

BEGAFIP. Programvård, utveckling och bench-markberäkningar

Göran Olsson Stanley Svensson

Studsvik Energiteknik AB, 1980-10-14

SVENSK KÄRNBRÄNSLEFÖRSÖRJNING AB / PROJEKT KÄRNBRÄNSLESÄKERHET

POSTADRESS: Kärnbränslesäkerhet, Box 5864, 102 48 Stockholm, Telefon 08-67 95 40

BEGAFIP. PROGRAMVÅRD, UTVECKLING OCH BENCHMARKBERÄKNINGAR

Göran Olsson Peter Hägglöf Stanley Svensson

Studsvik Energiteknik AB, 1980-12-14

Denna rapport utgör redovisning av ett arbete som utförts på uppdrag av KBS-projektet. Slutsatser och värderingar i rapporten är författarnas och behöver inte nödvändigtvis sammanfalla med uppdragsgivarens.

En förteckning över hittills utkomna rapporter i denna serie, som påbörjades 1980, återfinns i slutet av rapporten. Uppgift om KBS tidigare tekniska rapporter från 1977-1978 (TR 121) och 1979 (TR 79-28) kan erhållas från SKBF/KBS.

Studsvik Arbetsrapport - Technical Report

Projektidentifikation - Project ide	entification	alange in the anti-second second s	Datum - Date	Ora eab ach	or – Report No
SKBF 8. BEGAFIP			80-12-14	K2-R0/	383
Titel och författare – Title and au	thor		00-12-14	<u> </u>	
	BEGAFIP markbera	. Programv äkningar	vård, utve	ckling	och bench-
	Svenssor	isson, Pet h	er Haggio.	r och S	taniey
Distribution	,	n n n n n n n n n n n n n n n n n n n	naayoo dagaa ayoo ayoo ah ahaa ahaa ahaa ahaa ahaa		
	an and a summary of the state of the	ى ئىرىتى بىرىتى بىرى		999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Godkänd av - Approved by			Kontonr – Interr	nal notes	Rapporten skall
Con Denies			54145	an a	forhandsaviseras
	HUVUDINN	IEHÅLL			
	BEGAFIP program fissions	är Studsv för beräk produktup	ik Energit ningar av pbyggnad i	eknik A aktinic reakto	ABs dator- 1- och orbränsle.
	Denna ra SKBF 8 o gifter:	pport red mfattande	ovisar eta nedanståe	npp 1 av ende arb	7 projektet Detsupp-
	1.	Tillägg a av neutro	av program onkällor.	rutin f	ör beräkning
	2.	Revision	av databi	bliotek	et.
	3.	BENCHMARI	K-beräknin	gar.	
	4.	CASMO-ber naden vio	räkningar d fall enl	på akti igt 3 c	niduppbygg- van.

ABSTRACT

This report summarizes improvements to BEGAFIP (the Swedish equivalent to the Oak Ridge computer code ORIGEN). The improvements are

- addition of a subroutine making it possible to calculate neutron sources
- exchange of fission yields and branching ratios in the data library to those published by Meek & Rider in 1978.

In addition, BENCHMARK-calculations have been made with BEGAFIP as well as with ORIGEN regarding the build-up of actinides for a fuel burnup of 33 MWd/kg U. The results were compared to those arrived upon from the more sophisticated code CASMO.

The work performed was made under contract with SKBF (Swedish Nuclear Fuel Supply Co).

INN	IEHÅLLS	FÖRTECKNING	
			Sid
FIG	URSAMM	IANSTÄLLNIN6	3
TAB	ELLSAM	MANSTÄLLNING	4
1.	PROG NEUT	RAMRUTIN FÖR BERÄKNING AV RONKÄLLOR	5
	1.1	Bakgrund	5
	1.2	Neutronkällor	5
	1.3	Resultat och jämförelser	10
2.	REVI	SION AV DATABIBLIOTEKET	14
	2.1	Revision av fissionsutbyten	14
	2.2	Revision av förgrenings- konstanter	17
3.	BENCI	MARK-BERÄKNINGAR	24
	3.1	Bakgrund	24
	3.2	Arbetsuppläggning	26
	3.3	Beräkningsmässiga jämförelser	27
		3.3.1 Allmänt	27
		3.3.2 BEGAFIP	30
		3.3.3 ORIGEN	34
	3.4	Resultat och kommentarer	35
REFE	RENSFÖ	RTECKNING	50

APPENDIX

Schematisk sammanställning av fissionsprodukternas släktskapsförhållanden i BEGAFIPs databibliotek .

K2-80/383 1980-12-14

FIGURSAMMANSTÄLLNING

Figur	1	Beräknad neutronproduktion som kan förväntas vid alfapartikel- bombardemang av ²³⁸ UO ₂ , vars syre har normal isotopsammansättning	6
Figur	2	Neutronspektra för olika källor	8
Figur	3	Sammansatta neutronspektra i lättvattenreaktorbränsle som funktion av utbränningen	8
Figur	4	Neutronkällor i reaktorbränsle som funktion av utbränningen	11
Figur	5	Klyvningsutbyten vid termisk fission av U-235	19
Figur	6	Klyvningsutbyten vid termisk fission av Pu-239	20
Figur	7	Klyvningsutbyten vid termisk fission av Pu-241	21
Figur	8	Klyvningsutbyten vid snabb fission av U-238	22
Figur	9	Jämförelse av klyvningsutbyten	23
Figur	10	Typisk flödesfördelning i en lättvattenreaktorhärd	27
Figur	11	Typiskt tvärsnittsutseende i låga energiområdet	28
Figur	12	Aktinidernas viktigaste upp- byggnadsvägar	33

3

<u>Sid</u>

TABELLSAMMANSTÄLLNING

Tabell (l Halveringstider för α-sönderfall och för spontan fission	7
Tabell :	2 Kedjeutbyten	15
Tabell 3	3 Kvoter mellan nyinsatta och ut- bytta fissionsutbyten	42
Tabell 4	4 Reviderade förgreningskonstanter	17
Tabell 5	5 Jämförelse mellan CASMO-beräk- ningar och mätningar på bränsle till den italienska Trino-	
	Vercellese-reaktorn	25
Tabell 6	5 BENCHMARK-resultat	39
Tabell 7	7 Resultat vid TEST 1 och TEST 2	40
Tabell 8	B Resultat vid TEST 3, TEST 4 och TEST 5	41

4

Sid

PROGRAMRUTIN FÖR BERÄKNING AV NEUTRON-KÄLLOR

1.1 Bakgrund

Vid konstruktion av transportflaskor för utbränt reaktorbränsle har man att ta hänsyn till två slag av strålkällor; gamma och neutroner. Transportflaskor har under många år kunnat tillverkas enbart med avseende på skärmning mot gammakällor.

Bränsleutvecklingen och gjorda driftserfarenheter har emellertid medgivit allt högre tillåtna utbränningsnivåer. Passerar utbränningen 20 MWd/kgU kan neutronkällorna inte längre försummas.

Neutronkällornas bidrag till dosraten på en transportflaskas utsida blev aktuellt att ta hänsyn till först under senare delen av 1960talet. Den artikel (1) som först fäste vår uppmärksamhet på problemet publicerades 1969. Mera utförliga redogörelser ges i (2, 3).

Den "första generationens" transportflaskor saknar av nyssnämnda orsaker neutronskärmar. Studsviks båda s k Ågesta-flaskor är exempel på detta.

1.2 Neutronkällor

Genom successiva neutroninfångningar och betasönderfall i bränslet bildas allt högre, i mass-och ordningstal, belägna transuraner. Programmet BEGAFIPs (4) databibliotek medger beräkningar upp till Es 253.

Flertalet transuraner sönderfaller mestadels genom utsändande av en α -partikel men även genom

spontan klyvning. Båda dessa reaktionstyper ger upphov till neutroner; den förstnämnda typen genom (α, n) -reaktioner med syre i bränslet, se Figur 1.

<u>Figur 1</u>

Beräknad neutronproduktion som kan förväntas vid alfapartikelbombardemang av $^{238}UO_2$, vars syre har normal isotopsammansättning (från ref 5).

En sammanställning visas i Tabell 1 av halveringstider för α -sönderfall och för spontan klyvning. Figurerna 2 och 3 ger exempel på neutronernas energifördelning.

Vid tillägget i BEGAFIP av en programrutin för beräkning av neutronkällor har vi beaktat de två väsentligaste reaktionerna som ger upphov till neutronkällor i reaktorbränsle:

- spontan fission

- (α, n) -reaktioner i syre (UO_2)

Tabell 1

Halveringstider för α -sönderfall och för spontan fission (hämtade ur ref 6)

		rp	
7.	Igoton	$\frac{1}{\alpha}$	「SF (為r)
	150000	(ur)	(41)
92	U 234	2.45, 5	2.0, 16
	U 235	7.04, 8	3.5, 17
	U 236	2.34, 7	2.0, 16
	U 238	4.47, 9	8.2, 15
93	Np 237	2.14, 6	>1.0, 18
94	Pu 238	8.77, 1	4.8, 10
	Pu 239	2.41, 4	5,5, 15
	Pu 240	6.57, 3	1.3, 11
	Pu 242	3.76, 5	6.8, 10
	Pu 244	8.05, 7	6.6, 10
95	Am 241	4.32, 2	1.2, 14
	Am 243	7.37, 3	2.0, 14
96	Cm 242	0.446	6.1, 6
	Cm 243	2.85, 1	
	Cm 244	1.81, 1	1.3, 7
	Cm 245	8.54, 3	-
	Cm 246	4.71, 3	1.8, 7
	Cm 247	1.56, 7	-
	Cm 248	3.70, 5	4.1, 6
98	Cf 249	3.51, 2	6.9, 10
	Cf 250	1.31, 1	1.7, 4
	Cf 251	9.00, 2	138
	Cf 252	2.73, 0	8.6, 1
99	Es 253	2.05, 1	6.3, 5

Med skrivsättet 2.45, 5 avses $2.45 \cdot 10^5$

Neutronspektra för olika källor (från ref 2).

Figur 3

Sammansatta neutronspektra i LWR-bränsle som funktion av utbränningen (från ref 2).

Antalet neutroner per sekund vid spontan fission (SF) av en isotop är:

$$n_{A}(SF) = \lambda_{SF_{A}} \cdot N_{A} \cdot \overline{v}_{SF_{A}}$$
 (n/s)

där

$$N_A$$
 = antalet atomer av isotopen A
 λ_{SF_A} = sönderfallskonstanten vid (SF)
 \overline{v}_{SF_A} = medelvärdet av antalet neutroner per
spontan fission

Vidare är:

$$\lambda_{\rm SF} = b_{\rm SF} \cdot \lambda$$

där

^b SF	Ξ	andelen fission	av	sönderfall	som	utgör	spontan

 λ = totala sönderfallskonstanten

Antalet neutroner per sekund som följd av (α, n) -reaktioner i urandioxiden beräknas ur

$$n_{A}(\alpha,n) = \lambda_{\alpha_{A}} \cdot N_{A} \cdot \sum_{i=1}^{i=N} I_{\alpha_{i}} \cdot f(E_{\alpha_{i}}) \quad (n/s)$$

där

Denna nya programrutin medför att databiblioteket måste byggas ut. Utbyggnaden har lagts som en separat del efter den ursprungliga delen. Den kännetecknas av att ordningssiffrorna i kolumn 4 ersatts av bokstäverna A, B, C osv. Som exempel visar vi data för Pu-239:

518APU239	2.871	4.4E-12	3
518BPU239	5.155	0.733	1.86E-08
518CPU239	5.143	0.151	1.85E-08
518DPU239	5.105	0.115	1.79E-08

A-kortet har FORMAT (---,2E10,I5) Resterande har FORMAT (---,3E10)

Talen på respektive kort representerar:

А	vsf	b _{SF}	Ν
В	ε _{α1}	Ι _{αι}	$f(E_{\alpha_1})$
С	E_{α}^{2}	I _a 2	$f(E_{\alpha_2})$
D	E _α N	ĭα _N	$f(E_{\alpha_N})$

Grunddata till denna tillkommande del av databiblioteket har hämtats från referenserna (5 - 8).

