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Foreword

Dispersion within fractures is caused by a combination of classic hydrodynamic dispersion 
and the effect of roughness and heterogeneity within the planes. Many repository safety 
assessment approaches consider the possible effect of longitudinal dispersion, in the 
direction of flow, but neglect the effect of transverse dispersion perpendicular to the 
primary flow path direction. However, the processes of fracture heterogeneity which 
cause longitudinal dispersion are equally strong in producing transverse dispersion. This 
report evaluates the possible influence of transverse dispersion within fracture planes on 
conservative and sorbing tracer transport. The report considers a wide variety of fracture 
plane heterogeneity assumptions, at both experimental and performance assessment time 
scales. Results of fracture network simulations are compared against corresponding single 
pipe safety assessment simulations.



Abstract

Twenty stochastic realizations were implemented for each of four types of heterogeneous 
fracture spatial fields at the 20-meter scale. Parameters for each of these stochastic fields 
were adjusted to be consistent with observations of tracer breakthrough within the STT1b 
experiments at the Äspö TRUE-1 rock block. Simulations were then carried out to evaluate 
the effect of alternative transverse dispersion assumptions on tracer breakthrough at experi-
mental and safety assessment time scales. These simulations were carried out using both 
particle tracking and Laplace Transform Galerkin methods. Results of these simulations 
were then compared against one-dimensional safety-assessment style simulations carried 
out using the GoldSim simulator, based on FARF31 transport assumptions.

Simulations carried out with transverse dispersions from 0.01 to 10 m show a clear 
difference in tracer breakthrough with transverse dispersion. This can also be seen in both 
breakthrough calculated using the LTG approach, and in particle transport visualizations. 
However, transverse dispersion’s effect on tracer breakthrough and pathways statistics is 
frequently within the variability between stochastic realizations, and could therefore be 
considered a second order effect. The primary effect of increased transverse dispersion 
is in delaying and increasing the tail of breakthrough, such that simulations which ignore 
transverse dispersion effects produce early breakthrough and higher peaks than those 
which include this effect. The influence of transverse dispersivity on the range of transport 
behaviors is much less than the range of transmissivity within fractures would lead one 
to expect. This is due to power law relationships of transmissivity to aperture, and thus 
velocity, that dampen the effect of transmissivity on the velocity fields.



Sammanfattning

Tjugo stokastiska realiseringar genomfördes för vardera av fyra typer av heterogena 
sprickfält på skalan 20 meter. För varje stokastisk realisering anpassades parametrarna 
utifrån observationer av genombrottskurvor för spårämnen vid STT1b-experimenten inom 
projektet Äspö TRUE-1 berg-block. Simuleringar utfördes för att uppskatta effekten av 
alternativa antaganden gällande transversiell dispersion på genombrottskurvor för spår-
ämnen, på tidsskalor som är relevanta dels för experiment och dels för ”Safety Assessment”. 
Simuleringarna genomfördes med både particle tracking- och Laplace Transform-Galerkin-
metoder. Resultaten från simuleringarna jämfördes sedan med endimensionella simuleringar 
av ”Safety Assessment”-typ. De senare simuleringarna genomfördes med GoldSim, baserat 
på FARF31-antaganden för transport.

Simuleringar med en transversiell dispersion i intervallet 0,01–10 m visar på en tydlig effekt 
av den transversella dispersionen. Detta kan också observeras i de genombrottskurvor som 
beräknats med LTG-metoden och genom visualisering av partikeltransporten. Effekten av 
transversell dispersion på genombrottskurvorna och på statistiken för transportbanorna 
är dock ofta av samma storleksordning som skillnaderna mellan de olika stokastiska 
realiseringarna. Med utgångspunkt från denna observation kan effekten av transversell 
dispersion anses vara sekundär. Den dominerande effekten av ökad transversell dispersion 
är dels att en ökad ”fördröjning” av genombrottskurvan, och dels en förlängning av kurvans 
”svans” – simuleringarna utan någon transversell dispersion ger ett snabbare genombrott 
med en högre ”topp” på genombrottskurvan, jämfört med de simuleringar där transversell 
dispersion beaktas.

Inverkan av transversell dispersion på transporten är mycket mindre än vad som kan 
förväntas utifrån det breda transmissivitetsintervall som är förknippat med sprickor. Detta 
beror på det exponentiella förhållandet mellan transmissivitet och spricköppning (och 
därmed flödeshastigheten), vilket minskar effekten av transmissiviteten på hastighetsfältet.



Executive summary 

Objectives

This report evaluates the significance of transverse dispersion processes for solute transport 
in a single fracture. Transverse dispersion is a potentially significant process because it 
increases the fracture surface area available for sorptive and diffusive properties, and has 
the potential to transport solute between what would otherwise be distinctive, streamline 
pathways. Transverse dispersion processes are generally ignored in one-dimensional 
repository performance assessment approaches.

This report provides an initial assessment of the magnitude of transverse dispersion effect 
in a single heterogeneous fracture on repository safety assessment. This study builds on 
a previous report /Outters et al. 2003/ which considered the network effects on transport 
dispersion including streamline routing and mixing at fracture intersections.

Simulations

The project uses FracMan software /Dershowitz et al. 2003/. This platform has been 
extensively used by SKB in other projects. FracMan software is designed to generate and 
analyze DFN’s as well as to compute fluid flow in DFN’s with the MAFIC Finite element 
method (FEM) code /Miller et al. 2002/. Solute transport was modeled using the particle 
tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and 
the 1-D Laplace Transform approach designed to replicate FARF31 /Norman and Kjellbert, 
1990/ inside GoldSim /Miller and Kossik, 2002/.

The study reported here focuses on a single, 20-meter scale discrete fracture, with simpli-
fied boundary conditions intended to represent the position of this fracture within a fracture 
network. The range of assumptions made regarding fracture heterogeneity were as follows 
(Figures 2-1 through 2-5):
• Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m 

(Figure 2-1).
• Case 1a, Homogeneous fracture, transmissivity = 5×10–7m2/s.
• Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 

5 m (Figure 2-2).
• Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field (Figure 2-3).
• Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced 

(Figure 2-4).
• Case 5, Simple channelized fracture (Figure 2-5). 

The transport properties of these fractures were adjusted to be consistent with the STT1b 
tracer transport experiment of the Äspö TRUE-1 in situ transport experiment.

For most of the cases simulated, transport aperture, e (m), was correlated to transmissivity, 
T (m2/s), according to e = 15×T0.6. This relationship was established based on the results of 
simulation of STT1b tracer experiments /Marschall and Elert, 2003/ inside the Base case 
stochastic field fracture. For Case 5, a range of alternative relationships between aperture 
and transmissivity were considered.



Values for transverse dispersion were simulated between 0.01 m and 10 m. The value of 
0.01 m represents a “typical” value of transverse dispersion from the literature, estimated as 
approximately 1% of the travel distance. The value of 10 is extreme, and is approximately 
ten times greater than the upper bound realistic value of 1 m (10% of the travel distance). 

Simulations were carried out primarily for a basically one-dimensional flow field in the 
plane of the fracture. This boundary condition was implemented by applying no flow 
boundaries on the north and south edges of the fracture, and heads of 0.5 m and 0 m to the 
west and east edges of the fracture respectively.

Results

The breakthrough statistics t5, t50, and t95, correspond to the time for 5%, 50%, and 95% 
mass recovery respectively. These results are summarized in Table 0-1 and Table 0-2. 
In these tables, the designations “L”, “F,” and “P” refer to Laplace Transform Galerkin 
(PAWorks) FARF31 Conceptual Model (GoldSim), and Particle Tracking (MAFIC) 
respectively. These results are based on a correlation between transmissivity and transport 
aperture et = 15 T0.6 For this correlation, and the range of spatial transmissivity fields 
considered in Case 1, changes in transverse dispersion did not produce a significant change 
in the mean conservative tracer breakthrough times, although it did somewhat decrease the 
standard deviation.

For the simple, channelized fracture considered in Case 5, this same aperture-transmissivity 
relationship also produced relatively small impacts of even large values of transverse 
dispersivity. However, when this channelized fracture is given a constant aperture the tracer 
breakthrough curves are much more strongly affected by transverse dispersivity, with t95 
delayed by up to almost 50%. This is because when aperture is held constant, velocity varies 
directly with transmissivity, such that flow outside the high transmissivity channel is slower. 
However, even for these cases, the effect of transverse dispersivity in these single fracture 
studies was to increase transport times.

Studies of sorbing tracer transport (Case 3) produced results similar to those found with 
conservative tracers, in which the magnitude of changes in breakthrough statistics due to 
transverse dispersion was on the same order as the changes between stochastic realizations 
of the spatial fields. Similarly, simulations with larger tracer release area (Case 2) also 
produced variations due to transverse dispersion within the range defined by stochastic 
realizations.

Table 0-1. Statistical summary of breakthrough times, Base case and Case 1,  
LTG and GoldSim simulations.

Case Transverse  
Dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

0–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,168.1, 79.3

1,167.0, 45.7

1,148.0, 23.3

2,369.4, 139.7

2,383.5, 80.1

2.377.0, 38.1

4,512.4, 219.5

4,536.1, 112.8

4,542.8, 58.4

0–F – 990 1,970 3,818

1a–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

897.7

898.6

899.4

1,845.1

1,845.6

1,846.8

3,596.4

3,597.4

3,598.9



Case Transverse  
Dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

1b–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,134.5, 72.6

1,129.1, 22.3

1,118.3, 16.7

2,309.3, 121.5

2,299.2, 38.3

2,305.0, 31.7

4,383.4, 178.4

4,367.5, 59.1

4,409.2, 55.3

1c–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

882.3, 358.1

778.6, 170.7

753.5, 153.0

1,757.7, 743.7

1,609.9, 369.7

1,584.1, 331.6

3,520.3, 
1,495.1

3,391.4, 772.6

3,240.1, 607.2

1d–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

8,909.9, 1,231.6

8,221.5, 958.9

8,503.3, 71.7

Na

Na

Na

Na

Na

Na

Table 0-2. Statistical summary of tracer retention statistics, Base case and Case 1, 
particle tracking and GoldSim simulations.

