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0. EXECUTIVE SUMMARY

When modelling groundwater flow in fractured rock one must first make a basic choice
concerning the conceptual description of the problem. The first alternative is to try to
understand the characteristics of the complex geometric shapes of the void space of the
rock such as the distributions of channels or fractures. The other alternative is to
disregard this and go directly for the effect of the geometry on hydrology which is some
kind of permeability or conductivity field. However these two approaches should not be
perceived as two competing and entirely different approaches. On the contrary the
difference should be viewed as a matter of scale and the former thus being a small scale
model and the latter a large scale model. Ideally the connection between the models
should be fully understood. Currently this is however not the case. Inspired by
[Neuman, 1988] our choice is to describe the rock using a continuous conductivity
field.

Since the hydraulic properties of the rock are extremely heterogeneous and sample
locations are very sparsely positioned a great deal of uncertainty will always be present
in subsurface hydrology. Thus it is natural to regard all parameters or fields as
stochastic. In particular if one introduces a conductivity field, it should be a stochastic
field. In this connection we also refer to a preliminary study [Lovius at al, 1990] which
used a two dimensional stochastical continuum approach for analyzing groundwater
flow around a repository. It showed that the spatial variability and the associated
uncertainty have a great impact on repository safety predicitions. Another conclusion of
this study was that a three dimensional approach is desirable in order to describe the full
importance of spatial variability.

Thus, HYDRASTAR is a code developed at Starprog AB for use in the SKB 91
performance assessment project with the following principal function:

- Reads the actual conductivity measurements from a file created from the
data base GEOTAB.

- Regularizes the measurements to a user chosen calculation scale.

- Generates three dimensional unconditional realizations of the conductivity
field by using a supplied model of the conductivity field as a stochastic
function.

- Conditions the simulated conductivity field on the actual regularized
measurements.

- Reads the boundary conditions from a regional deterministic NAMMU
computation.

- Calculates the hydraulic head field, Darcy velocity field, stream lines and
water travel times by solving the stationary hydrology equation and the
streamline equation obtained with the velocities calculated from Darcy's
law.

- Generates visualizations of the realizations, if desired.

- Calculates statistics such as semivariograms and expectation values of the
output fields by repeating the above procedure by iterations of the Monte

Carlo type.

When using computer codes for safety assessment purposes validation and verification
of the codes are important. Thus this report describes a work performed with the goal of
verifying parts of HYDRASTAR. The verification described in this report uses
comparisons with two other solutions of related examples:

A. Comparison with a so called perturbation solution of the stochastical
stationary hydrology equation. This is an analytical approximation of the



stochastical stationary hydrology equation valid in the case of small
variability of the unconditional random conductivity field. The compared
output is the semivariogram function of the hydraulic head. Added is also
the comparison of the input conductivity semivariograms with the
estimated counterparts. -

B. Comparison with the [Hydrocoin, 1988], case 2. This is a classical example
of a hydrology problem with a deterministic conductivity field. The
principal feature of the problem is the presence of narrow fracture zones
with high conductivity. The compared output are the hydraulic head field
and a number of stream lines originating from a set of given positions.

Example B tests the solver of the hydrology equation and the stream line equation
whereas example A tests the hydrology equation solver, the estimation of output
statistics, and the generator of the unconditional realizations. Some further verification
of the conditioning of the simulations is contained in [Norman, 1991]

In this executive summary we show the dominating results. For the case A these are
contained in the Figs. 0.1 to 0.3 which show the perturbation solution head
semivariograms in the directions parallel and orthogonal to the applied head gradient
and the input conductivity semivariograms all compared to the confidence levels of the
estimated counterparts.

As the reader easily can see the results for the head semivariograms embodied in Figs.
0.1 and 0.2 are not quite satisfactory. Instead we note the following flaws:

1. Too high semivariogram values for the short lags in the direction of the
applied head gradient.

2. Too high semivariogram values for lags orthogonal to the direction of the
applied head gradient.

3. Too low semivariogram values for large lags in the direction of the applied
head gradient.

4. The convergence is bad for large lags in the direction of the applied
gradient.

Discussing these points one at a time:

Point 1 is probably due to a too coarse mesh. The mesh used (31x71x71=138069 head
nodes) contains three nodes per effective correlation length for the conductivity.
Experiments have been performed with six nodes per effective correlation len gth for the
conductivity in the direction of the head gradient and this produces a marked
improvement for the short lags in the direction of the applied gradient.

Point 2 is not affected by the refinement mentioned above. The obvious test is to refine
the mesh in the directions orthogonal to the applied gradient directions as well. This has
not been done primarily because the total number of nodes increases as the square of
the number of nodes in the directions orthogonal to the head gradient.

Point 3 is probably due to the finite approximation of the whole space. Tests that have
been performed increasing the computational domain seem to validate this.

There is not much to do about point 4.

Thus we see that in the search of better results we are led to put larger and larger
demands on our computer resources by increasing the mesh density and the size of the
computational domain. The above example is, however, already on the computational
limit.

The dominating results for case B is contained in the comparison between the diagrams
shown in Fig. 0.4 and comparison between the diagrams in Fig. 0.5 on one hand and the
diagrams in Fig. 0.6 on the other.



Covariance model ( see section 2.2.2. ): Exponential
Range parameter, a ( see section 2.2.2. ): 1
Bandwidth factor, f (see section 6.2. ): 0.2
Bandwidth, T (see section 2.2. ):: 0.2
R (see section 2.2. ): 20
Number of icosahedron sets (see section 2.3. ) : 4
Number of random lines (see section 2.3.) : 0
Spatial sample size(for head), | P | (see section 4.): 121
Spatial sample size(for head), | L | (see section 4.): 1
Number of realizations: 400
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Fig. 0.1. Exact semivariogram and the Chebyshev confidence intervals on the
0. 95 -level for the heads in the direction parallel to the applied head
gradient.
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Fig. 0.2. Exact semivariogram and the Chebyshev confidence intervals on the
0. 95 -level for the heads in the direction orthogonal to the applied
head gradient.
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Fig. 0.3. Exact semivariogram and the Chebyshev confidence intervals on the

0. 95 -level for the conductivities in the direction of the gradient. The
diagram shows only the upper part since all curves coincides on the
lower.

The diagram in Fig. 0.4 shows the head values at a certain depth obtained from
HYDRASTAR calculations and from [Hydrocoin, 1988]. The results are in good
agreement, except for a small offset, round +3 m, in the head values. The offset is due
to our approximation of the top boundary values. This could be overcome by either
choosing a more sophisticated way of representing the top boundary or simply using
other teams calculated head values as our boundary values. See chapter 7.

Finally Fig. 0.5 shows the stream lines and travel distance versus travel time for one of
the trajectories obtained from a HYDRASTAR calculation. These favorably compare
with the corresponding diagrams in Fig. 0.6 which are taken directly from [Hydrocoin,
1988]. ’
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Fig. 0.5. Stream lines from HYDRASTAR using mesh2 (above). Travel
distance versus time from HYDRASTAR and for trajectory number
2 (lowest leftmost tracer) using mesh2 (below).
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1. INTRODUCTION

Generally speaking a person with a desire to model the hydraulic performance of a
subsurface repository will face a very complex problem. To start with a certain amount
of knowledge about the rock is given. This knowledge has a lot of different forms, for
instance

- location of inferred fracture zones,

- fracture statistics from surface outcrops, tunnels and core mappings,
- single hole packer tests, transient and stationary,

- interference tests, cross-hole tests,

- tracer tests,

- general geological information.

From this information it is possible to form different models of the rock as a medium
for water and radionuclide transport. Such a model will always be uncertain for several
reasons

a. the translation of knowledge into a model and model parameters such as
conductivity values or distributions for fracture densities does always
involve some assumptions difficult to assess,

b. the hydrological properties of the rock is very heterogeneous whereas the
measurement locations are sparsely located.

HYDRASTAR is a code developed at Starprog AB at the request of SKB AB designed
to deal with a restricted form of the formidable problem above. The restriction is mainly
that the knowledge used is almost only the stationary single-hole packer test
measurements. Referring to the point a. above the basic assumptions employed are

- Therock is assumed to behave like a stochastic continuum in the following
sense: for some range of scales s, L <'s <Ly the rock obeys the isotropic
form of Darcy's law and the introduced conductivity field is regarded as a
stochastic function.

- The stationary single-hole packer tests can be used to calculate the value of
the conductivity at a position given as the midpoint of the packer interval.

In this connection it should be stated that this approach has been inspired by [Neuman,
1988].

With these assumptions the problem to take the uncertainty in unsampled regions into
account, point b. above can be posed in a stringent fashion for the conductivities. This
requires that one first infers a model for the stochastical function equal the conductivity
field and then uses this to simulate the conductivity field in the unsampled regions
conditioned on the performed measurements. This conditional simulation is then
repeated and the related fields such as heads, velocities and so forth are calculated.
From these repeated simulations it is possible to collect statistics and thus obtain a grip
on the resulting spatial variability and the uncertainty in the hydraulic situation around

a repository.
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The comprehensive detailed description of HYDRASTAR is deferred to a later report.
The scope of this report is to compare results generated using HYDRASTAR with:

A. Input semivariogram functions and analytical perturbation solution to the

B.

hydrology equation.

