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Foreword

Dispersion within fractures is caused by a combination of classic hydrodynamic dispersion
and the effect of roughness and heterogeneity within the planes. Many repository safety
assessment approaches consider the possible effect of longitudinal dispersion, in the
direction of flow, but neglect the effect of transverse dispersion perpendicular to the
primary flow path direction. However, the processes of fracture heterogeneity which
cause longitudinal dispersion are equally strong in producing transverse dispersion. This
report evaluates the possible influence of transverse dispersion within fracture planes on
conservative and sorbing tracer transport. The report considers a wide variety of fracture
plane heterogeneity assumptions, at both experimental and performance assessment time
scales. Results of fracture network simulations are compared against corresponding single
pipe safety assessment simulations.



Abstract

Twenty stochastic realizations were implemented for each of four types of heterogeneous
fracture spatial fields at the 20-meter scale. Parameters for each of these stochastic fields
were adjusted to be consistent with observations of tracer breakthrough within the STT1b
experiments at the Aspd TRUE-1 rock block. Simulations were then carried out to evaluate
the effect of alternative transverse dispersion assumptions on tracer breakthrough at experi-
mental and safety assessment time scales. These simulations were carried out using both
particle tracking and Laplace Transform Galerkin methods. Results of these simulations
were then compared against one-dimensional safety-assessment style simulations carried
out using the GoldSim simulator, based on FARF31 transport assumptions.

Simulations carried out with transverse dispersions from 0.01 to 10 m show a clear
difference in tracer breakthrough with transverse dispersion. This can also be seen in both
breakthrough calculated using the LTG approach, and in particle transport visualizations.
However, transverse dispersion’s effect on tracer breakthrough and pathways statistics is
frequently within the variability between stochastic realizations, and could therefore be
considered a second order effect. The primary effect of increased transverse dispersion

is in delaying and increasing the tail of breakthrough, such that simulations which ignore
transverse dispersion effects produce early breakthrough and higher peaks than those
which include this effect. The influence of transverse dispersivity on the range of transport
behaviors is much less than the range of transmissivity within fractures would lead one

to expect. This is due to power law relationships of transmissivity to aperture, and thus
velocity, that dampen the effect of transmissivity on the velocity fields.



Sammanfattning

Tjugo stokastiska realiseringar genomfordes for vardera av fyra typer av heterogena
sprickfilt pa skalan 20 meter. For varje stokastisk realisering anpassades parametrarna
utifrén observationer av genombrottskurvor for sparamnen vid STT1b-experimenten inom
projektet Aspd TRUE-1 berg-block. Simuleringar utfordes for att uppskatta effekten av
alternativa antaganden gillande transversiell dispersion pd genombrottskurvor for spar-
dmnen, pa tidsskalor som ar relevanta dels for experiment och dels for ”Safety Assessment”.
Simuleringarna genomfordes med bade particle tracking- och Laplace Transform-Galerkin-
metoder. Resultaten fran simuleringarna jimfordes sedan med endimensionella simuleringar
av “’Safety Assessment”-typ. De senare simuleringarna genomfordes med GoldSim, baserat
pa FARF31-antaganden for transport.

Simuleringar med en transversiell dispersion i intervallet 0,01-10 m visar pa en tydlig effekt
av den transversella dispersionen. Detta kan ocksa observeras i de genombrottskurvor som
berdknats med LTG-metoden och genom visualisering av partikeltransporten. Effekten av
transversell dispersion pa genombrottskurvorna och pa statistiken for transportbanorna

ar dock ofta av samma storleksordning som skillnaderna mellan de olika stokastiska
realiseringarna. Med utgédngspunkt fran denna observation kan effekten av transversell
dispersion anses vara sekundir. Den dominerande effekten av 6kad transversell dispersion
ar dels att en 0kad ”fordrojning” av genombrottskurvan, och dels en forlangning av kurvans
”svans” — simuleringarna utan nagon transversell dispersion ger ett snabbare genombrott
med en hdgre topp” pa genombrottskurvan, jamfort med de simuleringar dér transversell
dispersion beaktas.

Inverkan av transversell dispersion pa transporten dr mycket mindre dn vad som kan
forvéntas utifran det breda transmissivitetsintervall som &r forknippat med sprickor. Detta
beror pa det exponentiella forhallandet mellan transmissivitet och sprickdppning (och
ddrmed flodeshastigheten), vilket minskar effekten av transmissiviteten pa hastighetsfaltet.



Executive summary

Objectives

This report evaluates the significance of transverse dispersion processes for solute transport
in a single fracture. Transverse dispersion is a potentially significant process because it
increases the fracture surface area available for sorptive and diffusive properties, and has
the potential to transport solute between what would otherwise be distinctive, streamline
pathways. Transverse dispersion processes are generally ignored in one-dimensional
repository performance assessment approaches.

This report provides an initial assessment of the magnitude of transverse dispersion effect
in a single heterogeneous fracture on repository safety assessment. This study builds on

a previous report /Outters et al. 2003/ which considered the network effects on transport
dispersion including streamline routing and mixing at fracture intersections.

Simulations

The project uses FracMan software /Dershowitz et al. 2003/. This platform has been
extensively used by SKB in other projects. FracMan software is designed to generate and
analyze DFN’s as well as to compute fluid flow in DFN’s with the MAFIC Finite element
method (FEM) code /Miller et al. 2002/. Solute transport was modeled using the particle
tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and
the 1-D Laplace Transform approach designed to replicate FARF31 /Norman and Kjellbert,
1990/ inside GoldSim /Miller and Kossik, 2002/.

The study reported here focuses on a single, 20-meter scale discrete fracture, with simpli-
fied boundary conditions intended to represent the position of this fracture within a fracture
network. The range of assumptions made regarding fracture heterogeneity were as follows
(Figures 2-1 through 2-5):

* Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m
(Figure 2-1).
» Case la, Homogeneous fracture, transmissivity = 5x10"m?/s.
* Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length
5 m (Figure 2-2).
* Case lc, Heterogeneous fracture, channeled, anisotropic geostatistical field (Figure 2-3).
* Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced
(Figure 2-4).

* Case 5, Simple channelized fracture (Figure 2-5).

The transport properties of these fractures were adjusted to be consistent with the STT1b
tracer transport experiment of the Aspé TRUE-1 in situ transport experiment.

For most of the cases simulated, transport aperture, e (m), was correlated to transmissivity,
T (m?%s), according to e = 15xT%¢. This relationship was established based on the results of
simulation of STT1b tracer experiments /Marschall and Elert, 2003/ inside the Base case
stochastic field fracture. For Case 5, a range of alternative relationships between aperture
and transmissivity were considered.



Values for transverse dispersion were simulated between 0.01 m and 10 m. The value of
0.01 m represents a “typical” value of transverse dispersion from the literature, estimated as
approximately 1% of the travel distance. The value of 10 is extreme, and is approximately
ten times greater than the upper bound realistic value of 1 m (10% of the travel distance).

Simulations were carried out primarily for a basically one-dimensional flow field in the
plane of the fracture. This boundary condition was implemented by applying no flow
boundaries on the north and south edges of the fracture, and heads of 0.5 m and 0 m to the
west and east edges of the fracture respectively.

Results

The breakthrough statistics ts, tso, and tos, correspond to the time for 5%, 50%, and 95%
mass recovery respectively. These results are summarized in Table 0-1 and Table 0-2.

In these tables, the designations “L”, “F,” and “P” refer to Laplace Transform Galerkin
(PAWorks) FARF31 Conceptual Model (GoldSim), and Particle Tracking (MAFIC)
respectively. These results are based on a correlation between transmissivity and transport
aperture et = 15 T0.6 For this correlation, and the range of spatial transmissivity fields
considered in Case 1, changes in transverse dispersion did not produce a significant change
in the mean conservative tracer breakthrough times, although it did somewhat decrease the
standard deviation.

For the simple, channelized fracture considered in Case 5, this same aperture-transmissivity
relationship also produced relatively small impacts of even large values of transverse
dispersivity. However, when this channelized fracture is given a constant aperture the tracer
breakthrough curves are much more strongly affected by transverse dispersivity, with tos
delayed by up to almost 50%. This is because when aperture is held constant, velocity varies
directly with transmissivity, such that flow outside the high transmissivity channel is slower.
However, even for these cases, the effect of transverse dispersivity in these single fracture
studies was to increase transport times.

Studies of sorbing tracer transport (Case 3) produced results similar to those found with
conservative tracers, in which the magnitude of changes in breakthrough statistics due to
transverse dispersion was on the same order as the changes between stochastic realizations
of the spatial fields. Similarly, simulations with larger tracer release area (Case 2) also
produced variations due to transverse dispersion within the range defined by stochastic
realizations.

Table 0-1. Statistical summary of breakthrough times, Base case and Case 1,
LTG and GoldSim simulations.

Case Transverse ;s tso tos
Dispersion  (u,0) (n,0) (p,0)

0-L (A)0.1m 1,168.1,79.3  2,369.4, 139.7 4,512.4,219.5

(B)1m 1167.0,457 23835 801  4536.1,112.8
(C)10m
1148.0,233 2.377.0,38.1  4,542.8,58.4
0-F - 990 1,970 3,818
la-L  (A)OAm 8977 1,845.1 3,506.4
(B)1m
) 1o 8986 1,845.6 3,507.4

899.4 1,846.8 3,598.9



Case Transverse ts tso tos
Dispersion  (p,0) (4,0) (4,0)
Tb-L  (A)0Am 11345726 2309.3, 1215 4383.4,178.4
(B)1m 1129.1,223 2299.2,383  4,367.5, 59.1
(C) 10 m
11183,167 23050,317 44092, 55.3
fe-L  (A)OAm  882.3,3581  1,757.7,7437  3,520.3,
Eg)) %“m 778.6,170.7  1,609.9,369.7  1:495.1
753.5,153.0  1,584.1,3316 >°914,7726
3.240.1, 607.2
1d-L  (A)0.1m  8909.9,1,231.6 Na Na
(B)1m
() g 822159589 Na Na
8,503.3,71.7 Na Na

Table 0-2. Statistical summary of tracer retention statistics, Base case and Case 1,
particle tracking and GoldSim simulations.

