

SKB R-22-07

ISSN 1402-3091 ID 1983896 June 2025

Baseline Forsmark – Compilation of bedrock and regolith hydraulic properties data based on interpretation of single-hole hydraulic tests, regolith samples and permeameter tests

Robert Earon, Hedi Rasul, Kent Werner, Jessica Lindmark Svensk Kärnbränslehantering AB

Keywords: Hydrogeology, Deformation zone, Fracture domain, Sheet joint, Regolith, Hydraulic properties This report is published on <u>www.skb.se</u> © 2025 Svensk Kärnbränslehantering AB

Abstract

Baseline Forsmark is a multidisciplinary description of datasets and site conditions prior to the start of surface contract works and underground constructions related to a deep geological repository for spent nuclear fuel (SFK) and the extension of the current geological repository for short-lived low-and intermediate-level radioactive waste (SFR) in Forsmark.

This report is part of a series of reports that present available data for the Baseline Forsmark modelling stage. Specifically, the report focuses on data that are used to describe the hydro-structural characteristics of bedrock and regolith at Forsmark. The data presented in the report are gathered from 52 core-drilled boreholes, 57 percussion-drilled boreholes and 236 regolith wells/sampling points within the area.

In this report, hydraulic test data acquired in the bedrock are categorized and presented according to geo-structural interpretations and models of the bedrock. Specifically, hydraulic test data from bedrock boreholes are linked to deformation zones, possible deformation zones, fracture domains, and/or rock domains. Moreover, data from deterministically modelled sub-horizontal structures (i.e. sheet joints) and so-called Shallow Bedrock Aquifer (SBA) structures are presented. Deterministically modelled sheet joints were not handled in the SDM-Site Forsmark modelling stage.

The main hydraulic test methods presented for the bedrock characterization in this report are highresolution measurements of discrete flow anomalies using overlapping difference flow logging (PFLf tests), or interval-based methods such as sequential double-packer injection tests or sequential difference flow logging (PFL-s tests). In core-drilled boreholes, overlapping PFL-f tests are assumed to best represent a heterogeneous fracture network, and, in the absence of data from PFL-s tests, short-interval injection tests.

Data from a set of field and laboratory methods are presented in this report to assess the hydraulic properties of the regolith and the regolith/bedrock interface. The geo-structural framework for the regolith is in the form of a map of the surface coverage of regolith types, and an RDM (Regolith Depth and Stratigraphy Model). Specifically, the RDM is a deterministic model of the horizontal distribution of elevations and thicknesses of individual layers consisting of different regolith types.

Hydraulic field methods related to regolith and the regolith/bedrock interface include single-hole slug tests, single-hole permeameter tests, and multi-hole interference tests. Laboratory methods related to the regolith include permeameter and CRS tests, sieve and sedimentation analyses, as well as methods to assess water storage and water retention properties of the unsaturated zone.

Sammanfattning

Baseline Forsmark är en multidisciplinär beskrivning av datamängder och platsförhållanden inför uppstart av ovan- och undermarksarbeten för ett slutförvar för använt kärnbränsle (Kärnbränsleförvaret) och utbyggnad av slutförvaret för kortlivat låg- och medelaktivt radioaktivt avfall (SFR) i Forsmark.

Denna rapport är del av en serie rapporter som presenterar tillgängliga datamängder för modelleringssteget Baseline Forsmark. Rapporten behandlar specifikt data som används för att beskriva hydrostrukturell karaktär av berg och jordlager i Forsmark. De data som beskrivs i rapporten härrör från 52 kärnborrhål, 57 hammarborrhål och 236 grundvattenrör/provtagningspunkter inom området.

I rapporten kategoriseras och presenteras hydrauliska testdata från berg utifrån geostrukturella tolkningar och modeller för berget. Hydrauliska testdata från bergborrhål kopplas till deformationszoner, möjliga deformationszoner, sprickdomäner och/eller bergdomäner. Vidare redovisas data från deterministiskt modellerade sub-horisontella strukturer och så kallade "Shallow Bedrock Aquifers" (SBA-strukturer). Deterministiskt modellerade bankningsplanssprickor hanterades inte i modelleringssteget SDM-Site.

De huvudsakliga hydrauliska testmetoderna som presenteras för karakterisering av berg i denna rapport är högupplösta mätningar av diskreta flödesanomalier med överlappande differensflödesloggning (PFL-f-tester), eller intervallbaserade metoder såsom sekventiella injektionstester med dubbelmanschett eller sekventiell differensflödesloggning (så kallade PFL-stester). För kärnborrhål antas resultaten från PFL-f-tester bäst representera ett heterogent spricknätverk, och, vid frånvaro av PFL-s-tester, injektionstester med korta testintervall.

En uppsättning fält- och laboratoriemetoder presenteras i denna rapport för att uppskatta hydrauliska egenskaper för jordlager och för övergången mellan jord och berg. Det geostrukturella ramverket för jordlagren är i form av en jordartskarta, samt en RDM (eng. Regolith Depth and Stratigraphy Model). RDM är en deterministisk modell av den horisontella fördelningen av nivåer och mäktigheter för individuella lager bestående av olika typer av jordarter.

Hydrauliska fältmetoder gällande jordlager och övergången jord/berg inkluderar enhåls(slug)tester, enhåls(permeameter)tester samt flerhåls(interferens)tester. Laboratoriemetoder gällande regolit inkluderar permeameter- och CRS-tester, sil- och sedimentationsanalyser, samt metoder för att skatta magasins- och retentionsegenskaper i den omättade zonen.

Contents

1	Introdu	ction	5
1.1	Backgro	und	5
1.2	Objectiv	res and scope	7
1.3	This rep	ort and supporting documents	8
1.4	Organisa	ation of work	8
2	Setting .	- the Forsmark site	9
21	SKR's s	vstems approach to hydrogeological modelling	9
2.1	Geologi	cal setting at Forsmark	11
2.2	2 2 1	Overview of the deformation zone model	11
	2.2.1 2.2.1	Overview of the fracture domain model	12
	2.2.2	Overview of models of surface distribution, depth and stratigraphy of regolith	14
2	Davahal	las tost mothods and data	16
3 2 1	Dorehol	es, test methods and data	10
3.1	Borenol	es, groundwater wens and sampling points	10
3.2		Sinche hele herderelie interestientie in herderele	18
	3.2.1	Single-nole hydraulic investigations in bedrock	18
33	3.2.2 Hydraul	Quaternary deposits and surface water hydrological investigations	18 19
5.5	3 3 1	Description of available data pertaining to core-drilled boreholes	10
	3.3.1	Description of available data for core-drilled boreholes	10
	3.3.2	Derformed tests and available data for percussion drilled boreholes	20
	3.3.3	Field and laboratory hydraulic investigations of regolith and the regolith/bedroc	20 ŀ
	5.5.4	interface	23
			25
4	Compile	ation of transmissivity data acquired from single-hole hydraulic tests in cor	P_
-	drilled l	boreholes	
4.1	Drill Sit	e 1	
4 2	Drill site	s 7	32
43	Drill Sit	ے ع م	34
44	Drill Sit	е <u>4</u>	36
4 5	Drill Sit	۵ ۲	38
4.6	Drill Sit	e 6	40
4.7	Drill Sit	۵ 7	43
т./ Л 8	Drill Sit	۵	+5
т.о Л Q	Drill Sit	۵ 0	
т.) Л 10	Drill Sit	e 10 Drill Site 11 and Drill Site 12	 50
7.10 1 1 1	Drin Sit	og KEM14 through KEM16	54
4.11	Dorahol	os KEM20 through KEM27	
4.12	KED hor	rsholog	
4.15	Core dri	led barabalas with impaller flow logging data	
4.14	Core-un	ned borenoies with imperier now logging data	05
5	Compila	ation of transmissivity data acquired from single-hole hydraulic tests in	
	percussi	ion-drilled boreholes	67
5.1	Overvie	W	67
5.2	Summar	y of HTHB transmissivity data	74
6	Compile	ation of hydraulic properties data – regolith and the regolith/bedrock interf	ace89
6.1	Backgro	und	89
6.2	Field tes	its	89
	6.2.1	Single hole (slug) tests: Groundwater wells (HY670)	89
	6.2.2	Single hole (permeameter) tests: BAT filter tips (HY675)	93
	6.2.3	Interference (pumping) tests (HY610, HY640 pumping holes, HY645 obs holes)95
6.3	Laborato	bry tests	96
	6.3.1	Permeameter (HY672) and CRS (GE017) tests	96

	6.3.2	Sieve and sedimentation analyses: PSD curves (HY673 Grain size a	analysis, GE514
		Sampling for sieving and sedimentation)	
	6.3.3	Properties related to water storage and retention in the unsaturated z	zone (HY672)106
7	Hydrau	lic characterisation of the near-surface bedrock	
7.1	Hydraul	ic characterisation in SDM-Site and SDM-PSU	111
7.2	Transm	ssivity data correlated to modelled sheet joint intercepts	113
7.3	Transm	ssivity data correlated to modelled SBA structure intercepts	114
8	Summa	ry	116
Refe	rences		117
A	Append	lix	
A1	Figures	representing all single-hole test data	
B	Append	lix	
B1	Catalog	ue of reports containing data presented	
С	Compil	ation of old single-hole hydraulic test data for geological model of	lomains in the
	SFR be	drock volume	142
D	Digital	appendices	
D1	Digital	Appendix D1: KFM and KFR boreholes	
D2	Digital .	Appendix D2: HFM and HFR boreholes	149
E	Suppler	nentary data: Borehole casing	150

1 Introduction

1.1 Background

SKB plans to construct a deep geological repository for spent nuclear fuel (SFK) at Forsmark, some 120 km NNW of Stockholm (Figure 1-1). Surface-based investigations and associated site descriptive modelling were performed 2002 through 2008 (SKB 2008), followed by assessments of post-closure safety and environmental impacts and compilation of permit applications to construct a geological disposal for spent nuclear fuel. These applications were submitted to the authorities in March 2011.

Figure 1-1. Illustration of the proposed layout for the final repository for spent nuclear fuel, SFK, which will be built at around -470 m elevation (RH 2000 elevation system). The illustration shows the repository access ramp and shafts, the central area rock caverns, and the deposition areas. Transport and main tunnels are coloured red and blue, respectively. The location of SFR is also indicated (cf. Fig. 1-2). Modified from SKB (2010).

In addition, SKB will construct an extension of the existing, relatively shallow (between -60 and - 160 m elevation; the RH 2000 elevation system is used throughout this report), geological repository for short-lived low- and intermediate-level radioactive waste (SFR) some two kilometres north of SFK in Forsmark (Figure 1-2). For this extension, surface-based investigations and associated site descriptive modelling were performed between 2008 and 2011 (SKB 2013). This was followed by assessments of post-closure safety and environmental impacts, and compilation of permit applications, which were submitted to the authorities in December 2014. Both repositories (SFK and the SFR extension) will be nuclear facilities. This entails the need to fulfil basic requirements regarding both the stability of the facility during the construction and operational stages, as well as radiological safety during the operational stage and the post-closure period of each facility.

The demands related to the long-term radiological safety of the repositories, of which some demands implicitly also relate to environmental impacts during construction, are addressed by specified technical design requirements and associated requirements formulated by SKB together with its Finnish sister organisation Posiva (POSIVA and SKB 2017) and by the Swedish Radiation Authority (SSM 2018). A series of methodology reports support the modelling during the execution of planned underground constructions at Forsmark. Below, the acronym DFNMM refers to the methodology for discrete fracture network modelling (Selroos et al. 2022), and the acronym HGMM refers to the methodology for integrated hydrological-hydrogeological flow modelling using equivalent continuous porous media modelling tools (Odén et al. 2025).

Hydrogeological conceptual modelling of the bedrock during the previous Site Investigation Campaigns (SKB 2008; SKB 2011) included data from single and multi-well hydraulic tests and geological interpretations in e.g. core-drilled boreholes. Key deliveries from the geological modelling were deterministic geometrical model volumes for deformation zones exceeding predefined lengths, and geometrical models for fracture domains and rock domains. While the hydraulic properties outside of deterministic deformation zones were described using discrete fracture network (DFN) modelling, hydraulic parameterizations of volumes delineated as deformation zones according to the 3D volumetric deformation zone model were based on in-situ measurements and meta-analyses of hydraulic data.

Figure 1-2. Top: Illustration of the proposed layout of the extension (shown in blue) of the existing repository (shown in grey) for short-lived low- and intermediate-level radioactive waste (SFR). Bottom: Illustration of the elevation of different facility parts of the existing SFR (shown in grey) and its extension (shown in blue).

1.2 Objectives and scope

Two levels of hydrological-hydrogeological reports (Figure 1-3) are planned as support for the Baseline Forsmark Main Report (Level I), which will describe the current geoscientific and ecological knowledge of the site and its state prior to start of construction of SFK and the extension of SFR (Figure 1-4).

The present report is the first of two so-called Level III reports (Figure 1-3). It collates hydraulic properties data acquired for the bedrock and the regolith in the Baseline Forsmark area. The hydraulic properties data have been interpreted from single-hole hydraulic tests, interference tests for the regolith, gradation tests (sieve and sedimentation analyses) and permeameter tests. The second Level III report (State Variables Report, see Figure 1-3) presents time series of meteorological, hydrogeological and hydrological state variables data monitored over time prior to start of constructions, as well as data pertaining to performed cross-hole (interference) tests. Together, the information gathered in the two Level III reports constitutes the basis for conceptual modelling and quantitative hydrological-hydrogeological modelling using numerical modelling tools, see HGMM (Odén et al. 2025) for details. Conceptual modelling and the setup, execution and results of the hydrological-hydrogeological numerical modelling will be presented in the two Level II reports for the bedrock and the surface system, respectively (Figure 1-3).

- Hydraulic properties of geologic media refer to physical properties; for example that describe the ease with which water can move through pore spaces or fractures.
- State variables refer to physical quantities that can be monitored and describe the condition, or state, of various elements of the hydrologic cycle, including but not limited to the atmosphere (e.g. air temperature), surface water (e.g. stream discharge) or subsurface water (e.g. groundwater level).

The objective of this report is to collate all hydraulic property data acquired for the bedrock and the regolith in support of Baseline Forsmark, which describes the site understanding of Forsmark prior to start of constructions of SFK and the extension of SFR. The collated properties data are primarily oriented towards their use in steady-state numerical modelling, i.e. transient parameters such as storativity in regolith layers will be presented in a separate report (Hydraulic State Variables Report, see Figure 1-3). It should be noted that hydraulic tests are scale-dependent and that different test methods may reflect different geological volumes. Method scale-dependencies will be presented in Section 3.

Figure 1-3. The planned report structure for hydrological and hydrogeological modelling providing the basis for the hydrological contribution to the Baseline Forsmark main report.

1.3 This report and supporting documents

This report relates hydrogeological test data to geological deterministic modelling. Chapter 2 gives a brief background of the Forsmark site description (SFK and SFR areas) and illustrates the integration of the two modelling areas. Chapter 3 outlines the data and methods used in compiling the hydraulic property data, in addition to outlining the geological models used in the compilation. Chapters 4 and 5 present a compilation of the available single hole hydraulic test data cross-referenced against geo-structural modelling, for core- and percussion-drilled boreholes, respectively. Section 6 presents data relevant to the near-surface hydrogeology and hydrology, including field methods and hydraulic test data primarily in the regolith. Chapter 7 gives an overview of the hydraulic datasets analysed with reference to sub-horizontal near-surface deterministic structures (i.e. sheet joints and SBA structures). Finally, Chapter 8 summarizes the report.

1.4 Organisation of work

This report has been carried out primarily by representatives of the hydrology–hydrogeology modelling group within the Site Descriptive Modelling group for the Forsmark Site. Additionally, close support has been received by representatives from the geological modelling group within the Site Descriptive Modelling group for the Forsmark Site.

Figure 1-4. Topography of the Forsmark area showing the boundary of the Baseline Forsmark area (Earon et al. 2022) and the locations of SFK and SFR. The boundaries of previous model areas as applied in SDM-Site and SDM-PSU are also shown. Elevation and bathymetry data from Petrone and Strömgren (2020).

2 Setting – the Forsmark site

2.1 SKB's systems approach to hydrogeological modelling

The term "hydrology" usually refers to components of the hydrologic cycle, i.e. water flows and storages of atmospheric, surface and subsurface waters. Here, the term hydrology is specifically related to the occurrence, flow and storage of surface water (lakes, ponds, streams and sea basins). Likewise, the term "hydrogeology" is specifically related to the occurrence, flow and storage of water below the ground surface, particularly in the saturated zones of regolith and bedrock. Differences in terms of processes, geometries and properties motivate the application of two different representations of the whole system in parallel. The Surface System Model focuses on a high level of description of surface processes on relatively short timescales including those of meteorological variability, whereas the Bedrock System Model focuses on development of the bedrock description and longer timescales including those of climatic changes (Figure 2-1).

The Surface System Modelling considers three flow domains, one hydrological and two hydrogeological. The hydrological flow domain consists of lakes, ponds, streams and sea basins. The hydrogeological flow domains consist of regolith and bedrock, respectively. The regolith is modelled as a stratified porous medium made up of several units, each having characteristic hydraulic properties (Figure 2-1). The fractured bedrock below the regolith is also treated as a porous medium, significantly more hydraulically heterogeneous and anisotropic than the regolith layers on the scale of the spatial resolution of the numerical model used for the Surface System Modelling. Porous-media equivalent hydraulic properties models (ECPMs) of the fractured bedrock are derived by means of upscaling of modelled fractures and deformation zones.

A key objective for the Surface System flow modelling is to provide support for environmental monitoring during the repository constructions, i.e. to establish a credible flow model of the conditions on a regional scale prior to start of constructions, and that can be used to clarify whether observed variations in groundwater levels, lake levels and runoff during constructions are caused by natural hydrometeorological variability and trends, or if they are due to anthropogenic changes following various engineering activities, e.g. changes in landscape morphology and water courses, bedrock excavations and grouting. To meet this requirement, the Surface System Modelling is performed on a diurnal basis.

The Bedrock System flow modelling considers two hydrogeological flow domains, the bedrock and the regolith (see the description above of the Surface System modelling), with hydrology modelled through definition of surface boundary conditions. The bedrock consists of two main classes of discrete fractures, deformation zones and fracture domains (Figure 2-1). Deformation zones are distinct individual domains of higher fracture frequency than fracture domains, although some can be single breaks of mm scale thickness. Different types of discrete stochastic structures can be modelled within the fracture domains including so-called PDZ (possible deformation zones) and sheet joints that may both be partly conditioned to data when available and modelled stochastically to maintain horizontal connectivity as presented in the conceptual model. The sheet joints are vital for the interaction between the Bedrock System and the Surface system (Follin 2008) and their recognition is a significant update of the previous modelling approach (Rhén et al. 2003). Another essential update of the previous modelling approach is that the SC (stochastic continuum) approach envisaged in Rhén et al. (2003) is replaced by the ECPM (equivalent continuous porous medium) approach as a simplified representation of the DFN (discrete fracture network) approach, see Selroos et al. (2022).

Figure 2-1. Schematic of the hydrologic cycle, regolith layers and bedrock structures. The outlined methodology suggests that surface and subsurface flows should be represented by models of two parallel, partially overlapping systems, a Surface System and a Bedrock System.

2.2 Geological setting at Forsmark

The Forsmark area is located in northern Uppland within the municipality of Östhammar, about 120 km north of Stockholm. The Baseline Forsmark area (Figure 1-4) is located along the shoreline of Öregrundsgrepen and extends from the Forsmark nuclear power plant and the SFR access road in the northwest to Kallrigafjärden in the southeast. The bedrock was formed between 1.89 and 1.85 million years ago and has been affected by both ductile and brittle deformation. The ductile deformation has resulted in large-scale ductile high-strain zones and the brittle deformation has given rise to large-scale fracture zones. Tectonic lenses, in which the bedrock is much less affected by ductile deformation, are enclosed between the ductile high-strain zones. The SFK area is located in the north-westernmost part of one of these tectonic lenses that extends from north-west of the nuclear power plant south-eastwards to Öregrund.

The SFR repository is located c. 1 kilometre offshore from the Forsmark nuclear power plant and two kilometres from the candidate area for SFK. The existing SFR disposal facilities are located in the bedrock approximately 60 to 140 m below the seabed of the Baltic Sea. The investigated SFR domain is part of the Forsmark site descriptive model SDM-Site (SKB 2008). Key differences between the SFR extension project and SFK include the following:

- The target depth for the SFR extension is shallower than that for SFK (the existing SFR storage facilities are located within a depth interval of -60 to -140 m). This comparatively shallow target depth shifts the attention towards factors controlling shallow hydrogeology, e.g. topography, sediments and contact to the seafloor, stress-relief structures, shoreline displacement, etc. It may be expected that deep regional flow and variable-density effects are of comparatively less importance, particularly with respect to the ongoing isostatic land upheaval.
- SFK is targeted to the tectonic lens, which is believed to be a quite different hydro-structural environment compared to the SFR area, both near the surface and at depth.