Finite element solutions to the hydrology equation with a deterministic
conductivity field. The computational example and the finite element
solutions are taken from the international verification project for
groundwater computer codes [Hydrocoin, 1988].

This leads to the division of the report in four main parts:

In order to discuss the sometimes rather technical aspects of the
comparisons, in particular with regard to the random function generator we
start with a thorough description of those parts of HYDRASTAR being
tested by A and B above. These are the generator of the unconditional
conductivity simulations in chapter 2, the hydrology equation solver in
chapter 3 and the estimation of output statistics in chapter 4.

Derivation of the analytical perturbation solution in chapter 5.
Description of the results generated in part A in chapter 6.
Description of the results generated in part B in section 7.
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2. STOCHASTICAL FUNCTION GENERATOR

In the following we shall describe how to generate unconditional Gaussian
regionalization with a given covariance or semivariogram function. The method used
by HYDRASTAR is the turning bands algorithm as described by [Journel and
Huijbregts, 1978] and [Tompson, Ababou and Gelhar, 1989]. The original reference to
this method is [Matheron, 1973].

2.1. The turning bands method

Regard the problem of simulating a three dimensional random function Y. We assume
it to be weak second order stationary, that is the following two requirements should
hold. First, the expected value of Y should be constant i.e.

E[Y (x)] = m = constant ,

where we introduced x for an arbitrary point in the three dimensional real space, R3,

and EJ - ] for the expectation value operator. Secondly, introducing the residual process
Y’ by

Y(x)=Y(x)-m,
the covariance function

C,(&x)=E[Y (x+ EY (x)]

should depend only on the lag vector § connecting two points in R3. Let us assume
further that the random function Y is Gaussian and that the moments above, i.e. the
expectation value and the covariance function, are known. This specifies the
distribution of the regionalization completely.

The basic idea with the turning bands algorithm is to write

Y(x)= [Y(x.D, DV (D) dS(D 2.1.1
S

where (1) is a probability density function on the half unit sphere Sy, 1 is a unit vector

on Syp, (-, - ) signifies the ordinary scalar product and Y1( -, 1) is a family of
stochastic processes indexed by 1 with the following properties

- Yi(-, I and Y(-, L) are uncorrelated if 1; # 15 and

- Yj(-, 1) is stationary with zero expectation and a covariance function
Cl( T 11)
Above we also introduced a general notation exemplified with Y;(-, 1;). This simply

means that this object is the function or process of one variable obtained by fixing the
variable given as the second argument to the value 13.

As an approximation for the case of a uniform distribution on the half unit sphere, i.e.
f = 1/27 identically, we write

N
Y(x)=—_\/—1—FZY1(( x, 1), 1) 2.1.2



12

N . . . .
where {/,}  is a set of unit vectors on S;,. The first thing to note is that the marginal

i=l
distributions of this process will tend to a normal distributions as the number of lines
tends to infinity as follows from the central limit theorem [Fisz, 1963, p 196. ]. The
second thing to notice is that trivially the stationarity of Y follows from the stationarity

of Yi(-, ). In particular

E[¥,¢,1)]=0V I = E[r]=0.

However, the main thing about the method is to find the covariances Cy(§, 1) which
produces the given covariance C(E). Hence using the properties of the family Yi(-,1)
we express the covariance of Y in the covariances of Yi( -, 1) as

¢, (8) = fCI((é, 1), 1)f (Dds (1) = E,[C((&,1),1)] 2.1.3

172

and in the approximate case

C(& =-,$—,z_lc‘-<(¢, ANAY

To produce a stringent derivation of 2.1.3 from the exact formula 2.1.1 necessitates the
introduction of a whole machinery and is therefore excluded. !

Using the spectral theorem [Yaglom, 1962] we write utilizing the first equality of
equation 2.1.3

s a= [ 54,0 (naas 2.14
m3

S —e
172

where Sy(-,) and S1( -, 1) are the spectrums of the processes Y(-,1) and Y1(-, 1)
respectively.

The idea is now to rewrite the right hand side into the same form as the left hand side.
The first step in doing this is to divide the right hand side into two parts

0o 0
[ 5.3, e M ranas ) + [ [5,(a. 1)’ pnrands (1
5 0 § —e

and then perform a change of variables as

IHowever what is needed is

o oo

J' jw1v/2dF(x,11,y/1)dF(y,12,y/2)= C(x-y)8(1,-1,)

-0 -

in the sense of distributionson § ,® S, jp Where F(x,1,-) is the probability distribution function

for the stochastic variable Y 1( x,l).
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(A1= A
A= ]

11= a2

[l args (1) = da

for the first integral and
'Ail = A

A= -al

1=- /Al

[Al'args (1) = da

<

for the second. Introducing the notation ‘.RBI ,, for the part of ‘Xgintersectcd by rays

3 3 3 . .
through Sipand R, for - R, = {— x:x € R, /2} we then rewrite the previous

expression as

f S(A, ¥ A) e Gl Al)f—:f;— +

3

xR
112

[ s(=1i~ M eI f(- ] wﬁ%.

3

-1/2

Finally, introducing the very natural definition f(-1) = f(1) and S1(A, -1) = S1(-A, 1) for
le S12 we have that the covariance function of the turning bands representation of Y
can be written as

.[Sl(llls /’L/Ilbei(g’l)f (A'/l)“‘)l_i%

and thus by the uniqueness of Fourier transforms and 2.1.4 we have

f(A4a) .
Pk

Now in the particular case that the probability density function, f, is uniform, i.e.. equal
to 1/2x, and the family of line processes Y1( -, 1) satisfies the additional condition that

Ci(&1, 1) is independent of 1 we have

S, (2) = an?s,(1al A/lAl) 215

s, (1) = 5,(IAD2% |
|Al

This result together with 2.1.5 is also obtained by [Tompson, Ababou and Gelhar,
1989] although they use another definition of the spectral density with regard to the

factor 21t. These expressions are then used to determine the spectral density along each
line from the given spectral density Sy.
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In the case of isotropic processes and uniform probability density function f one may

directly relate the covariances of Y and Y( -, 1) by the following computation given in
[Journel and Huijbregts, 1978]. Starting from 2.1.3 and suppressing the direct
dependence of C; on 1, i.e. the second argument, we have

€, (&) =5 [C((&, 1))ds (1) = 5[, (&, D)Yas (1)

172

where we used the symmetry of C; and the notation S for the unit sphere.

Switching to polar coordinates with the direction of the polar axis parallel to § and 0 as
the angle between the radius vector and the polar axis we rewrite this as

2% x ‘ x
71'1? jd(p JCl(lﬁ [cos 8)sin 640 = —;—jCl(Ié lcos 6)sin 646 .
[ 0 4]

Employing the change of variables

{lélcos 0=s
— |€lsin 6 = ds

and the symmetry of C; once again we have
Il s
ojc,(s)]-ﬂ
or
of(14) =g‘fa(|€|0y(lél)). 2.1.6

In practice one generates a finite number of lines, N, each line is divided in bands of

width T. If the value of the line process Y( -, 1) in the k:th band is taken to be constant
and equal yjx 2.1.2 is replaced by

N
1
Y(x)=—7=2,
\/7,2, & 2.1.7

where k is chosen so that

(k=0T <(x,1)< kT

In order to make this a useful algorithm one has to find out how to generate the line
processes Y1(. , 1) and the lines themselves so that the result is “sufficiently good”.

We will treat this in the following two sections.

2.2. Line processes

This section will solely occupy itself with describing methods for simulating one

dimensional stochastical processes with a given covariance function C;(§). This will be
based on convolution techniques and follows essentially [Journel&Huijbregts]. We
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stress from the beginning that no importance whatsoever will be given to the form of
the distribution of the generated process but only to its two first moments.

We start with the observation that a covariance function C;(£) always allows a
convolution representation as

C(E=F*f(H= [f(&- w)f(- wydu=

[ree+ wruau, 22.1

where f is a realvalued function and “f is a fairly nonstandard notation defined by

F)=f(=x).
This result follows easily from Bochners theorem [Yaglom, 1962] if we assume that C;
corresponds to a spectral density function 2 since we may then write
__1 @ _1 @&
C(&) =5 __[e dF (2) =+~ _j;e S (A)dA
with S as the spectral density function and F as the spectral distribution function. The

first integral is evaluated in the Stieltjes sense.

Referring again to Bochners theorem we know that F(w) is a nondecreasing function.
Thus dF(®) 2 0 and SA) 2 0.

Introducing the tilde sign ~ for Fourier transform and superindex * for complex
conjugate we see that 2.2.1 gives

c) = AN =l

and thus the choice of the function f only needs to satisfy

s =lrwl

which has an infinite number of real valued solutions since S(A) = 0. however
essentially only one is continuous.

Taking the definition of a function against a stochastic measure for granted we write

Y ()= [f @+ r)dl (r)

where dT(r) is a stochastic measure on the real line such that for two intervals I; and I
with lengths | Iy I and | Ip | we have

2That is we are assuming for simplicity that the covariance function has an absolutely continuous Fourier
transform.