1.3 Resultat och jämförelser

Neutronkällorna i reaktorbränsle vid tiden för avstängning domineras helt av bidraget från två aktinider, Cm242 och Cm244. Figur 4 visar resultat erhållna med den nya BEGAFIP-versionen.

Vi har tidigare omnämnt att vid utbränningen 20 MWd/kgU börjar neutronkällorna i reaktorbränsle ge dosratsbidrag som inte längre är försumbart jämfört med det från gammakällorna.

Figur 4

Neutronkällor i reaktorbränsle som funktion av utbränningen. Bränslemängd: 1 ton uran

11

I Figur 4 ser vi även neutronkällornas snabba tillväxt. Mellan 20 och 33 MWd/kgU ökar källstyrkan i det närmaste med en faktor 8. Gammakällstyrkan i samma intervall ökar däremot bara obetydligt.

Skillnaden blir ännu mera markant om man sträcker sig bortom 33 MWd/kgU. Vid konstruktion av framtida bränsletransportflaskor kommer därför neutronskärmningen att ta ökad del av uppmärksamheten.

Av de två reaktionerna (SF) respektive (α, n) är den förstnämnda den mest betydande. För att kontrollera den nya BEGAFIP-versionens resultat har vi jämfört med tidigare gjorda ORIGEN-beräkningar (9). För (SF)-neutronerna är överensstämmelsen god, medan BEGAFIPs resultat för (α, n) neutronerna genomgående är endast hälften av ORIGENs.

Denna dåliga överensstämmelse kan inte bero på annat än olikheter i grunddata, dvs i uppgifterna om antalet neutroner per sekund som följd av (α,n) -reaktioner i urandioxiden. En nyutkommen rapport från Oak Ridge (10) omtalar att man gjort betydelsefulla ändringar i ekvationen för beräkningen av (α,n) -neutroner i den nya programversionen ORIGEN2. Avsikten var att få bättre överensstämmelse med mätresultat.

Dessa nya grunddata i ORIGEN2 ansluter bättre till BEGAFIPs data med två viktiga undantag. Isotoperna Cm 242 och Cm 244 ger i ORIGEN2 drygt 6 gånger högre neutronproduktion än i BEGAFIP. Rent allmänt kan sägas att neutronproduktionen vid (α, n) -reaktioner stiger med ökande energi

hos α-partikeln. Däremot skiljer sig uppfattningarna om hur brant denna stigning är. Vi har i brev till A G Croff, ORNL, påtalat dessa skillnader och avvaktar hans kommentarer.

Tills vidare kommer vi att behålla våra grunddata och hålla i minnet att andelen neutroner genom (α,n) -reaktioner vid α -sönderfall hos Cm 242 och Cm 244 för närvarande i BEGAFIP sammanlagt utgör cirka 10 procent av totala neutronproduktionen i bestrålat lättvattenreaktorbränsle.

Skulle vi i stället använda oss av ORIGENs grunddata för dessa två nuklider medför detta följaktligen att den totala neutronproduktionen ökar med 50 %.

2. REVISION AV DATABIBLIOTEKET

2.1 Revision av fissionsutbyten

Fissionsutbytet är den viktigaste delen i databiblioteket vad gäller beräkningar på mängder av enskilda fissionsprodukter.

Alltsedan BEGAFIPs databibliotek redovisades för första gången år 1970 har vi valt att använda de sammanställningar över fissionsutbyten som givits ut av Meek och Rider. Den av oss nu gjorda revisionen baseras på 1978 års utgåva (11) och ersätter data från närmast föregående revision (12).

Att lägga in nya fissionsutbyten i databiblioteket måste tyvärr ske manuellt, vilket är ett tidskrävande arbete. Dessutom föreligger alltid risken för att fel uppkommer. Dessa har vi sökt gallra bort genom några kontroller. Dels har vi summerat de individuella fissionsutbytena över respektive masstal (kedjeutbytet) för var och en av de fyra klyvbara nukliderna och jämfört dessa kedjeutbyten med samma uppgifter i Meek och Rider. Dels har vi summerat kedjeutbytena över samtliga masstal för att kontrollera att summan blir 200 procent. Detta visar vi i Tabell 2.

För den som önskar jämföra resultat av nya beräkningar med tidigare utförda kan det vara av intresse att veta hur mycket fissionsutbytena har ändrats. Till hjälp för detta har vi tagit fram Tabell 3 som visar kvoten mellan nya och gamla värdet för samtliga fissionsprodukter i BEGAFIP. Tabell 3 börjar på sidan 42. Den är så stor att vi föredragit att lägga den sist i rapporten.

14

Tabell 2

Kedjeutbyten

	U-235(TH)	PU-239(TH)	PU-241(TH)	U-238(F)
72	2.683E-05	9.605E-05	2.511E-05	9.310E-06
73	1,180E-04	2.304E-04	5.841E-05	4.772E-05
74	3.621E-04	5.328E-04	9.661E-05	9.310E-05
75	1.179E-03	1.244E-03	2.894E-04	2.420E-04
76	3.858E-03	2.755E-03	9.660E-04	8.040E-04
77	8.434E-03	7.334E-03	1.932E-03	3.330E-03
78	2.184E-02	2.853E-02	9.467E-03	1.127E-02
79	4.532E-02	4.702E-02	1.525E-02	3.338E-02
80	1.308E-01	1.133E-01	2.963E-02	6.942E-02
81	1.953E-01	1.715E-01	6.297E-02	1.429E-01
82	3.279E-01	2.056E-01	1.318E-01	2.380E-01
83	5.362E-01	2.950E-01	2.127E-01	3.930E-01
84	9.953E-01	4.743E-01	3.714E-01	8.140E-01
85	1.311E+00	5.731E-01	3.985E-01	7.300E-01
86	1.969E+00	7.588E-01	6.394E-01	1.277E+00
87	2.558E+00	9.922E-01	7.862E-01	1.585E+00
88	3.634E+00	1.364E+00	1.021E+00	2.058E+00
89	4.878E+00	1.707E+00	1.225E+00	2.842E+00
90	5.914E+00	2.108E+00	1.576E+00	3.236E+00
91	5.934E+00	2.502E+00	1.891E+00	4.064E+00
92	5.981E+00	3.008E+00	2.373E+00	4.520E+00
93	6.385E+00	3.894E+00	3.089E+00	4.969E+0U
94	6.446E+00	4.428E+00	3.543E+00	4.971E+00
95	6.496E+00	4.893E+00	4.072E+00	5.099E+00
96	6.284E+00	5.078E+00	4.620E+00	5.925E+00
97	5.943E+00	5.395E+00	4.855E+00	5.519E+00
98	5.776E+00	5.830E+00	5.140E+00	5.805E+00
99	6.120E+00	6.154E+00	6.268E+00 .	6.241E+00
100	6.207E+00	6.808E+00	6.126E+00	6.610E+00
101	5.075E+00	5.897E+00	6.004E+00	6.077E+00
102	4.237E+00	5.968E+00	6.389E+00	6.319E+00
103	3.043E+00	6.948E+00	6.149E+00	6.222E+00
104	1.835E+00	5.912E+00	6.875E+00	4.983E+00
105	9.676E-01	5.361E+00	6.145E+00	3.970E+00
106	4.018E-01	4.281E+00	6.224E+00	2.510E+00
107	1.405E-01	3.361E+00	5.210E+00	1.301E+00
108	6.708E-02	2.172E+00	3.936E+00	6.004E-01
109	3.444E-02	1.876E+00	2.253E+00	2.668E-01
110	3.034E-02	5.987E-01	1.172E+00	1.353E-01
111	2.005E-02	3.036E-01	5.709E-01	8.056E-02
112	1.604E-02	1.333E-01	2.310E-01	6.496E-02
113	1.634E-02	6.514E-02	1.459E-01	5.261E-02
114	1.404E-02	6.059E-02	7.247E-02	3.928E-02
115	1.115E-02	3.688E-02	4.362E-02	3.493E-02
116	1.691E-02	4.948E-02	2.858E-02	4.158E-02
117	1.085E-02	5.632E-02	2.539E-02	3.674E-02
118	1.094E-02	3.640E-02	2.382E-02	3.958E-02
119	1.216E-02	3.906E-02	2.382E-02	3.572E-02

Tabell 2

(forts)

	U-235(TH)	PU-239(TH)	PU-241(TH)	U-238(F)
120	1.2118-02	3.656F-02	2.394E-02	3.573E-02
121	1.300F-02	3.830F-02	2.352E-02	4.347E-02
122	1.5305-02	5.015E-02	2.3518-02	3.758E-02
123	1.585E-02	4.370E-02	2.489E-02	4.041E-02
124	2.593E-02	8.778E-02	2.916E-02	4.431E-02
125	2.939E-02	1.110E-01	4.241E-02	5.2658-02
126	5.560E-02	2.707E-01	7.663E-02	6.377E-02
127	1.256E-01	4.892E-01	2.293E-01	1.298E-01
128	3.507E-01	7.473E-01	3.543E-01	4.609E-01
129	7.437E-01	1.486E+00	7.570E-01	9.963E-01
130	1.785E+00	2.328E+00	1.651E+00	1.873E+00
131	2.884E+00	3.845E+00	2.842E+00	3.229E+00
132	4.299E+00	5.391E+00	4.217E+00	5.124E+00
133	6.703E+00	6.973E+00	6.768E+00	6.612E+00
134	7.797E+00	7.618E+00	7.416E+00	7.556E+00
135	6.543E+00	7.615E+00	7.300E+00	6.855E+00
136	6.317E+00	6.708E+00	6.680E+00	6.847E+00
137	6.223E+00	6.696E+00	6.863E+00	5.993E+00
138	6.757E+00	6.054E+00	6.769E+00	5.659E+00
139	6.378E+00	5.622E+00	5.945E+00	5.960E+00
140	6.277E+00	5.551E+00	6.168E+00	5.941E+00
141	5.797E+00	5.255E+00	4.962E+00	5.450E+00
142	5.878E+00	4.982E+00	5.031E+00	4.723E+00
143	5.939E+00	4.427E+00	4.703E+00	4.553E+00
144	5.475E+00	3.737E+00	4.333E+00	4.538E+00
145	3.918E+00	2.991E+00	3.343E+00	3.751E+00
146	2.976E+00	2.461E+00	2.861E+00	3.389E+00
147	2.254E+00	2.042E+00	2.367E+00	2.528E+00
148	1.670E+00	1.634E+00	1.989E+00	2.079E+00
149	1.067E+00	1.239E+00	1.524E+00	1.608E+00
150	6.484E-01	9.660E-01	1.248E+00	1.263E+00
151	4.185E-01	7.718E-01	9.366E-01	8.001E-01
152	2.679E-01	5.850E-01	7.464E-01	5.201E-01
153	1.614E-01	3.636E-01	5.480E-01	4.105E-01
154	7.342E-02	2./16E-01	3.9602-01	2.131E=01
155	3.205E-02	1.0545-01	2.41/2-01	1.3200-01
150	1.3196-02	1.183E-01 7.407E-02	1.2715-01	3 9675-02
157	0.1555-03	1.407E=02	$1 \cdot 3/1 = 01$	1 7295-02
158	2.9102-03	4.073E-02	0.0220-02	
159	1.0046-03	2.0500-02	4.00000-02	3 2255-03
160	3.1005-04	9.1212-03	9 5705-02	1 2785-03
101	0.5275-05	2 3065-03	2.4015-03	4-9125-04
162	107145-03	C . 3905-03	20771C-UJ 8.982F-04	1.210F-04
103	2 3075-A6	3 6625-04	2.997F=04	3.9115-05
104	203712-00	J. JOOLL-UH	9.0000	1.504E=05
100	1.10/CTUO 5 5005-17	1.37VE-04	5.0225-05	5.380F-06
100	3.3222-01	0.0202-03	0.0305-03	
TOTAL	200.012	199.920	199.895	199.616

Slutligen har vi låtit vår BENSON-plotter rita upp värdena i Tabell 2 med ett figurblad för var och en av de fyra klyvbara nukliderna (Figur 5 - 8). Dessa fyra kurvor har dessutom sammantagits i Figur 9 för att visa skillnaderna i fissionsutbytena de fyra nukliderna emellan.