2.2.1 Overview of the deformation zone model

The term *deformation zone* has a wide range of uses. Its use here is based on the definition given in Hermanson and Petersson (2022) and is used interchangeably with the term deterministically modelled deformation zone. During the SDM-Site investigations the deterministic geological model version 2.2 was developed (SKB 2008). The model was later updated to version 2.3 in order to incorporate the deformation zones from the SFR deformation zone model. Subsequently, the deformation zone models Forsmark version 2.3 and SFR version 1.0 (SKB 2011) were integrated to create the Deterministically Modelled Structures (DMS) model for Baseline Forsmark, and which also includes some updated geometries in the SFR access area (Hermansson and Petersson 2022). According to SKB's latest methodology for geological modelling, deformation zones are categorized according to size into Regional (length > 10 km and thickness > 100 m), Local major (length 1–10 km and thickness 5–100 m), or Local minor deformation zones (length 100-1,000 m and thickness 0.01-5 m). Many deformation zones were identified during the SDM-Site investigations from borehole data, surface lineament mapping (primarily low magnetic lineaments for steeply dipping zones) and geophysics, particularly seismic reflectors in the case of gently dipping deformation zones. Deterministically modelled structures in Forsmark are identified by a code that begins with the prefix ZFM or JFM, often followed by a directional identifier based on their apparent strike (e.g. WNW) and a unique numerical identifier.

The updated geological modelling methodology includes methodology for geometrical modelling of sheet joints. Sheet joints differ conceptually from deformation zones as they are not the product of tectonic processes, but rather an inferred connection to unloading of the bedrock. As such, they are dilational, brittle structures roughly parallel to the surface topography and thought to develop parallel to the directions of the two greatest principal compressive stresses in the rock mass. Sheet joints are identified by the prefix JFM followed by a unique numerical identifier.

During SDM-Site deformation zone thickness was modelled as a constant taken as the mean value of individual borehole intercepts along the entire zone, including both fault damage zones and zone cores (Figure 2-2a), and which may differ from individual inferred thicknesses from individual borehole intercepts. In some cases, deformation zone thickness was inferred from representative thicknesses of individual boreholes (Figure 2-2b) and future modelling may include variable thickness of deformation zones (Figure 2-2c).

Figure 2-2. A sketch illustrating different strategies for modelling deformation zones (from Hermansson and Petersson 2022). Zone thickness defined as (a) a mean value of the inferred thicknesses in all intersecting boreholes, and (b) the maximum inferred thickness observed in the intersecting boreholes (in this case BH #2) or (c) linear extrapolation of inferred zone thickness at each observation point.

2.2.2 Overview of the fracture domain model

Based on a systematic assessment of the variation in the frequency (fractures/m) of fractures with depth along each borehole, the bedrock between deterministically modelled deformation zones has been divided into six fracture domains referred to as FFM01–FFM06 (Follin 2019). Fracture domains and deterministically modelled deformation zones are mutually exclusive volumes, whereas rock domains (RFM) contain both fracture domains and deterministically modelled deformation zones. The target volume for SFK lies inside FFM01, FFM02 and FFM06. Fracture domain FFM01 forms the main component in rock domain RFM029 at depth in the target volume, northwest of and in the footwall of the gently dipping zone ZFMA2 at a depth that varies from ca –40 m elevation close to drill site 8 (large distance from ZFMA2) to deeper than ca -200 m elevation close to ZFMA2. Fracture domain FFM01 shows a decreasing frequency of open and partly open fractures with depth.

Fracture domain FFM02 comprises the bedrock close to the surface, above fracture domain FFM01, predominantly in the same footwall bedrock segment. Fracture domain FFM02 is located in both rock domains RFM029 and RFM045. Whereas the bedrock in FFM01 shows a low frequency of open and partly open fractures, the bedrock in FFM02 is characterised by a complex network of sub-horizontal or gently dipping, open and partly open fractures, which locally merge into minor zones, e.g. at drill site 7. It is apparent that the transition from more fractured bedrock close to the surface (FFM02) to less fractured bedrock at depth (FFM01) takes place at larger depth closer to zone ZFMA2. FFM02 is currently separated into upper and lower subdomains (FFM02U/L) due to a marked contrast in fracture frequency distribution pattern with depth (Hermansson and Petersson 2022).

Thus, the character of fracture domain FFM02 is not solely determined by elevation. The occurrence of this domain at greater depths beneath ZFMA2 at drill sites 1, 5 and 6, and even above this zone at or close to drill sites 5 and 6, is related to an inferred higher frequency of older fractures in the vicinity of this zone, to higher rock stresses around zone ZFMA2, or to a combination of these two possibilities. The gently dipping and sub-horizontal fractures are oriented at a large angle to the present-day minimum (vertical) principal stress in the bedrock. This relationship favours the reactivation of older fractures as extensional joints, the development of new sheet joints following the glacial rebound and the development of conspicuous apertures along fractures in the present stress

regime. These structural developments all contribute to a general release of the high stress in the bedrock.

Fracture domain FFM06 is defined in the target volume. In the same manner as fracture domain FFM01, FFM06 lies beneath FFM02. It comprises the largest part of the rock domain RFM045 and is distinguished from FFM01 simply on the basis of the widespread occurrence of fine-grained, altered (albitised) granitic rock, with slightly higher contents of quartz compared to unaltered granitic rock. The bedrock southeast of the target volume, in the hanging wall of zone ZFMA2, is defined as fracture domain FFM03. It is mainly situated in rock domain RFM029. Open and partly open fractures in this domain are more evenly distributed down to 1,000 m depth and the domain is spatially associated with a high frequency of gently dipping fracture zones containing both open and sealed fractures.

Figure 2-3. Isometric overview of selected fracture domains (FFM01 (dark blue), FFM02U and FFM02L (light blue), FFM03(yellow)) in the Baseline Forsmark area. A potential SFK layout (SYHA 2.0) is shown for reference. View towards northeast.

Figure 2-4. Overhead view of the Deterministically Modelled Structures in the Baseline Forsmark area. A potential SFK layout (SYHA 2.0) is shown for reference. Top of figure faces north.

2.2.3 Overview of models of surface distribution, depth and stratigraphy of regolith

Models of the geometrical (surface and depth) distribution of regolith constitute the conceptualquantitative modelling framework for interpretation of field and laboratory hydraulic property data from regolith and the regolith/bedrock interface. Figure 2-5 *Figure 2-2* and Figure 2-6 show maps illustrating models of the surface distribution and the total depth, respectively, of regolith (Petrone et al. 2020). Moreover, Figure 2-1 shows a conceptual sketch of the general distribution of regolith types and associated layers ("Z-layers" of the regolith depth and stratigraphy model (Petrone et al. 2020)). Note that parts of the maps of Figure 2-5 and Figure 2-6 will be updated based on supplementary regolith data gathered in parts of the Forsmark area.

Coordinate system: SWEREF 99 18 00 2018-02-26, Johannes Petrone

6 kr	3	1,5	0

Figure 2-5. Overview map of the model of the surface distribution of regolith in the Forsmark area, c 0.5 m below the ground surface, at which depth regolith is more or less unaffected by surface processes in the form of weathering and bioturbation (Petrone et al. 2020). The map shows the surface distribution of regolith both in terrestrial and marine areas, including regolith at the bottom of lakes and streams in terrestrial areas. Note that parts of the map will be updated based on supplementary regolith type data gathered in the SFK access area (Follin et al. (2019), in the Lake Gunnarsboträsket catchment area (Sohlenius et al. 2019), and in wetlands (Sohlenius and Svensson 2021). The Z-designations refer to regolith types and associated layers ("Z-layers") of the regolith depth and stratigraphy model (Petrone et al. 2020).

Figure 2-6. Overview map of the model of total regolith depth in the Forsmark area (Petrone et al. 2020). The map shows the regolith surface distribution of total regolith depth both in terrestrial and marine areas, including regolith at the bottom of lakes and streams in terrestrial areas. Note that parts of the map will be updated based on supplementary regolith depth data gathered in the SFK access area (Follin et al. (2019) and in the Lake Gunnarsboträsket catchment area (Sohlenius et al. 2019), and in wetlands (Sohlenius and Svensson 2021).

3 Boreholes, test methods and data

3.1 Boreholes, groundwater wells and sampling points

Figure 3-1, Figure 3-2 and Figure 3-3 show the locations of the core-drilled boreholes (KFM/KFR), the percussion-drilled boreholes (HFM/HFR), and the groundwater wells (SFM) for hydraulic property data are presented in this report. Regolith sampling points are shown in Chapter 6, whereas groundwater well drawings are compiled in Rasul (2022).

Figure 3-1. Locations of core-drilled boreholes from which hydraulic properties data are presented in this report. Selected regional deformation zones comprising the northern and southern boundaries of the tectonic lens are shown in red for reference.

Figure 3-2. Locations of percussion-drilled boreholes for which hydraulic properties data are presented in this report. Selected regional deformation zones comprising the northern and southern boundaries of the tectonic lens are shown in red for reference.

Figure 3-3. Locations of groundwater wells for which properties data are presented in this report. Selected regional deformation zones comprising the northern and southern boundaries of the tectonic lens are shown in red for reference.

3.2 Investigation methods

3.2.1 Single-hole hydraulic investigations in bedrock

The core-drilled boreholes presented in this report were investigated with difference flow logging using the Posiva Flow Log tool (PFL, SKB MD 322.010e) and/or by means of packer-sectioned injection tests using the Pipe String System tool (PSS, SKB MD 323.002). Some core-drilled and all percussion-drilled boreholes were investigated with the combined pumping and impeller flow logging tool (HTHB, SKB MD 322.009), except those with a very poor yield. The practical measurement ranges correspond to a transmissivity that under ideal conditions is $2 \cdot 10^{-10} - 1 \cdot 10^{-5}$ m²/s using the PFL method and $1 \cdot 10^{-9} - 5 \cdot 10^{-4}$ m²/s for the PSS method. The upper measurement limit for transmissivity using the HTHB method is roughly $1 \cdot 10^{-6} - 1 \cdot 10^{-5}$ m²/s, depending on borehole diameter and length of test section. Tested borehole sections that fall below the respective lower T limit are in Sicada (SKBs primary database) assigned a value corresponding to the lower measurement limit. In this report lower-limit T values are assigned to such borehole sections.

3.2.2 Quaternary deposits and surface water hydrological investigations

The main hydraulic properties of relevance for regolith and the regolith/bedrock interface are saturatedzone horizontal (K_h , m/s) and vertical hydraulic conductivity (K_v , m/s), and storage properties in terms of specific storage (S_s , m⁻¹), total and effective porosity (-) and specific yield (S_y , -). Unsaturated-zone properties of relevance include unsaturated hydraulic conductivity as function of suction head or water saturation, and the vertical hydraulic conductivity at full saturation, total porosity, field capacity, residual water content, air-entry value, and wilting point. These properties can be obtained by field and laboratory methods, with method-specific support scales that typically are smaller or much smaller than spatial resolutions associated with quantitative models on regional and local model scales.

Field-investigation methods to obtain saturated-zone properties include single-hole (slug and (in situ) permeameter) tests and interference (cross-hole) tests, with permeameter tests being more suitable than slug tests in low-conductive regolith (hydraulic conductivity $< 10^{-9}-10^{-8}$ m/s). The mentioned test methods have support scales on the order of 1 m and 10–100 m, respectively, typically reflected by scale-dependent evaluated hydraulic conductivity. Moreover, methods for evaluation of regolith and regolith/bedrock interface storage properties (specific storage S_s and specific yield S_y) are usually associated with large uncertainty. In addition to evaluation of hydraulic properties, interference tests can be used to identify positive and negative boundaries and leakage conditions.

Several laboratory-investigation methods are available for evaluation of saturated-zone and unsaturated-zone properties. One major drawback with these methods is their small support scale, typically on the order of 0.1 m. These methods include empirical estimation of hydraulic conductivity based on PSD (particle-size distribution curves) and permeameter and CRS (constant rate of strain) tests on disturbed and undisturbed regolith samples, respectively. Laboratory methods are generally required to assess water-retention and water-flow properties of the unsaturated zone (e.g. Lundin et al. 2005), including model parameters associated with different empirical functions (e.g. Brooks and Corey (1964), Campbell (1974) and van Genuchten (1980)). Specifically, these methods are based on so called water-retention (or pF) curves, which provide water content as function of suction head. Important parts on such a curve include water content at pF 4.2), and residual water content (water content at very high suction head, in the absence of evaporation). The drainable pore space (the part of the pF curve between full saturation and field capacity) is particularly important for the groundwater-table dynamics when the groundwater table is close to the ground surface and/or the specific yield is low.

3.3 Hydraulic test data

3.3.1 Description of available data pertaining to core-drilled boreholes

Data for core-drilled were primarily obtained from Sicada. Geometrical data were obtained from the p_borehole Sicada data table, drilling data from p_borehole_drill_info, hydraulic data from p_transmissivity_skin (SKBdocID 1925358)¹ and complemented with some missing transmissivity values using the table p_transmissivity for several boreholes not included in p_transmissivity_skin (KFR27 and KFR105) as well as for PFL flow anomaly data. Geological data was taken from the table DMS 2020_1_DZ Summary tables_delivered 2020-04-15 plus FFM and RFM.xlsx and complemented with data from parameter tables obtained in p_domain (SKBdocID 1925358). Regolith depth was taken from the parameter table p_ borehole.

3.3.2 Performed tests and available data for core-drilled boreholes

Table 3-1 presents a list of available test data included in this report from core-drilled boreholes in the Forsmark area. Single-hole hydraulic data from the SFR area (Öhman et al. 2012) are also available, but investigation strategies and test methods differ from those related to data presented in this report. Older SFR data compilations are presented in Appendix C. Test methods included in this report include difference flow logging (PFL), injection tests (PSS) and combined pumping and impeller flow logging (HTHB), cf. Section 3.2.1.

Table 3-1. Available Sicada data and tests performed in core-drilled boreholes in the Forsmark area. A summary of transmissivity evaluated from the flowlogging tests is presented in Chapter 4.

					I Flowlogging-PFL-DIFF_sequential													
					п	II Flowlogging-PFL-DIFF overlapping												
						HY	HY690											
					IV		Injectio	on test (2002-)			HY	660						
Borehole	1	"	111	IV	Northing (SWEREF99 18 00)	Easting (SWEREF99 18 00)	Elevation (m, RH 2000)	Borehole length (m)	Regolith depth (m)	Bearing (degrees)	Inclination (degrees)	Diameter (mm)						
KFM01A	•	•		•	6697801	160394	3.3	1,001.5	9	320	-84.7	76						
KFM01C				•	6697797	160401	3.1	452.1	3	167	-49.6	76						
KFM01D	•	•		•	6697813	160402	3.1	800.2	7	37	-54.9	76						
KFM02A	•	•	•	•	6696924	162152	7.5	1002.4	2	278	-85.4	77						
KFM02B	•	•			6696931	162155	7.8	573.9	1	315	-80.3	76						
KFM03A	•	•		•	6696016	163570	8.4	1,001.2	1	273	-85.7	77						
KFM03B				•	6696009	163557	8.7	101.5	1	266	-85.3	77						
KFM04A	•	•		•	6697207	159956	9.0	1,001.4	1	47	-60.1	77						
KFM05A	•	•		•	6697605	160702	5.7	1,002.7	8	83	-59.8	77						
KFM06A	•	•	•	•	6697969	161446	4.3	1,000.6	2	303	-60.2	77						
KFM06B				•	6697968	161450	4.3	100.3	3	299	-83.5	77						
KFM06C				•	6697977	161441	4.3	1,000.9	2	28	-60.1	76						
KFM07A	•	•		•	6698410	160049	3.5	1,002.1	4	263	-59.3	77						
KFM07B				•	6698406	160054	3.6	298.9	4	136	-54.7	76						
KFM07C	•	•			6698408	160052	3.5	500.3	4	145	-85.3	76						
KFM08A	•	•		•	6698771	160227	2.7	1,001.2	5	323	-60.8	77						
KFM08B				•	6698770	160203	2.4	200.5	5	272	-58.8	76						
KFM08C	•	•		•	6698773	160217	2.7	951.1	3	38	-60.5	77						
KFM08D	•	•			6698768	160229	2.8	942.3	1	102	-55.2	77						
KFM09A				•	6698410	159665	4.5	799.7	7	202	-59.5	77						

¹ SKBdoc 1925358 ver. 1.0, Internal document.

					I Flowlogging-PFL-DIFF_sequential													
					11	II Flowlogging-PFL-DIFF overlapping												
					ш	Flow logging-Impeller												
					N	Injection test (2002.)												
					₩ ∞	8	inject	1011 test (2002-) 도	ء			<u>ج</u>						
Borehole	I		111	IV	Northing (SWEREF99 1 00)	Easting (SWEREF99 1 00)	Elevation (m, RH 2000)	Borehole leng	Regolith dept (m)	Bearing (degrees)	Inclination (degrees)	Diameter (mm						
KFM09B				•	6698415	159656	4.5	616.5	7	143	-55.1	77						
KFM10A	•	•		•	6696890	160683	4.7	500.2	8	12	-50.1	76						
KFM11A	•	•		•	6699341	161416	3.1	851.2	7	42	-60.9	77						
KFM12A				•	6694895	158952	10.9	601.0	8	38	-60.5	77						
KFM13			•	•	6698803	160110	3.0	150.2	7	90	-60.6	76						
KFM14	•	•	•	•	6698724	160197	2.2	60.2	5	267	-85.4	76						
KFM15	•	•	•	•	6698769	160073	3.7	62.3	5	138	-83.6	76						
KFM16	•	•	•	•	6698775	160184	1.7	60.4	3	323	-59.6	76						
KFM17			•	•	6698748	160096	3.8	60.5	4	347	-85.9	76						
KFM18			•		6698746	160045	3.7	60.5	8	157	-86.7	76						
KFM19			•	•	6698876	160019	3.0	102.4	5	172	-64.8	76						
KFM20	•	•	•		6698688	160061	3.0	60.5	1	339	-85.4	76						
KFM21	•	•	•	•	6698654	160169	2.8	101.1	5	62	-70.9	76						
KFM22	•	•	•	•	6698918	160194	2.9	60.3	7	158	-85.5	76						
KFM23	•	•	•	•	6698662	160283	2.5	100.6		343	-73.0	76						
KFM24	•	•		•	6698770	160182	1.2	550.2	3	314	-83.4	76						
KFM25	•	•			6698869	159804	2.7	100.7	5	140	-84.3	76						
KFM26	•	•			6698941	159726	3.0	100.7	5	17	-84.9	76						
KFM27	•	•			6698854	159597	2.5	100.6	5	322	-75.0	76						
KFR101	•	•			6699940	162421	2.6	341.8	12	31	-55.5	76						
KFR102A	•	•			6699935	162399	2.9	600.8	10	304	-65.6	76						
KFR102B	•	•			6699945	162413	2.7	180.1	12	347	-55.1	76						
KFR103	•	•			6699941	162416	2.6	200.5	12	182	-55.1	76						
KFR104	•	•			6699939	161948	3•0	454.6	7	136	-54.9	76						
KFR105	•	•		•	6700003	162144	-106.6	306.8	0	176	-10.1	76						
KFR106	•	•			6699737	162655	1.2	300.1	0	197	-70.3	76						
KFR117				•	6699955	162142	2.4	176.0	6	34	-80.6	76						
KFR118				•	6699934	162132	3.2	175.5	9	236	-85.6	76						
KFR119	•	•		•	6699929	162211	3.1	176.5	7	211	-80.8	76						
KFR120				•	6699931	162256	3.2	176.9	9	37	-79.9	76						
KFR121	•	•			6699919	162420	2.9	362.5	9	216	-52.4	76						
KFR27	•	•		•	6699924	162244	3.1	501.6		250	-87.6	76						

3.3.3 Performed tests and available data for percussion-drilled boreholes

Table 3-2 presents tests performed in the percussion-drilled boreholes. Most of the percussion-drilled boreholes are investigated with combined pumping and impeller flow logging (HTHB; activity type HY690) except those with a very poor yield (HFM07, HFM25, HFM28, HFM29, HFM31, HFM41, and HFR01–06). In addition to HTHB tests, some of the percussion boreholes have also been tested using other methods, such as injection tests, instant pressure and flow measurements, pumping tests with a submersible pump, capacity tests, test and rinse pumping, air lift, wireline pumping, or an older type of steady-state injection test. This report only presents data available in the SKB database Sicada. No interpretations have been made of the presented data.

