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Abstract

In this report, we provide a first-order analysis of the fracture network at the Simpevarp site. 

The first order model is the fracture distribution function, noted, fdf, which provides the 
number of fractures having a given orientation and length, and belonging to a given volume 
of observation. The first-order distribution model does not describe higher-order correlation 
between fracture parameters, such as a possible dependency of fracture length distribution 
with orientations. We also check that most of the information is contained in this 1st-order 
distribution model, and that dividing the fracture networks into different sets do not bring a 
better statistical description.

The fracture distribution function contains 3 main distributions: the probability distribution 
of fracture orientations, the dependency on the size of the sampling domain that may exhibit 
non-trivial scaling in case of fractal correlations, and the fracture-length density distribution, 
which appears to be well fitted by a power law. The main scaling parameters are the fractal 
dimension and the power-law exponent of the fracture length distribution. The former was 
found to be about equal to the embedding dimension, meaning that fractal correlations are 
weak and can be neglected in the DFN model. The latter depends on geology, that is either 
lithology or grain size, with values that ranges from –3.2 for granite-like outcrops to –4 for 
diorite or monzodiorite outcrops, as well as for the large-scale lineament maps.

When analyzing the consistency of the different datasets (boreholes, outcrops, lineament 
maps), we found that two different DFNs can be described: the first one is derived from  
the fdf of the outcrop with fine-grained size lithology, and is valid across all scales 
investigated in this study, from the highly-fractured cores to large-scale maps; the second 
one is derived from the fdf of the outcrops with coarse-grained size lithology, and is found 
consistent with cores that present the smallest fracturing intensity. The latter model is not 
found to hold at large scale, which implies a transition scale above which the distribution 
parameters should change.
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1 Introduction

The objective of this study is first to perform an analysis of the fracture systems observed 
on the Simpevarp site, and to deliver a conceptual 3D fracture network model with 
statistical distributions types and corresponding parameters derivations. The DFN model is 
based on the analysis of all available datasets (boreholes, outcrops, and large-scale maps), 
which are each representative of both local conditions and a given scale range (Figure 1-1). 
Considering the large heterogeneity of geological rocks, of fracturing processes, and thus 
of the resulting fracture networks, it is illusive to find a single model that can encompass all 
data at all scales. The DFN is thus the most likely model through scales. But we also discuss 
all kind of differences, or variability, which can be revealed from the available dataset.

Despite the exceptional fracture database, if compared to other studies, it is not possible 
to constrain some basic elements of the fracture distribution, like for instance the 
fracture shape. We thus assess the simplest description of the fracture system (first order 
description), which provides the number of fractures, present within a given volume of 
characteristic length L, that have a typical size l and an orientation (θ,φ). When dealing with 
the stereology problem – i.e. the way to extract a 3D distribution from 1D or 2D ones – we 
assume that fractures have a planar disc-shape.

This density description is fundamentally scale dependent. For building a first order fracture 
network model, the presence of fractures over a large range of scales and also the absence 
of any obvious characteristic length scale are two arguments in favor of testing power laws 
first. Such a model for fracture lengths coupled with a fractal fracture density distribution 
is characterized by two scaling exponents, the power law length exponent noted a and the 
fractal dimension noted D plus a term α that fixes the density at a given scale of observation 
/Bour et al. 2002/. The approach has been recently successfully applied to an analysis of the 
fracture system of the Äspö HRL /Darcel, 2003/. 

Figure 1-1. Schema illustrating the range of scales covered by the available datasets. 
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Although it catches fundamental internal characteristics of the fracture system, the first 
order model remains a simplification of the real fracture system complexity. Indeed, the 
fracture parameters can depend on each other or vary in correlation with variations in lithol-
ogy. Nevertheless, making the exercise to define a mean DFN model is useful to precise the 
nature and extent of this variability in DFN parameters. The first order multiscale approach, 
supplemented by the investigation of variability, is therefore most appropriate for the study 
of “inherently multiscale” fracture networks. 

The work presented here is mainly directed towards the first order characterization, and 
its own possible variability from a dataset to another. We especially focus on the laws that 
make the statistical model consistent through scales. For different reasons that are explained 
in the text, the complete fracture population is not divided into distinct fracture sets, but 
the orientation issue is fully treated in a way consistent with the 1st-order assumption. The 
analysis is developed from the 2d datasets and subsequent length distribution analysis; then 
all 2d datasets are inter-compared before considering the 3d scaling model and analysis of 
consistency between 2d and 1d information.

The report is organized as follows: the main text contains the general development of the 
study. To keep it light, full set of figures, notations used and additional information on the 
methods used are moved in a set of 8 appendices at the end of the report. 

In the main part, field observations (Section 2) and available datasets are first reviewed. 
Then the statistical method used is described in details (Section 3) before entailing 
analysis of the local dataset (Section 4). In particular methods used to analyze the density 
distribution function of fractures and to calculate the density scaling parameters are 
explained in details. The synthesis and multiscale analysis is treated in Section 5. 

Since the notations for representing the statistical model are slightly different from the one 
recommended by SKB, the correspondence between the ones and the others is explained 
precisely in Appendix 0. Also, a summary of notations and definitions is given. The 
Appendix 1 gathers a systematic overview of each 2d dataset, presented as some kind of 
identification sheets (one sheet per dataset, identical layout for each one). To avoid having 
to much figures in the principal part, stereoplots for both 1d and 2d datasets are provided 
in the following Appendix 2. Discrete, contoured, corrected and not corrected Schmidt 
diagrams are provided, so that the reader can find there all the non interpreted orientation 
related information, with crude data (discrete plots) and contoured data. The Appendix 3 
contains details (and duplicated large figures) related to the analysis in fracture sets made 
for two outcrops, ASM000025 and ASM000205. The Appendix 4 recalls the fracture 
intercepts “status” through the definition of fields “open_frac” to “sealed_network”. Values 
of P10, averaged over borehole full extensions, local variations along boreholes, distinction 
between the sealed or opened fracture intercepts, are provided. Local variations of fracture 
intensity are also represented in diagrams coupled with rock lithology variations. The 
Appendix 5 recall the simple method used to simulate fracture orientations during the 
validation simulations performed. The Appendix 6 contains, for the 1d borehole datasets, 
all the figures arising from the spatial analysis performed by the integral of correlation 
performed. Finally Appendix 7 compiles different remarks about data understanding and 
possible contradictions noted.
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2 Field observations

2.1 The site investigated
A regional and a local model domain are defined. This corresponds to the largest scale  
of the DFN model to be built.

The local model area has a size of 3,200 by 7,800 meters, the regional model area has 
a size of 13 by 21 km. Note that all the data used in the present study (see next section 
for a complete list) are located within the regional model area. Almost all the boreholes 
considered are located within the Simpevarp sub area except for boreholes KLX01 and 
KLX02 which belong to the Laxemar subarea. 

Figure 2-1. The model limits: regional model (thick red line), subareas of Simpevarp (on the 
right, dashed grey line) and Laxemar (on the right, dashed grey line) and the local model volume 
Simpevarp V1.2. (dashed black and red line). 
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2.2 Data references
The Table 2-1 contains references to all the data sets mentioned in the report. Three main 
types of data are available: fracture intercepts along boreholes, referred as “1d-borehole”, 
fracture traces or lineaments on maps, referenced as “2d-outcrop” or “2d-lineament” 
depending on the nature of the mapping, and “1d/2d-scanline” corresponding to fracture 
intercepts positions, and corresponding fracture traces, along outcrop scanlines. 

For 1d boreholes an element is a fracture intercept (see below), for 2d maps an element is 
a fracture trace or a lineament, and for 1d/2d scanlines it corresponds to a fracture intercept 
plus the fracture trace length.

Note that the full database provided for the analysis is much larger than the one cited in the 
table below. 

Boreholes are core-drilled (named K-) or percussion drilled (named H-).

Table 2-1. References to data sets cited or used in the present work. 

Reference name type

HAV09 1d, borehole

HAV10 1d, borehole

HSH01 1d, borehole

HSH02 1d, borehole

HSH03 1d, borehole

KAV01 1d, borehole

KLX01 1d, borehole

KLX02 1d, borehole

KSH01A 1d, borehole

KSH01B 1d, borehole

KSH02 1d, borehole

KSH03A 1d, borehole

KSH03B 1d, borehole

SDEADM_GOL_OH_GEO_1921 2d, outcrop ASM000025

SDEADM_GOL_OH_GEO_1918 2d, outcrop ASM000026

SDEADM_GOL_OH_GEO_1915 2d, outcrop ASM000205

SDEADM_GOL_OH_GEO_1924 2d, outcrop ASM000206

LSM000092 1d/2d scanline

LSM000092 1d/2d scanline

LSM000093 1d/2d scanline

LSM000093 1d/2d scanline

LSM000094 1d/2d scanline

LSM000094 1d/2d scanline

LSM000095 1d/2d scanline

LSM000095 1d/2d scanline

LSM000096 1d/2d scanline

LSM000096 1d/2d scanline

LSM000097 1d/2d scanline

LSM000097 1d/2d scanline
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Reference name type

SDEADM_GV_SM_GEO_2028 2d, Lineament lin_2028

SDEADM_GV_SM_GEO_2027 2d, lineament, lin_2027

lin_topo 2d, lineament

2.3 The four sampled outcrops
2.3.1 Description

The four outcrops are located within the Simpevarp peninsula (Figure 2-2). They cover 
surfaces comprised between 215 and almost 525 square meters and are representative 
of different lithologies, from Ävrö granite (code 501044) to fine-grained dioritoid 
(intermediate magmatic rock, code 501030). Fracture traces have been mapped over the 
whole surfaces with a lower cut-off length of about 50 cm. In addition, fractures along 
two ten meters long perpendicular scanlines have been sampled at a lower resolution scale 
(equal to 20 cm). An overview of data analyses for the outcrops, as well as respective 
positions of the scanlines on the outcrops, is provided in Appendix 1. 

The fracture trace datasets contain detailed geometrical information (position, elevation, 
strike, dip, length, termination type, aperture, width) as well as rock type, structure, colour 
and filling material and alteration, for each fracture registered. However, not all the fields 
are systematically filled. 

Figure 2-2. The four outcrops, ASM000025, ASM000026, ASM000205 and ASM000206, spatial 
localization. 
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Direct geological observations on the field complete the dataset information. The apparent 
density of fracturing is clearly different from one sample to another. In the outcrop 
ASM000205 (diorite with very small grain size), we observe a high density of very small 
fractures, even at scales much smaller than the resolution scale of the mapping (Figure 2-3). 
A similar observation, although not as striking, can be made on the outcrop ASM000206. In 
contrast, small scale fractures seem to be sparser on outcrops ASM000025 and ASM000026 
(Figure 2-4). This is apparently correlated to the rock lithology, ASM000025 and 
ASM000026 being characteristic of Ävrö porphyritic granite, and the two remaining rather 
fine-grained dioritoid.

In terms of fracturing typology, we have observed both faults at different stages of their 
formation, and other fractures which are likely joints (Figure 2-5). The different types of 
fractures coexist on all outcrops, even if the faulting process – as opposed to jointing – is 
especially encountered in the granitic outcrops ASM000025 and ASM000026.

Figure 2-3. Photographs of the diorite encountered in the outcrop ASM000205 (close to the 
CLAB), and of the small-scale fracture density. 

Figure 2-4. Photograph of the outcrop ASM000026, which emphasizes the small density of small 
fractures in contrast with Figure 2-3. 
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The orientation distributions seem also to contain a discriminative signature of the fracture 
pattern (see section on orientations Figure 4-13). 

We first have evaluated the fracture mapping of the 4 outcrops with respect to field 
observations. The sampling appears consistent with observations except for two points:
• Some large structures, straight and well connected, are mapped as several disconnected 

segments. Detailed field observation shows that these segments are effectively bounded 
by fractures whose length is smaller than the chosen resolution scale, and thus which 
are not recorded according to the sampling strategy. Segmenting these fracture zones 
or not is an arbitrary choice since one could also have considered that all the segments 
form one large fracture, which is intersected by a few small ones. This sampling strategy 
would give a larger number of large fractures.

• For some reasons, a few large fractures that clearly exist on outcrops are not mapped, 
especially along ponds and grass bands, or at the border of pegmatite veins.

• In general, the sampling in conjunction with pegmatite veins is not totally satisfactory. 
It consists of a number of disconnected fracture segments delimitating (or close to) the 
vein borders. This obviously produces large correlation in position and orientations since 
these segments are more or less parallel and forming a large connected fracture zone. 
These correlations cannot be described by the 1st-order part of the DFN distribution 
model, and thus should require complex, and even local, 2nd-order constraints to the DFN 
model. We do not propose to follow this (although it could be done) because the spirit 
of building a DFN model is to provide a statistical generator for which objects are not, 
or weakly, correlated two by two. In that sense, it is more consistent to connect these 
segments first, and to count them as a single well-connected object.

Figure 2-5. Left) An incipient fault propagating on the granite in outcrop ASM000025. We 
can observe the Riedel-type en-echelon fractures crosscut by the eventual fault. Right) The N10 
fracture family of outcrop ASM000206 corresponds to faults with visible offset, although most of 
the fractures do not present significant offset. 
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2.4 Borehole observations
The borehole lengths range from a hundred of meters up to a thousand of meters. The mean 
borehole orientations, taken as the direction defined by the first and last fracture intercept, 
are mostly close to vertical. 