16

E[T ()] = E[fa'T (r)]= 0

1

E (T (I)T (I)] = E[I Jar (ryar </>}= L~ Lis,” 222

11
12

It is now possible to show, at least formally 3 that the process so defined has the desired
covariance function. In fact

C(s)= ELY (u + $)Y )] = E[j [f@+s+rf+Adr (r)ar (/)]:

- 08 00

[f@s + rf (ndro,”

which is what we wanted apart from the constant factor o72.

In practise we will make a discrete approximation of these formulas on a grid with
spacing b by
(k+-;)b

Y(ib)= [f(rdT (r= )= 2 [f(r)dT (r - ib)=
—o0 k=-‘(k——;)b

(u-;)b _ (k -i +i-)>
Y fb) [dr(r-ib)= 2 f(kb) [dT (=2 fkb),_,. 223
k== (k—-;)b k= (k - -;-); k==

Here tx by the implicit definition in the equation above are independent stochastic
variables with moments following directly from 2.2.2 i.e.

E[t]=0
{E [zk2]= bo,’=c’.

This approximation is simple and in principle the one used by [Journel and Huijbregts,
1978]. The disadvantage is of course that in order for it to be a good approximation the
grid spacing b has to be small. One could contemplate better integration schemes. This
is however not done in this report.

For use in the turning bands method i.e. in formula 2.1.7 we want to have the values of
the stochastic process generated in the points with spacing equal to the bandwidth T
whereas the method described above generates values at points with spacing b, the
magnitude of which is determined by the need of a sufficiently good approximation.
Thus we require that

T=Nzb 224

where Ng is some integer.

31t does not pose any serious problems to prove this if we define all involved integrals as Riemann
integrals. We only approximate with Riemann sums.
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Another method for generating realizations of one dimensional processes is the FFT
method which is advocated in [Tompson , Ababou and Gelhar, 1989].

2.2.1. Random number generator

The random number generator currently used in HYDRASTAR to generate random
reals uniformly distributed on the interval [0, 1] is based on a combined linear
congruential generator taken from [ Brately, Fox and Schrage, 1987], claimed to
originate from L’Ecuyer:

x,,, = 40014*x , mod 2147483563
Y, ., = 40692* y mod 2147483399
z,,, = (% .+ ¥,,)mod 2147483563

yielding a random real

r., = z,,/2147483563 . 22.1.1

1+

This has proven to be fast and is claimed to have been extensively checked. In
particular it has good spectral properties, a very large period and do not suffer from the
well known weakness of linear congruential generators of having successive
overlapping sequences of numbers falling on parallel hyperplanes. It should be portable
across all machines having a word length of at least 32 bits.

In order to validate this generator further we have also used the following generator
employed by the PROPER Monitor, see [McGrath and Irving, 1975],
x,,, =5"*x mod2". 22.12

that have been thoroughly tested [Porn, 1986], [Coveyou and MacPherson, 1967].
Comparisons has been performed between semivariogram functions estimated from
series of one dimensional realizations using either one of these random number
generators and the results are almost identical. See section 6.1.

Due to the difficulties in handling the large integers involved in the generator 2.2.1.2 it
is slower than the generator 2.2.1.1 and this is the reason for choosing the latter.

2.2.2. Application to spherical and exponential models

Two isotropic covariance models C(r) are often used [Journel and Huijbregts, 1978],
the spherical model

3r 17
C(r):{v(l 2(1+2a3) 0<r<a
0 r>a

and the exponential
C(r)= Vexp— Ar) r20

where V signifies the variance, r the norm of the vector separating two measurement
points, i.e. the lag vector and a is a range parameter.

According to 2.1.6 we derive the corresponding covariances required for the line
processes as
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V(1—31+2—§3—) 0<s<a
C(s) = ates =
0 s>a

and
C(s)=V{1-As)exp(- As) 520

respectively.

For these two models we propose to use convolution separations of the type 2.2.1 with
the convolution function f given by [Journel and Huijbregts, 1978, p 507 - 508]

172

12V a

< —

fuw) = ( aa) * <3
0 lu] > -é‘l 2221

and
1/2
f(u)z{z(m) (1- e ™ u>0

0 u<0 2222

respectively. It is easily verified by direct, although somewhat tedious, computation that
these functions satisfy the equation 2.2.1. However it is not clear whether these
particular choices are the best.

Now we want to specialize the approximate formula 2.2.3 to these convolution
divisions. In the spherical case we write
(k+‘;)b

al2 R
Y(ib)= [f(ndT(r—i=3, [f(rydr(r- ib)

- k=-R
“2 (e-3)

R
= 2 fCkb) L
k=-R 2.2.2.3

with
(k1)
= [dr (r)
(e-5)
and thus we require that

a=(2R + )b, 2224

For the choice of the important parameter R [Journel and Huijbregts, 1978]
recommends the value R = 20.

In the exponential case we first approximate
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4/2

Y (ib)= [f(r)dl (r = i) = [ (r)dT (r — ib)
0 o

the error associated with this approximation can be estimated by

B 7]
/% 3 Iy
E|| [f(raT (r - iB) [reryar
[ \4/2 /1 _ an _ _25¢7° - _
[ /412 \T T4 ) T 1-25¢7"° 3.3E —4.
gl [7(ndr (r - ib) Jrova
L\ o J ] 0
Approximating further
4a gr (k+1)b
v (ib) = [f(ndl (r = ib) =Y, [f ()T (r - ib) =

iZ;f (( k + -;—) b) L 2225

and we require that
(8R +Db=4a,. 2226

where the value of the parameter R again is recommended to be chosen equal to 20 by
[Journel and Huijbregts, 1978].

These formulas differ in details only from those of [Journel and Huijbregts, 1978].
However the formula 2.2.2.3 together with 2.2.2.4 generates five to ten times more
accurate values than the corresponding formulas in [Journel and Huijbregts, 1978] due
to better integral approximation. Unfortunately no such cheap improvements resulted
by using the formula 2.2.2.5 together with 2.2.2.6 instead of the counterparts in [Journel
and Huijbregts, 1978]. As pointed out in the end of 2.2 one should try to improve the
scheme for numerical integration in the exponential case.

2.2.3. Corrections of the approximative formulas

In order to check and correct the approximations above resulting in the formulas 2.2.2.3
and 2.2.2.5 we calculate the covariances from the approximative expressions directly.
Starting with the spherical case we note the formula

R

R
EY (b)Y (ib+sb)]= Y Zf(kb)f("'b)E[’ it s,

'=—R k=-R

Since

o itk+s=k

Ere .t, = ,
[fe-iemieid {o ifk+5#k

we have in the case s > 0 (note that s is an integer)
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R
E[Y (b)Y (ib+ sH)] = 67 Y f(kb)f((k+ $)b) =

k=—R
2 212V
O'
k=-R 4
c b’li‘f € ~(R*+ R+ L} + 3(2R*+3R*+ R)) 2231

and in particular by putting s = 0 we obtain the variance as
Ely (in)’]= o—‘zbz%(ZR *+3R*+R).

This should be compared with the required value V.
The approximative formula 2.2.2.3 is then corrected with a multiplicative constant

~1/2

[c,’b%( 2R+ 3R>+ R)]

in order to give the correct value of the variance. Thus

3V R
v (ib) = ke, _.
\/0;7(2R3+3R2+ R) k:z.k £

which is the formula used in HYDRASTAR for simulating processes with spherical
covariances. The value of R currently used is 20, the stochastic variables ty are

uniformly distributed in the interval [-0. 5, 0. 5] and thus o; = 1/12.

Tuming to the exponential model we perform a similar computation

8R-s

Ely(iY(ib+sH)l=06Y f((k+9)b)f((k+3+ 5s)b) =

8R~s
4quzeu(m) E (1 _ lb(k + %))(1_ ).b(k + 5+ 31)) g2k
k=0

This series is possible to calculate by for instance neglecting the influence of the tail of
this power series and using the formula for a geometrical series. Since this involves
tedious computations which are prone to error we put s = 0 and write instead

8R
E[y (i6)")= a0e» S (1- 1b(k + 1)) 28t = /257 5
k=0
with

8 R
Z=Y(1-a(k+ ‘—2))2e-w*.
k=0

4This equality requires some calculations,
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Recognizing that this should be equal to V we get the correction factor

-1/2

(4lq2e"“’2)

and thus the formula used in HYDRASTAR for simulating one dimensional processes
with a covariance function of exponential type is

¥ (ib) = atlzz 20(1— Mk +5p o, .

where the value of R and the stochastic variables tx are the same as the ones used in the
generation of the spherical model.