Case Transverse 
dispersion

Q 
(µ,σ)

1/v 
(µ,σ)

1/bv 
(µ,σ)

β 
(µ,σ)

τ 
(µ,σ)

0–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.5×10–8, 
8.3×10–6

1.8×10–8, 
1.5×10–5

2.2×10–8, 
1.8×10–5

2.4×105, 
3.3×104

2.2×105, 
4.4×104

2.3×105, 
5.7×104

2.4×1011, 
2.6×1013

5.8×1011, 
4.6×1013

3.9×1011, 
2.1×1013

2.6×109, 
5.5×108

3.0×109, 
7.3×108

3.2×109, 
9.2×108

5.2×106, 
8.1×105

5.9×106, 
1.3×105

6.4×106, 
1.7×105

0–F – 6.25×10–10 1.99×105 1.6×108 3.2×109 3.98×106

1a–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.7×10–8, 
1.2×10–7

1.9×10–8, 
1.6×10–7

2.1×10–8, 
2.5×10–7

2.0×105, 
6.3×104

1.9×105, 
7.1×104

1.9×105, 
9.2×104

3.0×1012, 
1.7×1014

2.5×1012, 
1.1×1014

1.3×1012, 
6.1×1013

1.7×109, 
5.6×108

2.0×109, 
7.9×108

2.2×109, 
1.1×109

4.2×106, 
1.4×106

5.1×106, 
2.0×106

5.4×106, 
2.6×106

1b–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.5×10–8, 
9.5×10–6

1.8×10–

8,1.8×10–5

2.4×10–

8,1.9×10–5

2.3×105, 
3.1×104

2.1×105, 
4.5×104

2.2×105, 
5.7×104

4.3×1011, 
2.8×1013

7.7×1011, 
4.7×1013

5.6×1011, 
3.8×1013

2.7×109, 
5.2×108

2.9×109, 
7.3×108

3.2×109, 
9.2×108

5.2×106, 
7.6×105

5.6×106, 
1.3×106

6.0×106, 
1.7×106

1c–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

2.5×10–8, 
5.0×10–6

3.1×10–8, 
8.4×10–6

5.0×10–8, 
1.3×10–5

2.0×105, 
3.4×104

1.8×105, 
5.2×104

1.9×105, 
7.3×104

2.5×1011, 
1.7×1013

5.0×1011, 
3.2×1013

3.6×1011, 
2.4×1013

1.6×109, 
7.3×108

1.6×109, 
6.6×108

1.9×109, 
8.6×108

4.4×106, 
8.3×105

4.9×106, 
1.5×106

5.4×106, 
2.1×106

1d–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.4×10–8, 
7.6×10–6

1.5×10–8, 
1.3×10–5

1.5×10–8, 
1.5×10–5

3.6×10–5, 
7.5×104

3.5×10–5, 
9.3×104

3.7×10–5, 
1.2×10–5

4.1×1011, 
3.5×1013

3.2×1012, 
2.9×1014

2.1×1012, 
1.8×1014

1.3×1010, 
5.7×109

1.4×1010, 
5.6×109

1.5×1010, 
6.5×109

8.6×106, 
1.9×106

9.9×106, 
2.7×106

1.1×107, 
3.5×106



The influence of transverse dispersion on breakthrough and recovery times is much smaller 
than the variability of transmissivity would lead one to expect. This is due to the assumed 
power law relationship of transmissivity to aperture. In this relationships, the ratio of 
transmissivity to aperture varies less than the transmissivity. Since local velocity varies 
with this ratio, rather than directly with transmissivity, the effect of transverse dispersion, 
which moves tracer mass to areas of lower transmissivity, is significantly reduced. Hence 
different realizations of the same stochastic field do not exhibit larger variability in transport 
behavior. Larger variability of transverse dispersion behavior could be observed if the range 
of the transmissivity fields is greater than that used in this exercise or if transmissivity 
and aperture (and hence velocity) are weakly correlated. This would seem unlikely for 
simple open fractures, but more complex relationships between transmissivity and apparent 
aperture could exist for conducting features with complex internal structures.
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1 Introduction 

1.1 Background
Streamline approaches for solute transport in fractured rock assume that solute follows 
distinct, unique pathways with constant properties through the geosphere all the way from 
the waste form to the biosphere. While this assumption is convenient for most mathematical 
models used in performance assessment, there are three important mechanisms that interfere 
with streamline pathways in nature:
• transverse dispersion, according to which a certain percentage of solute mass moves 

perpendicular to the average flow direction at any location in the network,
• network mixing, according to which a certain percentage of solute mass moves into  

each branch,
• changes in groundwater chemistry and boundary conditions both in time and in space 

over the distance from the waste form to the biosphere.

This report addresses the first of theses mechanisms, using discrete feature network 
(DFN) modeling. The report provides an initial assessment of the magnitude of transverse 
dispersion effect in a single heterogeneous fracture on repository safety assessment. This 
study builds on a previous report /Outters et al. 2003/, which considered the network effects 
on transport dispersion including streamline routing and mixing at fracture intersections.

1.2 Purpose and objective
The purpose of this project is to understand the effect of transverse dispersion and 
heterogeneity on transport in fractured rock. To achieve this, this study focuses on a  
single, 20×20 meter discrete fracture from within a fracture network, using a broad range  
of assumptions about both heterogeneity and transverse dispersion. 

Because one-dimensional transport approaches generally neglect transverse dispersion, 
the objective of this project is to provide a quantitative and graphical comparison of solute 
transport with and without transverse dispersion. To provide a broad range of applicability, 
the magnitude of transverse dispersivity is varied from 0 to 20 meters, on the fracture 
surfaces that have a variety of heterogeneous, homogeneous, and anisotropic properties, 
along with varying degrees of channelization. Sensitivity studies are carried out for a range 
of assumptions regarding dispersion processes and results are compared to those which 
would be obtained by SKB’s FARF31 pipe transport code. 

Based on the simulations carried out, this report provides a discussion of the implications  
of neglecting transverse dispersion in the use of stream tube (pipe transport) approaches.
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2 Modelling strategy

The project uses FracMan software /Dershowitz et al. 2003/. This platform has been 
extensively used by SKB in other projects, including studies of solute transport in fractured 
rock /e.g. Outters and Shuttle, 2000/. FracMan software is designed to generate and analyze 
DFN’s as well as to compute fluid flow in DFN with the MAFIC Finite element method 
(FEM) code /Miller et al. 2002/.

2.1 Scope
While transport in fractured rock is controlled by fracture networks, the fundamental 
building block for these networks is the individual fracture. In order to make quantitative 
conclusions about the role of transverse dispersion in solute transport, it is therefore 
necessary to first focus on the effect of transverse dispersion in single fractures.

2.1.1 Fractures studied

This study includes a range of heterogeneous fields on discrete fracture surfaces in 
order to evaluate the range of applicability. Figure 2-1 through Figure 2-5 illustrate the 
heterogeneous fractures implemented for this study:
• Base case, heterogeneous fracture, geostatistical field, correlation length 0.01 m 

(Figure 2-1).
• Case 1a, homogeneous fracture, transmissivity = 5×10–7m2/s.
• Case 1b, heterogeneous fracture, non-channeled geostatistical field correlation length 

5 m (Figure 2-2).
• Case 1c, heterogeneous fracture, channeled, anisotropic geostatistical field (Figure 2-3). 
• Case 1d, heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced 

(Figure 2-4).
• Case 5, simple channelized fracture (Figure 2-5).
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Figure 2-1. Base case, heterogeneous fracture, geostatistical field, correlation length 0.01 m.

Figure 2-2. Case 1b, heterogeneous fracture, non-channeled geostatistical field correlation  
length 5 m.
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Figure 2-3. Case 1c, heterogeneous fracture, channeled, anisotropic geostatistical field.

Figure 2-4. Case 1d, heterogeneous fracture, Fracture Intersection Zone (FIZ) permeability 
enhanced.
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The fracture intersection zone model was generated by using the TRUE-1 rock block DFN 
of /Dershowitz et al. 2001/. The parameters for this DFN are provided in Table 2-2. For 
the stochastic field of Case 1d, the transmissivity of each element was calculated from the 
fracture intersections in the cell according to the formula,

∑∑ L/LT = T iif

Where Tf is the transmissivity of fracture i intersecting that cell, and Li is the trace length in 
the cell of fracture i.

This equation is based on the approach of /Oda, 1984/, which is referred to as the “Oda 
Tensor” approach. This approach assumes that the maximum transmissivity will be 
locations containing the greatest length of fracture intersections. Since the discretization 
is crude relative to the detailed geometry of the fracture intersections, the actual pathways 
formed by the fracture intersections are only represented approximately by this approach.

Case 5 was defined after the completion of Cases 1 through 4, in order to better understand 
the physics behind the results observed. Case 5 (Figure 2-5) combines a simple linear flow 
channel with zones to the side which can be either stagnant or advective, depending on the 
assigned properties and boundary conditions.

Figure 2-5. Case 5, simple channelized fracture.

Transport 
Channel 

Stagnant 
Zones 
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2.1.2 Simulation approaches

The basic simulation approach used in this study is particle tracking. In particle tracking, 
the flow field in the fracture is solved using finite elements based on the applied boundary 
condition. Particles are then released from a number of elements on the edge of the fracture, 
and tracked through the flow field to the down-gradient side of the fracture. In the MAFIC 
implementation of particle tracking, particles are instantaneously translated with in each 
time step laterally and transverse based on a normal distribution defined from the dispersion 
term in the advection dispersion equation /Miller et al. 2002/.

Two alternative approaches for solute transport are used in this project, the Laplace 
Transform Galerkin (LTG) method /Sudicky and McLaren, 1992/, and the FARF31 
/Norman and Kjellbert, 1990/ pipe transport approach. The Laplace Transform Galerkin 
method solves the solute transport equation for the triangular finite elements in Laplace 
space. The transport equation solved is given in /Dershowitz et al. 2002/. The transport 
solution includes the effects of advection, longitudinal and transverse dispersion, sorption, 
decay, diffusion to immobile zones, and sorption in immobile zones. LTG is solving 
essentially the same case treated by particle tracking, since concentrations are calculated 
at each element within the finite element grid, based on the flow field calculated using the 
finite element method. In LTG, both transverse and longitudinal dispersion are solved as 
part of the underlying partial differential equation.

The FARF31 approach utilizes a single, homogeneous pipe from the radionuclide source 
to the environmental release. Consequently, it cannot consider heterogeneity along the 
transport pathway, or the effects of 2D or 3D flow. The breakthrough curves from the 
FARF31 approach can be compared directly to those obtained by the LTG and particle 
tracking approaches. However, the FARF31 result does not provide any information about 
the transport process between the source and the release. For this study, FARF31 transport  
is approximated in GoldSim /Miller and Kossik, 2002/.

2.1.3 Boundary conditions

This study uses a gradient of 2.5% for the Base case, from the upgradient (0.5 m head) to 
downgradient (0 m head) sides of the fracture. For long-term (1 million year) simulations, 
the study uses a gradient of 0.00025% over the fracture, from the upgradient (0.00005 m 
head) to downgradient (0 m head) sides of the fracture.