Core observations and borehole logging provide information about rock matrix properties 
and fractures occurrences and complexity. Indeed, at the core scale, the complexity of the 
fracture system arises (see Figure 2-6). Some fracture intercepts are clearly identified; some 
other portions are crushed so that single fracture intercepts cannot be identified. Therefore 
crush zones are specifically registered (see a Figure 2-6). For instance, the density of 
fractures within a crush zone is deduced from the size of the crushed blocks. Also, some 
sealed parts of the fracture system are characterized as “sealed network” instead of well 
defined and identified single intercepts (ex borehole KSH03A). When fracture intercept 
identification is possible, the following informations are simultaneously recorded: 
• relative position along borehole,
• absolute position (geo-referenced), 
• strike and dip of the fracture plane,
• broken or unbroken status,
• sealed to open (with intermediate cases) status,
• confidence level, 
• visibility in BIPS,
• mineral filling, 
• roughness.

Figure 2-6. Picture of a cored borehole, KLX01, 1007–1020 meter. 
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Figure 2-7. Lineament maps, topographic lineaments (left) and interpreted lineaments (right). 

Note that for cored boreholes, information can be analyzed directly from the cores 
(Figure 2-6) and also compared to borehole imaging. This adds a level of confidence 
regarding the reality of some observed fractures (core accidentally broken for instance). 

In addition to fracture intercepts, variations in rock lithology, structure and alteration are 
recorded along the boreholes.

From the available data, it is then possible to evaluate P10 (the number of fractures per unit 
length of core), either for the whole fracture set, or for sub-groups, according to sealed/open 
status, orientation, rock lithology etc. 

2.5 Large-scale/lineament maps
Lineament maps cover the regional scale model area. Three datasets covering almost the 
same area are available, from simple topographic lineaments up to lineaments that have 
been checked for a high level of confidence. “Interpreted” and “linked” lineaments (referred 
as lin_2027 and lin_2028) show the crucial importance of defining a fracture from drawn 
segments. Indeed these two maps contain exactly the same lineament segments, but with a 
higher degree of linkage for map lin_2028. The topographic lineaments are not linked and 
seem to have been mapped up to a higher resolution scale. Note that an additional dataset of 
topographic lineaments covering almost all Sweden is also considered. 
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3 Statistical method

In this paragraph, we present the statistics derived from the datasets that were made avail-
able for this report. Basically we calculate the parameters of the 1st-order distribution model 
which gives the number of fractures whose fracture plane has a typical length in [l, l + dl], 
orientation angles in [θ, θ + dθ] and [φ, φ + dφ] in a system Σ:

{ } { }pdf ddf( , , d d d ) d d ( ) d ( )n l l O n l l gθ ϕ θ ϕ θ ϕ θ ϕ, Σ) ⋅ ⋅ ⋅ = ( , ⋅ ⋅ ⋅ ⋅ Σ    (1)1

This definition calls for several remarks: 
• A fully-defined fracture distribution model should consider several parameters for 

defining the fracture plane since a fracture is not supposed to have a simple shape such 
as a disk. But despite its remarkable completeness, the database does not contain any 
information that could help us derive a generic 3d fracture shape. The only objective 
measure of the underlying fracture shape distribution is the length of fracture traces on 
outcrops or on outcrop scanlines. From a theoretical point of view, a fracture which is 
mechanically isolated from others in a simple medium is likely to grow as a 2d-ellipse 
/Cowie, 1998; Cowie and Scholz, 1992/. More complex situations have been studied but, 
except for a few numerical simulations obtained using massively parallel computers, 
either the model conditions were extremely simple if not simplistic or the available data 
were only fracture traces intersecting an observation plane. To our knowledge, there is no 
theoretical work that could help us to find out the shape of fractures which formed from 
complex mechanical interactions, in a heterogeneous geological medium, and during 
several tectonic episodes. We thus consider the fracture length l to be a “typical” fracture 
size consistent with observed fracture traces. This length fully defines the fracture shape 
only in the case of disks, an assumption that we will use when reconstructing the 3d 
fracture distribution model for its convenience. If new information is made available 
about fracture shape, we can refine this assumption. 

• We consider the pair (θ, φ) to be the spherical angles that define the direction of the 
fracture-plane normal vector. These angles fully define the orientation of the fracture 
plane only if fractures have a disk shape. Opdf is the probability density function of both 
orientation parameters.

• g(Σ) is the normalization factor due to the dimension (2d for outcrops and maps, some-
thing between 1d and 3d for boreholes) and size of the sampling system Σ. g(Σ) makes 
possible the comparison between system of different size. It can take non-trivial form if 
fractures are clustered in a fractal way. In the following, we may replace Σ by the typical 
size of the sampling domain noted L.

• nddf is the density distribution function for fracture length called lddf as length density 
distribution function thereafter. It is defined per unit system size, i.e. per unit volume, 
per unit area or per unit length, depending on the dimension of the sampling system. nddf 
takes account of all sampled fractures whatever their orientations. This is consistent with 
the 1st-order statistical model that we aim at defining; but this is a bit different from what 
it is generally done where the statistical parameters are defined for different fracture sets. 
This point is discussed below.

• n(l,θ,φ,Σ) is called the fracture distribution function fdf thereafter.

In the rest of this chapter, we describe the methods that we use for deriving the distributions 
from the database. In the next chapter, we give the results obtained from outcrops,  
scanlines and boreholes. At last, we give the 3D model(s) that we find consistent with  
all these results.
1 The correspondence between our notation and those generally used by SKB is given in Appendix 0.
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3.1 Length distribution function
The first analysis is the derivation of a length density distribution function (lddf) from a set 
of fractures2. In this paragraph we will detail the procedure that we have used, and which 
yields results as the one presented in Figure 3-1. 

A common method consists in calculating the cumulative function (Figure 3-1, bottom 
right) which gives the number of observed fracture lengths larger than a given value. The 
drawback of this function is that it cannot be directly compared to a model distribution of 
an infinite system. Indeed elements larger than the system size are obviously not taken into 
account, which means we underestimate systematically the whole cumulative distribution 
compared to the model function (Figure 3-1). Note that truncation effects due to the finite-
ness of the sampling window can be even more complex /Laslett, 1982/.

Figure 3-1. Map of the outcrop ASM000025 (top), calculated fracture distribution per unit area 
and associated logarithmic slope (bottom left), and cumulative distribution C(l) (bottom right)3. 
Details shown in the map and figures are described in the text. 

2 Note that it is not the classical probability density function (pdf) since we are interested in 
evaluating a density function, which gives the number of fracture per unit area, rather than a 
probability to encounter a fracture over the entire system.
3 See Appendix 1 for a larger copy of the diagram.
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We thus prefer calculating the fracture length density distribution function lddf, which is the 
number of fractures per unit area (for outcrops) whose length ranges in [l, dl]4. The method 
that we used was published in /Davy, 1993/. The main “trick” consists in fixing the binning 
dl so that the number of fractures N within each bin is statistically correct, and that the bin is 
small enough to consider that the lddf nddf(l) is well approximated by the ratio N/dl/A, where 
N is the number of fractures, dl the length bin, and A the sampling system area. By varying 
the bin, we also calculate the standard deviation of each value in the lddf as an indicator of 
the local variability. Figure 3-1 (middle) shows a bi-logarithmic plot of the lddf vs fracture 
trace length, as well as the logarithmic slope of the lddf defined as:

ddfd log( ( ))

d log( )

n l

l
          (2)

Let study the particular case of n(l) is a power law:

nddf(l) = α l–a

Then the logarithmic slope is exactly the power-law exponent a, and it can thus be 
considered as an appraisal of the validity of the power-law assumption.

In the example given in Figure 3-1, the lddf is well fitted by a power law whose exponent 
is about –2.15 ± 0.05, a model which is well validated by the evolution of the logarithmic 
slope with l (Figure 3-1, bottom left, lowest curve). The power-law model is valid between 
the resolution scale of the study, arbitrarily fixed at 0.5 m (see arrow in Figure 3-1, bottom 
left), and a large length scale lmax, which is about 5 m. lmax is represented on the outcrop by 
the radius of the circle drawn in the middle of the map. The integral of the power-law fit is 
then represented on the cumulative distribution function cdf, such as:

max

1 1
fit ddf max( ) ( ') d ' ~ ( )

1

l
a a

l

C l n l l l l
a
α − + − += −
−∫       (3)

Figure 3-1 (bottom right) shows that the integral of the density fit still holds for the 
cumulative distribution if lmax is equal to 5 m (solid blue line on the right). The figure also 
shows that this fit is no more a power law (dashed curve) because of the absence of fracture 
trace larger than lmax. In theory the cdf could be used to determine the parameters α, a and 
lmax of the power-law fit, but we do not advise using this method because it assumes that all 
possible finite-size effects are well modeled by a single parameter lmax, which is a very  
crude assumption even if it works in this example. We thus prefer directly fitting the 
fracture distribution function to determine the model fit and its parameters.

Note that the determination of the model that will be fitted is a key issue when trying to fit 
the lddf. In this report, we make special emphasis on the power-law fit for reasons that we 
will explain; but we also check for other distribution model such as the lognormal function 
and compare for the efficiency of both models to describe the whole dataset including 
boreholes, outcrops and large-scale lineament maps. 

3.2 Density scaling
The complementary characterization is the density term. For the last fifteen years, it has 
been recognized that fracture density is fractal emphasizing first fracture clustering, and 

4 Actually we calculate the density per unit area in Figure 3-1 to take into account the sampling size. 
This point is addressed in the next paragraph and generalizes to non-homogeneous systems.
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a scale dependency of these spatial correlations /see Bonnet et al. 2001 and references 
therein/. This has been expressed by /Davy et al. 1990/ who proposed that the total number 
of fracture of length in [l, l + dl], and in a system of size L can be modeled by the following 
scaling equation: 

n(l,L) = α × l–a × LD
,
         (4)

where n(l,L) and a are resp the fracture distribution function fdf and the length exponent 
defined in previous section, L the system size, α a density term and D the exponent 
characterizing the density scaling. 

For a homogenous or random repartition of fractures in space, the exponent D (or mass 
dimension /Bour et al. 2002/) is simply equal to the Euclidean dimension d (d = 1 along 
a line, = 2 in a plane and = 3 in a volume). When fractures are clustered in space through 
a fractal organization then the exponent D is less than d (the cluster do not fill the space 
and the effect is reproduced through scales), and consequently n(l,L) scales as LD < Ld. The 
apparent fracture density (number of fractures per unit volume, area or length, defined as 
n(l,L)/Ld) is then decreasing while increasing scale. The value of D represents the degree  
of clustering in the system: the smaller the value of D, the larger the fracture clustering, 
valid over the whole range of scales were D is defined (Figure 3-2). 

As it will be developed in a next section, knowing the value of fractal exponent D is 
necessary for the reconstruction and normalization of the fracture distribution function  
from datasets coming from different samples sizes (areas in 2d). 

The density scaling thus defined describes the evolution of the number of elements 
(fractures) found in a system of given size. Therefore the fractal dimension is measured 
from the set of fracture defined as individual elements, independently of their own sizes. We 
then chose to characterize the fracture positions trough their barycenter positions. Note that 
however “all points of fracture plane are possible a priori candidates: we take the fracture 
barycenter as the most neutral position compared to fracture tips” /Bour et al. 2002/. For 1d 
datasets, fractures positions are non ambiguous, simply defined as the fracture intercepts. 

Figure 3-2. Illustration of fractal clustering over a discrete set of points, comparison of a uniform 
on the left and a fractal case on the right. 
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Several methods permit to measure the fractal dimension of an object (box-counting, mass 
method, correlation integral, multifractal analysis). Since they refer to different geometrical 
properties of the object measured, they do not necessarily provide the same value of fractal 
dimension. Details on the different methods used and different fractal dimensions obtained 
for fracture systems can be found in /Bonnet et al. 2001/. For the fractal dimension of a 
natural fracture set, it has been demonstrated that the best method to characterize the system 
is performed through the measure of the pair correlation integral. For a dataset made of 
discrete points, the pair correlation function C2(r) is defined as

[ ])1(/)(2)(2 −= NNrNrC p         (5)

where Np(r) is the number of pairs of points whose distance is less than r and N the total 
number of points in the system. The product N(N–1) is a simple normalization factor, such 
that, when the variable r equals the distance R between the two furthers apart points of the 
dataset, then C2(r) simply reaches 1. The subset “2” is related to correlation of order 2, that 
is upon pairs of points. The generalized integral of correlation Cn(r) is based on distance 
statistics on n-plets sets of points /Hentschel and Procaccia, 1983/. It follows then that 
D2, called the correlation- or mass dimension, simply called the fractal dimension in the 
following, is equal to:

r

rC
D

r log

)(log
lim 2

0
2 →

=

Note that in the case of point datasets, mass dimension and correlation dimension are 
equivalent. However the correlation integral method avoids finite size effects due to finite-
ness of the datasets and is therefore recommended /Bonnet et al, 2002; Bour et al, 2002/. 

In the following we will use simply the term “fractal dimension” for designating the 
correlation/mass dimension. 