2.3. Line generation

Given the possibility to generate the one dimensional processes Y one would then
proceed to generate three dimensional realizations from the approximative formula

r( == Sy (ni) L),

Recalling formula 2.1.1 it would be natural to choose the lines ]j in an evenly spread
fashion over the unit sphere as if evaluating an integral numerically. However itis not
easy to identify directions that are evenly distributed on the unit sphere for an arbitrary
number of lines. Therefore this method is usually restricted to taking N = 15 lines
joining the mid-points of the opposite edges of a regular icosahedron which is the
regular polyhedron with the maximum number of faces (in fact 20 faces). We will in
the following refer to such a set of lines as an icosahedron set. For a discussion on how
to do this in practice see [Journel and Huijbregts, 1978, p. 503]. On the other hand
formula 2.1.3 suggests drawing the lines randomly from a uniform distribution on the
half unit sphere.

A study of the merits of different schemes for line generation has been made by
[Tompson, Ababou and Gelhar, 1989] from which the following discussion is inferred.

The use of N = 15 evenly spaced lines reproduces the mean and variance statistics
rather well but the realizations show a number of sets of parallel, linelike patterns. The
appearance of these is explained by the following reasoning.

In Fig. 2.3.1 the process of simulating a random function with the turning bands method
is depicted in two dimensions and using three lines. It is then clear that when averaging
the contributions from the three lines the spatial variability along lines of type A

becomes roughly o if the variability of each line process is 6. However the spatial

variability on lines of type B only becomes roughly 332- o since the contribution from the

line perpendicular to it, i.e. line 2, is constant in each separate realization. Also the
spatial average along the line of type A becomes approximately zero whereas the spatial
average along lines of type B is determined by the contribution from line 2.



"b
/ \A» ' o Line 3
1

)
Line A D

’ Line B

Fig. 2.3.1. Explaining the origin of linelike patterns.

It is important to realize that the magnitude of this effect depends on the number of
lines and not on their orientation. We will make use of this fact later on.

The alternative approach of using a larger number of randomly chosen lines, N = 100
seems to be the recommended value, removes this effect but will of course increase the
computational burden. Also the variability for the covariance estimates, both between
different directions of the lag vectors used in the covariance estimation, and between
successive runs are increased in comparison with the case of evenly spaced lines.

Thus it seems to be a good idea to use several icosahedron sets all subjected to a
random rotation characterized by a rotation vector chosen from a uniform distribution

ie
co/.=27tUj j=123

where Uj is uniformly distributed over [0, 1] and j, j = 1, 2, 3 are the components of
the random rotation vector each giving the rotation angle around the j:th coordinate
axis. Results from these different schemes of line generation are shown and discussed

in section 6.2.
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3. THE HYDROLOGY EQUATION AND ITS NUMERICAL
SOLUTION

The hydrology equation solved by HYDRASTAR is
VK, (x)V|{h) (x)=0 3.1

where K is the isotropic conductivity at the averaging scale s and (h)' is the averaged
hydraulic head i.e.

(h):= V:(x)1h _QI J/(u)du

v (ona

where Qy is the void space i.e. the fractures, V(x) is the averaging volume and | - [is a
general notation for volume, or size, of a set. For more details on this see [de Marsily,
1986].

The corresponding integral equation is

[K(OVIR(Has(® =0 32

where S is the surface of an arbitrary volume V and dS is its directed surface
differential.

The integral equation above is solved numerically by a finite difference approximation
derived from the specialization of 3.2 to parallelepipeds the boundary surface of which
consists of six rectangular faces. These parallelepipeds are referred to as the mass
balance elements. This is represented by a staggered prismatic mesh, that is the head
nodes are situated at the midpoint of the parallelepipeds and is given by

(il—l)s1+(iz—l)s2+(i3—l)s3 ISikSNk,k=1,2,3

where s; j =1, 2, 3 are the basis vectors of the prismatic mesh and N are the number of
head nodes in the direction k, k = 1, 2, 3. The conductivities are given on the translated
nodes situated on the faces of the parallelepipeds i.e. at

[(i,—%)sl+(i2— s, + (i,— s, 1<Si<N-L1<i <N, k=23

(i,-Ys+(i,-3)s,+(i,— s, 1< <N,-L1<i <N, k=13

(i,-Ys+(,-0s,+(i,—3)s, 14 <SN,-L1<i <N, k=12
The values of the conductivities at these nodes are denoted

K(ii,i) 1Si<N-11<i <N, k=23

Ky(ipipi) 1S, <N,—=1,1<i, <N, k=13

K(inini) 1€iSN,-11<i <N, k=12

respectively. See Fig. 3.1 where the computational atom is depicted.
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h(i1,i2,i3+1) R

K3(1,i2,i3) g

h(il,i2+1,i3)

K2(i1,i2,i3)

h(i1-1,i2,i3)  Kl1(@i1-1,i2,i3)

i2,13) K1(1,i2,i3) h(i1+1,i2,i3)

K2(i1,i2-1,i3)

. A 3-direction
h(il,i2-1,i3)
<« 2-direction
K3(il1,i2,i3-1)
»
1-direction
h(il,i2,i3-1
( ) l
Fig. 3.1. The computational molecule for the hydrology equation 3.1

employed in HYDRASTAR.

The advantage with this is twofold both resulting from the absence of interpolation of
conductivity values. First a speed increase results in the solver as a result of the fact that
no interpolation takes place. Secondly there is no uncontrolled smoothing of the
simulated conductivity field which would result from interpolation. The obvious
disadvantage is the increased need for storage.

From these meshes the finite difference equation at the node (iy, i2, i3), 2 <ij < Nj- 1
resulting from 3.1 is written
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T(h=Lipi)h(i—1 0, i)+ Ty(ys by 1) (i + 1 b) +

T s iz_ L i3)h(i1’ iz" 1, is) + Tz( i iz’ is) h( i i2+ 1, is) +

Ts( e iz’ is - 1) h(ix’ iz’ is - 1) + T3( I S i3) h( L iz’ I+ 1) -

D( iv i2, i3) h( i, i2, is) =0 33
where
( .. 5,5, ..
T1( 11’l2’ ls) = S1 K1( 11’ 12' la)

C . 5,83 C. .
T,( iy iy i) = s, Kz( sy By)

C . $,5, ...
\Ta( g iy 13) = S, Ky(iyr iy iy) 34

A

and
D(il’ iz’ is) = Tl(il -1 iz’ ia) + Tl(il’ iz’ is) +
Tz( i I— 18 is) + Tz( L, iz’ is) + Ts( i, 9 1) + Tz( il’ iz’ is) . 3.5

Some further information on this topic is contained in section 7.1 These equations are
then solved employing a conjugate gradient algorithm, see for instance [Golub and van
Loan, p 353 - 3801].
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4. ESTIMATION AND CONVERGENCE OF STATISTICS

In this section we shall describe the way ensemble quantities, such as expectation and
semivariogram functions, associated with the simulated fields are estimated.

In principle one could regard nodal values of different involved fields as separate
stochastic variables. One could then estimate various ensemble moments from a set of
independent realizations. In this chapter, let us introduce the notations X(iy, ip, 13),
Y(i1, i, i3) as dummies for two, possibly identical, fields of interest. We could imagine
X being hydraulic head and Y being conductivity or for that matter they both being
equal to hydraulic head. Then we write the estimates as for instance

L 1w (D, . . .
E[X(z,,zz,za)]z—N—ZX (11,12,13) 4.1
j=
or
[V Y s . 2
E[5(Y (1, 17 = X (i i) ] -
N 2
1 Dysw w o oy, . . .
%'N_Z(Y J(ll’lz’zQ—X ’ (4o by 13)) 4.2
j=1

where superindex (j) signifies the j:th simulation. The advantage is that no stationarity
assumptions are needed and that the terms in the series are independent.

The obvious disadvantage is that a very large number of realizations are needed to
obtain accurate values. This can be compared with the situation of spatial inference
where there is only one realization and the ensemble averages of the above type is
replaced by spatial averages

E[X (8]~ 5 2X(4)

or

N L
2 1 2
B30 (€ + v) - X ]~ 452 2(r (& + w) - X (5)) .
j=ll=
This requires however some assumptions of stationarity. In the first formula we require

that E[X(&j)] is approximately constant independent of j and also in order that this
estimate should be a good one, that the sample domain, i.e. the domain enclosing the

&;:s, should be large in comparison with the correlation scale of X(&).

2
In the second case we must require that the term (Y ( g+ I//,) -X ( £ 1)) has an
approximately constant expectation value, independent of j and I and also, as above,

that the sample domain containing the pairs (§;, y1) should be large in comparison to

the correlation scale of (Y (& + w,) — X (fj))z.
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Summing up, what is needed in order to obtain spatial averages which are good
approximations of their ensemble counterparts is that the uantities in question has
expectation functions that are approximately constant over several correlation scales.

