kPa) =	-	p _F (kPa) =	-
6950	0,007	Q _p (m ³ /s)=	-		
[e 6900 − 4.2 9900 − 978	0,006 E	tp (s) =	-	t _F (s) =	-
5 6850 0	0,005	S el S [*] (-)=	-	S el S [*] (-)=	-
		$EC_w (mS/m) =$			
6750	0.003	Temp _w (gr C)=	16,9		
	¢	Derivative fact.=		Derivative fact.=	-
6700					
6850 -	• 0,001				
6600 54 1 4. Ann Áth Ann Ath Ann Ath Ann Ath	0,60 0,70 0,80 0,90 1,00	Results		Results	
Elapsed Time	[h]	Q/s (m²/s)=	-		
og-Log plot incl. derivates- flow	v period	$T{\rm M} (m^2/s) =$	-		
0 01	•	Flow regime:	-	Flow regime:	-
		dt_1 (min) =	-	dt_1 (min) =	-
		dt_2 (min) =	-	dt_2 (min) =	-
		$T (m^2/s) =$	NA	2	NA
		S (-) =	NA	T (m²/s) = S (-) =	NA
		$K_{s} (m/s) =$	NA	$K_{s} (m/s) =$	NA
Not Ano		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not Anal	lyseu				
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
			NA	$C_{D}(-) =$	NA
		ξ(-) =	NA	ξ(-) =	NA
		2	ļ	2	ļ
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	ļ
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	ļ
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives- re	ecovery period	Selected represe			
		dt_1 (min) =	-	C (m ³ /Pa) =	NA
		dt_2 (min) =	-	C _D (-) =	NA
		$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
Not Ana	lysed	S _s (1/m) =	NA		
		Comments:			
		Based on the test re transmissivity is low		ged packer complian m2/s.	ce) the interva

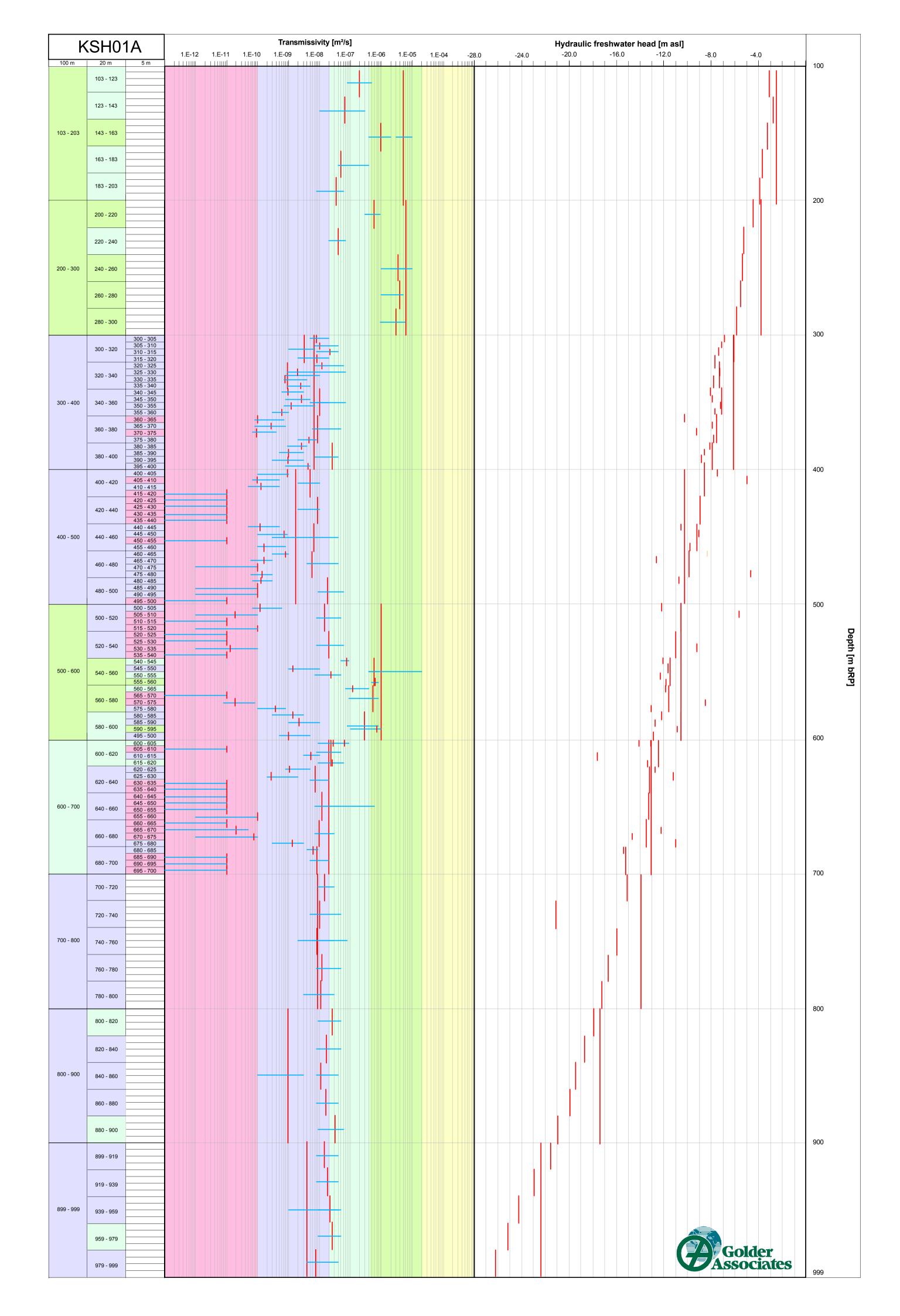
Borehole: KSH01A

APPENDIX 4

Nomenclature

Borehole: KSH01A	Page 4/2

The following symbols are extracted from the more comprehensive list of symbols provided by SKB. Only the symbols that were used or deemed to be used in the future in the context of test analysis are presented.


Character	Explanation	Dimension	Unit
b	Aquifer thickness (Thickness of 2D formation)	[L]	m
L _w	Test section length.	[L]	m
r _w	Borehole, well or soil pipe radius in test section.	[L]	m
r _D	Dimensionless radius, $r_D = r/r_w$	-	-
Qp	Flow in test section immediately before stop of flow. Stabilised pump flow in flow logging.	[L ³ /T]	m ³ /s
Q _m	Arithmetical mean flow during perturbation phase.	$[L^3/T]$	m ³ /s
V	Volume	$[L^3]$	m ³
V_w	Water volume in test section.	$[L^3]$	m ³
V _p	Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
t	Time	[T]	hour,min,s
t ₀	Duration of rest phase before perturbation phase.	[T]	S
t _p	Duration of perturbation phase. (from flow start as far as p_p).	[T]	S
t _F	Duration of recovery phase (from p_p to p_F).	[T]	S
t_1, t_2 etc	Times for various phases during a hydro test.	[T]	hour,min,s
dt	Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e	$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D	$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
p	Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
pa	Atmospheric pressure	$[M/(LT)^2]$	kPa
p _t	Absolute pressure; $p_t=p_a+p_g$	$[M/(LT)^2]$	kPa
p _g	Gauge pressure; Difference between absolute pressure and atmospheric pressure.	$[M/(LT)^2]$	kPa
\mathbf{p}_0	Initial pressure before test begins, prior to packer expansion.	$[M/(LT)^2]$	kPa
p _i	Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f	Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
p _s	Pressure during recovery.	$[M/(LT)^2]$	kPa
p _p	Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
p _F	Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
p _D	$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	_	-
dp	Pressure difference, drawdown of pressure surface between two points of time.	$[M/(LT)^2]$	kPa
dp _f	$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	$[M/(LT)^2]$	kPa
dp _s	$dp_s = p_s - p_p$ or $p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	$[M/(LT)^2]$	kPa
dp _p	$dp_p = p_i - p_p$ or $p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	$[M/(LT)^2]$	kPa
dp _F	$dp_F = p_p - p_F$ or $= p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	$[M/(LT)^2]$	kPa