Table 3-2. Available data in Sicada from single-hole hydraulic tests performed in the percussion-drilled boreholes HFM01–47, HFR01–06, HFR101, HFR102, HFR105 and HFR106. A summary of transmissivity evaluated primarily from impeller flow logging, with a few results from pumping tests, is presented in Chapter 5. A summary of transmissivity evaluated from the impeller flow logging is presented in details in Chapter 5.

 V V	Flov Inje Inst Pur Mis pun	w log ctior ant p npin c. te nping	gging press g tes sts (g and	g-Imp t (for sure st-sul Capa d Olc	oeller the c and f bmers acity t d stea	lata after 20 low measure sible pump test, Test & i dy state inje	Vire line	HY690 HY660 HY115 HY610 HY580, HY190, HY630, HY600, HY120					
Borehole	1	=		IV	V	Northing (SWEREF99 18 00)	Easting (SWEREF99 18 00)	Elevation (m, RH 2000)	3orehole length (m)	Regolith depth (m)	Bearing (degrees)	Inclination (degrees)	Diameter (mm)
HFM01	•					6697873	160484	1.92	200.2	11.3	36	-77.5	140
HFM02	•			•	•	6697868	160268	3.24	100,0	12.2	8.4	-87.8	137
HFM03	•					6697868	160272	3.33	26,0	12	266.4	-87.3	136
HFM04	•		•	•	•	6697083	162395	4.06	221.7	0.8	338.8	-84.5	138
HFM05	•		•	•	•	6696856	162256	7.86	200.1	4	337.5	-84.9	134
HFM06	•			•	•	6695920	163458	6.82	110.7	2	4.3	-84.8	134
HFM07						6695578	163640	5.97	122.5	6.6	344.2	-84.5	140
HFM08	•			•	•	6695863	163711	7.32	143.5	5.1	350.6	-84.7	137
HFM09	•		•	•	•	6697353	159851	5.34	50.25	4.6	141.3	-69	141
HFM10	•			•	•	6697118	160012	5.17	150,0	2.41	94.8	-68.9	139
HFM11	•	•		•	•	6695548	160559	7.74	182.3	2.5	65.4	-49.3	139
HFM12	•	•		•	•	6695709	160623	7.21	209.5	3.64	247.1	-49.3	135
HFM13	•	•		•	•	6697362	160457	5.87	175.6	3.75	53.1	-59	135
HFM14	•			•	•	6697573	160724	4.1	150.5	0.27	333.7	-59.9	136
HFM15	•			•	•	6697572	160723	4.06	99.5	0.8	316.2	-44.2	139
HFM16	•			•	•	6697956	161469	3.4	132.5	2.3	329.9	-84.3	139
HFM17	•			•	•	6697671	162255	3.94	210.6	0.36	320.5	-84.4	136
HFM18	•	•		•	•	6696511	162993	5.22	180.6	1.37	315.2	-59.2	138
HFM19	•	•		•	•	6697521	160615	3.84	185.2	5.6	282.8	-58.3	137
HFM20	•	•		•	•	6698478	159796	3.15	301,0	2.72	356.3	-85.4	135
HFM21	•	•		•	•	6698407	160091	4.16	202,0	2.84	90.7	-58.5	137
HFM22	•			•	•	6698732	160246	1.72	222,0	3.6	92	-58.8	136
HFM23	•			•	•	6698365	159611	4.44	211.5	7.2	326.3	-58.9	134
HFM24	•			•	•	6696923	160688	3.87	151.3	11.55	49.2	-59.5	138
HFM25				•	•	6697832	162038	4.04	187.5	2.9	142.8	-57.8	139
HFM26						6696210	162461	2.92	202.7	5.65	114.3	-53.7	138

1	
Ш	
Ш	
IV	
v	

Flow logging-Impeller Injection test (for the data after 2002-) Instant pressure and flow measurements

Pumping test-submersible pump Misc. tests (Capacity test, Test & rinse pumping, Air lift, Wire line

HY690 HY660 HY115 HY610

HY580, HY190, HY630, HY600, HY120

-	pumping and Old steady state injection test)												
Borehole	I	11		IV	V	Northing (SWEREF99 18 00)	Easting (SWEREF99 18 00)	Elevation (m, RH 2000)	Borehole length (m)	Regolith depth (m)	Bearing (degrees)	Inclination (degrees)	Diameter (mm)
HFM27	•			•	•	6697871	160246	2.63	127.5	4.1	339.2	-67.8	139
HFM28				•	•	6698366	159613	4.45	151.2	6	148.7	-84.8	135
HFM29				•	•	6696254	161449	4.65	199.7	2.55	31.9	-58.6	138
HFM30	•			•	•	6696189	160763	3.31	200.7	13.5	30.7	-55.6	139
HFM31						6699203	158251	6.25	200.7	2.4	313.7	-69.3	139
HFM32	•			•	•	6697262	161117	1.19	202.6	1.5	118.1	-86	132
HFM33	•			•	•	6699285	161270	2.8	140.2	6.65	221.9	-59.2	139
HFM34	•			•	•	6699559	161526	2.63	200.7	7.95	32.4	-58.6	137
HFM35	•			•	•	6699794	161385	2.09	200.7	7.9	34.9	-59.3	136
HFM36	•			•	•	6694821	158979	8.6	152.5	3	258.5	-59	137
HFM37	•			•	•	6694907	159038	11.58	191.7	3.45	43.3	-59.2	139
HFM38	•			•	•	6698974	160338	2.39	200.7	5.35	95.5	-54.5	136
HFM39	•					6698776	160094	4.34	151.2	4.8	164.6	-85.8	164
HFM40	•					6698756	159897	2.54	101.7	4.9	168.2	-85.2	141
HFM41						6699012	159799	3.63	101.5	3.85	175.5	-84.8	139
HFM42	•					6698418	160094	4.21	195.3	2.05	176.2	-89.1	138
HFM43	•					6698538	160065	4.33	200,0	1.09	303.8	-85.2	137
HFM44	•					6699322	161395	2.94	199.6	3.4	255.7	-83.2	134
HFM45	•					6699603	161117	3.86	200.3	0	291.2	-85	139
HFM46	•					6699951	161325	1.7	200,0	0	108.1	-85.4	138
HFM47	•					6699399	161283	3.52	200.4	9.72	150	-84.4	138
HFR01					•	6699464	161390	0.89	13,0		232.4	-90	64
HFR02					•	6699423	161405	0.73	12.1		232.4	-90	64
HFR03					•	6699423	161395	0.64	8.4		232.4	-90	64
HFR04					•	6699374	161379	0.44	7.3		232.4	-90	64
HFR05					•	6699397	161359	0.48	7.4		232.4	-90	64
HFR06					•	6699413	161340	0.84	11.3		232.4	-90	64
HFR101	•	•		•	•	6699946	161908	2.82	209.3	6.25	135.5	-70	137
HFR102	•	•				6699945	162044	2.5	55.0	7.05	86.9	-59.1	138
HFR105	•			•	•	6699603	161745	3.46	200.5	19.42	37.3	-61.9	140

 V V	Flov Inje Inst Pur Mis pun	w log ctior ant p npin c. te nping	gging oress g tes sts (g and	-Imp t (for sure t-sub Capa d Old	beller the d and f omers acity t I stea	lata after 200 low measure sible pump est, Test & r dy state inje	02-) ements inse pumpi ction test)	ng, Air lift,	Wire line	HY690 HY660 HY115 HY610 HY580,	HY190, HY	/630, HY6	600, HY120	
Borehole	I	=	≡	IV	V	Northing (SWEREF99 18 00)	Easting (SWEREF99 18 00)	Borehole length (m)	Regolith depth (m)	Bearing (degrees)	Inclination (degrees)	Diameter (mm)		
HFR106	•	6699771 162644 1.46 190.4 0 271.3 -59.8 139												

3.3.4 Field and laboratory hydraulic investigations of regolith and the regolith/bedrock interface

The main hydraulic properties of relevance for regolith and the regolith/bedrock interface are saturatedzone horizontal (K_h , m/s) and vertical hydraulic conductivity (K_v , m/s), and storage properties in terms of specific storage (S_s , m⁻¹), total and effective porosity (-) and specific yield (S_y , -). Unsaturated-zone properties of relevance include unsaturated hydraulic conductivity as function of suction head or water saturation, and the vertical hydraulic conductivity at full saturation, total porosity, field capacity, residual water content, air-entry value, and wilting point. These properties can be obtained by field and laboratory methods, with method-specific support scales that generally are smaller or much smaller than spatial resolutions associated with quantitative models on regional and local model scales.

Field-investigation methods to obtain saturated-zone properties include single-hole (slug and (in situ) permeameter) tests and interference (cross-hole) tests, with permeameter tests being more suitable than slug tests in low-conductive regolith (hydraulic conductivity $< 10^{-9}-10^{-8}$ m/s). The mentioned test methods have support scales on the order of 1 m and 10–100 m, respectively, typically reflected by scale-dependent evaluations of hydraulic conductivity. Moreover, methods for evaluation of regolith and regolith/bedrock interface storage properties (specific storage S_s and specific yield S_y) are usually associated with large uncertainty. In addition to evaluation of hydraulic properties, interference tests can be used to identify positive and negative boundaries and leakage conditions.

Several laboratory-investigation methods are available for evaluation of saturated-zone and unsaturated-zone properties. One major drawback with these methods is their small support scale, typically on the order of 0.1 m. These methods include empirical estimation of hydraulic conductivity based on PSD (particle-size distribution curves) and permeameter and CRS (constant rate of strain) tests on disturbed and undisturbed regolith samples, respectively. Laboratory methods are generally required to assess water-retention and water-flow properties of the unsaturated zone (e.g. Lundin et al. 2005), including model parameters associated with different empirical functions (e.g. Brooks and Corey (1964), Campbell (1974) and van Genuchten (1980)). Specifically, these methods are based on so called water-retention (or pF) curves, which provide water content as function of suction head. Important parts on such a curve include water content at pF 4.2), and residual water content (water content at very high suction head, in the absence of evaporation). The drainable pore space (the part of the pF curve between full saturation and field capacity) is particularly important for the groundwater-table dynamics when the groundwater table is close to the ground surface and/or the specific yield is low.

In Table 3-3 a list of available test data presented in this report from hydraulic investigations of regolith and the regolith/bedrock interface in the Forsmark area are presented.

	SI	ug te	st					HY670				
II	In	situ (BAT) perr	nea	nete	er test	HY675				
111	In	terfer	ence	test				HY610, HY640, I	HY645			
IV	P	SD						HY673, GE514				
V	La	ib. pe	ermea	amete	er te	st		HY672				
VI		RS te	st -					GE017				
	р⊦	· (uns	sat. z	one)	1		1	HY6/2	E a stille a	Floresting	Danth	
Well/								Northing	Easting	Elevation	Depth	
sampling				w	v	vi	VII	(SWEREF 99	(SWEREF 99	(m PH 2000) ¹	(mb10c)	
SEM0001					v	VI	VII	6607085.05	160338.80	1 20	5.65	
SEM0002	-							6607857 16	160336.09	2.23	5.05 6.11	
SEM0002	•							6607882.24	160/87 35	2.21	11 /8	
SEM0004	•			•				6697068 97	162414 83	4 33	6.02	
SEM0005	•			•				6696857 22	162218 69	6 99	3.21	
SEM0006	•			•				6695915 94	163437 50	6.47	4 21	
SFM0007	•			•				6695848 23	163713 49	7 19	6.11	
SFM0008	•			•				6696095.17	163564.57	3.95	6.14	
SFM0009	•							6696788.18	162187.70	4.82	4.00	
SFM0010	•			•				6695608.33	159659.01	13.72	3.00	
SFM0011	•			•				6697415.58	159695.78	2.83	5.95	
SFM0012	•							6696780.77	159682.35	3.13	6.42	
SFM0013	•			•				6696979.03	160092.48	2.17	6.50	
SFM0014	•							6695289.05	160629.27	6.80	4.27	
SFM0015	•							6695263.59	160877.05	5.84	7.34	
SFM0016	•			•				6695222.98	161085.66	6.37	9.57	
SFM0017	•			•				6694753.20	161034.22	6.87	6.64	
SFM0018	•			•				6694812.11	160847.97	6.86	6.50	
SFM0019	•			•				6695948.85	161054.23	4.96	7.10	
SFM0020	•			•				6696345.47	161943.03	2.43	5.00	
SFM0021	٠			•				6697940.47	161495.32	2.15	4.14	
SFM0022	•			•				6695827.72	161628.55	1.96	5.80	
SFM0023	•							6697230.89	161043.23	1.45	5.70	
SFM0024	•							6698157.84	162118.57	0.65	3.21	
SFM0025	•							6694200.45	163652.59	1.04	7.06	
SFM0026	•			•				6694883.89	163052.94	1.77	18.49	
SFM0027	•			•				6694866.64	163047.18	1.93	9.64	
SFM0028	•			•				6696706.50	162550.51	1.25	9.05	
SFM0029	•							6696708.76	162550.56	1.27	9.07	
SFM0030	•			•				6696940.73	160631.47	2.97	6.02	
SFIMUU31	•		•					6696944.14	160629.96	2.82	5.69	
SFIVI0032	•		•	•				6607000.25	160099.00	1.01	5.20 5.16	
SEM0024	-			-				6609012 69	160962.02	1.00	5.10	
SEM0035	-			•				6608011.00	160863.64	1.70	4.11	
SEM0035	•							6608250 7/	160758 48	1.07	4.43	
SEM0030	•			-				6698250.74	160756.82	1.09	4.09	
SEM0049	•							6698326 64	150547 50	4 21	6.00	
SEM0050		•						6697869 16	160487 12	3 19	6.00	
SFM0052		•						6696716 44	162551 63	1 22	6.27	
SFM0054		•						6695228.04	163706.13	4.59	7.27	
SFM0057	•			•				6697265.97	159928.72	5.00	4.55	
SFM0058	•							6697608.72	160730.79	3.73	4.75	
SFM0059			•					6696590.26	164735.77	4.72	6.15	
SFM0060			•					6696500.78	164879.38	5.09	8.65	
SFM0061	•		•					6696497.64	164879.22	5.58	8.07	
SFM0062	•		•	•				6697090.74	160784.90	1.54	3.95	
SFM0063	•		•					6697095.18	160825.37	1.46	3.82	
SFM0064				•				6696780.05	159681.55	3.06	5.37	
SFM0065	٠			•				6696571.20	162798.76	1.16	4.98	
SFM0067	•							6697414.37	159697.51	2.73	2.62	
SFM0068	•							6697940.35	161491.88	2.25	2.36	
SFM0069	•			•				6696942.77	160631.07	2.69	2.63	
SFM0070	•			•				6695229.49	163696.30	3.91	3.46	
SFM0071	•			•				6695229.34	163697.88	3.79	7.31	
SFM0072	•			•				6695229.08	163702.10	3.88	10.00	
SFM0073	•							6696711.93	162546.88	0.81	5.00	
SFM0074			•					6697098.99	160712.07	1.00	12.70	

Table 3-3 Available data in Sicada from hydraulic investigations of regolith and the regolith/bedrock interface. ND = no data. N.A. = not applicable. 1For PFM and QFM sampling points, elevation refers to the ground surface.

I	SI	ug te	st					HY670				
II.	In	situ (BAT) pern	nea	mete	r test	HY675	N/045			
	Int	terfer	ence	test				HY610, HY640, I	HY645			
IV V		SD ah ne	rmes	mete	r to	et		HV672				
VI	CF	RS te	st	inclu	110	31		GE017				
VII	pF	(uns	sat. z	one)				HY672				
Well/								Northing	Easting	Elevation	Depth	
sampling								(SWEREF 99	(SWEREF 99	ТоС	(m b ToC)	
point	1		III	IV	V	VI	VII	18 00)	18 00)	(m, RH 2000) ¹	0.04	
SFM0075	•							6695229.28	163699.64	3.96	9.91	
SEM0078	-							6607005 32	159700.25	5.20	6.00 5.60	
SFM0079	•							6697988 75	159571 18	4.38	670	
SFM0080	•							6696919.20	160687.15	4.54	9.62	
SFM0081	•			•				6697247.86	161072.62	1.48	5.25	
SFM0082		•						6697248.07	161073.10	1.57	2.76	
SFM0084	•		•	•				6698105.37	161413.78	1.42	4.10	
SFM0085		•	•					6698105.80	161413.60	1.86	3.26	
SFM0087	٠		•					6698105.01	161414.15	1.49	2.35	
SFM0088		•	•					6698105.05	161413.37	1.28	1.26	
SFM0090	-		•	•				6608013.01	161443.87	1.82	10.43	
SEM0091	-		•	•				6698013.01	160495.04	1.00	2.30	
SFM0094			•	•				6697998 54	160510 58	1.55	10.30	
SFM0095	•		•	•				6696318.57	159385.23	12.28	7.10	
SFM0096		•	•					6696318.42	159384.55	11.82	3.26	
SFM0099		•	•					6696317.96	159385.09	11.74	2.26	
SFM0101		•	•					6696318.32	159385.46	12.22	2.26	
SFM0103			•	•				6696333.47	159383.35	11.98	10.26	
SFM0104	•			•				6697866.52	160274.81	3.73	7.20	
SFM0105	•			•				6697945.22	161467.07	3.80	4.20	
SFM0100	•			•				6608478 54	162998.44	4.88	5.30	
SEM0107	•			•				6608422 03	159766.00	3.33 4.40	7.05	
SFM000110	•							6697880.93	160132.03	2.53	3.05	
SFM000112	•							6697665.60	160598.60	3.11	3.00	
SFM000114	•							6697659.91	160248.91	3.48	3.00	
SFM000116	•							6697052.29	160364.23	3.52	3.75	
SFM000118	•							6698334.17	161684.12	1.83	2.25	
SFM000122	•							6698774.26	160069.61	3.03	7.50	
SFM000126	•							6695260.69	160877.51	6.07	7.17	
SFM000132	•							6607618.64	160229.23	4.09	3.10	
SFM000134	•			-		-		6697613 38	160229.97	4 08	2 10	
SFM000135	•							6697619.54	160235.14	3.70	2.10	
SFM000138	•							6697807.69	160158.26	2.74	2.00	
SFM000139	•							6698088.04	159525.68	3.85	3.00	
SFM000143	•							6698891.75	160196.66	2.45	1.50	
SFM000144	•							6698824.48	160180.21	2.65	2.50	
SFM000145	•							6698709.18	160242.11	1.65	2.00	
SFM000146 SEM000147	•							6608307 35	160158.07	3.29	3.10	
SFM000147	•							6698890.00	160127 28	1 47	2.40	
SFM000153	•							6698422.33	160030.72	4.35	3.20	
SFM000160	•							6697620.92	160260.99	3.25	2.50	
SFM000161	•							6696481.45	161876.18	2.19	2.00	
SFM000162	•							6696426.77	161377.68	2.01	1.50	
SFM000163	•							6698365.45	160094.40	3.79	6.88	
SFM000167	•							6698303.90	159986.18	3.17	10.91	
SFM000168	•							6698348.03	159716.36	5.64	5.17	
SFM000170	•							6608281 06	101000.40	2.33	4.00	
SEM000170	•							6698281 13	161848 15	1.05	3.50	
SFM000172	•							6697970.81	161146.25	1.82	5.50	
SFM000173	•							6697970.02	161145.48	1.88	5.00	
SFM000174	•							6697935.95	161862.60	3.57	3.00	
SFM000175	•							6696315.81	162226.80	4.33	6.00	
SFM000176	•							6695987.41	163163.28	5.28	7.00	
SFM000177	•							6695713.39	163054.58	4.82	6.00	
SFM000178	•							6607552.63	158010.74	6.93 6.90	6.00 5.00	
SEIVIUUU179	•							0091002.49	100011.00	0.09	0.00	