2.2 Revision av förgreningskonstanter

Delat betasönderfall beaktas i BEGAFIP genom angivande av en förgreningskonstant (se t ex A = 75 i Appendix). Minsta grenens bråkdel lagras i databiblioteket.

En fullständig genomgång har företagits, varvid de nya förgreningskonstanterna har hämtats ur (11). Nedanstående tabell visar ändringarna.

Tabell 4

Reviderade förgreningskonstanter

Nu	klid	Tidigare värde	Nuvarande värde	Anm
GE	77 m	0.24	0.21	
AS	77	0.00012	0.003	
BR	80	0.0865	0.086	
BR	82 m	0.01	0.0024	
KR	85 m	0.23	0.2158	
SR	87 m	0.007	0.003	
SR	89	0.00009	0.0001	
ZR	95	0.02	0.01	
ZR	97	0.04	0.06	
MO	99	0.1241	0.12	
RU	103	0.02	0.01	
RU	105	0.21	0.27	
AG	108	0.0218	0.023	
AG	110 m	0.013	0.014	
PD	111 m	0.25	0.287	

Tabell 4

(forts)

Nuklid	Tidigare värde	Nuvarande värde	Anm
	na si man na kata na k Kata na kata na		
PD 113		0.10	Minor = AG 113 m
AG 113 m	0.10	0.045	
AG 113	-	0.013	Minor = CD 113 m
AG 115	0.09	0.085	
IN 115 m	0.05	0.037	
CD 117 m	0.39	0.44	
CD 117	0.336	0.07	
SB 125	0.216	0.225	
SB 126 m	0.15	0.14	
TE 127 m	0.008	0.024	
SN 128	0.03	0.002	
SB 129	0.146	0.166	
TE 129 m	0.36	0.364	
SN 130	0.50	0.10	
SB 131	0.068	0.070	
I 131	0.006	0.014	
SB 133	0.28	0.42	Major/Minor omkastade
I 133	0.024	0.028	
I 135	0.27	0.147	
CS 137	0.065	0.054	
PM 148 m	0.07	0.046	
EU 152 m	0.238	0.230	
EU 152	0.273	0.280	
GD 162		0.02	Minor = TB 162 m
DY 165 m	0.0254	0.025	

Figur 5

Klyvningsutbyten vid termisk fission av U-235

Figur 6

Masstal

<u>Figur 7</u>

Klyvningsutbyten vid termisk fission av Pu-241

Figur 8

Klyvningsutbyten vid snabb fission av U-238

Masstal

<u>Figur 9</u>

Jämförelse av klyvningsutbyten

K2-80/383

3. BENCHMARK-BERÄKNINGAR

3.1 Bakgrund

Beräkningar av aktiniduppbyggnaden i kraftreaktorbränsle, som underlag till diskussioner om bränslets eventuella upparbetning och slutförvaring, har erhållit stor uppmärksamhet sedan mitten av 1970-talet.

Härigenom har användningsområdet för program som BEGAFIP och ORIGEN m fl kommit att utvidgas. Kraven på noggrannhet i aktiniddelen av BEGAFIP vid fissionsproduktberäkningar begränsades ursprungligen till bestämningen av fissionernas fördelning mellan U-235, Pu-239, Pu-241 och U-238. Aktinidbiblioteket bestod då endast av ett tiotal nuklider.

Två utvidgningar av detta bibliotek, den första till Cm-242 och den andra till Es-253, innebär att aktiniddelen numera är fem gånger så stor som den ursprungligen var.

Det komplicerade förloppet vid uppbyggnaden av aktinider i samband med reaktorbränslets utbränning behandlas bäst med program av typ CASMO. Dess beräkningsmodell, där flödesspektrum och tvärsnitt är indelade i 69 alternativt 25 energigrupper, tar automatiskt hänsyn till självskärmningseffekter i t ex U-238 och Pu-240.

En mångfald av mätningar har gjorts under årens lopp för att verifiera CASMOs beräkningsresultat inom samtliga tillämpningsområden. För att exemplifiera CASMOs noggrannhet inom området aktiniduppbyggnad presenteras nedanstående tabell hämtad från (13).

Tabell 5

*

Jämförelse mellan CASMO-beräkningar och mätningar på bränsle till den italienska Trino-Vercellese-reaktorn.

CASMO variant	Standard**		Extended**		
Library	LIB25	LIB69	LIB69	LIB69	Measurement
R _y , cm	0.7824	0.7824	0.7824	0.7522	
U235***	4.493,20*	4.489	4.496	4.402	4.428
U236	7.963,19	7.959	7.843	7.831	8.239
U238***	4.157,20	4.166	4.119	4.371	4.578
Pu238	1.975,18	2.029	2.051	2.279	2.664
Pu239	1.253,20	1.261	1.236	1.359	1.375
Pu240	4.016,19	3.991	3.971	4.073	4.103
Pu241	2.160,19	2.158	2.216	2.404	2.408
Pu242	5.699,18	5.746	5.036	5.068	5.791
Am241	1.592,18	1.616	1.580	1.738	2.709
Am242M	6.813,16	6.885	3.012	3.477	5.134
Am243	7.763,17	7.871	7.831	8.535	9.963
Cm242	4.456,17	4.497	4.378	4.693	5.739
Cm244	1.418,17	1.445	1.498	1.752	2.144

4.493,20 skall läsas 4.493·10²⁰. Tiotalsexponenten har endast satts ut i första kolumnen.

** Standard sträcker sig upp till Cm244 Extended "- Es253

*** Tabellvärdena för denna nuklid avser antalet utbrända kärnor/cm³ bränsle.

> CASMO är alltså väl lämpat att tjäna som likare vid BENCHMARK-beräkningar med BEGAFIP och ORIGEN. Man skall ha i minnet att de båda sistnämnda programmen utvecklats i första hand för fissionsproduktberäkningar. Programmens förenklade tvärsnittsbehandling kan medföra stora fel vid beräkningar på aktiniduppbyggnaden i bestrålat reaktorbränsle. Undersökningen av detta är huvudsyftet med dessa BENCHMARK-beräkningar.

3.2 Arbetsuppläggning

BENCHMARK-beräkningarna har gjorts med identiskt lika indata och resultatet från ORIGEN och BEGAFIP ställdes i relation till en likare, i detta fall CASMO-EXT, av skäl som redan nämnts.

För undersökningarna beräknades aktinidinnehållet i en PWR-U som kördes till utbränningen 33 MWd/kg U med effekttätheten 38.5 W/g U. Anrikningen var 3.25 % U-235.

Först gjordes en körning med CASMO, följt av en körning med CASMO-EXT. Detta för att få fram, för båda varianterna, nuklidinnehållet i bränslet samt för att få fram beräkningsunderlag för de spektrumparametrar som behövs som ingångsdata i ORIGEN och BEGAFIP.

Sedan undersöktes de återkopplingar i aktinidschemat som har störst betydelse nämligen Cm-242 $\vec{\alpha}$ Pu-238 och Am-242 $\vec{\beta}$ + Pu-242. Dessa båda sönderfallsåterkopplingar kan inte hanteras av BEGAFIP utan vi har löst problemet genom att införa två fiktiva uppsamlingsnuklider XX-238 och YY-242, som har samma data som Pu-238 och Pu-242. Dessa nuklider samlar upp sönderfallen från Cm-242 och AM-242 men återinför dem ej i kedjorna.

ORIGEN kan hantera dessa återkopplingar och genom att i ett par körningar bryta dem kan man studera deras inverkan.

3.3 Beräkningsmässiga jämförelser

3.3.1 Allmänt

Effektutvecklingen i en reaktor bestäms av klyvningsraten $\sigma_f \cdot \phi$ där σ_f = effektivt klyvningstvärsnitt och ϕ = termiska neutronflödestätheten, ofta kallad flödet. Varje klyvning ger upphov till ca 200 MeV energiutveckling, mestadels som rörelseenergi hos klyvningsprodukterna. Vid klyvningen slungas 2 - 3 nya neutroner ut som kan hålla kedjereaktionen igång. Då neutronerna föds har de energier av storleksordningen 1 MeV och modereras till det termiska området där klyvningstvärsnittet för U-235 är störst i förhållande till infångningstvärsnittet för U-238. En typisk flödesfördelning ser ut som i Figur 10 där det snabba flödet har utelämnats. Uppdelningen av flödet i en maxwelldel och en 1/E del, som i figuren, är en rätt grov förenkling för beräkningar på en lättvattenreaktorhärd, men är i många fall acceptabel för koder av typen BEGAFIP och ORIGEN.

Figur 10

Typisk flödesfördelning i en lättvattenreaktorhärd.

```
K2-80/383
1980-12-14
```

Tvärsnittet, så väl för infångning som fission, exemplifieras i Figur 11. Man har i allmänhet en resonansstruktur i epitermiska området. Denna är särskilt betydande vid infångningar i U-238.

Figur 11

Typiskt tvärsnittsutseende i låga energiområdet.

Man kan nu definiera en allmän reaktionsrat

∞ ∫ σ(E)φ(E)dE o

där $\sigma(E)$ t ex kan vara infångningstvärsnitt eller klyvningstvärsnitt. Reaktionsraten kan nu beräknas genom uppdelning av flödet i olika delar (jfr Figur 10)

$$\int_{0}^{\infty} \sigma(E)\phi(E)dE = \int_{0}^{\infty} M(E)\sigma(E)dE + \int_{\mu E_{n}}^{\infty} \frac{\alpha \phi_{0}}{E} \sigma(E)dE =$$
$$= \sigma_{0}\phi_{0} + \int_{\mu E_{n}}^{\infty} \alpha\phi_{0}(\sigma_{0}\sqrt{\frac{E_{0}}{E}} + \sigma(E)-\sigma_{0}\sqrt{\frac{E_{0}}{E}}) \frac{dE}{E} =$$

$$= \sigma_{o}\phi_{o} + \sigma_{o}\phi_{o}\alpha 2 \sqrt{\frac{E_{o}}{\mu E_{n}}} + \frac{E_{c}d}{\mu E_{n}} \alpha\phi_{o}(\sigma(E) - \sigma_{o}\sqrt{\frac{E_{o}}{E}}) \frac{dE}{E} + \frac{\sigma_{o}}{\mu E_{n}} + \frac{\sigma_{o}}{\Gamma} \alpha\phi_{o}(\sigma(E) - \sigma_{o}\sqrt{\frac{E_{o}}{E}}) \frac{dE}{E} = \sigma_{o}\phi_{o} + \sigma_{o}\phi_{o}\alpha \sqrt{\frac{4E_{o}}{\mu E_{n}}} + \frac{\sigma_{o}\phi_{o}}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\mu E_{n}} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{\sigma_{o}}{\Gamma} \frac{\sigma_{o}}{\Gamma} \frac{dE}{E} + \frac{\sigma_{o}\phi_{o}}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{\sigma_{o}}{\Gamma} \frac{dE}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{dE}{\Gamma} \frac{dE}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{dE}{\Gamma} \frac{dE}{\Gamma} \frac{dE}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{dE}{\Gamma} \frac{dE}{\Gamma} + \frac{\sigma_{o}\phi_{o}}{\Gamma} \frac{dE}{\Gamma} \frac{dE}{\Gamma}$$

där

$$\phi_{o} = \sqrt{\frac{\pi E_{o}}{4 E_{n}}} \phi_{th}$$

 $\phi_{o} = den konventionella termiska neutron$ flödestätheten $\sigma_{o} = tvärsnittet för v_{o} = 2 200 m/s neutroner$ $E_{o} = 0.0253 eV (motsvarar <math>\frac{mv_{o}^{2}}{2}$) $\alpha, \mu, E_{n} = spektrumparametrar, se Figur 10$ $E_{cd} = cut-off energin för kadmium (~ 0.5 eV)$

RI' =
$$\int_{E_{cd}}^{\infty} (\sigma(E) - \sigma_0 \sqrt{\frac{E_0}{E}}) \frac{dE}{E} =$$

= resonansintegral exklusive $\frac{1}{v}$ delen.

Nedan jämför vi vårt erhållna allmänna uttryck för reaktionsraten, som dock är idealiserat så till vida att det bygger på $\frac{1}{v}$ tvärsnitt i termiska området, med motsvarande uttryck i BEGAFIP respektive ORIGEN.