Borehole: KSH01A	Page 4/3

		[FT]	1
Н	Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_p+h_v$	[L]	m
h	Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static	[L]	m
h _e	head)); (indication of h for phase as for p). h=h _e +h _p Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
Sp	Drawdown in measuring section before flow stop.	[L]	m
h ₀	Initial above reference level before test begins, prior to packer expansion.	[L]	m
hi	Level above reference level in measuring section before start of flow.	[L]	m
h _f	Level above reference level during perturbation phase.	[L]	m
h _s	Level above reference level during recovery phase.	[L]	m
h _p	Level above reference level in measuring section before flow stop.	[L]	m
$h_{\rm F}$	Level above reference level in measuring section at end of recovery.	[L]	m
dh	Level difference, drawdown of water level between two points of time.	[L]	m
dh _f	$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s	$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p	$dh_p = h_i - h_p \text{ or } = h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F	$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w	Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}	Temperature in the test section during undisturbed conditions (taken from temperature logging). Temperature		°C
g	Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to gravity)	[L/T ²]	m/s ²
π	Constant (approx 3.1416).	[-]	
r	Residual. $r=p_c-p_m$, $r=h_c-h_m$, etc. Difference between measured data (p_m , h_m , etc) and estimated data (p_c , h_c , etc)		
Q/s	Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)	$[L^2/T]$	m ² /s
D	Interpreted flow dimension according to Barker, 1988.	[-]	-
dt ₁	Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt ₂	End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
Т	Transmissivity	$[L^2/T]$	m ² /s
T _M	Transmissivity according to Moye (1967)	$[L^2/T]$	m^{2}/s
T _S	Transmissivity evaluated from slug test	$[L^2/T]$	m^2/s
$T_{\rm Sf}, T_{\rm Lf}$	Transient evaluation based on semi-log or log-log diagram for perturbation phase in injection or pumping.	[L ² /T]	m ² /s
T _{Ss} , T _{Ls}	Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.	$[L^2/T]$	m ² /s

Borehole: KSH01A	Page 4/4

т	Transient avaluation (log log or lin log) Indeed heat	$[L^2/T]$	m^2/s
T _T	Transient evaluation (log-log or lin-log). Judged best	[L / I]	m /s
т	evaluation of T _{Sf} , T _{Lf} , T _{Ss} , T _{Ls}	FT 2/TT]	27
T _{NLR}	Evaluation based on non-linear regression.	$[L^2/T]$	m^2/s
S	Storage coefficient, (Storativity)	[-]	-
S*	Assumed storage coefficient	[-]	-
S_{f}	Fracture storage coefficient	[-]	-
Sm	Matrix storage coefficient	[-]	-
S _{NLR}	Storage coefficient, evaluation based on non-linear regression	[-]	-
Ss	Specific storage coefficient; confined storage.	[1/L]	1/m
S _s *	Assumed specific storage coefficient; confined storage.	[1/L]	1/m
ξ	Skin factor	[-]	-
٤*	Assumed skin factor	[-]	-
S _s * ξ ξ* C	Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m ³ /Pa
C _D	$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage coefficient	[-]	-
ω	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.	[-]	-
λ	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
T _{GRF}	Transmissivity interpreted using the GRF method	$[L^2/T]$	m^2/s
S _{GRF}	Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}	Flow dimension interpreted using the GRF method	[-]	-
C _w	Water compressibility; corresponding to β in hydrogeological literature.	[(LT ²)/M]	1/Pa
c _r	Pore-volume compressibility, (rock compressibility); Corresponding to α/n in hydrogeological literature.	$[(LT^2)/M]$	1/Pa
C _t	$c_t = c_r + c_w$, total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in c_t if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ²)/M]	1/Pa
n	Total porosity	-	-
ρ	Density	$[M/L^3]$	$kg/(m^3)$
$\rho_{\rm w}$	Fluid density in measurement section during pumping/injection	$[M/L^3]$	$kg/(m^3)$
μ	Dynamic viscosity	[M/LT]	Pas
μ _w	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s

Borehole: KSH01A

APPENDIX 6

SICADA data tables

Borehole	Borehole	Borehole	Test	Formation	Date for	Start flow/	Qp	tp	$t_{\rm F}$	\mathbf{h}_{i}	h _p	$h_{\rm F}$	p_i	p_p	$p_{\rm F}$	Tew	ECw	$TDS_{\rm w}$	$TDS_{wm} \\$	Reference	Comments
	secup	seclow	type	type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m ³ /s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/L)	(mg/ L)		(-)
KSH01A	103	203	1	1	20031209	130300	2,28E-05	1800	1800				1045	1242	1051	8,9					
KSH01A	200	300	1	1	20031210	135100	1,37E-04	1800	1800				1985	2184	1997	9,8					
KSH01A	300	400	1	1	20031210	181800	2,90E-07	1800	5400				2951	3152	2954	11,3					
KSH01A	400	500	1	1	20031214	100100	8,97E-08	1800	3600				3894	4134	3930	12,7					
KSH01A	500	600	1	1	20031211	150500	3,78E-05	1800	3600				4870	5071	4895	14,0					
KSH01A	600	700	1	1	20031212	071700	1,00E-06	1800	1800				5828	6031	5878	15,5					
KSH01A	700	800	1	1	20031212	110100	2,92E-07	1800	3600				6788	6966	6813	17,0					
KSH01A	800	900	1	1	20031212	145600	1,45E-08	1800	57600				7780	7962	7741	18,5					
KSH01A	899	999	1	1	20031213	143000	1,12E-07	1800	1800				8682	8890	8670	20,0					
KSH01A	103	123	1	1	20031215	114500	6,94E-06	1200	1800				1048	1248	1054	8,8					
KSH01A	123	143	1	1	20031215	145100	1,03E-06	1200	1200				1241	1441	1240	9,1					
KSH01A	143	163	1	1	20031215	165600	1,28E-05	1200	1200				1430	1630	1432	9,4					
KSH01A	163	183	1	1	20031215	185800	1,06E-06	1800	1200				1624	1823	1623	9,6					
KSH01A	183	203	1	1	20031216	091200	3,19E-07	1200	1200				1819	2017	1821	9,9					
KSH01A	200	220	1	1	20031216	120700	6,94E-06	1200	1200				1979	2179	1987	10,0					
KSH01A	220	240	1	1	20031216	141600	9,10E-07	1200	1200				2172	2371	2178	10,3					
KSH01A	240	260	1	1	20031216	161800	5,61E-05	1200	1200				2363	2562	2369	10,5					
KSH01A	260	280	1	1	20031216	181500	2,40E-05	1200	1200				2558	2756	2559	10,8					
KSH01A	280	300	1	1	20031217	091200	6,20E-05	1800	1200				2752	2951	2759	11,1					
KSH01A	300	320	1	1	20031217	112800	1,36E-07	1200	4080				2947	3169	2956	11,3					
KSH01A	320	340	1	1	20031217	141100	7,26E-08	1200	1200				3137	3336	3136	11,6					
KSH01A	340	360	1	1	20031217	162000	1,88E-07	1200	1200				3328	3537	3328	11,9					
KSH01A	360	380	1	1	20031217	181400	2,28E-07	1200	1800				3519	3718	3519	12,1					
KSH01A	380	400	1	1	20031218	085400	2,10E-07	1200	1800				3713	3915	3716	12,4					
KSH01A	400	420	1	1	20031218	153400	1,30E-07	1200	1200				3903	4107	3902	12,7					
KSH01A	420	440	1	1	20031218	173600	1,23E-07	1200	1200				4094	4299	4093	12,9					
KSH01A	440	460	1	1	20031219	084800	1,83E-07	1200	1200				4291	4491	4289	13,2					
KSH01A	460	480	1	1	20031219	104000	1,14E-07	1200	1200				4478	4683	4478	13,5					
KSH01A	480	500	1	1	20031219	125900	1,92E-07	1200	1200				4670	4873	4669	13,8					