In practice, the method efficiency is sensitive to the number of points in the dataset, and to 
the shape and size of the sampling area. To take account of possible boundary effects due to 
the area shape, we propose the following procedure: 
• The fracture dataset is represented by the barycenter positions in a defined sampled zone.
• From the original dataset we build a new dataset by randomly re-distributing the points 

over the delimited sampling area. 
• The integral of correlations are calculated for both the real and random datasets, leading 

to C(r)natural, noted C(r), and C(r)random, noted C(r)ra.
• The ratio C(r)random/C(r) is supposed to vary as rd–D, cleared from finite size effects.
• Fractal dimensions are eventually measured directly from the ratios C(r)ra/C(r).

An example of the results is given in Figure 3-3. In the case of a randomized set of points 
(blue curve in Figure 3-3), C(r) has the expected power-law slope of D = 1, up to the 
distance where finite size effects become dominant. Then the slope slowly decreases and 
tends to zero when the distance r reaches the system size. This finite-size effect, which 
exists for both randomized and real sets, is about to be corrected by the applied procedure 
(left graph in Figure 3-3). 
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3.3 Orientation distributions, and fracture sets
The orientation distribution is explicitly taken into account in the statistical model via the 
term Opdf(θ, φ), which will be given in the next sections. However this parameter directly 
addresses two important issues for building the eventual DFN model: (i) the subdivision 
into different fracture datasets, (ii) the correlation between fracture orientations and other 
parameters such as length distribution or density scaling.

As a preliminary statement, we stress that the 1st-order statistical model is not inconsistent 
with a subdivision in fracture datasets: each dataset can be described by an equation similar 
to (1), the general DFN being the sum of these individual components. There are several 
arguments for subdividing the fracture into several datasets. If the dataset are statistically 
different, it can be difficult to find a unique mathematical solution that encompasses these 
differences. For instance, if the datasets have a different scaling, the general DFN should 
exhibit different scaling regimes, each of them dominated by a particular dataset. The 
knowledge of the transitional scales is thus an important parameter of the DFN model. 
Moreover, if the datasets are mechanically independent, it should be useful to analyze the 
flow properties for each dataset. 
• First of all, the subdivision into fracture datasets cannot be made on the orientation 

information only. Tectonic or geologic arguments should be used to really achieve a 
sound and useful subdivision. In the example below based on fault growth experiments 
made in the tectonic laboratory in Rennes, we show that faults with different orientations 
are growing concomitantly, and that even arguments based on fault termination cannot 
be unambiguously used to determine a relative chronology. During our short visit of the 
different outcrops, we cannot conclude that each orientation set is independent of the 
others – the reverse is likely to occur. 

• The physics of fracture growth is nothing but the superposition of subparallel fracture 
families at different stages of the tectonic history. On the contrary, the main fault statistic 
features, such as power-law scaling, are supposed to result from the complex interactions 
between faults of different orientations. At least this is what fault-growth experiments 
emphasize (see Figure 3-4, /Davy et al. 1990, 1995; Schueller, 2004/).

Figure 3-3. Left: C(r) calculated for dataset KLX02, for all the fracture intercepts (green) and 
all the fracture intercepts randomized (blue). The right axis and the solid curves give the local 
“logarithmic slope” of C(r) that is directly comparable to a power-law exponent. Right: Evolution 
of the ratio C(r)/Crandom(r) as a function of scale. In this case, the finite-size effect are about to  
be corrected. 
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•	 Since the orientation remains a basic parameter of the 1st-order DFN model, one takes 
a full advantage of using different fracture sets only if the subdivision involves other 
parameters than orientation. To our knowledge, the main determinism on subdividing 
fractures into different sets remains orientation. 

•	 The main argument in subdividing fractures in different sets is that the scaling factors in 
length and density (the terms nddf (l) and g(Σ) in equation (1)) are different. In the other 
hand, deriving such scaling laws require a large number of data, which make impossible 
any sound statistical analysis in sparse fracture sets. In the next figures, we subdivide 
fractures of outcrops ASM000025 and ASM000205 in 3 groups by using an orientation 
criterion (described in Appendix 3); then we calculate the length density distribution 
nddf”(l) for each subset. For both outcrops, it is difficult to extract a scaling tendency 
for the subset that contains the smallest number of fractures. This well illustrates the 
difficulty of dealing with sparse fracture subsets. For the two other subsets, the length 
distribution has a scaling trend comparable with the whole fracture set. Even if this 	
result has to be validated with larger fracture sets, this seems to show that the 
subdivision into independent fracture sets is not really necessary and even more may 
lead to irrelevant statistical analysis. We recall that this does not mean that we neglect 
the orientation distribution; but we restrict the analysis to the determination of the 
orientation probability distribution O(θ, φ) in equation (1).

Figure 3-4.  Top-view of 4 stages of a sandbox experiment, showing the active deformation 
and related faults in a sand layer. The applied deformation is an E-W compression with N-S 
free boundary. The color scale gives the deformation intensity. The fault extending from NW to 
NE remains active all along the deformation, while it is clearly offset by the SW-NE fractures. 
Experiments have been made by Sylvie Schueller for her PhD /Schueller, 2004/. 
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Figure 3-6. Same as in the previous figure for outcrop ASM025. The power-law length exponent 
is –2.2 for the whole fracture set. The fits for the three subsets lead to power-law length exponents 
of –2.35, –2.1, and –2.7 respectively. The latter exponent is significantly smaller than the other 
ones, and tends to be as large as exponents calculated for outcrop ASM205 for instance (see the 
discussion about the differences encountered in the different outcrops). However this latter subset 
is also the one which contain the less number of fractures and we can cast doubt on the statistical 
relevance of this exponent. 
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Figure 3-5. Fracture length density distribution for the original fracture set of the outcrop 
ASM205 (yellow squares) and for three subsets (blue squares, red circles and green triangles).  
The power-law scaling exponent a is –2.9 and –3.2 for the two first subsets (to be compared to 
–3.0 for the original fracture set), and cannot be determined for the latter. 
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4 1st-order distribution on individual datasets

The performed analyses are exposed in details below. Complementary figures and 
summarizing tables are furnished in Appendix 1 for two-dimensional datasets, Appendix 6 
for one-dimensional datasets, and for both, full stereonet representations in Appendix 2.  
The Appendix 1 also contains tables summarizing measured and interpreted parameters  
for the 2d length analysis. 

4.1 Length distribution on large-scale lineament maps
Figure 4-1 shows the lddf calculated for the topographic lineaments. Qualitatively the lddf 
is well fitted by a power law whose best-fitting exponent is about –3. The logarithmic slope 
of the lddf displays quite large (but not statistically abnormal) fluctuations of the “local” 
exponent; the graph also gives the validity domain of the power-law fit which is between 
400 and 3,500 m. 

Figure 4-1. The fracture distribution function calculated for the topographic lineaments  
(lin_topo). In blue, the logarithmic slope shares the same X-axis than the lddf. 
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The Figure 4-3 shows another possible model for the length distribution: the exponential 
decrease. Such a model is generally related to a Poissonian process where randomly 
distributed points are joined to form an element. This was observed on the channel stream 
length distribution calculated for large river networks /Crave and Davy, 1997/. Lin_2027 
and Lin_2028 are built from the same lineament database, by applying different linkage or 
segmentation rules when transforming the lineament network into fractures. The fact that 
Lin_2027 and Lin_2028 yield two different exponential functions may indicate that the 
Poissionian distribution directly derives from the linkage process. It would mean that these 
fitting functions can hardly be extrapolated to other maps.

If Lin_2027 exhibits a pure exponential decrease, Lin_2028 seems to follow a power-
law trend for fracture lengths between 1,200 and 5,000 m (see Figure 4-2), with the 
same exponent of –3 than derived from the topographic map (Lin_Topo) and outcrops 
ASM000205 and ASM000206 (see next section). Compared to Lin_Topo, the power-law 
density function of Lin_2028 is twice larger. Since Lin_2028 has been reworked to take  
care of a more realistic transformation from lineament to fracture, we may expect this 
power-law trend to represent the distribution of some realistic fracture patterns. In terms  
of fracture density, it is rather difficult to compare Lin_Topo with Lin_2027 without a 
thorough analysis of the objects that are eventually mapped. 

A more thorough discussion on the connection between small-scale fracture outcrops and 
large-scale lineaments will be found in a next section.

Figure 4-2. The lddf’s calculated for the three lineament maps. Lin_topo in black squares,  
lin_2028 in yellow squares, lin_2027 in cyan triangles, The black solid lines are power-law 
fits for the topographic lineament map, and for the Lin2028 map (lineament map corrected for 
segmentation effects). Blue lines correspond to lognormal fits. 
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4.2 Length distribution on outcrops
The lddf’s calculated for the four outcrops (see Figure 3-1, 4-4 left, 4-5) shows remarkable 
power-law trends. For example, Figure 4-4 (graph on the right) shows that for outcrop 
ASM000025, the logarithmic slope in is about constant at –2.15 ± 0.1 from the resolution 
scale decided by the mapping operator (i.e. 50 cm) to ~ 5 m, which corresponds to 
~ 1/4th of the typical size of the outcrop. A lognormal function also yields a good fitting 
(Figure 4-4 right) when the mode (i.e. most probable length) is much smaller than the 
resolution scale. Under these conditions, the difference between the lognormal fit and the 
power-law fit is less than 20% over the admissible range of fracture lengths. 

The sampling quality is also a potential issue for validating the lddf. In particular we do 
observe that the fractures that belong to granitic or pegmatic veins have not the same 
spatial organization than the rest. In particular they are highly clustered and form long but 
segmented fractured zones (in yellow on Figure 4-5). However their contribution to the 
lddf’s is quite small: the lddf is decreased by less than 20% when removing the vein fracture 
set (Figure 4-5 bottom graph), and the decrease does not change the general shape of the 
distribution function. Note that this ratio of ~ 10–20% is consistent with the area occupied 
by veins. Note also that the number of fractures belonging to these veins is not large enough 
to calculate a sound lddf.

To conclude, despite some ambiguity in the fracture mapping we are quite confident about 
the relevance of the calculated distribution function.

The fitted lddf’s for the four outcrops are provided in the Appendix 1. In terms of density 
and scaling trends, there are clearly two groups of outcrops: in the one hand, ASM000025 
and ASM000026, and in the other hand ASM000205 and ASM000206. This analysis confirm 
the observation made on outcrops, that lithology and/or grain size seems to control the 
fracture distribution, at least at the scales that are covered by the fracture mapping.

Figure 4-3. Semi-log graphs for the lddf of the lineament maps. On the left, the lddf of the 
Lin2027 map shows a remarkable exponential decrease with a typical length scale of about 420 m. 
On the right, the Lin2028 map is also well fitted by an exponential function, but with a larger 
characteristic length of about 770 m. This is consistent with the fact that Lin2028 is derived from 
Lin2027 by correcting segmentation effects. Note that the lddf of the topographic lineament map 
(right graph) cannot be fitted by an exponential function. 
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Figure 4-4. Fracture length density distribution function calculated for the outcrop ASM000025. 
Left) The upper curve (square and black solid line) gives the data and a power-law fit. The lower 
curve in blue gives the logarithmic slope and refers to the blue axis. The validity of the power-
law fit can be directly appreciated by the more or less constant logarithmic slope between the 
resolution scale and 1/4th of the system length. Right) Same as the left graph with two curve 
fitting: power law (black curve) and lognormal function (blue curve). 

Figure 4-5. Length density distribution function (bottom graph) calculated for the outcrop 
ASM000206 (top map). The yellow squares represent the lddf of the whole data set, while the blue 
ones have been calculated when removing the yellow fractures of the outcrop map that belong to 
granitic or pegmatic veins. The logaritmic slope of the complete (incomplete, resp) dataset is the 
solid (dotted, resp) line of the lowest graph. 
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4.3 Length distribution on scan-lines drawn on outcrops
4.3.1 Measurements

Two scan-lines were drawn on each of the four outcrops in two different directions 
(positions are provided in Appendix 1). The four graphs represented in Figure 4-6 show 
the scan-line distribution for each outcrop. Clearly both directions are not identical but this 
rather renders the variability of the lddf due to the small number of fractures counted for 
each scanline (which is comprised between 27 and 48) than a significantly different trend. 
Actually a well-constrained lddf that can be fitted over a significantly large range of scales 
would require several hundred of elements, and better several thousands. This is clearly  
not the case for the scanline dataset, which causes a fairly large uncertainty on the derived 
lddf parameters. 

Here we present power-law fits for each group of data (one per outcrop). It does not mean 
that the power law is the best fitting function – a lognormal function would have given 
similar fit quality –; the fit merely shows trend of the density scaling since it is not possible 
to discuss the underlying distribution model with the scale range and actual precision of the 
scanline lddf.

Figure 4-6. Fracture distribution function d – number of fractures of length in [l, l + dl] per unit 
scan-line length – of the 8 scan-lines drawn on the four outcrops. 
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4.3.2 Interpretation

The power-law fits (Figure 4-7) show apparently the same trends than observed for the 
2D lddf’s, with two groups of outcrops: in the one hand ASM000025 and ASM000026, in 
the other hand ASM000205 and ASM000206. However the number of fractures mapped 
along the scanlines is quite small to provide a sound fitting. The large scattering of basic 
distributions (Figure 4-6) makes the scanline analysis not as useful as the 2D lddf. 

