

Discription of background data in the SKB database GEOTAB

Ebbe Eriksson, Stefan Sehlstedt

Swedish Geological Co, Luleå

February 1989

SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM

TEL 08-665 28 00 TELEX 13108-SKB

DESCRIPTION OF BACKGROUND DATA IN THE SKB DATABASE GEOTAB

Ebbe Eriksson, Stefan Sehlstedt Swedish Geological Co, Luleå

February 1989

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31) and 1987 (TR 87-33) is available through SKB. SWEDISH GEOLOGICAL CO Division of Engineering Geology Client:SKB REPORT IRAP 88061 Date:890201

DESCRIPTION OF BACKGROUND DATA IN THE SKB DATABASE GEOTAB

Ebbe Eriksson Stefan Sehlstedt SGAB, Luleå

February 1989

ABSTRACT

During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called Geotab. Here, the data is organized into six groups (subjects) as follows:

- Background data
- Geological data
- Borehole geophysical data
- Ground surface geophysical data
- Hydrogeological data
- Hydrochemical data

Except for the case of borehole and ground surface geophysical data, described in the same report, the data in each group is described in a separate SKB report.

The present report describes data within the Background data group. This data provides information on the location of areas studied, borehole positions and also some drilling information.

Data is normally collected on forms or as notes and this is then stored into the database.

The background data group (subject), called BGR, is divided into several subgroups (methods).

-	BGAREA	area background data
-	BGDRILL	drilling information
-	BGDRILLP	drill penetration data
-	BGHOLE	borehole information
-	BGTABLES	number of rows in a table
-	BGTOLR	data table tolerance

A method consists of one or several data tables. In each chapter a method and its data tables are described.

i

CONTENTS

1	INTRODUC	TION	•••	•	•••	•	•	•	•	•	•	•	1
2	BGR AREA	BACKGROUNI	D DAT	ГA				•		•	•	•	6
	2.1	AREA	•••	•	•••	•	•	•	•	•	•	•	7
	2.2	AREALIM	•••	•	• •	•	•	•	•	•	•	•	13
	2.3	AREAREF	•••	•	• •	•	•	•	•	•	•	•	14
	2.4	AREAFIXP	•••	•	•••	٠	•	•	•	•	•	•	15
3	BGDRILL -	- BGR DRII	LLINC	ΞI	NFO	RMA	\T]	101	1	•	•	•	17
4	BGDRILLP	BGR DRI	LLIN	1G	PENI	ETF	RAJ	CI(ON	•	•	•	19
	4.1	DRILLPF	• •	•	•••	•		•	•	•		•	19
	4.2	DRILLPD		•	• •	•	•	•	•	•	•	•	20
5	BGHOLE	BGR BOREH	IOLE	IN	FORI	TAN	IC	N	•	•	•	•	21
	5.1	BHNAME .		•				•	•	•			21
	5.2	BOREHOLE		•	•••			•	•	•		•	23
	5.3	HOLEDIAM				•		•				•	26
	5.4	COREDIAM					•	•	•	•	•	•	27
	5.5	CASEDIAM		•		•	•	•	•	•	•		28
	5.6	CASETOP				•	•		•	•	•	•	29
	5.7	BHCOORD	• •	•		•	•	•	•	•	•	•	30
	5.8	BHHIST .	• •	•		•	•	•	•	•	•	•	33
6	BGTABLES -	BGR NUM	IBER	OF	ROV	٧S	IN	I					
	TABLE .		•••	•	• •	•	•	•	•	•	•	•	34
	6.1	ROWTAB .	• •	•	•••	•	•	•	•	•	•	•	34
7	BGTOLR	BGR DATA	TOLE	RAI	NCE								
	BACKGROUNI	D TABLE .	• •	•	•••		•		•		•	•	35
	7.1	TOLR	•••	•		•	•	•	•	•	•	•	35
8	REFERENCES	5		•			•	•		•	•	•	37

APPENDICES

ii

INTRODUCTION

1

Since 1977 Swedish Nuclear Fuel and Waste Management Co, SKB, has been performing a research and development program for the final disposal of spent nuclear fuel. One aim of this program is to gain knowledge of different bedrock properties. Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects.

Large volumes of data have been produced since the start of the program, in the form of both raw data and results. During the course of the research program this data has been stored in various formats by different institutions and companies performing the investigations. It was therefore decided that all data from the research and development program should be stored in a single database. The database, called Geotab, is a relational database, based on a concept from Mimer Information Systems. It has been developed further by Ergodata. The hardware is a VAX 750 computer, located at KRAB (Kraftverksbolagens Redovisningsavdelning AB), in Stockholm. Data is stored on-line on the VAX.

The structure of the Geotab database is described in Figures 1.1-1.4. Geotab is divided into six groups (subjects), Figure 1.1. These are as follows:

-	BGR - Background data
-	GEOLOGY - Geological data
-	GEOPHYS - Borehole geophysical data
-	GSGPHYS - Ground surface geophysical data
-	HYDRO - Hydrogeological data
-	CHEMICAL - Hydrochemical data

In each subject several methods are listed and each method contains one or several tables. In Figure 1.2 the

2

methods for the BGR subject are listed.

Figure 1.3 shows the structure of the method BGHOLE.

The method of data storage in a specific table is illustrated in Figure 1.4. The terms record and field are also defined in this figure.

In this report, the background data subject (BGR) within the Geotab database is described. Here all methods and tables within the BGR group are described. The structure of this subject is as follows:

Subject	Method	Table
BGR	BGAREA	AREA
		AREALIM
		AREAREF
		AREAFIXP
	BGDRILL	DRILL
	BGDRILLP	DRILLPF
		DRILLPD
	BGHOLE	BHNAME
		BOREHOLE
		HOLEDIAM
		COREDIAM
		CASEDIAM
		CASETOP
		BHCOORD
		BHHIST
	BGTABLES	ROWTAB
	BGTOLR	TOLR

The database is continuously updated. Methods, tables or columns may change. This report will be updated accordingly.

Three reports dealing with different data sets stored in the Geotab database have been published to date. These are as follows:

- TR86-22. Description of hydrogeological data in SKB's database Geotab. Bengt Gentzschein.
- TR88-05. Description of geophysical data in the SKB database Geotab. Stefan Sehlstedt.
- TR88-06. Description of geological data in the SKB database Geotab. SGAB. Tomas Stark.

Figure 1.1 Structure of the Geotab database.

Figure 1.2 Structure of the subject BGR

Figure 1.4 Structure of the table HOLEDIAM

BGAREA -- BGR AREA BACKGROUND DATA

2

The BGAREA method provides information on areas where different types of investigations have been conducted or are still on-going. Results from these investigation are stored under other subjects in the database.

The BGAREA - method contains the following tables:

-	AREA	Area	and areacode connection
_	AREALIM	Grid	corner coordinates
-	AREAREF	Area	reference points
-	AREAFIXP	Area	fixpoints

A short list from each table is found in Appendix A.

The areas concerned are of five different types.

- Reconnaissance areas where limited investigations have been conducted. Some ground geophysical profiles were usually measured.
- Investigation areas with one drilled borehole but without a local grid net. Some geophysical logging and hydrogeological investigations in the borehole and core mapping of the drill core may have been undertaken.

Investigation areas with a local grid net. In these areas, a large ground geophysical survey has usually been conducted. Geological mapping has also been performed and a series of percussion and core boreholes have been drilled. Geophysical logging, geological core mapping, hydrogeological measurements and geochemical measurement have been carried out in the boreholes.

- Areas associated with construction sites. The investigations performed at these sites may differ from those described earlier.
- Sites where measurement were taken for consultant assignments. These sites are usually located in Finland.

2.1 AREA

The table AREA contains the area name, the area code and also the name of the topographic map covering the area considered.

If investigation of an area has reached the point where ground geophysical measurements will be taken, a grid net must be available. If possible, the direction of the grid net is selected so that the ground geophysical profiles measured will intersect geological formations (dykes or fracture zones) perpendicularly.

The grid net is established by using a theodolite to construct a frame work (T-lines), and a compass and wooden sticks to mark intersecting lines (H-lines). The grid net is used to define coordinates of boreholes, measuring points, geological observations etc within the area to be examined. Different measurements are then easily related to each other. An example of a grid net plan is shown in Figure 2.2.

Areas with data stored in the database are presented in Figure 2.1. The different areas investigated are listed in Appendix A.