3.3.2 BEGAFIP

$$\sigma \phi = \sigma_{o} \phi_{o} g + \sigma_{o} \phi_{o} g \alpha \sqrt{\frac{4 T_{o}}{\mu T_{n}}} + \phi_{o} \alpha RI'$$
$$g = \int \sigma(E) dE / \int \sigma_{o} \sqrt{\frac{E_{o}}{E}} M(E) dE$$

där

$$E_{o} = kT_{o} (T_{o} = 293.16^{\circ}K)$$
$$E_{n} = kT_{n} (T_{n} = neutrontemp)$$

Vidare har man som approximation ansett att

$$\alpha \phi_{o} \int_{\mu E_{n}}^{E} (\sigma(E) - \sigma_{o} \sqrt{\frac{E_{o}}{E}}) \frac{dE}{E}$$

är liten, vilket är en rimlig approximation.

Man har instället låtit g-faktorn verka även på den andra termen. Att RI' är definierad från E_{cd} och inte från μE_n har att göra med mätningsmetodiken av resonansintegralen.

Neutroninfångningsraten $\sigma\phi$ beräknas med Westcottformalism där

Ф ₀		den konventionella termiska neutron- flödestätheten, dvs produkten av termiska neutrontätheten och neutron- hastigheten v vid rumstemperatur $T_{o'}$ v = 2 200 m/S
σο	8	det termiska neutroninfångningstvär- snittet vid v _o
g	-	Westcotts g-faktor som korrigerar för avvikelsen från $\frac{1}{v}$ -beroendet

$$T_{n} = neutrontemperatur. Är något högre änmoderatortemperaturen. I vår körning == 845 K
$$\mu = spektrumparameter, här \mu = 3.68$$
$$\alpha = \frac{\phi_{epi}}{\phi_{o}}; det epitermiska neutronflödetantas ha formen $\frac{\phi_{epi}}{E}$, i vår körning =
= 0.58
RI' = resonansintegralen för neutroninfång-
ning eller klyvning exklusive $\frac{1}{v}$ delen$$$$

Vid BEGAFIP-körningen används alternativet konstant effekt. Detta medför att klyvningsraten är konstant under tidssteget. Vid bestämning av flödestätheten utgår man från startvärdet ϕ_1 som erhålls från uttrycket på effekten P [MW].

$$P = \frac{(1+R) \phi}{3.12 \cdot 10^{40}} \sum_{i} \sigma_{i}^{k} N_{i}$$

där

R	=	antalet snabba klyvningar/antalet termiska + epitermiska klyvningar
σ_{i}^{k}	=	klyvningstvärsnittet för nuklid i
Ni	=	antalet atomer av den klyvbara nukliden vid tiden t=0

Vidare är

$$\frac{P \cdot t \cdot 3.12 \cdot 10^{16}}{1 + R} = n$$

där

n

= antalet icke-snabba klyvningar under tiden t

31

Man beräknar mängderna av de tunga nukliderna och det totala antalet icke-snabba klyvningar under tidssteget t. Om detta värde skiljer sig med mer än 1 % från det som effekten P motsvarar enligt ovan korrigeras flödestätheten och beräkningen upprepas tills villkoret är uppfyllt. Denna process upprepas för varje tidssteg.

I biblioteket finns lagrade värden på $g \cdot \sigma_0$ och resonansintegraler exklusive $\frac{1}{v}$ delen. Som indata krävs mängderna av ingångsnukliderna (U-235, U-238) samt parametern α dvs ϕ_{epi}/ϕ_0 , R = snabb klyvningsfaktor, TEMP = moderatortemperatur, RESCOR = korrektionsfaktor för U-238s resonansintegral.

Vidare finns släktskapsrelationer mellan nukliderna lagrade. Där räknas t ex en nuklids metastabila tillstånd (isomer) som en särskild nuklid, vars radioaktiva sönderfall kan gå antingen till grundtillståndet (isomer övergång) eller till närmaste grund- eller ev metastabila tillstånd. Det enda α -sönderfall av betydelse, Cm-242 \Rightarrow Pu-238 har här samlats upp i den fiktiva nukliden XX-238 medan det enda β^+ -sönderfallet av betydelse Am-242 \Rightarrow Pu-242, samlas upp i den fiktiva nukliden YY-242, se Figur 12. Reaktioner av typen (n,2n),(n,3n),(n,p) kan inte heller hanteras då de åstadkommer besvärliga återkopplingar. Men dessa reaktioner har små tvärsnitt och deras inverkan är försumbar.

ယ ယ
3.3.3 ORIGEN

$$\sigma \phi = \bar{\phi} \left[\sigma_{o} g \sqrt{\frac{\pi T_{o}}{4 T_{n}}} + \beta \cdot RI + 1.45 \frac{\phi_{>1} \text{ MeV}}{\bar{\phi}} \cdot \bar{\sigma}_{>1} \text{ MeV} \right]$$

Till skillnad från BEGAFIP använder man alltså här verkligt termiskt flöde $\overline{\phi}$. Detta bör väljas något större än det ϕ_{th} som anges i Figur 10, så att man får med den del av reaktionsraten som ligger mellan μE_n och E_{cd} . Detta sker vid bestämningen av β (=RES).

I uttrycket för reaktionsraten ovan är:

$$\left(\frac{\pi T_{0}}{4T_{n}}\right)^{\frac{1}{2}} = THERM = förhållandet mellan reaktions-raten för maxwellfördelade neutroneroch reaktionsraten för 2 200 m/sneutroner
$$RI = resonansintegralen inklusive \frac{1}{v} delen \\ \beta = \frac{\phi}{\overline{\phi}} = RES = förhållandet mellan resonans-flödet per letargi-intervall tilltermiskt flöde
$$1.45 \cdot \frac{\phi > 1 \text{ MeV}}{\overline{\phi}} = FAST = 1.45 \text{ förhållandet mellan} \\ flödet > 1 \text{ MeV till termiska flödet} \\ 1.45 = \frac{1}{0.69} \qquad 0.69 \text{ är andelen av} \\ fissionsspektrumet \\ över 1 \text{ MeV för U-235} \\ \overline{\phi} > 1 \text{ MeV} = fissionsspektrummedlat tvärsnitt för alla reaktioner som har en tröskel-}$$$$$$

Faktorerna THERM, RES och FAST läses in som indata. ORIGEN har alltså sitt flöde delat i tre delar. Ett termiskt flöde som antages maxwellfördelat, ett resonansflöde som har $\frac{dE}{E}$ -fördelning och ett snabbt flöde som antas ha samma utseende som fissionsspektrumet för U-235. BEGAFIP å sin

energi vid 1 MeV

sida har flödet indelar i två delar; en termisk maxwellfördelad del och en epitermisk $\frac{dE}{E}$ -fördelad del.

I biblioteket finns data på $g\sigma_0$ och RI. Vidare finns här möjlighet att hantera α - och β^+ -sönderfall. Då programmet kan hantera återkopplingar medför det att även reaktioner av typen (n,2n). (n,3n), (n,p) beaktas. Dessa reaktioner har ofta en tröskelenergi vid ca 1 MeV och då tvärsnitten för reaktionerna är små spelar de en försumbar roll.

Vidstående parametervärden	THERM	Ħ	0.51
har använts i alla våra	RES		0.32
ORIGEN-beräkningar	FAST	=	3.17

3.4 Resultat och kommentarer

Resultaten av BENCHMARK-beräkningarna av nuklidhalterna i en PWR körd till 33 MWd/kgU kan studeras i Tabell 6. Man ser att BEGAFIPs resultat stämmer ganska bra överens med CASMO-EXTs. ORIGENs resultat skiljer sig däremot mer från CASMO-EXTs resultat, framförallt vad gäller de högre nukliderna från Cm-245 och upp till Es-253.

Vi bör kanske poängtera att resultaten i Tabell 6 erhållits med helt okorrigerade databibliotek hörande till vart och ett av de fyra programmen.

Av två skäl valde vi att i fem efterföljande testfall använda ORIGEN. Dels skiljer sig ORIGEN betydligt mera från CASMO-EXT än vad BEGAFIP gör, dels har man därmed möjlighet att studera återkopplingars inverkan.

```
K2-80/383
1980-12-14
```

Följande fem testfall har undersökts:

TEST	1:	ORIGEN	med	två-gru	ippsdat	ta	frår	n (CASMO)-EXT
TEST	2:	ORIGEN	där		σ _{n.v}	=	453	b	för	Pu-241
					RI		0		för	Cm-245
					RI _{n, y}	=	70	b	för	Cm-248
TEST	3:	ORIGEN	där		λ _α	-	0		för	Cm-242
TEST	4:	ORIGEN	där		λ	=	0		för	Cm-242
					λ_{β}^{μ} +	5	0		för	Am-242
TEST	5:	ORIGEN	där		^σ n,γ	Ξ	0		för	Pu-238

När tvågruppstvärsnitt från CASMOs bibliotek lades in i ORIGEN så blev resultatet både bättre och sämre (TEST 1). Bättre för nukliderna Cm-245→Bk-249 men sämre för nukliderna Cf-249→Es-253. Vad detta beror på är svårt att säga men man kan misstänka att flödesdefinitionen i ORIGEN inte passar CASMO-EXTs databibliotek.

TEST 2 gav bättre resultat än ursprungskörningen. Här ligger biblioteksändringarna utefter den "huvudgata" som visas i Figur 12. Vi har erhållit resultat som har samma storleksordning på felen som i BEGAFIP. Detta visar att det går att få ORIGEN att räkna lika bra som BEGAFIP.

Skapandet av de två fiktiva nukliderna XX-238 och YY-242 i BEGAFIP för att få en uppfattning om storleken på de mängder som tillförs Pu-238 respektive Pu-242 visar att mängden Pu-238 skulle ha ökat med ca 5 % medan mängden Pu-242 skulle ha ökat med ca 0.8 %. När vi sedan tog bort dessa återkopplingar Cm-242 $\vec{\alpha}$ Pu-238 och Am-242 $\vec{\beta}$ + Pu-242 i ORIGEN så finner man av Tabell 8 att mängden Pu-238 sjunker med 5.4 %

och mängden Pu-242 sjunker med 1.6 %. BEGAFIP använder som data att 14 % av sönderfallen för Am-242 skall gå till YY-242 medan ORIGEN använder 18 %.

Hur påverkar nu återkopplingarna de högre nukliderna? Av TEST 3 framgår att endast mängden Pu-238 har påverkats. Detta förklaras i Figur 12 där man ser att α -sönderfallet från Cm-242 inte påverkar "huvudvägen" för U-238, som är den dominerande vad gäller uppbyggnaden av transplutoniumisotoperna. Detta innebär att trots att förlusterna för Cm-242 till mer än 95 % består i α -sönderfall till Pu-238 påverkas endast denna mängd. Vidare konstateras av TEST 4 och Figur 12 att trots att bara 18 % av sönderfallen för Am-242 består i β^+ -sönderfall till Pu-242 så fås en märkbar, om än liten, påverkan för de högre nukliderna genom att "huvudvägen" för U-238 direkt berörs.

Sammanfattningsvis är inverkan av dessa återkopplingar liten sett ur transplutoniumisotopernas synvinkel.

Vi ser också av TEST 5 att "huvudvägen" U-235 \rightarrow Pu-238 har liten inverkan på nukliduppbyggnaden Pu-241 och uppåt. Här är vägen Pu-238 \rightarrow Pu-239 avstängd genom att $\sigma_{n,\gamma}$ för Pu-238 sätts = 0. Mängderna för isotoperna Pu-241 och uppåt blir oförändrade.

Vid jämförelsen mellan BEGFIP och ORIGEN slås man av ORIGENS snabbhet. ORIGENS räknetid var ca 30 sek medan BEGAFIP krävde ca 600 sek. Den långa beräkningstiden för BEGAFIP blev en konsekvens av att programmet utvidgades med aktinider upp till Es-253. Orsaken torde vara att

antalet beräkningsoperationer ökar kraftigt. Handberäkningar visar att man inte behöver gå speciellt högt upp i kedjorna innan lösningen täcker ett par A3-ark.