Since two scanlines at different orientations has been mapped for each outcrop, we could 
have expected to draw information about scaling anisotropy. But this rather highlights the 
intrinsic scattering of the derived distribution function.

Figure 4-7. Power-law fits performed for the four outcrops (the fit takes account of both scanlines 
drawn for each outcrop). 
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4.4 Scaling of the fracture distribution function
4.4.1 Preliminary statement

Characterization of the distribution scaling is performed through measurement of fractal 
dimension by the pair correlation integral function method. This permits to estimate the 
apparent fractal dimension D1d for one dimensional (boreholes) data and D2d for two 
dimensional (outcrops and lineament maps) data. 

As the fracture length distribution model rely on all fracture traces, the distribution scaling 
is obviously also measured from the same basic dataset. Therefore all fractures (fracture 
positions) are taken into account in the analysis, for the two dimensional analysis but also 
for the one dimensional analysis. 

Open and sealed fracture datasets, as registered along boreholes, display obviously distinct 
hydraulic properties. The density scaling analysis is therefore also performed for these 
subgroups. In a preliminary tentative to characterize the variations of density scaling with 
depth, subgroups are also defined according to the depth of the fracture intercepts. Note that 
this is possible because the 1d datasets are quite robust (mainly several thousands of points 
by dataset).

To facilitate the understanding of C(r) representations, the following “layout” is 
systematically used in curves representations: the function C(r) – left y axis in the log-log 
diagram – is represented as a “symbol plus line” curve and coupled with the representation 
of its logarithmic slope (in gray) – right y axis in the same diagram (see also Figure 3-3). 
Inaddition light gray grid lines on the diagram are linked to the logarithmic slope axis. on 
the diagram. 

4.4.2 1d fractal dimension, D1d 

Regarding fracture trace length distribution, all fracture traces are equivalently considered, 
without consideration of open or sealed status. Therefore the comparison between 2d data 
and 1d data can be done later if 1d data contains both open (plus the partly open that are 
assimilated to open) and sealed fractures, that is “all” the fracture intercepts. Note that 
the “all” fracture intercepts contain only the identified fractures intercepts (crushed zones 
and “sealed network” are not taken into account). Besides, since open and sealed fractures 
obviously display very different hydraulic properties, we apply the fractal analysis also on 
these sub-networks. 

To sum up, the following cases were considered: 
• all fracture intercepts,
• open and partly opened fractures,
• sealed fractures,
• all fracture intercepts over a finite range of depth (within the ranges [0; –100], [0; –500] 

and [–500; –1,000], when boreholes are long enough).

All primary results (diagrams of C(r) and ratios C(r)/Crandom(r)) are provided in Appendix 6 
for all, all randomized, sealed and open fracture-intercept datasets. Analyses over a finite 
range of scales are not provided, but they did not show any specific tendency. 
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Mean fracture densities over the boreholes are comprised between 4 and 12 fractures per 
meter. Therefore, for a homogeneous dataset, the mean distances between two nearest 
neighbors are most comprised between 0.3 and 0.1 meters. Thus, below that scale very few 
pairs of points can be found and the scale corresponds to the practical resolution scale for 
the C(r) analysis. 

For KSH01A, we calculate a dimension almost equal to one when considering all fracture 
intercepts. This is characteristics of a uniform spatial repartition (Figure 4-8 left), at least 
over the range of scale considered. When comparing the sealed- and open- datasets it brings 
out that the open- dataset seems to be slightly correlated with a well defined exponent equal 
to 0.9, whereas the sealed- dataset seems to be homogeneous, as long as the all- dataset. 

Observations of results obtained for the KAV01 dataset show a different tendency 
(Figure 4-9). When taking all fracture intercepts, the fractal dimension is now well  
defined and equal to 0.95. In addition, no clear distinction can be performed between  
the corresponding open- and sealed- dataset.

Figure 4-8. Borehole KSH01A, left) C(r) for all- and all_randomized- datasets, right) C(r) for  
all-, open- and sealed- datasets.  

Figure 4-9. Borehole KAV01, left) C(r) for all- and all_randomized- datasets, right) C(r) for all-, 
open- and sealed- datasets.  

0.1 1 10 100 1,000
1E–4

1E–3

0.01

0.1

1

0.6

0.8

1.0

1.2
 KSH01AALLDC_Cr
 KSH01ARAALLDC_Cr

C
(r)

distance, r (m)

epols lacol 

0.1 1 10 100 1,000
1E–4

1E–3

0.01

0.1

1

0.6

0.8

1.0

1.2 KSH01AOPPOPDC_Cr
 KSH01ASEDC_Cr
 KSH01AALLDC_Cr

C
(r)

distance, r (m)

epols lacol 

0.1 1 10 100 1,000
1E–4

1E–3

0.01

0.1

1

0.6

0.8

1.0

1.2
 KAV01ALLDC_Cr
 KAV01RAALLDC_Cr

C
(r)

distance, r (m)

epols lacol 

0.1 1 10 100 1,000

1E–3

0.01

0.1

1

0.6

0.8

1.0

1.2
 KAV01OPPOPDC_Cr
 KAV01SEDC_Cr
 KAV01ALLDC_Cr

C
(r)

distance, r (m)

epols lacol 



33

Table 4-1. Summary of fractal dimensions measured along the 1d datasets.

Borehole D1d, all

HSH01 0.96

HSH02 0.97

HSH03 0.95

KAV01 0.95

KLX02 0.91

KSH01A 0.99

KSH01B 0.99

KSH02 0.98

KSH03A 0.97

KSH03B 0.97

To conclude for the borehole datasets, the fractal dimensions are really close to 1, more 
precisely between 0.9 and 1, when taking all fracture intercepts (see table above). This 
would mean that the fracture clustering, or spatial correlation, is quite weak and cannot 
be really identified in all cases and, moreover, the fractal dimensions measured remains 
between 0.9 and 1. Except for boreholes HSH02, KAV01 and KLX02, open- datasets 
seem to be slightly more spatially correlated than sealed- datasets. Whatever the dataset 
considered (all-, open-, sealed-), no fractal dimension below 0.9 is measured.

4.4.3 2d outcrops and lineament maps

Analyses of C(r) on the outcrops and lineament maps are entailed with strong finite size 
effects: map outlines are irregular and the range of scales investigated is limited. Moreover, 
except for the lin_topo map, each dataset contains only about a thousand points. 

The treatment of outcrop ASM000025 is illustrated in Figure 4-10. We observe that finite 
size effects appear from a distance close to 5 meters. The resolution scale is found to be 
around 0.5 m, a value similar to the one of trace length. Therefore the available range 
of scales for measuring a fractal correlation on fracture positions is restricted at best to 
0.5–5 m. Over that range the local logarithmic slope of C(r) lies in the range 1.8 to 2. 

The analysis is repeated for the 4 outcrops and 3 regional lineament maps (Figure 4-11). 

Figure 4-10. Outcrop ASM000025, left) Integral of correlation C(r) for natural dataset (black) 
and randomized dataset (red), right) ratio of C(r)/ Crandom(r).  
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For each dataset, the fractal dimension is measured from the power-law fit of the ratio 
C(r)/Crandom(r) over a range of distances close to one order of magnitude. The minimum 
distance is equal to the resolution scale of the system (for instance 0.5 m for the outcrops, 
and a few hundreds meters for the lineament maps). The maximum distance is the system 
size divided by a factor comprise between 2 and 4 (depending on the boundary shape). 
Several fits were performed, that give an uncertainty on the exponent of about ± 0.05. The 
exponents measured on the two-dimensional datasets are given in the table below.

Table 4-2. Summary of fractal dimensions measured along the 2d datasets.

Reference name D2D

ASM000025 1.91

ASM000026 1.88

ASM000205 1.96

ASM000206 1.95

lin_2028 1.96

lin_2027 1.95

lin_topo 1.98

lin_sweden 1.84

Except for the lin_sweden map, the fractal dimensions are close to 2 (at least between 1.9 
and 2), which indicate weak spatial correlation.

Figure 4-11. Ratios C(r)/ Crandom(r), top left) for the 4 outcrop asm-maps. Top right) for lineaments 
maps lin_topo, lin_2027 and lin_2028, bottom) for lin_sweden. 
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Both the one-dimensional and two-dimensional analysis of the density scaling confirm that 
the fractal dimensions are close to trivial values (1 in 1d, and 2 in 2d), meaning that the 
fracture dataset is consistent with a poissonian distribution. Some variations are nonetheless 
observed, but they seem to indicate rather an intrinsic variability than a systematic trend.

4.5 Orientation distributions 
Representations of orientation distributions – lower hemisphere projections on stereonets 
– are provided in Appendix 2. An interpretation in term of fracture sets, for outcrops 
ASM000025 and ASM000025 is provided in Appendix 3.

We comment hereafter the orientation distribution without performing the classical division 
in fracture sets (term Opdf(θ,φ) of the first order distribution model).

4.5.1 2d maps orientations

Contoured Schmidt stereonets of the four outcrop are displayed in Figure 4-12 below 
(discrete steoreonets are available in Appendix 2). An interpretation of these orientation 
distributions in term of fracture sets is given in Appendix 3 for outcrops ASM000025 and 
ASM000205. The figure shows several zones of higher fracture intensity. All are located 
around dip directions close to 80 to 90 degrees. This indicates that fractures sampled are 
mainly sub-vertical. 

Figure 4-12. Schmidt density representations of orientation distributions of fracture poles, top 
left: ASM000025, top right: ASM000026, bottom left: ASM000205 and bottom right: ASM000206.
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The corresponding strike distribution (not affected by orientation bias since outcrops are 
assumed to be horizontal) could be analyzed by quantifying to which extent the apparent 
peaks in the strike distribution differ from the uniform background strike intensity. In 
other words, the orientation distribution is divided in a background intensity of fractures 
with uniformly distributed orientations plus peaks of specific orientations. The orientation 
distribution of background fracturing can be simply modeled by a uniform distribution 
of orientations and the next peaks intensity can be estimated to assess whether or not, 
according to their size, they should be taken into account in the first order modeling. 

For that purpose, peaks of intensity should be separated from the mean background  
intensity. By developing such analysis one could assess whether the peaks, cleared from  
the background, should be distinguished or not from the rest. 

Regarding the orientation distribution, the background fracturing constitutes the part of the 
fractures that can be modeled through a uniform orientation distribution.

For instance, the background strike intensity for ASM000025 and ASM000026 is estimated 
to be close to half of the total strike intensity, whereas is reaches almost 2/3 of the total 
fracture intensity for outcrops ASM000205 and ASM000206 (see figure below). The peak 
located around strike 60 for asm206 representq therefore one third of the fractures in the 
dataset. Peaks isolated in ASM000025 and asm000026 represent around one third to 1/6 of 
the fractures. 

Strike distributions of lineament maps are displayed on rosette diagrams in Figure 4-14.

Similar observations on the lineaments maps lin_2028 and lin_2027 show a background 
intensity eaching at least 80% of the total (Figure 4-14). 

Figure 4-13. Strike distributions for the four outcrops, from top to bottom: ASM000025, 
ASM000026, ASM000205 and ASM000206. 
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In summary, the fracture background intensity for the lineaments and outcrops data reaches 
between a half and around 80% of the different datasets. Besides, the presence of additional 
peaks highlights a similarity between ASM000025 and asm000026 on the one side, and 
ASM000205 and ASM000206 on the other.

4.5.2 Boreholes orientation distributions 

Orientation distributions are represented for the 10 different boreholes having strike/dip 
fields (all boreholes except KLX01). Observations are based on discrete and contoured 
Schmidt diagrams of fracture poles (see Appendix 2), as illustrated on Figure 4-15 for 
borehole KAV01. Here orientations distributions are observed as statistical distributions, no 
attempt is made at that stage to correlate the observations with the borehole spatial location, 
depth or encountered lithology. 

Figure 4-14. Strike distribution from the lineaments data sets lin_2028 (left) and lin_2027(right). 

Figure 4-15. Stereonet diagrams for 1d fracture dataset KAV01; (top) discrete plot; (bottom), not 
corrected (left) and corrected by Terzaghi correction (right). 
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The general trend present for all the borehole datasets is a dominant proportion of sub-
horizontal fractures, with a fracture dip close to 0 (as illustrated in Figure 4-15 for borehole 
KAV01). The tendency is stronger for the largest datasets (longest boreholes). Even after 
applying the Terzaghi correction, the peak corresponding to sub-horizontal fracture set 
remains dominant in most cases. Regarding the non-horizontal fractures, general and well 
identified tendencies are more difficult to highlight. Peaks are not systematically present 
and their mean position (along the dip axis) is variable. In some cases, we observe peaks 
of orientations in a direction compatible with strike-NE (for instance borehole HSH02, 
see Appendix 2). Apart from these observations, the orientations distributions appear to be 
very variable from one borehole to another. Further investigations would be necessary to 
understand the reason of such variability. 

At this stage, and for generation purposes, corrected “bootstrapped” files corresponding to 
the different orientations distributions are provided (description in Appendix 5). 