For the Base case, the solute is injected to the model over a length of 0.05 m at the center 
of the upgradient edge of the fracture. This is designed to provide a source which represents 
solute entering the modeled fracture from an intersecting fracture near to a leaking waste 
canister. In Case 3, this source considers alternative injection lengths of 0.1 m and 10 m to 
check the influence of source size on results. It is anticipated that the effect of transverse 
dispersion would be greatest for the smaller source, and smallest for the larger source.

2.1.4 Output formats

Solute transport results are compared in terms of
• breakthrough curves,
• statistics of tracer breakthrough (t5, t50, t95 times for 5%, 50%, and 95% of tracer 

breakthrough),
• spatial patterns of breakthrough to the downstream face,
• distribution of solute residence time f(τ),



20

• distribution of flux Qi, Eulerian velocity vi, inverse Lagrangian velocity 1/vi, and 
weighted inverse Lagrangian velocity 1/(bivi), where Qi is flux (m3/s), bi is aperture (m), 
and vi is velocity (m/s),

• distribution of normalized transport retention factor f(β).

The Eulerian velocity v is the groundwater velocity as measured in the global coordinate 
system along the pathway. The inverse of the Lagrangian velocity 1/vi in the local 
coordinate system is calculated along the particle pathway as the residence time divided 
by the path length. The weighted inverse Lagrangian velocity 1/(bivi) are weighted by the 
aperture of each element traversed by the particles.

The distribution f(β) is used in the /Cvetkovic et al. 1999/ analytical solution for solute 
transport, and controls the rate of diffusion and surface sorption. In this study, β is 
calculated as 

∑
= ⋅

n

i ii

i
j bv

l = 
1

β

where li is the distance traveled by the particle j in the element, vi is the Lagrangian velocity 
of the particle j in the element i where a particle is located at a given time, and bi is the half 
aperture of the element i.
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3 Simulations

Fourteen cases were simulated to understand the effect of transverse dispersion on solute 
transport in a single fracture. For the first eleven cases, variant simulations were carried 
out using particle tracking, LTG (2D), and GoldSim (1D). Three values of transverse 
dispersion were considered for each of these cases, 0.01 m, 1 m, and 10 m. As a percentage 
of the 20-m travel length, these are 0.05%, 5%, and 50%, respectively. For reference, EPM 
methods typically assume on the order of 1% transverse dispersion. The final three cases 
were simulated using a deterministic, channelized fracture, with a more limited range of 
assumptions, focusing on understanding the physical processes controlling the significance 
of transverse dispersion.

The simulations carried out are numbered as listed in Table 3-1. Each of the simulations 
described in Table 3-1 was carried out as 20 Monte Carlo realizations, with the exception 
of homogeneous/uncorrelated case, FARF31/GoldSim simulations, and the simple channel 
case, for which only a single realization was considered. 

Table 3-1. Simulations carried out.

Case Variants Transverse dispersion

0 Base case 
heterogeneous, correlated, channeled

0–P particle tracking 
0–L LTG 
0–F FARF31 (GoldSim)

(A) 0.1 m 
(B) 1 m 
(C) 10 m

1a Homogeneous, uncorrelated 1a–P particle tracking 
1a–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

1b Heterogeneous, correlated, non-channeled 1b–P particle tracking 
1b–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

1c Heterogeneous, correlated, channeled, 
anisotropic

1c–P particle tracking 
1c–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

1d Fracture Intersection Zone 1d–P particle tracking 
1d–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

2a Source 1 m 2a–P particle tracking 
2a–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

2b Source 5 m 2b–P particle tracking 
2b–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

2c Source 10 m 2c–P particle tracking 
2c–L LTG

(A) 0.1 m 
(B) 1 m 
(C) 10 m

3a Immobile zone 
no immobile zones

3a–L LTG 
3a–F FARF31 (GoldSim)

(A) 0.1 m 
(B) 1 m 
(C) 10 m

3b Immobile zone 
Maximized immobile zones

3b L LTG  
3b–F FARF31 (GoldSim)

(A) 0.1 m 
(B) 1 m 
(C) 10 m

4a Million years 
reduced gradient

4–L LTG 
4–F FARF31 (LTG)

(A) 0.1 m 
(B) 1 m 
(C) 10 m
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Case Variants Transverse dispersion

5a Simple deterministic channel  
– aperture correlated to transmissivity

5a–P particle tracking 
5a–L LTG

(A) 0.01 m 
(B) 1 m

5b Simple deterministic channel  
– aperture constant on entire fracture

5b–P particle tracking 
5b–L LTG

(A) 0.01 m 
(B) 1 m

5c Simple deterministic channel  
– aperture constant on entire fracture,  
no-flow boundary on “stagnant zones”

5c–P particle tracking 
5c–L LTG

(A) 0.01 m 
(B) 1 m

3.1 STT1b calibration
The first stage of this study was designed to ensure that the different stochastic fields 
could be compared directly. To achieve this, the correlation between transport aperture and 
transmissivity for each of the stochastic fields was adjusted to obtain a reasonable match to 
the STT1b tracer test /Marschall and Elert, 2002/. The calibration was done once for each 
case, and subsequent realizations of that field were assumed to follow the same parameters. 
These simulations are carried out using LTG.

For consistency with FARF31, a solute transport assumed a single immobile zone for the 
fracture. This is a significant assumption, and obviates study of the important effects of 
multiple immobile zones /see e.g. Dershowitz et al. 2001/. The single immobile zone is 
assumed to surround the fracture on both sides.

Solute transport parameter assumptions are summarized in Table 3-2. Table 3-2 provides 
the values obtain from calibrating the Base case. These values were also applied to Case 1a 
through 1d.

Table 3-2. Solute transport parameters.

Parameters Parameter value

Transport aperture (m) e = 15 T0.6

Longitudinal dispersion 2 m

Immobile zone porosity 2%

Immobile zone diffusion thickness 50 mm

Tortuosity 0.5

Fraction of perimeter available for diffusion 100%

Density 2,700 kg/m3

Sorption Kd HTO = 0 m3/kg 
Cs = 8.0e–4 m3/kg 
Na = 1.4e–6 m3/kg

Diffusion coefficient (Free water) HTO = 2.4e–9 m2/s 
Cs = 2.02e–9 m2/s 
Na = 1.33e–9 m2/s

Figure 3-1 and Figure 3-2 show the matches against STT1b for the first realizations of the 
fracture heterogeneity Base case model. Figure 3-3 and Figure 3-4 contain results from 
fracture heterogeneity of case 1a, 1b, 1c, and 1d. These matches were obtained for the 
conservative tracers HTO and I–131.
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Figure 3-1. Calibration to STT1b, Base case, HTO, LTG.

Figure 3-2. Calibration to STT1b, Base case, I–131, LTG.
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Figure 3-3. STT1b Base case aperture calibration. Simulations with Case 1a, Case 1b, Case 1c, 
and Case 1d transmissivity fields, HTO, LTG.

Figure 3-4. STT1b Base case aperture calibration. Simulations with Case 1a, Case 1b, Case 1c, 
and Case 1d transmissivity fields, I–131, LTG.
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3.2 Base case and alternative transmissivity fields
The major question addressed by this study is how strong an effect transverse dispersion has 
on transport in fractures. Statistical results for the simulations of the Base case and Case 1a, 
b, c, and d are summarized in Table 3-3 and Table 3-4.

The effect of increased transverse dispersion can be seen in the reduced variability between 
realizations, as indicated by the standard deviation in Table 3-3. The standard deviation 
for t5, t50, and t95 decreases consistently and systematically with increase αT. The change in 
the mean t5, t50, and t95 with αT is however, insignificant. Changes in the distribution of β, 
1/ν 1/bν, and τ shown in Table 3-4 are more sensitive.

Natural variation in transport between fractures is illustrated by comparing Monte 
Carlo realizations. Figure 3-5 presents a comparison of the difference between multiple 
realizations as compared to differences due to values of transverse dispersion between  
0.1 m and 10 m. The effect of multiple realizations is comparable to the difference due  
to transverse dispersion.

Figure 3-6 illustrates the distribution of residence times while varying transverse dispersion. 
Although there are clear differences, there is not a clear systematic trend. Further, the 
difference between Base case and the Case 1b Stochastic Field is comparable to the 
difference due to difference in αT.

For the Base case αT = 0.01 m results in an increase in shorter travel times. For case 1b, 
αT = 1.0 m corresponds to the greatest percentage of shorter travel times.

A similar effect can be seen in the distribution of β shown in Figure 3-7. Transverse 
dispersion αT clearly changes the distribution of β. However, the differences are comparable 
to those due to the change in stochastic field.

The mean effect expected from changes to transverse dispersion αT is in the spatial 
distribution of breakthrough to the downstream edge of the fracture. This is illustrated in 
Figure 3-8 through Figure 3-11. Clearly increased transverse dispersion increases the spatial 
scatter in solute transport. While this would be expected to influence breakthrough curves, 
the results shown in Figure 3-5 do not show a strong influence.

Table 3-3. Statistical summary Base case and Case 1, LTG simulations.

Case Transverse 
dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

0–L (A) 0.1 m

(B) 1 m

(C) 10 m

1,168.1, 79.3

1,167.0, 45.7

1,148.0, 23.3

2,369.4, 139.7

2,383.5, 80.1

2,377.0, 38.1

4,512.4, 219.5

4,536.1, 112.8

4,542.8, 58.4

0–F – 990 1,970 3,818

1a–L (A) 0.1 m

(B) 1 m

(C) 10 m

897.7

898.6

899.4

1,845.1

1,845.6

1,846.8

3,596.4

3,597.4

3,598.9

1b–L (A) 0.1 m

(B) 1 m

(C) 10 m

1,134.5, 72.6

1,129.1, 22.3

1,118.3, 16.7

2,309.3, 121.5

2,299.2, 38.3

2,305.0, 31.7

4,383.4, 178.4

4,367.5, 59.1

4,409.2, 55.3

1c–L (A) 0.1 m

(B) 1 m

(C) 10 m

882.3, 358.1

778.6, 170.7

753.5, 153.0

1,757.7, 743.7

1,609.9, 369.7

1,584.1, 331.6

3,520.3, 1,495.1

3,391.4, 772.6

3,240.1, 607.2



26

Case Transverse 
dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

1d–L (A) 0.1 m

(B) 1 m

(C) 10 m

8,909.9, 1,231.6

8,221.5, 958.9

8,503.3, 71.7

Na

Na

Na

Na

Na

Na

Table 3-4. Statistical summary, Base case and Case 1, particle tracking simulations.