I Oak Ridge har man gjort jämförelser mellan ORIGEN och programmet CITATION (14) ett diffusionsteoriprogram för härdberäkningar. I den rapporten (14) finns jämförelser av resultat gjorda endast upp till Cm-244. Orsaken till att man ej gått högre upp är okänd, men kan vara att CITATIONs databibliotek ej sträcker sig längre.

Vi får den största avvikelsen från CASMO för nukliderna från Cm-245 och upp till Es-253.

En italiensk undersökning (15), där man lagt till en option för känslighetsanalys med avseende på tvärsnitten och därvid döpt om ORIGEN till PERSEO visar att de känsligaste tvärsnitten är $\sigma_{n,\gamma}$ för Pu-241 och $\sigma_{n,\gamma}$ för Cm-245. Vårt prov med ändrade tvärsnitt för dessa nuklider i TEST 2 gav, som nämnts, positivt resultat.

Vi skall slutligen som kortast också beröra några saker som kan verka förbryllande i ORIGENresultaten. Den ringa mängden U-240 beror på att U-239 saknar (n, γ)-tvärsnitt i biblioteket. Enda källa är Pu-244.

Att mängden Np-240m är så liten beror på att det inte finns något $(n, \gamma \rightarrow m)$ -tvärsnitt för Np-239 i biblioteket.

En förbättring av programmet BEGAFIP vore att vid varje tidsstegs slut addera mängden YY-242 till Pu-242 och mängden XX-238 till Pu-238.

<u>Tabell 6</u>

BENCHMARK-resultat Nuklidmängder i g/kg HM

A = CASM	O/CASMO-EX	T	B = BEGAFIP/CASMO-EXT			C = ORIGEN/CASMO-EX		
Nuklid	CASMO	CASMO-EXI	BEGAFIP	ORIGEN	A	В	С	
U-235	9.40	9.43	8.77	8.52	0.997	0.930	0.903	
U-236	4.01	4.01	3.96	4.43	1.000	0.986	1.105	
U-237			1.69,-2	1.36,-2				
U-238	940.83	940.73	944.7	942.0	1.000	1.004	1.001	
U-239			6.89,-4	6.72,-4				
U-240			3.14,-8	1.73,-24				
Np-237	4.41,-1	4.56,-1	6.05,-1	5.15,-1	0.967	1.327	1.129	
Np-238			2.45,-3	1.99,-3				
Np-239			9.93,-2	9.66,-2				
Np-240m			2.17,-7	1.49,-26				
Np-240			1.74,-6	3.89,-6				
Pu-238	1.53,-1	1.58,-1	2.01,-1	1.84,-1	0.968	1.272	1.165	
Pu-239	6.48	6.50	5.51	5.82	0.997	0.848	0.895	
Pu-240	2.33	2.35	2.34	2.16	0.991	0.996	0.919	
Pu-241	1.58	1.57	1.52	1.11	1.006	0.968	0.707	
Pu-242	4.44,-1	4.41,-1	4.62,-1	3.37,-1	1.007	1.040	0.764	
Pu-243			1.82,-4	1.65,-4				
Am-241	3.90,-2	4.09,-2	3.89,-2	2.40,-2	0.954	0.951	0.587	
Am-242m			6.72,-1	1.01,-3				
Am-242	1.64,-3	6.84,-4	1.08,-4	8.73,-5	2.398	0.158	0.128	
Am-243	9.51,-2	9.97,-2	1.02,-1	9.36,-2	0.954	1.023	0.939	
Am-244			7.28,-6	5.09,-6				
Cm-242	1.42,-2	1.32,-2	1.35,-2	1.10,-2	1.083	1.023	0.833	
Cm-243		6.33,-4	3.55,-4	7.91,-5		0.560	0.125	
Cm-244	2.75,-2	2.97,-2	3.23,-2	3.11,-2	0.926	1.088	1.047	
Cm-245		1.12,-3	1.30,-3	2.18,-3		1.161	1.946	
Cm-246		1.00,-4	1.44,-4	2.29,-4		1.440	2.290	
Cm-247		8.14,-7	1.40,-6	3.11,-6		1.720	3.821	
Cm-248		4.76,-8	8.81,-8	2.17,-7		1.851	4.559	
Cm-249			·	3.05,-12				
Bk-249		7.10,-10	1.38,-9	2.64,-9		1.944	3.718	
Bk-250			1.93,-12	2.27,-12			· .	
Cf-249		8.5711	1.5710	2.8810		1.832	3.361	
Cf-250		1.9410	4.03,-10	3.93,-10		2.077	2.026	
Cf-251		7.5311	1.4210	2.0910		1.886	2.776	
Cf-252		3.2311	6.5811	1.0610		2.037	3.282	
Cf-253		4.59,-14	9.83,-14	2.42,-13		2.142	5.272	
Es-253		3.26,-14	7.47,-14	2.75,-13		2.291	8.436	

.

<u>Tabell 7</u>

Reslutat vid TEST 1 och TEST 2 Nuklidmängder i g/kg HM

Nuklid	ORIGEN	С	TEST 1	C1	TEST 2	C2
U-235 U-236 U-237	8.52 4.43 1.362	0.903 1.105	7.58 3.98 1.96. - 2	0.804 0.993	8.51 4.43 1.35,-2	0.902 1.105
U-238 U-239 U-240	942.0 6.72,-4 1.73,-24	1.001	942.0 6.98,-4 9.29,-25	1.001	942.0 6.72,-4 1.24,-24	1.001
Np-237 Np-238 Np-239 Np-240m	5.15,-1 1.99,-3 9.66,-2 1.49,-26	1.129	7.71,-1 2.69,-3 1.00,-1 8.02,-27	1.691	5.15,-1 1.99,-3 9.66,-2 1.07,-26	1.129
Np-240	3.89,-6		4.20,-6		3,89,-6	
Pu-238 Pu-239	1.84,-1 5.82	1.165 0.895 0.919	2.33,-1 7.05 2.32	1.475 1.085 0.987	1.85,-1 5.82 2.16	1.171 0.895 0.919
Pu-240 Pu-241 Pu-242 Pu-243	1.11 3.37,-1 1.654	0.707 0.764	1.16 3.03,-1 1.454	0.739 0.687	1.17 2.96,-1 1.45,-4	0.745 0.671
Am-241 Am-242m	2.40,-2 1.01,-3	0.587	3.48,-2	0.851	2.51,-2 1.05,-3	0.614
Am-242 Am-243 Am-244	8.73,-5 9.36,-2 5.096	0.128 0.939	7.83,-5 7.48,-2 4.576	0.114 0.750	9.11,-5 8.17,-2 4.44,-6	0.133 0.819
Cm=242	1 10 -2	0 833	8.333	0.631	1.142	0.864
Cm-243 Cm-244	7.91,-5 3.11,-2	0.125	2.14,-4 2.75,-2	0.338 0.926	8.19,-5 2.70,-2	0.129 0.909
Cm-245 Cm-246	2.18,-3 2.29,-4	1.946 2.290	1.29,-3 1.45,-4	1.152 1.450	1.91,-3 1.64,-4	1.705 1.640 2.727
Cm-247 Cm-248 Cm-249	3.11,-6 2.17,-7 3.05,-12	4.559	1.65,-6 1.22,-7 3.13,-12	2.563	2.22,-0 1.56,-7 9.23,-13	3.277
Bk-249 Bk-250	2.64,-9 2.27,-12	3.718	2.21,-9 3.49,-12	3.113	7.96,-10 6.84,-13	1.123
Cf-249 Cf-250	2.88,-10 3.93,-10	3.361 2.026 2.776	2.17,-11 6.76,-10	0.253 3.485 5.219	8.68,-11 1.18,-10 6.28 -11	1.013 0.608 0.834
Cf-251 Cf-252 Cf-253	2.09,-10 1.06,-10 2.42,-13	3.282 5.272	1.98,-10 4.43,-13	6.130 9.651	3.19, - 11 7.25, - 14	0.988 1.580
Es-253	2.75,-13	8.436	4.85,-13	14.877	8.25,-14	2.531

STUDSVIK ENERGITEKNIK AB

K2-80/383 1980-12-14

Tabell 8

Resultat vid TEST 3, TEST 4 och TEST 5 Nuklidmängder i g/kg HM

Nuklid	ORIGEN	TEST 3	C3	TEST 4	C4	TEST 5	C5
U-235	8.52	8.52	0.903	8.52	0.903	8.51	0.902
U-236	4.43	4.43	1.105	4.43	1.105	4.43	1.105
U-237	1.36,-2	1.36,-2		1.35,-2		1.35,-2	
U-238	942.0	942.0	1.001	942.0	1.001	942.0	1.001
U-239	6.72,-4	6.72,-4		6.73,-4		6.73,-4	
U-240	1.73,-24	1.73,-24		1.72,-24		1.73,-24	
Np-237	5.15,-1	5.15,-1	1.129	5.15,-1	1.129	5.16,-1	1.132
Np-238	1.99,-3	1.99,-3		1.99,-3		1.99,-3	
Np-239	9.66,-2	9.66,-2		9.66,-2		9.67,-2	
Np-240m	1.49,-26	1.49,-26		1.48,-26		1.49,-26	
Np-240	3.89,-6	3. 89,- 6		3.90,-6		3.90,-6	
Pu-238	1.84,-1	1.75,-1	1.107	1.75,-1	1.107	2.38,-1	1.506
Pu-239	5.82	5.82	0.895	5.82	0.895	5.80	0.892
Pu-240	2.16	2.16	0.919	2.16	0.919	2.15	0.915
Pu-241	1.11	1.11	0.707	1.11	0.707	1.11	0.707
Pu-242	3.37,-1	3.37,-1	0.764	3.34,-1	0.757	3.37,-1	0.764
Pu-243	1.65,-4	1.65,-4		1.64,-4		1.66,-4	
Am-241	2.40,-2	2.40,-2	0.587	2.40,-2	0.587	2.40,-2	0.587
Am-242m	1.01,-3	1.01,-3		1.01,-3		1.01,-3	
Am-242	8.73,-5	8.73,-5	0.128	8.73, - 5	0.128	8.73,-5	0.128
Am-243	9.36,-2	9.36,-2	0.939	9.27,-2	0.930	9.37,-2	0.940
Am-244	5.09,-6	5.09,-6		5.03,-6		5.10,-6	
Cm-242	1.10,-2	1.10,-2	0.833	1.10,-2	0.833	1.10,-2	0.833
Cm-243	7.91,-5	7.91 <i>,</i> -5	0.125	7.91,-5	0.125	7.92,-5	0.125
Cm-244	3.11,-2	3.11,-2	1.047	3.08,-2	1.037	3.12,-2	1.051
Cm-245	2.18,-3	2.18,-3	1.946	2.16,-3	1.929	2.18,-3	1.946
Cm-246	2.29,-4	2.29,-4	2.290	2.27,-4	2.270	2.29,-4	2.290
Cm-247	3.11,-6	3.11,-6	3.821	3.09,-6	3.796	3.12,-6	3.833
Cm-248	2.17,-7	2.17,-7	4.559	2.15,-7	4.517	2.18,-7	4.580
Cm-249	3.05,-12	3.05,-12		3.03,-12		3.07,-12	
Bk-249	2.64,-9	2.64,-9	3.718	2.62,-9	3.690	2.65,-9	3.732
Bk-250	2.27,-12	2.27,-12		2.25,-12		2.28,-12	
Cf-249	2.88,-10	2.88,-10	3.361	2.87,-10	3.349	2.89,-10	3.372
C f- 250	3.93,-10	3.93,-10	2.026	3.91,-10	2.015	3.95,-10	2.036
Cf-251	2.09,-10	2.09,-10	2.776	2.08,-10	2.762	2.10,-10	2.789
Cf-252	1.06,-10	1.06,-10	3.282	1.06,-10	3.282	1.07,-10	3.313
Cf-253	2.42,-13	2.42,-13	5.272	2.41,-13	5.251	2.43,-13	5.294
Es-253	2.75,-13	2.75,-13	8.436	2.74,-13	8.405	2.77,-13	8.497

.

Tabell 3

.