8

GEO_DB .AREA Area and areacode connection

(see record underlined in Appendix A page 1)

Column Key	Text	Example
AREAC *	area idcode	AS
AREAN	area name (geographical)	ÄSPÖ
MAPNAME	mapsheet (map name)	6H
ΡΜΑΡ	square in map	3A
XZERO	RAK x-coordinate where local	
	coordinate are (0,0)	6360253
YZERO	RAK y-coordinate where local	
	coordinate are (0,0)	1550813
ZERO	Z-coordinate(m.a.s.1) where	
	local coordinate are (0,0)	
DIRGRID	grid-system direction,	
	angle between RAK north direction	
	and grid north direction. Negative west	
	of north RAK direction.	-11.77
DEV	angle between RAK north	
	direction and magnetic north	
	direction. Negative west	
	of north RAK direction.	-0.8
RAKDEF	RAK coordinate definition	
	P=definition towards RAK fixpoint	
	O=true RAK fixpoint	
	D=definition on topographic map 1:50000	
	E=definition on topographic map 1:20000	
	F=definition on topographic map 1:10000	
	G=definition on topographic map 1:8000	
	H=definition on topographic map 1:4000	
	I=definition on topographic map 1:2000	I
ZDEF	Altitude definition	
	P=definition towards RAK fixpoint	
	O=true RAK fixpoint	
	D=definition on topographic map 1:50000	
	E=definition on topographic map 1:20000	
	F=definition on topographic map 1:10000	
	G=definition on topographic map 1:8000	
	H=definition on topographic map 1:4000	
	I=definition on topographic map 1:2000	

COMMENT	comment	GRID IDENTICAL
		TO AV GRID NET
INDAT	data input date to geodatabase	871104

9

AREAC the areacode is a unique two letter code from the area name. All codes used to date are presented in Appendix A.

AREAN the area name is chosen from the topographical map.

MAPNAME a topographical map has a map name consisting of a code (1-2 figures and 1 letter) and a geographical name, i.e. 4F Lessebo.

- PMAP each topographic map is divided into 25
 (1:20000) or 100 (1:10000) economic maps.
 These maps are coded in the interval 0a-9j,
 i.e. 9H. This code is called PMAP in the
 database.
- XZERO each grid net is positioned in the National Co-ordinate System (RAK Rikets Allmänna Koordinater). XZERO is the north-south RAK co-ordinate of the origin (0 N / 0 E) of a grid net.
- YZERO each grid net is positioned in the National Co-ordinate System (RAK Rikets Allmänna Koordinater). YZERO is the east-west RAK coordinate of the origin (0 N /0 N) of a grid net.
- DIRGRID angle between RAK north and grid net north. Grid net north is the direction of the side of the grid net which is closest to RAK north. This means that grid net north is always less than 45 degrees in a 360 degree system. DIRGRID is positive east and negative west of RAK north.
- DEV angle between RAK north direction and magnetic north direction (360 degree system). DEV is positive east of RAK north and negative west of RAK north.
- RAKDEF defines the origin of the x- and y- coordinates. Indirectly, this gives the

	accuracy of the co-ordinates.								
ZDEF	defines the origin of the altitude above sea								
	level.								
COMMENT	additional relevant information								
INDAT	date information was loaded to the database								

It has normally not been considered necessary to make a complete geodetic measurement regarding the position of the local grid net relative to the National Coordinate System (RAK). Instead, several points in the local grid net which were easily identified in the terrain were marked on field maps. It was then possible to calculate an RAK co-ordinate for the origin of the grid net from the map. The accuracy of that co-ordinate depends of course on the resolution of the map used. In the table AREA the field RAKDEF and ZDEF is used to provide information on the resolution of the maps used and hence also the accuracy of the co-ordinate. Assuming that a borehole is correctly positioned on a map, and that the resolution on any map is 2 mm, the RAK co-ordinates will be specified to within the accuracy shown in Table 2.1.

Table	2.1	RAK	co-ordinate	accuracy	for	the	griđ	net
		orio	yin					

Geotab code	Map scale	RAK co-ordinate accuracy (m)
D	1:50 000	100
Е	1:20 000	40
F	1:10 000	20
G	1:8 000	16
Н	1:4 000	8
I	1:2 000	4
Р		0.01
0		0.01-0.1

Figure 2.1 Map of areas investigated

Figure 2.2 Grid net plan

Figure 2.3 Grid net orientation

2.2 AREALIM

This table contains corner co-ordinates of the grid net. If the grid net is rectangular, four pairs of coordinates are needed to describe the net. The coordinates are given in local co-ordinates.

GEO_DB .AREALIM Grid corner co-ordinates (see record underlined in Appendix A page 1)

Column Key	Text	Example
AREAC *	area idcode	KM
XCOORD *	x-co-ordinate local grid (m)	0
YCOORD *	y-co-ordinate local grid (m)	2000
LDIRX	direction symbol for local x-co-ordinate	N
LDIRY	direction symbol for local y-co-ordinate	E
COM30	comments	
INDAT	data input date to geodatabase	
	(yymmdd)	880804

AREAC	The	area	code	is	а	unique	two	letter	code	from	
	the	area	name.								
VCOORD	the	north	+	.h /		ordinat	o ir	+ + - 1	ocal	arid	

XCOORD	the north-south co-ordinate in the local grid
	net. To simplify plotting and calculations,
	co-ordinates south of the origin are taken to
	be negative.

YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates west of the origin are taken to be negative.

- LDIRX north (N) or south (S) symbol of the x-coordinate.
- LDIRY east (E) or west (W) symbol of the y-coordinate.

COM30 additional relevant information

INDAT date information was loaded to the database

2.3 AREAREF

The local grid net in the field degenerates rapidly. Most of this disappears after a few years. To restore the net for use in further investigations, a series of so-called area reference point are used. Small metal plates with local co-ordinates are nailed to tree stumps left along the T-lines of the grid net. The local coordinates of these points are collected in AREAREF.

GE0_DB .AREAREF Area reference points (see record underlined in Appendix A page 2)

Column Key	Text	Example
AREAC *	area idcode	КM
XCOORD *	x-co-ordinate in local grid	200.000
YCOORD *	y-co-ordinate in local grid	2000.00
LDIRX	direction symbol for local x-co-ordinate	N
LDIRY	direction symbol for local y-co-ordinate	E
C0M30	comments	
INDAT	data input date in geodatabase	
	(yymmdd)	880804

- AREAC the area code is a unique two letter code from the area name.
- XCOORD the north-south co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates south of the origin are taken to be negative.
- YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations, co-ordinates west of the origin are taken to be negative.
- LDIRX north (N) or south (S) symbol for the x-coordinate.
- LDIRY east (E) or west (W) symbol for the y-coordinate.

COM30 additional relevant information

INDAT date information was loaded to the database

2.4 AREAFIXP

If true RAK fixpoints or fixpoints measured from a RAK fixpoint are used to locate boreholes or the origin of the grid net itself in the RAK system, these fixpoints are collected in AREAFIXP.

15

An RAK fixpoint is a geodetically well determined fixpoint which is part of a system of triangular points attached to the National Co-ordinate System (RAK) of Sweden. In the terrain, these points are marked with bolts in the bedrock or in concrete constructions and are also presented on maps published by Lantmäteriverket (LMV).

No local z-co-ordinates are usually used during the field work in an area.

Column Key	Text	Exemple
AREAC *	area idcode	AS
XCOORD *	x-co-ordinate in local grid (m)	6848.146
YCOORD *	y-co-ordinate in local grid (m)	2079.353
LDIRX	direction symbol for local	
	x-co-ordinate	N
LDIRY	direction symbol for local	
	y-co-ordinate	E
FIXNAME	code or number of fixpoint	
x	RAK x-co-ordinate for fixpoint	67380.746
Y	RAK y-co-ordinate for fixpoint	51460.546
Z	z-co-ordinate (m.a.s.l)	2.37
RAKDEF	co-ordinate method RAK definition	
	P=definition towards RAK fixpoint	Ρ
	O=true RAK fixpoint	
ZDEF	Altitude definition	
	P= definition towards RAK fixpoint	Ρ
	O= true RAK fixpoint	
	D= definition on topographic map 1:5000	0

	E= definition on topographic map 1:20000
	F= definition on topographic map 1:10000
	G= definition on topographic map 1:8000
	H= definition on topographic map 1:4000
	I= definition on topographic map 1:2000
COM30	comments
INDAT	data input date into geodatabase 880805

- AREAC The area code is a unique two letter code from the area name.
- the north-south co-ordinate in the local grid XCOORD net. To simplify plotting and calculations, co-ordinates south of the origin are taken to be negative.
- the east-west co-ordinate in the local grid YCOORD net. To simplify plotting and calculations, co-ordinates west of the origin are taken to be negative.
- LDIRX north (N) or south (S) symbol of the x-coordinate.
- LDIRY east (E) or west (W) symbol of the y-coordinate.
- Х north-south RAK co-ordinate for the fixpoint east-west RAK co-ordinate for the fixpoint Y
- Z altitude above the sea level (m)
- RAKDEF defines the origin of the x- and y- coordinates. Indirectly, this gives the accuracy of the co-ordinates. O is a permanent RAK fixpoint with high accuracy, P might not have the same accuracy and may also disappear. ZDEF Defines the origin of the altitude above sea level.
- COMMENT additional relevant information INDAT
 - date information was loaded to the database

General information from drilling events are collected in the method BGDRILL. The method consists only of one table.