Case Transverse 
dispersion

Q 
(µ,σ)

1/v 
(µ,σ)

1/bv 
(µ,σ)

β 
(µ,σ)

τ 
(µ,σ)

0–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.5×10–8, 
8.3×10–6

1.8×10–8, 
1.5×10–5

2.2×10–8, 
1.8×10–5

2.4×105, 
3.3×104

2.2×105, 
4.4×104

2.3×105, 
5.7×104

2.4×1011, 
2.6×1013

5.8×1011, 
4.6×1013

3.9×1011, 
2.1×1013

2.6×109, 
5.5×108

3.0×109, 
7.3×108

3.2×109, 
9.2×108

5.2×106, 
8.1×105

5.9×106, 
1.3×105

6.4×106, 
1.7×105

0–F – 6.25×10–10 1.99×105 1.6×108 3.2×109 3.98×106

1a–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.7×10–8, 
1.2×10–7

1.9×10–8, 
1.6×10–7

2.1×10–8, 
2.5×10–7

2.0×105, 
6.3×104

1.9×105, 
7.1×104

1.9×105, 
9.2×104

3.0×1012, 
1.7×1014

2.5×1012, 
1.1×1014

1.3×1012, 
6.1×1013

1.7×109, 
5.6×108

2.0×109, 
7.9×108

2.2×109, 
1.1×109

4.2×106, 
1.4×106

5.1×106, 
2.0×106

5.4×106, 
2.6×106

1b–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.5×10–8, 
9.5×10–6

1.8×10–

8,1.8×10–5

2.4×10–

8,1.9×10–5

2.3×105, 
3.1×104

2.1×105, 
4.5×104

2.2×105, 
5.7×104

4.3×1011, 
2.8×1013

7.7×1011, 
4.7×1013

5.6×1011, 
3.8×1013

2.7×109, 
5.2×108

2.9×109, 
7.3×108

3.2×109, 
9.2×108

5.2×106, 
7.6×105

5.6×106, 
1.3×106

6.0×106, 
1.7×106

1c–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

2.5×10–8, 
5.0×10–6

3.1×10–8, 
8.4×10–6

5.0×10–8, 
1.3×10–5

2.0×105, 
3.4×104

1.8×105, 
5.2×104

1.9×105, 
7.3×104

2.5×1011, 
1.7×1013

5.0×1011, 
3.2×1013

3.6×1011, 
2.4×1013

1.6×109, 
7.3×108

1.6×109, 
6.6×108

1.9×109, 
8.6×108

4.4×106, 
8.3×105

4.9×106, 
1.5×106

5.4×106, 
2.1×106

1d–P (A) 0.1 m 

(B) 1 m 

(C) 10 m

1.4×10–8, 
7.6×10–6

1.5×10–8, 
1.3×10–5

1.5×10–8, 
1.5×10–5

3.6×10–5, 
7.5×104

3.5×10–5, 
9.3×104

3.7×10–5, 
1.2×10–5

4.1×1011, 
3.5×1013

3.2×1012, 
2.9×1014

2.1×1012, 
1.8×1014

1.3×1010, 
5.7×109

1.4×1010, 
5.6×109

1.5×1010, 
6.5×109

8.6×106, 
1.9×106

9.9×106, 
2.7×106

1.1×107, 
3.5×106
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Figure 3-5. Breakthrough curves for realizations of the Base case (αT = 0.01, 1, and 10 m), 
particle tracking.

Figure 3-6. Histogram PDF of residence time τ for one realization each for the Base case and 
Case 1b (αT = 0.01, 1 10 m) , particle tracking.
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Figure 3-7. CCDF of average retention factor β for one realization for the Base case, Case 1b 
(αT = 0.01, 1 10 m), particle tracking.

Figure 3-8. Concentration profile along the downstream edge of the fracture at time 100 hours for 
one realization of the Base case (αT = 0.01, 1, 10), LTG.
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Figure 3-9. Concentration profile along the downstream edge of the fracture at time 1,000 hours 
for one realization of the Base case (αT = 0.01, 1, 10), LTG.

Figure 3-10. Concentration profile along the downstream edge of the fracture at time 5,000 hours 
for one realization of the Base case (αT = 0.01, 1, 10), LTG.
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3.2.1 Base case: heterogeneous field

Figure 3-12, Figure 3-13, and Figure 3-14 show particle tracks for realization 1 of the 
Base case. In these and subsequent particle track plots, particles are colored by time step, 
such that particles for each time step plotted share the same color. The plot for low (0.01 m) 
dispersion clearly shows the formation of a single distinctive transport pathway at low 
dispersion. This pathway is controlled by local heterogeneity. As the dispersion increases, 
there is a distinctive spread in the tracer pathways, with more particles entering lower 
transmissivity fractures. Comparing the location of particles at t = 2.52×106 seconds, the 
particles have traveled further on the 0.01 m dispersion pathways than on the pathways 
with 1 m and 10 m transverse dispersion pathways. At 0.01 m dispersion, the center of mass 
at t = 2.52×106 seconds is at approximately 17 m, while at 10 m, the center of mass is at 
approximately 14 m. This implies an influence of transverse dispersion both on the shape  
of the breakthrough curve and on the pathway statistics.

Figure 3-15 illustrates 20 of the 40 Base case heterogeneous fields. Figure 3-16 through 
Figure 3-19 present HTO breakthrough curves for all 40 Base case realizations. Within 
the 40 realizations, the time to peak breakthrough varies from approximately 1,700 to 
2,500 hours. This variation is much larger than the variation due to differences in the 
dispersion as seen in Figure 3-12 through Figure 3-14. Thus, while transverse dispersion has 
an effect on breakthrough, based on these simulations it does not appear to be significant 
when compared to the variation between realizations of the Base case heterogeneous field.

Figure 3-11. Concentration profile along the downstream edge of the fracture at time 
10,000 hours for one realization of the Base case (αT = 0.01, 1, 10), LTG.
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Figure 3-12. Base case, αT = 0.01 m., particle tracking.

Figure 3-13. Base case, αT = 1.0 m, particle tracking.
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Figure 3-14. Base case, αT = 10.0 m, particle tracking.

Figure 3-15. Base case, heterogeneous fields (20 realizations).
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Figure 3-16. Base case, HTO breakthrough, realizations 1–10, LTG.

Figure 3-17. Base case, HTO breakthrough, realizations 11–20, LTG.

Figure 3-18. Base case, HTO breakthrough, realizations 21–30, LTG.
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The issue then becomes a comparison of the scatter due to variability between stochastic 
fields as compared to the change due to different values of transverse dispersion. Figure 3-5 
presents a plot of HTO breakthrough curves for four realizations, with three different values 
of transverse dispersion. The difference due to transverse dispersion is consistent with the 
dispersion between realizations.

Figure 3-20 shows the variation in t5, t50, and t95 with transverse dispersion for the Base case. 
For the forty simulations carried out, the mean does not change. The standard deviation 
of t5, t50, and t95 does however change significantly, as shown in Figure 3-21. Increases in 
transverse dispersion significantly reduce the importance of variability between stochastic 
realizations.

Effective dispersion in breakthrough curves can be indicated by the statistic (t95–t5)/t50. This 
is shown in Figure 3-22. The mean dispersion in the breakthrough curve increases with 
increased transverse dispersion, as would be expected. The standard deviation between 
realizations decreases, indicating again a decrease in the importance of dispersion between 
realizations.

Figure 3-23 through Figure 3-25 show comparable results for the distribution of beta, the 
normalized travel-time distribution. While there is some shift in the curves with increased 
transverse dispersion, the shift appears to be within the scatter between realizations.

Figure 3-26 provides a log plot of the statistics for pathway measures Q, 1/bv, beta, and tau. 
For most of these measures, there is a trend with increased transverse dispersion. However, 
this trend is generally a factor of 2 to 4, which is not large compared to the variability 
between realizations. 

Perhaps the greatest difference with changing transverse dispersion is in the pattern of flow 
wetted area, and the spatial pattern of breakthrough to the downstream face as shown in 
Figure 3-12 through Figure 3-14. Increased transverse dispersion dramatically increases 
the exposure of fracture surface to solute, which makes much more surface available for 
sorption. Sorbing tracer transport will be dealt with in the next chapter. The change in 
the pattern of downstream breakthrough implies significant effect on transport pathways 
involving fracture networks.

Figure 3-19. Base case, HTO breakthrough, realizations 31–40, LTG.
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Figure 3-20. Base case, HTO distribution of mean t5, t50, t95, LTG.

Figure 3-21. Base case, HTO distribution of standard deviation t5, t50, t95, LTG.
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Figure 3-22. Base case, HTO effective dispersion, LTG.

Figure 3-23. β-Base case αT = 0.01 m, particle tracking.
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Figure 3-24. β-Base case αT = 1.0 m, particle tracking.

Figure 3-25. β-Base case αT = 10 m, particle tracking.
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3.2.2 Case 1: alternative heterogeneous and homogeneous fields

The purpose of Case 1 is to evaluate whether the conclusions for the Base case are perhaps 
prejudiced by the spatial field used. Case 1 considers four different fields, with very 
different patterns, as described in Chapter 2 above. Forty realizations were run for each of 
these fields, except for the homogeneous case, which required only a single realization.
• Case 1a: homogeneous, uncorrelated (constant transmissivity).
• Case 1b: heterogeneous, correlated, non-channeled (Figure 2-2).
• Case 1c: heterogeneous, anisotropic, correlated, channeled (Figure 2-3).
• Case 1d: Fracture Intersection Zone (Figure 2-4).

As with the Base case, each of these cases was first run against the STT1b tracer test to 
derive an appropriate correlation between transmissivity and transport aperture to match the 
STT1b breakthrough. Each of the matches was obtained using an equation of the form, 

et = atTbt

The fitted STT1b breakthrough for each of the cases are provided in Figure 3-3 through 
Figure 3-4.

The trends for the mean and standard deviation of t5, t50, and t95 for Case 1a through d are 
shown in Figure 3-27 through Figure 3-33. 

Figure 3-26. Base case, summary statistic for all transport measures.
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Figure 3-27. Case 1a, HTO distribution of mean t5, t50, t95, LTG.

Figure 3-28. Case 1b, HTO, distribution of mean t5, t50, t95, LTG.
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Figure 3-29. Case 1b, HTO, distribution of st dev t5, t50, t95, LTG.

Figure 3-30. Case 1c, HTO distribution of mean t5, t50, t95, LTG.
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Figure 3-31. Case 1c, HTO, distribution of st dev t5, t50, 595, LTG.

Figure 3-32. Case 1d, HTO, distribution of mean t5, t50, t95 (total recovery is less than 50%), LTG.
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3.2.2.1 Case 1a: homogeneous fracture

Transmissivity for Case 1a is constant, so there is only a single realization. The particle 
pathways for Case 1a are shown in Figure 3-34 through 

Figure 3-36 for transverse dispersion values of 0.01 m, 1 m, and 10 m. Despite the absence 
of spatial heterogeneity, there is considerable transverse dispersion, even for the case of 
1 cm transverse dispersion. This results in a change in the spatial patterns of breakthrough 
to the downstream side. The pattern of breakthrough to the downstream edge from LTG 
simulations is shown in Figure 3-37. This figure shows the concentration along the edge  
at approximately time t50.