Tabellen redovisar kvoter mellan nyinsatta och utbytta fissionsutbyten. Asterisker markerar att gamla värdet är noll. Detta utesluter givetvis ej att även nya värdet kan vara noll.

	11-235	PU-239	PU-241	U-238
				(
72	.996	.894	.977	.633
72	1.12	.403	•644	1.31
72	1.50	.265	•626	*****
73	1.07	1.08	.990	1.04
73	.279	.182	•764	.470
73	.111	.365E-01	.630	.399
74	.995	.950	•984	•739
74	1.16	.361	.721	1.73
75	.992	.960	•983	•541
754	1.87	.710	1.25	1.63
75	279	.107	•187	• 222
75	1.11	.266	.631	•947
76	1.01	° 948	•984	. 985
70	1001	.317	•595	1.63
70	1.25	.201	•576	***
70 77M	.952	.943	.962	.910
, ,	1 18	1.09	1.16	.989
/ (1+10 625	.44]	.703	2.03
! 	•020 2 78	439	1.01	5.66
77**	Z+37	.655E-01	.151	•772
70	117	1.18	1.18	1.30
78	1.1/	458	.834	1.54
78	• 78C	.248	.814	2.99
78	1 • 4 4	.986	.933	2.15
79	• 0 3 0 2 0 3	769F-01	.167	.647
7.9:1	1 36	.514	1.12	4.75
79	1.30	.161	.580	2.43
19	• 7 () 7	974	.902	1.40
80	1.00	346	.762	1.41
801	• 100	230	.247	.415
80	•434E=01	840F-01	0.	****
80	.1055-01	•040L •+	1.34	2.63
RIM	•843	037	989	1.13
81	.905	• 251	.672	1.15
81	1.00	• 2.40	.539	1.47
81	1.05	• 1 10	1.16	.944
82	•94R	• 707	.457	•417
82M	• 193	407	1.07	1.13
82	• / 1 1	071 737	.742	1.30
82	2.16	• 131	. 921	.928
83M	•771	.146	1.07	1.03
83	1.34	1.30	· 774	.784
83	3.99	•490 •00E=01	222	528
83M	•466	• 889E=UI	1 10	2.58
83	1.99	•431	1007	E
	LID 7277777777777777777777777777777777777	LID $U=235$ 72 .996 72 1.12 72 1.50 73 1.07 73 .279 73 .111 74 .995 74 1.16 75 .992 75 1.11 76 1.01 76 .990 76 1.25 77 1.18 77 .625 77 1.18 77 .625 77 4.2.38 77 .703E=01 78 1.17 78 .982 78 1.44 79 .856 79 .905 80 1.02 80 .105E=01 81 .00 81 .00 83 .00 80 .	LID U-235 $PU-239$ 72 .996 .894 72 1.12 .403 72 1.50 .265 73 1.07 1.08 73 .279 .182 73 .111 .365E-01 74 .995 .950 74 1.16 .361 75 .992 .960 75 1.87 .710 75 .279 .107 75 1.11 .266 76 1.01 .948 76 .990 .317 76 1.25 .201 77 .952 .943 77 1.18 1.09 77 .625 .441 77 .952 .943 77 1.18 1.09 77 .625 .441 77 .952 .943 77 .703E-01 .655E-01 78 1.17 1.18 78 .982 .458 78 1.44 .248 79 .856 .986 79M .203 .769E-01 79 1.36 .514 79 .905 .161 80 1.02 .974 80M .160 .346 80 .434E-01 .230 80 .105E-01 .840E-01 81M .893 2.08 81 .905 .937 81 1.00 .246 81 1.03 .116 82 .948 .957 82M .193 1.59 82 .711 .697 83 1.34 1.38 83 3.99 .490 83M .466 .889E-01 83 1.99 .431	LID $U-235$ $PU-239$ $PU-241$ 72 0.996 $.894$ $.977$ 72 1.12 403 $.644$ 72 1.50 $.265$ $.626$ 73 1.07 1.08 $.990$ 73 $.279$ 1.82 $.764$ 73 $.111$ $.365E-01$ $.630$ 74 $.995$ $.950$ $.984$ 74 1.16 $.361$ $.721$ 75 $.992$ $.960$ $.983$ 75 1.87 $.710$ 1.25 75 $.279$ $.107$ $.187$ 75 1.11 $.266$ $.631$ 76 1.01 $.948$ $.984$ 76 $.990$ $.317$ $.595$ 76 1.25 $.201$ $.576$ 77 $.118$ 1.09 $.116$ 77 $.625$ $.441$ $.703$ 774 2.38 $.439$ $.011$ 77 $.708E-01$ $.655E-01$ $.151$ 78 1.44 $.248$ $.814$ 79 $.856$ $.986$ $.933$ 79M $.203$ $.769E-01$ $.167$ 79 $.36$ $.514$ $.122$ 80 1.02 $.974$ $.902$ 80M $.160$ $.346$ $.762$ 80 $.434E-01$ $.230$ $.247$ 80 $.105E-01$ $.840E-01$ $0.$ 81 $.905$ $.937$ $.989$ 81 1.00 $.246$ $.672$ 81 1.03 $.166$ $.53$

T	ab	el	1	З,	forts

NL	IKLID	U-235	PU-239	PU-241	U-238
SE	84	1.00	1.07	1.07	1.09
BR	84M	1.29	.601	.782	.770
BR	84	1.16	.601 .	.783	.770
KR	84	1.14	.384	-356E-01	1,18
RR	85	1.01	1.04	1 01	697
KP	85M	-861F-01	201	208	1001 237
KD	0.00	1 05 UL	• 2 0 1	• 2 90	• 3 3 7
00	00	1+85	•704	1.10	1.04
	- 50 - 04	.3002-01	• 350	• 685	2.68
	80	1.01	1.00	1.05	1.07
- KB	861	0.	0.	0.	0.
RB	86	•477	•581	1.28	1.90
SR	86	1.37	•337	•626	1.44
KR	87	•991	1.04	1.05	•900
RB	87	11.3	.711	.791	2.29
SR	87M	•536	.215	.242	1.94
SR	87	2.05	.820	1.06	3.66
KP	88	•991	.997	1.06	.997
RB	88	2.01	1.00	.779	1.89
SR	88	1.45	.869	.765	4.85
KR	89	.984	989	1.04	1.00
RB	89	1.45	1.07	.918	1.26
SP	89	11 0	726	764	4.45
v	ROM	2 55	1 07	1 07	10 0
_	020	600	1.007	1.007	
00	07	•000 0ro	•1/3	• 252	2.05
	90	• 756	.095	.974	.992
3R V	90	1 • 2 4	1.629	1.22	1.13
T	90M	0.	0.	0.	0.
Y 	90	•188	1.20	1.29	5.73
ZR	90	1.52	.500	•627	****
RB	91	•988	•999	1.04	1.03
SR	91	1.51	1.04	•835	1.77
Y	91M	0.	0.	0.	0.
Y	91	2.46	.420	.825	1.14
ZR	91	1.34	.328E-02	.258E-02	4.46
SR	92	•994	1.00	1.05	1.10
Y	92	6.92	.738	•756	. 375
ZR	92	•100E+04	•658	.738E-03	.115E-03
SR	93	•997	1.00	1.05	1.06
Y	93	1.35	.915	.949	1.70
ZR	93	1.26	.789	.793	2.81
NR	93M	.470	293	.261	1.10
NB	93	2.14	1.25	1.12	5.34
SR	94	1.00	1.02	1.06	1.05
V	0/	905	1002	100	401
70	04	• 20 J 7 16	• 0 0 V	015	1 04
ND	04 M	610 820	•00C 670	•015	1077
ND AID	7**I*1 O/:	• 037	•0J0	• • · · · · · · · · · · · · · · · · · ·	1.14
	74	1.20	• ATR	• 114	1.00
MU	94	1.30	• / 55	•590	****
Y - P	95	•999	.996	1.04	.963
ZR	95	2.61	•934	•786	1.65
NB	95M	•169	.145	•250	•553
NB	95	3.67	•621	1.07	2.60

1980-12-14

Tabell 3, forts

NUKLID	U-235	PU-239	PU-241	U-238
MO 95	1.16	.586	.545	.262E-02
Y 96	1.01	985	1.05	1.09
78 96	.976	1.11	.995	2.72
NR 96	.946	962	.992	1.36
M0 96	1.26	1,18	.638	2.67
70 07	.908	.963	1.04	1.02
NR 97M	.434	.953	.291	.300
NR 07	1.00	774	1.24	-245E-01
MO 07	1.66	1.21	.631	1.34
NB OBM	1 • 4 4	1.01	.995	1.05
NR OR	440	426	.725	1.43
-MA 08	1 20	1.32	.706	2.41
NP 00	1037	017	.903	- 985
NO 00	• 74 J	• 717	1 06	1.00
MO 99	1.12	1010	205	543
TC 99M	• 50 5	• J04 > 40	9229	2.66
10 99	2.14	2.040	● 7 つ U 人 O 7	Z 600
RU 99	1.48	1.075	•407	1 08
NB100	.4//	• 975 07E	003	1 08
NBIOOM	• 977	.975	*773 7799	1.00
MOIDO	1+57	.970	•//0 E70	1 15
10100	•913	.908	+D/7	1.17
RU100	1.16	•940 •940	• 5 6 3	2.00
MO101	1.01	• 995	1.01	• 921
	1.44	+ 004 747	•090	0/3
P0101	1.12	• 747	• 2 / 0	024
M0102	1.01	•991	1.01	• 757
10102	1.24	1.05	000J 400	• 10J 047
TCI02M	1.24	1.05	•050	+ OD / 1 20
RUI02	1.//	1.15	.049	1.20
10103	.970	.994	•930	• 70V 701
RUI03	1.10	.919	•591	• / 81
RHI03M	2.01	1.12	•941	1.000
PHI03	.300	.257	•140	•144
M0104	1.01	1.01		• 922
10104	• 946	.811	• 754	•477 638
RU104	1.12	•000 •00	• / 41 .	•030
RH104M	1.37	• 793	•024	• 500
PHI04	•4.39	.200	• 487	a 1 4 / 88888
P0104	1.09	.468	0.	033
10105	.981	.993	• 964	• 733 E 4 0
RU105	1.01	•659	•099	• 340
RH105M	• 262	•142	•115	a 100 a 10
RHI05	1.75	.952	•411	1+10
PD105	.971	•423	• 3545=()3	• 2410-03
K0106	1:03	1.00	100	• 700 072
RH106	24.Y	.311	● CU 7 ≪ A C	075
RHI06M	24.8	.480	•007 505	● 77 F J 1 70
PD106	109.	•DU7	• 3 7 3	1 • 1 7
RU107	•809	1.05	• 990 (/E	1.000
RHI07	24.1	.453	•わちつ フィイ	2000 7 00
PD107M	109.	• / 41	• 150 07/	1 • V C
PU107	55 . 0	•192	• 3/4	C • 7 +

IN117

1.14

7.68

1.37

5.48

K2-80/383 1980-12-14

Tabell 3, forts NUKLID U-235 PU-239 PU-241 U-238 **** *** .402 AG107 .217 .950 .996 .969 RU108 S68. 3.89 RH108 389. 23.0 1.39 .628 PD103 .373E-01 .134 .442E-02 *** AG108 504. 12.5 .948 **** CD108 *** *** ** .906 .915 PD109M 1.33 1.15 PD109 .915 1.12 1.32 .906 0. *** AG109M 0. 0. AG109 127. 280. 1.09 **** **** **** CD109 596. .401 .998 PD110 1.30 .961 .987 AG110M 41.2 37.0 .808 .242E+04 16.7 17.6 824. AG110 .384 **** *** CD110 103. .564 3.05 4.09 1.11 1.42 PD111M PD111 1.05 1.06 1.13 .996 11.5 986. AG111M 8.05 1.34 AG111 1.73 3.11 .195 122. CD111M 23.0 53.9 1.08 **** *** CD111 6.33 15.0 .301 PD112 1.25 1.26 1.24 .831 AG112 1.63 7.39 .693 51.1 CD112 .910E-05 24.6 .719 **** PD113 .823 .949 1.10 1.31 AG113M 4.42 24.8 4.68 1.48 .657 AG113 .684 .220 3.39 .145E-02 CD113M 7.22 1.19 80.1 CD113 1.87 2.15 .355 21.3 *** ** IN113 10.8 .755 .988 .929 PD114 1.20 1.26 .826 4.05 AG114 1.42 2.30 CD114 2.07 4.03 .887 14.5 1.94 6.99 **** **IN114M** .763 **** 6.77 IN114 2.01 .742 *** **** **** *** SN114 .975 .988 .815 AG115 1.05 .819 CD115M 1.06 1.08 .988 1.05 .985 .819 1.04 CD115 IN115M .583 1.62 .321 4.28 20.9 IN115 2.49 3.20 1.37 *** .302E-01 *** *** SN115 1.54 .978 1.08 AG116 1.40 CD116 1.54 1.44 .977 1.08 .722 4.69 IN116M 1.64 4.83 4.73 4.83 .722 IN116 1.64 ** SN116 2.14 8.40 .772 AG117 1.02 1.57 .989 1.01 1.01 1.84 CD117M 1.03 1.00 1.54 1.01 CD117 .949 .970 1.80 1.14 **IN117M** .102 .322