Borehole	Borehole	Borehole	Test	Formation	Date for	Start flow/	Qp	tp	$t_{\rm F}$	$\mathbf{h}_{\mathbf{i}}$	h _p	$h_{\rm F}$	p_i	p_p	$p_{\rm F}$	Tew	ECw	TDS_{w}	$\mathrm{TDS}_{\mathrm{wm}}$	Reference	Comments
	secup	seclow	type	type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m ³ /s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/ L)	(mg/ L)		(-)
KSH01A	500	520	1	1	20031219	145500	2,00E-07	1200	1200				4863	5065	4861	14,1					
KSH01A	520	540	1	1	20031219	165100	2,04E-07	1200	1200				5055	5257	5054	14,3					
KSH01A	540	560	1	1	20031219	185000	1,33E-05	1200	7200				5244	5444	5249	14,6					
KSH01A	560	580	1	1	20031220	085700	2,17E-06	1200	1200				5440	5640	5440	14,9					
KSH01A	580	600	1	1	20031220	110200	2,37E-05	1800	3600				5637	5831	5677	15,2					
KSH01A	600	620	1	1	20031220	162400	8,26E-07	1200	3600				5835	6035	5850	15,5					
KSH01A	620	640	1	1	20040107	142600	2,01E-07	1200	1200				6020	6221	6035	15,8					
KSH01A	640	660	1	1	20040107	162800	1,76E-07	1800	1800				6210	6418	6209	16,1					
KSH01A	660	680	1	1	20040107	182900	2,08E-07	1800	1800				6407	6612	6404	16,4					
KSH01A	680	700	1	1	20040108	091100	2,31E-07	1200	1800				6591	6791	6601	16,7					
KSH01A	700	720	1	1	20040108	112600	2,55E-07	1200	2400				6786	6978	6787	17,0					
KSH01A	720	740	1	1	20040108	135200	2,84E-07	1200	2400				6974	7182	7001	17,3					
KSH01A	740	760	1	1	20040108	152900	1,89E-07	1200	1200				7165	7352	7163	17,6					
KSH01A	760	780	1	1	20040108	183500	2,01E-07	1200	1200				7355	7560	7355	17,9					
KSH01A	780	800	1	1	20040109	091600	7,99E-08	1200	1200				7544	7750	7544	18,2					
KSH01A	800	820	1	1	20040109	111900	1,85E-07	1200	1200				7734	7927	7733	18,5					
KSH01A	820	840	1	1	20040109	134400	2,25E-07	1200	1200				7922	8132	7921	18,8					
KSH01A	840	860	1	1	20040109	162100	5,91E-08	1800	1200				8110	8302	8112	19,1					
KSH01A	860	880	1	1	20040109	183900	1,13E-07	1200	1200				8301	8501	8302	19,4					
KSH01A	880	900	1	1	20040110	092400	1,99E-07	1200	1200				8487	8690	8487	19,7					
KSH01A	899	919	1	1	20040110	112600	1,25E-07	1200	1200				8668	8869	8669	20,0					
KSH01A	919	939	1	1	20040110	135900	1,34E-07	1200	600				8852	9056	8852	20,3					
KSH01A	939	959	1	1	20040110	160200	2,26E-07	1200	300				9037	9228	9037	20,6					
KSH01A	959	979	1	1	20040110	175500	2,96E-07	1200	300				9223	9428	9223	20,9					
KSH01A	979	999	1	1	20040111	092500	1,61E-07	1200	1200				9406	9610	9407	21,2					
KSH01A	300	305	1	1	20040112	170000	1,79E-07	1200	300				2939	3145	2938	11,4					
KSH01A	305	310	1	1	20040112	184400	1,69E-07	1200	1200				2984	3185	2984	11,5					
KSH01A	310	315	1	1	20040113	083600	2,09E-07	1200	1200				3032	3232	3035	11,5					
KSH01A	315	320	1	1	20040113	130500	3,58E-08	1200	1200				3074	3285	3075	11,5					
KSH01A	320	325	1	1	20040113	150100	1,72E-07	1200	300				3124	3330	3124	11,6					
KSH01A	325	330	1	1	20040113	164600	5,05E-08	1200	600				3177	3380	3177	11,7					
KSH01A	330	335	1	1	20040113	183700	4,80E-07	1200	1200				3222	3424	3222	11,7					