Within the homogeneous fracture case, the velocity in the direction of the gradient is 
constant at all locations. Transverse dispersion only moves tracer mass to a parallel 
location in the flow field. The velocity and distance to the downstream boundary are the 
same from this location as from the location before transverse dispersion. Therefore the 
travel time to the downstream boundary should not be sensitive to transverse dispersion 
in the homogeneous fracture case. This can be seen in Figure 3-38, which presents the 
breakthrough curves for Case 1a with transverse dispersion values of 0.01 m, 1 m, and 
10 m. There are no significant changes to t5, t50, and t95 or to the breakthrough curves  
with change in transverse dispersion up to 10 m. 

Since transverse dispersion in a single homogeneous fracture has no effect on travel times, 
it is not surprising that it also has no effect on 1/v, 1/bv, tau, and beta, as can be seen from 
Table 3-4.

Figure 3-33. Case 1d, HTO, distribution of st dev t5, t50, t95 (total recovery is less than 50%), LTG.
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Figure 3-34. Case 1a, homogenous field, αT = 0.01 m, particle tracking.

Figure 3-35. Case 1a, homogenous field, αT = 1.0 m, particle tracking.
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Figure 3-36. Case 1a homogenous field, αT = 10.0 m, particle tracking.

Figure 3-37. Concentration at downstream boundary at time equal to t50, LTG.
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3.2.2.2 Case 1b: heterogeneous, correlated, non-channeled

As shown in Figure 3-39 through Figure 3-41, the fine pattern of the heterogeneous non-
channeled fracture of Case 1b, increases the spread of transverse dispersion when compared 
to the homogeneous Case 1a. However, the spread is fairly comparable to that of the Base 
case 0. The lack of channeling leads to more symmetrical particle pathways, as compared to 
the generally non-symmetrical particle pathways of the Base case. 

Figure 3-42 shows HTO breakthrough for the first ten realizations of Case 1b. When 
compared to Figure 3-16 through Figure 3-19, it can be seen that this field is significantly 
less variable between realizations. This is consistent with the unchanneled, low correlation 
length pattern, which makes Case 1b almost equivalent to a homogeneous field with effec-
tive properties. This can also be seen in the lack of variability in t5, t50, and t95 statistics as 
shown in Figure 3-28 and Figure 3-29.

The statistical summary of Case 1b results for all transport measures is provided in 
Table 3-4. Results are similar to those for the Base case.

Figure 3-38. Case 1a breakthrough, αT = 0.01, 1, 10 m, LTG.
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Figure 3-39. Case 1b, heterogeneous field, αT = 0.01 m, particle tracking.

Figure 3-40. Case 1b, heterogeneous field, αT = 1.0 m, particle tracking.
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Figure 3-41. Case 1b, heterogeneous field, αT = 10.0 m, particle tracking.

Figure 3-42. Case 1b, HTO breakthrough for the first ten realizations, LTG.
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3.2.2.3 Case 1c: non-stationary transmissivity

While the spatial field of Case 1b was fairly similar to that of the Base case, the spatial 
field of Case 1c is clearly quite different (Figure 2-3). Case 1c uses the “peak and valley” 
approach, with 0.05 peaks and 0.05 troughs per m2. In between peaks and troughs, the 
transmissivity field follows a moving average with a local perturbation of 4 x 10–10 m2/s. 
These parameters produce clear, broad channels.

Particle tracks for Case 1c are shown in Figure 3-43 through Figure 3-45. The particle 
pathways clearly show the formation of bifurcating pathways within the fracture plane  
due to the spatial field. This pattern is clear for the 0.01 m transverse dispersion case, but 
is also significant when transverse dispersion is larger. Ultimately, this leads to the largest 
coverage of the fracture surface found in any of the cases studied.

As shown in Figure 3-46, increasing transverse dispersion has little effect on the tracer 
breakthrough curve t5, t50, and t95. Increasing transverse dispersion does decrease the 
variability between realizations. Figure 3-47 shows statistical results from the Case 1c 
simulations for transport measures Q, 1/v, 1/bv, beta, and tau. Despite the significant 
difference between Case 1c and the Base case, the trend is very similar. Transverse 
dispersion does not significantly influence the transport measures for Case 1c.

Figure 3-43. Case 1c, geostatistical field, αT = 0.01 m, particle tracking.
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Figure 3-44. Case 1c, geostatistical field, αT = 1.0 m, particle tracking.

Figure 3-45. Case 1c, geostatistical field, αT = 10.0 m, particle tracking.
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Figure 3-46. Breakthrough curves for HTO for 4 realizations of Case 1c (αT = 0.01, 1 m), LTG.

Figure 3-47. Case 1c, statistics for all transport measures.
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3.2.2.4 Case 1d: Fracture Intersection Zone permeability enhanced

Stochastic continuum models used in the Base case, Case 1b, and Case 1c assume a smooth 
variation of transmissivity on the fracture surface based primarily on an aperture variation 
concept. Case 1d used a very different concept, in which transmissivity is enhanced at 
fracture intersections. For this case, the Oda tensor /Oda, 1984/ is used to assign transmis-
sivity in each cell. Cells with intersecting fractures therefore have enhanced permeability, 
based on the transmissivity of both the primary and intersecting fractures. This results in 
the formation of a network of linear channels, surrounded by significantly less transmissive 
regions. 

The pattern of linear channels imbedded in Case 1d means that transport can be relatively 
rapid, as long as there is a linear connection. However, transverse dispersion can move 
tracer off the primary pathway, and into slower regions of the fracture. Particle tracks for 
Case 1d are shown in Figure 3-48 through Figure 3-50. For small transverse dispersion, 
pathways are dominated by channels defined by fracture intersections. With moderate 
dispersion (1 m), tracer is spread to multiple channels. With the largest dispersion (10 m), 
tracer is spread throughout the fracture plane, including regions which would be expected to 
have much longer pathway travel-times.

Figure 3-32 and Figure 3-33 show the variation in breakthrough statistics with transverse 
dispersion for Case 1d. This case shows an interesting phenomenon. The increase in trans-
verse dispersivity from 0.01 to 1 m causes an increase in variability, rather than a decrease 
in variability, and also significantly changes the breakthrough statistics. This may be due to 
the accessing of more FIZ channels. As transverse dispersivity is increased again to 10 m, 
the variability decreases, since all realizations share a common mix of pathways including 
FIZ channels and non-channel fracture area. 

Transport measure statistics for Case 1d are provided in Figure 3-51.

Figure 3-48. Case 1d, Fracture Intersection Zones, αT = 0.01 m, particle tracking.
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Figure 3-49. Case 1d, Fracture Intersection Zones, αT = 1.0 m, particle tracking.

Figure 3-50. Case 1d, Fracture Intersection Zones, αT = 10.0 m, particle tracking.
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3.3 Case 3: sorbing tracer transport
Simulations presented above assume conservative (HTO) tracer transport. For conservative 
tracers, the surface area accessed is of only secondary significance at the one year time 
scales studied. For sorbing tracer transport, retention is directly proportional to available 
surface area, and transverse dispersion, which accesses more surface area, therefore has a 
greater potential to influence solute transport. 

Sorbing tracer transport was run for the Base case spatial field, using Cesium and Sodium 
as tracers, using the LTG approach. The following two cases were run:
• no immobile zones (Case 3a),
• maximized immobile zones (Case 3b).

In addition, sorbing tracers were run for the Base case 0. Immobile zone parameters are 
summarized in Table 3-5. Results using sorbing tracers are summarized in Table 3-6.

Table 3-5. Immobile zone parameters.

Base case 0, 
Case 1a,b,c,d 
Case 2

Case 3a 
no immobile zone

Case 3b 
maximum immobile 
zone

Distribution coefficient Kd 
(m3/kg)

HTO = 0 
Cs = 8.0×10–4 

Na = 1.4×10–6

HTO = 0 
Cs = 8.0×10–4 

Na = 1.4×10–6

HTO = 0 
Cs = 8.0×10–4 

Na = 1.4×10–6

Porosity 0% 10%

Perimeter fraction 2 2 2

Diffusion thickness 0 0.1 m

Tortuosity 0.5 0.5

Rock density 2,700 2,700 2,700

Figure 3-51. Case 1d, statistics for all transport measures.
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Table 3-6. Statistical summary Case 3 immobile zone, LTG simulations.

Case Transverse 
dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

0–L HTO (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,168.1, 79.3

1,167.0, 45.7

1,148.0, 23.3

2,369.4, 139.7

2,383.5, 80.1

2,377.0, 38.1

4,512.4, 219.5

4,536.1, 112.8

4,542.8, 58.4

0–L Cs (A) 0.1 m 
(B) 1 m 
(C) 10 m

Na

Na

Na

Na

Na

Na

Na

Na

Na

0–L Na (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,098.4, 72.8

1,096.1, 42.0

1,077.4, 22.0

2,471.6, 158.4

2,488.8, 90.2

2,482.8, 41.9

5,445.2, 262.6

5,473.8, 137.8

5,472.6, 65.3

0–F HTO 818.2 1,909.1 4,363.6

0–F Cs 7,272.7 Na Na

0–F Na 909.1 2,000 4,909.1

3a–L HTO (A) 0.1 m 
(B) 1 m 
(C) 10 m

791.6, 33.7

782.6, 19.4

763.8, 13.7

1,298.4, 48.4

1,296.1, 28.7

1,293.4, 20.5

2,137.4, 74.7

2,151.0, 41.6

2,176.7, 33.2

3a–L Cs (A) 0.1 m 
(B) 1 m 
(C) 10 m

791.6, 33.7

782.7, 19.4

763.9, 13.7

1,298.4, 48.5

1,296.1, 28.7

1,293.4, 20.5

2,137.3, 74.8

2,150.9, 41.7

2,186.6, 33.2

3a–L Na (A) 0.1 m 
(B) 1 m 
(C) 10 m

791.6, 33.7

782.7, 19.4

763.9, 13.7

1,298.4, 48.5

1,296.1, 28.7

1,293.4, 20.5

2,139.3, 74.8

2,150.9, 41.7

2,176.6, 33.2

3a–F HTO 727.3 1,090.9 1,818.2

3b–L HTO (A) 0.1 m 
(B) 1 m 
(C) 10 m

9,753.4, 123.5

Na

Na

Na

Na

Na

Na

Na

Na

3b–L Cs (A) 0.1 m 
(B) 1 m 
(C) 10 m

Na

Na

Na

Na

Na

Na

Na

Na

Na

3b–L Na (A) 0.1 m 
(B) 1 m 
(C) 10 m

9,033.2, 401.8

9,659.1, 224.7

9,871.2, 131.2

Na

Na

Na

Na

Na

Na

3b–F HTO 4,909.09 Na Na

3b–F Cs Na Na Na

3b–F Na 3,545.45 Na Na

The first issue to be addressed is whether the difference in sorbing tracer transport due 
to transverse dispersion is significant relative to the difference between realizations. 
Figure 3-52 and Figure 3-53 present breakthrough curves of four realizations of the 
Base case using each of the dispersion values. Transverse dispersion does have a very 
clear and significant influence on the solute breakthrough. In general, transverse dispersion 
increases the length of the tails by increasing area available for diffusion. Also, as for the 
conservative tracers, transverse dispersion reduces the variability between realizations.
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The Base case, Case 3a, and Case 3b are compared in Figure 3-54 through Figure 3-56. 
Looking at Figure 3-54, it can be seen that even for a non-sorbing tracer, the “maximum 
immobile zone” provides a strong retention effect. Figure 3-56 can be used to gauge the 
relative effect of transverse dispersion when compared against the immobile zone properties 
for a sorbing tracer (Na). The effect of transverse dispersion does not appear significant. 
So, for a given transmissivity pattern, the transverse dispersion has a significant influence 
on breakthrough. However, for an ensemble of transmissivity patterns, the influence of 
transverse dispersion is minor.