In order to get the the best out of two worlds the approach here is to mix the two
recognizing that even if the condition for obtaining a good spatial average estimate is
not fulfilled with regard to sufficiently large sample domains spatial averaging can be
used to reduce the variance of the summands in the formulas like 4.1 and 4.2 and thus
reduce the number of iterations needed to get a “sufficiently small “ variance of the
output statistic. That is we replace these formulas with

E[X (P)] = 'N'II'F[EZ xVe)

j=lkeP

and

E[+¥ (P + L) - X (P))]=

e E 206+ v - x8) 43

/=1§.5PV‘ eL

Here P is a spatial averaging domain, L is an averaging domain in the lag space for
which we will use the term lagclass and in agreement with the previously introduced
notation | - | signifies the number of points or lags in the averaging domains. However
we retain the requirement that the involved expectation functions should be
approximately constant over the averaging domains

To exemplify the influence of increasingly larger spatial averaging domains P we show
the development of the maximal difference between successive estimates of the
semivariogram function for hydraulic conductivity i.e.

el (.23 P 1)

where IV (P, L)) is the semivariogram estimate using j Monte Carlo iterations, Ljis a
lagclass, and P is set of nodes (see 4.3). This is done in a situation where we know that
the expectation value function of the conductivity is constant and gives an intuitive
image of how the fluctuation of the statistic diminishes.

The diagrams plot

ma{l’ (P, L) - I (P, L,)|
log— v

versus log(j). Here V is the known value of the variance of the hydraulic conductivity.
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Covariance model: Spherical
Range parameter, a ( see section 2.2.2. ): 1.0
Bandwidth factor, f (see section 6.2.) 1.0
Bandwidth, T (see section 6.2.): 0.33
R (see section 2.2. ): 20
Number of icosahedron sets (see section 2.3. ) : 1
Number of random lines (see section 2.3. ) : 85
Spatial sample size(for head), | P | : 27,729, 3969
Spatial sample size(for head), I L | 1
Number of realizations: 100

log (difference/V)

0 - y =0,072-0,913x R=0,87
_1 -
-2 -
log(1)
-3 T 1
0 1 2
Fig. 4.1. Successive differences, | P | = 27 (points)
log (difference/V)
0 - y= -0,341-0,973x R=0,92
_] -~y
-2 -
Tog(1)
-3 Y Y 1
0] 1 2

Fig. 4.2. Successive differences, | P | = 729 (points)
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log(difference/V)

O -
y= -0562-1,019x R=0,93
-‘ -
_2 -
_3 T T T 1
0 1 log(i) 2
Fig. 4.3. Successive differences, | P | = 3969 points

Note in this connection that the convergence studied here is in terms of maximum
norms over the whole domain of definition of the involved semivariogram functions.
This is very tough requirements and it is clear that it is the lag class with the least
number of lags that determines the number of iterations needed to get “sufficiently
small “ variance of the output statistic. Thus the governing principles of lag class
divisions should be

- As already pointed out the semivariogram function should be
approximately constant over a lag class. If we choose too large lagclasses
our estimate, which is like the average of the semivariogram functions over
a lag class, may deviate substantially from point values of the
semivariogram function inside the lag class.

- The number of lags should be approximately constant when comparing
between different lag classes in order to achieve a uniform convergence.
That is one should avoid to have lagclasses containing very few lags in
comparison to others.
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5. PERTURBATION SOLUTION

In the following we will develop the first order perturbation solution to the stochastic
hydrology equation

VKVH =0, 5.1

which is the same as equation 3.1, in a domain Q with K (conductivity) being a known
stochastic process and H (hydraulic head) being a stochastical process unknown apart

from on the boundary of Q, dQ. This will be done following the references [Gelhar and
Axness, 1983], [Bakr et al, 1978] and [Neuman, Winter and Newman, 1987] closely
and treating the stochastical processes rather freely. In fact without motivation we will

- assume that our processes are differentiable,
- interchange the order of expectation and differentiation and
For more precise formulations in these matters the reader is referred to [Doob, 1953].

We start by rewriting the equation in terms of the log conductivity Y=In(K)? as

V'H+VYVH=0 5.2
and then dividing the stochastic functions as

Yy=(r)+7Y

H=(H)+ H

where angular brackets indicates expectation value.

Introducing this in 5.2 we have
V(H)+ V' H + VY )V(H)+ VY \VH + VY'V(H)+ V¥'VH =0

Now we want to approximate this equation in the case of the primed quantities being
small by neglecting products of primed quantities to obtain

VH)+ V' H + V(Y [V(H)+ V(Y )VH + VY'V(H) = 0 53
and as a consequence obtain, by taking the expectation of the above equation,

VX H)+ V(Y )V{H)= 0. 5.4
By using

’ ’ 12
K=exp({Y)+ ¥Y') =—exp ((Y))(l +Y + —2171’ +)
and the expectation of the first order approximation of the expression above

(K)=exp(fr )

we can write this analogously with 5.1 as

5Note the temporary redefinition of Y from log(K) to In(X).
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Vik)V(H]=0. 5.5
The mean removed form of 5.3 is

V' H + V[V WWH + VY'V{H]=0 5.6
or even better

VK WWH = - (K )V(H VY’

where { H) can be determined from 5.5 and thus is regarded as known.

This is a much simpler problem than the corresponding equation 5.1 since the
uncertainty is only present in the right hand side. Thus th= solution can be expressed
with the aid of a Greens function and the moments of H follow as closed expressions
involving the moments of Y. Let us also point out in this connection that the previous
first order perturbation approach is equivalent to calculate

dH
ZY—((Y))dY

where the derivative involved are a so called Frechet derivative. This is true since the
approximations are consistently made to the first order. This is not respected in [Gelhar
and Axness, 1983] where the development is an inconsistent mix between first and
second order approximations. This is correctly pointed out in [Neuman et al, 1987].

We now insert the extra assumption that Y is second order stationary and in particular
that the expectation of Y is constant. This assumption does two things. First it
simplifies the appearance of the equations 5.5 and 5.6 even further. They are reduced to

VXH)=0 5.7

and
VP H +VY'V(H)=0 5.8

respectively. Secondly, adding the assumption that the studied domain Q is the whole

three dimensional space, R3, we infer that Y~ has a spectral representation and thus we
are in a position to solve the equation 5.8 by spectral techniques. In order to do so we
must unfortunately introduce some more assumptions and these are of a worse kind
than the previous ones. The reason for this is that they are assumptions on the solution.
This kind of assumptions, especially of stationarity, is quite common in the field of
stochastic partial differential equation and are known as dishonest hypotheses, see
[Beran]. Thus the first dishonest assumption is to assume that H” is stationary and the

second that V{H )is a constant. The second assumption can be derived from another
assumption namely that (H ) equals a linear function at infinity. This follows from 5.7.
Accepting these assumptions we have that, according to the spectral theorem for
stationary processes [Yaglom, 1962], there exist complex random measures dZy(E) and
dZy(&) with the properties

E(dzZ,(M))=0,

E(dz,(M)z,(M))=0 i M~nM=0,
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E( dz,(M)) =0,
E(z, M)z, (M) =0 ifM~nM=0,
where superindex * signifies complex conjugation and moreover

Y'(x)= [e*taz, (&)

3
R

H(x)= [e**dz (9.
Rl

It is true under fairly general conditions that

VYo = [ige*daz, (&

RS

VP H (x)= j- lglze"‘"f dz,( &

and thus that the equation 5.8 has as its spectral counterpart

Edz (&) =- iEV|H)dz, (&)

or

Az, (& =--LeViH)dz, (). 59

3

where ¢ is the wave vector and products involving it are scalar products. We stress

that this presumes that V{ H} is a constant, that the primed quantities are stationary
with zero expectation value and of course that the domain is all of R3. From 5.9 we now
obtain the relations between the spectral densities as

S (&dE= %( EV(HY)' S, (&) de 510

where the spectral densities are defined by
{S,,(é)dé =E[az,az,’]
Sy (§)a¢ = E[dz,az,"] .

In an analogous fashion we may also express the spectral density for the Darcy velocity
in terms of the spectral density for the conductivity. Starting with Darcy's law we have

g=—exp(ly )+ Y)(V(H)+VH) =

— exp({Y ))(1+ Y+ iy’ 4 ...)(V(H |+ VH)
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and neglecting terms of second order as above we obtain

g=—expt D(VIH)+VH + Y'V(H))
We get for the average

(g)=—exp({r hV{H 5.11
and the average removed form becomes

g=—explly D(Y'VIH)+VH). 5.12
We also point out that 5.7 and 5.8 or 5.5 and 5.6 in the case of nonconstant expectation

of the log conductivity follows from 5.11 and 5.12 if we invoke the perturbed form of
the continuity equation for incompressible stationary flow i.e.

Vig)=0
and
Vq’'=0.

The spectral relationship corresponding to 5.12 is deduced, again under the assumption
that (¥ ) and V{H) are constants to be

dz (&) = - exp((Y D(dz,(EV(H) + i&dZ (&) =
(q)dz, (&) - exp(lY ) i&dZ, (&)

where we also used 5.11 in the last equality. This is a vector relationship, in particular

the dZqg(§) is a vector valued measure with three components. This results in a tensor
relationship for the spectral densities after first using 5.9 and 5.11 to obtain

az,(£) = (1 - 5?:’ )«q)dz,@) 5.13

we then have

S(8) = (l - 5-5%6’ )thq)’(l— 6-5-1;5)9,(5)- 5.14



34

0,02 A

— Parallel
— Orthogona!