1	SI	ug te	st					HY670				
II	In	situ (BAT) pern	nea	mete	r test	HY675				
	In	terfer	ence	test				HY610, HY640,	HY645			
IV	P	SD b				- 4		HY673, GE514				
V	La	ib. pe	ermea	amete	rte	st		HY6/2 CE017				
VII	DF	(uns)	at z	one)				HY672				
Well/	P		. L		1	1	1	Northing	Fasting	Elevation	Depth	
sampling								(SWEREF 99	(SWEREF 99	ToC	(m b ToC)	
point	1	П	Ш	IV	v	VI	VII	18 00)	18 00)	(m, RH 2000) ¹	(
SFM000180	•					1		6697589.29	158078.43	6.95	6.00	
SFM000181	•							6697660.35	158098.39	9.56	4.00	
SFM000182	•							6698225.22	160009.51	2.66	5.00	
SFM000183	٠							6696481.17	161880.08	2.50	7.10	
SFM000184	٠							6696488.32	161713.56	2.38	4.20	
SFM000186	•							6696548.33	161413.06	1.96	5.00	
SFM000187	٠							6696428.88	161376.14	2.14	4.00	
SFM000188	٠							6698379.64	160167.73	2.29	5.10	
SFM000190	٠							6698445.35	159691.78	5.62	7.00	
SFM000191	•			•				6697900.44	160180.13	4.49	9.20	
SFM000192	•			•				6697624.66	160647.63	3.44	9.00	
SFM000193	•							6697452.73	160471.64	6.05	5.10	
SFM000194	•			•				6697051.76	160244.69	4.30	4.00	
SFM000195	•							6697298.64	159565.60	3.77	7.00	
SFM000196	•							6696224.62	160813.50	3.25	11.00	
SFM000197	•							6696226.86	160803.11	2.70	8.00	
SFM000198	•							6696222.97	160805.12	3.16	7.00	
	-			•				6697800.53	160394.46	3.31	N.A.	
				•				6607969 16	100404.29	1.92	N.A.	
				•				009/000.10	100200.10	3.24 2.22	N.A.	
								6607092.95	160272.12	3.33	N.A.	
								6606855.60	162256 10	4.00	N.A.	
				•				6695920 12	163457 91	6.82	N.A.	
				•				6695578 17	163640.08	5.02	N.A.	
HFM08				•				6695862 92	163711 40	7.32	N A	
HFM09	-			•				6697353 30	159851 35	5.33	N A	
HFM10	-			•				6697118 02	160011 63	5.17	N A	
PFM002461				•				6696225.17	162380.24	2.42	N.A.	
PFM002462				•				6696180.79	162518.25	2.43	N.A.	
PFM002463				•				6695935.44	163305.70	2.98	N.A.	
PFM002464				•				6695160.04	163695.58	3.06	N.A.	
PFM002572				•				6695414.79	163470.79	4.39	N.A.	
PFM002573				•				6696232.79	163381.79	3.83	N.A.	
PFM002574				•				6695870.08	163469.52	6.73	N.A.	
PFM002576				•				6697862.88	160330.35	N.D.	N.A.	
PFM002577				•				6697697.72	162195.48	N.D.	N.A.	
PFM002578				•				6696667.56	162280.21	N.D.	N.A.	
PFM002581				•				6697407.61	159823.02	N.D.	N.A.	
PFM002582				•				6697169.71	159366.95	N.D.	N.A.	
PFM002586				•				6694798.46	159981.22	N.D.	N.A.	
PFM002587				•				6695066.80	159402.96	N.D.	N.A.	
PFIVIUU2588	-			•				0090400.88	162898.74	N.D.	N.A.	
PFIMUU2589	-			•				0090042.95	103493.82	N.D.	N.A.	
PFIM002590	-			•				0095005.05	103801.09	N.D.	N.A.	
PFIVI002591				•				6605241 71	103010.10	N.D.	N.A.	
PFINI002392								6604618 10	162874 10	N.D.	N.A.	
PEM002670				•				6695758 94	163641 41	N.D.	N.A.	
PFM002687				•				6696916 23	162142 45	ND.	N.A.	
PFM002760				•				6696044 64	163412.45	N D	N A	
PFM002761	-			•				6696178 48	162608.04	N D	N A	
PFM002762				•				6696281 29	162374 38	ND	NA	
PFM002767				•				6695082.25	163986.00	N.D.	N.A.	
PFM002768				•				6695244.87	163578.28	N.D.	N.A.	
PFM002783				•				6696230.48	160746.15	N.D.	N.A.	
PFM002801				•				6697581.66	160333.99	N.D.	N.A.	
PFM002802				•				6697335.05	160499.84	N.D.	N.A.	
PFM002890				•				6695972.08	163669.52	N.D.	N.A.	
PFM002891				•				6695953.14	164028.01	N.D.	N.A.	
PFM003742				•				6666220.72	125433.91	N.D.	N.A.	
PFM004193				•				6695410.58	161786.20	N.D.	N.A.	

I	Slug test						HY670						
II	In situ (BAT) permeameter test				nete	r test	HY675						
111	Interference test						HY610, HY640, HY645						
IV	PS	SD						HY673, GE514					
V	La	ab. pe	ermea	amete	r te	st		HY6/2					
VI	CI	RS te	st					GE01/					
	pF (unsat. zone)			1	HY6/2	ΗΥ6/2							
Well/								Northing	Easting	Elevation	Depth (m h ToC)		
sampling				NZ	v	vi	VII	(SWEREF 99	(SWEREF 99		(Joi a m)		
	•			IV	v	VI	VII	10 UU) 6605491 71	162112.69		N A		
PFM004204				•				6696617.83	164494 29	N.D.	Ν.A. ΝΔ		
DEM004203								6606808 87	164104 55	N.D.	N.A.		
PFM004210								6607518 82	161800 30	N.D.	N.A.		
DEM004222				•				6604062.00	161018 01	ND	N.A.		
PEM004396				•				6705834 91	167373 70	N.D.	NA		
PEM004454				•				6697724.05	162230.85	3 38	NA		
PEM004454				•				6607723.72	162236 70	3.44	N.A.		
PEM004456				•				6607723.67	162235.83	3 3 3	NA		
PEM004458				•				6697728.65	162135 20	1 71	NA		
PFM004459				•	•		•	6697742 48	162127.06	2.04	N A		
PEM004460				•				6607753 55	162120.00	2.04	N A		
PFM004514				•				6694551 15	162571.86	N D	N A		
PFM004531				•				6695901.34	16200 91	N.D.	N A		
PFM004752				•				6695500 58	158993 25	N.D.	N A		
PFM004760				•				6699419 31	158801 66	N.D.	N A		
PFM004761				•				6696867.89	160650 34	N.D.	N A		
PFM004762				•				6697205.84	159964 35	N D	N A		
PFM006073				•				6694816 60	164393 29	0.18	N A		
PFM006094				•				6694357 72	164144 94	0.18	N A		
PEM006095				•				6694164.09	163711.35	0.18	N A		
PFM006097				•				6698018 28	162422 23	0.18	NA		
PFM007784				•				6698769 43	160023 75	3.03	NA		
PFM007785				•				6698842.08	160102 71	1.95	NA		
PFM007787				•				6698707 97	160092 55	3 51	NA		
PFM007788				•				6698728.61	160124.27	3.50	N.A.		
PFM007789				•				6698750 94	160007 33	3 17	NA		
PFM007790				•				6698715.54	160281.59	2.35	N.A.		
PFM007791				•				6698590.04	160049.03	2.79	N.A.		
PFM007792				•				6698547.33	160083.90	4.34	N.A.		
PFM007855				•	•			6695064.71	162980.01	0.86	N.A.		
PFM007856				•	•			6695059.95	162984.33	0.82	N.A.		
PFM007857				•	•			6695069.09	162985.71	1.14	N.A.		
PFM007858				•	•			6695086.27	162985.97	1.30	N.A.		
PFM007860						•		6694875.87	163030.86	0.76	N.A.		
PFM007861						•		6694888.70	163030.55	0.78	N.A.		
PFM007862						•		6694896.09	163029.22	0.69	N.A.		
PFM007863						•		6694888.60	163041.62	0.76	N.A.		
PFM007864						•		6694887.40	163004.41	0.77	N.A.		
PFM007866						•		6694537.31	162639.46	2.95	N.A.		
PFM007867						•		6694548.21	162616.67	2.85	N.A.		
PFM007868						•		6694557.50	162598.66	2.59	N.A.		
PFM007869						•		6694541.58	162605.78	2.46	N.A.		
QFM000099				•				6698562.43	160023.16	2.88	11.00		
QFM000143				•				6698258.69	159862.32	3.03	3.78		
QFM000145				•				6698312.66	159917.68	2.60	5.41		
QFM000153				•				6698334.10	159780.50	2.35	7.71		
QFM000156				•				6698420.77	159901.85	2.85	7.42		
QFM000262				•				6698910.94	160118.61	2.03	10.41		
QFM000263				•				6698853.51	159987.75	2.48	9.81		
QFM000264				•				6698499.20	159898.72	2.73	9.23		
QFM000265				•				6698357.40	159697.11	4.13	10.20		
QFM000266				•				6698283.65	159742.82	4.61	6.57		
QFM000268				•				6698372.31	160071.39	3.11	6.20		

4

Compilation of transmissivity data acquired from single-hole hydraulic tests in core-drilled boreholes

This chapter presents a compilation of transmissivity data for core-drilled boreholes at the Forsmark site, updating previous work done by Follin et al. (2007b). Data presented in tables show the upper and lower vertical elevations of each unit or domain and corresponding lengths along borehole, as well as Rock Domain (RFMxxx), Fracture domain (FFMxxx) and Deformation zone (ZFM) in addition to transmissivity data. Hydraulic test data were correlated primarily against so-called Target Intercepts of domains or units from previous extended geological single-hole interpretations, subordinately solely from single-hole interpretations or when the preceding interpretations were not available from the deterministically modelled geometrical intercepts of the various geological units (i.e. KFM14–18 and KFM20–24).

A variety of single-hole hydraulic test methods have been applied in the core-drilled boreholes, such as Posiva Flow Log (PLF), constant-head injection tests with the Pipe String System (PSS), and HTHB tests (combined pumping and impeller flow logging). However, data from all test methods are not presented for each borehole in this report. For a full list of all test results see APPENDIX D with supplementary material in digital appendices. The reason for this hierarchical structure is that the different test methods are associated with different lower flow detection limits and outreach, meaning a difference in accuracy. The PFL has a lower limit of c. 30 ml/h and the pumping lasts for approximately a week. During a PSS test, water is injected during 20 minutes and the flow detection limit is c. 60 ml/h. The PFL method therefore has a higher accuracy than the PSS method, and is able to distinguish between dead end fractures/clusters whereas PSS is not. For more information on the different test methods, see Follin et.al. (2007b).

PFL data (PFL-f) from overlapping PFL measurements are shown when available. These data comprise the number of flow anomalies over a section and the summed transmissivity of those anomalies. Other hydraulic data from single-hole hydraulic testing are presented in a hierarchical form and categorized according to their Sicada denominator, with the following prioritization of data from highest to lowest priority:

- i. 5 m Sequential PFL data (TD);
- ii. 5 m transient evaluation of injection test transmissivity approximations based on a 2D radial flow model (5m TT);
- iii. 5 m injection test transmissivity approximations based on Moye's formula (5m TM);
- iv. 20 m injection test transmissivity approximations based on a 2D radial flow model (20m TT);
- v. 20 m injection test transmissivity approximations based on Moye's formula (20m TM).

Table 4-1 and Table 4-2 present a colour legend, which is used in the tables of Chapter 4 and Chapter 5 where the geological interpretations of the hydraulic measurements in the tested boreholes are presented with regard to fracture domains and orientations of deformation zones.

Table 4-1. Fracture domain colour legend, used in Chapter 4 and Chapter 5.

FFM colour legend	Meaning
	Fracture domain FFM01
	Fracture domain FFM02
	Fracture domain FFM03
	Fracture domain FFM04
	Fracture domain FFM05
	Fracture domain FFM06
	Deformation Zone (DZ)
	Possible Deformation Zone (PDZ)

 Table 4-2. Deformation-zone orientation colour legend, used in Chapter 4 and Chapter 5.

Orientation color legend	Meaning
WNW	West North West
NW	North West
NNW	North North West
NNE	North North East
NE	North East
ENE	East North East
EW	East West
	Gently dipping

4.1 Drill Site 1

Figure 4-1. Map of Drill Site 1 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-3. A potential SFK layout (SYHA 2.0) and ground-surface intersections of deterministically modelled deformation zones (grey), which intersect with the boreholes at Drill Site 1, are shown for reference.

Figure 4-2. Isometric view of core-drilled boreholes at Drill Site 1 with hydraulic test data presented in Table 4-3. A potential layout for SFK (SYHA 2.0) is shown for reference.

Table 4-3. Compilation of transmissivity data per interpreted large-scale geological domain in core-drilled boreholes at drill site 1 (DS1, see Figure 4-1). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth (See Table E-1 in Appendix E for a more accurate and comprehensive list of casings for all boreholes.). Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the total transmissivity of all discrete PFL transmissivities (PFL_f) recorded between Zup and Zlow and ΣT is the total transmissivity of 5-m long sequential test section transmissivities between Zup and Zlow. n1 and n2 represent the number of discrete PFL-f anomalies and the number of 5-m long sequential test sections between Zup and Zlow can occur; however, these differences are generally minute.

Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KFM01A					- · · · /	· · · · ·					
3.31	-982	0	1,001								
-6	-26	9	29	RFM029	FFM02U		_	-	_	-	
-26	-47	29	51	RFM029		ZFMA2	_	_	_	_	_
-47	-97	51	102	RFM029	FFM02I		_	_	_	_	_
_97	_100	102	203	REM029	EEM02L		1 QE_07	23	2 3E-07	20	חד
_199	-211	203	216	RFM029	FFM01		1.52-07	20	1.5E-09	20	
-211	-219	216	224	RFM029		PD74			1.5E-09	2	TD
-219	-262	224	267	RFM029	FFM01		7.1E-10	2	5.6E-09	8	TD
						ZFMENE1192					
-262	-280	267	285	RFM029		А	7.8E-10	2	2.4E-09	4	TD
-280	-380	285	386	RFM029	FFM01		4.8E-09	7	1.7E-08	20	TD
						ZFMENE1192					
-380	-406	386	412	RFM029		А			3.6E-09	5	TD
-406	-629	412	639	RFM029	FFM01				3.3E-08	46	TD
-629	-673	639	684	RFM029		ZFMENE2254			6.5E-09	9	TD
-673	-982	684	1,001	RFM029	FFM01				4.5E-08	63	ID
KFM01C	222	•	450								
3.09	-333	U	450	DEMOS	FELICOLI						
1	-5	3	12	RFM029	FFM020		-	-	-	-	-
-5	-14	12	23	RFM029	FFM01		-	-	-	-	-
						ZFMENE1192					
-14	-33	23	48	RFM029		A, ZFMA2			9.4E-04	5	5m TT
-33	-44	48	62	RFM029	FFM01				2.4E-07	3	5m TT
-44	-72	62	99	RFM029		ZFMA2			2.4E-04	7	5m TT
-72	-89	99	121	RFM029	FFM01				7.3E-08	3	5m TT
-89	-91	121	124	RFM029	551404	PDZ4 (S-ENE)			4.5E-08	1	5m 11
-91	-175	124	235	RFM029	FFM01				6.1E-08	9	5m 1 1
_175	-187	235	252	REM020							
-187	-707	252	305	REM029	EEM01				2 1E-09	6	5m TT
-107	-221	202	000	1111025	TTWOT	ZEMENE0060			2.12-00	0	01111
-227	-245	305	330	RFM029		C			1.0E-09	2	5m TT
-245	-333	330	450	RFM029	FFM01				1.4E-08	9	5m TT
KFM01D											
3.13	-612	0	800								
-3	-52	7	68	RFM029	FFM02U		_	_	_	-	-
-52	-52	68	68	RFM029		ZEMA2	_	_	_	_	_
-52	-70	68	90	RFM029	FFM02U		_	_	_	_	_
-70	-71	90	02	REM020	FEM02U				_	_	_
-70	-141	92	176	RFM029	FFM020		5.3E-06	23	5.3E-06	8	TD
-141	-147	176	184	RFM029	TTWOZE	PD71 (S-NNW)	0.01 00	20	3.5E-09	2	5m TT
-147	-153	184	191	RFM029	FFM02				4.4E-10	1	5m TT
-153	-326	191	411	RFM029	FFM01		4.2E-07	9	5.6E-07	9	TD
-326	-333	411	421	RFM029	-	PDZ2 (S-NNW)	-	-	7.5E-07	1	20m TT
-333	-384	421	488	RFM029	FFM01	· · · · ·	6.2E-08	1	1.3E-07	1	TD
-384	-390	488	496	RFM029		PDZ3 (S-NNW)					
-390	-519	496	670	RFM029	FFM01		1.6E-08	1	1.7E-08	1	TD
-519	-541	670	700	RFM029		ZFMENE0061			6.1E-10	1	5m TT
-541	-592	700	771	RFM029	FFM01						
-592	-594	771	774	RFM029		PDZ5 (S-ENE)					
-594	-612	74	800	RFM029	FFM01						

4.2 Drill site 2

Figure 4-3. Map of Drill Site 2 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-4. A potential SFK layout (SYHA 2.0) to the northeast and ground-surface intersections of selected deterministically modelled deformation zones (grey), which intersect with the boreholes at Drill Site 2, are shown for reference.

Figure 4-4. Isometric view of core-drilled boreholes at Drill Site 2 with hydraulic test data presented in Table 4-4. A potential layout for SFK is visualized for reference.

Table 4-4. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at Drill Site 2 (DS2, see Figure 4-3). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KEM02A											
7.54	-987	0	1001								
6	-307	2	79	REM029R					-		
-71	-83	79	91	REM020R		PD71	_	_	_	_	_
-83	-92	91	100	REM020R		1 DZ1	_	_	_	_	_
-00	102	100	110		EEM02		2 2 - 00	1	4 25 05	2	тр
-92	-102	100	110		FFINIUS	7EM866	3.3E-00 1 1E_0/	1/1	4.3E-05	2	
-102	-114	122	160	REM029R	FEM03	21 10000	1.1L-04	5	3.2E-06	2	
-152	-176	160	184	RFM029R		ZEMA3	3.5E-06	21	3.8E-06	5	ТО
-176	-232	184	240	REM020R	FEM03	21 107 10	0.0E 00 7.8E_07	2	9.4E-07	11	
-232	-202	240	310	RFM029R		ZEM1189	1.0E-07	31	1 1E-05	14	ТО
-302	-408	310	417	RFM029R	EEM03	21 101 100	7.6E-08	3	5.2E-08	21	Т
-408	-433	417	442	RFM029R		ZEMA2	2.8E-06	14	3 1E-06	5	TD
-433	-467	442	476	RFM029R	FFM01	21100.02	1.9E-07	10	2.0E-07	7	TD
-467	-511	476	520	RFM029R		ZEME1	4 7E-06	22	5.6E-06	9	Т
407	011	470	020			PDZ7 (S-	4.7 2 00	~~	0.02 00	0	10
-511	-590	520	600	RFM029R		NNW)			2.2E-08	16	TD
-590	-881	600	893	RFM029R	FFM01				9.0E-08	58	TD
-881	-892	893	905	RFM029R		ZFMB4	2.6E-09	1	4.0E-09	3	TD
-892	-909	905	922	RFM029R	FFM01				4.3E-09	3	TD
000	010	000	005			PDZ9 (M-			0.45.00		TD
-909	-912	922	925	RFM029R	FEN 404	ENE)			2.4E-09	1	
-912	-963	925	976	RFM029R	FFIMUT	PD710 (M-			2.4E-08	10	ID
-963	-969	976	982	RFM029R		ENE)			1.4E-09	1	TD
-969	-987	982	1001	RFM029R	FFM01	,			4.3E-09	3	TD

KFM	02B								
7.80	-557	0	574						
8	-77	11	87		-	-	-	-	-
-77	-89	87	98		9.1E-06	2	1.8E-05	2	TD
-89	-106	98	115	ZFM866	1.2E-05	4	1.6E-05	4	TD
-106	-135	115	145		1.4E-08	1	7.3E-08	6	TD
-135	-193	145	204	ZFMA3	7.8E-06	4	7.6E-06	12	TD
-193	-311	204	323		9.2E-08	2	2.5E-07	23	TD
-311	-398	323	411		5.9E-07	4	9.0E-07	18	TD
-398	-417	411	431	ZFMA2	3.9E-05	14	4.5E-05	4	TD
-417	-433	431	447		2.4E-08	1	5.5E-08	3	TD
-433	-437	447	451	PDZ4			1.6E-08	1	TD
-437	-448	451	462		1		3.4E-08	2	TD
-448	-497	462	512	ZFMF1	6.2E-05	9	7.9E-05	10	TD
-497	-557	512	573				5.7E-08	11	TD

4.3 Drill Site 3

Figure 4-5. Map of Drill Site 3 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-5. A potential SFK layout (SYHA 2.0) to the northeast and ground-surface intersections of selected deterministically modelled deformation zones (grey), which intersect with the boreholes at Drill Site 3, are shown for reference.

Figure 4-6. Profile view facing west of the core-drilled boreholes at Drill Site 3 with hydraulic test data presented in Table 4-5. Approximate depth of SFK is shown for reference.