An additional comparison between 1d and 2d datasets is performed in Section 5 (the 3d 
scaling model). 
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5 The 3D scaling model

5.1 Some model issues
The objective is to find the 3D fracture network model which is statistically consistent with 
the parameters measured on all available datasets (boreholes, outcrops, and large-scale 
maps). Such a model is supposed to fit the entire range of scales that are measured, and to 
predict the scales where no information is available (Figure 1-1). Before developing the 
scaling model, we would like to point out some of its limits:
• We cannot claim that a single DFN model can describe fractures at all scales and in all 

places. Lithology (see previous paragraphs) or distance to tectonic events significantly 
modifies the parameters of the fracture distribution function. However making the exer-
cise to define a mean DFN model is not useless since it may help to precise the nature 
and extent of this variability in DFN parameters. 

• The scaling of the DFN model is limited at large and small scales due to obvious 
physical constraints. The upper limit is well constrained by the mapping of large-scale 
structures. In contrast, there are no, or a few, indicators of the small-scale limit of the 
DFN model with available data. Considering the importance of small fractures on flow 
dispersivity, this issue deserves address by further work. 

From a general point of view, a DFN model describes the number of fractures that can be 
found in a space S, with a set of properties such as length, strike, dip, shape factors… There 
are several issues that are worth noting:
• Since we are concerned with the fracture distribution model, the density term is the 

number of fractures belonging to a given volume. This definition is meaningful only if a 
fracture is represented by one typical point that we have chosen to be its barycenter. 

• The embedding space S has both a characteristic length scale (its typical size), and a 
dimension (2D for outcrops and maps, something between 1D and 3D for boreholes). 
The number of fractures encountered in S thus depends on the probability for a fracture 
of having an intersection with S, which is a complex function that depends on fracture 
density, length and orientation, and that we will develop below.

• The fracture density can be scale dependent, if for instance fractures are clustered in a 
fractal way. The fracture distribution function thus depends on S.

• The classical parameters measured on field outcrops such as P21 (the total fracture trace 
length over an area) also depends on the scale of resolution of the mapping – especially 
because small fractures are much more numerous than large ones. Thus these classical 
parameters cannot be considered as invariants of the fdf model. We therefore develop 
relationships by using the very parameters of the fdf model.

• The fracture parameters can depend on each other. For instance the fracture density or 
length distribution can depend on orientation, or small fractures can be more clustered 
than larger ones /Bour and Davy, 1999/. Some of these correlations can be simply 
expressed in the 1st-order DFN model; others cannot and require additional mathematics. 
Note that these 2nd-order correlations still require more information than the 1st-order 
model to be properly validated, especially when aiming at extracting scaling parameters. 
With the available dataset, it is not always possible to extract a statistically sound data 
subset on which a 2nd-order correlation would be calculated.
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In the next paragraphs, we compare outcrop maps and large-scale lineament maps. The 
issue thus amounts to look for a 2D DFN model, which can provide a good fit of the 
different areal distribution functions whatever the map scale. In the latter paragraph, we 
aim at comparing 1D boreholes and fracture maps. This requires building the basic 3D 
DFN model, compatible with borehole fracture intersection frequency, and outcrop and 
lineament-map fdfs.

5.2 Scaling of fracture density from outcrops to large-scale 
lineament maps

If we take a typical value of the areal fracture distribution function for each outcrop or map, 
we can try to draw the best-fitting model that joins all these points. In theory and because 
of a possible fractal clustering, the areal fracture distribution function depends on both the 
chosen fracture length and the typical size of outcrop or map L such as:

n(l, L) = nddf(l)* A * LD–2,

where A is the map area (with g(Σ) = A*LD–2, see equation (1)). The fractal dimension has 
been calculated for the different maps (see previous section) with values close to 2 which 
mean that the fractal correction is very small. 

Another way to evaluate the fractal term is to compare the fracture density of each maps 
when extrapolated to a fracture length of 1 m (Figure 5-1). When comparing maps of 
different areas, we can try to evaluate the fractal correction which should lead to a decrease 
of the areal density term. Figure 5-1 does not show any significant decrease compared to 
the observed variability. The best we can do if we really want to find a fractal decrease is to 
consider that outcrops ASM000205 and ASM000206 are linked to the topographic lineament 
map (dashed line in Figure 5-1). This would give a fractal dimension of about 0.08, which 
anyway remains small. 

Figure 5-1. Areal fracture density extrapolated for a fracture length of 1 m as a function of the 
area of outcrop or lineament map. 
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5.3 Scaling of the fracture length distribution from maps 
and outcrops

The idea when comparing different maps is to find a 2d model that fits both outcrop and 
large-scale maps, and thus fills the scale gap between about 10 and 100 m. We first discuss 
the mathematical function that provides the best fit through scale (power-law, lognormal 
and exponential). We then compare the different maps.

5.3.1 Comparing the different distribution model: power law  
vs lognormal

In contrast to power laws, the lognormal function presents a maximum for a finite length 
(the mode value), and a large tail for large values. These mathematical properties make the 
lognormal value suitable to fit curves such as the fdfs shown in the preceding figures since 
it can fit the typical bell shape of fracture length distributions. But this would be physically 
irrelevant since the fdf decrease is associated to the resolution issue, i.e. the inability to 
map all small fractures. Moreover such a lognormal fit is mathematically unable to predict 
datasets sampled at a different scale or resolution (Figure 5-2, black curve). 

If now the lognormal fit is achieved in the admissible range of fracture lengths (i.e. above 
the resolution scale and below the largest length recorded), we obtain an excellent agree-
ment with measured fdf (blue curve in Figure 5-2) with a mode which now becomes much 
smaller than the resolution scale. However this (“large scale”) best-fitting function for the 
large-scale lineament map (blue curve in Figure 5-2 or dashed red curve in Figure 5-3) is 
totally irrelevant for fitting the outcrop fdfs (as shown Figure 5-3). 

Figure 5-2. Three different lognormal fits illustrated for the fdf of topographic lineaments. The 
black curve is derived from the entire dataset including points below the resolution scale. The blue 
curve fits length between the resolution scale and the largest recorded length. The red one is the 
best-fitting curve for both outcrop maps and large-scale lineament maps. 
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At last we have calculated the lognormal function that fits all fdfs from outcrops to 
large-scale lineament maps (red line in Figure 5-2, and heavy red line in Figure 5-3). This 
large-scale fit is not very efficient to describe each fdf over the admissible range of fracture 
lengths (see red line in Figure 5-2).

We thus conclude that the lognormal fit is not a good candidate for defining a DFN model 
through scale, although it can provide excellent fit for individual fdf curve if needed.

Figure 5-3. The graphs represent individual best-fitting curves for outcrops, and large-scale 
lineament maps. On the top, the actual fdf are plotted with the best power-law fit. On the bottom, 
we plot all fits that have been found in previous sections. A power-law fit has been applied to 
ASM000025 and ASM000026 outcrops (black lines), ASM000205 and ASM000206 outcrops (blue 
lines), large-scale topographic lineaments and Lin_2028 (green lines). The best-fitting lognor-
mal function is represented with σ2 = 4 (bold red line). Both exponential functions that fit the 
large-scale maps Lin_2027 and Lin_2028 are plotted with a dashed grey line. The yellow circles 
represent one typical density value for each map and outcrops; the yellow triangles represent the 
largest length consistent with the power-law fit for each map and outcrops. The graph in the upper 
right corner is an enlargement of the dashed central part that shows the different fitting functions, 
and the resulting differences in terms of density predictions. 
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5.3.2 Comparing fracture networks on outcrops and large-scale 
lineaments maps

Figure 5-3, where all individual fits are plotted together, emphasizes several points:
• The best-fitting functions of ASM000205, ASM000206, and large-scale topographic 

lineaments are consistent. The lithology encountered in both outcrops is diorite or 
monzodiorite, which represents the basic pole of the geological rocks of the Simpevarp 
peninsula, with fine to intermediate grain sizes. 

• The exponential functions obtained for Lin2027 and Lin2028 are unable to predict 
observed outcrop densities. This is consistent with a close relationship between the 
exponential function and the manner the fractures are individualized from the lineament 
map.

• The lognormal functions, when fitted to topographic-lineament fdf, cannot predict 
outcrop densities. Same for the reverse (see also previous section). If all fdfs are put 
together, the lognormal fit (bold solid line in Figure 5-3) has a very large σ2 value of 4; 
moreover it does not fit very well individual fdfs (see also previous section).

• Density functions derived from both outcrops ASM000025 and ASM000026 overpredict 
the lineament densities by about two orders of magnitude if extrapolated at same scales. 
The lithology of ASM000025 and ASM000026 is more or less towards the granitic pole, 
with quite large grain sizes. 

Note that, in contrast with the exponential and lognormal fits that seem to be physically 
unrealistic and related to the manner fractures are mapped, we are confident in the power-
law fit calculated for ASM000025 and ASM000026. Beyond the statistical relevance, which 
is excellent, similar power-law exponents have been found for large-scale fault patterns 
/Davy, 1993; Bour and Davy, 1999; Bonnet et al. 2001/. The difference is also qualitatively 
visible on fracture patterns (Figure 5-4), on lithology and on grain size.

Figure 5-4. Qualitative difference in fracture networks between the outcrop ASM000025 (left), 
and ASM000205 (right). The density of small fractures is much larger in the latter than in the 
former. 
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The power-law fit found for the granite outcrops (ASM000025 and ASM00002) cannot 
however be extrapolated to large-scale maps since it would predict a huge number of 
very large fractures that clearly do not exist. It would mean that there exists a limit to 
this fracture organization. The transition from the small-scale organization (observed on 
Figure 5-4 left) to large-scale lineament organization (that is self-similar to the one observed 
in Figure 5-4 right) could correspond either to a qualitative change in fracturing processes, 
or to a change in the nature of the mapped fracture zone since a large-scale fracture is not 
any more a single fractured plane but is a bundle of sub-parallel fractures. Note that we 
have no argument to favor one hypothesis against another.

Evaluating the transition between small-scale fracture organization and the large-scale one 
can become an important issue when trying to assess the consequences of the 3D DFN 
model. From the different fits drawn in Figure 5-3, we may assume that the transition 
is somewhere around 10 m, which is rather an order of magnitude than a well-assessed 
transition scale. This could be confirmed by a detailed study of fracture patterns at scales 
significantly larger than outcrops. Note that this uncertainty makes the prediction at scales 
between 10–1,000 m a bit uncertain.

5.4 Consistency between borehole fracture intensity and the 
distribution function calculated from outcrop networks

5.4.1 Preliminary issues

To assess the consistency between outcrop areal distribution functions and borehole  
fracture intersection frequency, we propose to derive both measures from the same basic  
3D DFN model.

Following the conclusions of the previous section, we restrict our analysis to the power-law 
model although it can be easily extended to any distribution function. We use the following 
mathematical formalism5:

( , ) ( ) da
d dn l lθ ϕ α θ ϕ −, = ,         (6)

where d is the dimension of the embedding system (2D for outcrops, 3D for volume), and 
nd the fracture distribution function per unit system size. /Piggott, 1997/ has calculated the 
relationships between the distribution parameters in 2D and 3D for randomly-oriented disks 
with a power-law length distribution:
a3d = a2d + 1,

2D

3D 2D
2D

2
2

1
2

a

a
α α π

+ Γ 
 =
+ Γ 

 

        (7)

We now calculate the number of fractures that intersect a core. We consider that the core is 
a cylinder of radius r and of height h. The condition for a fracture of length l and dip φ to 

intersect the core is to have its center within a cylinder of radius 
cos

2

l
r

ϕ −  (see Figure 5-5).

5 With the correspondence to notations of equation 1: αd(θ,φ) = Opdf(θ,φ).α.
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For the general case of fractal density, the number of fractures that belongs to such a 
cylinder is:

3D 2 2
3D

cos d 2d
d ( ) ( , dD l

N h r n l l
ϕ θ ϕ

π θ ϕ
π π

−= − , )
2

All these fractures intersect the borehole if their length is larger than 2
cos

r
ϕ . The total 

number of fractures that crosscut the borehole is then:

3D 3D2 2
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d d cos
( ( ) dD a

r
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N h r l l
π π

ϕ

ϕ θ ϕ
α θ ϕ π

π π

/2 ∞− −2
= , ) −

2∫ ∫ ∫     (8)

The calculation can be done for any distribution of fracture length, dip and strike. For the 
simplest case of a non-fractal distribution of randomly oriented fractures, equation (8) can 
be analytically integrated, and gives

3D 3D3 12
I 3D 0

3D 3D 3D

1
(2 ) cos d

( 3)( 2)( 1)
a aN h r

a a a

π

α ϕ ϕ− −=
− − − ∫     (9)

which comes to 1I
10 3D

1=
18

Np r
h

α −=  if a3D = 4. Note that the number of intersections will 

vary inversely with borehole radius, which is a consequence of the selection criterion that 
a fracture must be large enough to break the entire core. We could have make a similar 
calculation for fractures that cut a given percentage of the core; it would come to increase 
p10 for the reasons mentioned just above.

Note also that the only scale of the fracture-intercept density is the borehole radius, which 
means that the scaling information is representative of the borehole diameter, and not of the 
borehole length, as it is mentioned in Figure 1-1.

Figure 5-5. Schema showing the geometry of a fracture intersecting the borehole. The fracture 
centre is at max at a distance of l cos φ/2 –r. 
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5.4.2 Mean features of the borehole fracture intensity

The fracture intensities recorded in boreholes are extensively described in the Appendix 4. 
Here we would like to summarize some key features of the relationship between fracture 
intensity and lithology. These features are illustrated by the Figure 5-6, which gives the 
number of fracture intercepts per meter (thin lines and left axis) or the cumulative number 
(bold line and right axis) compared to lithology.