DRILL drilling information

A list from this table is found in Appendix B.

3.1 DRILL

3

The DRILL table contains information on the type of drill rigg used and the drilling company. Drilling periods and the borehole length are also included.

GEO_DB	.DRILL	Drilling	information	(see	record	underlined	in
		Appendix	8 page 1)				

Column Key	Text	Example
IDCODE *	borehole idcode	KLJ01
SECUP *	length to section upper limit (m)	0.00
SECLOW *	length to section lower limit (m)	500.60
START	drill start date (yymmdd)	870817
END	drill end date (yymmdd)	871127
COMP	drilling company	LKAB
RIGG	type of drill rigg	DIAMEC 260
COMMENT	comments	
INDAT	data input date to geodatabase	880804

IDCODE a borehole code where each position gives the following information code for type of drilling 1 2-3 area code 4 - 5 borehole number SECUP drilling started at this borehole length SECLOW drilling stopped at this borehole length START drilling started at this date drilling stopped at this date END COMP company performing drilling

	18
RIGG	drill rigg type
COMMENT	additional relevant information
INDAT	date information was loaded to the database

BGDRILLP -- BGR DRILLING PENETRATION

The method BGDRILLP contains information concerning the measurement and data from drill penetration during percussion drilling. This method contains two tables:

DRILLPF Drillhole penetration - Flyleaf page 1 DRILLPD Drill penetration log - Data

4.1 DRILLPF

4

This table is a flyleaf table to the data table DRILLP. A flyleaf table contains information on the drilling company and drill crew involved. To date no information is stored in this table.

GEO_DB .ORILLPF Drillhole penetration - Flyleaf page 1.

Column Key	Text	Example
IDCODE *	borehole idcode	
DATE *	date of measurement (yymmdd)	
COMP	drilling company	
CREW	drill crew	
RESP	person evaluating measurements	
REPORT	reference to report	
ARCHIVE	reference to archive	
DATASTO	data storage	
COMMENT	comments	
SIGN	signature of person responsible for inp	ut
	of data	
INDAT	data input date to geodatabase (yymmdd)	

IDCODE	a borehole	e code where each position gives the
	following	information
	1	code for type of drilling
	2 - 3	area code
	4 - 5	borehole number
DATE	date of me	easurement
COMP	drilling o	company
CREW	drill crev	v

RESP	person evaluating data
REPORT	evaluation report reference
ARCHIVE	archive where files are stored
DATASTO	data storage reference
COMMENT	additional relevant information
SIGN	signature of person responsible for input into
	database
INDAT	date information was loaded to the data base

4.2 DRILLPD

Drill penetration data from percussion drilling is stored in this table.

GEO_DB .DRILLPD Drill Penetration Log - Data (see record underlined in Appendix C page 1)

Column	Key	Text	Example
IDCODE	*	borehole idcode	HASO1
SECUP	*	length along borehole (m)	1.40
SECLEN		section length (m)	0.2
PTIME		penetration time (s)	43
INDAT		data input date to geodatabase (yymmdd)	870915

IDCODE	a borehole code where each position gives the
	following information
	1 code for type of drilling
	2-3 area code
	4-5 borehole number
SECUP	borehole length from top of casing pipe to
	upper section limit
SECLEN	section length
PTIME	penetration time, seconds
INDAT	date information was loaded to the database

BGHOLE -- BGR BOREHOLE INFORMATION

During the investigation of an area, a series of cored boreholes are drilled. A number of percussion boreholes are also drilled, sometimes as many as 50 in one area. Different types of measurements were performed in the boreholes. The results from these measurements are stored in other tables in other subjects within the database.

The method BGHOLE contains different types of information concerning the boreholes. The method consists of the following tables:

BHNAME	Connection between Area code and
	borehole idcode. Check table for
	borehole idcode in other tables
BOREHOLE	Borehole information
HOLEDIAM	Borehole diameter
COREDIAM	Borehole core diameter
CASEDIAM	Borehole casing diameter
CASETOP	Casing above ground
BHCOORD	Co-ordinates along borehole
BHHIST	Events occurred in borehole

A list from each table is found in Appendix D.

5.1 BHNAME

5

This table describes the connection between borehole type, area code and borehole idcode. The table is used as a check table, to prevent data storage under an illegal idcode. To store data from a new borehole into any table within the database, the new borehole idcode must first be loaded into the table BHNAME.

GEO_DB	. BHNAME	Connection between borehole idcode, area code and
		borehole type (see record underlined in Appendix D $% \left({\left[{{{\left[{{D_{a}} \right]}} \right]}} \right)$
		page 1)

Column Ke	ey	Text	Example
IDCODE '	*	idcode for borehole	KASO2
AREAC '	*	area idcode	AS
BHTYPE		borehole-type	к
OIDCODE		old idcode	
COM30		comment	
INDAT		data input date to geodatabase	880208

IDCODE	a borehole code where each position gives the	
	following information	
	1 code for type of drilling	
	2-3 area code	
	4-5 borehole number	
AREAC	The area code is a unique two letter code from	
	the area name.	
BHTYPE	the first letter in the idcode states the type	
	of borehole.	
	B Booster borehole	
	H percussion borehole (well)	
	K cored borehole (drill hole)	
OIDCODE	if for any reason the idcode has been changed,	
	the old idcode is saved in this field	
COM30	additional relevant information	
INDAT	date information was loaded to the database	

5.2 BOREHOLE

General borehole information is collected in this table. This includes the borehole code, local and RAK coordinates, altitude, borehole length and intended orientation.

No local z-co-ordinate is usually used during the field work.

GEO_DB .BOREHOLE Borehole information (see record underlined in Appendix D page 1)

Column Key	Text	Example
IDCODE *	idcode for borehole	KAS02
XCOORD	x-co-ordinate (local net) (m)	7261.986
LDIRX	direction for local x - co-ordinate	N
YCOORD	y-co-ordinate (local net) (m)	2125.224
LDIRY	direction for local y - co-ordinate	ε
x	RAK x-co-ordinate for borehole	
	(on surface)	
Y	RAK y-co-ordinate for borehole	
	(on surface)	
Z	altitude above sea level (m)	7.68
RAKDEF	RAK co-ordinate method definition	
	P=definition towards RAK fixpoint	Ρ
	O=true RAK fixpoint	
	D=definition on topographic map 1:50000	1
	E=definition on topographic map 1:20000	1
	F=definition on topographic map 1:10000	I
	G=definition on topographic map 1:8000	
	H=definition on topographic map 1:4000	
	I=definition on topographic map 1:2000	
ZDEF	RAK co-ordinate method definition	
	P= definition towards RAK fixpoint	Ρ
	O=true RAK fixpoint	
	D=definition on topographic map 1:50000	
	E=definition on topographic map 1:20000	
	F=definition on topographic map 1:10000	
	G=definition on topographic map 1:8000	

H=definition on topographic map 1:4000

	I=definition on topographic map 1:2000	
BHLEN	borehole length (m)	924.04
CASEGRN	length of casing above ground (m)	0.69
SOILLEN	length along borehole of Quaternary	
	layers (Quaternary layers = soil)	0.00
PREDEC	preliminary angle to RAK north	
	(degree)	330.0
PREINC	preliminary angle from horizontal	
	plane (degree)	85.0
COM50	comments	
INDAT	data input date to geodatabase	880208

IDCODE a borehole code where each position gives the following information code for type of drilling 1

- 2-3 area code
- 4 5 borehole number
- XCOORD the north-south co-ordinate in the local grid net. To simplify plotting and calculations co-ordinates south of the origin are taken to be negative.
- YCOORD the east-west co-ordinate in the local grid net. To simplify plotting and calculations co-ordinates west of the origin are taken to be negative.
- LDIRX north (N) or south (S) symbol of the x-coordinate.

LDIRY east (E) or west (W) symbol of the y-coordinate.