Case Transverse Q 1v 1/bv B T
dispersion  (u,0) (1,0) (1,0) (1,0) (1,0)
0-P (A)0.1m 1.5%1078, 2.4x109, 2.4x10", 2.6x10°, 5.2x108,
8.3x10°¢ 3.3x104 2.6x10% 5.5x108 8.1x10°
(B)1m 1.8x1078, 2.2x109, 5.8x10", 3.0x108, 5.9x108,
1.5%x10°° 4.4x10* 4.6%x10" 7.3%x108 1.3%x10°
(C)10m 2.2x10%, 2.3%109, 3.9x10", 3.2x108, 6.4x108,
1.8x10°° 5.7x10* 2.1x10% 9.2x108 1.7x10°
0-F - 6.25%x10-'°  1.99%10° 1.6x10°8 3.2x10° 3.98x10°
1a-P (A)0.1m 1.7x107%8, 2.0%109, 3.0x10, 1.7x109, 4.2x108,
1.2x1077 6.3%x10* 1.7x10™ 5.6x108 1.4x10°
(B)1m 1.9%1078, 1.9%109, 2.5%10", 2.0%109, 5.1x1068,
1.6x1077 7.1x104 1.1x10" 7.9x108 2.0x108
(C)10m 2.1x108, 1.9%109, 1.3%x10"%, 2.2x109, 5.4x1068,
2.5x10~ 9.2x104 6.1x10" 1.1x10° 2.6x108
1b-P (A)0.1m 1.5%1078, 2.3%109, 4.3x10", 2.7%109, 5.2x1068,
9.5%x10° 3.1x104 2.8x10" 5.2x108 7.6x10°
(B)1m 1.8x10- 2.1%109, 7.7x10", 2.9%109, 5.6x108,
8,1.8x10°° 4.5%x10* 4.7x10% 7.3%x108 1.3%10°
(C)10m 2.4%10- 2.2x109, 5.6x10", 3.2x109, 6.0x108,
8,1.9x10°° 5.7x104 3.8x10" 9.2x108 1.7x10°
1c-P (A)0.1m 2.5x107%, 2.0%109, 2.5x10", 1.6x109, 4.4x108,
5.0x10°° 3.4x104 1.7x10" 7.3%x108 8.3x10°
(B)1m 3.1x1078, 1.8x109, 5.0x10", 1.6%109, 4.9%x10¢,
8.4x107° 5.2x104 3.2x10" 6.6x10°8 1.5%10°
(C)10m 5.0x108, 1.9x10°, 3.6x10", 1.9%109, 5.4x1068,
1.3x10°° 7.3%x104 2.4x10% 8.6x108 2.1x108
1d-P (A)0.1m 1.4x1078, 3.6x1075, 4.1x10", 1.3x107°, 8.6x1068,
7.6x10° 7.5%x104 3.5x10" 5.7x10° 1.9%10°
(B)1m 1.5%1078, 3.5x1075, 3.2x10"%, 1.4x10"°, 9.9%x1068,
1.3x10°° 9.3x10* 2.9x10™" 5.6x10° 2.7x108
(C)10m 1.5%1078, 3.7x1075, 2.1x10"%, 1.5%10", 1.1x107,
1.5%x10°° 1.2x10°5 1.8x10™ 6.5x10° 3.5x108




The influence of transverse dispersion on breakthrough and recovery times is much smaller
than the variability of transmissivity would lead one to expect. This is due to the assumed
power law relationship of transmissivity to aperture. In this relationships, the ratio of
transmissivity to aperture varies less than the transmissivity. Since local velocity varies
with this ratio, rather than directly with transmissivity, the effect of transverse dispersion,
which moves tracer mass to areas of lower transmissivity, is significantly reduced. Hence
different realizations of the same stochastic field do not exhibit larger variability in transport
behavior. Larger variability of transverse dispersion behavior could be observed if the range
of the transmissivity fields is greater than that used in this exercise or if transmissivity

and aperture (and hence velocity) are weakly correlated. This would seem unlikely for
simple open fractures, but more complex relationships between transmissivity and apparent
aperture could exist for conducting features with complex internal structures.
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1 Introduction

1.1 Background

Streamline approaches for solute transport in fractured rock assume that solute follows
distinct, unique pathways with constant properties through the geosphere all the way from
the waste form to the biosphere. While this assumption is convenient for most mathematical
models used in performance assessment, there are three important mechanisms that interfere
with streamline pathways in nature:

 transverse dispersion, according to which a certain percentage of solute mass moves
perpendicular to the average flow direction at any location in the network,

* network mixing, according to which a certain percentage of solute mass moves into
each branch,

+ changes in groundwater chemistry and boundary conditions both in time and in space
over the distance from the waste form to the biosphere.

This report addresses the first of theses mechanisms, using discrete feature network

(DFN) modeling. The report provides an initial assessment of the magnitude of transverse
dispersion effect in a single heterogeneous fracture on repository safety assessment. This
study builds on a previous report /Outters et al. 2003/, which considered the network effects
on transport dispersion including streamline routing and mixing at fracture intersections.

1.2 Purpose and objective

The purpose of this project is to understand the effect of transverse dispersion and
heterogeneity on transport in fractured rock. To achieve this, this study focuses on a
single, 20x20 meter discrete fracture from within a fracture network, using a broad range
of assumptions about both heterogeneity and transverse dispersion.

Because one-dimensional transport approaches generally neglect transverse dispersion,

the objective of this project is to provide a quantitative and graphical comparison of solute
transport with and without transverse dispersion. To provide a broad range of applicability,
the magnitude of transverse dispersivity is varied from 0 to 20 meters, on the fracture
surfaces that have a variety of heterogeneous, homogeneous, and anisotropic properties,
along with varying degrees of channelization. Sensitivity studies are carried out for a range
of assumptions regarding dispersion processes and results are compared to those which
would be obtained by SKB’s FARF31 pipe transport code.

Based on the simulations carried out, this report provides a discussion of the implications
of neglecting transverse dispersion in the use of stream tube (pipe transport) approaches.

13



2 Modelling strategy

The project uses FracMan software /Dershowitz et al. 2003/. This platform has been
extensively used by SKB in other projects, including studies of solute transport in fractured
rock /e.g. Outters and Shuttle, 2000/. FracMan software is designed to generate and analyze
DFN’s as well as to compute fluid flow in DFN with the MAFIC Finite element method
(FEM) code /Miller et al. 2002/.

21 Scope

While transport in fractured rock is controlled by fracture networks, the fundamental
building block for these networks is the individual fracture. In order to make quantitative
conclusions about the role of transverse dispersion in solute transport, it is therefore
necessary to first focus on the effect of transverse dispersion in single fractures.

2.1.1 Fractures studied

This study includes a range of heterogeneous fields on discrete fracture surfaces in
order to evaluate the range of applicability. Figure 2-1 through Figure 2-5 illustrate the
heterogeneous fractures implemented for this study:

* Base case, heterogeneous fracture, geostatistical field, correlation length 0.01 m
(Figure 2-1).

* Case la, homogeneous fracture, transmissivity = 5x10m?s.

* Case 1b, heterogeneous fracture, non-channeled geostatistical field correlation length
5 m (Figure 2-2).

* Case lc, heterogeneous fracture, channeled, anisotropic geostatistical field (Figure 2-3).

* Case 1d, heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced
(Figure 2-4).

* Case 5, simple channelized fracture (Figure 2-5).

15



Figure 2-2. Case 1b, heterogeneous fracture, non-channeled geostatistical field correlation
length 5 m.

16
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Figure 2-3. Case Ic, heterogeneous fracture, channeled, anisotropic geostatistical field.
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Figure 2-4. Case 1d, heterogeneous fracture, Fracture Intersection Zone (FIZ) permeability
enhanced.
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The fracture intersection zone model was generated by using the TRUE-1 rock block DFN
of /Dershowitz et al. 2001/. The parameters for this DFN are provided in Table 2-2. For
the stochastic field of Case 1d, the transmissivity of each element was calculated from the
fracture intersections in the cell according to the formula,

T=>T, L /2L

Where T;is the transmissivity of fracture i intersecting that cell, and L; is the trace length in
the cell of fracture 1.

This equation is based on the approach of /Oda, 1984/, which is referred to as the “Oda
Tensor” approach. This approach assumes that the maximum transmissivity will be
locations containing the greatest length of fracture intersections. Since the discretization
is crude relative to the detailed geometry of the fracture intersections, the actual pathways
formed by the fracture intersections are only represented approximately by this approach.

Case 5 was defined after the completion of Cases 1 through 4, in order to better understand
the physics behind the results observed. Case 5 (Figure 2-5) combines a simple linear flow
channel with zones to the side which can be either stagnant or advective, depending on the
assigned properties and boundary conditions.

> 0.01
1p-2 —,

Stagnant
Zones

de:3 =

1 e_d _l

bl
J— X IF1
= 7

< M1e-4 Aperture

Transport
Channel

1e-5

Figure 2-5. Case 5, simple channelized fracture.
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2.1.2 Simulation approaches

The basic simulation approach used in this study is particle tracking. In particle tracking,
the flow field in the fracture is solved using finite elements based on the applied boundary
condition. Particles are then released from a number of elements on the edge of the fracture,
and tracked through the flow field to the down-gradient side of the fracture. In the MAFIC
implementation of particle tracking, particles are instantaneously translated with in each
time step laterally and transverse based on a normal distribution defined from the dispersion
term in the advection dispersion equation /Miller et al. 2002/.

Two alternative approaches for solute transport are used in this project, the Laplace
Transform Galerkin (LTG) method /Sudicky and McLaren, 1992/, and the FARF31
/Norman and Kjellbert, 1990/ pipe transport approach. The Laplace Transform Galerkin
method solves the solute transport equation for the triangular finite elements in Laplace
space. The transport equation solved is given in /Dershowitz et al. 2002/. The transport
solution includes the effects of advection, longitudinal and transverse dispersion, sorption,
decay, diffusion to immobile zones, and sorption in immobile zones. LTG is solving
essentially the same case treated by particle tracking, since concentrations are calculated
at each element within the finite element grid, based on the flow field calculated using the
finite element method. In LTG, both transverse and longitudinal dispersion are solved as
part of the underlying partial differential equation.

The FARF31 approach utilizes a single, homogeneous pipe from the radionuclide source
to the environmental release. Consequently, it cannot consider heterogeneity along the
transport pathway, or the effects of 2D or 3D flow. The breakthrough curves from the
FARF31 approach can be compared directly to those obtained by the LTG and particle
tracking approaches. However, the FARF31 result does not provide any information about
the transport process between the source and the release. For this study, FARF31 transport
is approximated in GoldSim /Miller and Kossik, 2002/.

2.1.3 Boundary conditions

This study uses a gradient of 2.5% for the Base case, from the upgradient (0.5 m head) to
downgradient (0 m head) sides of the fracture. For long-term (1 million year) simulations,
the study uses a gradient of 0.00025% over the fracture, from the upgradient (0.00005 m
head) to downgradient (0 m head) sides of the fracture.

For the Base case, the solute is injected to the model over a length of 0.05 m at the center
of the upgradient edge of the fracture. This is designed to provide a source which represents
solute entering the modeled fracture from an intersecting fracture near to a leaking waste
canister. In Case 3, this source considers alternative injection lengths of 0.1 m and 10 m to
check the influence of source size on results. It is anticipated that the effect of transverse
dispersion would be greatest for the smaller source, and smallest for the larger source.