Table 4-5. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 3 (DS3, see Figure 4-5). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformatio n zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KFM03A											
8.44	-9 88	0	1001								
7	-51	1	60	RFM029	FFM03		-	-	-	-	-
-51	-53	60	62	RFM029		ZFMA5	-	-	-	-	-
-53	-93	62	102	RFM029	FFM03		-	-	-	-	-
-93	-211	102	220	RFM029	FFM03		5.1E-07	13	1.0E-06	24	TD
-211	-284	220	293	RFM017	FFM03				6.1E-07	15	TD
-284	-347	293	356	RFM029	FFM03		4.6E-09	2	4.8E-07	12	TD
-347	-389	356	399	RFM029		ZFMA4	1.1E-04	35	6.3E-05	9	TD
-389	-438	399	448	RFM029	FFM03		2.0E-08	2	2.8E-08	9	TD
-438	-445	448	455	RFM029		ZFMA7	6.7E-06	3	6.7E-06	2	TD
-445	-627	455	638	RFM029	FFM03		6.1E-08	5	9.8E-08	36	TD
-627	-635	638	646	RFM029		ZFMB1	2.5E-06	2	2.6E-06	2	TD
-635	-791	646	803	RFM029	FFM03				1.7E-07	31	TD
-791	-804	803	816	RFM029		ZFMA3	2.9E-08	2	4.4E-08	3	TD
-804	-929	816	942	RFM029	FFM03				1.4E-07	25	TD
-929	-936	942	949	RFM029		PDZ5 (G)	3.5E-07	2	3.8E-07	2	TD
-936	-987	949	1000	RFM029	FFM03		3.1E-07	5	3.9E-07	9	TD
KFM03B											
8.65	-92	0	102								
8.65	4	0	5	RFM029	FFM03						
4	-15	5	24	RFM029	FFM03				5.8E-07	3	5m TT

FFM03

FFM03

ZFMA5

PDZ2 (G)

1.5E-05

7.4E-06

2.1E-05

1.8E-07

4

4

1

4

5m TT

5m TT

5m TT

5m TT

42

62

67

97

RFM029

RFM029

RFM029

RF<u>M029</u>

-15

-33

-53

-58

-33

-53

-58

-88

24

42

62

67
4.4 Drill Site 4

Figure 4-7. Map of Drill Site 4 including horizontal projections of core-drilled borehole KFM04A with hydraulic test data presented in Table 4-6. A potential SFK layout (SYHA 2.0) to the northeast and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 4 shown for reference.

Figure 4-8. Profile view facing west of core-drilled borehole KFM04A with hydraulic test data presented in Table 4-6. SFK SYHA 2.0 is visualized for reference in addition to the gently dipping, deterministically modelled deformation zone ZFMA2.

Table 4-6. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 4 (DS4, see Figure 4-7). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
						· ·					
KFI	104A										
9	-796	0	1001			-					
9	-84	1	107	RFM018	FFM04		-	-	-	-	-
-84	-88	107	110	RFM018	FFM04		1.4E-07	1			
-88	-146	110	176	RFM018		ZFMNW 1200	6.6E-05	35	6.6E-05	13	TD
-146	-147	176	177	RFM018	FFM04						
-147	-169	177	202	RFM012	FFM04		1.0E-06	12	1.1E-06	4	TD
-169	-204	202	242	RFM012		ZFMA2	8.8E-05	7	1.0E-04	3	TD
-204	-245	242	290	RFM012	FFM04		2.2E-08	2	2.6E-08	2	TD
-245	-313	290	370	RFM012		ZFMNE1188	1.5E-06	10	1.6E-06	7	TD
-313	-348	370	412	RFM012	FFM04				2.6E-10	2	5m TT
-348	-389	412	462	RFM012		ZFMNE1188	1.4E-08	2	1.9E-08	2	TD
-389	-420	462	500	RFM012	FFM04						
-420	-542	500	654	RFM029R	FFM04		1.4E-09	1	1.5E-09	1	TD
-542	-547	654	661	RFM029R		ZFMWNW0123					
-547	-762	661	953	RFM029R	FFM01						
-762	-764	953	956	RFM029R		PDZ7 (S-NS)	1.3E-09	1			
-764	-796	956	1001	RFM029R	FFM01				1.3E-09	1	TD

4.5 Drill Site 5

Figure 4-9. Map of Drill Site 5 including horizontal projection of core-drilled borehole KFM05A with hydraulic test data presented in Table 4-7. A potential SFK layout SYHA 2.0 layout to the northeast and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 5 shown for reference.

Figure 4-10. Isometric view of core-drilled KFM05A with hydraulic test data presented in Table 4-7. A potential SFK layout SYHA 2.0 is visualized for reference.

Table 4-7. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 5 (DS5, see Figure 4-9). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup	Zlow	Secup(m)	Seclow(m)	Rock	Fracture	Deformation	ΣΤ	n1	ΣΤ	n2	Data
(m)	(m)			Domain (RFMyyy)	domain (FFMxxx)	ZONE (ZEM / PDZ)	PFL_f (m ² /s)		(m²/s)		type
KF	M05A						(1173)				
5.71	-825	0	1000								
-1	-81	8	100	RFM029R	FFM02U		-	-	-	-	-
-81	-83	100	102	RFM029R	FFM02U		-	-	-	-	-
-83	-93	102	114	RFM029R		ZFMA2	1.2E-03	6	4.1E-04	2	TD
-93	-199	114	237	RFM029R	FFM02U		1.8E-06	18	1.9E-06	24	TD
-199	-332	237	395	RFM029R	FFM01		1.9E-08	1	5.9E-08	32	TD
-332	-366	395	436	RFM029R		ZFMNE2282			1.0E-08	8	TD
-366	-492	436	590	RFM029R	FFM01				4.1E-08	31	TD
-492	-514	590	616	RFM029R		ZFMENE0401B			6.6E-09	5	TD
-514	-570	616	685	RFM029R	FFM01				1.9E-08	14	TD
-570	-598	685	720	RFM029R		ZFMENE0401A	1.6E-09	1	1.7E-08	7	TD
-598	-738	720	892	RFM029R	FFM01		8.6E-09	1	4.6E-08	34	TD
-738	-757	892	916	RFM029R		ZFMENE0103A			6.8E-09	5	TD
-757	-773	916	936	RFM029R	FFM01				5.4E-09	4	TD
-773	-818	936	992	RFM029R		ZFMENE2383			1.1E-07	11	TD
-818	-825	992	1000	RFM029R	FFM01						

Figure 4-11. Map of Drill Site 6 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-8. A potential SFK layout SYHA 2.0 layout to the northeast and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 6 shown for reference.

Figure 4-12. Isometric view of core-drilled boreholes at Drill Site 6 with hydraulic test data presented in Table 4-8. A potential SFK layout SYHA 2.0 is visualized for reference.

Table 4-8. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 6 (DS6, see Figure 4-11). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KF	M06A										
4.28	-825	0	998								
3	-7	1	13	RFM029	FFM02U		-	-	-	-	-
-7	-40	13	51	RFM029	FFM02L		_	_	_	_	_
-40	-40	51	51	RFM029		ZFMA8	_	_	_	_	_
-40	-83	51	100	RFM029	FFM02L		_	_	_	_	_
-83	-107	100	128	RFM029	FFM02L		8.1E-06	12	6.1E-05	17	TD
-107	-122	128	146	RFM029		PDZ1 (G)	3.9E-05	17			
-122	-165	146	195	RFM029	FFM01		1.4E-05	19			
-165	-236	195	278	RFM029		ZFMENE0060B	4.5E-05	26	2.0E-05	6	TD
-236	-270	278	318	RFM029	FFM01		4.3E-08	4	3.0E-05	9	TD
						ZFMENE0060A					
-270	-304	318	358	RFM029		,ZFMB7	9.8E-07	13	8.3E-08	6	TD
-304	-438	358	518	RFM029	FFM01		2.7E-08	3	1.0E-06	4	TD
-438	-460	518	545	RFM029		ZFMNNE2273					
460	501	EAE	610							1	20m
-400 501	-021	545 610	624				4 25 10	1	1.1E-09	1	
-921	-525	619	652		EEM01	ZFIVIININE2200	4.3E-10	1	2.3E-10	I	ID
-JZJ 5/9	-540	652	656				2 7E 10	1	2 7E 10	1	тп
-540	-552	656	740		FEM01	FD20 (3-NE)	2.7 - 10	'	2.7 2-10	1	1D
-620	-649	740	740	REM029		ZEMNNE0725	34E-07	З	3.6E-07	2	тп
-020	-0+0	740	115				0.46-07	0	0.02-07	2	20m
-649	-659	775	788	RFM045	FFM06				1.8E-08	1	TT
-659	-677	788	810	RFM045		ZFMENE0061			6.5E-10	1	20m TT
-677	-788	810	950	RFM045	FFM06						
-734	-752	882	905	RFM045		PDZ9 (S-ENE)					
-752	-768	905	925	RFM045	FFM06						
-768	-774	925	933	RFM045		PDZ10 (S-NE)					
-774	-788	933	950	RFM045	FFM06						
-788	-819	950	990	RFM045		ZFMNNE2280					
-819	-825	990	998	RFM045	FFM06						

Table 4-8. Cont'd.															
Zup (m)	Zlow (m)	Se	cup(m)	Secl	ow(m) D (R	Rock omain FMxxx)	Frac don (FFN	ture nain Ixxx)	Deformat Zone (ZF	ion M)	ΣT PFL_f (m²/s)	n	ΣT (m²/s)	n	Data type
KFMC	6B														
4		-93	0	98											
2		0	2	4	RFM029F	R FFM0	20			-	-		-	-	-
0		-18	4	22	RFM029F	R FFM0	2U					2.8E	E-06	4	5m TT
-18	; .	-50	22	55	RFM029F	FFMC)2L			-		6.1E	E-04	7	5m TT
-50) .	-88	55	93	RFM029F	2		ZFMA	8			2.28	E-05	6	5m TT
-88	;	-93	93	98	RFM029F	R FFMC)2L								
KEMO															
	7	704	•	1000											
4.2	-	101	1	1000	REM020	FEMO	211								
0		-45		57	RFM020	FFMC	120			_	_		_	_	_
-45		-45	57	57	RFM020			7ΕΜΔ	8	1 _	_		_	_	_
_15		-40	57	100		FEMO	121		0						
-40	,	-02	100	100	RFM029	FFMC)2L			_	_		_	_	_
-8/		140	100	160	REM020			DD71	(G)			0.35	=_05	7	5m TT
-04	 n _	225	160	283		FEM	01	IDZI	(0)			1 / 1	05	1/	5m TT
-23	5 - 5 -	253	283	306	RFM029	1 1 101		7FMN	NE2008			1.4L	03 =_07	1	5m TT
-25	3 -	296	306	359	RFM029	FFM	01	21 10114	NL2000			3.8F	-08	1	5m TT
-29	- 6	329	359	400	RFM029		Γ	ZFMB	7	1		8.9E	E-06	4	5m TT
-32	9 -	338	400	411	RFM045	FFM	01			1		6.9E	E-10	1	5m TT
-33	8 -	341	411	415	RFM045	FFM	06					1.5E	E-09	1	5m TT
-34	1 -	399	415	489	RFM045			ZFMN	NE2263			6.8E	E-08	4	5m TT
-39	9 -	409	489	502	RFM045	FFM	06								
-40	9 -	450	502	555	RFM045			ZFMV	/NW0044			1.1E	E-06	2	5m TT
-45	0 -	502	555	623	RFM045	FFM	06					1.6E	E-10	1	20m TT
-50	2 -	542	623	677	RFM045			PDZ5	(S-NE)			5.4E	E-08	5	5m TT
-542	2 -	707	677	898	RFM045	FFM	06					7.5E	E-09	4	5m TT
-70	7 -	781	898	1000	RFM032	FFM	05					1.8E	E-08	5	5m TT

4.7 Drill Site 7

Figure 4-13. Map of Drill Site 7 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-9. A potential SFK layout SYHA 2.0 layout and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 7 shown for reference.

Figure 4-14. Isometric view of core-drilled boreholes at Drill Site 7 with hydraulic test data presented in Table 4-9. A potential SFK layout SYHA 2.0 is visualized for reference.

Table 4-9. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 7 (DS7, see Figure 4-13). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain	Fracture domain	Deformation zone	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
				(RFMxxx)	(FFMxxx)	(ZFM / PDZ)					
KFN	107A										
3.51	-819	0	999								
1		3		RFM029R	FFM02U		_	-	-	-	-
	-83		100	RFM029R	FFM02L		-	-	-	-	-
-83	-90	100	108	RFM029R	FFM02L		_		7.1E-09	1	5m TT
						ZFM1203,					
-90	-156	108	185	RFM029R		ZFMNNW0404	1.4E-04	22	1.1E-04	9	TD
-156	-166	185	196	RFM029R	FFM01				6.1E-09	2	5m TT
-166	-173	196	205	RFM029R		PDZ2 (S-ENE)			3.5E-09	1	5m TT
-173	-353	205	417	RFM029R	FFM01		9.3E-08	1	1.3E-07	1	TD
-353	-357	417	422	RFM029R		ZFMENE0159A					
-357	-661	422	793	RFM029R	FFM01						
-661	-668	793	803	RFM044	FFM05						
-668	-698	803	840	RFM044		ZFMENE1208B					
-698	-711	840	857	RFM044	FFM05						
-711	-742	857	897	RFM044		ZFMENE1208A					
-742	-760	897	920	RFM044	FFM05						
-760	-819	920	999	RFM044		ZFMNNW0100					
KFN	107B	•									
3.55	-237	U	299						_		_
1	-23	3	33	RFM029R	FFM02U		-	-	-	-	-
-23	-38	33	51	RFM029R	FFM02L		_	-	-	-	-
-38	-44	51	58	RFM029R		PDZ1 (G)	-	-	-	-	-
-38	-72	58	65	RFM029R	FFM02L		-	-	-	-	-
-44	-50	51	93	RFM029R	FFM02L		-				
-72	-79	93	102	RFM029R		ZFM1203					
-79	-93	102	119	RFM029R	FFM02L						
-93	-106	119	135	RFM029R		PDZ3 (S-ENE)					
-106	-154	135	195	RFM029R	FFM02L						
-154	-178	195	225	RFM029R	FFM01		_				
-178	-194	225	245	RFM029R		ZFMENE2320			4.8E-08	4	5m TT
-194	-237	245	299	RFM029R	FFM01						

KFM	/107C										
3.54	-494	0	500								
1	-81	3	85	RFM029R	FFM02U						
-81	-88	85	92	RFM029R	FFM02L		_				
-88	-99	92	103	RFM029R		ZFM1203	4.8E-05	1	4.8E-05	1	TD
-99	-119	103	123	RFM029R	FFM02L		1.1E-07	5	1.8E-07	4	TD
-119	-303	123	308	RFM029R	FFM01		4.7E-05	9	4.7E-05	37	TD
-303	-382	308	388	RFM029R		ZFMENE2320			1.3E-08	16	TD
-382	-423	388	429	RFM029R	FFM01		_		6.6E-09	8	TD
-423	-433	429	439	RFM029R		ZFMENE2320			1.7E-09	2	TD
-433	-494	439	500	RFM029R	FFM01				9.1E-09	11	TD

4.8 Drill Site 8

Figure 4-15. Map of Drill Site 8 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-10. A potential SFK layout SYHA 2.0 layout and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 8 shown for reference.

Figure 4-16. Profile view facing East of core-drilled boreholes at Drill Site 8 with hydraulic test data presented in Table 4-10. A potential layout for SFK is visualized for reference.

Table 4-10. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes at drill site 8 (DS8, see Figure 4-15). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow	Secup(m)	Seclow(m)	Rock	Fracture	Deformation	ΣT PFL_f	n1	ΣT (m ² /s)	n2	Data
(11)	(11)			(RFMxxx)	(FFMxxx)	(ZFM / PDZ)	(1175)		(1175)		type
KFN	A801			•	· · ·	`					
2.67	-759	0	1001								
-2		5		RFM029R	FFM02U		-	-	-	-	-
	-83		100	RFM029R	FFM02L		_	-	-	-	-
-83	-85	100	102	RFM029R	FFM02L						
-85	-204	102	244	RFM029R	FFM01		4.1E-06	24	4.4E-06	15	TD
-204	-262	244	315	RFM029R		ZFMENE1061A	1.3E-06	6	1.5E-06	3	TD
-262	-393	315	479	RFM029R	FFM01		1.5E-08	8	1.8E-08	5	TD
-393	-406	479	496	RFM029R		ZFMNNW 1204	6.9E-08	2	8.3E-08	1	TD
-406	-431	496	528	RFM029R	FFM01				1.5E-05	2	5m TM
-431	-453	528	557	RFM029R		PDZ3					
-453	-502	557	624	RFM029R	FFM01						
-502	-503	624	624	RFM029R		PDZ8 (S-NW)					
-503	-538	624	672	RFM029R	FFM01						
-538	-553	672	693	RFM029R		PDZ4 (S-EW)	1.4E-06	1	1.9E-06	1	TD 20m
-553	-611	693	775	RFM029R	FFM01				3.7E-05	10	TT
-611	-658	775	843	RFM032		ZFMENE2248			9.8E-10	1	5m TT
-658	-712	843	925	RFM032	FFM05						
-705	-712	915	925	RFM032							
-712	-725	925	946	RFM034		PDZO(S-VVINVV)					
-725	-738	946	967	RFM034	RD034						
-738	-744	967	976	RFM034		PDZ7					
-744	-759	976	1001	RFM034	RD034						
KFN	/108B										
2.43	-166	0	200								
-1	-2	4	6	RFM029R	FFM02U		-	-	-	-	-
-2	-24	6	31	RFM029R	FFM02U				1.2E-05	4	5m TT
-24	-37	31	46	RFM029R	FFM02L				1.6E-05	3	5m TT
-37	-110	46	133	RFM029R	FFM01				4.7E-07	8	5m TT
-110	-116	133	140	RFM029R		ZFMNNW1205B					
-116	-139	140	167	RFM029R	FFM01				6.5E-08	3	5m TT
-139	-154	167	185	RFM029R		ZFMNNW1205A			1.2E-08	4	5m TT
-154	-166	185	200	RFM029R	FFM01				7.1E-09	1	5m TT

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain	Fracture domain	Deformation zone	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
				(RFMxxx)	(FFMxxx)	(ZFM / PDZ)					
KFM0	BC	-									
2.66	-781	0	951								
0	-8	3	12	RFM029	FFM02L		-	-	-	-	-
-8		12		RFM029	FFM02L						
	-86		102	RFM029	FFM02L				3.3E-06	4	TD
-86	-136	102	161	RFM045	FFM01		3.0E-06	1	1.2E-08	12	TD
-136	-162	161	191	RFM045		PDZ1 (S-ENE)	9.5E-09	3	1.1E-08	6	TD
-162	-288	191	342	RFM045	FFM01		8.8E-09	3	3.6E-08	30	TD
-288	-352	342	419	RFM045	FFM06				1.3E-08	15	TD
-352	-454	419	542	RFM045		ZFMNNE2312	1.8E-07	13	1.9E-07	25	TD
-454	-456	542	546	RFM045	FFM06				8.3E-10	1	TD
-456	-560	546	673	RFM029	FFM01	751 414 (1) 14 (0005	0.05.00		2.1E-08	25	
-560	-586	673	705	RFM029		_ZFIVIVV INVV 2225	2.6E-09	1	1.1E-08	6	
-586	-685	705	829	RFM029	FFMU1				2.1E-08	25	ID
695	697	820	830	DEM020		ZFMENE1061A,			9 /E 10	1	тп
-005	-007	822	0.02	REM029	EEM01				1 0 - 09	י יי	
-007	-770	032	940	REM029	FFINIOT	ZEMENE1061A			1.92-00	22	ID
-779	-781	940	949	RFM029	FEM01						
KFM		545	551	1411025							
2.79	-748	0	942								
0		1	-	RFM029	FFM02U		-	-	-	-	-
	-46		59	RFM029	FFM02I		_	_	_	_	_
-46	-146	59	184	RFM029	FFM01		18E-05	17	19E-05	26	тр
-146	-167	184	210	RFM029		ZEMENE2120	9.0E-08	7	1.6E-07	5	TD
-167	-256	210	318	RFM029	FFM01		0.02.00		3.7E-08	22	TD
-256	-261	318	324	RFM029		ZFMENE0159A			1.7E-09	1	TD
-261	-299	324	371	RFM029	FFM01				1.7E-08	10	TD
-299	-319	371	396	RFM029		ZFMENE0159B	1.3E-07	4	1.4E-07	5	TD
-319	-400	396	496	RFM045	FFM01				3.4E-08	20	TD
-400	-408	496	506	RFM045		PDZ4 (S-NE)			3.4E-09	2	TD
-408	-440	506	546	RFM045	FFM01				1.4E-08	8	TD
-440	-460	546	571	RFM045		ZFMNNE2309			2.6E-08	15	TD
-460	-468	571	582	RFM045	FFM01				3.4E-09	2	TD
-468	-510	582	634	RFM045		ZFMENE2320			1.7E-08	10	TD
-510	-517	634	644	RFM045	FFM01		_		3.4E-09	2	TD
-517	-553	644	689	RFM045		ZFMNNE2308	1.9E-07	3	2.3E-07	9	TD
-553	-590	689	737	RFM045	FFM01		1.3E-08	2	2.7E-08	10	TD
-590	-600	737	749	RFM045		ZFMNNE2293			3.4E-09	2	TD
-600	-616	749	770	RFM045	FFM01				8.5E-09	5	TD
-616	-621	770	777	RFM045		PDZ10 (S-NS)			1.7E-09	1	TD
-621	-654	777	819	RFM045	FFM01				1.4E-08	8	TD
-654	-672	819	842	RFM045		ZFMENE0168	2.9E-08	1	3.1E-08	5	TD
-672	-718	842	903	RFM045	FFM01				2.0E-08	12	TD
-718	-747	903	942	RFM045		ZFMNNE2300			1.1E-08	6	TD

Table 4-10. Cont'd.