Ζ

Х north-south RAK co-ordinate of the fixpoint Y east-west RAK co-ordinate of the fixpoint

altitude above the sea level (m) RAKDEF defines the origin of the x- and y- coordinates. Indirectly, this gives the accuracy of the co-ordinates. O is a permanent RAK fixpoint with high accuracy, P might not have the same accuracy and may also disappear. ZDEF defines the altitude of the origin above sea level.

BHLEN borehole length (m)

CASEGRN length of casing above ground (m)

SOILLEN length along borehole of Quaternary layers (Quaternary layers = soil)

PREDEC intended drill direction in a 360 degree clockwise system (degree)

PREINC intended angle from horizontal plane, vertical being 90 degrees

COM50 additional relevant information

INDAT date information was loaded to the database

Normally the boreholes are determined geodetically towards the origin of the grid net (0 N / 0 E). Inside a local grid net the accuracy of the local borehole co-ordinates is estimated to be within 5 m.

Borehole RAK co-ordinates may be determined geodetically. In general, they are determined either directly from a map, or calculated from the RAK coordinate for the origin of the grid net, the local borehole co-ordinates and the orientation of the grid net. The accuracy of determination of the co-ordinates in either case depends on the scale of the map used, Table 5.1.

Table 5.1 Accuracy of the RAK co-ordinate for the boreholes

Geotab code	Map scale	RAK co-ordinate accuracy (m)
D	1:50 000	100
Е	1:20 000	40
F	1:10 000	20
G	1:8 000	16
Н	1:4 000	8
I	1:2 000	4
Р		0.01
0		0.01-0.1

5.3 HOLEDIAM

In this table, the diameter for a given section in a borehole is given. Normally the diameter is constant along the entire borehole length, but it may vary in some boreholes.

```
GEO_DB .HOLEDIAM Borehole diameter (see record underlined in Appendix D page 2)
```

Column Key	Text	Example
IDCODE *	borehole idcode	KASO2
SECUP *	length to upper limit (m)	0.00
SECLOW *	length to lower limit (m)	93.35
HOLDIAM	borehole diameter (m)	0.155
INDAT	data input date to geodatabase	
	(yymmdd)	880229

IDCODE	a borehole code where each position gives the
	following information
	1 code for type of drilling
	2-3 area code
	4-5 borehole number
SECUP	borehole length from top of casing to upper
	section limit (m)
SECLOW	borehole length from top of casing to lower
	section limit (m)
HOLDIAM	borehole diameter (m)
INDAT	date information was loaded to the database

5.4 COREDIAM

This table contains information on drill core diameter.

GEO_DB .COREDIAM Drill core diameter (see record underlined in Appendix D page 2)

Column Key	Text	Example
IDCODE *	borehole idcode	KASO2
SECUP *	length to upper limit (m)	0.00
SECLOW *	length to lower limit (m)	924.04
COREDIAM	drill core diameter (m)	0.042
COM30	comments	
INDAT	data input date to geodatabase	
	(yymmdd)	880229

IDCODE	a borehole code where each position gives the
	following information
	1 code for type of drilling
	2-3 area code
	4-5 borehole number
SECUP	borehole length from top of casing to upper
	section limit (m)
SECLOW	borehole length from top of casing to lower
	section limit (m)
COREDIAM	drill core diameter for this section (m)
COM30	additional relevant information
INDAT	date information was loaded to the database

5.5 CASEDIAM

To prevent borehole collapse in the soil layer, an iron casing pipe is inserted into the bedrock during the drilling. In general, only one diameter is used in a borehole, but in some cases several diameters were used.

In the CASEDIAM table, the diameter of the casing pipe is noted.

GEO_DB .CASEDIAM Borehole casing diameter (see record underlined in Appendix D page 2)

Column Key	Text	Example
IDCODE *	borehole idcode	KASO2
SECUP *	length to upper limit (m)	0.00
SECLOW *	length to lower limit (m)	1.05
CASEIN	casing inner diameter (m)	0.173
CASEOUT	casing outside diameter (m)	0.197
COM30	comments	
INDAT	data input date to geodatabase	
	(yymmdd)	880303

a borehole code where each position gives the
following information
1 code for type of drilling
2-3 area code
4-5 borehole number
borehole length from top of casing to upper
section limit (m)
borehole length from top of casing to lower
section limit (m)
casing inner diameter (m)
casing outer diameter (m)
additional relevant information
date information was loaded to the database

5.6 CASETOP

This table contains information on casing length above a reference level. This information is of interest when measuring methods are used, which must later be compared with each other and with the geological core mapping and then length corrected. Since the casing pipe is used to attach different types of equipment, its length is sometimes reduced or increased. It is then important to have a fixed reference level and to measure CASEGRN at every measuring event.

GEO_DB .CASETOP Casing above ground (see record underlined in Appendix D page 3)

Column Key	Text	Example
IDCODE *	borehole idcode	KLJ01
CHDATE *	date for change of length of casing	
	above reference level (yymmdd)	871204
CASEGRN*	length of casing from reference	
	level (m)	0.46
COM30	comments	
INDAT	data input date to geodatabase	
	(yymmdd)	880802

IDCODE	a borehole code where each position gives the			
	following information			
	1 code for type of drilling			
	2-3 area code			
	4-5 borehole number			
CHDATE	date of change of casing length above			
	reference level (yymmdd)			
CASEGRN	length of casing from a reference level (m) ,			
	usually the ground surface or a concrete slab			
COM30	additional relevant information			
INDAT	date information was loaded to the database			

5.7 BHCOORD

This table contains calculated local co-ordinates, vertical depths from the top of a casing and meters above sea level (MASL) for different lengths along the borehole. These values are generated and loaded into the table by a program, using information from the table DEVANGLE (DECLIN and INCLIN) and the table AREA (DIRGRID and DEV). This program is run automatically every night. The accuracy of the values calculated are presented in Table 5.2.

Table 5.2 Estimated accuracy for co-ordinates along the borehole

X- and Y-co-ordinate reference point	Accuracy
top of casing	1% of borehole length
local grid ON / OE	5 m + 1% of borehole length
RAK system	M + 5 m + 1% of borehole length

M = map dependent, see Table 2.1

When the borehole deviation log is measured, the borehole direction in the vertical plane, inclination, is monitored by a pendulum, while the direction in the horizontal plane is registered by a compass needle. The inclination is given in a 90 degree system, where 0 degrees is horizontal and 90 degrees is vertical. The direction is given in a 360 degree clockwise system.

The deviation log measurements are stored in a table called DEVANGLE. The inclination is in the column INCLIN, while the direction is in the column DECLIN.

Since the direction is measured with a compass needle and the RAK system is not oriented exactly in the magnetic north direction, corrections must be applied in the calculation of co-ordinates from the measurements. The topographic map indicates the following:

From this a new parameter, DEV, is defined:

DEV = M - C (magnetic north direction - RAK north direction)

Using the data in the columns DEV and DIRGRID from the table AREA and INCLIN and DECLIN from the table DEVANGLE, it is now possible to calculate the local coordinates at diffrent vertical depths in the borehole. Sign coventions are given on page 9.

 $X_{i} = X_{i-1} + (BHLEN_{i-1} - BHLEN_{i}) * COS(DECLIN - DEV + DIRGRID) * COS(INCLIN)$ $Y_{i} = Y_{i-1} + (BHLEN_{i-1} - BHLEN_{i}) * SIN(DECLIN - DEV + DIRGRID) * COS(INCLIN)$ $Z_{i} = Z_{i-1} + (BHLEN_{i-1} - BHLEN_{i}) * SIN(INCLIN)$

The same formulae can be used to calculate the RAK coordinates if DIRGRID is excluded.

GEO_DB .BHCOORD Co-ordinates Along Borehole (see record underlined in Appendix D page 3)

Column Key	Text	Example
IDCODE *	borehole idcode	KKM02
BHLEN *	length along hole	10.00
XCOORD	x-co-ordinate (local net)	250.371
	32	
--------	-----------------------------------	---------
YCOORD	y-co-ordinate (local net)	362.679
ZCOORD	vertical depth (m)	8.69
MASL	meters above sea level (m.a.s.l.)	
INDAT	data input date to geodatabase	
	(yymmdd)	880525

IDCODE a borehole code where each position gives the following information

- 1 code for type of drilling
- 2-3 area code
- 4-5 borehole number

BHLEN length along borehole from top of casing

XCOORD the north-south co-ordinate in the local grid net calculated from the borehole deviation measurements.

YCOORD the calculated east-west co-ordinate in the local grid net calculated from the borehole deviation measurements.