Borehole	Borehole	Borehole	Test	Formation	Date for	Start flow/	Qp	tp	t _F	\mathbf{h}_{i}	h _p	$h_{\rm F}$	p_i	p_p	$p_{\rm F}$	Tew	EC_w	TDS_w	TDS _{wm}	Reference	Comments
	secup	seclow	type	type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m ³ /s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/L)	(mg/ L)		(-)
KSH01A	335	340	1	1	20040114	090300	4,56E-08	1200	900				3271	3475	3272	11,8					
KSH01A	340	345	1	1	20040114	105900	2,60E-08	1200	1200				3333	3530	3327	11,9					
KSH01A	345	350	1	1	20040114	131800	1,86E-08	1200	1500				3380	3582	3374	11,9					
KSH01A	350	355	1	1	20040114	151800	2,35E-08	1200	1200				3424	3631	3423	12,0					
KSH01A	355	360	1	1	20040114	171300	9,98E-09	1200	3600				3486	3682	3482	12,1					
KSH01A	360	365	1	1	20040115	094400	7,53E-09	1200	1800				3514	3715	3569	12,1					
KSH01A	365	370	1	1	20040115	114800	7,53E-09	1200	3240				3570	3764	3593	12,2					
KSH01A	370	375	1	1	20040115	144800	6,32E-09	1200	1800				3623	3829	3668	12,3					
KSH01A	375	380	1	1	20040115	170000	6,77E-08	1200	1200				3662	3863	3674	12,3					
KSH01A	380	385	1	1	20040115	192500	5,29E-08	1200	3600				3711	3905	3714	12,4					
KSH01A	385	390	1	1	20040116	092300	1,98E-08	1200	1200				3762	3962	3775	12,5					
KSH01A	390	395	1	1	20040116	111800	1,12E-08	1200	1200				3816	4013	3815	12,5					
KSH01A	395	400	1	1	20040116	135200	7,53E-09	1200	1800				3849	4053	3868	12,6					
KSH01A	400	405	1	1	20040116	160600	6,32E-09	1200	2700				3914	4115	3916	12,7					
KSH01A	405	410	1	1	20040116	184500	2,62E-07	1200	43200				3970	4170	3965	12,7					
KSH01A	410	415	1	1	20040117	091400	9,98E-09	1200	1200				4024	4219	4236	12,8					
KSH01A	415	420	1	1	20040117	-	-	-	-				-	-	-	12,9					
KSH01A	420	425	1	1	20040117	-	-	-	-				-	-	-	13,0					
KSH01A	425	430	1	1	20040117	-	-	-	-				-	-	-	13,0					
KSH01A	430	435	1	1	20040117	-	-	-	-				-	-	-	13,1					
KSH01A	435	440	1	1	20040117	-	-	-	-				-	-	-	13,2					
KSH01A	440	445	1	1	20040117	191300	6,32E-09	1200	36000				4290	4501	4277	13,3					
KSH01A	445	450	1	1	20040118	104000	9,98E-09	1200	1200				4346	4556	4361	13,3					
KSH01A	450	455	1	1	20040118	-	-	-	-				-	-	-	13,4					
KSH01A	455	460	1	1	20040118	150600	1,12E-08	1200	1200				4459	4642	4506	13,5					
KSH01A	460	465	1	1	20040118	172700	1,12E-08	1200	21600				4496	4691	4477	13,5					
KSH01A	465	470	1	1	20040119	095500	2,62E-09	1200	1800				4559	4759	4576	13,6					
KSH01A	470	475	1	1	20040119	121800	3,33E-06	1200	1200				4600	4806	4794	13,7					
KSH01A	475	480	1	1	20040119	145700	2,50E-09	1200	1200				4644	4844	4785	13,7					
KSH01A	480	485	1	1	20040119	170800	2,50E-09	1200	1800				4696	4903	4721	13,8					
KSH01A	485	490	1	1	20040120	092500	2,62E-09	1200	240				4752	4967	4972	13,9					
KSH01A	490	495	1	1	20040120	111500	1,42E-09	1200	2400				4796	4983	5009	13,9					

Borehole	Borehole	Borehole	Test	Formation	Date for	Start flow/	Qp	tp	t _F	$\mathbf{h}_{\mathbf{i}}$	h _p	$h_{\rm F}$	p_i	p_p	$p_{\rm F}$	Tew	EC_w	TDS_w	$\mathrm{TDS}_{\mathrm{wm}}$	Reference	Comments
	secup	seclow	type	type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m ³ /s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/ L)	(mg/ L)		(-)
KSH01A	495	500	1	1	20040120	-	-	-	-				-	-	-	14,0					
KSH01A	500	505	1	1	20040120	154100	3,87E-09	1200	2400				4889	5082	4881	14,1					
KSH01A	505	510	1	1	20040120	182000	2,62E-09	1200	43200				4928	5133	4961	14,1					
KSH01A	510	515	1	1	20040121	-	-	-	-				-	-	-	14,2					
KSH01A	515	520	1	1	20040121	110300	1,42E-09	1200	2400				5041	5249	5342	14,3					
KSH01A	520	525	1	1	20040121	-	-	-	-				-	-	-	14,4					
KSH01A	525	530	1	1	20040121	-	-	-	-				-	-	-	14,4					
KSH01A	530	535	1	1	20040121	171700	2,62E-09	1200	1800				5172	5384	5310	14,5					
KSH01A	535	540	1	1	20040122	-	-	-	-				-	-	-	14,6					
KSH01A	540	545	1	1	20040122	103000	1,73E-06	1200	1800				5243	5443	5250	14,6					
KSH01A	545	550	1	1	20040122	141300	5,05E-08	1200	1200				5294	5499	5293	14,7					
KSH01A	550	555	1	1	20040122	160400	2,00E-07	1200	900				5338	5539	5339	14,8					
KSH01A	555	560	1	1	20040122	180800	1,21E-05	1200	1800				5386	5586	5397	14,9					
KSH01A	560	565	1	1	20040123	090400	2,44E-06	1200	600				5437	5635	5438	14,9					
KSH01A	565	570	1	1	20040123	-	-	-	-				-	-	-	15,0					
KSH01A	570	575	1	1	20040123	130700	1,42E-09	1200	1200				5554	5756	5712	15,1					
KSH01A	575	580	1	1	20040123	150700	1,61E-08	1200	2400				5598	5799	5604	15,1					
KSH01A	580	585	1	1	20040123	172400	1,37E-08	1200	1200				5642	5846	5642	15,2					
KSH01A	585	590	1	1	20040124	090900	7,38E-08	1200	600				5676	5876	5675	15,3					
KSH01A	590	595	1	1	20010124	113000	2,39E-05	1800	3600				5729	5929	5768	15,4					
KSH01A	595	600	1	1	20040124	142500	3,70E-08	1200	1200				5777	5990	5776	15,4					
KSH01A	600	605	1	1	20040124	162000	3,98E-07	1200	1200				5822	6005	5823	15,5					
KSH01A	600	605	1	1	20040128	112600	4,86E-07	1200	1200				5811	6009	5813	15,5					
KSH01A	605	610	1	1	20040124	-	-	-	-				-	-	-	15,6					
KSH01A	610	615	1	1	20040125	094900	6,50E-07	1200	2400				5922	6120	5973	15,6					
KSH01A	615	620	1	1	20040125	115700	3,77E-07	1200	1200				5964	6164	5964	15,7					
KSH01A	620	625	1	1	20040125	143700	3,45E-08	1200	1200				6019	6231	6047	15,8					
KSH01A	625	630	1	1	20040125	163600	2,96E-08	1200	2100				6084	6279	6152	15,8					
KSH01A	630	635	1	1	20040125	-	-	-	-				-	-	-	15,9					
KSH01A	635	640	1	1	20040126	-	-	-	-				-	-	-	16,0					
KSH01A	640	645	1	1	20040126	-	-	-	-				-	-	-	16,1					
KSH01A	645	650	1	1	20040126	-	-	-	-				-	-	-	16,1					