4.9 Drill Site 9

Figure 4-17. Map of Drill Site 9 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-11. A potential SFK layout SYHA 2.0 layout and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes at Drill Site 9 shown for reference.

Figure 4-18. Isometric view of core-drilled boreholes at Drill Site 9 with hydraulic test data presented in Table 4-11. A potential SFK layout SYHA 2.0 is visualized for reference.

Table 4-11. Summary of geological data cross referenced with section transmissivities gathered through hydraulic testing in core-drilled boreholes at drill site 9 (DS9, see Figure 4-17). In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secu p(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n 1	ΣT (m²/s)	n 2	Data type
						•					
KFN	A60N	-									
4.48	-621	0	800		_						
-2	-2	7	8	RFM029	FFM02U		-	-	-	-	-
-2	-8	8	15	RFM029	FFM02U						
-8	-30	15	40	RFM029		ZFMENE1208A					
-30	-69	40	86	RFM029	FFM02L						
-69	-94	86	116	RFM029		ZFMENE1208B			1.4E-08	2	5m TT
-94	-100	116	124	RFM029	FFM02L				4.3E-08	1	5m TT
-100	-179	124	217	RFM029	FFM01				1.8E-06	9	5m TT
						ZFMENE0159A,					
-179	-231	217	280	RFM029		ZFMNNW0100			1.5E-07	5	5m TT
										2	
-231	-415	280	512	RFM044	FFM05				1.7E-06	2	5m TT
-415	-511	512	641	RFM034	RD034				4.5E-07	8	5m TT
-511	-530	641	666	RFM012	FFM04				3.8E-09	2	5m TT
-530	-531	666	667	RFM012		PDZ6 (M-SW)					00
521	570	667	702		EEM04				0 /E 11	1	20m
-031	-570	700	723		FFIVIU4				2.45-11	1	
-570	-591	723	754		EEM04	ZFIVINVV 1200			2.8E-09	1	
-591	-601	754	770		FFIMU4	7514114/4000			0.0E-09	3	
-601	-015	770	790		EEM04	ZFIVINVV 1200			9.5E-09	4	om I I
-015	-021	790	800	KEIVIU I O	FFIVIU4						
KFN	409B										
4.49	-472	0	616								
3	-3	7	9	RFM029	FFM02U		-	-	-		-
-3	-31	a.	43	REM029					14E-05	7	5m TT
-31	-44	13	40 50	REM029	EEM02L				1.40-05	2	5m TT
-51	- - -4	40 50	79	DEM020					6 1 - 06	1	5m TT
-44 60	-00	79	106	REM029	EEMOOL					4	5m TT
-00	-02 103	106	100		FFIVIUZL				1.0E-07	2	5m TT
-02	-103	100	152	KFINIU29		ZFIVIENEU159A			5.5E-06	1	50111
-103	-224	132	284	RFM029	FFM01				1.6F-06	0	5m TT
-224	-225	284	284	RFM029		PDZ6 (S-ENE)			1.02 00	Ũ	
-225	-244	284	308	RFM029	FFM01						
220		201	000								20m
-244	-269	308	340	RFM029		PDZ2 (S-ENE)			4.2E-10	1	TT
-269	-287	340	363	RFM029	FFM01	· · /					
-287	-325	363	413	RFM029		ZFMENE2320			4.9E-08	2	5m TT
-325	-404	413	520	RFM029	FFM01						
-404	-426	520	550	RFM029		ZFMENE2325A			9.9E-10	2	5m TT
-426	-434	550	561	RFM029	FFM01						

-443

-472

561

574

574

616

RFM029

RFM029

-434

-443

FFM01

ZFMENE2325B

20m

TT

3.5E-08 1

Figure 4-19. Map of Drill Site 10 including horizontal projections of core-drilled boreholes with hydraulic test data presented in Table 4-12. A potential SFK layout SYHA 2.0 layout and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with KFM10A shown for reference.

Figure 4-20. Profile view facing East of core-drilled borehole KFM10A with hydraulic test data presented in Table 4-12. A potential SFK layout SYHA 2.0 is visualized for reference.

Figure 4-21. Map of Drill Site 11 including horizontal projection of core-drilled borehole KFM11A with hydraulic test data presented in Table 4-12. A potential SFK layout SYHA 2.0 layout and ground surface intersection of selected deterministically modelled deformation zones (grey) and the Singö deformation zone (red)which intersect with KFM11A shown for reference.

Figure 4-22. Top-down view of core-drilled borehole KFM11A with hydraulic test data presented in Table 4-12. Current approximate shoreline and ZFMWNW0001 shown for reference.

Figure 4-23. Map of Drill Site 12 including horizontal projection of core-drilled borehole KFM12A with hydraulic test data presented in Table 4-12. Ground surface intersection of selected deterministically modelled regional deformation zones (red) which intersect with KFM10A shown for reference.

Figure 4-24. Profile view facing East of core-drilled boreholes KFM12A with hydraulic test data presented in Table 4-12.

Table 4-12. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFM10A, KFM11A and KFM12A. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

	-		-	-							
Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KFN	110A										
4.69	-338	0	500								
4 69	-41	8	60	RFM029			-	-	-	-	-
_41	-43	60	63	RFM029			1.0E-06	2	2.6E-06	1	тр
-43	-104	63	145	RFM029		ZEMWNW0123	7.4E-05	32	6 3E-05	12	TD
-104	-197	145	275	RFM029	FFM03		2.6E-09	1	3.0E-09	1	TD
-197	-203	275	284	RFM029		ZFMENE2403		-	4.9E-09	1	5m TT
-203	-297	284	430	RFM029	FFM03		5.0E-07	13	4.9E-07	10	TD
-297	-308	430	449	RFM029		ZFMA2	2.9E-05	4	3.0E-05	2	TD
-308	-325	449	478	RFM029	FFM03		1		2.7E-09	3	5m TT
-325	-332	478	490	RFM029		ZFMA2	1.1E-06	4	1.0E-06	2	TD
-332	-338	490	500	RFM029	FFM03				3.6E-10	1	5m TT
						-					
KFN	111A										
3.14	-713	0	851								
3.14	-59	7	71	RFM021			-	-	-	-	-
-59	-213	71	245	RFM021	FFM05		3.2E-05	50	3.1E-05	21	TD
-213	-346	245	400	RFM021		ZFMWNW0813	1.4E-07	21	2.3E-07	12	TD
-346	-429	400	498	RFM021		ZFMWNW3259	1.1E-06	21	1.3E-06	10	TD
400	000	400	004	DEMODA					0.75.00	10	20m
-429	-692	498	824	RFM021		ZFMW/NW0001			2.7E-06	16	11 20m
-692	-713	824	851	RFM021	FEM05				3 5E-07	1	
002	110	024	001		11100				0.02 07		
KFN	112A										
10.92	-501	0	601								
10.92	-41	8	59	RFM030			-	-	-	-	-
											20m
-40	-97	59	125	RFM030			1		6.3E-06	3	TT
07	225	105	400							11	20m
-97	-335	120	402			2-101001000004			2.9E-05	14	11 20m
-335	-428	402	513	RFM030					1.3E-06	4	TT
						PDZ3 (S-					20m
-428	-437	513	523	RFM030		WNW)			2.7E-07	1	TT

20m

ΤT

2.2E-10

1

-437

-500

523

601

RFM030

4.11 Boreholes KFM14 through KFM16

Figure 4-25. Map including horizontal projections of core-drilled boreholes KFM14-16 with hydraulic test data presented in Table 4-13. A potential SFK layout (SYHA 2.0) is shown for reference.

Figure 4-26. Isometric view of core-drilled boreholes KFM14, KFM15 and KFM16 with hydraulic test data presented in Table 4-13.

Table 4-13. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFM14, KFM15 and KFM16. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KF	M14										
2.15	-58	0	60								
-3	-4	5	6		FFM02U		-	-	-	-	-
-4	-23	6	25		FFM02U		1.3E-05	8	1.2E-05	4	TD
-23	-47	25	50		FFM02L		2.5E-05	7	1.4E-04	5	TD
-47	-58	50	60		FFM01		4.2E-05	2	2.1E-06	1	TD
KF	M15										
3.65	-58	0	62								
-1	-4	5	7		FFM02U		-	-	-	-	-
-4	-11	7	15		FFM02U		3.8E-08	5	2.3E-08	1	TD
-11	-13	15	17			PDZ1 (G)	2.4E-07	4	2.2E-07	1	TD
-13	-18	17	22		FFM02U		2.9E-07	4	2.5E-07	1	TD
-18	-19	22	23		FFM02L						
-19	-58	23	62		FFM01		8.4E-07	10	8.6E-07	6	TD
KF	M16										
1.69	-50	0	60								
-1	-2	3	4		FFM02U		-	-	-	-	-
-2	-23	4	29		FFM02U		1.5E-05	16	1.5E-05	6	TD
-23	-36	29	45		FFM02L		2.4E-06	4	2.5E-06	2	TD
-36	-50	45	60		FFM01		8.9E-06	5	8.0E-06	1	TD

Figure 4-27. Map including horizontal projections of core-drilled boreholes KFM20-27 with hydraulic test data presented in Table 4 14. A potential SFK layout (SYHA 2.0) and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes is shown for reference.

Figure 4-28. Isometric view of core-drilled boreholes KMF20, KFM21, KFM22, KFM23, KFM24, KFM25, KFM26 and KFM27 with hydraulic test data presented in Table 4 14. A potential SFK layout (SYHA 2.0) and ground surface intersection of selected deterministically modelled deformation zones (grey) which intersect with the boreholes is shown for reference.

Table 4-14. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFM20, KFM21, KFM22, KFM23, KFM24, KFM25, KFM26 and KFM27. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n 2	Data type
KF	M20										
2.99	-57	0	61								
2	1	1	2		FFM02U		-	-	-	-	-
1	-24	2	27		FFM02U		3.1E-05	14	3.4E-05	5	TD
-24	-30	27	33		FFM02L		3.4E-06	6	2.9E-06	1	TD
-30	-43	33	47		FFM01		1.9E-07	2	2.2E-07	2	TD
-43	-44	47	48			PDZ1 (M-SSE)					
-44	-57	48	61		FFM01		1.7E-07	4	2.0E-07	2	TD
KF	M21										
2.80	-92	0	101								
-2	-3	5	6		FFM02U		-	-	-	-	-
-2	-14	6	18	-	FFM02U		8.9E-05	10	5.0E-05	4	TD
-14	-23	18	28			ZFMNNW1205A	2.0E-05	9	1.8E-05	2	TD
-23	-57	28	64		FFM02L		5.9E-05	22	5.0E-05	7	TD
-57	-63	64	70			PDZ2 (G)	8.6E-07	4	8.1E-07	1	TD
-63	-78	70	86		FFM01		1.2E-05	8	1.3E-05	4	TD
-78	-86	86	95			ZFMNNW1205B	2.6E-06	7	2.4E-06	2	TD
-86	-92	95	101		FFM01						
KF	M22										
2.94	-57	0	60				_				
-3	-5	7	8		FFM02U		-	-	-	-	-
-5	-25	8	28		FFM02U		7.2E-06	10	6.7E-06	4	TD
-25	-39	28	42		FFM02L		5.9E-05	13	7.6E-05	3	TD
-39	-57	42	60		FFM01		7.0E-09	1	6.4E-09	1	TD
K	-M23										
2.45	-93	0	101			_					
2	-2	0	5	-	FFM02U		-	-	-	-	-
-2	-18	5	22		FFM02U		5.2E-05	12	5.8E-05	3	TD
-18	-31	22	35			ZFMENE2120	3.0E-05	8	2.3E-05	3	TD
-31	-56	35	61		FFM02L		4.6E-05	18	4.6E-05	6	TD
-56	-93	61	101		FFM01		8.3E-05	16	7.9E-05	5	TD
K	-M24										
1.21	-545	0	550								
-2	-24	3	25	RFM029	FFM02U		-	-	-	-	-
-24	-34	25	35	RFM029	FFM02L		-	-	-	-	-
-34	-36	35	37	RFM029	FFM02L						
-36	-545	37	550	RFM029	FFM01		8.1E-07	34	8.3E-07	24	TD
K	M25										
2.66	-98	0	101								
				RFM029	FFM02U		-	-	-	-	-
-2	-3	5	6	RFM029	FFM02L		-	-	-	-	-
-3	-98	6	101	RFM029	FFM01		2.7E-05	42	2.5E-05	19	TD
K	-M26										
3.00	-97	0	101								
-2	-3	5	6	RFM029	FFM02U		-	-	-	-	-
-3	-51	6	54	RFM029	FFM02U		3.2E-05	23	3.4E-05	9	TD
-51	-97	54	101	RFM029	FFM01		7.7E-05	26	7.5E-05	9	TD

Table	Table 4-14. Cont'd.												
Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n 2	Data type		
K	-M27												
2.54	-94	0	101										
-2	-6	5	9	RFM029	FFM02U		-	-	-	-	-		
-6	-26	9	30		FFM02U		1.8E-05	16	1.4E-05	5	TD		
-26	-86	30	92	RFM029		ZFMENE2248	9.3E-05	50	6.7E-05	12	TD		
-86	-94	92	101	RFM029	FFM01		1.7E-07	3	1.6E-07	2	TD		

4.13 KFR boreholes

Figure 4-29. Map including horizontal projections of KFR boreholes with hydraulic test data presented in Table 4-15. SFR1 and SFR3 layouts are shown for reference. KFR105 is drilled sub-horizontally from the SFR1 NBT tunnel section.

Figure 4-30. Visualization of sequential PFL data (Table 4-15 to Table 4-22) from core-drilled boreholes with KFR prefix. The current shoreline is shown for reference.

Table 4-15. Hydraulic data compilation per interpreted geological domain in core-drilled borehole KFR101. In the table, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KFF	R101										
2.62	-262	0	342								
-7	-9	12	14	RFM021			-	_	-	-	-
-9	-69	14	88	RFM021		ZFMNNW1034	1.6E-05	19	1.6E-05	11	TD
-69	-77	88	97	RFM021							
-77	-92	97	116	RFM021		ZFMNW0805B	8.3E-06	1	1.2E-05	1	TD
-92	-142	116	179	RFM021			5.1E-07	5	8.5E-07	4	TD
						PDZ3 (S-					
-142	-147	179	186	RFM021		WNW)	1.3E-05	1	1.8E-05	1	TD
-147	-156	186	197	RFM021							
-156	-168	197	213	RFM021		PDZ4 (S-NW)					
-168	-190	213	242	RFM021			1.8E-08	1	9.7E-08	2	TD
-190	-262	242	342	RFM021		ZFMNW0805A	6.1E-06	25	8.9E-06	12	TD

Table 4-16. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR102A and KFR102B. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KFF	R102A										
2.85	-537	0	601								
0	-61	10	70	RFM021			-	-	-	-	-
-61	-133	70	149	RFM021			1.2E-06	28	1.0E-06	10	TD
-133	-144	149	161	RFM021		ZFMNE3137	9.5E-09	2	2.6E-08	2	TD
-144	-272	161	302	RFM021			1.3E-05	50	1.3E-05	20	TD
-272	-292	302	325	RFM021		ZFMNE3112	1.9E-08	1	1.6E-08	1	TD
-292	-379	325	422	RFM021							
-379	-451	422	503	RFM021		ZFMENE3115	1.7E-06	21	2.2E-06	7	TD
-451	-537	503	601	RFM021			9.6E-09	2	1.5E-08	2	TD
	(102B	•	100								
2.70	-143	0	180								
2.70	-9	12	14	RFM021			-	-	-	-	-
-9	-52	14	67	RFM021			3.9E-06	37	3.6E-06	9	TD
		07	70	DEM 004		PDZ1 (S-	0 0F 07	•	0 0F 07		TD
-52	-54	67	70	RFM021		WNW)	8.8E-07	3	8.9E-07	1	
-54	-86	70	109	RFM021			4.3E-07	23	5.6E-07	8	ID
-86	-90	109	114	RFM021		ZFMNE3137	1.4E-07	5	1.9E-08	1	ID
-90	-118	114	150	RFM021			2.5E-06	10	8.2E-06	6	ID
-118	-119	150	151	RFM021		PDZ3 (G)	5.0E-06	1			
-119	-137	151	173	RFM021			1.1E-06	8	3.6E-08	3	TD
-137	-143	173	180	RFM021		ZFMNE3112	5.9E-07	2			

Table 4-17. Hydraulic data compilation per interpreted geological domain in core-drilled borehole KFR103. In the table, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZEM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
					(1111700)	(=1 111 / 1 2 2)					
KF	R103										
2.61	-159	0	201								
-7	-8	12	13	RFM021			-	-	-	-	-
-8	-17	13	25	RFM021			1.0E-04	5	5.3E-06	2	TD
-17	-19	25	27	RFM021		PDZ1 (S-EW)	2.5E-07	1	3.6E-07	1	TD
-19	-65	27	84	RFM021			5.2E-06	24	6.5E-06	10	TD
-65	-71	84	91	RFM021		PDZ2 (G)	1.6E-05	5	1.5E-05	1	TD
-71	-142	91	180	RFM021			1.9E-07	5	3.7E-07	4	TD
-142	-144	180	183	RFM021		ZFMWNW3262	5.1E-06	3	1.0E-05	1	TD
-144	-159	183	201	RFM021			2.2E-08	1	4.5E-08	1	TD

Table 4-18. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR104. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KF	R104										
3.01	-352	0	455								
3.01	-4	7	9	RFM021							
-4	-22	9	30	RFM021			1.6E-07	4	9.0E-08	2	TD
-22	-34	30	46	RFM021		ZFMNE3118	1.8E-07	9	1.6E-07	3	TD
-34	-117	46	149	RFM021			4.6E-06	55	4.6E-06	21	TD
-117	-121	149	154	RFM021		ZFMENE3115	3.9E-09	1	3.9E-09	1	TD
-121	-211	154	268	RFM021			4.6E-07	16	4.4E-07	11	TD
-211	-222	268	283	RFM021		ZFMNE3112	1.1E-07	2	1.1E-07	1	TD
-222	-297	283	382	RFM021			6.9E-08	3	6.9E-08	3	TD
-297	-301	382	387	RFM021		ZFMNE3137					
-301	-308	387	396	RFM021							
-308	-352	396	455	RFM021		ZFMWNW3267	1.1E-08	1	1.5E-08	1	TD

Table 4-19. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR105. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KFR	105										
- 106.63	-156	0	307								
- 106.63	-107	0	33	RFM021			-	_	-	_	_
-107	-114	3	45	RFM021			1.5E-07	15	1.6E- 07	6	TD
-114	-116	45	52	RFM021		ZFMENE3115	6.1E-09	2	1.3E- 08	2	TD
-116	-122	52	89	RFM021			3.8E-08	18	08 26⊑-	7	TD
-122	-123	89	97	RFM021		ZFMNE3112	2.3E-09	3	2.0E- 09 1.1E-	2	TD
-123	-135	97	171	RFM021			8.8E-07	40	06 1 1 F-	14	TD
-135	-136	171	176	RFM021		ZFMWNW8042	2.7E-07	5	07 6.1E-	1	TD
-136	-139	176	191	RFM021			5.1E-08	13	08 1.1E-	3	TD
-139	-141	191	205	RFM021		ZFMNE3137	5.4E-09	7	08 1.5E-	3	TD
-141	-149	205	258	RFM021			2.2E-08	22	08 4.4E-	9	TD
-149	-153	258	283	RFM021		ZFMWNW3267	4.1E-08	11	08 5.8E-	4	TD
-153	-154	283	294	RFM021			5.7E-09	5	09 1.2E-	2	TD
-154 -156	-156 -156	294 304	304 307	RFM021 RFM021		PDZ5 (S-NW)	1.4E-08	9	08	2	TD