2.1.4 Output formats

Solute transport results are compared in terms of
* Dbreakthrough curves,

* statistics of tracer breakthrough (ts, tso, tos times for 5%, 50%, and 95% of tracer
breakthrough),

* spatial patterns of breakthrough to the downstream face,

* distribution of solute residence time f(7),

19



* distribution of flux Q;, Eulerian velocity v;, inverse Lagrangian velocity 1/v;, and
weighted inverse Lagrangian velocity 1/(b;v;), where Q; is flux (m¥/s), b; is aperture (m),
and v; is velocity (m/s),

* distribution of normalized transport retention factor ().

The Eulerian velocity v is the groundwater velocity as measured in the global coordinate
system along the pathway. The inverse of the Lagrangian velocity 1/v; in the local
coordinate system is calculated along the particle pathway as the residence time divided
by the path length. The weighted inverse Lagrangian velocity 1/(b;v;) are weighted by the
aperture of each element traversed by the particles.

The distribution () is used in the /Cvetkovic et al. 1999/ analytical solution for solute
transport, and controls the rate of diffusion and surface sorption. In this study, f is
calculated as

szg lb.

1V

where |; is the distance traveled by the particle j in the element, v; is the Lagrangian velocity
of the particle j in the element i where a particle is located at a given time, and b; is the half
aperture of the element i.
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3 Simulations

Fourteen cases were simulated to understand the effect of transverse dispersion on solute
transport in a single fracture. For the first eleven cases, variant simulations were carried
out using particle tracking, LTG (2D), and GoldSim (1D). Three values of transverse
dispersion were considered for each of these cases, 0.01 m, 1 m, and 10 m. As a percentage
of the 20-m travel length, these are 0.05%, 5%, and 50%, respectively. For reference, EPM
methods typically assume on the order of 1% transverse dispersion. The final three cases
were simulated using a deterministic, channelized fracture, with a more limited range of
assumptions, focusing on understanding the physical processes controlling the significance
of transverse dispersion.

The simulations carried out are numbered as listed in Table 3-1. Each of the simulations
described in Table 3-1 was carried out as 20 Monte Carlo realizations, with the exception
of homogeneous/uncorrelated case, FARF31/GoldSim simulations, and the simple channel
case, for which only a single realization was considered.

Table 3-1. Simulations carried out.

Case Variants Transverse dispersion

0 Base case 0-P particle tracking (A)0.1m
heterogeneous, correlated, channeled 0-LLTG (B)1m

0-F FARF31 (GoldSim) (C)10m

1a Homogeneous, uncorrelated 1a—P particle tracking (A)0.1m
1a-L LTG B)1m

(C)10m

1b Heterogeneous, correlated, non-channeled 1b—P particle tracking (A)0.1m
1b-L LTG B)1m

(C)10m

1c Heterogeneous, correlated, channeled, 1¢c—P particle tracking (A)0.1m
anisotropic 1c-LLTG B)1Tm

(C)10m

1d Fracture Intersection Zone 1d—P particle tracking (A)0.1m
1d-LLTG B)1m

(C)10m

2a Source 1 m 2a-P particle tracking (A)0.1m
2a-LLTG B)1Tm

(C)10m

2b Source 5 m 2b—P particle tracking (A)0.1m
2b-LLTG B)1Tm

(C)10m

2c Source 10 m 2c—P particle tracking (A)0.1m
2c-LLTG B)1m

(C)10m

3a Immobile zone 3a-LLTG (A)0.1m
no immobile zones 3a-F FARF31 (GoldSim) B)1Tm

(C)10m

3b Immobile zone 3bLLTG (A)0.1m
Maximized immobile zones 3b-F FARF31 (GoldSim) B)1m

(C)10m

4a Million years 4-LLTG (A)0.1m
reduced gradient 4—-F FARF31 (LTG) B)1m

(C)10m
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Case Variants Transverse dispersion
5a Simple deterministic channel 5a-P particle tracking (A)0.01m
— aperture correlated to transmissivity 5a-LLTG (B)1m
5b Simple deterministic channel 5b—P particle tracking (A)0.01m
— aperture constant on entire fracture 5b-LLTG (B)1m
5c Simple deterministic channel 5¢c—P particle tracking (A)0.01m
— aperture constant on entire fracture, 5¢c-LLTG (B)1m

no-flow boundary on “stagnant zones”

3.1 STT1b calibration

The first stage of this study was designed

to ensure that the different stochastic fields

could be compared directly. To achieve this, the correlation between transport aperture and
transmissivity for each of the stochastic fields was adjusted to obtain a reasonable match to
the STT1b tracer test /Marschall and Elert, 2002/. The calibration was done once for each
case, and subsequent realizations of that field were assumed to follow the same parameters.
These simulations are carried out using LTG.

For consistency with FARF31, a solute transport assumed a single immobile zone for the
fracture. This is a significant assumption, and obviates study of the important effects of
multiple immobile zones /see e.g. Dershowitz et al. 2001/. The single immobile zone is
assumed to surround the fracture on both sides.

Solute transport parameter assumptions are summarized in Table 3-2. Table 3-2 provides
the values obtain from calibrating the Base case. These values were also applied to Case la

through 1d.

Table 3-2. Solute transport parameters.

Parameters

Parameter value

Transport aperture (m)

Longitudinal dispersion

Immobile zone porosity

Immobile zone diffusion thickness
Tortuosity

Fraction of perimeter available for diffusion
Density

Sorption Kd

Diffusion coefficient (Free water)

e=15T06
2m

2%

50 mm

0.5

100%
2,700 kg/m?

HTO = 0 m3kg
Cs = 8.0e—4 m%kg
Na = 1.4e-6 m¥kg

HTO = 2.4e-9 m?/s
Cs =2.02e-9 m?/s
Na = 1.33e-9 m?/s

Figure 3-1 and Figure 3-2 show the matches against STT1b for the first realizations of the
fracture heterogeneity Base case model. Figure 3-3 and Figure 3-4 contain results from
fracture heterogeneity of case la, 1b, 1c, and 1d. These matches were obtained for the

conservative tracers HTO and I-131.
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Figure 3-1. Calibration to STT1b, Base case, HTO, LTG.
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Figure 3-2. Calibration to STT1b, Base case, I-131, LTG.
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Figure 3-4. STT1b Base case aperture calibration. Simulations with Case la, Case 1b, Case Ic,
and Case 1d transmissivity fields, I-131, LTG.
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3.2 Base case and alternative transmissivity fields

The major question addressed by this study is how strong an effect transverse dispersion has
on transport in fractures. Statistical results for the simulations of the Base case and Case 1a,
b, ¢, and d are summarized in Table 3-3 and Table 3-4.

The effect of increased transverse dispersion can be seen in the reduced variability between
realizations, as indicated by the standard deviation in Table 3-3. The standard deviation

for ts, tso, and tos decreases consistently and systematically with increase or. The change in
the mean ts, tso, and tos with oy is however, insignificant. Changes in the distribution of f3,
1/v 1/bv, and t shown in Table 3-4 are more sensitive.

Natural variation in transport between fractures is illustrated by comparing Monte
Carlo realizations. Figure 3-5 presents a comparison of the difference between multiple
realizations as compared to differences due to values of transverse dispersion between
0.1 m and 10 m. The effect of multiple realizations is comparable to the difference due

to transverse dispersion.

Figure 3-6 illustrates the distribution of residence times while varying transverse dispersion.
Although there are clear differences, there is not a clear systematic trend. Further, the
difference between Base case and the Case 1b Stochastic Field is comparable to the

difference due to difference in or.

For the Base case ar = 0.01 m results in an increase in shorter travel times. For case 1b,
ar = 1.0 m corresponds to the greatest percentage of shorter travel times.

A similar effect can be seen in the distribution of B shown in Figure 3-7. Transverse
dispersion oy clearly changes the distribution of f. However, the differences are comparable
to those due to the change in stochastic field.

The mean effect expected from changes to transverse dispersion oy is in the spatial
distribution of breakthrough to the downstream edge of the fracture. This is illustrated in
Figure 3-8 through Figure 3-11. Clearly increased transverse dispersion increases the spatial
scatter in solute transport. While this would be expected to influence breakthrough curves,
the results shown in Figure 3-5 do not show a strong influence.

Table 3-3. Statistical summary Base case and Case 1, LTG simulations.

Case Transverse ts

t50

t95

dispersion  (u,0) (u,0) (4,0)

0-L (A)0.1m 1,168.1, 79.3 2,369.4, 139.7 4,512.4,219.5
(B)1m 1,167.0, 45.7 2,383.5, 80.1 4,536.1,112.8
(C)10m 1,148.0, 23.3 2,377.0, 38.1 4,542 .8, 58.4

0-F - 990 1,970 3,818

1a-L  (A)0.1m 897.7 1,845.1 3,596.4
B)1Tm 898.6 1,845.6 3,597.4
(C)10m 899.4 1,846.8 3,598.9

1b-L  (A)0.1m 1,134.5,72.6 2,309.3, 121.5 4,383.4,178.4
B)1Tm 1,129.1, 22.3 2,299.2, 38.3 4,367.5, 59.1
(C)10m 1,118.3, 16.7 2,305.0, 31.7 4,409.2, 55.3

1c-L (A)0.1m 882.3, 358.1 1,757.7, 743.7 3,520.3, 1,495.1
B)1m 778.6,170.7 1,609.9, 369.7 3,391.4,772.6
(C)10m 753.5, 153.0 1,584.1, 331.6 3,240.1, 607.2
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Case Transverse ts tso tos

dispersion  (u,0) (m,0) (M,0)
1d-L  (A)0.1m 8,909.9,1,231.6 Na Na

B)1m 8,221.5, 958.9 Na Na

(C)10m 8,503.3, 71.7 Na Na

Table 3-4. Statistical summary, Base case and Case 1, particle tracking simulations.