Figure 3-52. Breakthrough curves for Cs for 4 realizations of the Base case(αT = 0.01, 1 and 
10 m), LTG.
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Figure 3-53. Breakthrough curves for Na for 4 realizations of the Base case(αT = 0.01, 1 and 
10 m), LTG.

Figure 3-54. Breakthrough curves for HTO for a single realization of the Base case, Case 3a, and 
3b(αT = 0.01, 1 and 10 m), LTG.
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Figure 3-55. Breakthrough curves for Cs for a single realization of the Base case, Case 3a, and 
3b(αT = 0.01, 1 and 10 m), LTG.

Figure 3-56. Breakthrough curves for Na for a single realization of the Base case, Case 3a, and 
3b(αT = 0.01, 1 and 10 m), LTG.
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3.4 Case 2: source term size
The simulations reported in Sections 3.2.1 and 3.2.2 used a source term of 0.05 m length on 
the upgradient side of the fracture, with the sink defined over the entire 20 m length of the 
downgradient side of the fracture. To a certain extent, this is maximizing the possible effect 
of transverse dispersion, since diffusive processes are necessary to transform the transport 
pathways from 1D to 2D. At the same time, however, the effect of channelization might be 
larger with a source terms which introduces tracer into a larger portion of the fracture plane.

Cases 2a, 2b, and 2c study the effect of source terms sizes of 1, 5, and 10 m scale 
respectively. Figure 3-57 through Figure 3-65 present particle tracks for these simulations. 
The particle pathways are clearly influenced by the source term’s size. However, the effect 
of transverse dispersions of 0.01, 1, and 10 m are fairly comparable between the different 
source term scales. For the 0.01 m transverse dispersion, pathways are clear and distinct for 
all the source sizes. For the 10 m transverse dispersion, the pathways merge into a single 
wide path. Results of these simulations are summarized in Table 3-7 and Table 3-8.

These simulations were carried out using the Base case stochastic field. The simulation 
results from LTG illustrating the effect of source term size are shown in Figure 3-66 through 
Figure 3-68. The mean and standard deviation for transport statistics for each of the cases 
are provided in Figure 3-69 through Figure 3-74.

Table 3-7. Statistical summary Case 2 source term, LTG simulations.

Case Transverse 
dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

0–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,168.1, 79.3

1,167.0, 45.7

1,148.0, 23.3

2,369.4, 139.7

2,383.5, 80.1

2,377.0, 38.1

4,512.4, 219.5

4,536.1, 112.8

4,542.8, 58.4

2a–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,162.3, 73.8

1,165.8, 46.4

1,147.6, 23.4

2,365.6, 136.3

2,381.9, 80.8

2,376.4, 38.3

4,515.4, 224.7

4,534.2, 113.6

4,542.1, 58.7

2b–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,163.2, 70.8

1,165.7, 46.4

1,148.0, 22.5

2,382.4, 142.7

2,382.9, 77.9

2,377.0, 36.8

4,573.4, 264.9

4,537.3, 105.8

4,542.8, 56.7

2c–L (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,148.3, 56.9

1,161.1, 37.5

1,147.2, 20.9

2,372.1, 116.3

2,379.3, 62.0

2,376.5, 36.7

4,584.1, 221.0

4,536.7, 82.6

4,542.7, 59.0

Table 3-8. Statistical summary Case 2 source term, particle tracking simulations.

Case Transverse 
Dispersion

Q 
(µ,σ)

1/v 
(µ,σ)

1/bv 
(µ,σ)

β 
(µ,σ)

τ 
(µ,σ)

0–P (A) 0.1 m 
 
(B) 1 m 
 
(C) 10 m

1.5×10–8,  
8.3×10–6

1.8×10–8, 
1.5×10–5

2.2×10–8, 
1.8×10–5

2.4×105, 
3.3×104

2.2×105, 
4.4×104

2.3×105, 
5.7×104

2.4×1011, 
2.6×1013

5.8×1011, 
4.6×1013

3.9×1011, 
2.1×1013

2.6×109, 
5.5×108

3.0×109, 
7.3×108

3.2×109, 
9.2×108

5.2×106, 
8.1×105

5.9×106, 
1.3×105

6.4×106, 
1.7×105
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Case Transverse 
Dispersion

Q 
(µ,σ)

1/v 
(µ,σ)

1/bv 
(µ,σ)

β 
(µ,σ)

τ 
(µ,σ)

2a–P (A) 0.1 m 
 
(B) 1 m 
 
(C) 10 m

1.5×10–8, 
6.6×10–6

1.8×10–8, 
1.2×10–5

1.9×10–8, 
1.4×10–5

2.4×105, 
3.2×104

2.2×105, 
4.2×104

2.3×105, 
5.5×104

1.3×1011, 
1.2×1013

2.9×1011, 
3.3×1013

3.2×1011, 
3.0×1013

2.5×109, 
5.3×108

2.9×109, 
7.2×108

3.2×109, 
8.9×108

5.2×106, 
7.9×105

5.9×106, 
1.3×106

6.5×106, 
1.7×106

2b–P (A) 0.1 m 
 
(B) 1 m 
 
(C) 10 m

1.5×10–8, 
7.3×10–6

1.8×10–8, 
1.4×10–5

1.9×10–8, 
1.5×10–5

2.4×105, 
3.3×104

2.2×105, 
4.4×104

2.3×105, 
5.6×104

4.9×1010, 
5.7×1012

1.6×1011, 
2.3×1013

1.4×1011, 
1.6×1013

2.5×109, 
5.6×108

2.9×109, 
7.5×108

3.2×109, 
9.1×108

5.2×106, 
8.0×105

5.9×106, 
1.3×106

6.5×106, 
1.7×106

2c–P (A) 0.1 m 
 
(B) 1 m 
 
(C) 10 m

1.5×10–8, 
7.4×10–6

1.8×10–8, 
1.4×10–5

1.9×10–8, 
1.6×10–5

2.4×105, 
3.5×104

2.2×105, 
4.6×104

2.3×105, 
5.9×104

2.6×1010, 
3.7×1012

1.0×1011, 
1.5×1013

9.7×1010, 
1.3×1013

2.5×109, 
6.1×108

2.9×109, 
7.9×108

3.2×109, 
9.6×108

5.2×106, 
8.4×105

5.9×106, 
1.3×106

6.4×106, 
1.7×106

Figure 3-57. Case 2a Source 1 m, αT = 0.01 m, particle tracking.
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Figure 3-58. Case 2a Source 1 m, αT = 1.0 m, particle tracking.

Figure 3-59. Case 2a Source 1 m, αT = 10.0 m, particle tracking.
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Figure 3-60. Case 2b Source 5 m, αT = 0.01 m, particle tracking.

Figure 3-61. Case 2b Source 5 m, αT = 1.0 m, particle tracking.
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Figure 3-62. Case 2b Source 5 m, αT = 10.0 m, particle tracking.

Figure 3-63. Case 2c Source 10 m, αT = 0.01 m, particle tracking.
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Figure 3-64. Case 2c Source 10 m, αT = 1.0 m, particle tracking.

Figure 3-65. Case 2c Source 1 m, αT = 10.0 m, particle tracking.
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Figure 3-66. Breakthrough curves for HTO for a single realization of the Base case, Case 2a, 2b, 
and 2c (αT = 0.01, 1 and 10 m), LTG.

Figure 3-67. Breakthrough curves for Cs for a single realization of the Base case, Case 2a, 2b, 
and 2c (αT = 0.01, 1 and 10 m), LTG.
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Figure 3-68. Breakthrough curves for Na for a single realization of the Base case, Case 2a, 2b, 
and 2c (αT = 0.01, 1 and 10 m), LTG.

Figure 3-69. Case 2a, HTO, distribution of mean t5, t50, t95, LTG.
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Figure 3-70. Case 2a, HTO, distribution of st dev t5, t50, t95, LTG.

Figure 3-71. Case 2b, HTO, distribution of mean t5, t50, t95, LTG.
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Figure 3-72. Case 2b, HTO, distribution of st dev t5, t50, t95, LTG.

Figure 3-73. Case 2c, HTO, distribution of mean t5, t50, t95, LTG.
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Figure 3-74. Case 2c, HTO, distribution of st dev t5, t50, t95, LTG.

Figure 3-75. Case 2a, 1 m Source summary statistics for all transport measures.
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Figure 3-76. Case 2b, 5 m source summary statistics for all transport measures.

Figure 3-77. Case 2c, 10 m source summary statistics for all transport measures.
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3.5 Case 4: million year sorbing tracer transport
While experimental measurements are general on the 0.1 to 2 year time scale, repository 
safety simulations are on the 105 to 107 year time scale. Case 4 was run for 108 years, by 
reducing the gradient to 0.00025%. Simulations were run using the Base case spatial fields, 
and immobile zone models. Simulations were carried out for the conservative tracer HTO, 
as well as sorbing tracers Cs and Na. Results are summarized in Table 3-9.

These simulations were carried out using the Base case stochastic field. The simulation 
results from LTG are illustrated in Figure 3-78 through Figure 3-80. The simulations to 
10 million years show less variation between realizations and less variation as a result of 
transmissivity than any of the other cases studied. Particle tracks from these simulations  
are provided in Figure 3-81 through Figure 3-83. Figure 3-84 provides summary statistics 
for Case 4.

Table 3-9. Million year simulations, sorbing tracer results.