Borehole	Borehole	Borehole	Test	Formation	Date for	Start flow/	Qp	tp	t _F	\mathbf{h}_{i}	h_p	$h_{\rm F}$	\mathbf{p}_{i}	pp	$p_{\rm F}$	Te _w	EC_w	TDS_w	TDS_{wm}	Reference	Comments
	secup	seclow	type	type	test, start	injection															
	(m)	(m)	(1-6)	(-)	YYYYMMDD	hhmmss	(m ³ /s)	(s)	(s)	(m)	(m)	(m)	(kPa)	(kPa)	(kPa)	(° C)	(mS/m)	(mg/L)	(mg/ L)		(-)
KSH01A	650	655	1	1	20040126	-	-	-	-				-	-	-	16,2					
KSH01A	655	660	1	1	20040126	152600	1,67E-09	1200	1200				6376	6570	6631	16,3					
KSH01A	660	665	1	1	20040126	-	-	-	-				-	-	-	16,4					
KSH01A	665	670	1	1	20040126	-	-	-	-				-	-	-	16,4					
KSH01A	670	675	1	1	20040127	091700	2,62E-09	1200	1200				6505	6710	6558	16,5					
KSH01A	675	680	1	1	20040127	112800	1,37E-08	1200	1800				6558	6758	6581	16,6					
KSH01A	680	685	1	1	20040127	145700	2,19E-07	1200	1200				6596	6812	6615	16,7					
KSH01A	685	690	1	1	20040127	-	-	-	-				-	-	-	16,7					
KSH01A	690	695	1	1	20040127	-	-	-	-				-	-	-	16,8					
KSH01A	695	700	1	1	20040128	-	-	-	-				-	-	-	16,9					

Basic Evaluation

Basic r	Lvaluati	ION																														
Borehole	Borehole	Borehole	Date for	Q/s	To	Тм	b	В	ТВ Т	ГB-measl-L	TB-measl-U	SB	SB*	L	T _T	T-measl-L	T-measl-U	S	S*	K′/b′	Ks	K _s -measl-L	Ks-measl-U	Ss	Ss*	С	CD	٤	w 1	dt_1	dt ₂	Comments
		seclow	test, start	C -	Ý	ivi			(1D)	(1D)	(1D)	(1D)		(1D)	-	(2D)	(2D)	(2D)	(2D)		(3D)	(3D)	(3D)	(3D)	(3D)			(1,2 or 3D)				
	secup			(2)		(2)		<i>_</i>			Ì.										` ´				` ´	(
	(m)	(m)	YYYYMMDD	(m^2/s)	(m^2/s)	(m^2/s)	(m) ((m)	(m ³ /s)	(m^3/s)	(m^{3}/s)	(m)	(m)	(m)	(m^2/s)	(m^2/s)	(m^2/s)	(-)	(-)	(1/s)	(m/s)	(m/s)	(m/s)	(1/m)	(1/m)	(m**3/Pa)) (-)	(-)	(-) (-)) (min)	(min)	(-)
KSH01A	103	203	20031209	1,12E-06		1,46E-06	100								5,0E-06	3,0E-06	1,0E-05		1,00E-06							1,27E-09		-0,6		6,1	26,9	
KSH01A	200	300	20031210	6,72E-06		8,75E-06	100								6,3E-06	2,0E-06	1,0E-05		1,00E-06							7,14E-09		-2,6		9,1	27,3	
KSH01A	300	400	20031210	1,42E-08		1,85E-08	100								6,6E-09	5,0E-09	2,0E-08		1,00E-06							3,44E-10		-0,6		11,8	15,6	!
KSH01A	400	500		3,67E-09		,	100								1,7E-09	3,0E-10	6,0E-09		1,00E-06							3,84E-10		0,0		2,4	22,8	
KSH01A	500	600		1,84E-06			100								1,7E-05	4,0E-07			1,00E-06							4,58E-08		-0,8			22,0	-
				· ·											,		2,0E-05		· ·												<u> </u>	-
KSH01A	600	700		4,85E-08		,	100								2,0E-08	1,0E-08	6,0E-07		1,00E-06							8,95E-10	_	-3,3		-	<u> </u>	_ /
KSH01A	700	800	20031212	1,61E-08		2,10E-08	100								8,7E-09	2,0E-09	8,0E-08		1,00E-06							5,18E-10		0,3		-	-	/
KSH01A	800	900	20031212	7,82E-10		1,02E-09	100								9,4E-10	1,0E-10	3,0E-09		1,00E-06							1,55E-10		9,1		-	-	
KSH01A	899	999	20031213	5,27E-09		6,87E-09	100								3,9E-09	1,0E-09	5,0E-08		1,00E-06							2,79E-10		0,0		4,5	23,3	
KSH01A	103	123	20031215	3,40E-07		3,56E-07	20								2,0E-07	8,0E-08	5,0E-07		1,00E-06							2,29E-10		-2,2		21,5	29,4	
KSH01A	123	143	20031215	5,05E-08		5,28E-08	20								6,6E-08	1,0E-08	3,0E-07		1,00E-06							2,20E-10		-0,1		1,8	18,0	1
KSH01A	143	163		6,27E-07		6,56E-07	20								9,6E-07	4,0E-07	2,0E-06		1,00E-06							2,17E-11		2,5		0,5	17,0	- <u>+</u>
KSH01A	163	183		5,20E-08		5,44E-08	20								5,0E-08	4,0E-08	4,0E-07		1,00E-06							1,49E-10		0,0		5,1	21,2	
KSH01A	183	203		1,58E-08		1,65E-08	20								3,4E-08	4,0E-00 8,0E-09	4,0E-07		1,00E-06							2,32E-10		-1,2		5,1	-	-
						,									,				· ·													
KSH01A	200	220		3,40E-07		3,56E-07	20								5,7E-07	3,0E-07	9,0E-07		1,00E-06							1,71E-09		-2,7		-	-	_ _ /
KSH01A	220	240		4,49E-08		4,69E-08	20								4,0E-08	2,0E-08	7,0E-08		1,00E-06							1,12E-10		0,0		0,9	13,6	_
KSH01A	240	260		2,77E-06		2,90E-06	20								3,5E-06	1,0E-06	6,0E-06		1,00E-06							1,97E-09		0,0		1,7	17,8	_ _ /
KSH01A	260	280	20031216	1,19E-06		1,24E-06	20								3,9E-06	1,0E-06	5,0E-06		1,00E-06							1,09E-09		-0,1		12,5	17,3	