Case Transverse Q 1Iv 1/bv B T
dispersion  (4,0) (4,0) (u,0) (u,0) (m,0)
0-P (A)0.1m 1.5%x1078, 2.4x105, 2.4x10", 2.6x10°, 5.2x108,
8.3x10° 3.3x10* 2.6x10" 5.5x108 8.1x10°
B)1m 1.8x1078, 2.2x105, 5.8x10", 3.0x10°, 5.9x106,
1.5x10-° 4.4x104 4.6x10" 7.3%x108 1.3x10°%
(C)10m 2.2x1078, 2.3%105, 3.9x10", 3.2x10°, 6.4%108,
1.8x10-° 5.7x10* 2.1x10" 9.2x108 1.7x10°5
0-F - 6.25%10-"° 1.99x10° 1.6x108 3.2x10° 3.98x10¢
1a-=P  (A)0.1m 1.7x1078, 2.0%105, 3.0x102, 1.7x109, 4.2x108,
1.2x10~7 6.3x104 1.7x10" 5.6x108 1.4x108
B)1m 1.9%x1078, 1.9%105, 2.5%10"%, 2.0x109, 5.1x1068,
1.6x10~7 7.1x10* 1.1x10" 7.9%x108 2.0x108
(C)10m 2.1x1078, 1.9%109, 1.3%x10%2, 2.2x109, 5.4x1068,
2.5x107 9.2x104 6.1x10" 1.1x10° 2.6x108
1b-P  (A)0.1m 1.5%x1078, 2.3%105, 4.3x10", 2.7x109, 5.2x106,
9.5x10° 3.1x10* 2.8x10" 5.2x108 7.6x10°
B)1m 1.8x10- 2.1%105, 7.7x10", 2.9x109, 5.6x1068,
81.8x10°° 4.5%x104 4.7x10" 7.3%x108 1.3x108
(C)10m 2.4x10- 2.2x105, 5.6x10", 3.2x109, 6.0%1068,
81.9x10°° 5.7x104 3.8x10™ 9.2x108 1.7x108
1c-P  (A)0.1m 2.5%1078, 2.0%105, 2.5%10", 1.6x109, 4.4x108,
5.0x10° 3.4x10* 1.7x10" 7.3%x108 8.3x10°
(B)1m 3.1x1078, 1.8x105, 5.0x10", 1.6x10°, 4.9%108,
8.4x10° 5.2x104 3.2x10™ 6.6x108 1.5x108
(C)10m 5.0x1078, 1.9%105, 3.6x10", 1.9%109, 5.4x106,
1.3x10-° 7.3x10* 2.4x10" 8.6x108 2.1x108
1d-P  (A)0.1m 1.4x1078, 3.6x1075, 4.1x10", 1.3x10%, 8.6x106,
7.6x10° 7.5%x10* 3.5x10™ 5.7x10° 1.9x108
(B)1m 1.5%x1078, 3.5%107%, 3.2x10'2, 1.4x10%, 9.9x106,
1.3x10-° 9.3x104 2.9x10" 5.6x10° 2.7x108
(C)10m 1.5%x1078, 3.7x1075, 2.1%10"%, 1.5%10%, 1.1x107,
1.5x10-° 1.2x10-° 1.8x10" 6.5%x10° 3.5x108
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Figure 3-5. Breakthrough curves for realizations of the Base case (ar = 0.01, 1, and 10 m),
particle tracking.
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Figure 3-6. Histogram PDF of residence time t _for one realization each for the Base case and
Case 1b (ar = 0.01, 1 10 m) , particle tracking.
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Figure 3-7. CCDF of average retention factor [ for one realization for the Base case, Case 1b
(aT = 0.01, 1 10 m), particle tracking.

Concentration at downstream boundary, Base Case, Time = 100 hours
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Figure 3-8. Concentration profile along the downstream edge of the fracture at time 100 hours for
one realization of the Base case (ar = 0.01, 1, 10), LTG.
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Concentration at downstream boundary, Base Case, Time = 1000 hours
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Figure 3-9. Concentration profile along the downstream edge of the fracture at time 1,000 hours
for one realization of the Base case (ar = 0.01, 1, 10), LTG.

Concentration at downstream boundary, Base Case, Time = 5000 hours
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Figure 3-10. Concentration profile along the downstream edge of the fracture at time 5,000 hours
for one realization of the Base case (ar = 0.01, 1, 10), LTG.
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Concentration at downstream boundary, Base Case, Time = 10000 hours
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Figure 3-11. Concentration profile along the downstream edge of the fracture at time
10,000 hours for one realization of the Base case (ar = 0.01, 1, 10), LTG.

3.2.1 Base case: heterogeneous field

Figure 3-12, Figure 3-13, and Figure 3-14 show particle tracks for realization 1 of the

Base case. In these and subsequent particle track plots, particles are colored by time step,
such that particles for each time step plotted share the same color. The plot for low (0.01 m)
dispersion clearly shows the formation of a single distinctive transport pathway at low
dispersion. This pathway is controlled by local heterogeneity. As the dispersion increases,
there is a distinctive spread in the tracer pathways, with more particles entering lower
transmissivity fractures. Comparing the location of particles at t = 2.52x10° seconds, the
particles have traveled further on the 0.01 m dispersion pathways than on the pathways
with 1 m and 10 m transverse dispersion pathways. At 0.01 m dispersion, the center of mass
at t = 2.52x10° seconds is at approximately 17 m, while at 10 m, the center of mass is at
approximately 14 m. This implies an influence of transverse dispersion both on the shape
of the breakthrough curve and on the pathway statistics.

Figure 3-15 illustrates 20 of the 40 Base case heterogeneous fields. Figure 3-16 through
Figure 3-19 present HTO breakthrough curves for all 40 Base case realizations. Within

the 40 realizations, the time to peak breakthrough varies from approximately 1,700 to

2,500 hours. This variation is much larger than the variation due to differences in the
dispersion as seen in Figure 3-12 through Figure 3-14. Thus, while transverse dispersion has
an effect on breakthrough, based on these simulations it does not appear to be significant
when compared to the variation between realizations of the Base case heterogeneous field.
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Figure 3-13. Base case, oy = 1.0 m, particle tracking.
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Figure 3-15. Base case, heterogeneous fields (20 realizations).
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Figure 3-16. Base case, HTO breakthrough, realizations 1-10, LTG.
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Figure 3-17. Base case, HTO breakthrough, realizations 11-20, LTG.
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Figure 3-18. Base case, HTO breakthrough, realizations 21-30, LTG.
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Figure 3-19. Base case, HTO breakthrough, realizations 31-40, LTG.

The issue then becomes a comparison of the scatter due to variability between stochastic
fields as compared to the change due to different values of transverse dispersion. Figure 3-5
presents a plot of HTO breakthrough curves for four realizations, with three different values
of transverse dispersion. The difference due to transverse dispersion is consistent with the
dispersion between realizations.

Figure 3-20 shows the variation in ts, ts,, and tos with transverse dispersion for the Base case.
For the forty simulations carried out, the mean does not change. The standard deviation
of'ts, tso, and tys does however change significantly, as shown in Figure 3-21. Increases in
transverse dispersion significantly reduce the importance of variability between stochastic
realizations.

Effective dispersion in breakthrough curves can be indicated by the statistic (tos—ts)/tso. This
is shown in Figure 3-22. The mean dispersion in the breakthrough curve increases with
increased transverse dispersion, as would be expected. The standard deviation between
realizations decreases, indicating again a decrease in the importance of dispersion between
realizations.

Figure 3-23 through Figure 3-25 show comparable results for the distribution of beta, the
normalized travel-time distribution. While there is some shift in the curves with increased
transverse dispersion, the shift appears to be within the scatter between realizations.

Figure 3-26 provides a log plot of the statistics for pathway measures Q, 1/bv, beta, and tau.
For most of these measures, there is a trend with increased transverse dispersion. However,
this trend is generally a factor of 2 to 4, which is not large compared to the variability
between realizations.

Perhaps the greatest difference with changing transverse dispersion is in the pattern of flow
wetted area, and the spatial pattern of breakthrough to the downstream face as shown in
Figure 3-12 through Figure 3-14. Increased transverse dispersion dramatically increases
the exposure of fracture surface to solute, which makes much more surface available for
sorption. Sorbing tracer transport will be dealt with in the next chapter. The change in

the pattern of downstream breakthrough implies significant effect on transport pathways
involving fracture networks.
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Figure 3-23. p-Base case oT = 0.01 m, particle tracking.
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Figure 3-26. Base case, summary statistic for all transport measures.

3.2.2 Case 1: alternative heterogeneous and homogeneous fields

The purpose of Case 1 is to evaluate whether the conclusions for the Base case are perhaps
prejudiced by the spatial field used. Case 1 considers four different fields, with very
different patterns, as described in Chapter 2 above. Forty realizations were run for each of
these fields, except for the homogeneous case, which required only a single realization.

» Case la: homogeneous, uncorrelated (constant transmissivity).

» Case 1b: heterogeneous, correlated, non-channeled (Figure 2-2).

* Case lc: heterogeneous, anisotropic, correlated, channeled (Figure 2-3).

* (Case 1d: Fracture Intersection Zone (Figure 2-4).

As with the Base case, each of these cases was first run against the STT1b tracer test to

derive an appropriate correlation between transmissivity and transport aperture to match the
STT1b breakthrough. Each of the matches was obtained using an equation of the form,

e = a/T™

The fitted STT1b breakthrough for each of the cases are provided in Figure 3-3 through
Figure 3-4.

The trends for the mean and standard deviation of ts, t5y, and tos for Case 1a through d are
shown in Figure 3-27 through Figure 3-33.
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Figure 3-27. Case la, HTO distribution of mean t;, tsy, tos LTG.
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Figure 3-30. Case 1c, HTO distribution of mean ts, ts, to;, LTG.
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Figure 3-32. Case 1d, HTO, distribution of mean ts, ts, tos (total recovery is less than 50%), LTG.
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Figure 3-33. Case 1d, HTO, distribution of st dev t;, ts, tos (total recovery is less than 50%), LTG.

3.2.2.1 Case 1a: homogeneous fracture

Transmissivity for Case la is constant, so there is only a single realization. The particle
pathways for Case la are shown in Figure 3-34 through

Figure 3-36 for transverse dispersion values of 0.01 m, 1 m, and 10 m. Despite the absence
of spatial heterogeneity, there is considerable transverse dispersion, even for the case of

1 cm transverse dispersion. This results in a change in the spatial patterns of breakthrough
to the downstream side. The pattern of breakthrough to the downstream edge from LTG
simulations is shown in Figure 3-37. This figure shows the concentration along the edge

at approximately time tsy.

Within the homogeneous fracture case, the velocity in the direction of the gradient is
constant at all locations. Transverse dispersion only moves tracer mass to a parallel
location in the flow field. The velocity and distance to the downstream boundary are the
same from this location as from the location before transverse dispersion. Therefore the
travel time to the downstream boundary should not be sensitive to transverse dispersion
in the homogeneous fracture case. This can be seen in Figure 3-38, which presents the
breakthrough curves for Case 1a with transverse dispersion values of 0.01 m, 1 m, and
10 m. There are no significant changes to ts, tso, and tos or to the breakthrough curves
with change in transverse dispersion up to 10 m.