Case Transverse 
dispersion

t5 
(µ,σ)

t50 
(µ,σ)

t95 
(µ,σ)

4a–L HTO (A) 0.1 m 
(B) 1 m 
(C) 10 m

845.8, 16.0

845.2, 15.2

841.4, 12.6

2,402.4, 33.2

2,401.8, 32.5

2,398.3, 30.8

6,693.6, 105.1

6,694.3, 105.5

6,700.0, 107.8

4a–L Cs (A) 0.1 m 
(B) 1 m 
(C) 10 m

4.6×104, 1.4×103

4.6×104, 1.3×103

4.6×104, 8.3×102

3.4×105, 3.4×105

3.4×105, 3.4×105

3.4×105, 3.4×105

3.4×105, 5.0×103

3.4×105, 5.0×103

3.4×105, 5.2×103

4a–L Na (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,133.7, 27.8

1,132.6, 25.1

1,126.2, 17.9

2,745.8, 47.1

2,745.0, 43.4

2,739.6, 36.5

6,639.3, 102.6

6,639.5, 102.1

6,644.4, 105.3

4a–F HTO 28,818.2 48,636.4 81,545.5

4a–F Cs 1,359,090.0 2,454,550.0 4,218,180.0

4a–F Na 30,818.2 52,818.2 89,090.9

Case Transverse 
dispersion

Q 
(µ,σ)

1/v 
(µ,σ)

1/bv 
(µ,σ)

β 
(µ,σ)

τ 
(µ,σ)

4a–P (A) 0.1 m 
 
(B) 1 m 
 
(C) 10 m

1.4×10–12,  
9.2×10–6

1.6×10–12,  
1.2×10–5

1.7×10–12,  
1.5×10–5

2.6×109,  
1.0×109

2.4×109,  
6.5×108

2.3×109,  
6.4×108

1.6×1015,  
1.3×1017

3.8×1015,  
3.9×1017

4.2×1015,  
2.7×1017

2.7×1013,  
1.1×1013

2.9×1013,  
9.3×1012

3.0×1013,  
9.6×1012

5.6×1010,  
2.3×1010

5.8×1010,  
1.7×1010

6.0×1010,  
1.8×1010

4a–F 6.25×10–10 1.99×105 1.6×108 3.2×109 3.98×106
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Figure 3-78. Breakthrough curves for HTO for a 4 realizations of million year simulation 
(αT = 0.01, 1 and 10 m), LTG.

Figure 3-79. Breakthrough curves for Cs for 4 realizations of million year simulation 
(αT = 0.01, 1 and 10 m), LTG.
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Figure 3-80. Breakthrough curves for Na for 4 realizations of the million year simulation 
(αT = 0.01, 1 and 10 m), LTG.

Figure 3-81. Case 4, million year, αT = 0.01 m, particle tracking.
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Figure 3-82. Case 4, million year, αT = 1.0 m, particle tracking.

Figure 3-83. Case 4, million year, αT = 10.0 m, particle tracking.
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3.6 Case 5: simple channel model
The cases presented above show a smaller influence of transverse dispersion on solute 
transport than was initially anticipated. The purpose of Case 5 is to evaluate the role of the 
functional relationship between aperture and transmissivity in determining the sensitivity  
of solute transport to transverse dispersion and heterogeneity.

3.6.1 Case 5a simulations

Figure 2-5 shows the geometry defined for Case 5. This case has a constant transmissivity 
of 10–9 m2/s, with a single channel, 1 m wide of T = 10–6 m2/s in the middle. The head and 
tracer injection boundary condition is the same as was specified in the Base case, with a 
constant head of 0.5 m on the upgradient edge of the fracture and a constant head of 0 m 
on the downgradient edge of the fracture. With this boundary condition, the entire fracture 
is available for advection. However, the 10–9 m2/s regions on either side are labeled as 
“stagnant zones” because the transmissivity is three orders of magnitude lower and there 
would presumably be much less flow there.

Case 5a is comparable to the Base case (Section 3.1), since it uses the empirical correlation 
between transmissivity T and aperture e (for units of seconds and meters),

e = 15 T0.6

Tracer breakthrough for this case is illustrated in Figure 3-85, for transverse dispersion 
values of αT = 0.01 m and 1 m. Even though this is an extreme variation of transverse 
dispersivity, the breakthrough curves are similar. This is consistent with the small effect  
of transverse dispersion seen in Cases 1 through 4 and the Base case.

Figure 3-84. Case 4, million year time scale, statistic for all transport measures.
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3.6.2 Case 5b simulations: constant aperture

Case 5a showed that the groundwater velocity in the “stagnant zones” at the sides of the 
“advective channel” actually have transport velocities comparable to those in the advective 
channel. Consequently, the mass transferred to the “stagnant zone” by transverse dispersion 
still breaks through to the down-gradient edge of the fracture with only a slight delay.

Case 5b applies a constant transport aperture e of 3.77 mm over the entire fracture surface. 
This transport aperture is the value applied just for the high transmissivity channel in 
Case 5a. 

The increased aperture decreases the velocity for any solute mass dispersed to the “stagnant 
zone.” Solute breakthrough for this simulation can be seen in Figure 3-86 for transverse 
dispersion values of αT = 0.01 m and 1 m. In this case, increased transverse dispersion 
has a very significant effect on the breakthrough. For example, the increase in transverse 
dispersion from 0.01 to 1 m delays the t95 from 2,658 hours to 5,183 hours (95%). In 
contrast, in Case 5a, the t95 is only delayed from 2,457 hours to 3,141 hours (28%). This 
indicates that the form of correlation defined between transport aperture and transmissivity 
assumed in Case 5a (and in all previous cases) does significantly reduce the sensitivity of 
breakthrough to transverse dispersion.

The physical mechanism for this is as follows. Increased transverse dispersivity results in 
transfer of additional solute mass from the advective channel of the fracture (T=10–6 m2/s) to 
the “stagnant” portion of the fracture (T=10–9 m2/s). The total flow of water is much smaller 
in the “stagnant” region, due to the lower transmissivity. However, because the transport 
aperture in the “stagnant” portion of the fracture is so much smaller (0.06 mm vs. 3.77 
mm), the transport velocity for the mass which is in the “stagnant” portion of the fracture is 
comparable to that in the advective zone of T=10–6 m2/s. 

Results for Case 5a and 5b are summarized in Table 3-10. 

Figure 3-85. Tracer breakthrough for Case 5a – transmissivity correlated to aperture, LTG.
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Table 3-10. Statistical summary of Case 5 (breakthrough time, hours).

Stats Case 5a Case 5b

0.01 m 1 m % delay 0.01 m 1 m % delay

t5 % 584. 605 3.6% 584 682 16.8%

t50 % 1,181 1,253 6.1% 1,209 1,379 14.0%

t95 % 2,457 3,141 28.5% 2,658 5,183 95.0%

3.6.2.1 Case 5c: alternative boundary conditions

Having established the importance of the aperture-transmissivity relationship, the next 
issue which can be addressed with the simplified channel model is the effect of boundary 
condition assumptions. The boundary condition used in the Base case and Cases 1 through 4 
is a one-dimensional advective field throughout the fracture, with the same gradient across 
the entire fracture. In Cases 5a and 5b, once transverse dispersion moves tracer mass to the 
“stagnant” zone, the mass moves parallel to the flow field at the velocity determined by the 
gradient, transmissivity, and transport aperture.

To further clarify this mechanism, Case 5c changes this boundary condition. In Case 5c, the 
goal is that whenever solute mass moves to the “stagnant” zone by transverse dispersion, it 
must ultimately return to the advective channel to breakthrough to the down-gradient edge 
of the fracture. This was achieved by changing the down-gradient boundary from a constant 
head of 0 m, to no-flow, except at the outlet of the 1 m wide “advective” channel. The 
down-gradient constant head of 0 m is applied only at the 1 m wide downstream edge of the 
“advective channel”. With this redefinition of the flow field, tracer mass must return to the 
1 m wide channel to be released from the model. 

Figure 3-86. Tracer breakthrough for Case 5b – constant aperture, LTG.
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Results from these simulations are illustrated in Figure 3-87, for the same aperture-
transmissivity correlation used in Case 5a. Results are functionally identical, indicating  
that the advective transport back to the flow channel for mass transferred to the diffusive 
zone does not provide a significant delay in transport. For the low dispersion αT = 0.01 m, 
the result for Case 5c is essentially the same as for Case 5a. For the high dispersion αT = 
1 m, Case 5c shows some increased travel time compared to Case 5a, but significantly less 
than in Case 5b. This indicates that the assumed one-dimensional flow boundary condition 
is not critical to the simulation results.

3.6.2.2 Additional transmissivity correlations

Having established the aperture-transmissivity correlation as a key to understanding the 
effect of transverse dispersion, the scope of this effect was evaluated through a series of 
sensitivity studies. A total of four cases were defined, including the two correlations already 
defined as Case 5a and Case 5b. These relationships are listed in Table 3-11. All of these 
relationships are defined by empirical equations of the form 

et = a Tb

where et is transport aperture in meters, a and b are coefficients, and T is transmissivity  
in m2/s. 

Table 3-11. Aperture-transmissivity correlation cases studied.

Case Aperture-transmissivity correlation Coefficient a Coefficient b Basis

5a Base case 15 0.6 Calibration to STT1b  
(this report)

5b Constant aperture 3.77 mm 0 Aperture from T = 10–6 m2/s 
(Base case)

Figure 3-87. Tracer breakthrough for Case 5c – channel with restricted outlet, LTG.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1,000 2,000 3,000 4,000 5,000 6,000

Time (hours)

Pe
rc

en
t R

ec
ov

er
y

Case5a-A, alphaT = 0.01 m

Case5a-B, alphaT = 1 m

Case5c-A, alphaT = 0.01 m

Case5c-B, alphaT = 1 m



78

Case Aperture-transmissivity correlation Coefficient a Coefficient b Basis

5d Cubic law 0.011 0.3333 /Domenico and Schwartz, 
1990, p 87/

5e Breccia-filled fracture 1,000 1 T = e K 
Hydraulic conductivity 
K = 10–3 m/s

Because the average transport aperture is different between each of these cases, the break-
through times are different. The results of these simulations are therefore presented as the 
percent delay in tracer breakthrough for a transverse dispersion of 1 m relative to that for a 
transverse dispersion of 0.01 m. These results are provided in Table 3-12.

Table 3-12. Delay in cumulative mass recovery of Case 5 for increase of transverse 
dispersion from 0.01 m to 1.0 m, channelized fracture.