Table 4-20. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR106. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL f is the sum of all overlapping PFL transmissivities (PFL f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣΤ (m²/s)	n2	Data type
KF	R106										
1.24	-279	0	300								
1.24	-7	0	9	RFM021							
-7	-62	9	15	RFM021			-	_	-	-	_
-13	-18	15	20	RFM021		PDZ1 (S-NNE)	4.9E-07	1	5.0E-07	1	TD
-18	-33	20	37	RFM021			6.4E-08	1	8.2E-08	1	TD
-33	-48	37	52	RFM021		PDZ2	2.9E-06	5	3.4E-06	2	TD
-48	-62	52	67	RFM021			1.9E-06	6	2.2E-06	3	TD
-62	-67	67	73	RFM021		ZFMWNW3262	2.0E-05	4	1.7E-05	1	TD
-67	-78	73	85	RFM021			4.7E-06	3	1.4E-05	1	TD
-78	-80	85	86	RFM021		PDZ4 (G)	1.5E-05	2	1.8E-05	1	TD
-80	-93	86	101	RFM021			3.0E-07	5	3.2E-07	2	TD
-93	-94	101	101	RFM021		PFZ5 (G)	1.5E-05	1	1.7E-05	1	TD
-94	-142	101	153	RFM021			5.2E-06	17	5.8E-06	9	TD
-142	-146	153	157	RFM021		PDZ6 (G)	2.4E-05	3	2.5E-05	1	TD
-146	-238	157	256	RFM021			3.0E-06	19	4.2E-06	13	TD
-238	-248	256	266	RFM021		ZFMNNW1034	7.6E-06	1	1.1E-05	1	TD
-248	-280	266	300	RFM021							

Table 4-21. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR27. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively. D. . . l. _____ ___ - - -

2up (m)	210w (m)	Secup(m)	Seciow(m)	Domain (RFMxxx)	domain (FFMxxx)	zone (ZFM / PDZ)	21 PFL_1 (m²/s)	nı	(m²/s)	nz	type	
KF	R27											
3.06	-497	0	502									
3.06	-9	5	12	RFM021			-	-	-	-	-	
-9	-105	12	108	RFM021					9.1E-06	16	TD	
-105	-117	108	120	RFM021		PDZ1 (M-EW)			2.3E-08	2	TD	
-117	-319	120	323	RFM021			7.2E-06	20	6.8E-06	14	TD	
-319	-464	323	469	RFM021		_ZFMWNW0835_	3.2E-06	44	6.1E-06	17	TD	
-464	-496	469	502	RFM021			1.1E-07	1	2.1E-07	1	TD	

Table 4-22. Hydraulic data compilation per interpreted geological domain in core-drilled boreholes KFR117-121. In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. ΣT PFL_f is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KFR ²	117			((11111000)	((
2.44	-172	0	176								
-3	-6	6	9	RFM021			-	-	-	-	-
-6	-60	9	63	RFM021					1.1E-04	9	5m TM
-60	-171	63	176	RFM021					2.3E-06	19	5m TM
KFR ²	118										
3.16	-171	0	175								
-6	-9	9	12	RFM021			-	-	-	-	-
-9	-19	12	23	RFM021					6.5E-06	1	5m TM
-19	-33	23	36	RFM021		ZFMENE3115			1.3E-06	3	5m TM
-33	-143	36	147	RFM021					1.2E-05	18	5m TM
-143	-171	147	175	RFM021		PDZ2 (S-NW)			5.1E-09	5	5m TM
KFR ²	119										
3.10		0	176								
-4	-6	7	9	RFM021			-	-	-	-	-
-6	-90	9	94	RFM021			3.9E-05	29	2.3E-05	14	TD
-90	-102	94	107	RFM021		PDZ1	8.0E-08	2	9.5E-08	1	TD
-102	-159	107	164	RFM021			8.5E-07	4	9.9E-07	4	TD
-159	-170	164	176	RFM021		PDZ2			1.3E-09	2	5m TM
KFR'	120	-							_		
3.19	-171	0	177								
-6	-9	9	12	RFM021			-	-	-	-	-
-9	-57	12	61	RFM021					2.0E-05	8	5m TM
-57	-70	61	74	RFM021		PDZ1 (M-NE)			3.7E-07	2	5m TM
-70	-124	74	130	RFM021					6.4E-07	10	5m TM
-124	-167	130	173	RFM021		PDZ2 (S-NS)			7.8E-08	8	5m TM
-167	-1/1	173	1//	RFM021							
KFR'	121	•									
2.87	-282	0	363	DEMOQ							
-5	-29	9	41	RFM021			-	-	-	-	-
-29	-67	41	89	RFM021			6.3E-06	32	7.5E-06	10	TD
-67	-76	89	100	RFM021		ZFMWNW3262	2.4E-07	10	4.6E-07	3	TD
-76	-100	100	131	RFM021			1.9E-07	10	5.8E-08	4	TD
-100	-115	131	149	RFM021		PDZ2 (S-NNE)	3.2E-08	1	4.2E-08	1	TD
-115	-174	149	225	RFM021			4.0E-07	29	4.5E-07	14	TD
-174	-181	225	233	RFM021		ZFMWNW0835	5.2E-08	5	1.6E-08	1	TD
-181	-225	233	290	RFM021			3.8E-08	12	9.9E-08	6	TD
-225	-236	290	303	RFM021		ZFMWNW8042	6.4E-08	3	9.6E-09	2	TD
-236	-282	303	363	RFM021			7.5E-06	5	7.5E-06	4	TD

4.14 Core-drilled boreholes with impeller flow logging data

Figure 4-31. Map of core-drilled boreholes with impeller flow logging data presented in Table 4-23. A potential SFK layout (SYHA 2.0) is shown for reference.

Table 4-23. Summary of geological data cross referenced with impeller flow logging data (TFa) gathered through hydraulic testing in core-drilled boreholes KFM13, KFM17, KFM18 and KFM19 (Jönsson 2013) In the table, for each borehole, the first row highlighted in grey represents the entire length of the borehole from the top of the casing to the bottom of the borehole. Dashed red line indicates casing depth. Zup is the upper elevation of the section, Zlow is the lower elevation of the section. Secup and Seclow refer to the depth to top and bottom of the section along the borehole. $\Sigma T PFL_f$ is the sum of all overlapping PFL transmissivities (PFL_f) and ΣT is the sum of sequential test section transmissivities between Zup and Zlow, n1 and n2 is the number of PFL-f anomalies or flowing sections, respectively.

Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock Domain (RFMxxx)	Fracture domain (FFMxxx)	Deformatio n zone (ZFM / PDZ)	ΣT PFL_f (m²/s)	n1	ΣT (m²/s)	n2	Data type
KF	M13										
2.98	-127	0	150								
-3	-4	7	8				-	-	-	-	-
									1.1E-		
-4	-21	8	28		FFM02U				04	2	Tfa
-21	-29	28	37		FFM02L						
						05A.					
						ZFMNNW12					
-29	-40	37	49			05B					
-40	-127	49	150		FFM01						
	-56	٥	60								
-	-2	4	6		FFM02U		-		-	-	
-2	-20	6	24		FFM02U						
2	20	0	24		111020				1.6E-		
-20	-32	24	36		FFM02L				06	2	TFa
-32	-56	36	60		FFM01						
KF	M18	•	<u> </u>								
3.65	E	0	60		FEMOOLI						
-4	-5	0	9		FFIVIUZU		-	-	- 20E-	-	-
-5	-21	9	25		FFM02U				06	4	TFa
									3.6E-		
-21	-22	25	26		FFM02L				07 1 7 =-	1	TFa
-22	-56	26	60		FFM01				07	2	TFa
KF	M19										
2.96	-90	0	102								
-2	-4	5	7		FFM02U		-	-	-	-	-
-3	-90	7	102			ZFMENE10 61A			1.2E- 04	5	TFa

5 Compilation of transmissivity data acquired from single-hole hydraulic tests in percussion-drilled boreholes

5.1 Overview

Figure 5-1 shows locations of percussion-drilled boreholes at Forsmark, colour coded based on the total transmissivity (T) of each borehole. Table 5-1 compiles T data acquired with the HTHB tests (combined pumping and impeller flow logging) method in 57 percussion-drilled boreholes (47 HFM boreholes and 10 HFR boreholes). For each borehole the first row in Table 5-1, highlighted in grey, shows the top and bottom elevations (Zup/Z_low) and borehole lengths (SECUP/SECLOW); Zup and SECUP start at the borehole casing. Each such row is followed by rows that summarise rock domains (RFMxxx), deformation zones (ZFMxxxx) and fracture domains (FFMxxx) associated with T data from single-hole hydraulic tests.

The geo-structural interpretations in terms of fracture domains (FFMxxx) and deformation zones (ZFMxxx) uses the colour legends of Table 4-1 and Table 4-2, respectively. Possible deformation zones (DZ1, DZ2 and DZ3) are also assigned to the "Deformation zone (ZFMxxx)" column.

Figure 5-1. Locations of percussion-drilled boreholes in Forsmark. The grey dots are boreholes with total $T \le 1 \cdot 10^{-6}$ m^2/s , or boreholes without T data. Blue dots are boreholes with $1 \cdot 10^{-6} m^2/s < \text{total } T < 1 \cdot 10^{-5} m^2/s$, green dots are boreholes with $1 \cdot 10^{-5} m^2/s < \text{total } T < 1 \cdot 10^{-4} m^2/s$, and red dots are boreholes with total $T \ge 1 \cdot 10^{-4} m^2/s$.

BOREHOLE ID	Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFMxxxx)	ΣΤ ΗΤΗΒ ¹ (m²/s)
HFM01	2	-195	0	200				-
HFM01	-28	-32	31	35	RFM029R	FFM02		Low yield
HFM01	-32	-41	35	44	RFM029R		ZFMA2	4.5E-05
HFM01	-41	-192	44	197	RFM029R	FFM02		1.9E-05
HFM02	3	-97	0	100				-
HFM02	-22	-39	25	42	RFM029R	FFM02		Low yield
HFM02	-39	-44	42	47	RFM029R		ZFMA2	5.9E-04
HFM02	-44	-96	47	99	RFM029R	FFM02	-	Low vield
HFM03	3	-23	0	26				
HEM03	3	-10	0	13	RFM029R			l ow vield
	-10	-20*	13	23	REM029R	FEM0211		4 2E-04
	-20	-23	23	26		EEM020		4.2 L -04
	4	-214	0	222	KFW029K			Low yield
	-8	-57	12	61	DEMO20D	EEM02		-
	-57	-60	61	64	RFINIU29R	FFINIUS	7514000	
HFM04	-60	-177	64	183	RFM029R		ZFM866	7.9E-05
HFM04	177	101	192	197	RFM029R	FFM03		Low yield
HFM04	-177	- 10 1	103	107	RFM029R		ZFMA3	Low yield
HFM04	-181	-214	187	222	RFM029R	FFM03		Low yield
HFM05	8	-190^	U 12	153				-
	-4 -144	-144	153	154	RFM029R	FFM03	7514000	
	-145	-189	154	199		EEM02	ZF101800	4.0E-04
HEMOS	7	-103*	0	111	KFINI029K	FFIVIUS		Low yield
HEM06	-4	-54	11	61	RFM029R	EEM03		1 0F-04
HFM06	-54	-64	61	71	RFM029R		ZFMA5	2.3E-04
HFM06	-64	-100	71	108	RFM029R	FFM03		Low yield
HFM07	6	-116*	0	123				Low yield
HFM07	-5	-48	11	54	RFM029R	FFM03		Low yield
HFM07	-48	-60	54	66	RFM029R		ZFMA6	Low yield
HFM07	-60	-102	66	109	RFM029R	FFM03		Low yield
HFM08	7	-135*	0	144				-
HFM08	-10	-128	17	136	RFM029R	FFM03		5.7E-05
HFM08	-128	-133	136	141	RFM029R		ZFMA5	1.2E-03
HFM08	-133	-134	141	142	RFM029R	FFM03		Low yield
HFM09	5	-41*	47	50				-
HFM09	-11 _11	-11 _21	17	28	RFM018	FFM04		Low yield
HFM09	-11	-21	10	20	RFM018		ZFMENE0060A	3.3E-04

Table 5-1. Compilation of HTHB T data gathered in HFM01–47, HFR01–06, HFR101, HFR102, HFR105 and HFR106.²

²Low yield means that the borehole was too dry to be tested. A zero transmissivity means that the impeller logging could not detect any flow above the measurement limit. *Zup or Zlow values are predicted from nearest points along the borehole. **Sections are taken from the model version 2.2 (Follin et. al. 2007b). *** No SHI and/or no HTHB data are available.

BOREHOLE ID	Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFMxxxx)	ΣT HTHB ¹ (m²/s)
HFM09	-21	-41	28	50	RFM018	FFM04		4.7E-05
HFM10	5	-134	0	150				-
HFM10	-6	-55	12	65	RFM018	FFM04		
HFM10	-55	-59	65	69	RFM018		DZ2	
HFM10	-59	-96	69	108	RFM018	FFM04		
HFM10	-96	-104	108	117	RFM018		DZ1	3.1E-04
HFM10	-104	-133	117	149	RFM018	FFM04		
HFM11	8	-118	0	182				-
HFM11	-1	-53	12	83	RFM026	FFM04		2.3E-05
HFM11	-53	-104	83	160	RFM026		ZFMNW0003	2.8E-05
HFM11	-104	-118^	160	182	RFM026	FFM04		Low yield
HFM12	1	-137	15	210				-
HFM12**	-4 60	-00	15	91 170	RFM026	FFM04		6.4E-6
HFM12**	-00	-110	91 170	200	RFM026		ZFMNW0003	7.9E-6
HFM12**	-110	-130 -147	0	176	RFM026	FFM04		Low yield
HFM13 HFM13	-7	-135	15	162	RFM029R	FFM03		- 2.1E-05
HFM13	-135 4	-146* - 127	162 0	175 151	RFM029R		ZFMENE0401A	2.9E-04
HFM14	1*	10*	2	25				-
HFM14	1	-10	3	25	RFM029R	FFM02U		2.5E-04
HFM14	-18	-50	25	08	RFM029R	FFM02L		1.8E-04
HFM14	-56	-63	68	76	RFM029R		ZFMA2	1.7E-04
HFM14	-63	-77	76	92	RFM029R	FFM02L	I	_ow yield
HFM14	-77	-87	92	104	RFM029R		ZFMA2	2.6E-04
HFM14	-87	-126	104	149	RFM029R	FFM02L		0.0
HFM15	4	-65	0	100				-
HFM15	1	-15*	4	27	RFM029R	FFM02U		6.9E-05
HFM15	-15*	-56	27	86	RFM029R	FFM02L		1.5E-04
HFM15	-56	-63	86	96	RFM029R		ZFMA2	1.0E-04
HFM15	-63	-65	96	99	RFM029R	FFM02L		ow vield
HFM16	3	-128	0	133				-
HEM16	-9	-67	12	71	REM029R		ZEMA8	5.3E-04
HEM16	-67	-126	71	130		EEM02		
	4	-204	0	211	11110231	11102		
	-4	-202	8	209	DEMOCOD	FEMOR		-
	5	-143	0	181	RFM029R	FFIMU3		3.9E-05
HFM18	-2	-4	9	11				-
HFM18	_1	-20	11	30	RFM017		DZ1 I	_ow yield
HFM18	-+	-20	20	26	RFM017	FFM03	l	_ow yield
HFM18	-20	-25	30	30	RFM029R	FFM03	I	_ow yield
HFM18	-25	-36	36	49	RFM029R		ZFMA4	1.6E-04
HFM18	-36	-94	49 110	119	RFM029R	FFM03	ا <mark>ZFMNE0065</mark> ,	_ow yield
HFM18	-94	-117	119	148	RFM029R		ZFMA7 I	_ow yield
HFM18	-117	-142	148	180	RFM029R	FFM03	L I	_ow yield

Table 5-1. Cont'd.										
BOREHOLE ID	Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZEMxxxx)	ΣT HTHB (m²/s)		
HEM19	4	-144	0	185				_		
HFM19	-6	-94	11	121	RFM029R	FFM03		4.0E-05		
	-94	-115	121	148			751442	1 65 05		
	-115	-131	148	168		FELIOO	ZEWIAZ	1.02-03		
HFM19**	101	144	100	105	RFM029R	FFM02		6.2E-06		
HFM19	-131	-144	108	185	RFM029R		ZFMA2	2.8E-04		
HFM20	3	-297	0	301				-		
HFM20	-9	-24*	12	27	RFM029R	FFM02U		5.7E-05		
HFM20	-24*	-133*	27	136	RFM029R	FFM02L		1.2E-05		
HFM20	-133	-297	136	301	RFM029R	FFM01		Low yield		
HFM21	4	-153	0	202				-		
HFM21	-6	-20*	12	28	RFM029R	FFM02U		1.0E-04		
HFM21	-20*	-74	28	94	RFM029R	FFM02L		7.0E-05		
HFM21	-74	-80	94	102	RFM029R		ZFM1203	3.0E-04		
HFM21	-80	-124	102	160	RFM029R	FFM02L				
HFM21	-124	-136	160	177	RFM029R		DZ2			
HFM21	-136	-153	102	202	RFM029R	FFM02L		2.1E-04		
HFM22	2	-155	0	222				-		
HFM22	-9	-86	12	110	RFM029R	FFM01		1.6E-04		
HFM22	-86	-99	110	129	RFM029R		ZFMENE2120	Low yield		
HFM22	-99	-152	129	216	RFM029R	FFM01		Low yield		
HFM23	4	-73	0	212				-		
HFM23	-13	-17	21	26	RFM029R	FFM02		Low yield		
HFM23	-17	-30	26	42	RFM029R		ZFMENE1208A	4.3E-06		
HFM23	-30	-55	42	82	RFM029R	FFM02		Low yield		
HFM23	-55	-62	82	95	RFM029R		ZFMNNW0100	Low yield		
HFM23	-62	-75	95	146	RFM029R	FFM02	_	Low yield		
HFM23	-75	-76	146	166	RFM044	FFM05		Low yield		
HFM23	-76	-76	166	169	RFM044		DZ3	Low yield		
HFM23	-76	-76	169	181	RFM044	FFM05		Low yield		
HFM24	4	-129	0	151				-		
HFM24	-12	-23	18	32	RFM029R		ZFMWNW0123	3.0E-05		
HFM24**	-23	-32	32	42	RFM029R	FFM04		Low yield		
HFM24	-32	-50	42	63	RFM029R		ZFMWNW0123	8.0E-05		
HFM24**	-50	-54	63	67	RFM029R	FFM04		Low yield		
HFM24	-54	-85	67	103	RFM029R		ZFMWNW0123	Low yield		
HFM24	-85	-129	103	151	RFM029R	FFM03		Low yield		
HFM25	4	-134*	0	188				-		
HFM25	-4	-26	9	36	RFM029R		DZ1	Low yield		
HFM25	-26	-31	36	42	RFM029R	FFM03		Low yield		
HFM25	-31	-41	42	54	RFM029R		DZ2			
HFM25	-41	-61	54	80	RFM029R	FFM03				
HFM25	-61	-70	80	92	RFM029R		DZ3	Low yield		
HFM25	-70	-105	92	143	RFM029R	FFM03		Low yield		
HFM25	-105	-113	143	155	RFM029R		ZFMENE0062A	Low yield		
HFM25	-113	-122	155	169	RFM029R	FFM03		Low yield		
HFM25	-122	-134	169	187	RFM029R		ZFMENE0062A	Low yield		
HFM26	3	-144	0	203				-		
HFM26	-1	-33	12	46	RFM029R		ZFMA4	Low yield		