Since transverse dispersion in a single homogeneous fracture has no effect on travel times,
it is not surprising that it also has no effect on 1/v, 1/bv, tau, and beta, as can be seen from
Table 3-4.
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Figure 3-34. Case la, homogenous field, or= 0.01 m, particle tracking.
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Figure 3-35. Case la, homogenous field, or= 1.0 m, particle tracking.
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Figure 3-36. Case la homogenous field, or = 10.0 m, particle tracking.
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Figure 3-37. Concentration at downstream boundary at time equal to ts) LTG.
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Figure 3-38. Case la breakthrough, aT = 0.01, 1, 10 m, LTG.

3.2.2.2 Case 1b: heterogeneous, correlated, non-channeled

As shown in Figure 3-39 through Figure 3-41, the fine pattern of the heterogeneous non-
channeled fracture of Case 1b, increases the spread of transverse dispersion when compared
to the homogeneous Case 1a. However, the spread is fairly comparable to that of the Base
case 0. The lack of channeling leads to more symmetrical particle pathways, as compared to
the generally non-symmetrical particle pathways of the Base case.

Figure 3-42 shows HTO breakthrough for the first ten realizations of Case 1b. When
compared to Figure 3-16 through Figure 3-19, it can be seen that this field is significantly
less variable between realizations. This is consistent with the unchanneled, low correlation
length pattern, which makes Case 1b almost equivalent to a homogeneous field with effec-
tive properties. This can also be seen in the lack of variability in ts, t5, and tos statistics as
shown in Figure 3-28 and Figure 3-29.

The statistical summary of Case 1b results for all transport measures is provided in
Table 3-4. Results are similar to those for the Base case.
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Figure 3-40. Case 1b, heterogeneous field, or = 1.0 m, particle tracking.
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Figure 3-42. Case 1b, HTO breakthrough for the first ten realizations, LTG.
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3.2.2.3 Case 1c: non-stationary transmissivity

While the spatial field of Case 1b was fairly similar to that of the Base case, the spatial
field of Case 1c is clearly quite different (Figure 2-3). Case 1c uses the “peak and valley”
approach, with 0.05 peaks and 0.05 troughs per m?. In between peaks and troughs, the
transmissivity field follows a moving average with a local perturbation of 4 x 107'* m?/s.
These parameters produce clear, broad channels.

Particle tracks for Case 1c are shown in Figure 3-43 through Figure 3-45. The particle
pathways clearly show the formation of bifurcating pathways within the fracture plane
due to the spatial field. This pattern is clear for the 0.01 m transverse dispersion case, but
is also significant when transverse dispersion is larger. Ultimately, this leads to the largest
coverage of the fracture surface found in any of the cases studied.

As shown in Figure 3-46, increasing transverse dispersion has little effect on the tracer
breakthrough curve ts, tso, and tos. Increasing transverse dispersion does decrease the
variability between realizations. Figure 3-47 shows statistical results from the Case 1c
simulations for transport measures Q, 1/v, 1/bv, beta, and tau. Despite the significant
difference between Case 1c¢ and the Base case, the trend is very similar. Transverse
dispersion does not significantly influence the transport measures for Case Ic.
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Figure 3-43. Case Ic, geostatistical field, ar = 0.01 m, particle tracking.
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Figure 3-44. Case Ic, geostatistical field, ar = 1.0 m, particle tracking.

Transmissvity (mfs)

» LEEIIETeS

16

Te-T

003024227 o iHl

X [E]

Figure 3-45. Case Ic, geostatistical field, ar = 10.0 m, particle tracking.
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Figure 3-46. Breakthrough curves for HTO for 4 realizations of Case Ic (or = 0.01, 1 m), LTG.
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Figure 3-47. Case Ic, statistics for all transport measures.
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3.2.2.4 Case 1d: Fracture Intersection Zone permeability enhanced

Stochastic continuum models used in the Base case, Case 1b, and Case 1c¢ assume a smooth
variation of transmissivity on the fracture surface based primarily on an aperture variation
concept. Case 1d used a very different concept, in which transmissivity is enhanced at
fracture intersections. For this case, the Oda tensor /Oda, 1984/ is used to assign transmis-
sivity in each cell. Cells with intersecting fractures therefore have enhanced permeability,
based on the transmissivity of both the primary and intersecting fractures. This results in
the formation of a network of linear channels, surrounded by significantly less transmissive
regions.

The pattern of linear channels imbedded in Case 1d means that transport can be relatively
rapid, as long as there is a linear connection. However, transverse dispersion can move
tracer off the primary pathway, and into slower regions of the fracture. Particle tracks for
Case 1d are shown in Figure 3-48 through Figure 3-50. For small transverse dispersion,
pathways are dominated by channels defined by fracture intersections. With moderate
dispersion (1 m), tracer is spread to multiple channels. With the largest dispersion (10 m),
tracer is spread throughout the fracture plane, including regions which would be expected to
have much longer pathway travel-times.

Figure 3-32 and Figure 3-33 show the variation in breakthrough statistics with transverse
dispersion for Case 1d. This case shows an interesting phenomenon. The increase in trans-
verse dispersivity from 0.01 to 1 m causes an increase in variability, rather than a decrease
in variability, and also significantly changes the breakthrough statistics. This may be due to
the accessing of more FIZ channels. As transverse dispersivity is increased again to 10 m,
the variability decreases, since all realizations share a common mix of pathways including
FIZ channels and non-channel fracture area.

Transport measure statistics for Case 1d are provided in Figure 3-51.
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Figure 3-48. Case 1d, Fracture Intersection Zones, ar = 0.01 m, particle tracking.
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Figure 3-49. Case 1d, Fracture Intersection Zones, ar = 1.0 m, particle tracking.
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Figure 3-50. Case 1d, Fracture Intersection Zones, ar = 10.0 m, particle tracking.
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3.3 Case 3: sorbing tracer transport

Simulations presented above assume conservative (HTO) tracer transport. For conservative
tracers, the surface area accessed is of only secondary significance at the one year time
scales studied. For sorbing tracer transport, retention is directly proportional to available
surface area, and transverse dispersion, which accesses more surface area, therefore has a
greater potential to influence solute transport.

Sorbing tracer transport was run for the Base case spatial field, using Cesium and Sodium
as tracers, using the LTG approach. The following two cases were run:

* no immobile zones (Case 3a),

* maximized immobile zones (Case 3b).

In addition, sorbing tracers were run for the Base case 0. Immobile zone parameters are
summarized in Table 3-5. Results using sorbing tracers are summarized in Table 3-6.

Table 3-5. Immobile zone parameters.

Base case 0, Case 3a Case 3b
Case 1a,b,c,d no immobile zone maximum immobile
Case 2 zone
Distribution coefficient Kdi HTO =0 HTO =0 HTO =0
(m3/kg) Cs =8.0x10* Cs =8.0x10* Cs =8.0x10*
Na =1.4x10-¢ Na = 1.4x10-° Na =1.4x10-°
Porosity 0% 10%
Perimeter fraction 2 2 2
Diffusion thickness 0 0.1m
Tortuosity 0.5 0.5
Rock density 2,700 2,700 2,700
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Table 3-6. Statistical summary Case 3 immobile zone, LTG simulations.
Case Transverse ts tso tos
dispersion  (,0) (1,0) (n,0)
0-LHTO (A)0.1m  1,168.1,79.3  2,369.4,139.7  4,512.4,219.5
(B)1m 1,167.0,457  2,3835,801 45361, 112.8
(C)10m
1,148.0,23.3  2,377.0,381  4542.8 584
0-L Cs (A)0.1m Na Na Na
B)1m
(C) 10 m Na Na Na
Na Na Na
0-LNa  (A)0.1m  1,0984,72.8 24716 1584 54452, 262.6
(B)1m 1,096.1,42.0 24888,902 54738, 1378
(C)10 m
1,077.4,220  24828,419  5472.6,653
0-F HTO 818.2 1,909.1 4,363.6
0-F Cs 7,272.7 Na Na
0-F Na 909.1 2,000 4,909.1
3a-LHTO (A)0.1m  791.6,33.7 1,984,484  2137.4,747
(B)1m 782.6, 19.4 1,296.1,287  2,151.0,41.6
(C)10m
763.8, 13.7 1,293.4,205 21767, 332
3a-LCs (A)01m 7916, 33.7 1,084,485  2,137.3,74.8
(B)1m 782.7,19.4 1,296.1,287  2,150.9,41.7
(C)10m
763.9, 13.7 1,293.4,205  2,186.6, 33.2
3a-LNa (A)01m 7916, 33.7 1,208.4,485  2,139.3,74.8
(B)1m 782.7,19.4 1,961,287  2,150.9,41.7
(C)10m
763.9, 13.7 1,293.4,205  2,176.6,33.2
3a—F HTO 7273 1,090.9 1,818.2
3b-LHTO (A)0.1m  9,753.4,1235 Na Na
B)1m
(C)10m Na Na Na
Na Na Na
3b-LCs (A)01m  Na Na Na
B)1m
(C)10m Na Na Na
Na Na Na
3b-LNa (A)0.1m  9,0332 4018 Na Na
B)1m
() 1o  9659.1,2247  Na Na
9.871.2,131.2 Na Na
3b-F HTO 4,909.09 Na Na
3b-F Cs Na Na Na
3bF Na 3,545.45 Na Na

The first issue to be addressed is whether the difference in sorbing tracer transport due

to transverse dispersion is significant relative to the difference between realizations.

Figure 3-52 and Figure 3-53 present breakthrough curves of four realizations of the

Base case using each of the dispersion values. Transverse dispersion does have a very
clear and significant influence on the solute breakthrough. In general, transverse dispersion
increases the length of the tails by increasing area available for diffusion. Also, as for the
conservative tracers, transverse dispersion reduces the variability between realizations.
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The Base case, Case 3a, and Case 3b are compared in Figure 3-54 through Figure 3-56.
Looking at Figure 3-54, it can be seen that even for a non-sorbing tracer, the “maximum
immobile zone” provides a strong retention effect. Figure 3-56 can be used to gauge the

relative effect of transverse dispersion when compared against the immobile zone properties

for a sorbing tracer (Na). The effect of transverse dispersion does not appear significant.
So, for a given transmissivity pattern, the transverse dispersion has a significant influence
on breakthrough. However, for an ensemble of transmissivity patterns, the influence of
transverse dispersion is minor.

Cs Release Rate, Basecase, Transverse dispersion = 0.01, 1, 10m : 4 Realizations each
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Figure 3-52. Breakthrough curves for Cs for 4 realizations of the Base case(ar = 0.01, 1 and
10m), LTG.
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Na Release Rate, Basecase, Transverse dispersion = 0.01, 1, 10m : 4 Realizations each
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Figure 3-53. Breakthrough curves for Na for 4 realizations of the Base case(or = 0.01, 1 and
10m), LTG.
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Figure 3-54. Breakthrough curves for HTO for a single realization of the Base case, Case 3a, and
3b(ar = 0.01, I and 10 m), LTG.