0,01 4

Lag distance

O,OO * 1 o 1 M ¥ v 1
0 10 20 30 40
Fig. 5.1. Diagram showing the head semivariogram functions obtained from

the analytical solution 5.15 in the direction parallel and orthogonal to
the head gradient using the following parameters:

Covariance model: Exponential
Range parameter, a ( see 2.2.2. ): 1

Variance of 10logK: 0.01
Gradient, ||[VH ||: 1

Head variance, o, 2: 0. 0177

Now in order to use these results in verification purposes we want to translate the
spectral relationships into relationships between the covariances. In [Bakr et al, 1978]
the resulting covariance for the head is calculated given an exponential covariance
model for the conductivity. Explicitly
= o 2l
R, (x)= 0,7
results in a spectral density for the conductivity

3

2
5, A
50 =(3) —A—
(1+ 2%[)

and thus from 5.10 we obtain the spectral density for the hydraulic head as

2 2

O\ (EV(H) A
5,6 =- (%) L24D -,

(14 2%

which finally leads to a covariance for the head as given in [Bakr et al, 1978].
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CH(r,x)_“V(HUZG /’L{( it ¢ 4 (6792

(8cos? y - 1)[(1 - e"’)—%a— - e"’(1 + -‘—},— + —%)] 5.15

where we have introduced the auxiliary notation

R
P==7-
We note in particular that letting r tend to zero we obtain the head variance as
242
, IVH o, 2
o =T3

The graph of the semivariogram corresponding to this covariance function is shown in
Fig. 5.1.
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6. RESULTS OF STOCHASTIC SIMULATIONS.

6.1. One dimensional realizations

In order to test the line process generator described in section 2.2 and the different
random number generators described in section 2.2.1 some runs were made for the
spherical and exponential case and the covariances or equivalently the semivariograms
were estimated on the lag distances kT, k =1, 2, 3. . Nch. Here T signifies the
bandwidth and the integer Ny, is the approximative number of bands over which the
line processes are correlated. The integer N, is given by

- 2R
Ny=-+1

in the spherical case and

Nc,,=%,5;+1

in the exponential case. We used the rule of thumb that the practical range of a process
with an exponential type covariance is three times its range parameter, a. For notations
see sections 2.2 and 2.2.2, in particular equations 2.2.4, 2.2.2.4 and 2.2.2.6.

The parameter choices involved when using the convolution method is described in
section 2.2, In fact for the one dimensional processes the only interesting parameter is R
which determines the accuracy of the approximation of the convolution integrals in
equations 2.2.2.3 and 2.2.2.5. For this parameter [Journel and Huijbregts, 1978]
recommend the value R = 20 in both the exponential and spherical cases and this value
is consistently used in the following diagrams. The random numbers ti is consistently
chosen as uniformly distributed in the interval {-1/2, 1/2].

The diagrams on the following two pages 6.1.1 - 6.1.4 show the one dimensional
semivariogram as a function of lag distance using a spherical model and the two
different random number generators described in section 2.2.1. We note that the
estimated semivariograms are very close to the exact ones and thus that the
approximation of the convolution integral 2.2.2.3 is quite sufficient. It should even be
possible to reduce the number of points in the approximation. Moreover we note that
the random number generators 2.2.1.1 and 2.2.1.2 give similar result and this is a
verification of the random number generator 2.2.1.1.

The next two pages, diagrams 6.1.5 - 6.1.8 show the same experiments but for the
exponential case. Here we draw the same conclusions about the random number
generator but we note that the agreement between the exact and estimated values has
been substantially deteriorated in comparison to the spherical case in spite of the much
larger number of points used in the approximation 2.2.2.5 as compared to 2.2.2.3. The
reason for this is probably that the equidistant approximation used in the
approximations of the convolution integrals is suited for the function given in 2.2.2.1
whereas it is somewhat unsuited for the function given in 2.2.2.2.
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Covariance model: Spherical
Range parameter, a (see section 2.2.2.) 1.0
R (see section 2.2.2.) 20
Bandwidth, T (see section 2.2.) 0.333
b (see section 2.2.) 0. 025
Ng (see section 2.2.) 3
Random number generator 2.2.1.2.
Random measure, t;, (see section 2.2.) U-12, 1/2)
Ot, see 2.2. 1/12
0,015 T
0,010
1 -=- Simulated value
— Exact values
0,005 +
Lag distance
0,000 ———
0,00 0,20 0,40 0,60 0,80 1,00 1,20
Fig. 6.1.1. One dimensional realizations in the spherical case with the random
number generator 2.2.1.2. Exact and estimated values for the one
dimensional semivariogram as a function of lag distance.
0,005 7
0,004 4
0,003 - -»- Relative error
0,002 4
0,001 o
-0,000 +
-0,001 -
4 Lag distance
-0,002 T T Y T Y T T T Y T Y 1
-0,00 0,20 0,40 0,60 0,80 1,00 1,20
Fig. 6.1.2. One dimensiona! realizations in the spherical case with the random

number generatcr 2.2.1.2. Relative error as a function of lag distance.
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Covariance model: Spherical
Range parameter, a (see section 2.2.2.) 1.0
R (see section 2.2.2.) 20
Bandwidth, T (see section 2.2.) 0. 333
b (see section 2.2.) 0.025
Ny (see section 2.2.) 3
Random number generator 2.2.1.1.
Random measure, t; (see section 2.2.) U-1/2, 1/2)
Ot (see section 2.2.) 1/12

0,015 -

0,010

-=- Estimated value
0,005 + — Exact values

Lag distance

0,000 T T \ T T T Y T Y T Y 1
0,0 0,2 0,4 0,6 0,8 1,0 1,2

Fig. 6.1.3. One dimensional realizations in the spherical case with the random
number generator 2.2.1.1. Exact and estimated values for the one
dimensional semivariogram as a function of lag distance.

0,008 A
-=- Relative error

0,006 +

0,004 4

0,002 4

Lag distance
0,000 * T v T ' T Y T T T Y 1
0,0 0,2 0,4 0,6 0,8 1,0 1,2
Fig. 6.1.4. One dimensional realizations in the spherical case with the random

number generator 2.2.1.1. Relative error as a function of lag distance.
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Covariance model: Exponential
Range parameter, a (see section 2.2.2.) 1.0
R (see section 2.2.2.) 20
Bandwidth, T (see section 2.2.) 0.333
b (see section 2.2.) 0. 025
Ng (see section 2.2.) 3
Random number generator 2.2.1.2.
Random measure, t; (see section 2.2.) U-1/2, 1/2)
ot (see section 2.2.) 1/12

- Simulated value
— Exact value

Lag distance

4

Fig. 6.1.5. One dimensional realizations in the exponential case with the random
number generator 2.2.1.2. Exact and estimated values for the one
dimensional semivariogram as a function of lag distance.

Relative error

0,03 -
0,02 -
-=- Relative error
0,01
Lag distance
0,00 y T y T T T 1
0 1 2 3 4
Fig. 6.1.6. One dimensional realizations in the exponential case with the random

number generator 2.2.1.2. Relative error as a function of lag
distance.
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Covariance model: Exponential
Range parameter, a (see section 2.2.2.) 1.0
R (see section 2.2.2.) 20
Bandwidth, T (see section 2.2.) 0. 333
b (see section 2.2.) 0. 025
Ny (see section 2.2. ) 3
Random number generator 2.2.1.1.
Random measure, ty (see section 2.2.) U(-1/2, 1/2)
Ot (see section 2.2.) 1/12

-~ [Estimated value
- Exact value

lag distance

4

Fig. 6.1.7. One dimensional realizations in the exponential case with the random
number generator 2.2.1.1. Exact and estimated values for the one
dimensional semivariogram as a function of lag distance.

Relative error

0,03
0,02 -
0,01 -
lag distance
0,00 r T ' T y T v 1
0 1 2 3 4
Fig. 6.1.8. One dimensional realizations in the exponential case with the random

number generator 2.2.1.1. Relative error as a function of lag distance.
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6.2. Three dimensional realizations

The goal of the analysis is twofold

- Show that we can reproduce the semivariograms given as input to the
simulations by performing estimation of the output according to chapter 4.

- Make suggestions for choice of parameters.

Regarding the second point above this report has a serious drawback since no result is
proved to be statistically significant. Then there is always the standard problem with
varying parameters i.e. the number of cases grows very rapidly.

The three dimensional conductivity realizations in this section were all performed on a
prismatic mesh with step vectors s; primarily equal to 1/3, see chapter 3. The resulting
covariance functions were estimated in two directions parallel to the step vectors. We
have found that typically the covariances are too small as compared with the desired
values. This deficiency can be diminished by decreasing the bandwidth, T, but only up
to a certain point. The bandwidth is usually recommended to be chosen as the minimal
distance between simulation points [Journel and Huijbregts, 1978] i.e. in a prismatic
mesh

T = fmin (s, 5,,5,)

where we introduced a bandwidth factor f less than one in order to have some
flexibility.