ZCOORD calculated vertical depth for XCOORD/YCOORD, if zero at top of casing, positive downwards

MASL borehole level above sea level - ZCOORD (positive above and negative below sea level)

INDAT date information was loaded to the database

5.8 BHHIST

Events such as the loss of equipment in borehole, blocked borehole etc, can be recorded in this table. So far (September 1988) no data has been loaded into this table.

GEO_DB .BHHIST Events Occurred In Boreholes

Column Key	Text
IDCODE *	borehole idcode
DATE *	date (year,month,day)
TIME *	time of day
LINENO *	line number
EVENT	event
INDAT	data input date to geodatabase

IDCODE	a borehol	e code where each position gives the
	following	information
	1	code for type of drilling
	2-3	area code
	4 - 5	borehole number
DATE	date of e	vent
TIME	time of e	vent
LINENO	line numbe	er of the text describing an event
EVENT	borehole 1	historical event
INDAT	date info	rmation was loaded to the database

34

This method was created to gather information concerning what data is present in the database. The method consists of one table only. Example of list from this table is found in Appendix E.

6.1 ROWTAB

In this table, information on the number of rows (records) in each database table is found. This table must be updated manually and it is seldom up to date.

GEO_DB .ROWTAB Description Of Tables - Number Of Rows In Tables (see record underlined in Appendix F page 1)

Column Key	Text	Example
TABLE *	table name	AREA
DATE *	date of notice	871124
NUMROW	number of rows	39
RECLEN	record length	
C0M50	comment	
INDAT	inputdate of data to geodatabase	
	(yymmdd)	871125

TABLE	table name
DATE	date when this table was updated
NUMROW	number of rows (records) in a table
RECLEN	maximum record length in the table
COM50	additional relevant information
INDAT	date information was loaded to the database

BGTOLR -- BGR DATA TOLERANCE BACKGROUND TABLE

35

In a database table the accuracy of the data might depend on how each parameter was measured. The same type of measurement might be made with different instruments or the equipment might have been modified to give higher resolution. Nevertheless, all data in a specific table is stored in the same format. This might give a false picture of the accuracy or sensitivity of different measurements.

The method BGTOLR consists of only one table. A list from this table is found in Appendix F.

7.1 TOLR

7

The measuring sensitivity or accuracy for different data are stored in this table.

GEO_DB .TOLR Tolerances in different columns (see record underlined in Appendix G page 1)

Column Key	Text	Example				
TNAME *	table name	BOREHOLE				
COLNAME*	columnname	BHLEN				
START *	start date for valid tolerance and/or					
	sensitivity					
END	end date for valid tolerance and/or					
	sensitivity					
ACCURACY	accuracy	1.00E-01				
DIMACC	accuracy dimension	%				
SENS	sensitivity					
DIMSENS	sensitivity dimension					
COMMENT	comment					
INDAT	data input date to geodatabase					

TNAMEtable name in the databaseCOLNAMEcolumn name in this tableSTARTaccuracy/sensitivity valid from this dateENDaccuracy/sensitivity no longer valid from

this date

ACCURACY	accuracy of the measuring method stored in
	this table
DIMACC	dimension or unit for accuracy
SENS	sensitivity of the measuring method stored in
	this table
DIMSENS	dimension or unit for sensitivity
COMMENT	additional relevant information
INDAT	date information was loaded to the database

8 REFERENCES

- Gentzschein, B., 1986. Description of hydrogeological data in SKB's database Geotab. SKB TR86-22.
- Sehlstedt, S., 1988.TR88-05. Description of geophysical data in the SKB database Geotab. SKB TR88-05.
- Stark, T., 1988.TR88-06. Description of geological data in the SKB database Geotab. SKB TR88-06.

select AREA ZDEF from AREA; .AREAC,AREAN,MAPNAME,PMAP,XZERO,YZERO,ZZERO,DIRGRID,DEV,RAKDEF,

				¥7ED0	V7ED0	77ERO DIRGRIO	DEV RAKDEF ZDE
AKEAC 	AREAN						
AO	ÄVRÖ	6H KRÅKELUND	3A	6366800.000	1552250.000) 10.00	-0.8 F
AR	ÄVRÖ ÄVRÖ	6H KRÅKELUND	3 A	6367257.000	1553084.000	-42.20	-0.8 F
	ÄSPÖ	<u>6H KRÅKELUND</u>	<u>3A</u>	6360253.000	1550813.000) -11.77	<u>-0.8 I</u>
٩V	ÄVRÖ	6H KRÅKELUND	3A	6360253.000	1550813.000) -11.77	-0.8 I
BA	BASTULIDEN	22J KALVTRÄSK	2F				
BJ	BJULEBO	6G VIMMERBY	8 I	6390640.000	1541450.000	42.30	-0.6 F
BM	BRÄMÖN	17H SUNDSVALL	OJ				
BS	BJÖRKSUND BUSSVIK	9H NYKÖPING	3H				
30	BUSSVIK	6H KRÅKELUND					
)U	DUNDRET	28K GÄLLIVARE	OB				
YC	LOVISA						
FI	FINNSJÖN	12I ÖSTHAMMAR	9D			-35.20	-1.0
	FJÄLLVEDEN	9H NYKÖPING	6C	6532940.000	1564830.000) -35.20	-1.6 F
-	FLAKAÅSEN	18H GRANINGE	10				
-	FORSMARK	13I ÖSTERLÖVST	A OG				
	SFR FORSMARK						
-s	FINNSJÖN GALLEJAURE GÅVASTBO	12I ÖSTHAMMAR		6696490.000	1616500.000	-21.80	-1.0 F
GA	GALLEJAURE	23J NORSJÖ	6E				
GB	GĂVASTBO	12I ÖSTHAMMAR					
	GIDEÅ	19J HUSUM		7044290.000	1662790.000	-3.00	-1.2 F
GR	GRANLIDEN	21I FREDRIKA 15H HUDIKSVALL	2B				
10	HORNSLANDET	15H HUDIKSVALL					
IM	IMMELN JOHANNISHUS KARLSHAMN	3E KARLSHAMN					
JH	JOHANNISHUS	3F KARLSKRONA	7F				
<a< td=""><td>KARLSHAMN</td><td>3E KARLSHAMN</td><td>51</td><td></td><td></td><td></td><td>0 0 F</td></a<>	KARLSHAMN	3E KARLSHAMN	51				0 0 F
(L	KLIPPERAS	4F LESSEBO	9H	629/000.000	1488500.000	0.00	0.2 F
(M	KAMLUNGE	25M KALIX	9£	/345320.000	1821340.000	-6.50	
(R	KRAKEMALA	6G VIMMERBY	4J	63/0000.000	1548000.000		-0.7 F
(Y	KYNNEFJALL	3E KARLSHAMN 4F LESSEBO 25M KALIX 6G VIMMERBY 9B DALS-ED	18	6209810.000	125/080.000	23.50	1.1 F
• ' '							
	LANSJÄRV	an un furniture	~ •		1550001 000		
		6H KRÅKELUND	3A	6360252.000	1550821.000		005
DN	ÖNSBO	13I ÖSTERLÖVST. 21K ROBERTSFOR	A IU	6/05410.000	1518890.000	-6.00	-0.9 F
				/145980.000	1/459/5.000	0.00	-2.2 r
-	SLAGÅRDA	11G VÄSTERÅS	3G				
	SALTSJÖTUNNELN						
50	STUDSVIK	105 00000		C0001 C0 000	1407000 000	25 50	0 2 5
		15F VOXNA	1H	0000100.000	148/280.000	~25.50	-u.s r
		30K					
/D	OLKILOUTTO						

select AREALIM .AREAC, XCOORD, LDIRX, YCOORD, LDIRY, COM30, INDAT from AREALIM where AREAC = 'KM';

AREAC	XCOORD	LDIRX	YCOORD	LDIRY	COM30	INDAT
км км	0.000		0.000 2000.000	-		880804 880804
КМ КМ	2000.000 2000.000		0.000 2000.000	-		880804 880804

select AREAREF .AREAC,XCOORD,LDIRX,YCOORD,LDIRY,COM30,INDAT
from AREAREF
where AREAC = `KM`;