Tabell 3, forts

NUKLID	U-235	PU-239	PU-241	U-238
SN117	•276E-03	7.24	•787	*
CD118	.932	1.07	.977	1.07
IN118	2.09	4.08	1.56	3.78
SN118	-185F-02	.773E-02	- 837F-03	.7075-03
CD119M	1.04	1,10	.863	078
CDI19	1.04	1.10	843	• 770 079
TNIIGM	283	578	•005 10 6	. 7/0
TN119	1.20	2.48	83 6	• ວວວ ວ 70
SNIIOM	- 948	2.61	1375.04	2.10
SNI10	. 20%	792	●13/E+U4	10.1
SNIDA	00E	• (07.	410.	6.000
1N121M	● 750 701	1.004	1.04	.977
INICIM	• / 91	.000	.971	1.16
IN121	1.01	1.10	1.04	1.1/
SNICIM	• 7 0 9	2.60	1.22	3.27
SNIZI	.292	.53/	.500	1.15
58121	•134E=03	•115E-01	•832	2.26
SNI22	1.10	1.31	1.06	.975
SB122M	•417	. 882	•827	1.49
SB122	.361	.827	•770	1.08
TE122	•347	.737	***	***
SN123	.341	.318	•260	.235
MESINS	1.53	1.66	1.80	1.71
SB123	•842	1.30	•883	3.65
TE123M	1.25	2.04	1.23	***
TE123	• 387	.640	.381	**
SN124	1.13	1.58	1.06	.975
SB124M	0.	0.	0.	0.
SB124A	*****	***	***	****
SB124	5.15	1.11	.819	•944
TE124	•263	. 985	.864	1.68
SN125M	1.05	.995	.624	.941
SN125	.905	.709	2.23	.964
SB125	•249	.873	129.	1.03
TE125M	.218	1.45	.358E+04	2.12
TE125	.652E-01	434	.107E+04	.565
SN126	.958	1.36	1.04	.885
SB126M	•401	.993	1.06	.684
SB126	.112	.583	.622	.494
TE126	•154	.643	.883	.900
SN127	1.27	1.27	1.60	.973
SN127M	.415	.561	.850	955
SB127	1.18	.773	1.27	.468
TE127M	.134	.723	1.37	.865
TE127	.157	295	559	305
I127	.112	.392	.897	.402
SN128	.998	.921	1.05	-908
SB128	.994	.729	587	334
SB128M	.994	.674	1.04	• 3 5 -
TE128	.994	. 441	.812	.437
1128	.811F-01	.828	.502	176
XF128		- UEU - 2475-02	8 ノフム おおおおお	аті О
/ 1 ha & L. U				
SNI29M	1.20	.247E-03	1 02	015

Tabell	. 3, forts			
- Herrich and Herrich And Herrich And Herrich	n an			
NILIKI TO	11-005	00 000		
NUNLIU	0-235	PU-239	PU-241	U-238
SN129	1.12	1 03	1 0 3	010
SR120	1.10	1.03	1.02	· 919
TEI29M	.268	• 730	a 701 1 A 7	•4/3 2005 A
TE129	101	416	10()/	•299E=01
1120	1.03	• * 1 O 6 / 7	0430 670	.192
XE120M	U T#(12)	• 047 A	0 0 0	•143
XE129	.535F=01	967		0.
SNI30	1.27	3761	1007	V. 1 0 0
SRIJOM	1.12	073	1011	1.02
-SB130	1.15	07.33 1 ΛΩ	412	1.090
TE130	1.24	1.00	01Z	1.00
1130	.818	1070	• 0 U U 5 F 7	⊃ • 34 < 04
XE130	272	120	• 202 120	0.04 1475.05
SNI3I	273° 804	1270	1339	<u>●14/た+UD</u>
SBIRI	1.11	016	1:00	• 898 1 34
TEISIM	1.15	• 7 1 G	100	1.00
TFIR	.701	2 • 10	1.04	4.73
1131	1.01	2 09	•410	1.00 6 mo
XEIJIM	2.67	0 70	0004 500	4 a 7 0 2 1 1
XEI3I	1.09	7 50	* 370 375	0.11
SN132	.872	1.64	1 10	•101E=04
SB132	1.05	2 27	1017	• 9 9 3
TE132	1000	C + C / 504	1.72	1.81
1132	a10	+ 594 1 E/	•450 503	• 380
XE132	-5112-01	2 60	• 5 9 3 E / 7	2.01
SBI33	1.06	1 02	• 747 1 1 7	4.12
TEIJAM	.952	1 21	1.17	• 744 > > 1
TEI33	1.06	752	1033	2.31
1133	.570	1 03	• 34Z	● O U O
XELAAM	1-05	1.14	• 7 9 4	1+//
XE133	7003	1 1 1 5	0/90 225	1220
05133	*22J 277F=03	2 00	• 3 <u>2</u> 5	42.3
TE134	1.02	C = 77	048V	•485
1134	975	1000	0707 707	1.00
XE134	1.29	2 10	• 103 644	1.20
CS134M	0.	Δ. • 1 7 Δ	•044	1.70
CS134	1.25	5.00	025	U.
BA134	.195	4.61	434	5.76
TE135	.984	1.36	• 4 2 4 1 0 8	097
1135	.982	888	1003	• 707 1 40
XE135M	1.49	1.16	9700 1 46	1 • 40
XE135	.629	- 800	-508	1 22
CS135	1.92	2.48	- 725	1.52
BA135M	0.	0.	0.	 Λ
BA135	3.07	6.36	1.04	.350
I136	1.09	.772	_94A	1.02
XE136	.931	1,15	0 0	1.60
CS136	1.04	.771	.863	1.07
BA136	1.42	2.66	.824	2.92
XE137	.989	-968	1.04	953
CS137	1.21	1.44	.882	2,36
BA137M	1.88	3.87	.985	6.70
	· - • • •		مي وا در مي	

K2-80/383

Tabell 3, forts

NUKLID	U-235	PU-239	PU-241	U-238
BA137	•765	1.58	.402	2.36
XE138	1.05	1.05	1.07	.937
CS138	.552	1.18	.940	.680
BA138	.684	1.33	•787	2.80
CS139	.984	1.03	.971	.983
BA139	1.03	.615	.765	3.78
LA139	1.15	4.81	•648	1.15
CS140	•969	•940	•996	.983
BA140	1.33	1.30	2.06	3.16
LA140	•965	1.14	.210	3.15
CE140	1.35	4.93	.561	.377
BA141	•985	•968	1.03	1.00
LA141	.982	3.01	.739	2.44
CE141	1.20	5.37	.349	4.05
PR141	1.31	12.4	.484	***
BA142	.991	.956	1.05	.954
LA142	•973	2.21	•754	2.35
CE142	1.33	5.30	.718	7.10
PR142M	0.	0.	0.	0.
PR142	2.49	21.2	1.03	16.5
ND142	1.68	24.0	****	***
LA143	.995	.965	1.04	.962
CE143	.987	3.43	•693	6.26
PR143	1.14	5.34	•757E-01	1.63
ND143	1.33	11.5	•343	****
CE144	1.00	.975	1.05	•958
PR144	•870	1.36	•560	1.44
ND144	.907E-05	•258	•540	.265E-02
CE145	.994	.970	1.05	.964
PR145	1.17	4.42	•688	7.00
ND145	1.27	10.1	•550	16.2
CE146	•993	•959	1.05	.957
PR146	•980	3.33	.690	5.68
ND146	1.28	7.94	•656	21.0
CE147	•983	•921	1.06	1.03
PR147	1.13	2.85	•828	6.88
ND147	1.22	6.31	•612	13.4
PM147	1.43	12.2	•569	48.0
SM147	****	41.2	***	***
PR148	•988	•955	1.04	•954
ND148	1.26	4.92	.751	17.8
PM148M	•642E-02	16.9	•757	47.8
PM148	•042E=03	7.21	•325	17.7
SM148	1.57	33.5	•512	****
NU149	• 975	.981	1.05	•919
PM149	1.01	6./J	•674	4.84
37147 ND160	•049 1 00	26.5	.527	10.1
DMIEA		• 7/1	1.05	.941
CMIEA	• > 5 CC = VI	• D / D	•641	2.42
NDIET	1 • T D	14.0	• 604	6.26
PMISI	• 792 . 928	•7/4 2 15	1.05	•930
- > + # < + #	• * C. U		• / 3 3	1.000

•

,

.

.

K2-80/383 1980-12-14

Tabell 3, forts

NUKLID	U-235	PU-239	PU-241	U-238
SM151	1.08	5.54	•580	2.32
EU151	•339E-05	15.9	.516	***
PM152	•985	,955	1.06	.897
SM152	.922	2.01	•758	89.1
EU152M	,953	7.58	.561	.709E+05
EU152	.953	7.58	.561	.709E+05
GD152	****	17.3	***	****
SM153	•988	.973	1.05	•963
EU153	.177E-02	6.24	.596	5.17
GD153	.757	12.2	.500	****
PM154	•988	.879	1.08	.931
SM154	•911	1.42	.834	1.17
EU154	.957	3.91	•583	2.92
GD154	1.22	7.67	•552	**
SM155	.962	.965	1.07	.977
EU155	.969	2.40	.691	2.70
GD155	.982	3.50	.559	4.94
SM156	.969	. 978	1.05	.950
EU156	.759	2.11	•406	2.25
GD156	.967	3.74	.660	4.90
EU157	.936	.970	1.06	.992
GD157	.928E-01	3.77	•644	7.89
EU158	.881	.983	1.04	1.01
GD158	.898	3.42	.706	10.0
EU159	.954	.943	1.05	1.01
60159	.877	3.44	.739	10.4
т8159	.861	.872E-01	.629	28.1
EU160	.765	.877	1.04	1.07
GD160	3.96	3.77	.809	16.7
TB160	.759	10.4	•589	38.5
DY160	***	33.0	.557	***
GD161	•968	.960	1.05	.861
TB161	1.05	9.62	.722	12.4
DY161	1.11	31.6	•541	***
GD162	.643	.963	1.04	•98 8
TB162M	.644	1.88	.710	1.88
TB162	.647	1.88	.712	1.88
DY162	.846	3.40.	•662	4.56
TB163M	0.	0.	0.	0.
TB163	1.49	1.96	2.07	1.98
DY163	.863	2.68	•655	3.41
T8164	•838	.967	1.04	•987
DY164	1.00	2.33	•744	3.06
DY165M	.807	.903	1.02	.984
DY165	•857	1.07	1.04	.987
H0165	•986	3.36	• 658	2.95
DY166	1.13	• 988	1.03	. 987
H0166M	2.12	3.45	.907	3.04
H0166	.292	1.48	•389	1.13
ER166	.476E-03	4.53	. 595	****

REFERENSFÖRTECKNING

- 1. BAILEY, H S et al Neutron Shielding Problems in High Burnup Thermal Reactor Fuel Shipping. ANS Trans, Vol 12, No 2, pp 448 - 449 (1969).
- 2. BAILEY, H S et al Neutron Shielding Problems in the Shipping of High Burnup Thermal Reactor Fuel. Nucl Techn, Vol 17, pp 217 - 224 (March 1973).
- 3. DEVILLERS, C and BLUM, P Neutron Multiplication and Shielding Problems in PWR Spent Fuel Shipping Casks. Nucl Tech, Vol 35, pp 112 - 118 (Mid-August 1977).
- 4. ELKERT, J et al BEGAFIP - Ett program för beräkning av klyvningsprodukternas aktivitet, betaoch gammaeffekter. AB Atomenergi. (Intern rapport RF-72-374. 1972.
- 5. BAIR, J K and GOMEZ del CAMPO, J Neutron Yields from Alpha-Particle Bombardement. Nucl Sci Eng, Vol 71, pp 18 - 28 (1979).
- 6. LEDERER, C M and SHIRLEY, V S (editors) Table of Isotopes, 7th edition. J Wiley & Sons, Inc, New York (1978).
- 7. RYTZ, A Catalogue of Recommended Alpha Energy and Intensity Values. Atomic Data and Nuclear Data Tables, 12, pp 479 - 498 (1973).
- EWBANK, W B et al Spontaneous Fission Activities. Nuclear Data Sheets 26, 1 (1979).
- 9. EKBERG, K och OLSSON, G Uppdatering av BEGAFIP. Studsvik Energiteknik AB. STUDSVIK/RF-77/2268. 1977.
- 10. CROFF, A G ORIGEN2 - A Revised and Updated Version of the Oak Ridge Isotope Generation and Depletion Code. ORNL-5621 (July 1980).