A characteristic situation is shown in the diagrams 6.2.1 - 6.2.2. The covariance
function in the 1 - direction shows to low values for the lags approaching the range. The
too high values seen for the larger ranges are less serious since the convergence there is
not so good due to a smaller number of samples. As is readily seen the semivariogram
in the 2 - direction shown in diagrams 6.2.3 - 6.2.4 looks better. More important is the
fact that it looks significantly different from the first one. However, here the word
significantly does not attach to it any formal statistical meaning as it should. That is,
ideally we should be able to produce the formal statement “the semivariograms in the

different directions are significantly different on the € -level".

The generated semivariograms are thus apparently anisotropic. This can only be due to
poor convergence as discussed in in section 2.3. We note also that this takes place in
spite of the large number of realizations and the good looking convergence curves, see
diagram 4.3. This is the disadvantage with using random lines.

On the other hand the main advantage with random lines is that one avoids linelike
patterns however this is dependent only on the number of lines as noted in section 2.3.
From this stems the idea already mentioned in section 2.3 to use several icosahedron
sets all subjected to a random rotation characterized by a rotation vector chosen from a
uniform distribution i.e.

o =270, j=123

where Uj is uniformly distributed over [0, 1] and ®; j = 1, 2, 3 are the components of
the random rotation vector. Results obtained from testing this idea is shown in the
diagrams 6.2.5 - 6.2.8 These show some clear improvements in particular the apparent
anisotropy seems to have vanished. However, nothing has been done yet in order to see
if this improvement is significant.
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For the exponential covariance model we present the example shown in the diagrams
6.2.9 - 6.2.12 which have been performed using the line generation advocated above,
that is four random icosahedron sets were used Otherwise the difference with the
previous cases are that the prismatic mesh in this case has unit step length, i.e. sj=1

j =1, 2, 3 and that the spatial sample size is much smaller than in the previous section.

Finally in diagram 6.2.13 a generated histogram is shown meant to indicate the
Gaussian behaviour of the simulated fields .
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Covariance model: Spherical
Range parameter, a ( see section 2.2.2. ): 4.0
Bandwidth factor, f: 0.2
Bandwidth, T: 0. 066
R (see section 2.2.2. ): 60
Number of icosahedron sets (see section 2.3.) : 1
Number of random lines (see section 2.3.) : 85
(Maximal) Spatial sample size, | P | (see chapter 4.) : 3969
Spatial sample size, ILI (see chapter 4.) 1
Number of realizations: 100
0,012 A
0,010 - e
0,008 1
0,006 - - Simulated value
) = Exact value
0,004 -
0,002 - Lag distance
0,000 v T v T T 1
0 2 4 6 8
Fig. 6.2.1. Three dimensional realizations in the spherical case. Exact and
simulated values of the semivariogram for the conductivity in the 1-
direction.

Relative error

0,06
0,04 -
] -=- Relative error
0,02 -
0,00 =
-0,02 A
-0,04 4
-0,06 -
] Lag distance
-0,08 ¥ T v T Y T Y 1
0] 2 4 6 8
Fig. 6.2.2. Three dimensional realizations in the spherical case. Relative errors

of the semivariogram for the conductivity in the 1- direction.



0,012 1
0,010 ———
0,008
0.006 - -s- Simulated value
, - - Exact value
0,004 1
0,002 4 Lag distance
0,000 v T v T T T v 1
0 2 4 6 8
Fig. 6.2.3. Three dimensional realizations in the spherical case. Exact and
simulated values of the semivariogram for the conductivity in the 2-

direction.

Relative error

0,02 -
- Relative error
0,01 =
0,00 =
-0,01
1 Lag distance
-0,02 v T v Y v . . .
0 2 4 6 8
Fig. 6.2.4. Three dimensional realizations in the spherical case. Relative errors

of the semivariogram for the conductivity in the 2- direction.
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Covariance model: Spherical
Range parameter, a ( see section 2.2.2. ): 4.0
Bandwidth factor, f: 0.2
Bandwidth, T: 0. 066
R (see section 2.2.2. ): 60
Number of icosahedron sets (see section 2.3.) : 4
Number of random lines (see section 2.3.) : 0
(Maximal) Spatial sample size, | P | (see chapter 4.): 3969
Spatial sample size, [L! (see chapter 4. ) 1
Number of realizations: 100

0,012 =

0,010 ~

0,008 =

— Exact value

0,006 A
] -~ Simulated value
0,004 +
0,002 - Lag distance
0,000 Y Y T T 1
0 2 4 6 8
Fig. 6.2.5. Three dimensional realizations in the spherical case using four

icosahedron sets. Exact and simulated values of the semivariogram
for the conductivity in the 1- direction.

Relative error

0,01 T
0,00 ¢
-0,01
-0,02
Lag distance
-0,03 v T o T T 1
0 2 4 6 8
Fig. 6.2.6. Three dimensional realizations in the spherical case using four

icosahedron sets. Relative errors of the semivariogram for the
conductivity in the 1- direction.
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0,012 1
0,010 -
0,008 +
0,006 - — Exact value
| -~ Simulated value
0,004 ~
0,002 - Lag distance
0,000 v T Y T r T v 1
0 2 4 6 8
Fig. 6.2.7. Three dimensional realizations in the spherical case using four

icosahedron sets. Exact and simulated values of the semivariogram
for the conductivity in the 2- direction.

Relative error

0,02
0,01
0,00
-0,01 4
-0,02 4
Lag distance
-0,03 Y Y T T Y T v 1
0 2 4 6 8
Fig. 6.2.8. Three dimensional realizations in the spherical case using four

icosahedron sets. Relative errors of the semivariogram for the
conductivity in the 2- direction.
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Covariance model: Exponential
Range parameter, a ( see section 2.2.2. ): 1.0
Bandwidth factor, f: 0.2
Bandwidth, T: 0.01
R (see section 2.2.): 20
Number of icosahedron sets (see section 2.3. ): 4
Number of random lines (see section 2.3. ): 0
Spatial sample size, IP! (see section 4. ): 121
Spatial sample size, LI (see section 4.) 1
Number of realizations: 100
4x0 100 iter.
0,012 1
0,010 B S
0,008 4
0,006 4 - 4x0 100 iter.
' | — Exact values
0,004 +
0,002 4
] Lag distance
0,000 Y T v T ¥ T Y T Y T Y 1
0 2 4 6 8 10 12
Fig. 6.2.9. Three dimensiona: -alizations in the exponential case using four

icosahedron sets. Exact and simulated values of the semivariogram
for the conductivity in the 1- direction.

Relative error

-0,000 4
-0,002 4
-0,004 -
-~ Relative error
-0,006 -
-0,008 -
Lag distance
-0,010 T———r—T—T— T ———p——
0 2 4 6 8 10 12
Fig. 6.2.10. Three dimensional realizations in the exponential case using four

icosahedron sets. Relative errors of the semivariogram for the
conductivity in the 1- direction.
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- 4x0 100 iter.
— Exact value

Lag distance

Fig. 6.2.11. Three dimensional realizations in the exponential case.using four
icosahedron sets. Exact and simulated values of the semivariogram
for the conductivity in the 2- direction.

Relative error

0,04 1
0,03 4
0,02 -
-~ Relative error
0,01 4
0,00
] Lag distance
-0,01 T T T T Y T T T Y T Y 1
0 2 4 6 8 10 12
Fig. 6.2.12. Three dimensional realizations in the exponential case.using four

icosahedron sets. Relative errors of the semivariogram for the
conductivity in the 2- direction.
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Covariance model: Spherical
Variance 0. 01
Range parameter, a ( see section 2.2.2. ): 1.0
Bandwidth factor, f: 0.2
Bandwidth, T: 0. 066
R (see section 2.2. ): 60
Number of icosahedron sets (see section 2.3.) : 1
Number of random lines (see section 2.3. ) : 85
Number of samples 441

Histogram of X{: Column 1
80 b} A i L L L & L

704

604

504

404

Count

304

204

104
ol L . 1 e |

L] b L ) T Li * T A L] ¥ ¥

L] T T v v T T
-3 -25 -2 -15 -t -05 0 .05 .t .15 .2 .25 .3 .35 .4
Column 1

Fig. 6.2.13. Showing a histogram generated from actual simulations.of
conductivity values.
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6.3. Comparison with the perturbation solution

Approximating the whole three dimensional space with the following finite domain:

70
Boundary
conditions
40
Head
gradient
30
N
Estimation
domain
0
0 10 20 30
Fig. 6.3.1. Showing a cross section of the three dimensional computational

domain used for comparison with perturbation solution.

All the points used in semivariogram estimation, see 4.3, is confined to the so called
estimation domain which is located roughly one correlation scale away from the
boundary. This is inferred from a look at Fig. 5.1.

On the boundary the head is fixed according to
HKx)=g: - x+ c.

A large number of realizations were made on this configuration and slightly modified
ones. A typical example is shown in diagrams 6.3.2 - 6.3.5 The prismatic mesh used
had the basis vectors sj=1,j=1,2,3.

The diagrams 6.3.2 - 6.3.3 show the exact semivariograms and the Chebyshev
confidence intervals on the 0. 95 -level for the heads in the direction of the gradient and
orthogonal to it. Note that the confidence intervals are entirely based on treating the
statistic corresponding to 4.3 as a sequence of nonbiased independent spatial averages.
Diagrams 6.3.4 - 6.3.5 show the same thing for the conductivities. These are reproduced
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here because of the Chebyshev confidence intervals which are absent in Figs. 6.2.1 -
6.2.12 and also because of the large number of realizations in these computations.