AREAC	XCOORD	LDIRX	YCOORD	LDIRY	COM30	INDAT
 K M	0.000	N	0.000	ξ		880804
К М	0.000	N	200.000	ε		880804
КΜ	0.000	N	400.000	E		880804
КМ	0.000	N	600.000	ε		880804
κм	0.000	N	800.000	E		880804
км	0.000	N	1000.000	E		880804
κм	0.000	Ν	1174.600	E		880804
кМ	0.000	Ν	1400.000	E		880804
КМ	0.000	N	1642.400	E		880804
< M	0.000	N	1800.000	Ε		880804
<М	0.000	N.	2000.000	Ε		880804
<m< td=""><td>200.000</td><td>N</td><td>0.000</td><td>Ε</td><td></td><td>880804</td></m<>	200.000	N	0.000	Ε		880804
<М	200.000	N	1000.000	E		880804
КМ	200,000	N	2000.000	E		880804
KM	400.000	N	1000.000	E		880804
<m< td=""><td>400.000</td><td>N</td><td>2000.000</td><td>Ε</td><td></td><td>880804</td></m<>	400.000	N	2000.000	Ε		880804
км	476.800	N	0.000	E		880804
< M	600.000	N	2000.000	E		880804
٢M	606.000	N	1000.000	E		880804
<m< td=""><td>648.200</td><td>N</td><td>0.000</td><td>E</td><td></td><td>880804</td></m<>	648.200	N	0.000	E		880804
٢M	800.000	N	0.000	E		880804
٢M	800.000	N	1000.000	ε		880804
ΚM	800.000	N	2000.000	E		880804
<m< td=""><td>1000.000</td><td>N</td><td>0.000</td><td>E</td><td></td><td>880804</td></m<>	1000.000	N	0.000	E		880804

select AREAFIXP.AREAC,XCOORD,LDIRX,YCOORD,LDIRY,X,Y,Z,RAKDEF,ZDEF,INDAT
from AREAFIXP
where AREAC = 'AS';

AREAC	XCOORD LD (m)	IRX YCOORD LDI (m)	RY	X	Y	Z m.a.s.l	RAKDEF	ZDEF	INDAT (yymmdd)
 AS	6848.146	N 2079.353	 Е	67380.746	51460.546	2.37	P	P	880805
AS	7048.812	N 1194.981	E	68135.991	50398.977	0.58	Р	Ρ	880805
AS	7119.214	N 2505.381	Ε	67733.327	51822.021	2.13	Р	Р	880805
AS	7799.968	N 2595.705	Ε	68418.148	51770.997	14.14	P	Р	880805
AS	8113.079	N 2008.557	Ε	68604.360	51132.165	0.90	Ρ	Ρ	880805

APPENDIX B:8GDRIL	L		
3010000	DCODE,SECUP,SECLOW,STA	ART, END, COMP, RIGG	
from DRILL where IDCODE LI	KE ´*LJ*´ ;		
IDCODE SECUP (m)	SECLOW (m) START (yymn	ndd) END (yymmdd) CON	MP RIGG
HLJ01 0.00	75.00 870811	870814 TG	3
HLJ02 0.00	83.60 870824	870908 TGE	3
HLJ03 0.00	92.00 880117	880120 TGE	3
KLJ01 0.00	500.60 870817	871127 LKA	AB DIAMEC 260

APPENDIX C:DRILLP

select DRILLPF O rows found

select DRILLPD .IDCODE.BHLEN.PTIME.INDAT
from DRILLPD
where IDCODE = 'HASO1';

wnere	IUCODE =	HASUI	;	
IDCODE	BHLEN (m)	PTIME (s)	INDAT (yymmdd)
HASO1	1.40	4	3	870915
HAS01	1.60	4	2	870915
HAS01	1.80	4	3	870915
HAS01	2.00	4	0	870915
HAS01	2.20	4	5	870915
HAS01	2.40	4	7	870915
HAS01	2.60	4	8	870915
HASO1	2.80	4:	8	870915
HAS01	3.00	4	9	870915
HAS01	3.20	4.	3	870915
HAS01	3.40	4	-	870915
HAS01	3.60			870915
HAS01	3.80			870915
HAS01	4.00	-	-	870915
HAS01	4.20	31		870915
HAS01	4.40	41		870915
HAS01	4.60	3		870915
HAS01	4.80	3	_	870915
HASO1	5.00			870915
HAS01	5.20			870915
HAS01	5.40			870915
HAS01	5.60			870915
HAS01	5.80	30		870915
HAS01	6.00	33		870915
HAS01	6.20	32		870915
HAS01	6.40	34		870915
HAS01	6.60	36		870915 870915
HAS01	6.80	31	-	
HASO1	7.00 7.20			870915
HASO1	7.20	38		870915 870915
HAS01	7.40	4.		870915
HASO1		3		870915
HASO1	7.80	44		870915
HASO1	8.00 8.20	33		870915
HASO1	0.20	3.	ر	0/0513
etc				

APPENDIX D:BGHOLE

here	IDCODE	LIKE	'*AS*´;		
DCODE	AREAC	BHTYPE	OIDCODE	СОМЗО	INDAT
HASO1	AS	н			870909
AS02	AS	н			870909
IAS03	AS	н			870909
IASO4	AS	Н			870909
IASO5	AS	Н			870909
IASO6	AS	Н			870909
AS07	AS	Η			870909
AS08	AS	Н			880411
IASO9	AS	Н			880411
AS10	AS	Н			880411
IAS11	AS	н			880411
IAS12	AS	Н			880411
ASO1	AS	К			880208
AS02	AS	K			880229
AS03	AS	К			880208
ASO4	AS	К			880208

select BOREHOLE.IDCODE,XCOORD,LDIRX,YCOORD,LDIRY,X,Y,Z,RAKDEF,ZDEF,BHLEN, CASEGRN,SOILLEN,PREDEC,PREINC
from BOREHOLE
where IDCODE LIKE '*AS*';

IDCODE	XCOORD	LDIRX	YCOORE) LDIRY	Ϋ́ Χ		Ŷ	Z	RA	KDEF	ZDEF	BHLEN	CASEGRN	SOILLEN	PREDEC	PREINC
			2050		6260074 0	000	1551007 000	5.1	05	р	р	100.00	h		210.0	60.0
	7559.557 7776.932		2058.4				1551297.000	÷ ·		P D	P	93.00)		180.0	
	7428.483		1778.9				1551050.000			p	P	100.00	n		90.0	
	7420.403 7189.523		2057.3				1551369.000		_	Ð	P	100.00			180.0	60.0
	7343.335		2139.5				1551419.000			p	P	100.00			180.0	60.0
	7420.610		2337.8				1551594.000	4		p	P	100.00			100.0	90.0
	7555.081		2322.8				1551554.000	3.1		P	p	100.00			0.0	
	7613.713		1731.0		0500122.0	000	1551554.000	6.3		P	P	125.00		0.50	0.0	00.0
	7770.423		1958.0					7.1		P	P	125.00		0.10		
	7879.144		1711.0					5.9		P	P	125.00		0.10		
	7758.157		1553.9					5.	_	P	P	125.00		0.00		
	7697.364		1449.5					2.		P	P	125.00	1			
	7250.110		2132.7					8.	18	P	P	101.00	1	0.00	330.0	85.0
	7261.986		2125.2					7.0	58	P	Р	924.04	0.69	0.00	330.0	85.0
	7758.228		1805.2					8.	79	Р	P	002.06				85.0
	7636.826		1955.0	060 Y				11.4	45	Ρ	Ρ				135.0	60.0

select HOLEDIAM.IDCODE, SECUP, SECLOW, HOLDIAM, INDAT from HOLEDIAM

where	IDCODE L	IKE (*AS*	*´;	
IDCODE	SECUP	SECLOW	HOLDIAM	INDAT
HASO1	0.00	100.00	0.115	870909
HASO2	0.00	93.00	0.115	870909
HASO3	0.00	100.00	0.115	870909
HASO4	0.00	100.00	0.115	870909
HASO5	0.00	100.00	0.115	870909
HAS06	0.00	100.00	0.115	870909
HAS07	0.00	100.00	0.115	870909
HAS08	0.00	125.00	0.115	880411
KASO1	0.00	95.85	0.155	880303
KASO1	95.85	101.00	0.056	880303
KASO2	0.00	93.35	0.155	880229
KASO2	93.35	924.04	0.056	880229

select COREDIAM.IDCODE,SECUP,SECLOW,COREDIAM,COM30,INDAT from COREDIAM where IDCODE LIKE '*AS*';

IDCODE	SECUP (m)	SECLOW (m)	COREDIAM (m) COM30	INDAT
HASO1	0.00	100.00		870909
HAS02	0.00	93.00		870909
HASO3	0.00	100.00		870909
HASO4	0.00	100.00		870909
HASO5	0.00	100.00		870909
HASO6	0.00	100.00		870909
HAS07	0.00	100.00		870909
KAS01	0.00	101.00	0.042	880826
KASO2	0.00	924.04	0.042	880229
KASO3			0.042	880826
KASO4			0.042	880826

select CASEDIAM.IDCODE,SECUP,SECLOW,CASEIN,CASEOUT,COM30,INDAT from CASEDIAM where IDCODE $\$ LIKE <code>`*AS*`</code> ;