KSH01A	280	300	20031217	3,06E-06		3,20E-06	20								2,9E-06	9,0E-07	6,0E-06		1,00E-06							4,24E-11		-4,8		-	-	
KSH01A	300	320	20031217	6,03E-09		6,30E-09	20								3,2E-09	1,0E-09	7,0E-09		1,00E-06							1,11E-10		-1,2		0,8	17,9	
KSH01A	320	340	20031217	3,58E-09		3,74E-09	20								9,3E-10	8,0E-10	1,0E-08		1,00E-06							1,00E-10		0,0		0,6	1,6	1
KSH01A	340	360		8,82E-09		9,22E-09	20								1,0E-08	8,0E-09	7,0E-08		1,00E-06							7,26E-11		2,0		0,5	11,2	
KSH01A	360	380		1,13E-08		1,18E-08	20								8,7E-09	6,0E-09	5,0E-08		1,00E-06							7,66E-11		0,0		4,9	17,9	
KSH01A	380	400		1,02E-08		1,07E-08	20								2,6E-08	7,0E-09	4,0E-08		1,00E-06							9,04E-11		7,9		14,1	18,6	-
KSH01A KSH01A	400					-										,	,			_												-
		420		6,26E-09		6,55E-09	20								5,1E-09	2,0E-09	1,0E-08		1,00E-06							6,26E-11		1,0		2,0	16,6	-
KSH01A	420	440		5,88E-09		6,15E-09	20								8,5E-09	2,0E-09	1,0E-08		1,00E-06							6,08E-11		0,0		0,2	13,7	_
KSH01A	440	460		8,97E-09		9,39E-09	20								6,5E-09	5,0E-09	4,0E-08		1,00E-06							7,84E-11		0,0		4,2	9,9	ľ
KSH01A	460	480	20031219	5,47E-09		5,72E-09	20								5,6E-09	4,0E-09	4,0E-08		1,00E-06							6,25E-11		1,5		0,3	14,4	
KSH01A	480	500	20031219	9,26E-09		9,68E-09	20								1,8E-08	9,0E-09	6,0E-08		1,00E-06							4,88E-11		6,9		0,6	14,0	
KSH01A	500	520	20031219	9,79E-09		1,02E-08	20								1,5E-08	8,0E-09	5,0E-08		1,00E-06							5,48E-11		4,4		0,4	17,9	
KSH01A	520	540	20031219	9,90E-09		1,04E-08	20								2,0E-08	8,0E-09	6,0E-08		1,00E-06							5,91E-11		6,7		0,5	15,9	1
KSH01A	540	560	20031219	6,54E-07		6,84E-07	20								5,8E-07	4,0E-07	8,0E-07		1,00E-06							7,29E-10		-1,7		0,7	15,0	1
KSH01A	560	580		1,07E-07		1,11E-07	20								5,4E-07	9,0E-08	8,0E-07		1,00E-06							1,73E-10		0,0		1,5	12,7	
KSH01A	580	600		1,07E-07		1,25E-06	20								2,8E-07	8,0E-08	8,0E-07		1,00E-06							3.84E-08		-2,6		6,7	19,7	-
				,		,	20	-+							,	,	,		,							-)		,			-	
KSH01A	600	620		4,05E-08		4,24E-08									2,3E-08	8,0E-09	5,0E-08		1,00E-06							1,36E-09	+	-0,4		-	-	-
KSH01A	620	640		9,88E-09		1,03E-08	20								7,2E-09	5,0E-09	2,0E-08	-	1,00E-06							7,27E-11	+	-1,0		9,7	18,6	_ _ /
KSH01A	640	660		8,24E-09		8,62E-09	20								1,2E-08	7,0E-09	4,0E-08		1,00E-06							4,87E-11		4,0		0,5	8,1	_ /
KSH01A	660	680		9,93E-09		1,04E-08	20								9,7E-09	7,0E-09	3,0E-08		1,00E-06							6,10E-11		1,1		0,2	14,0	_ _ /
KSH01A	680	700		1,13E-08		1,18E-08	20								8,2E-09	5,0E-09	2,0E-08		1,00E-06							3,41E-10		-0,4		-	-	
KSH01A	700	720	20040108	1,30E-08		1,36E-08	20								1,5E-08	9,0E-09	3,0E-08		1,00E-06							8,51E-11		-1,8	Т	25,4	34,7	
KSH01A	720	740	20040108	1,34E-08		1,40E-08	20		İ						1,0E-08	5,0E-09	5,0E-08		1,00E-06							1,23E-10		-3,0		-	-	
KSH01A	740	760		9,92E-09		1,04E-08	20							1	8,3E-09	6,0E-09	3,0E-08	1	1,00E-06					1		4,57E-11		0,6		2,8	15,1	1
KSH01A	760	780		9,59E-09		1,00E-08	20							1	1,2E-08	8,0E-09	5,0E-08		1,00E-06				1	1		5,43E-11		2,3		0,4	8,7	+
KSH01A	780	800		3,81E-09		3,98E-09	20								1,1E-08	3,0E-09	3,0E-08		1,00E-06				<u> </u>			7,68E-11		4,4		0,1	3,6	+
KSH01A	800	820		9,38E-09		9,81E-09	20								2,5E-08	9,0E-09	5,0E-08		1,00E-06							5,00E-11		7,0		0,3	3,8	-
-															-			+ -														+
KSH01A	820	840		1,05E-08		1,10E-08	20								1,7E-08	8,0E-09	5,0E-08		1,00E-06							4,34E-11		4,7		0,6	2,8	-
KSH01A	840	860		3,00E-09		3,14E-09	20								1,1E-08	8,0E-09	4,0E-08		1,00E-06							9,31E-11		2,3		0,3	4,6	/
KSH01A	860	880		5,54E-09		5,80E-09	20								1,6E-08	8,0E-09	4,0E-08		1,00E-06							7,04E-11		3,8		0,3	2,3	_ _ /
KSH01A	880	900	20040110	9,61E-09		1,01E-08	20								3,1E-08	9,0E-09	6,0E-08		1,00E-06							5,65E-11		6,6		0,4	3,2	
KSH01A	899	919	20040110	6,08E-09		6,36E-09	20	Τ							1,4E-08	8,0E-09	4,0E-08		1,00E-06							7,35E-11		2,8		0,2	4,5	
•			·		•												•			•			•								·	