First of all, the fracture intensity appears to be highly variable from place to place, which 
is not inconsistent with what we know about the intrinsic heterogeneity of the fracturing 
process. But the cumulative curve shows that this variability is limited, and that it makes 
sense to derive average parameters. The example shown in Figure 5-6 is typical of what 
we can see in most of the boreholes. Indeed we do observe both a change of the fracture 
intensity, and of lithology. Above 300 m, the fracture intensity is larger than 15 fractures/
meter and the lithology is mostly given as quartz monzonite or monzodiorite. Below 300 m, 
fracture intensity is much smaller with values between 2 and 5 fractures/meter; the lithology 
is given as granite. The interdependency between fracture intensity and lithology can also 
be highlighted by small-scale features such as the diorite sill, located at depth about 870 m 
that yields a local increase of the fracture intensity up to 15 fractures/meter.

Figure 5-6. Example of the relationship between fracture intensity and lithology. The graph gives 
the number of fracture intercepts per meter (thin lines, left axis) or the cumulative number (bold 
lines, right axis) as a function of depth for all fractures (black lines), or the sealed fractures only 
(red lines), or the open fractures only (black lines). 
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5.4.3 About the orientation distributions

The fault plane orientation distribution of 2d outcrops displays mainly close-to-vertical 
fractures with two main peaks in strike (see Section 4.3). In contrast, boreholes sample 
mostly close-to-horizontal fracture planes (see Section 5.5.2). This result is qualitatively 
consistent with the rules of intersection and should be corrected by the classical Terzaghi 
coefficient. However even when applying the Terzaghi correction, a large discrepancy 
between outcrop-derived and borehole-derived orientation distributions still remains as  
can be shown in the next figure. 

More generally, this observation points to the issue of the consistency between outcrop and 
borehole fracture sets. Even if both examples shown in Figure 5-7 are the most “critical” 
ones, and even if one considers the difficulty of sampling sub-horizontal fractures on 
outcrops and sub-vertical ones from boreholes, it is difficult to explain the inconsistency 
generally observed between outcrop-derived and borehole-derived orientation distributions 
(Appendices 1 and 2). If both datasets are really inconsistent as the orientation distribution 
seems to show, this would raise a few important problems for building a sound DFN model:
• A cause of such inconsistency could be that outcrops are not representative of the 

fracturing at depth. Since the DFN is mostly calculated from outcrop information, this 
would cast doubt about the relevance of such a DFN to describe the 3D fracture set.

• Another cause could be that the fracture distribution at the outcrop scale cannot be 
extrapolated to borehole scales. This could happen if there exists a major change of 
the very nature of fracturing between borehole scales (< 8 cm) and outcrop scales 
(50 cm – 3 m). This explanation does not seem to be consistent with direct observation 
in the field. It can be easily checked by a detailed mapping of some parts of outcrops. If 
it still comes to be true, this would cast doubt on the validity of the DFN to link scales, 
which in fact is the very reason why we attempt to calculate it. 

Hopefully, we think that the observed discrepancy comes from an inadequate Terzaghi 
correction for borehole. In fact the Terzaghi correction assumes that boreholes are thin lines, 
which they are not actually. Equation (9) gives the exact expression of having fractures that 
fully intersect a cylinder. It can be shown that the angle correction depends on the fracture 
length distribution. This conveys that the number of intersecting fractures is dominated by 
the smallest ones (with the kind of length distribution that we get from outcrops), and that 
the length of the smallest fracture that can crosscut the borehole depends on the fracture dip.

Figure 5-7. Contoured stereonets corrected from orientation bias for borehole KLX02 (left), 
and outcrop ASM000026 (right). Both examples represent the most “critical” ones, with strong 
domination of sub-horizontal fractures on the vertical borehole and sub-vertical fractures on the 
outcrop (all datasets are represented in Appendix 2). 
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For a power-law length distribution, equation (9) shows that the Terzaghi correction is 
actually 3D 1cos aϕ − . If a3D is about 4, as it is found for outcrop ASM000205, the correction is 
(cos φ)3 rather than the classical cos φ, which favors a lot horizontal fracture plane compared 
to inclined ones. This may explain why boreholes sample mostly horizontal fractures, while 
this is not observed in the Äspö gallery for instance.

5.4.4 Predictions from analytical solutions

The following table summarizes the prediction that we can make from the analytical 
derivation described in the previous section. The fracture intercept frequency is the number 
of fractures that break the borehole. To calculate this frequency from the outcrop parameter, 
we make the assumption that fractures are disks with a non-fractal density distribution and 
random orientations (this latter assumption can be easily changed; however the results are 
not significantly changed if we apply realistic distribution). The 3D density term has then 
been estimated from Piggott’s formula. The number of fractures that entirely break the core 
are given by equation (9).

Table 5-1. Density parameters either estimated from the analytical solution equation (9) 
or measured from boreholes. The first line gives the nature of the parameters. 

Lithology α2D a2D α3D 
(estimated)

Fracture intercept 
frequency 
(calculated)

Fracture intercept 
frequency 
(measured)

Lin2028 3.6 3 8.46 11.75

Topographic lineament 1.3 3 3.1 4.3

Outcrop ASM000205 2.8 3 6.6 10

Outcrop ASM000206 1.9 3.1 4.53 7.3

Outcrop ASM000025 1.25 2.15 2.6 7.3

Outcrop ASM000026 0.95 2.25 2 3.6

Diorite-like borehole 10–12

Granite-like borehole 3–6

With the crude assumptions described in the previous paragraph, we obtain very interesting 
information about the consistency between outcrop fracture distribution and borehole 
fracture intercept:
• Parameters derived from the outcrop ASM000206 (close to the CLAB), which represents 

the diorite pole of encountered lithology, predict a very large fracture intercept frequency 
for boreholes.

• The other end member is the outcrop ASM000026, which differs significantly from 
the other for the fdf of scan-lines (Figure 4-7). Its fdf parameters predict low fracture 
intercept frequency. 

• The two others outcrops predict intermediate fracture intensity values.
• The fractures of the topographic lineament map would predict low borehole fracture 

intensity, whereas the lineament map lin208 is consistent with large borehole fracture 
intensity.

Note that the borehole fracture frequency is very sensitive to the detection threshold that has 
been used for counting fractures. For a power-law exponent a2D of 3, the fracture intercept 
frequency increases by a factor 3 if we count fractures that cut only half of the core radius, 
while this factor is only 1.3 if a2D = 2.2.
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5.4.5 Predictions from numerical simulations

Analytical predictions presented in previous sections are based on uniform orientation 
distributions. In that case, density relations between 2d and 3d (resp 1d and 3d) parameters 
are given in equation (7) (resp equation (8)). Numerical predictions are performed here to 
check their consistency and mostly to couple results with specific bootstrapped orientations 
distributions. 

Relations between the models parameters and properties in 1d, 2d and 3d are briefly 
recalled below, followed by the presentation of results from the numerical simulations.

Model parameters

The 3d fdf model is noted: 

dd Da
dd LlLln 33

33 ),( −=α

The corresponding apparent 2d and 1d fracture models (fracture length traces distribution 
on an outcrop, fracture intersecting a borehole) are also power laws whose length exponents 
are related through:

21 321 −=−= ddd aaa

Relations between α1d and α2d with α3d, in the case of uniform orientation distributions were 
provided in previous section. 

The number of fracture centres by unit of volume, P30, and the cumulative surface of 
fracture by unit of volume, P32, are simply expressed through the following relations:
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where the Cshape is related to the fracture shape: Cshape = π/4 if the fracture is in 3d a disk of 
diameter l or π/8 if the fracture is an ellipse of eccentricity 0.5 and large axis l.

The cumulative fracture trace length by unit of area, P21, is expressed through:
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The 1d model arising from the intersection of a 3d power law model for the fracture fdf is 
also a power-law model of parameters α1d, a1d and D1d. The number of fracture intercept by 
unit of length, P10, is equal to: 
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By forming the ratios P30/P21 it is possible to relate resp α2d to α3d. For lmin equal to 1, it 
comes that:
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Note that for the 2d-3d simulations, the equation (10) is valid if P30 is computed for all the 
fractures (by definition there lmin = 1) and P21 is computed only for fractures whose trace 
length on the outcrop is larger or equal to lmin = 1.

From the numerical simulations we obtain the ratio α3d/α2d. Since α2d is known, we obtain 
simply an estimate of the α3d corresponding to the 2d datasets.

1d to 3d 

The α3d density term is related to the P30 factor by:
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lmin is taken as the borehole diameter since only we consider only fractures that are large 
enough to break the entire core.

Simulations 

The simulations take P10 or P21, and a3d (a3d = a2d + 1) as input parameters6 and provide the 
P30 (or P32) as output parameters (mean + standard deviation). In practice, a 3d synthetic 
model of discrete fractures is generated, until the frequency P10 or P21 is reached, resp on 
a borehole or an outcrop. In all cases, systems are considered as homogenous (D = d). 
Orientations distributions are simply bootstrapped from each dataset or taken as uniform. 

The fracture network is generated in a cubic system of linear size L. The lower length cut-
off of the fracture distribution is fixed to lmin = 1. 

Output calculated values are averaged over a ten to a hundred of runs. 

Datasets ASM000205, ASM000025 and KAV01 are used as bases for the simulations.

Numerical predictions

The variability of numerical estimations of α3d is between 1 and 2%.  
(∆α/α = ∆P30/P30 ≤ 0.02). For a3d = 3.15, numerical predictions overestimate the α3d from 
almost a factor of two. In fact, finite size effects lead to an overestimation of α3d: no 
fractures are generated outside the system of size L; such fractures should intersect the 
outcrop and contribute to the parameter P21. Therefore, to compensate the missing fractures, 
the “local” (in the system L) density is necessary larger to reach the P21 value. 

6 Relations between P32, P21, P10, P30, αd and lmin are provided in Appendix 0. The combination of αd 
and lmin is sufficient for calculating the P parameters.
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Variations due to the orientation distribution lie between 2% for ASM000205 outcrop and 
reach 6% for ASM000025. 

Table 5-2. Results for the 2d-3d case.

Input Analytical 
prediction 

/Piggott, 1997/

Simulations

(calculated from 
equation (10))

Dataset original 
reference

α2d a3d Orientations α3d α3d
7

ASM000025 1.25 3.15 bootstrapped – 3.78

– 1.25 3.15 uniform 2.6 3.57

ASM000205 2.8 4.0 bootstrapped – 5.48

2.8 4.0 uniform 6.6 5.36

Table 5-3. Results for the 1d-3d simulations.

Input simulations

Dataset original 
reference

P10,measured a3d lmin Orientations α3d ∆α3d

KAV01 5.79 4.0 0.08 uniform 1.11 0.16

KAV01 5.79 4.0 0.08 bootstrapped 1.05 0.16

KAV01 5.79 3.15 0.08 uniform 2.76 0.42

KAV01 5.79 3.15 0.08 bootstrapped 2.49 0.37

Numerical simulations predict that the density term α3d varies between 1.05 to 2.76, 
depending on the input a3d and on the orientation distribution. The main variation is due 
to the variation of a3d between 3.15 and 4. The analytical expression equation (8) gives 
α3d = 4.16 for P10 = 5.79 and a3d = 4. There is therefore a factor close to 3.75 between 
the theoretical and analytical predictions on α3d. However, the theoretical analysis and 
numerical model use distinct hypothesis regarding the borehole assumptions. The numerical 
borehole is approximated by a one-dimensional straight line in the simulations; any fracture 
that intersects the borehole is recorded as long as it is larger than the borehole diameter. 
In the analytical solution, the real borehole volume is considered, and only fractures that 
fully break it are counted as intersecting fractures. As a consequence of the numerical 
approximation, the numerical α3d density term is an underestimation of the “real” α3d density 
term. Note that is effect is increased by the presence of a large proportion of small fractures 
(able to only partly cross-cut the borehole) in comparison to the borehole diameter. This 
occurs for large value of the exponent a3d and small values of the lmin (minimum length of 
the fracture distribution function). 

Secondly, numerical results show an apparent increase in α3d when decreasing the value of 
a3d from 4 to 3.15. However, as it was already noticed for the 2d-3d case, finite size effects 
become dominant when a3d decreases to 3.15. In that case, a large proportion of large 
fractures (having their centres outside the volume of the system generation) are missing, 
leading to an artificial increase in the α3d density term. 

7 Variability is not indicated in the table of results but in the text since it remains small, comprised 
between 1 and 2%. 
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However, both “borehole” and finite size effects remains equivalent when dealing with 
a uniform or bootstrapped orientation distribution. Therefore the numerical simulations 
remain a way to quantify the role, on the fracture model density term, of specific orientation 
distribution. Analysis from borehole KAV01 show that orientation effects lead to a variation 
of 6 to 10% in the density term estimation. This is of second order regarding the local 
variations in density from one borehole to another. 

Conclusions 

Two main effects prevent from using directly the numerical simulations to compare power-
law fracture models and relate α3d, α2d and α1d density terms: finite size effects and usual 
simplifications related to the borehole representation. The first one can be minimized by 
increasing the size of the volume where fractures are generated in comparison to the volume 
of interest (outcrop or borehole in the present case). The latter requires building the real 
borehole, with its volume, in the simulation, i.e. not to neglect the borehole thickness. 