IDCODE	SECUP (m)	SECLOW (m)	CASEIN (m)	CASEOUT (m) COM30	INDAT
HAS01	0.00	1.40	0.140		870909
HASO2	0.00	1.60	0.140		870909
HAS03	0.00	1.60	0.140		870909
HASO4	0.00	1.40	0.140		870909
HASO5	0.00	1.40	0.140		870909
HASO6	0.00	1.00	0.140		870909
HASO7	0.00	2.00	0.140		870909
KAS01	0.00	1.00	0.173	0.197	880303
KAS02	0.00	1.05	0.173	0.197	880303
KAS04	0.00	100.80	0.128	0.140	880506

select CASETOP .IDCODE,CHDATE,CASEGRN,COM30,INDAT
from CASETOP
where IDCODE LIKE '*KL*';

where					
IDCODE	CHDATE	(yymmdd) CASEG	RN (m)	COM30	INDAT
HKL01	830609		0.94		870403
HKL02	840409		0.63		870403
HKL03	840410		0.56		870403
HKL04	840411		0.63		870403
HKL05	840416		0.66		870403
HKL06	840530		0.62		870403
HKLO7	840522		0.64		870403
HKL08	840520		0.60		870403
HKL09	840529		0.63		870403
HKL10	840526		0.59	CORE SAMPLES TAKEN FROM DOLERI	870403
HKL11	840607		0.60		870403
HKL12	840605		0.60		870403
HKL13	840601		0.59		870403
HKL14	840603		0.61		870403
KKL01	830608		0.66		870403
KKLO2	840427		0.60		870403
KKL03	840701		0.32		870403
KKLO4	840710		0.20		870403
KKLO5	840721		0.40		870403
KKLO6	840802			DRILLED TO 266 M (840810). NEW	
KKL06	850222		0.50		870403
KKL07	840814		0.40		870403
KKLO8	841025		0.22		870403
KKL09	841005		0.14		870403
KKL10	850105		0.34		870518
KKL11	850115		0.34		870403
KKL12	850124		0.33		870403
KKL13	850221		0.36		870403
KKL14	850319		0.18	0 00 AT TOD OF 140 MR CASTING	870403
KLJ01	871204			0.00 AT TOP OF 140 MM CASING	880802
KLX01	880224		0.90	+0.5 m CASING	880303

select BHCOORD .IDCODE,BHLEN,XCOORD,ECOORD,ZCOORD,INDAT
from BHCOORD
where IDCODE = `KKM02';

IDCODE	BHLEN (m)	XCOORD (m)	ECOORD (m)	ZCOORD (m)	INDAT (yymmdd)
KKM02	10.00	250.371	362.679	8.69	880525
KKM02	20.00	248.741	367.358	17.37	880525
KKM02	30.00	247.010	372.065	26.02	880525
KKM02	40.00	245.109	376.722	34.67	880525
KKM02	50.00	243.372	381.443	43.31	880525
KKM02	60.00	241.619	386.206	51.93	880525
KKM02	70.00	239.851	391.012	60.52	880525
KKM02	80.00	238.163	395.861	69.10	880525
KKM02	90.00	236.394	400.667	77.69	880525
KKM02	100.00	234.626	405.472	86.28	880525
KKM02	110.00	232.923	410.364	94.83	880525
etc					

select BHHIST 0 rows found

APPENDI	X E:BGTABLE		
select from RO where T	WTAB	DATE,NUMROW,RECLEN,COM50,IN ´;	DAT
TABLE	DATE (yymmdd)	NUMROW RECLEN COM50	INDAT (yymmdd)
AREA	870701	27	870706
AREA	870817	27	870817
AREA	871028	39	871029
AREA	871124	39	871125

APPENDIX F:BGTOLR

select TOLR .TNAME,COLNAME,START,END,ACCURACY,DIMACC,SENS,DIMSENS,COMMENT, INDAT from TOLR where TNAME = 'BOREHOLE';

TNAME	COLNAME	START (yymmdd)	END (yymmdd)	ACCURACY DIMACC	SENS DIMSENS COMMENT	INDAT (yymmdd)
BOREHOLE	BHLEN			1.00E-01 %		880412
BOREHOLE	CASDIAM			0.00E+00 M		880412
BOREHOLE	CASEGRN			1.00E-01 M		880412
BOREHOLE	CORDIAM			0.00E+00 M		880412
BOREHOLE	HOLDIAM			0.00E+00 M		880412
BOREHOLE	LCAS			1.00E-01 M		880412
BOREHOLE	SOILLEN			1.00E-01 M		880412
BOREHOLE	х			1.00E+02 M		880412
BOREHOLE	XCOORD			1.00E+01 M		880412
BOREHOLE	Y			1.00E+02 M		880412
BOREHOLE	YCOORD			1.00E+01 M		880412
BOREHOLE	Z			0.00E+00 M		880412

FORM 1, AREA

Registration of background data from investigation area

AREANAME
Areaname: Areacode:
Map reference where local co-ordinate are 0,0
Mapsheet:Square of map:
GRIDNET RAK co-ordinate where local co-ordinate are 0,0
RAK X: RAK Y: Z (M.A.S.L): RAKdef: Zdef:
Angle in degrees between RAK north and north in local grid : Angle in degrees between RAK north and magnetic north
Comments:

Please complete the form and return it to the person responsible for storing background data in the database. The data will be stored in the table AREA in SKBs database GEOTAB. If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in.

Signed :					
Date: Is the form complete	[]Yes	[] No,	will be	completed	later.

HOW TO COMPLETE THE FORM AREA (ex: KLIPPERÅS) Areaname: The name of the area. Areacode: (ex: KL) The two letter code for the area. (ex: 12I ÖSTHAMMER) Mapsheet: The name of the topographical map where 0,0 for the local gridnet is located. Square of map: (ex: 6A) The identification of the square of the map where 0,0 for the local gridnet is located. GRIDNET (ex: 6368074.100) RAK X: The RAK north $\overline{\text{co-ordinate}}$ where local gridnet co-ordinates are 0,0. (ex: 1551297.000) RAK Y: The RAK east co-ordinate where local gridnet co-ordinates are 0,0. (ex: 134.234) Z(M.A.S.L):The altitude from sea level where local gridnet co-ordinates are 0,0. RAKdef: (ex: I) A code giving information on how the RAK co-ordinates for the Xzero and Yzero are established. The codes are as follows P = towards RAK fixpoint (ex: P) Zdef: A code giving information on how the M.A.S.L. is established for the point where the local gridnet co-ordinates are 0,0. The codes are the same as for RAKdef. Angle in degrees between RAK north and north in local grid:_____ (ex:123.23)

The angle between RAK north and north in the local gridnet. The angle is taken to be negative towards west and positive towards east.

Angle in degrees between RAK north and magnetic north: ____ (ex: 1.5) The angle between RAK north and magnetic north. This angle is taken to be negative towards west and positive towards east.

FORM 2, AREA Registration of background data from investigation area

		<u></u>		· · · · · · · · · · · · · · · · · · ·	<u></u>				
Areacode	:								
FIX LOCATED IN OR NEARBY AREA									
X-coord	Sx	Y-coord	Sy	Fixname	RAK X		RAK Y	RAKdef	M.A.S.L Zdef
·	·	*	-			•		·	·
·		•	-			•		·	<u> </u>
·	·	•	-			•		·	·
··		•	-			•		·	·
·		•	_			•		·	·
··		·	_			•	·	·	·
		·			<u>.,</u>	•	· ·	·	·
·		·	_			•		·	·
··	_	• •	-			•	·		·
•	. <u> </u>	<u> </u>	_	. <u></u>	<u>.,,,,</u>	•	. <u></u> .	·	·
·		·	_			•	··	·	
··	_	·	_		······	·		·	·
Composito									
Comments	:								
Please complete the form and return it to the person responsible for storing background data in the database. The data will be stored in the table AREAFIXP in SKBs database GEOTAB. If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in.									

Signed :		
Date:		
Is the form complete	[] Yes	[] No, will be completed later.