- 11. RIDER, B F and MEEK, M E Compilation of Fission Product Yields. NEDO-12154-2(E). (1978).
- 12. MEEK, M E and RIDER, B F Compilation of Fission Product Yields. NEDO-12154-1. (1974).
- 13. JOHANSSON, E Amount and activity of heavy nuclides from Sweden's 12 first LWRs with or without plutonium recycling. SKI project B28/79. STUDSVIK/K2-79/230.
- 14. CROFF, A G and BJERKE, M A Revised Uranium-Plutonium Cycle PWR and BWR for the Origen Computer Code. ORNL/TM-6051, 1980.
- 15. MENAPACE, E, OLIVIA, G and TONDINELLI, L Preliminary sensitivity studies for trans-curium isotope build up in thermal reactors. Proceedings. First Technical Meeting on the Nuclear Transmutation of Actinids. (Ispra, March 1977).

Göran Olsson 1980-08-18

SCHEMATISK SAMMANSTÄLLNING AV FISSIONSPRODUKTERNAS SLÄKTSKAPS-FÖRHÅLLANDEN I BEGAFIPS DATABIBLIOTEK

Studsvik

APPENDIX till Arbetsrapport K2-80/383 Såväl programmet BEGAFIP som dess databibliotek ligger lagrade på skivminne vid Studsvik Energitekniks CYBER-dator.

En aktuell utskrift av databiblioteket kan följaktligen tas fram närhelst man så önskar. Släktskapsförhållandena nukliderna emellan utgör en av alla detaljuppgifter i detta bibliotek.

Presentationsformen, även om den i utskriften är redigerad för ökad läsbarhet, är i första hand datoranpassad. När man läser släktskapslistan är det svårt att få en överskådlig bild av sammanhangen.

Vid utvärderingar av fissionsproduktdata har man emellertid ofta behov av att ha denna bild klar framför sig. Detta appendix visar i figurform släktskapsförhållandena mellan samtliga 414 fissionsprodukter (inklusive 8 hjälpnuklider).

Nedanstående figur beskriver hur uppställningen har arrangerats.

Neutroninfångning (döttrar)

1(2)

Fissionsprodukterna är sammankopplade genom betasönderfall i kedjor vars längd sträcker sig från två till åtta isotoper/isomerer. Dessa kedjor är sinsemellan sammankopplade genom neutroninfångningar. Teoretiskt är på så sätt samtliga fissionsprodukter kopplade till varandra.

2

Av praktiska skäl måste man bryta upp denna 414 nuklider stora kedja i ett antal mindre. Brytningarna har gjorts där bindningarna (genom neutroninfångningar) är svaga. På så sätt består fissionsproduktdelen av 8 delkedjor.

Två isotopbeteckningar är ej konventionella och måste därför förklaras:

Kemiska tecknet för hjälpnukliderna utgörs av två lika bokstäver AA, BB, ---, HH.

Sb 124 har två metastabila tillstånd. Det ena betecknas, som vanligt, med ett M, det andra med ett A.

A=72

ω

A=73

σ

.....

.

7

A=75

Se 78

A=77

23

BEGAFIPs databibliotek

Fissionsproduktdelen

A=81

ω

.

14

48

A=83

.

Startnuklid

A=84

.

BEGAFIPs databibliotek

Fissionsproduktdelen

A=86

57

-<u>1</u> 8
Fissionsproduktdelen

.

19

Kr 87 Rb 87 Sr 87 57 58 60 S Kr 88 Rb 88 Sr 88 61 62 63 Rb 89 Sr 89 65 66

72

22

A=90

.

A=91

A=92

A=93

Fissionsproduktdelen

.

Zr 95 94

.

.

27

A=96

Fissionsproduktdelen

Mo 98 108

Mo 97 105 105 106 Nb 98 106 Nb 98 107 Mo 98 108 108 Mo 99 110

.

ω

125 I

Startnuklid

A=102

.

A=103

ω σ

A=105

Fissionsproduktdelen

A=106

.

Fissionsproduktdelen

A=107

.

A=109

Fissionsproduktdelen

Ag lll Cd 111 167 169 S Ag 112 Pd 112 Cd 112 170 171 172 h Cd 113m 177 Cd 113 178

Startnuklid

A=115

 ${\tt Fissions produkt delen}$

.

<u>Startnuklid</u>

A=120

Sb 122 223

бω

54

236

თ თ

Fissionsproduktdelen

A=125

.

Fissionsproduktdelen

257

Fissionsproduktdelen

A=129

Fissionsproduktdelen

÷

.

Startnuklid

.

A=133

Fissionsproduktdelen

.

Fissionsproduktdelen

A=137

Fissionsproduktdelen

A=138

Fissionsproduktdelen

.

71

Fissionsproduktdelen

Fissionsproduktdelen

Fissionsproduktdelen

Fissionsproduktdelen

A=143

Fissionsproduktdelen

A=145

Nd 146 345

Ce 146 343 Nd 145 S Nd 146 344 Nd 146 345

Startnuklid

.

A=147

.

Fissionsproduktdelen

· .

A=149

Pm 149 Sm 149 357 358 S S Nd 150 Pm 150 Sm 150 359 361 360 Nd 151 Sm 151 362 364

Fissionsproduktdelen

.

374

A=153

Fissionsproduktdelen

A=155

A=156

Gd 157 386

A=157

Gd 157 386 (Fu 158 387 (Gd 158 388 (Gd 158 388 (Gd 159)

390

I.

394

.

A=161

93

BEGAFIPs databibliotek

Fissionsproduktdelen

95

BEGAFIPs databibliotek

Fissionsproduktdelen

A=165

97

BEGAFIPs databibliotek

Fissionsproduktdelen

A=166

Startnuklid

1977-78

TR 121 KBS Technical Reports 1 - 120. Summaries. Stockholm, May 1979.

1979

TR 79-28 The KBS Annual Report 1979. KBS Technical Reports 79-01--79-27. Summaries. Stockholm, March 1980.

1980

- TR 80-01 Komplettering och sammanfattning av geohydrologiska undersökningar inom sternöområdet, Karlshamn Lennart Ekman Bengt Gentzschein Sveriges geologiska undersökning, mars 1980
- TR 80-02 Modelling of rock mass deformation for radioactive
 waste repositories in hard rock
 Ove Stephansson
 Per Jonasson
 Department of Rock Mechanics
 University of Luleå
 - Tommy Groth Department of Soil and Rock Mechanics Royal Institute of Technology, Stockholm 1980-01-29
- TR 80-03 GETOUT a one-dimensional model for groundwater transport of radionuclide decay chains Bertil Grundfelt Mark Elert Kemakta konsult AB, January 1980
- TR 80-04 Helium retention Summary of reports and memoranda Gunnar Berggren Studsvik Energiteknik AB, 1980-02-14

- TR 80-05 On the description of the properties of fractured rock using the concept of a porous medium John Stokes Royal Institute of Technology, Stockholm 1980-05-09
- TR 80-06 Alternativa ingjutningstekniker för radioaktiva jonbytarmassor och avfallslösningar Claes Thegerström Studsvik Energiteknik AB, 1980-01-29
- TR 80-07 A calculation of the radioactivity induced in PWR cluster control rods with the origen and casmo codes Kim Ekberg Studsvik Energiteknik AB, 1980-03-12
- TR 80-08 Groundwater dating by means of isotopes A brief review of methods for dating old groundwater by means of isotopes A computing model for carbon - 14 ages in groundwater Barbro Johansson Naturgeografiska Institutionen Uppsala Universitet, August 1980
- TR 80-09 The Bergshamra earthquake sequence of December 23, 1979 Ota Kulhánek, Norris John, Klaus Meyer, Torild van Eck and Rutger Wahlström Seismological Section, Uppsala University Uppsala, Sweden, August 1980
- TR 80-10 Kompletterande permeabilitetsmätningar i finnsjöområdet Leif Carlsson, Bengt Gentzschein, Gunnar Gidlund, Kenth Hansson, Torbjörn Svenson, Ulf Thoregren Sveriges geologiska undersökning, Uppsala, maj 1980
- TR 80-11 Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite Roland Pusch Luleå 1980-09-20 Division Soil Mechanics, University of Luleå
- TR 80-12 Drilling holes in rock for final storage of spent nuclear fuel Gunnar Nord Stiftelsen Svensk Detonikforskning, september 1980
- TR 80-13 Swelling pressure of highly compacted bentonite Roland Pusch Division Soil Mechanics, University of Luleå Luleå 1980-08-20
- TR-80-14 Properties and long-term behaviour of bitumen and radioactive waste-bitumen mixtures Hubert Eschrich Eurochemic, Mol, October 1980

- TR 80-15 Aluminium oxide as an encapsulation material for unreprocessed nuclear fuel waste - evaluation from the viewpoint of corrosion Final Report 1980-03-19 Swedish Corrosion Institute and its reference group
- TR 80-16 Permeability of highly compacted bentonite Roland Pusch Division Soil Mechanics, University of Luleå 1980-12-23
- TR 80-17 Input description for BIOPATH Jan-Erik Marklund Ulla Bergström Ove Edlund Studsvik Energiteknik AB, 1980-01-21
- TR 80-18 Införande av tidsberoende koefficientmatriser i BIOPATH Jan-Erik Marklund Studsvik Energiteknik AB, januari 1980
- TR 80-19 Hydrothermal conditions around a radioactive waste repository Part 1 A mathematical model for the flow of groundwater and heat in fractured rock Part 2 Numerical solutions Roger Thunvik Royal Institute of Technology, Stockholm, Sweden Carol Braester Israel Institute of Technology, Haifa, Israel December 1980
- TR 80-20 BEGAFIP. Programvård, utveckling och benchmarkberäkningar Göran Olsson Peter Hägglöf Stanley Svensson Studsvik Energiteknik AB, 1980-12-14
- TR 80-21 Report on techniques and methods for surface characterization of glasses and ceramics Bengt Kasemo Mellerud, August 1980

TR 80-22 Evaluation of five glasses and a glass-ceramic for solidification of Swedish nuclear waste Larry L Hench Ladawan Urwongse Ceramics Division Department of Materials Science and Engineering University of Florida, Gainesville, Florida 1980-08-16

- TR 80-23 Exact solution of a model for diffusion in particles and longitudinal dispersion in packed beds Anders Rasmuson Ivars Neretnieks Royal Institute of Technology, August 1979
- TR 80-24 Migration of radionuclides in fissured rock The influence of micropore diffusion and longitudinal dispersion Anders Rasmuson Ivars Neretnieks Royal Institute of Technology, December 1979
- TR 80-25 Diffusion and sorption in particles and twodimensional dispersion in a porous media Anders Rasmuson Royal Institute of Technology, January 1980