56



Cs Release Rate, LTG (aT = 0.01m, 1m, 10m)
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Figure 3-55. Breakthrough curves for Cs for a single realization of the Base case, Case 3a, and
3blar = 0.01, 1 and 10 m), LTG.
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Figure 3-56. Breakthrough curves for Na for a single realization of the Base case, Case 3a, and
3b(ar = 0.01, 1 and 10 m), LTG.
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3.4

The simulations reported in Sections 3.2.1 and 3.2.2 used a source term of 0.05 m length on
the upgradient side of the fracture, with the sink defined over the entire 20 m length of the
downgradient side of the fracture. To a certain extent, this is maximizing the possible effect
of transverse dispersion, since diffusive processes are necessary to transform the transport
pathways from 1D to 2D. At the same time, however, the effect of channelization might be
larger with a source terms which introduces tracer into a larger portion of the fracture plane.

Case 2: source term size

Cases 2a, 2b, and 2c¢ study the effect of source terms sizes of 1, 5, and 10 m scale
respectively. Figure 3-57 through Figure 3-65 present particle tracks for these simulations.
The particle pathways are clearly influenced by the source term’s size. However, the effect
of transverse dispersions of 0.01, 1, and 10 m are fairly comparable between the different
source term scales. For the 0.01 m transverse dispersion, pathways are clear and distinct for
all the source sizes. For the 10 m transverse dispersion, the pathways merge into a single
wide path. Results of these simulations are summarized in Table 3-7 and Table 3-8.

These simulations were carried out using the Base case stochastic field. The simulation
results from LTG illustrating the effect of source term size are shown in Figure 3-66 through
Figure 3-68. The mean and standard deviation for transport statistics for each of the cases
are provided in Figure 3-69 through Figure 3-74.

Table 3-7. Statistical summary Case 2 source term, LTG simulations.

Case Transverse ts tso tos
dispersion  (u,0) (4,0) (4,0)
0-L (A)01m  1168.1,793  2,369.4,139.7 45124, 2195
(B)1m 1167.0,457  2,3835,801  4,536.1,112.8
(C)10 m
1148.0,233  2377.0,381 45428, 584
2a-L (A)01m  1162.3,738  2,3656,136.3  4,515.4, 224.7
(B)1m 11658, 464  2,381.9,80.8 45342 1136
(C)10 m
11476,234  23764,383 45421587
2b-L (A)01m  1163.2,708  2,382.4,142.7  4,573.4, 264.9
(B)1m 1165.7,46.4  2,382.9,77.9  4537.3,105.8
(C)10 m
1148.0,225  2377.0,368  4542.8, 567
2c-L (A)01m  11483,569  2,372.1,116.3  4,584.1,221.0
(B)1m 1,611,375  2,379.3,620  4,536.7,82.6
(C)10 m
11472,209  23765,36.7  4542.7,59.0

Table 3-8. Statistical summary Case 2 source term, particle tracking simulations.

Case Transverse Q 1v 1/bv B T
Dispersion  (u,0) (n,0) (u,0) (n0) (u,0)
0P (A)01m  15x10%  24x105,  24x10",  2.6x10°,  5.2x10°
8.3x10°  3.3x10 26x10®  5.5x108 8.1x10°
(B)1m 1.8x10%,  22x105  58x10",  3.0x10°,  5.9x105,
15x10°  4.4x10 46x10%  7.3x108 1.3x108
(C)10 m
22x10%,  2.3x105,  3.9x10",  3.2x10°,  6.4x105,
1.8x10°  5.7x10 21x10®  9.2x108 1.7x108
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Case Transverse Q 1v 1/bv B T

Dispersion  (i,0) (m0) (1,0) (m0) (u,0)
2a-P  (A)01m  15x10®°,  24x105,  1.3x10",  2.5x10°  5.2x105,
6.6x10°  3.2x10¢ 1.2x10%  5.3x10° 7.9x10°
(B)1m 1.8x10°,  2.2x105  2.9x10",  2.9x10°,  5.9x10°,
1.2x10°  4.2x10* 3.3x10®  7.2x108 1.3x108

(C) 10 m
1.9x10,  23x105  3.2x10",  32x10°,  6.5%10°,
1.4x10°  55x10* 3.0x10®  8.9x108 1.7x108
2P (A)01m  15x10°,  24x105,  4.9x10%,  2.5x10°  5.2x105,
7.3x10°  3.3x10¢ 57x10?  5.6x108 8.0x10°
(B)1m 1.8x10%,  2.2x10°, 1.6x10",  2.9x10°,  5.9x10°,
1.4x10°  4.4x10* 23x10®  7.5x108 1.3x108

(C) 10 m
1.9x10%,  23x105  14x10",  32x10°,  6.5%10°,
15x10°  5.6x10* 1.6x10°  9.1x10° 1.7x108
2c-P  (A)01m  15x10°,  24x105,  26x10,  2.5x10°  5.2x105,
7.4x10°  3.5x10¢ 3.7x107  6.1x108 8.4x10°
(B)1m 1.8x10,  2.2x10°, 1.0x10",  2.9x10°,  5.9x10°,
1.4x10°  4.6x10* 1.5x10%  7.9x10° 1.3x108

(C) 10 m
1.9x10,  23x105  9.7x10%,  32x10°,  6.4x10°,
1.6x10°  5.9x10* 1.3x10°  9.6x10° 1.7x108
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Figure 3-57. Case 2a Source 1 m, or = 0.01 m, particle tracking.
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Figure 3-58. Case 2a Source 1 m, or = 1.0 m, particle tracking.
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Figure 3-59. Case 2a Source 1 m, or = 10.0 m, particle tracking.
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Figure 3-60. Case 2b Source 5 m, ar = 0.01 m, particle tracking.
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Figure 3-61. Case 2b Source 5 m, or = 1.0 m, particle tracking.

61



Transmissivity (m¥/s)
> 0.T40812eh

1eb

1eT

< L2501 e-7

Transmissivity (m's)
»IL74081 225

L
02750017

Y[N]"

ey
3]

Figure 3-63. Case 2c Source 10 m, ar = 0.01 m, particle tracking.
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Figure 3-65. Case 2c Source 1 m, ar = 10.0 m, particle tracking.
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HTO Release Rate, LTG (aT = 0.01m, 1m, 10m)
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Figure 3-66. Breakthrough curves for HTO for a single realization of the Base case, Case 2a, 2b,
and 2¢ (o7 = 0.01, 1 and 10 m), LTG.

Cs Release Rate, LTG (aT = 0.01m, 1m, 10m)

4 = ’ = ’
— Case 0 LTG DispT = 10m
5| — Case 0 LTG DispT = 1m
—— Case 0 LTG DispT =0.01m
—— Case 2a LTG DispT = 10m
3 —+— Case 2a LTG DispT = 1m
E‘ Case 2a LTG DispT = 0.01m
é 95 —— Case 2b LTG DispT = 10m
e —+— Case 2b LTG DispT = 1m
=k Case 2b LTG DispT = 0.01m
€ 24| —+ Case2¢LTG DispT =10m
R —+— Case 2¢ LTG DispT = 1m
E 15 Case 2¢ LTG DispT = 0.01m
=
=1
1 -
0.5+
e It . | | .

0 1a0n 2000 3000 4000 5000 Goao Joon g0ao 2000 o000
Elapsed Time (hours)

Figure 3-67. Breakthrough curves for Cs for a single realization of the Base case, Case 2a, 2b,
and 2¢ (o7 = 0.01, 1 and 10 m), LTG.
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Na Release Raie, LTG (T = 0.01m, 1m, 10m)
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Figure 3-68. Breakthrough curves for Na for a single realization of the Base case, Case 2a, 2b,
and 2¢ (o7 = 0.01, 1 and 10 m), LTG.
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Figure 3-69. Case 2a, HTO, distribution of mean ts, ts, tos LTG.
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Figure 3-71. Case 2b, HTO, distribution of mean ts, ts, tos LTG.
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Figure 3-72. Case 2b, HTO, distribution of st dev t;, ts, tos LTG.
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Figure 3-73. Case 2c, HTO, distribution of mean t;, tsy, tos, LTG.
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Figure 3-75. Case 2a, 1 m Source summary statistics for all transport measures.
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Figure 3-77. Case 2c, 10 m source summary statistics for all transport measures.
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3.5

Case 4: million year sorbing tracer transport

While experimental measurements are general on the 0.1 to 2 year time scale, repository
safety simulations are on the 10° to 107 year time scale. Case 4 was run for 10® years, by
reducing the gradient to 0.00025%. Simulations were run using the Base case spatial fields,
and immobile zone models. Simulations were carried out for the conservative tracer HTO,
as well as sorbing tracers Cs and Na. Results are summarized in Table 3-9.

These simulations were carried out using the Base case stochastic field. The simulation
results from LTG are illustrated in Figure 3-78 through Figure 3-80. The simulations to
10 million years show less variation between realizations and less variation as a result of
transmissivity than any of the other cases studied. Particle tracks from these simulations
are provided in Figure 3-81 through Figure 3-83. Figure 3-84 provides summary statistics

for Case 4.

Table 3-9. Million year simulations, sorbing tracer results.

Case Transverse ts tso tos
dispersion  (u,0) (n,0) (n,0)
4a-LHTO (A)0.1m 8458, 16.0 2,402.4, 33.2 6,693.6, 105.1
(B)1m 845.2, 15.2 2.401.8,32.5 6,694.3, 105.5
(C)10 m
841.4,12.6 2.398.3, 30.8 6,700.0, 107.8
4a-L Cs (A)OAm  46x10° 1.4x10°  3.4x105,3.4x105  3.4x105, 5.0%10°
% 1(;“m 4.6%10°, 1.3x10°  3.4x10°5, 3.4x10°  3.4x10°, 5.0x10°
46%10%, 8.3x102  3.4x105 3.4x105  3.4x10°, 5.2x10°
4a-L Na (A)01m 1,337,278 27458, 47.1 6,639.3, 102.6
(B)1m 1,132.6, 25.1 2745.0, 43.4 6,639.5, 102.1
(C)10 m
1,126.2,17.9 2.739.6, 36.5 6,644.4, 105.3
4a—F HTO 28,8182 48,636.4 81,545.5
4a-F Cs 1,359,090.0 2.454,550.0 4,218,180.0
4a-F Na 30,818.2 52,818.2 89,090.9
Case Transverse Q 1Iv 1/bv [ T
dispersion  (4,0) (4,0) (u,0) (u,0) (m,0)
4a-P  (A)01m  14x1072,  2.6x10°, 1.6x10%,  2.7x10%,  5.6x10',
9.2x10°  1.0x10° 1.3x107  1.1x10®  2.3x1010
(B)1m 1.6x102,  2.4x10°,  3.8x10%,  2.9x10", 5810,
1.2x10  6.5x10° 3.9x107  9.3x10%  1.7x10™
(C)10m
17102, 2.3x10°,  4.2x10%,  3.0x10",  6.0x10',
15x10°  6.4x10° 27x107  9.6x10”  1.8x10™
4a—F 6.25x10°  1.99x105  1.6x10° 3.2x10° 3.08x10°
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HTO Release Rate, Basecase, Transverse dispersion = 0.01, 1, 10m : 4 Realizations each
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Figure 3-78. Breakthrough curves for HTO for a 4 realizations of million year simulation

(ar=0.01, 1 and 10 m), LTG.
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Figure 3-79. Breakthrough curves for Cs for 4 realizations of million year simulation

(ar=10.01, I and 10 m), LTG.
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Na Release Rate, Basecase, Transverse dispersion = 0.01, 1, 10m : 4 Realizations each
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Figure 3-80. Breakthrough curves for Na for 4 realizations of the million year simulation
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Figure 3-81. Case 4, million year, ar = 0.01 m, particle tracking.
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Figure 3-82. Case 4, million year, oy = 1.0 m, particle tracking.
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Figure 3-83. Case 4, million year, ar = 10.0 m, particle tracking.