HOW TO COMPLETE THE FORM (ex: KL) Areacode: The two letter code for the area. The codes are stored in the table AREA in SKBs database GEOTAB. AREA FIXPOINTS (ex: 75.120) Xcoord: The local x-co-ordinate for fixpoint location. (ex: S)Ldirx: The direction symbol for the x-co-ordinate in the local gridnet. Ycoord: (ex: 150.000) The local y-co-ordinate for fixpoint location. (ex: E) Ldiry: The direction symbol for the y-co-ordinate in the local gridnet. Fixname: (ex: P23) The name of the fixpoint. (ex: 6512121.123) XRAK: The RAK x-co-ordinate for the fixpoint. (ex: 1412000.000) YRAK: The RAK y-co-ordinate for the fixpoint. (ex: 12.23) M.A.S.L: The altitude for the fixpoint. Rakdef: (ex: H) A code \overline{g} iving information on how the RAK co-ordinates for the Xzero and Yzero are established. The codes are as follows O = True RAK fix P = towards RAK fixpoint (ex: P) Zdef: A code giving information on how the M.A.S.L. is established for the point where the local gridnet co-ordinates are 0,0. The codes are the same as for Rakdef. O = True RAK fix P = towards RAK fixpoint D = on map in scale 1:50 000 G = on map in scale 1:8 000E = on map in scale 1:20 000 H = on map in scale 1:4 000F = on map in scale 1:10 000 I = on map in scale 1:2 000

```
v2.0 1988-10-28
```

FORM 3, AREA

Registration of background data from investigation area

Areacode:			
GRID CORNER COORDINAT	ES		
Local x-co-ordinate	Sx	Local y-co-ordinate	Sy
·		•	
·	-	• <u> </u>	-
••	-	•	-
	—	·	_ ·
	-		-
· •	-		_
·		·	_
· · · · · · · · · · · · · · · · · · ·	_	* •	_
	_	• ••	_
<u> </u>	_	·	-
GRID REFERENCE POINT			
Local x-co-ordinate	Sx	Local y-co-ordinate	Sy
·	_	·	_
·	_	• •	
·		••	-
•	_	•	-
•		··	-
;		••	
·		•	
·		*	_
		··	-
· · · · · · · · · · · · · · · · · · ·		·	_
Comments:			

Please complete the form and return it to the person responsible for storing background data in the database. The data will be stored in the table AREALIM and AREAREF in SKBs database GEOTAB. If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in.

Signed :		
Date:		
Is the form complete	[] Yes	[] No, will be completed later.

HOW TO COMPLETE THE FORM Areacode: (ex: KL) The two letter code for the area. The codes are stored in the table AREA in SKBs database GEOTAB. GRIDNET CORNER CO-ORDINATES (ex: 1212.400) Xcoord: The local x-co-ordinate for a corner of the gridnet. Ldirx: (ex: N) The direction symbol for the x-co-ordinate in the local gridnet. (ex: 1005.000) Ycoord: The local y-co-ordinate for a corner of the gridnet. (ex: Y) Ldiry: The direction symbol for the y-co-ordinate in the loal gridnet. GRIDNET REFERENCE POINTS (ex:1023.000) Xcoord: The local x-co-ordinate where the preservation mark is placed. Ldirx: (ex: N) The direction symbol for the x-co-ordinate in the local gridnet. Ycoord: (ex: 534.100) The local y-co-ordinate where the preservation mark is placed. (ex: W) Ldiry: The direction symbol for the y-co-ordinate in the loal gridnet.

FORM, BOREHOLE

Registration of background data from investigation area

BOREHOLE INFORMATION							
Areacode:							
Borehole idcode: Old idcode:							
Borehole type:							
"Doroholo logol : go ordinate	x-co-ordinate axis symbol:						
Borehole RAK x-co-ordinate:							
Borehole altitude above sea leve	$\frac{1}{2}$ $(\overline{M.A.S.L})$: .						
RAK definition method:	M.A.S.L definition method:_						
Borehole length from top of casi	.ng:						
Length of quaternary layers alon	Borehole RAK x-co-ordinate: Borehole RAK y-co-ordinate: Borehole altitude above sea level(M.A.S.L): RAK definition method:M.A.S.L definition method: Borehole length from top of casing: Original length of casing above surface: Length of quaternary layers along borehole:						
Borehole preliminary declination	l: .						
Borehole preliminary inclination	1: <u></u>						
BOREHOLE DIAMETER							
Length to Length to	Borehole						
Length to Length to upper limits: lower limit	cs: . diameter: .						
· · · · · · · · · · · · · · · · · · ·							
··	···						
·	·						
CORE DIAMETER							
Length to Length to upper limits: lower limit	Core						
upper limits: lower limit	.s: diameter:						
;							
CASING DIAMETER	Casing inside outside						
upper limits: . lower limit	casing inside outside outside diameter:						
•	··						
·	···						
Comments:							
Please complete the form and ret	urn it to the person responsible for						
storing background data in the database. The data will be stored in the							
table BOREHOLE in SKBs database GEOTAB.							

If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in. Signed :

[] Yes [] No, will be completed later.

- Date: -
- Is the form complete

INFORMATION ABOUT HOW TO FILL IN THE FORM The name of the area. (ex: KLIPPERÅS) AREA (ex: KKL02) Borehole idcode: The borehole idcode. (ex: KKL1b) Old idcode: Old idcode for borehole if such exist. Borehole local x-co-ordinate: ______. (ex: 1234.12) Borehole local y-co-ordinate: ____. (ex: 1200.00) Axis symbol: Borehole RAK x-co-ordinate: Borehole RAK y-co-ordinate: Borehole altitude above sealevel (M.A.S.L):____. (ex: I) RAK definition: A code giving information on how the RAK co-ordinates for the borehole are established. The codes are as follows P = towards RAK fixpoint (ex: P) M.A.S.L definition: A code giving information on how the M.A.S.L. is established for the borehole. The codes are the same as above. Borehole length from top of casing:___ Original length of casing above ground: Length of auaternary layers along borehole: _____.__ Borehole preliminary declination: _____.

Borehole preliminary inclination:

FORM, TOP OF CASING Registration of background data from investigation area

CASING ABOVE GROUND Borehole idcode:_____ Date for change of length of casing above ground (yymmdd):_____ New length of casing above ground (m):_____ Comments:______

Please complete the form and return it to the person responsible for storing background data in the database. The data will be stored in the CASETOP in SKBs database GEOTAB. If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in.

Signed :_____ Date:____-__-

FORM, DRILLING Registration of background data from investigation area

DRILLING INFORMATION	
Borehole idcode:	
Length to upper limit (m) : Length to lower limit (m) :	
Start of drilling (yymmdd): End of drilling (yymmdd) :	
Company performing drilling: Type of drillrigg:	
Comments:	

Please complete the form and return it to the person responsible for storing background data in the database. The data will be stored in the table DRILL in SKBs database GEOTAB. If you do not have complete information, please keep a copy of the form. Fill in the missing information later and then send it in.

Signed :_____ Date:_____ Is the form complete [] Yes [] No, will be completed later.

List of SKB reports

Annual Reports

1977–78 TR 121 **KBS Technical Reports 1 – 120.** Summaries. Stockholm, May 1979.

197**9**

TR 79–28 The KBS Annual Report 1979. KBS Technical Reports 79-01 – 79-27. Summaries. Stockholm, March 1980.

1980 TR 80–26 **The KBS Annual Report 1980.** KBS Technical Reports 80-01 – 80-25. Summaries. Stockholm, March 1981.

1981 TR 81–17 **The KBS Annual Report 1981.** KBS Technical Reports 81-01 – 81-16. Summaries. Stockholm, April 1982.

1982

TR 82–28 The KBS Annual Report 1982. KBS Technical Reports 82-01 – 82-27. Summaries. Stockholm, July 1983.

198**3**

TR 83-77

The KBS Annual Report 1983.

KBS Technical Reports 83-01 – 83-76 Summaries. Stockholm, June 1984.

19**84**

TR 85-01

Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01–84-19) Stockholm June 1985.

1985

TR 85-20

Annual Research and Development Report 1985

Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01-85-19) Stockholm May 1986.

1986

TR 86-31 SKB Annual Report 1986

Including Summaries of Technical Reports Issued during 1986 Stockholm, May 1987 1987

TR 87-33 SKB Annual Report 1987 Including Summaries of Technical Reports Issued during 1987 Stockholm, May 1988 1988

TR 88-31

SKB Annual Report 1988

Including Summaries of Technical Reports Issued during 1988 Stockholm, May 1989

Technical Reports

1989

TR 89-01 Near-distance seismological monitoring of the Lansjärv neotectonic fault region Part II: 1988

Rutger Wahlström, Sven-Olof Linder, Conny Holmqvist, Hans-Edy Mårtensson Seismological Department, Uppsala University, Uppsala January 1989