Case Percent delay t5 Percent delay t50 Percent delay t95

Case 5a   3.6%   6.1% 28.5%

Case 5b 16.8% 14.0% 95.0%

Case 5d 21.0% 21.0% 46.5%

Case 5e 6.1% 12.7% 39.7%

3.6.2.3 Additional heterogeneous cases

Based on the results of Case 5 studies, it could be concluded that the correlation between 
transmissivity and aperture used in the Base case and Cases 1 through 4 minimized the 
effect of transverse dispersion on solute transport. In addition, however, Case 5 indicates 
that the effect of transverse dispersion is to delay solute breakthrough, with the most 
dramatic effect being an increase in the length of the tail of the breakthrough curve. For 
radioactive waste repositories, this would generally be considered a conservative result, 
since ignoring the effect of transverse dispersion causes simulated breakthrough to be 
earlier than it actually would be including the effect of transverse dispersion.

In order to address this effect, additional simulations were carried out for the Base case 
(Figure 2-1) spatial field for the transmissivity-aperture correlations of Table 3-11. Results 
of these simulations a summarized in Table 3-13. 

Table 3-13. Delay in cumulative mass recovery of Case 5 for increase of transverse 
dispersion from 0.01 m to 1.0 m, base case spatial field.

Aperture-transmissivity 
correlation

Percent delay t5 Percent delay t50 Percent delay t95

Base case   3.6%   3.6%   2.4%

Constant aperture 22.5% 25.4% 24.0%

Cubic law 43.0% 28.5% 19.6%

Breccia-filled fracture 18.2% 21.0% 16.8%
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Figure 3-88 presents a comparison of the Base case spatial field with the original 
transmissivity-aperture correlation, against the constant aperture assumption. For this  
figure, the aperture was modified slightly from those used for Table 3-13, to improve 
visibility. As noted in Section 3.2 above, for the Base case with the correlation between 
transmissivity and aperture, increased transverse dispersion delays breakthrough, but only 
within the statistical variability between realizations. For the case with constant aperture, 
the effect of increased transmissivity on the Base case is much more significant. At time t50, 
the increased transverse dispersion for the Base case simulation is only 3.6%. For the case 
with a constant aperture the value of t50 is increased by 25.4%. 

3.6.2.4 Summary of Case 5 simulations

Case 5 simulations were run with a range of different functional relationships between 
aperture and transmissivity. These cases demonstrate that increased transverse dispersion 
can have a significant influence on breakthrough, almost doubling the breakthrough time t95 
as transverse dispersion is increased from 0.01 m to 1 m for the case of constant aperture. 
However, for the cubic and quadratic law relationships between aperture and transmissivity, 
the effect is significantly smaller. Increase in transverse dispersivity from 0.01 to 1 m 
generally results in a 5 to 20% delay in breakthrough times t5, t50, and t95. 

No cases were observed in which increase in transverse aperture resulted in a statistically 
significant decrease in travel times. Consequently, it can be concluded that for most realistic 
cases, the effect of ignoring transverse dispersion is conservative.

Figure 3-88. Effect of constant aperture on heterogeneous fracture (Base case), LTG.
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3.7 Comparison of 2D LTG transport against FARF31
The Base case addresses the issue of whether transverse dispersion is a significant process 
which can make 1D pipe approaches unrealistic. The studies presented above indicate that 
for the assumptions made in the present study, transverse dispersion is not in general a 
significant process for solute transport in a single fracture. 

This section presents a direct comparison between the 2D LTG transport solution for a 
single fracture against a 1D-pipe transport solution. The 1D pipe transport solution was 
implemented using GoldSim /Miller and Kossik, 2002/, with settings to approximate 
FARF31 /Norman and Kjellbert, 1990/. These solutions are also compared against an 
analytical solution /Domenico and Schwartz, 1990, p 636/ 1-D advective dispersive 
transport with no matrix diffusion. 

C/Co = ½ erfc((x–vt)/(2(aL×vt)½)) where C(0, t) = Co and C(x, 0) = 0

where erfc is the complementary error function. This solution is for a step injection starting 
at t = 0. For comparison against GoldSim/FARF31 and LTG, we have use superposition to 
apply this case for a 10 second long step pulse injection from t = 0 to 10 seconds. Note that 
both GoldSim/LTG and the analytical solution use simple pipe transport solutions which do 
not consider fracture geometric information.

The comparison between the analytical solution, 2D LTG solution, and GoldSim/FARF31 
solution for a 10 second step pulse injection is shown in Figure 3-89. The match between 
the 2D LTG solution and the analytical solution is fairly good. The match to the GoldSim 
model is not as good. This is due to the fact that the GoldSim solution considers the effect 
of diffusive transport as well as advective transport within the pipe. This delays the break-
through curve by approximately 10%.

Figure 3-89. Analytical, LTG/Plate and GoldSim/FARF31 solutions for homogeneous fracture 
(Case 1a).
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For a stochastic field, it is necessary to represent the stochastic field on the fracture plane 
using a stochastic distribution of properties on the pipes. The Base case has transmissivity 
mean and standard deviation of 5×10–7. The GoldSim/FARF31 implementation of this 
therefore used transmissivity mean and standard deviation of 5×10–7, among the six pipes 
connected in series which constitute the model. The effective dispersivity α’L in each pipe 
can be approximated using the formula,

α’L = αL + (σLN(T))2 ×ρ

where αL is the specified dispersivity, σLN(T) is the standard deviation of log transmissivity, 
and ρ is the correlation length (m)

Results for this GoldSim/FARF31 simulation of the Base case with HTO, Cs, and Na tracers 
are compared against the LTG solution in Figure 3-90 through Figure 3-92. Statistical 
results for these simulations are compared in Figure 3-93 through Figure 3-98. There are 
significant differences between the one and two-dimensional solutions, probably due to the 
differences in the treatment of heterogeneity, and the effect of greater available reactive area 
in the LTG models. 

Clearly, the 1-D single pipe approach cannot address the 2D effects of in plane hetero-
geneity such as dilution and dispersion. However, it is possible that a 1-D approach can 
mimic the breakthrough curves that are obtained from 2D approaches, and by extension 
the results from full 3D DFN modeling. Comparison of the t5, t50, and t95 statistics from the 
2-D and 1-D models demonstrates that there are significant differences between the tracer 
breakthrough for 1D and 2D models. Clearly, the additional information incorporated to 
the 2D models provides additional parameterization for the transport processes. However, 
where the 2D field is purely speculative, this advantage may be illusory.

Results for the Base case spatial field are summarized in Table 3-14.

Figure 3-90. Breakthrough curves for LTG (αT = 0.01, 1 and 10 m) and FARF31/GoldSim 
simulations of the Base case.
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Figure 3-91. Breakthrough curves for Cs, LTG (αT = 0.01, 1 and 10 m) and FARF31/GoldSim 
simulations of the Base case.

Figure 3-92. Breakthrough curves for Na, LTG (αT = 0.01, 1 and 10 m) and FARF31/GoldSim 
simulations of the Base case.
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Figure 3-93. Comparison PDF for t5, LTG (αT = 0.1, 1 and 10 m) and FARF31 results, 
Base case, HTO.

Figure 3-94. Comparison PDF for t50, LTG (αT = 0.01, 1 and 10 m) and FARF31 results, 
Base case, HTO.
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Figure 3-95. Comparison PDF for t95, LTG (αT = 0.01, 1 and 10 m) and FARF31 results, 
Base case, HTO.

Figure 3-96. Comparison PDF for t05, LTG (αT = 0.1, 1 and 10 m) and FARF31 results, 
Base case, Na.
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Figure 3-97. Comparison PDF for t50, LTG (αT = 0.01, 1 and 10 m) and FARF31 results, 
Base case, Na.

Figure 3-98. Comparison PDF for t95, LTG (αT = 0.01, 1 and 10 m) and FARF31 results, 
Base case, Na.
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Table 3-14. Comparison of 2D (LTG) and 1D (GoldSim /FARF31), Base case spatial field.

Case Transverse 
dispersion

t5 (hr) 
(µ,σ)

t50 (hr) 
(µ,σ)

t95 (hr) 
(µ,σ)

0–L HTO (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,168.1, 79.3

1,167.0, 45.7

1,148.0, 23.3

2,369.4, 139.7

2,383.5, 80.1

2,377.0, 38.1

4,512.4, 219.5

4,536.1, 112.8

4,542.8, 58.4

0–L Cs (A) 0.1 m 
(B) 1 m 
(C) 10 m

Na

Na

Na

Na

Na

Na

Na

Na

Na

0–L Na (A) 0.1 m 
(B) 1 m 
(C) 10 m

1,098.4, 72.8

1,096.1, 42.0

1,077.4, 22.0

2,471.6, 158.4

2,488.8, 90.2

2,482.8, 41.9

5,445.2, 262.6

5,473.8, 137.8

5,472.6, 65.3

0–F HTO – 990 1,970 3,818

0–F Cs – Na Na Na

0–F Na – 950 2,090 4,630

Case Transverse 
dispersion

Q (m3/s) 
(µ,σ)

1/v (s/m) 
(µ,σ)

1/bv (s/m2) 
(µ,σ)

Β (s/m) 
(µ,σ)

τ (s) 
(µ,σ)

0–P (A) 0.1 m 
(B) 1 m 
(C) 10 m

1.53×10–8, 
8.27×10–6

1.76×10–8, 
1.50×10–5

2.15×10–8, 
1.77×10–5

2.36×105, 
3.26×104

2.22×105, 
4.38×104

2.32×105, 
5.74×104

2.40×1011, 
2.60×1013

5.78×1011, 
4.62×1013

3.89×1011, 
2.11×1013

2.55×109, 
5.48×108

2.96×109, 
7.34×108

3.24×109, 
9.15×108

5.24×106, 
8.11×105

5.91×106, 
1.30×105

6.42×106, 
1.72×105

0–F –– 6.25×10–10 1.99×105 1.6×108 3.2×109 3.98×106

Figure 3-99. Particle tracking results, Base case (αT = 0.01,1 and 10 m).
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4 Conclusions

Extensive single fracture simulations, under a wide variety of assumptions have 
demonstrated a distinctive difference in the pattern of solute transport with variations  
in the spatial heterogeneity on the fracture, and with different assumptions concerning 
transverse dispersion. These differences affect the spatial pattern of breakthrough and the 
spread of tracer across the fracture surface, with consequent effects on statistics such as  
the distributions of beta. 

However, the influence of transverse dispersion on breakthrough and recovery times is 
much smaller than the variability of transmissivity would lead one to expect. This is due 
to the assumed power law relationships between transmissivity and aperture that lead to 
velocity fields which vary considerably less than transmissivity. 

Transverse dispersion was shown to have a significant effect on solute transport for cases  
in which transmissivity and transport aperture are independent or only weakly correlated. 
This would seem unlikely for simple open fractures, but is possible for conducting features 
with complex internal structures.
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