73



=]
B

(70 5 5 e PP e ) T

Op Oo 1Twp Mo TVYbhwplViwe pfp Po T T

Figure 3-84. Case 4, million year time scale, statistic for all transport measures.

3.6 Case 5: simple channel model

The cases presented above show a smaller influence of transverse dispersion on solute
transport than was initially anticipated. The purpose of Case 5 is to evaluate the role of the
functional relationship between aperture and transmissivity in determining the sensitivity
of solute transport to transverse dispersion and heterogeneity.

3.6.1 Case 5a simulations

Figure 2-5 shows the geometry defined for Case 5. This case has a constant transmissivity
of 10 m?/s, with a single channel, 1 m wide of T = 10¢ m?/s in the middle. The head and
tracer injection boundary condition is the same as was specified in the Base case, with a
constant head of 0.5 m on the upgradient edge of the fracture and a constant head of 0 m
on the downgradient edge of the fracture. With this boundary condition, the entire fracture
is available for advection. However, the 10~ m?/s regions on either side are labeled as
“stagnant zones” because the transmissivity is three orders of magnitude lower and there
would presumably be much less flow there.

Case 5a is comparable to the Base case (Section 3.1), since it uses the empirical correlation
between transmissivity T and aperture e (for units of seconds and meters),

e=15T0%

Tracer breakthrough for this case is illustrated in Figure 3-85, for transverse dispersion
values of or = 0.01 m and 1 m. Even though this is an extreme variation of transverse
dispersivity, the breakthrough curves are similar. This is consistent with the small effect
of transverse dispersion seen in Cases 1 through 4 and the Base case.
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Figure 3-85. Tracer breakthrough for Case 5a — transmissivity correlated to aperture, LTG.

3.6.2 Case 5b simulations: constant aperture

Case 5a showed that the groundwater velocity in the “stagnant zones” at the sides of the
“advective channel” actually have transport velocities comparable to those in the advective
channel. Consequently, the mass transferred to the “stagnant zone” by transverse dispersion
still breaks through to the down-gradient edge of the fracture with only a slight delay.

Case 5b applies a constant transport aperture € of 3.77 mm over the entire fracture surface.
This transport aperture is the value applied just for the high transmissivity channel in
Case Sa.

The increased aperture decreases the velocity for any solute mass dispersed to the “stagnant
zone.” Solute breakthrough for this simulation can be seen in Figure 3-86 for transverse
dispersion values of o = 0.01 m and 1 m. In this case, increased transverse dispersion

has a very significant effect on the breakthrough. For example, the increase in transverse
dispersion from 0.01 to 1 m delays the tos from 2,658 hours to 5,183 hours (95%). In
contrast, in Case 5a, the tys is only delayed from 2,457 hours to 3,141 hours (28%). This
indicates that the form of correlation defined between transport aperture and transmissivity
assumed in Case 5a (and in all previous cases) does significantly reduce the sensitivity of
breakthrough to transverse dispersion.

The physical mechanism for this is as follows. Increased transverse dispersivity results in
transfer of additional solute mass from the advective channel of the fracture (T=10-° m?%s) to
the “stagnant” portion of the fracture (T=10"° m?/s). The total flow of water is much smaller
in the “stagnant” region, due to the lower transmissivity. However, because the transport
aperture in the “stagnant” portion of the fracture is so much smaller (0.06 mm vs. 3.77

mm), the transport velocity for the mass which is in the “stagnant” portion of the fracture is
comparable to that in the advective zone of T=10° m?s.

Results for Case 5a and 5b are summarized in Table 3-10.
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Figure 3-86. Tracer breakthrough for Case 5b — constant aperture, LTG.

Table 3-10. Statistical summary of Case 5 (breakthrough time, hours).

Stats Case 5a Case 5b

0.01 m im % delay 001m 1m % delay
ts % 584. 605 3.6% 584 682 16.8%
tso % 1,181 1,253  6.1% 1,209 1,379 14.0%

tos % 2,457 3,141 28.5% 2,658 5183 95.0%

3.6.2.1 Case 5c: alternative boundary conditions

Having established the importance of the aperture-transmissivity relationship, the next

issue which can be addressed with the simplified channel model is the effect of boundary
condition assumptions. The boundary condition used in the Base case and Cases 1 through 4
is a one-dimensional advective field throughout the fracture, with the same gradient across
the entire fracture. In Cases 5a and 5b, once transverse dispersion moves tracer mass to the
“stagnant” zone, the mass moves parallel to the flow field at the velocity determined by the
gradient, transmissivity, and transport aperture.

To further clarify this mechanism, Case 5c¢ changes this boundary condition. In Case 5c, the
goal is that whenever solute mass moves to the “stagnant” zone by transverse dispersion, it
must ultimately return to the advective channel to breakthrough to the down-gradient edge
of the fracture. This was achieved by changing the down-gradient boundary from a constant
head of 0 m, to no-flow, except at the outlet of the 1 m wide “advective” channel. The
down-gradient constant head of 0 m is applied only at the I m wide downstream edge of the
“advective channel”. With this redefinition of the flow field, tracer mass must return to the

1 m wide channel to be released from the model.
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Figure 3-87. Tracer breakthrough for Case 5c — channel with restricted outlet, LTG.

Results from these simulations are illustrated in Figure 3-87, for the same aperture-
transmissivity correlation used in Case 5a. Results are functionally identical, indicating
that the advective transport back to the flow channel for mass transferred to the diffusive
zone does not provide a significant delay in transport. For the low dispersion aT = 0.01 m,
the result for Case Sc is essentially the same as for Case 5a. For the high dispersion oT =

1 m, Case 5c shows some increased travel time compared to Case Sa, but significantly less
than in Case 5b. This indicates that the assumed one-dimensional flow boundary condition
is not critical to the simulation results.

3.6.2.2 Additional transmissivity correlations

Having established the aperture-transmissivity correlation as a key to understanding the
effect of transverse dispersion, the scope of this effect was evaluated through a series of
sensitivity studies. A total of four cases were defined, including the two correlations already
defined as Case 5a and Case 5b. These relationships are listed in Table 3-11. All of these
relationships are defined by empirical equations of the form

e=aT’
where e, is transport aperture in meters, a and b are coefficients, and T is transmissivity

in m?%/s.

Table 3-11. Aperture-transmissivity correlation cases studied.

Case Aperture-transmissivity correlation Coefficient a Coefficientb  Basis

5a Base case 15 0.6 Calibration to STT1b
(this report)
5b Constant aperture 3.77 mm 0 Aperture from T = 10° m?/s

(Base case)
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Case Aperture-transmissivity correlation Coefficient a Coefficientb  Basis

5d Cubic law 0.011 0.3333 /Domenico and Schwartz,
1990, p 87/

5e Breccia-filled fracture 1,000 1 T=eK
Hydraulic conductivity
K=102m/s

Because the average transport aperture is different between each of these cases, the break-
through times are different. The results of these simulations are therefore presented as the
percent delay in tracer breakthrough for a transverse dispersion of 1 m relative to that for a
transverse dispersion of 0.01 m. These results are provided in Table 3-12.

Table 3-12. Delay in cumulative mass recovery of Case 5 for increase of transverse
dispersion from 0.01 m to 1.0 m, channelized fracture.

Case Percent delay t; Percent delay ts, Percent delay tgs
Case 5a 3.6% 6.1% 28.5%
Caseb5b 16.8% 14.0% 95.0%
Caseb5d 21.0% 21.0% 46.5%
Caseb5e 6.1% 12.7% 39.7%

3.6.2.3 Additional heterogeneous cases

Based on the results of Case 5 studies, it could be concluded that the correlation between
transmissivity and aperture used in the Base case and Cases 1 through 4 minimized the
effect of transverse dispersion on solute transport. In addition, however, Case 5 indicates
that the effect of transverse dispersion is to delay solute breakthrough, with the most
dramatic effect being an increase in the length of the tail of the breakthrough curve. For
radioactive waste repositories, this would generally be considered a conservative result,
since ignoring the effect of transverse dispersion causes simulated breakthrough to be
earlier than it actually would be including the effect of transverse dispersion.

In order to address this effect, additional simulations were carried out for the Base case
(Figure 2-1) spatial field for the transmissivity-aperture correlations of Table 3-11. Results
of these simulations a summarized in Table 3-13.

Table 3-13. Delay in cumulative mass recovery of Case 5 for increase of transverse
dispersion from 0.01 m to 1.0 m, base case spatial field.

Aperture-transmissivity Percent delay ts Percent delay ts, Percent delay tys
correlation

Base case 3.6% 3.6% 2.4%
Constant aperture 22.5% 25.4% 24.0%
Cubic law 43.0% 28.5% 19.6%
Breccia-filled fracture 18.2% 21.0% 16.8%
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Figure 3-88. Effect of constant aperture on heterogeneous fracture (Base case), LTG.

Figure 3-88 presents a comparison of the Base case spatial field with the original
transmissivity-aperture correlation, against the constant aperture assumption. For this
figure, the aperture was modified slightly from those used for Table 3-13, to improve
visibility. As noted in Section 3.2 above, for the Base case with the correlation between
transmissivity and aperture, increased transverse dispersion delays breakthrough, but only
within the statistical variability between realizations. For the case with constant aperture,
the effect of increased transmissivity on the Base case is much more significant. At time ts,
the increased transverse dispersion for the Base case simulation is only 3.6%. For the case
with a constant aperture the value of ts is increased by 25.4%.