As finite size effects are related to the fracture lengths, variations in densities due to the 
orientation distributions can be simply quantified by the deviation in density recorded when 
considering different orientation distributions. By doing this, we show that bootstrapped 
orientation distributions arising from outcrops ASM- and borehole KAV01 entail small 
variations in densities: between 1 to 10%. These variations remain of second order in front 
of the local variations from one dataset to the other. 
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6 General conclusions

In this report, we have calculated the 1st-order fracture distribution for different datasets 
available through the Simpevarp site. We also attempt to define the maximum-likelihood 
model that is consistent with statistics at different scales. 

The first order model characterized here is a fracture distribution function, noted, fdf, which 
provides the number of fractures of a certain length and orientation, belonging to a given 
volume of observation. Orientations are calculated as a probability density function noted 
Opdf(θ,φ). The first order model comprises a priori all the fractures of the system, independ-
ently of their possible belonging to distinct fracture sets. The sampling-size term is related 
to a potential non-trivial scaling of fracture density, and thus to the dimension of the fracture 
network. Finally, the fracture distribution function, fdf, encompasses the fracture size 
distribution. As in the present work the power-law model has been found to the best scaling 
model, the additional parameters of the fdf is the power-law exponent a of the fracture 
length distribution.

Along the report, a special attention is paid to describe the methods used in data analyses, in 
particular regarding the length distribution and the density scaling characterization method. 
1d and 2d datasets were investigated independently, to provide material for building the 
scaling DFN model. Local statistics is mostly based on both an analysis of the orientation 
distribution, and on the calculation of the fracture length density distribution function per 
unit area. The validity of the 3D DFN model, which is related to the consistency of the 
different local statistics across scale, is checked with analytical predictions and numerical 
simulations that guarantee the relations between different dataset parameters. Results are 
now summed up. 

The basis of the study relies on the 2d datasets analysis and determination of a model for 
the fracture length density distribution function (lddf) defined per unit area. We found there 
that the best fitting model for the lddf is the power-law model. Different models have been 
tested to fit to the lineament data: power law, exponential and lognormal. The comparison 
between different models shows that, for a fixed range of scales, the power-law and the 
lognormal model can both lead to satisfactory fits. Note that the power-law fits calculated 
for outcrops are some of the best we have ever seen. 

Five maps show well defined power-law fits: lin_topo, lin_2028, ASM000205 and 
ASM000206 with an exponent close to 3, and the remaining outcrops with an exponent 
close to 2.2. At the outcrop scale, the distinction between ASM000205 and ASM000206 on 
one side and ASM00025 and ASM00026 on the other, is also confirmed by difference in 
orientation distributions, and can be rationalized by a difference in lithology. 

The fracture density scaling analysis is a complement to the length analysis: in order to 
normalise the local fdf from their respective sample size, the fractal dimension D associated 
to the density scaling, must be defined. For that purpose, the correlation integral method is 
applied over each dataset. All datasets display a fractal dimension comprised between 1.9 
and 2. These results are very similar to the 1d analysis of fractal dimension along boreholes, 
where all the values were found to be comprised in the range 0.9 and 1 (in 1d). A second 
method, based on direct observation of densities observed on several 2d datasets confirms 
the former result: the datasets present well defined but weak fractal correlations. We choose 
therefore to neglect any fractal correlation in the rest of the study by considering (D = d). 
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The orientation distributions of 2d outcrops are rather difficult to link with those measured 
on 1d boreholes, even after applying the Terzaghi correction. 1d boreholes predict a large 
number of sub-horizontal fracture planes, while 2d outcrops emphasize vertical fractures. 
We discuss this important issue and argue that the classical Terzaghi correction does not 
take account of the core size, and is thus partly inappropriate for 1d boreholes. At this stage 
of the analysis process, this result suggests of using orientation distributions derived from 
outcrop maps rather than from borehole to derive the 3D DFN model. We note that further 
investigations are necessary to better assess the consistency of the 3D fracture orientation 
distribution. 

The density consistency of the 3D DFN model was determined by analyzing the consistency 
between the 2d model of both outcrops and large-scale maps, and the 1d fracture-intercept 
densities along boreholes. A theoretical expression of P10 has been derived as a function of 
the borehole diameter and the parameters of the 2d fdf. In addition, numerical simulations 
were performed in order to quantify the effects due to non uniform orientation distributions. 
They show that the orientation effects are much smaller than the effects due to the variations 
of density, or of the length-scaling exponent.

Two different DFNs have been found to describe the whole available datasets: 
• The first DFN model is derived from the fdf of the outcrops with fine-grained size 

lithology, and is valid across all scales investigated in this study, from the highly-
fractured cores to large-scale maps. Its best-fitting parameters are :  
[a2d = 3, D2d = 2, α2d = 2.01] or [a3d = 4, D3d = 3, α3d = 5.5 ± 1]. 

• The second DFN model is derived from the fdf of the outcrops with coarse-grained 
size lithology, and is found consistent with cores that present the smallest fracturing 
intensity. The power-law length exponent is a2D is about equal to 2.2. This model is not 
found to hold at large scale, which implies a transition scale above which a2d and other 
distribution parameters should change. Evaluating the transition between small-scale 
fracture organization and the large-scale one can become an important issue when trying 
to assess the consequences of the 3D DFN model.

We suggest further investigations to refine this model:
• Deepen the orientation analysis in order to determine how 3D fracture orientation 

distributions may be extrapolated from 1d and 2d datasets. It implies the analysis of the 
consistency between the different datasets when considering orientations bias corrections 
depending on the length distribution model and data uncertainty.

• There are few indicators of the small-scale limit of the DFN model. This limit remains 
however important to better constraint further more when considering the role of small 
fractures on flow dispersivity. 

• The granite-type fracture organization is different from the mean distribution model. The 
spatial and scaling extent of this difference could be better defined.

• A detailed analysis of the relationship between fracture intensity and lithology can be 
pursued from borehole datasets. For this, it would be useful to define a “lithology” 
parameter at a coarse scale (let say some tenths of meter) by interacting with geologists.

• Other 2nd-order correlation (fracture length vs fracture density, lithology vs orientation, 
etc) can be checked.
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7 DFN parameters

The parameters, expressed with both notations (see Appendix 0 for relations), are 
summarized here. Note that it’s about the mean global model. Local distinctions are not 
summarized here but can be found along the report. 

The mean global model parameters (related at the outcrop scale to diorite or monzodiorite 
lithology) are the following:

a3d 4 

α3d 5.5 ± 1.0

lmin ≤ 0.1 (meter)

k3d 3

r0 ≤ 0.1 (meter)

P32(lapp = 0.1) 43 ± 8

P32(lapp = 1) 4.3 ± 0.8

P32(lapp = 10) 0.43 ± 0.08

Corrected probability density functions of orientations, O(θ,φ), are provided elsewhere 
under the form of ascii files for the outcrops data and for the boreholes (see Appendix 5 
for indications). Note that the different orientation distributions can be simply coupled by 
combining and normalizing the probability functions. 

In complement, the 3d parameters of the local DFN model corresponding to the outcrops 
ASM000025 and ASM000026 (granite-like) are: 

a3d 3.2 ± 0.05

α3d 2.3 ± 0.3

k3d 2.2 ± 0.05

P32(lapp = 0.1) 15.2 ± 4.0

P32(lapp = 1) 9.9 ± 3.7

P32(lapp = 10) 6.6 ± 3.0
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Appendix 0

Symbols, notations, abbreviations
Index of notations

L characteristic length of a system ( ex side L of a cube).

l typical size of a fracture 
 (ex: for a disc shape fracture, disc diameter in 3d, trace length in 2d).

lmin real minimum fracture length (diameter) in the power-law model.

(θ,φ) fracture pole orientation in 3d.

a exponent of the power-law length distribution (notation SKB: k = a –1).

D fractal dimension.

α density term that fixes the density at a given scale of observation.

Cshape coefficient related to the fracture shape,  
 equal to π/4 if fractures are assumed to be discs.

DFN discrete fracture network.

Power-law model nomenclature

Length exponent

SKB recommends using the following notation for representing the probability density 
function /Munier, 2004/: 
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where r0 is the location parameter (smallest value of r), and k the shape parameter. 

In the following we use however the density distribution function as: 
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where α is a density term, –a the exponent of the power-law model and l the characteristic 
fracture extension. Note that to simplify the terms, results of the power-law exponent are 
expressed as positive values, a, agreed that the final power-law exponent is negative. 

The corresponding probability density function is: 
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The relations between parameters are simply: 
1−= ak

minlro =

Density scaling

To encompass the scaling through scale, the ddf n(l) is generalized to account for the system 
size L in which the fracture system is observed. The fracture model is then described by the 
fracture distribution function n(l,L): 

Da LlLln ⋅⋅= −α),( ,

where D is the fractal dimension. 

For a uniform fracture density distribution, D is simply equal to the Euclidean dimension d. 
In that case, the total number of fractures belonging to a system of linear size L, is simply 
given by the number of fracture per unit of area (in 2d) multiplied by the area of interest Ld.

Relation between α3d and P32

The 3D fracture density is usually expressed as the fracture area per volume unit, P32. P32 
can be simply related to the power-law density model of fracture parameters through: 
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Similarly the number of fractures per unit volume, P30, is given by:
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For a fracture system dominated by smallest fractures (a3d ≥ 3) it comes that: 
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Note that in practice, values of P21 are measured on outcrops for fractures down to a 
minimum extension, lapp, which correspond to the resolution limit or to a pre-fixed cut-off 
length scale. lapp is not necessarily equal to lmin the physically small scale limit of the power-
law model. Moreover, lapp can be evaluated on outcrops but not along boreholes. In addition, 
in the perspective of DFN simulations, one can choose to generate the fracture network for 
fractures down to a certain lower extension, independently of the true physical limit. Then 
we have: 
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Then, α3d is an invariant of the fracture density model which remains independent of  
resolution or truncation effects, it seems to be more convenient to define the fracture  
density model. 
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Although it remains of course worthwhile, P32 provides a measure of the fracture density 
that can entail confusion between scale of resolution regarding measurements and cut-off 
length scale regarding DFN generation, this especially is the case of a power-law model 
dominated by smallest fractures (a3d ≥ 3).

Integrating orientations in the first order model

The first order model description here can be simply completed with consideration of 
fracture orientations, as long as lengths and orientations can be assumed to be independent. 
In that case, orientations are handled through the density parameter α: 

( , , , ) ( , ) a D
pdfn l L O l Lθ ϕ α θ ϕ −= ⋅ ⋅ ⋅

where Opdf(θ,φ) represents the probability distribution function of orientations and α remains 
the global density term.



63

Figure A1-1. The four outcrops, asm000025,  asm000026, asm000205,  and asm000206, spatial 
localization. 

Appendix 1

2d datasets – overview
What is in this appendix? 

We provide here an overview of characteristics related to the two dimensional datasets, 
with in particular a detailed identification sheet for each of the four outcrops, asm000025, 
asm000026, asm000205, asm000206, lintopo, lin2028 and lin2027. Respective geographical 
positions of each outcrop maps are recalled in Figure A1-1. Resulting measured and 
interpreted parameters for the outcrops are summed up in the following table. In addition, 
data related to the scanlines sampled over the four outcrops are given as a complement. 

Details for each 2d-outcrop are provided, with the same layout applied for each one as 
follows: 
• Top left: fracture trace map, lower cut-off equal to 0.5 m, including scheme of scanline 

(lsm-), except on asm000206. 
• Top right: photo of the corresponding outcrop.
• Middle left: fracture trace length density distribution.
• Middle right: integral of correlation C(r).
• Bottom left: discrete stereoplot of fracture poles, Schmidt lower hemisphere projection. 

(*)
• Bottom right: extrapolated density stereoplot corresponding to previous figure (scales 

are automatically adjusted for each dataset, therefore can not be directly compared in 
between). (*) 

(*) Note that for 2d-lineament maps, a half rose diagram of strikes is provided instead of 
stereoplots.
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Outcrops characteristics

Reference name Area (m2) P20 P21 α2d a2d D2d Major rock type

measured measured interpreted interpreted interpreted

ASM000025

(sea view) 418.99

2.19 2.69 1.25 2.15 1.91 501044

Granite 
to quartz 
monzodiorite, 
generally 
porphyritic.

Ävrö granite

ASM000026

523.59

1.67 2.13 0.95 2.25 1.88 501044

Granite 
to quartz 
monzodiorite, 
generally 
porphyritic.

Ävrö granite

ASM000205

(close to CLAB) 215.00

5.46 4.97 2.79 2.96 1.96 501030

Fine-grained 
dioritoid 
(Metavolcanite, 
volcanite)

ASM000206 245.45 3.83 3.19 1.89 3.1 1.95 501036

Quartz 
monzonite to 
monzodiorite, 
equigranular 
to weakly 
porphyritic.

lin_2028 3.0 1.96

lin_2027 – 1.95

lin_topo 3.0 1.75

lin_sweden 3.0 1.84

And for the scanlines:

Reference name Outcrop Number of 
intercepts

Size (m) Indicative a1d

LSM000092 ASM000025 40 10 1.75

LSM000093 ASM000025 30 10

LSM000094 ASM000026 27 10 1.1

LSM000095 ASM000026 30 10

LSM000096 ASM0002005 48 10 1.8

LSM000097 ASM0000205 46 10

LSM000098 ASM0000206 34 10 1.7

LSM000099 ASM0000206 30 10
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Outcrop asm000026
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Outcrop asm000205
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Outcrop asm000206
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Appendix 2

2d datasets, stereoplots 
What is in this appendix?