Page 6/7

Borehole	Borehole	Borehole	Date for	Q/s	T _Q	Тм	b B	TB	TB-measl-L	TB-measl-U		SB*	L T _T	T-measl-L	T-measl-U	S	S*	K'/b'	K _s	K _s -measl-L	K _s -measl-U	Ss	S _S *	C	C _D ξ	W	1	dt ₁	dt ₂	Comments
	secup (m)	seclow (m)	test, start YYYYMMDD	(m^2/s)	(m ² / s)	(m ² / s)	(m) (m)	(1D) (m^3/s)	(1D) (m^{3}/s)	(1D) (m^{3}/s)		(1D) (m)	(1D) (2D) (m) (m^2/s)	(2D) (m^2/s)	(2D) (m^2/s)	(2D) (-)	(2D) (-)	(2D) (1/s)	(3D) (m/s)	(3D) (m/s)	(3D) (m/s)	(3D) (1/m)	(3D) (1/m)	(m**3/Pa)	(1,2 or 3E	<i>´</i>	(-) ((min)	(min)	(-)
VSU01A	. /	< <i>/</i>		· /	(/ 5)	· · /		(11, 5)	(111 / 5)	(, 5)	()	()	., . ,	· /	、 <i>/</i>	()		(1,5)	((111.5)	(111.5)	(1,11)	(1/11)						< ,	()
KSH01A	919	939	20040110	6,44E-09		,	20 20						1,8E-03 2,2E-03	,	4,0E-08		1,00E-06							6,47E-11	4,2	_	_		5,3	
KSH01A	939	959	20040110	1,15E-08		,									4,0E-08		1,00E-06							5,09E-11	· · · ·				5,0	
KSH01A	959	979	20040110	1,42E-08		,	20						2,5E-0	2	5,0E-08		1,00E-06							4,39E-11	6,0	_			10,2	
KSH01A	979	999	20040111	7,74E-09		,	20						7,6E-0	,	4,0E-08		1,00E-06		-					5,72E-11	-0,4	_			3,4	
KSH01A	300	305	20040112	8,50E-09		7,01E-09	5						8,0E-0	,	2,0E-08		1,00E-06		-					1,87E-11	1,0	_			15,1	
KSH01A	305	310	20040112	8,27E-09		6,83E-09	5						1,0E-0	,	4,0E-08		1,00E-06					-		2,46E-11	2,6				12,4	
KSH01A	310	315	20040113	1,02E-08		8,41E-09	5						2,2E-0	2	4,0E-08		1,00E-06			-				3,00E-11	7,0		_		17,2	
KSH01A	315	320	20040113	1,66E-09		1,37E-09	5						8,2E-0	~	2,0E-08		1,00E-06			-				4,07E-11	3,2		_		3,7	
KSH01A	320	325	20040113	8,19E-09		6,76E-09	5						1,2E-0	· · ·	6,0E-08		1,00E-06					-		1,76E-11	4,4	_			13,3	
KSH01A	325	330		2,45E-09		2,02E-09	5						1,9E-0	· ·	7,0E-08		1,00E-06							2,23E-11	0,1			0,5	5,1	
KSH01A	330	335		2,34E-09		1,93E-09	5						7,6E-1	,	4,0E-09		1,00E-06							2,96E-11	0,0			-	-	
KSH01A	335	340		2,20E-09		1,82E-09	5						2,5E-0	· · ·	5,0E-09		1,00E-06							3,03E-11	0,0		_		2,2	
KSH01A	340	345	20040114	1,29E-09		1,07E-09	5						9,5E-1	2	3,0E-09		1,00E-06							2,44E-11	0,0			0,3	4,1	
KSH01A	345	350	20040114	9,02E-10		7,45E-10	5						2,6E-0	8,0E-10	5,0E-09		1,00E-06							3,98E-11	7,4			-	-	
KSH01A	350	355	20040114	1,11E-09		9,19E-10	5						1,2E-0	,	7,0E-09		1,00E-06							3,32E-11	0,0			0,3	4,1	
KSH01A	355	360	20040114	5,00E-10		4,12E-10	5						5,9E-1	3,0E-10	1,0E-09		1,00E-06							3,16E-11	0,5			-	-	
KSH01A	360	365	20040115	3,68E-10		3,03E-10	5						1,0E-1	8,0E-11	7,0E-10		1,00E-06							2,39E-11	0,6			-	-	
KSH01A	365	370	20040115	3,83E-10		3,16E-10	5						2,7E-1	8,0E-11	8,0E-10		1,00E-06							2,86E-11	0,0			-	-	
KSH01A	370	375	20040115	3,02E-10		2,50E-10	5						9,4E-1	7,0E-11	4,0E-10		1,00E-06							2,21E-11	1,2				-	
KSH01A	375	380	20040115	3,32E-09		2,74E-09	5						4,6E-0	2,0E-09	8,0E-09		1,00E-06							2,35E-11	2,9			12,4	18,0	· · · · · · · · · · · · · · · · · · ·
KSH01A	380	385	20040115	2,68E-09		2,21E-09	5						2,6E-0	9,0E-10	4,0E-09		1,00E-06							2,11E-11	-1,1			28,6	51,8	
KSH01A	385	390	20040116	9,71E-10		8,02E-10	5						1,0E-0	5,0E-10	3,0E-09		1,00E-06							3,46E-11	1,6			-	-	
KSH01A	390	395	20040116	5,62E-10		4,64E-10	5						9,7E-1	3,0E-10	3,0E-09		1,00E-06							1,67E-11	-0,3			-	-	
KSH01A	395	400	20040116	3,62E-10		2,99E-10	5						4,2E-0	8,0E-10	5,0E-09		1,00E-06							5,62E-11	-0,4			-	-	
KSH01A	400	405	20040116	3,08E-10		2,54E-10	5						9,0E-1	1,0E-10	1,0E-09		1,00E-06							2,74E-11	11,2			-	-	
KSH01A	405	410	20040116	1,28E-10		1,06E-10	5						9,7E-1	7,0E-11	5,0E-10		1,00E-06							4,11E-11	-1,3			-	-	
KSH01A	410	415	20040117	5,02E-10		4,15E-10	5						1,3E-1		5,0E-10		1,00E-06							#NV	-1,5			-	-	
KSH01A	415	420	20040117	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	420	425	20040117	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV	_		-	-	
KSH01A	425	430	20040117	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	430	435	20040117	#NV		#NV	5						1,0E-1	· · ·	1,0E-11		1,00E-06							#NV	#NV	-		-	-	
KSH01A	435	440	20040117	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV	_		-]
KSH01A	440	445	20040117	2,94E-10		2,42E-10	5						1,0E-1	· · ·	5,0E-10		1,00E-06							1,57E-11	-0,3				<u> </u>	
KSH01A	440	443	20040117	2,94E-10 4.66E-10		2,42E-10 3.85E-10	5						7,2E-1	,	9.0E-10		1,00E-06	-				-		2.38E-11	3.5	_		-	-	
KSH01A KSH01A	443	455	20040118	4,00E-10 #NV		#NV	5						1,0E-1	,	9,0E-10 1,0E-11		1,00E-06	-				-		2,38E-11 #NV	3,3 #NV	_				
							5							-	,		· ·					-						-	-	
KSH01A	455	460		6,02E-10		4,97E-10	-						1,6E-1	2	8,0E-10		1,00E-06	-				-		2,36E-11	-0,3			-	-	
KSH01A	460	465		5,65E-10		4,66E-10	5						8,1E-1	,	1,0E-09		1,00E-06							2,38E-11	3,8	_		-	-	
KSH01A	465	470	20040119	1,28E-10		1,06E-10	5						1,6E-1	,	3,0E-10		1,00E-06		-					2,59E-11	1,7	_		-	-	
KSH01A	470	475	20040119	1,59E-10		1,31E-10	5						1,0E-1	-	1,0E-10		1,00E-06					-		#NV	#NV			-	-	
KSH01A	475	480	20040119	1,23E-10		1,01E-10	5						1,4E-1	,	3,0E-10		1,00E-06					-		2,79E-11	-1,8	_		-	-	
KSH01A	480	485	20040119	1,18E-10		9,78E-11	5						1,3E-1	,	3,0E-10		1,00E-06					-		1,75E-11	1,7	_		-	-	
KSH01A	485	490	20040120	1,20E-10		9,90E-11	5						1,0E-1	2	1,0E-10		1,00E-06					-		#NV	#NV	_		-	-	
KSH01A	490	495	20040120	7,39E-11		6,10E-11	5						1,0E-1	,	1,0E-10		1,00E-06							#NV	#NV			-	-	
KSH01A	495	500	20040120	#NV		#NV	5						1,0E-1	-	1,0E-11		1,00E-06	-						#NV	#NV			-	-	
KSH01A	500	505	20040120	6,02E-10		4,97E-10	5						1,2E-1	,	6,0E-10		1,00E-06							1,51E-11	0,7			-	-	
KSH01A	505	510	20040120	1,25E-10		1,03E-10	5						1,9E-1	-	1,0E-10		1,00E-06							2,82E-11	2,2			-	-	
KSH01A	510	515	20040121	#NV		#NV	5						1,0E-1	,	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	515	520	20040121	6,68E-11		5,52E-11	5						1,0E-1	-	1,0E-10		1,00E-06							#NV	#NV			-	-	
KSH01A	520	525	20040121	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	525	530	20040121	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	530	535	20040121	1,21E-10		9,99E-11	5						1,3E-1	1,0E-12	1,0E-10		1,00E-06							9,24E-12	-0,4			-	-	
KSH01A	535	540	20040122	#NV		#NV	5						1,0E-1	1,0E-13	1,0E-11		1,00E-06							#NV	#NV			-	-	
KSH01A	540	545	20040122	8,48E-08		7,00E-08	5						7,4E-0	5,0E-08	9,0E-08		1,00E-06							4,01E-11	-0,9			3,7	25,4	