3.6.2.4 Summary of Case 5 simulations

Case 5 simulations were run with a range of different functional relationships between
aperture and transmissivity. These cases demonstrate that increased transverse dispersion
can have a significant influence on breakthrough, almost doubling the breakthrough time tos
as transverse dispersion is increased from 0.01 m to 1 m for the case of constant aperture.
However, for the cubic and quadratic law relationships between aperture and transmissivity,
the effect is significantly smaller. Increase in transverse dispersivity from 0.01 to 1 m
generally results in a 5 to 20% delay in breakthrough times ts, ts,, and tos.

No cases were observed in which increase in transverse aperture resulted in a statistically
significant decrease in travel times. Consequently, it can be concluded that for most realistic
cases, the effect of ignoring transverse dispersion is conservative.
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3.7

The Base case addresses the issue of whether transverse dispersion is a significant process
which can make 1D pipe approaches unrealistic. The studies presented above indicate that
for the assumptions made in the present study, transverse dispersion is not in general a
significant process for solute transport in a single fracture.

Comparison of 2D LTG transport against FARF31

This section presents a direct comparison between the 2D LTG transport solution for a
single fracture against a 1D-pipe transport solution. The 1D pipe transport solution was
implemented using GoldSim /Miller and Kossik, 2002/, with settings to approximate
FARF31 /Norman and Kjellbert, 1990/. These solutions are also compared against an
analytical solution /Domenico and Schwartz, 1990, p 636/ 1-D advective dispersive
transport with no matrix diffusion.

C/Co = % erfe((x—v)/(2(axvy)”*)) where C(0, t) = Co and C(x, 0) =0

where erfc is the complementary error function. This solution is for a step injection starting
att = 0. For comparison against GoldSim/FARF31 and LTG, we have use superposition to
apply this case for a 10 second long step pulse injection from t = 0 to 10 seconds. Note that
both GoldSim/LTG and the analytical solution use simple pipe transport solutions which do
not consider fracture geometric information.

The comparison between the analytical solution, 2D LTG solution, and GoldSim/FARF31
solution for a 10 second step pulse injection is shown in Figure 3-89. The match between

the 2D LTG solution and the analytical solution is fairly good. The match to the GoldSim

model is not as good. This is due to the fact that the GoldSim solution considers the effect
of diffusive transport as well as advective transport within the pipe. This delays the break-
through curve by approximately 10%.

110%
D e e e L S T ] S S P S S e e e e P e RS
100% 4
95%
490% -
85%
20% -
75% 4

T0%
G5%
G0%
G5%
0%

Percent Recovery

45% -
40%
5% 4
0% 4
25%
20% 4
15%
10% -
G0 SR S p s g e RS L S S S R S S
0%

CaselalTGdispT=001 |-

——CaselaLTG dispT=1.00 [~

—asela LTG dispT=100 |-

——Casela GoldsimFARF31 [~

= = = Analytical Solution

1600 2000 2600 2000

Time (hours)

Figure 3-89. Analytical, LTG/Plate and GoldSim/FARF31 solutions for homogeneous fracture
(Case la).
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For a stochastic field, it is necessary to represent the stochastic field on the fracture plane
using a stochastic distribution of properties on the pipes. The Base case has transmissivity
mean and standard deviation of 5x107. The GoldSim/FARF31 implementation of this
therefore used transmissivity mean and standard deviation of 5x10~7, among the six pipes
connected in series which constitute the model. The effective dispersivity o in each pipe
can be approximated using the formula,

o = o + (on(T))* xp

where oy is the specified dispersivity, oin(T) is the standard deviation of log transmissivity,
and p is the correlation length (m)

Results for this GoldSim/FARF31 simulation of the Base case with HTO, Cs, and Na tracers
are compared against the LTG solution in Figure 3-90 through Figure 3-92. Statistical
results for these simulations are compared in Figure 3-93 through Figure 3-98. There are
significant differences between the one and two-dimensional solutions, probably due to the

differences in the treatment of heterogeneity, and the effect of greater available reactive area
in the LTG models.

Clearly, the 1-D single pipe approach cannot address the 2D effects of in plane hetero-
geneity such as dilution and dispersion. However, it is possible that a 1-D approach can
mimic the breakthrough curves that are obtained from 2D approaches, and by extension
the results from full 3D DFN modeling. Comparison of the ts, tso, and tos statistics from the
2-D and 1-D models demonstrates that there are significant differences between the tracer
breakthrough for 1D and 2D models. Clearly, the additional information incorporated to
the 2D models provides additional parameterization for the transport processes. However,
where the 2D field is purely speculative, this advantage may be illusory.

Results for the Base case spatial field are summarized in Table 3-14.

HTO Release Rate, LTG (aT = 0.01m, 1m, 10m) and FARF31
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Figure 3-90. Breakthrough curves for LTG (aT = 0.01, 1 and 10 m) and FARF31/GoldSim
simulations of the Base case.
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Cs Release Rate, LTG (aT = 0.01m, 1m, 10m) and FARF31
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Figure 3-91. Breakthrough curves for Cs, LTG (aT = 0.01, 1 and 10 m) and FARF31/GoldSim
simulations of the Base case.

Na Release Rate, LTG (oT = 0.01m, 1m, 10m) and FARF31
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Figure 3-92. Breakthrough curves for Na, LTG (aT = 0.01, 1 and 10 m) and FARF31/GoldSim
simulations of the Base case.

82



Comparison PDOF for t5, LTG (oT = 0.01, 1 10 m) and FARF31 Results, Base Case, HTO

55

OdispT=0.01m
a EdispT=1.0m =
OdispT = 10.0m

4.5

FARF31 t3 = 990hrs

Frequency
(1)
|
I

1 L
0.4 I

a T 5 e T T T T T T
& & \égm \Qq? \ng :\@9 \@9 \’\@ a’\{ﬁ \’\tg \’\@ \’39 \‘é} \{199 :\q'bg \{f'? \‘ﬁip >\°§§j :{’;ﬁj \‘*-Pg \“39 ?\0?9 \@
105 Time (hours)

Figure 3-93. Comparison PDF for ts, LTG (aT = 0.1, 1 and 10 m) and FARF31 results,
Base case, HTO.

Cs Release Rate, LTG (aT = 0.01m, 1m, 10m) and FARF31

i
—LTG DispT = 10m
6 | —LTG DispT =1m
LTG DispT =0.01m

5 | —— FARF31
:
T
2
&
w 17
8
&
=
e

1 -

U T o T T T T T T T T 1

0 1000 2000 3000 4000 5000 6000 7000 3000 2000 10000

Elapsed Time (hours)

Figure 3-94. Comparison PDF for ts,, LTG (oT = 0.01, 1 and 10 m) and FARF31 results,
Base case, HTO.
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Comparison PDF for t95, LTG (uT =0.01, 1 10 m) and FARF31 Results, Base Case, HTO
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Figure 3-95. Comparison PDF for tys, LTG (oT = 0.01, 1 and 10 m) and FARF31 results,
Base case, HTO.

Comparison PDF for t5, LTG (aT = 0.01, 1 10 m) and FARF31 Results, Base Case, Na
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Figure 3-96. Comparison PDF for ty;, LTG (aT = 0.1, 1 and 10 m) and FARF31 results,
Base case, Na.
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Comparisen POF for t50, LTS (oT = 0.01, 1 10 m) and FARF31 Results, Base Case, Na
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Figure 3-97. Comparison PDF for ts, LTG (oT = 0.01, 1 and 10 m) and FARF31 results,
Base case, Na.
Comparison PDF for t95,LTG (aT = 0.01, 1 10 m) and FARF31 Results, Base Case, Na
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Figure 3-98. Comparison PDF for ty;, LTG (oT = 0.01, 1 and 10 m) and FARF31 results,

Base case, Na.

&5



oeoam

mE1m

O iom

ooi

oo

oo

0 .oom
oooomi
0momoi

=]

0oy

o, e e e v [ o | R e

Op O TWwp TWwo 1Ywpllve pp po TR To

Figure 3-99. Particle tracking results, Base case (oT = 0.01,1 and 10 m).

Table 3-14. Comparison of 2D (LTG) and 1D (GoldSim /FARF31), Base case spatial field.

Case Transverse ts(hr) tso (hr) tos (hr)
dispersion  (,0) (1,0) (n,0)
0-LHTO (A)0.1m  1,168.1,79.3  2,369.4,139.7  4,512.4,219.5
(B)1m 1,167.0,45.7  2,3835,801 45361, 112.8
(C)10m
1,148.0,23.3  2,377.0, 38.1 4,542.8, 58.4
0-L Cs (A)0.1m Na Na Na
B)1m
(C)10m Na Na Na
Na Na Na
0-L Na (A)0.1m  1,098.4,728  2,4716,158.4 54452 262.6
Eg)) 1 D 10961,420  24888,902 54738, 1378
1,077.4,22.0  2,482.8,41.9 5,472.6, 65.3
0-FHTO - 990 1,970 3,818
0-F Cs - Na Na Na
0-FNa - 950 2,090 4,630
Case Transverse Q (m?’s) 1/v (s/m) 1/bv (s/m?) B (s/m) T(s)
dispersion  (u,0) (1,0) (u,0) (1,0) (u,0)
0-P  (A)0.1m  1.53x10°®,  2.36x10°5  2.40x10",  2.55x10°,  5.24x10°,
(B)1m 8.27x10°  3.26x10*  2.60x10"*  548x108  8.11x10°
(C)10m 4 76x108, 222x105, 578x10", 2.96x10°,  5.91x105,
150105  4.38x10*  4.62x10"  7.34x10° 1.30x10°
2.15x108,  2.32x105,  3.89x10",  3.24x10°,  6.42x10°,
1.77x105  574x10*  2.11x10"®  9.15x108 1.72x108
0-F — 6.25x10-0  1.99x105 1.6x108 3.2x10° 3.98x10°
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4 Conclusions

Extensive single fracture simulations, under a wide variety of assumptions have
demonstrated a distinctive difference in the pattern of solute transport with variations

in the spatial heterogeneity on the fracture, and with different assumptions concerning
transverse dispersion. These differences affect the spatial pattern of breakthrough and the
spread of tracer across the fracture surface, with consequent effects on statistics such as
the distributions of beta.

However, the influence of transverse dispersion on breakthrough and recovery times is
much smaller than the variability of transmissivity would lead one to expect. This is due
to the assumed power law relationships between transmissivity and aperture that lead to
velocity fields which vary considerably less than transmissivity.

Transverse dispersion was shown to have a significant effect on solute transport for cases
in which transmissivity and transport aperture are independent or only weakly correlated.
This would seem unlikely for simple open fractures, but is possible for conducting features
with complex internal structures.
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