Stereoplots, for all the datasets considered in the report, are displayed in this appendix. This 
represents a convenient way to have a general idea of fracture orientations with the system 
studied. All the fractures are simultaneously represented, without distinction between for 
instance open and sealed ones. 

When possible, discrete, contoured and rosette diagrams are provided, as long as 
corresponding Terzaghi corrected ones.  The Schmidt equal area projection in lower 
hemisphere is selected. Fisher concentrations are chosen to represent contoured stereonets. 

For borehole data, the indicative position of borehole orientation is indicated by an arrow. 

A basic interpretation in terms of possible fracture sets is provided in A-03 for outcrops 
asm000025 and asm000205. The way orientation data are used for DFN generation purpose 
at local scale (linked to a local zone) are provided in A-05. 

The software DIPS 5.0 is used to represent the stereoplots. 

Layout

We present in next pages Schmidt diagrams of fracture poles with the following layout: 
• Top: fracture poles discrete plot.
• Middle left: fracture poles contoured plot.
• Middle right: fracture poles contoured plot after Terzaghi correction.
• Bottom: fracture strikes rosette diagram.
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ASM000025
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Appendix 3

Fracture set based analysis on asm000025 and asm000205
What is in this appendix?

A first order fracture set analysis is provided for outcrop asm000025 and asm000205. It 
is dedicated to assess the first order geometrical DFN model. It includes the fracture set 
distinction and the subsequent length distribution analysis. The fracture set distinction is 
mainly based on strike distinction. The fracture set analysis could be refined; this would 
however entail many modelling questions (see main text). Therefore we chose this simple 
method to distinct between fracture sets.

Note that at this stage, we prefer the boostrapping method for generation purposes (see 
Appendix 5).

Fracture sets 

The distinction in fracture sets is firstly based on the contoured stereonet qualitative 
observation. The orientation distribution is dominated by sub-horizontal fractures.  
Three zones of higher intensity appear for the sub-horizontal fractures (see illustration  
just below, right).

Figure A3-1. Outcrop asm000025, stereonets with fracture sets symbolized as red lines. 

Figure A3-2. Outcrop asm0000205, stereonets with fracture sets symbolized as red lines. 
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Then the fracture dataset is subdivided in three distinct sets, based on the fracture strikes. 

The three datasets summarized in the tables below: 

For the asm000025

ID Number  %total Strike limit Mean dip –  K (fisher dispersion) 
    dip direction

1w 167 0.18 120 → 160 86/319  9

2w 517 0.57 340 → 75 87/203 4.8

3w 228 0.25  75 → 120 85/280 8.7

For the asm000205

ID Number  %total Strike limit Mean dip –  K (fisher dispersion) 
    dip direction

1w 523 0.45 110 → 180 79/146  8.2 

2w 431 0.37  50 → 110  8/259 10.4 

3w 218 0.18 110 → 180 89/206  6.6 
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Figure A3-3. Density distribution for fracture sets defined from a) outcrop asm000025 and  
b) outcrop asm000205. See main text for detailed explanations. 
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Appendix 4

1d datasets, frequencies and rock type
What is in this appendix?

In this appendix, we recall what information is stored along boreholes, in particular the 
fracture intercepts status (“open” and “sealed” related) and rock lithology. Information is 
displayed under a both global shape (the mean P10 values, table next page) and through local 
variations (frequency diagrams coupled to rock lithology representations) for boreholes 
KAV01, KLX02, KSH01A, KSH02 and KSH03A.

Note that not all information related to fracture intercepts have been used in the present 
report; the analysis is restricted to open/sealed characters and to rock lithology (qualitative 
comparison). Alteration, mineralization, etc, could not be considered.

[Source files: rock.xls, freq_1m.xls]

P10, open, sealed

Along boreholes, various “states” of fractures are identified and represented under the 
following labels: 

OPEN_FRAC

OPEN_PARTLY 

OPEN_CRUSH

SEALED_FRAC

SEALED_NETWORK

OPEN_FRAC, OPEN_PARTLY and SEALED_FRAC correspond to fracture intercepts 
clearly identified along the boreholes (with complement of informations like strike, dip etc). 

OPEN_CRUSH and SEALED_NETWORK correspond to zones where fracture intercepts 
can not be identified as unique element. The corresponding local frequency is there 
estimated.

In the computation of the total number of open or sealed fracture intercepts, crush zones and 
sealed_network zones can be or not integrated since they do not exactly constitute single 
identified elements. Therefore we have:

OPEN_TOTAL (“opentot” in Figures below) = OPEN_FRAC + OPEN_PARTLY + 
OPEN_CRUSH

SEALED_TOTAL (“sealedtot” in Figures below) = SEALED_FRAC + SEALED_
NETWORK

And finally the total amount of identified fractures, open and sealed is expressed through:

FRAC_TOTAL (“tot” in Figures below) = OPEN_FRAC + OPEN_PARTLY + SEALED_
FRAC
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Figure A4-1. Mean P10 for boreholes. On left for open fractures and crush zones, middle for 
sealed fracture and network and right direct comparison between sealed, open and open+sealed 
fractures intercepts frequencies. 

For each boreholes, the mean values of P10, corresponding to the different groups defined 
above, are summarized in Table A4-1, they are also represented in Figure A4-1. 

Table A4-1. P10 values, in m–1, calculated over full boreholes length, distinctions 
between open, sealed etc, see text.

Size  
(m)

Open 
frac

Open 
partly 

Open 
crush 

Open 
total 

Sealed 
frac 

Sealed 
network 

Sealed 
total 

Sealed 
broken 

Frac 
total 

HSH01 184 2.83 0.42 0.38 3.63 3.14 0 3.14 0.01  6.39

HSH02 134 4.08 0.17 0 4.25 1.74 0 1.74 0.04  5.99

HSH03 183 1.75 0.26 0.34 2.35 2.16 0 2.16 0.01  4.17

KAV01 740 3.34 0.00 0.45 3.79 2.45 0 2.45 0.28  5.79

KLX01 694 – – – – – – – – –

KLX02 802 2.61 0.13 0.34 3.08 1.07 0 1.07 0.27  3.81

KSH01A 896 2.39 0.03 0.07 2.49 8.21 0 8.21 0.94 10.63

KSH01B  93 1.47 0.01 0 1.48 5.72 0 5.72 0.75  7.20

KSH02 979 3.86 0.00 0.72 4.58 8.23 0 8.23 1.51 12.09

KSH03A 880 2.40 0.01 0.16 2.57 4.09 3.89 7.98 0.87  6.50

KSH03B  99 1.30 0.02 0 1.32 6.55 0.05 6.60 2.11  7.87
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Local variations along boreholes

We present here local variations of P10 and rock lithologies, for boreholes KAV01, KLX02, 
KSH01A, KSH02, KSH03A. The frequencies diagrams are build as follows:

curves labelled “cumopento”, “cumsealed” and “cumtot”, thick lines, respectively black, 
red and green, are joined to the right y axis. They correspond to cumulative of the values 
defined above :

OPEN_TOTAL = OPEN_FRAC + OPEN_PARTLY + OPEN_CRUSH

SEALED_TOTAL = SEALED_FRAC + SEALED_NETWORK

FRAC_TOTAL = OPEN_FRAC + OPEN_PARTLY + SEALED_FRAC

Joined to the left axis, are the local variations of the number of elements per meter (thin 
lines), corresponding to the cumulatives described just above (same color code). Curves are 
not direct variations of the number of fractures counting per meter, but smoothed curves 
build by adjacent averaging over 30 points. 

A representation of rock type variations along the boreholes is place next to each frequency 
diagram. 
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Appendix 5

Fracture orientations for DFN generation
For the DFN simulations of validation performed in section 3d Scaling Model, 
bootstrapped orientation distributions were used. 

The bootstrapped orientations files can be used to assess numerically the role of specific ori-
entations distributions extracted from the different datasets or to simply reproduce exactly 
local orientations distributions at local scales. 

The bootstrapped orientation files encompass the orientation bias (Terzaghi correction is 
applied). One orientation dataset is sampled through regular bin sizes in (θ,φ), with a bin 
size equal to 15°. A weight is applied to each bin, as the mean Terzaghi correction to be 
applied over the bin. The bootstrapped distribution is finally normalized to one so that 
orientations can be directly picked up within the distribution. 

Having a constant bin size in θ and φ (fracture poles expressed in spherical angles) lead to 
a bin size variation in solid angle. This effect does not entail however bias effect at a scale 
larger than the largest bin size.

Bootstrapped files for the asm000025, asm000026, asm0000205, asm0000206, KAV01, 
KSH01A, KSH02 and KSH0A are available under ASCII format, with the following format:

Column 1 (“strike”):  strike coordinate of the bin middle.

Column 2 (“dip”):  dip coordinate of the bin middle.

Column 3 (“pdf”):  local value of the density probability function.

Note that the pdf functions can be simply combined.
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Appendix 6

1d datasets, fractal correlation
What is in the appendix?

Here we simply put all the figures related to analyses performed to measure the fractal 
dimension, for each borehole. The classical representation is chosen to represent the integral 
of correlation C(r) (see main text for an explanation). Three figures per page summarize 
one borehole. All boreholes are represented (HSH01, HSH02, HSH03, KAV01, KLX01, 
KLX02, KSH01A, KSH01B, KSH02, KSH03A and KSH03B. General results about fractal 
dimensions D1d measured on the fracture intercepts along boreholes are provided in the 
report.

Layout

The layout is organised as follows:
• top figure representing C(r) calculated for the all (= open + sealed, in green) and the 

all_randomized (blue) fractures intercepts,
• middle figure representing the ratio of C(r)/C(r)randomized for all fractures intercepts,
• bottom figure representing C(r) calculated for the open (black), sealed (red), and all (= 

open + sealed, in green) fractures intercepts.
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HSH02
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KAV01
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 KLX01 
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Appendix 7

Data “imprecision”
During the analysis, some data errors appeared, they are listed below:

Impossible values

File name and location Id 

SDEADM_GOL_OH_GEO_1921 ASM000025582 strike: 1195 

SDEADM_GOL_OH_GEO_1921 ASM000025347 strike: 386

SDEADM_GOL_OH_GEO_1918 ASM000026475 Strike: 382

SDEADM_GOL_OH_GEO_1918 ASM00002664 Strike: 784

SDEADM_GOL_OH_GEO_1918 ASM00002642 Strike: 362

SDEADM_GOL_OH_GEO_1915 ASM000205847 Dip: 777

Rock_modified.xls KSH01B 
KSH02 
KSH03A

”core-logging” is ok, but why the ”core-
logging preliminary” are in the same file?

Rock_modified.xls KSH02 Some zones have a zero thickness or 
some zones are missing.

One line gives 526.01 526.01, in 
field ADJUSTEDSECUP (m) and 
ADJUSTEDSECLOW (m).

And the rank 526.01 to 527.1 is missing. 

then remove the line 526.01 526.01.

remove the line 98.97 98.97.

remove the line 458 458,

Boreholes start and end positions

Boreholes lengths, at which depth/position exactly does the sampling initiate and finish, 
does this correspond to first and last intercept positions? 

FEATURE rocktype, what is in rock_occur.xls.

In file rock.xls and rock_occur.xls.

Up to now we have been using rock.xls (containing the field FEATURE and value rock-
type), is this bad? What is rock_occur.xls. (see some details below).

In the datafiles, I found a: 

rock.xls file, with a field FEATURE = rocktype,

rock_occur.xls, with a field VARCODE = Rock occurrence,

the respective NAME_CODE fields share common values, but not exactly the same for a 
given borehole.

For instance, for HSH01 and NAME_CODE = 501058, both files provides different 
sections positions.
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rock_occur.xls provides:

HSH01 Rock occurrence 112.97 113.07 0 Unspecified 501058 Granite, medium- to 
coarse-grained

HSH01 Rock occurrence 113.78 113.86 0 Unspecified 501058 Granite, medium- to 
coarse-grained

HSH01 Rock occurrence 115.81 115.87 0 Unspecified 501058 Granite, medium- to 
coarse-grained

HSH01 Rock occurrence 118.24 118.32 0 Unspecified 501058 Granite, medium- to 
coarse-grained

and 

rock.xls provides:

Id code Adjusted secup (m) Adjusted seclow (m) Feature Name Name_code

HSH01 104.41 108.63 RockType Granite, medium- to 
coarse-grained

501058

HSH01 41.60 45.77 RockType Granite, medium- to 
coarse-grained

501058

HSH01 109.64 118.05 RockType Granite, medium- to 
coarse-grained

501058

HSH01 120.81 133.88 RockType Granite, medium- to 
coarse-grained

501058

Core logging, preliminary – BOREMAP

In file rock.xls: 

Core logging, preliminary – BOREMAP.

Core logging - BOREMAP/BIPS.

Why are the preliminary results provided?
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