As the reader easily sees the results for the head semivariograms embodied in Figs.
6.3.2 and 6.3.3 are not quite satisfactory. Instead we note the following flaws:

1. Too high semivariogram values for the short lags in the direction of the
applied gradient.

2. Too high semivariogram values for lags orthogonal to the direction of the
applied head gradient.

3. Too low semivariogram values for large lags in the direction of the applied
head gradient.

4. The convergence is bad for large lags in the direction of the applied head
gradient.

Discussing these points one at a time:

Point 1 is probably due to a too coarse mesh. The mesh used (31x71x71=138069 head
nodes) contains three nodes per effective correlation length for the conductivity.
Experiments have been performed with six nodes per effective correlation length for the
conductivity in the direction of the head gradient and this produces a marked
improvement for the short lags in the direction of the applied gradient.

Point 2 is not affected by the refinement mentioned above. The obvious test is to refine
the mesh in the directions orthogonal to the applied gradient directions as well. This has
not been done primarily because the total number of nodes increases as the square of
the number of nodes in the directions orthogonal to the head gradient.

Point 3 is probably due to the finite approximation of the whole space. Tests that have
been performed increasing the computational domain seem to validate this.

There is not much to do about point 4.

Thus we see that in the search of better results we are led to put larger and larger
demands on our computer resources by increasing the mesh density and the size of the
computational domain. The above example is, however, already on the computational
limit.
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Covariance model: Exponential
Range parameter, a ( see section 2.2.2. ): 1
Bandwidth factor, f: 0.2
Bandwidth, T: 0.2
R (see section 2.2. ): 20
Number of icosahedron sets (see section 2.3. ) : 4
Number of random lines (see section 2.3. ) : 0
Spatial sample size(for head), | P | (see chapter 4.): 121
Spatial sample size(for head), | L | (see chapter 4.): 1
Number of realizations: 400
0,02

0= Lower Conf. lev
0,01 4 - Upper Conf. lev
— Exact value

Lag distance

0,00 T  § T 1 d { ¥ 1 v ¥ v 1
0 2 4 6 8 10 12

Fig. 6.3.2. Exact semivariogram and the Chebyshev confidence intervals on the
0. 95 -level for the heads in the direction parallel to the applied head
gradient.

0,02 -

=~ Lower Conf. lev
0,01 = -o- Upper Conf. lev
- Ecaxt value

Lag distance

0,00 Y T v Y v T v T Y T T 1
0 2 4 6 8 10 12

Fig. 6.3.3. Exact semivariogram and the Chebyshev confidence intervals on the
0. 95 -level for the heads in the direction orthogonal to the applied
head gradient.
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0,012 1

0,010
-~ Lower Conf. lev
- Upper Conf. lev
— Exact values

0,008 A

Lag distance
0,006 + T Y T Y T v Y T T Y 1
0 2 4 6 8 10 12
Fig. 6.3.4. Exact semivariogram and the Chebyshev confidence intervals on the

0. 95 -level for the conductivities in the direction of the gradient. The
diagram shows only the upper part since all curves coincide on the
lower.

0,012 1
0,010 1
Lower Conf. lev
] Upper Conf. lev
Exact values
0,008 -
Lag distance
0,006 * T v T Y Y v T T 1
0 2 4 6 8 10
Fig. 6.3.5. Exact semivariogram and the Chebyshev confidence intervals on the

0. 95 -level for the conductivities in the direction orthogonal to
gradient. The diagram shows only the upper part since all curves
coincide on the lower.
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7. RESULTS OF SIMULATION, COMPARISON WITH A
HYDROCOIN EXAMPLE

[Hydrocoin, 1988] was an international effort for comparison and verification of
different groundwater computer codes. This chapter describes how a verification of the
finite difference solver, described in chapter 3, and the particle tracking algorithm in
HYDRASTAR was performed joining that comparison. The two dimensional model in
[Hydrocoin, 1988], level 1, case 2 as shown in Fig. 7.1 is a two dimensional rock mass
intersected by two narrow and highly conductive fracture zones. This is not the kind of
problem for which HYDRASTAR was designed, however, it is possible to use
HYDRASTAR anyway and to represent the fracture zones as deterministic trends.

To avoid the use of excessively many nodes the zones must be taken into account
indirectly. Here is described the methodology used to include small scale structures
such as the highly conductive fracture zones.

7.1. Modelling of conductivity

The numerical method described in chapter 3 requires the approximative evaluation of
s
[x (&)vin) (&)as
N

where S denotes one face of a mass balance element. Ordinarily then this is
approximated as

TI%K )14 (2 = Y (5,

where

ISI is the area of a face of the mass balance element,

dAB is the distance between the neighboring nodes A and B,

K(xB) is the conductivity of the face S of the mass balance
element and

/ !

(h) (x> ( h) (%3) are the nodal values in node A and B respectively of the

hydraulic head.

This approximation leads directly to the equations 3.3 to 3.5.
If a zone cuts through the face the natural analog of the above is

;IS% o (Xas )Rh)/(xA) - (h)f(xB)]

with the effective conductivity calculated from the assumption that the gradient is
constant over the interface S as

ISzouleu + IS - Szouleck

Kg(*)= [S]
Here
ISzone | is the area of the intersection of the fracture zone and the

face of the mass balance element,
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1S-Szone | is the remaining area of the face of the mass balance
element,

Krock is the conductivity of the rockmass

Kzone is the conductivity of the fracture zones.

7.2. Boundary conditions

The primary input data are, referring to Fig. 7.1,

Maximal height of the domain 1100 m
Minimal height of the domain 1000 m
Width of the domain 1600 m
Conductivity for the fracture zones 104 m/s
Conductivity for the rock mass 10-8  mys,

for full de:ails on the problem the reader is referred to [Hydrocoin, 1988].

The boundary conditions are of the noflow type on all side boundaries and with
hydrostatic pressure i.e.

(n) =2 72.1

on the top boundary. Since HYDRASTAR is restricted to a prismatic mesh and a
computational domain in the form of a three dimensional parallelepiped this is
approximated by taking a parallelepiped extending from the bottom of the model to the
low points of the upper boundary where th: Houndary condition 7.2.1 is required to
hold. This is equivalent with neglecting th- »otential drop caused by flow in the upper
parts of the model and will manifest itself ty slightly too high head values in the
results.
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7.3. Results

Calculations on two different meshes were made. Mesh 1 consists of 704 nodes, with
elemental size 50x51 m, and should be considered coarse according to the definitions in
[Hydrocoin, 1988]. Mesh 2 consists of 2880 nodes, elemental size 25x24 m and is
classified as a medium mesh. This classification is based on comparison with the other
finite difference codes participating in [Hydrocoin, 1988].

In mesh 1 the discretisation caused a smoothing of the top boundary head values (Fig.
7.3.1). The medium mesh reproduces these values better, which gives results with a
larger span between the highest and lowest head value for each z, see Figs. 7.3.1 to

7.3.3.

In general the results are in good agreement with the other teams' results, except for a
small offset, around +3 m, in the head values. See Figs. 7.3.2 to 7.3.5. The offset is due
to our approximation of the top boundary values. This could be overcome by either
choosing a more sophisticated way of representing the top boundary or simply using
other teams' calculated head values as our boundary values.

In Figs. 7.3.2 and 7.3.3 the head values are presented for a z - level near but not exactly
on the -200 m and -800 m level, since it is not possible to find a HYDRASTAR grid
that at the same time represents the boundary conditions correctly and has calculation
nodes at the -200 m and -800 m levels.

Fig. 7.3.6 shows qualitative representations of the equipotential lines for the two mesh
densities.

In Fig. 7.3.7 the stream lines from 4 tracers are illustrated. The ability to resolve the
fracture zones depends on the size of the mesh as can be seen from the figure. However
our results are consistent with the ones given in [Hydrocoin, 1988] in that trajectory 2
i.e. the trajectory started at the lowest leftmost position exits through the rightmost
fracture zone, see Fig. 7.3.9.

Finally Fig. 7.3.8 shows the accumulated travel distance as a function of time for
trajectory 2. These graphs are in good agreement with [Hydrocoin, 1988], see Fig.
7.39.



57

1 2 5 8 9
3 4 6 7
19 17
18
15 14 13 12 11 10
Fig. 7.1. Geometry of the modelled domain from [Hydrocoin, 1988].
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Fig. 7.3.2. Head values from HYDRASTAR at level -207 m for mesh 1 (above)
and at level -188 m for mesh 2 (below).
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Fig. 7.3.3. Head values from HYDRASTAR at level -821 m for mesh 1 (above)
and at level -808 m for mesh 2 (below).
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Fig. 7.3.6. Qualitative representation of the equipotential lines from
HYDRASTAR and for mesh 1 (above) and mesh2 (below).
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Fig. 7.3.7. Stream lines from HYDRASTAR for meshl (above) and mesh2
(below).
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