Page 6/8

Borehole	Borehole	Borehole	Date for	Q/s	T _Q	Тм	b B	TB	TB-measl-L	TB-measl-U	SB	SB*	L T _T	T-measl-L	T-measl-U	S	S*	K'/b'	Ks	K _s -measl-L	K _s -measl-U	Ss	Ss*	С	C _D ξ	w	1 dt ₁	dt ₂	Comments
Boremore	secup	seclow	test, start	2,5	-0	- IVI	0 1	(1D)	(1D)	(1D)	(1D)			(2D)	(2D)	(2D)	(2D)	(2D)	(3D)	(3D)	(3D)	(3D)		Ũ	(1,2 or 3D)		1 441	ut <u>z</u>	
	(m)		YYYYMMDD	(m^2/s)	(m^2/s)	(m^2/s)	(m) (m)		(m^{3}/s)	(m^{3}/s)	· · ·		(m) (m^2/s)	(2D) (m^2/s)	(m^2/s)	(-)	(-)	· /	(m/s)	(5D) (m/s)	(m/s)	ì í	(1/m)	(m**3/Pa)		(-)	(-) (min)	(min)	(-)
KSH01A	545	550		2,42E-09	(1,99E-09	5	(((()	()	1,4E-09	1,0E-09	1,0E-08	()	1,00E-06	(-, -, -)	((((1,11)	(1,11)	2,66E-11	-0,1	()	0,8	10,1	
KSH01A	550	555		9,77E-09		8,06E-09	5						2,3E-08	7,0E-09	5,0E-08		1,00E-06							2,00E-11 3,50E-11	0,0		0,8	-	├ ──── ┃
KSH01A	555	560	20040122	5,93E-07		4,89E-07	5						6,2E-07	5,0E-07	8,0E-07		1,00E-06							7,93E-10	-1,1		1,6	27,4	
KSH01A	560	565	20040122	1,21E-07		9,95E-08	5						1,2E-07	7,0E-08	4,0E-07		1,00E-06							9,56E-11	0,4		8.6	18,7	<u> </u>
KSH01A	565	570	20040123	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	570	575	20040123	6.88E-11		5,68E-11	5						1,9E-11	8,0E-12	8,0E-11		1,00E-06							2,06E-11	0,8		-	-	
KSH01A	575	580	20040123	7,87E-10		6,50E-10	5						3,8E-10	1,0E-10	8,0E-10		1,00E-06							2,29E-11	0,0		-	-	
KSH01A	580	585	20040123	6,58E-10		5,43E-10	5						1,4E-09	3,0E-10	3,0E-09		1,00E-06							1,94E-11	8,1		-	-	
KSH01A	585	590	20040124	3,62E-09		2,99E-09	5						2,2E-09	1,0E-09	1,0E-08		1,00E-06							2,10E-11	0,0		3,0	9,7	
KSH01A	590	595	20010124	1,17E-06		9,68E-07	5						7,2E-07	1,0E-07	1,0E-06		1,00E-06							4,05E-08	0,0		-	-	
KSH01A	595	600	20040124	1,70E-09		1,41E-09	5						1,0E-09	5,0E-10	5,0E-09		1,00E-06							3,65E-11	0,0		0,4	10,7	
KSH01A	600	605	20040124	2,13E-08		1,76E-08	5						2,8E-08	9,0E-09	5,0E-08		1,00E-06							1,09E-10	3,1		3,7	13,3	
KSH01A	600	605	20040128	2,41E-08		1,99E-08	5						6,5E-08	3,0E-08	9,0E-08		1,00E-06							1,01E-10	0,0		-	-	
KSH01A	605	610	20040124	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	610	615	20040125	3,22E-08		2,66E-08	5						5,2E-09	3,0E-09	1,0E-08		1,00E-06							3,75E-10	-4,2		11,4	19,1	
KSH01A	615	620	20040125	1,85E-08		1,53E-08	5						2,6E-08	9,0E-09	6,0E-08		1,00E-06							1,19E-11	3,8		0,8	8,6	
KSH01A	620	625	20040125	1,60E-09		1,32E-09	5						1,1E -0 9	8,0E-10	5,0E-09		1,00E-06							1,94E-11	1,9		6,4	17,7	
KSH01A	625	630	20040125	1,49E-09		1,23E-09	5						2,7E-10	2,0E-10	2,0E-09		1,00E-06							2,96E-11	-2,1		-	-	
KSH01A	630	635	20040125	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	635	640	20040126	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	640	645	20040126	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	ļ
KSH01A	645	650	20040126	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	650	655	20040126	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	
KSH01A	655	660	20040126	8,34E-11		6,96E-11	5						1,0E-10	1,0E-12	1,0E-10		1,00E-06							#NV	#NV		-	-	
KSH01A	660	665	20040126	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	ļ
KSH01A	665	670	20040126	5,51E-11		4,55E-11	5						1,8E-11	1,0E-13	5,0E-11		1,00E-06							2,35E-12	1,8		-	-	└──── ┃
KSH01A	670	675	20040127	1,25E-10		1,03E-10	5						7,6E-11	1,0E-12	1,0E-10		1,00E-06							1,31E-11	-0,2		-	-	<u> </u>
KSH01A	675	680	20040127	6,71E-10		5,54E-10	5						1,3E-09	3,0E-10	3,0E-09		1,00E-06							2,20E-11	5,3		-	-	<u> </u>
KSH01A	680	685	20040127	9,97E-09		8,23E-09	5						6,1E-09	4,0E-09	9,0E-09		1,00E-06							8,60E-11	-1,0		2,3	13,6	<u> </u>
KSH01A	685	690	20040127	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	└──── ┃
KSH01A	690	695	20040127	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11	$\left \right $	1,00E-06					-		#NV	#NV	$\left \right $	-	-	⊢−−−− ∥
KSH01A	695	700	20040128	#NV		#NV	5						1,0E-11	1,0E-13	1,0E-11		1,00E-06							#NV	#NV		-	-	<u> </u>

Page 6/9