Table 5-1. Cont'd.										
BOREHOLE ID	Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFMxxxx)	ΣT HTHB (m²/s)		
HFM26**	-33	-44	46	60	RFM029R	FFM03	, <i>, , , , , , , , , , , , , , , , , , </i>	Low yield		
HFM26	-44	-70	60	95	RFM029R		ZFMA4	Low yield		
HFM26**	-70	-116	95	161	RFM029R	FFM03		Low yield		
HFM26	-116	-144	161	203	RFM029R		ZFMNE0065	Low yield		
HFM27	3	-115*	0	128				-		
HFM27	-9	-21	12	26	RFM029R	FFM02U		1.3E-05		
HFM27	-21	-25	26	30	RFM029R		ZFMA2	2.3E-05		
HFM27	-25	-39	30	45	RFM029R	FFM02L		_		
HFM27	-39	-55	45	63	RFM029R		DZ2	4.0E-05		
HFM27	-55	-105	63	117	RFM029R	FFM02L				
HFM27	-105	-111	117	123	RFM029R		ZFMNNW0404	6.7E-06		
HFM27	-111	-115	123	127	RFM029R	FFM02L		Low vield		
HFM28	4	-144	0	151				_		
HFM28	-8	-60	12	65	RFM029R		ZFMENE1208A	Low vield		
HFM28	-60	-141	65	148	RFM029R	FFM02		Low vield		
HFM29	5	-178	0	200						
HFM29**	-3	-12	9	19	REM029R	FFM03		l ow vield		
HEM29	-12	-17	19	25	REM029R		ZEMW/NW/0123	Low yield		
HEM20**	-17	-49	25	62	REM020R	EEM03	21 10000000			
	-49	-67	62	81			ZEM\W/NW/0123			
	-67	-127	81	146		EEM02	211000123			
	-127	-131	146	150		FFINIUS				
	-131	-178	150	200						
	3	-170	0	201	KFIM029K	FFINIU3		Low yield		
HFM30	-12	-63	18	79	DEMO40	551404		-		
	-63	-170	79	201		FFM04		0.9E-00		
HFM30	6	-177*	0	201	RFM018		ZEMINVV0017	1.3E-04		
HFM31	-2	-176	9	200	DEMOSE			-		
HFM31**	-2	-198*	0	200	RFM025	FFM04		Low yield		
HFM32	-7	-130	8	132				-		
HFM32	-1	109	6	203	RFM029R			9.4E-04		
HFM32	-5	-190	0	203	RFM029R	FFM03		9.5E-04		
HFM33	3 0*	-110	10	140				-		
HFM33	-0	-110	12	140	RFM032	FFM05		4.7E-04		
HFM34	ა	-101	U 10	201				-		
HFM34	-0	-29	12	37	RFM021	FFM05		8.9E-04		
HFM34	-29	-110*	37	133	RFM021		ZFMWNW0001	2.1E-04		
HFM34	-110*	-146	133	180	RFM021	FFM05		Low yield		
HFM34	-146	-149*	180	184	RFM021		ZFMWNW0001, ZFMNW0002	Low vield		
HFM34	-149*	-151,79*	184	188	RFM021	FFM05		Low vield		
HFM34	-152*	-155	188	192	RFM021		ZFMWNW0001, ZFMNW0002	Low yield		
HFM35 2 -150 0 201	-									
--	--									
BOREHOLE Zup Zlow Secup Seclow Roc	k Fracture Deformation ΣT									
(m) (m) (m) (m) doma (RFMx)	xx) (FFMxxx) (ZFMxxxx) (m ² /s)									
HFM35 -8 -18 12 24 RFM0	21 FFM05 Low yield									
-18 -26* 24 33 RFM0	2FMWNW0001, 21 ZFMNW0002 Low yield									
HFM35 -26* -37* 33 47 RFM0	21 FFM05 Low yield									
HFM35 -37* -41 47 53 RFM0	2FMWNW0001, 21 ZFMNW0002 Low yield									
HFM35 -41 -81 53 104 RFM0	21 FFM05 Low yield									
HFM35 -81 -150 104 200 RFM0	21 ZFMWNW1035 1.2E-04									
HFM35 -150 -150 200 201 RFM0	21 FFM05 Low yield									
HFM36 9 -110 0 153	-									
HFM36 -2* -26 12 42 RFM0	30 2.4E-05									
HFM36 -26 -106 42 147 RFM0	30 DZ1									
HFM36 -106 -110* 147 152 RFM0	30									
HFM37 12 -159 0 192	<u>-</u>									
HFM37 -2 -154 16 186	9.4E-06									
HFM37 4* -1* 9 15 RFM0	30 -									
HFM37 -1* -8* 15 23 _{RFM0}	30 ZFMWNW0004 -									
HFM37 -8* -52* 23 72 RFM0	30 -									
HFM37 -52* -80* 72 104 RFM0	30 ZFMWNW0004 -									
HFM37 -80* -103* 104 130 RFM0	-									
HFM37 -103* -159* 130 191 RFM0	30 ZEMWNW0004 -									
HFM38 2 -141 0 201										
5 20* 0 20	FFM02U-									
-5 -26 9 56 HFM38 RFM02	29R FFM06 8.2E-05 FFM02L-									
-28* -40 38 54 HEM38 BEM02	above 29R FFM06 Low vield									
HEM38 -40 -108 54 149 REM02	29R FEM06 Low yield									
НЕМ38 -108 -118 149 164 ВЕМО2	29R ZEMNNE2312 Low yield									
HEM38 -118 -137 164 195 REM02	29R FEM06 4 8F-05									
HFM39 4 -145 0 151										
HFM39*** -2 -145 6 151 RFM02	29R 3.3E-07									
HFM40 3 -98 0 102										
HFM40*** -4 -98 6 102 RFM02	29R 5.7E-05									
HFM41*** 4 -97 0 102										
HFM42 4 -191 0 195										
HEM42 -2* -84* 6 89 REM02	29R FFM01 Low yield									
HEM42 -84* -92* 89 96 REM02	ZFM1203 1 5E-04									
HEM42 -92* -191 96 195 REM02	29R FFM01 5.3E-04									
HFM43 4 -195 0 200										
HFM43 -2* -195* 6 200 RFM00	29R EEM01 87E-04									
HFM44 3 -196 0 200										
HFM44 -6* -158* 9 162 RFM0										
НFM44 -6* -158* 9 162 _{RFM0} НFM44 -158 -164 162 168 _{RFM0}	43 FFM05 43 DZ1 4 2F-04									

Table 5-1. Cont'd.

BOREHOLE ID	Zup (m)	Zlow (m)	Secup (m)	Seclow (m)	Rock domain (RFMxxx)	Fracture domain (FFMxxx)	Deformation zone (ZFMxxxx)	ΣT HTHB (m²/s)
HFM45	4	-196	0	200	· · ·	<i>i</i>		-
HFM45	-2*	-162*	6	166	RFM021	FFM05		2.4E-05
HFM45	-162*	-196*	166	200	RFM043	FFM05		4.6E-06
HFM46	2	-197	0	200				
HFM46	-4*	-79	6	81	RFM021	FFM05		6.0E-05
HFM46	-79	-85	81	87	RFM021		DZ1	
HFM46	-85	-135	87	137	RFM021	FFM05		2.0E-05
HFM46	-135	-141	137	144	RFM021		DZ2	
HFM46	-141	-161	144	164	RFM021	FFM05		
HFM46	-161	-183	164	187	RFM021		DZ3	
HFM46	-183	-197	187	200	RFM021	FFM05		9.0E-06
HFM47***	4	-173	0	200				-
HFM47	-9	-173	12	200	RFM043	FFM05		-
HFR01***	1	-12	0	13	RFM021	FFM05		-
HFR01	-	-12	2	13	RFM021	FFM05		6.1E-05
HFR02***	1	-11	0	12	RFM021	FFM05		-
HFR02	-	-11	7	12	RFM021	FFM05		5.0E-06
HFR03***	1	-8	0	8	RFM021	FFM05		
HFR03	-	-8	5	8	RFM021	FFM05		1.0E-06
HFR04***	0	-7	0	7	RFM021	FFM05		-
HFR04	-	-	4	7	RFM021	FFM05		6.6E-05
HFR05***	0	-7	0	7	RFM021	FFM05		-
HFR05	-	-7	4	7	RFM021	FFM05		5.7E-05
HFR06***	1	-10	0	11	RFM021	FFM05		-
HFR06	-	-10	6	11	RFM021	FFM05		7.8E-06
HFR101	3	-187	0	209				-
HFR101	-5	-51*	8	58	RFM021		ZFMNE0870	Low yield
HFR101	-51*	-90	58	101	RFM021			2.6E-06
HFR101	-90	-103	101	115	RFM021		DZ2	
HFR101	-103	-170	115	190	RFM021			
HFR101	-170	-180	190	202	RFM021		ZFMNE3118	2.5E-07
HFR101	-180	-186	202	208	RFM021			0.0
HFR102	3	-44	0	55				-
HFR102	-5	-44	9	55	RFM021			2.8E-06
HFR105	3	-178	0	201				-
HFR105	-15	-24*	21	31	RFM021		ZFMWNW0001	Low yield
HFR105	-24*	-75*	31	88	RFM021	FFM05		5.7E-06
HFR105	-75*	-79	88	92	RFM021		ZFMWNW0001	6.0E-06
HFR105	-79	-104	92	119	RFM021	FFM05		Low vield
HFR105	-104	-129	119	147	RFM021		ZFMWNW1035	, 1.1E-05
HFR105	-129	-177	147	200	RFM021	FFM05		Low vield
HFR106	1	-153*	0	190				-
HFR106	-6	-30	9	38	RFM021			3.1E-05
HFR106	-30	-32	38	40	RFM021		DZ1	
HFR106	-32	-127	40	158	RFM021			
HFR106	-127	-130*	158	162	RFM021		ZFMNNW 1034	Low vield
HFR106	-130*	-142	162	177	RFM021			Low vield
HFR106	-142	-146	177	182	RFM021		ZEMNNW 1034	2 1F-05
HFR106	-146	-153	182	190	RFM021			Low vield
								2011 91010

Table 5-1. Cont'd.

5.2 Summary of HTHB transmissivity data

Figure 5-2 (HFM boreholes) and Figure 5-3 (HFR boreholes) are histograms that shows borehole lengths for the percussion-drilled boreholes in Forsmark. In the Figure 5-4 to Figure 5-27, data of HTHB flow anomalies and transmissivity, pumping test data, and injection test data are shown together with total borehole length, regolith length and casing length. The blue line in each plot represents the borehole length. Its assigned position on the x-axis, "1E-6", is arbitrarily chosen. Each transmissivity value is presented with the length along the borehole of the measured section. Figure 5-28 shows all the "low yield" boreholes without HTHB flow anomalies, or in which total T < 10^{-6} m²/s where the 10^{-6} m²/s is an approximate lower measurement limit for the method.

Figure 5-2. Borehole lengths of *HFM* percussion-drilled boreholes in Forsmark (for visibility, only odd borehole ID's are shown).

Figure 5-3. Borehole lengths of the HFR percussion-drilled boreholes in Forsmark.

Figure 5-4. HTHB T acquired in HFM01 (left) and HFM02 (right). Shaded areas indicate modelled deformation zone ZFMA2 (35–44 m in HFM01 and 42–47 m in HFM02).

Figure 5-5. HTHB T acquired in HFM03 (left) and HFM04 (right). Shaded areas indicate modelled deformation zones ZFM866 (61–64 m) and ZFMA3 (183–187 m).

Figure 5-6. HTHB T acquired in HFM05 (left) and HFM06 (right). Shaded areas indicate modelled deformation zones ZFM866 (153–154 m) and ZFMA5 (61–71 m).

Figure 5-7. HTHB T acquired in HFM08 (left) and HFM09 (right). Shaded areas indicate modelled deformation zones ZFMA5 (136–141 m) and ZFMENE0060A (18–28 m).

Figure 5-8. HTHB T acquired in HFM10 (left) and HFM11 (right). Shaded areas indicate possible deformation zones DZ2 (65–69 m), DZ1 (108–117 m), and modelled deformation zone ZFMNW0003 (83–160 m).

Figure 5-9. HTHB T acquired in HFM12 (left) and HFM13 (right). Shaded areas indicate modelled deformation zones ZFMNW0003 (91–179 m) and ZFMENE0401A (162–175 m).

Figure 5-10. HTHB T acquired in HFM14 (left) and HFM15 (right). Shaded areas indicate modelled deformation zone ZFMA2 (68–76 m and 92–104 m in HFM14 and 86–96 m in HFM15).

Figure 5-11. HTHB T acquired in HFM16 (left) and HFM17 (right). Shaded area indicates modelled deformation zone ZFMA8 (12–71 m).

Figure 5-12. HTHB T acquired in HFM18 (left) and HFM19 (right). Shaded areas indicate possible deformation zone DZ1 (9–11 m), and modelled deformation zones ZFMA4 (36–49 m), ZFMNE0065 and ZFMA7 (119-148 m) in HFM18 and ZFMA2 (121-148 m and 168-185 m) in HFM19.

Figure 5-13. HTHB T acquired in HFM20 (left) and HFM21 (right). Shaded areas indicate modelled deformation zone ZFMENE2120 (110–129 m) and possible deformation zone DZ2 (160–177 m).

Figure 5-14. HTHB T acquired in HFM22 (left) and HFM23 (right). Shaded areas indicate modelled deformation zones and possible deformation zones; ZFM2120 (110-129 m) in HFM22, and ZFMENE1208A (26-42 m), ZFMNNW0100 (82-95 m) and DZ3 (166-169 m) in HFM23.

Figure 5-15. HTHB T acquired in HFM24 (left) and HFM25 (right). Shaded areas indicate modelled deformation zones ZFMWNW0123 (18–32 m, 42–63 and 67–103 m), possible deformation zones (DZ1(9–36 m), DZ2(42–54 m) and DZ3(80–92 m)) and ZFMENE0062A (143–155 m and 169–187 m).

Figure 5-16. HTHB T acquired in HFM26 (left) and HFM27 (right). Shaded areas indicate modelled deformation zones and possible deformation zones, ZFMA4 (12-46 m and 60-95 m) and ZFMNE0065 (161-203). ZFMA2 (26-30 m), DZ2 (45-63 m) and ZFMNNW0404 (117-123 m).

Figure 5-17. HTHB T acquired in HFM28 (left) and HFM29 (right). Shaded areas indicate modelled deformation zones ZFMENE1208A (12–65 m) and ZFMWNW0123 (19–25 m, 62–81 m, and 146–150 m).

Figure 5-18. HTHB T acquired in HFM30 (left) and HFM32 (right). Shaded area indicates modelled deformation zone ZFMNW0017 (79–201 m).

Figure 5-19. HTHB T acquired in HFM33 (left) and HFM34 (right). Shaded areas indicate modelled deformation zones ZFMWNW0001(37–133 m and 180–184 m) , ZFMNW0002 (188–192 m).

Figure 5-20. HTHB T acquired in HFM35 (left) and HFM36 (right). Shaded areas indicate modelled deformation zones ZFMWNW0001(24–33 m), ZFMNW0002(47–53 m), ZFMWNW1035(104–200 m) in HFM35 and possible deformation zone DZ1(42–177 m) in HFM36.

Figure 5-21. HTHB T acquired in HFM37 (left) and HFM38 (right). Shaded areas indicate modelled deformation ZFMWNW0004 (15–23 m, 72–104 m and 130–191 m) in HFM37 and ZFMNNE2312(149–164 m) in HFM38.

Figure 5-22. HTHB T acquired in HFM39 (left) and HFM40 (right).

Figure 5-23. HTHB T acquired in HFM42 (left) and HFM43 (right). Shaded areas indicate modelled deformation zone ZFM1203 (88–96 m).

Figure 5-24. HTHB T acquired in HFM44 (left) and HFM45 (right). Shaded area indicates possible deformation zone DZ1 (162–168 m).

Figure 5-25. HTHB T acquired in HFM46 (left) and HFR101 (right). Shaded areas indicate possible deformation zones (DZ1(81–87 m), DZ2(137–144 m) & DZ3(164–187 m)) in HFM46 and modelled deformation zones ZFMNE0870(8–58 m), ZFMNE3118(190–202 m) and a possible deformation zone DZ2(101–115 m) in the HFR101.

Figure 5-26. HTHB T acquired in HFR102 (left) and HFR105 (right). Shaded areas indicate modelled deformation zones ZFMWNW0001(21–31 m and 88–92 m) and ZFMWNW1035(119–147 m).

Figure 5-27. HTHB T acquired in HFR106. Shaded areas indicate modelled deformation zone ZFMNNW1034(158–162 m and 177–182 m) and possible deformation zone DZ1(38–40 m).

Figure 5-28. Total borehole lengths of percussion-drilled boreholes with low yield ($T < 1 \cdot 10^{-6} \text{ m}^2/\text{s}$).

Figure 5-29. All percussion boreholes grouped by total T. Grey bars are boreholes with $T \le 1 \cdot 10^{-6} \text{ m}^2/\text{s}$ or no T data, blue bars are boreholes with $1 \cdot 10^{-6} \text{ m}^2/\text{s} < T < 1 \cdot 10^{-5} \text{ m}^2/\text{s}$, green bars are boreholes with $1 \cdot 10^{-5} \text{ m}^2/\text{s} < T < 1 \cdot 10^{-4} \text{ m}^2/\text{s}$, and red bars are boreholes with $T \ge 1 \cdot 10^{-4} \text{ m}^2/\text{s}$.

Transmissivity of percussion-drilled boreholes in different fracture domains

Figure 5-30. Total HTHB T of each percussion-drilled borehole categorized by fracture domain.

Transmissivity of percussion-drilled boreholes for different deformation zone orientations

Figure 5-31. Total HTHB T associated with different deformation-zone orientations (ENE = east-northeast, NE = north-northeast, NNW = north-northwest, NW = northwest, WNW = west-northwest, GD = gently dipping).

6 Compilation of hydraulic properties data – regolith and the regolith/bedrock interface

6.1 Background

This chapter summarises field and laboratory data available at the Forsmark Baseline stage in terms of hydraulic properties of regolith and the regolith/bedrock interface. Johansson (2008) summarises regolith and regolith/bedrock interface hydraulic properties data available for conceptual and quantitative water flow modelling at the SDM-Site stage (Bosson et al. 2008), and which were also used in the water flow modelling of SR-Site (Bosson et al. 2010) and SR-PSU (Werner et al. 2013).

The present summary is intended to provide support to and act as reference for conceptual and quantitative modelling of hydrology and near-surface hydrogeology, and ultimately for the interdisciplinary site understanding at the Forsmark Baseline stage. The geometrical framework for interpretation of the compiled hydraulic properties data is presented in Section 2.1 (Figure 2-1) and Section 2.2.3.

Specifically, the chapter presents hydraulic properties data in terms of horizontal and vertical saturated hydraulic conductivity of regolith and the regolith/bedrock interface, and total porosity, specific yield, and field capacity of regolith. These data are available from field (single hole (slug and permeameter) tests and pumping (interference) tests), and laboratory investigations (CRS and permeameter tests and particle size distribution (PSD) analyses). These methods and associated spatial support scales are described in Section 3.2.2.

6.2 Field tests

6.2.1 Single hole (slug) tests: Groundwater wells (HY670)

This section summarizes results of single hole (slug) tests performed in groundwater wells installed with their screens in regolith or across the regolith/bedrock interface in the Forsmark area. Slug test results available for the Baseline Forsmark stage are reported in Werner and Johansson (2003), Werner (2004), Alm et al. (2006), Smith (2017), Werner (2018a, b), Söderqvist and Svensson (2018)3, and Rasul et al. (2023). All available regolith well drawings are presented and stored in SKBdoc (Rasul 2022).

Table 6-1 lists all slug test results available in the Sicada database, whereas Figure 6-1 shows the locations of the tested wells and corresponding evaluated Kh-values plotted as log10 (Kh). It should be noted that different methods are available for slug test evaluation (e.g. Butler 1998), and each slug test involves two test phases (falling and rising head, respectively) that are evaluated separately. Moreover, for some wells slug tests have also been repeated at one or several occasions as part of well function control.

Table 6-1 and Figure 6-1 are based on the value of transmissivity T (here recalculated to Kh) or Kh chosen to be reported to Sicada from the first slug test performed subsequent to well installation. Full ranges of evaluation results, and results from repeated slug tests, are available in the reports mentioned above.

Figure 6-2 summarises the results of the slug tests in wells installed in regolith or at the regolith/bedrock interface, in terms of a cumulative frequency distribution curve for horizontal hydraulic conductivity Kh (m/s). As can be seen in the figure, evaluated Kh values are in the approximate interval 2E-08–6E-03 m/s, i.e. spanning five orders of magnitude, with a cumulative frequency of 50 % at Kh \approx 5E-06 m/s.

³ SKBdoc 1700798 ver. 1.0, Internal document (in Swedish).

Figure 6-1. Locations of slug-tested groundwater wells, displayed on the map of surface distribution of regolith. The *Z* notations in the legend refer to regolith types implemented in the RDM (Regolith Depth and Stratigraphy Model) of Forsmark.

Table 6-1 Summary of Kh (m/s) evaluated from slug tests in groundwater wells	
(cf. Figure 6-1). GSE = ground surface elevation. m b gs = metres below ground su	rface

Well	GSE (m, RH 2000)	Secup (m b gs)	Seclow (m b gs)	Regolith type at well screen depth	K _h (m/s)	Comment
SFM0001	1.14	3.80	4.80	Clayey sandy-silty till	1.41E-04	
SFM0002	1.80	3.80	4.80	Sandy till	7.68E-06	
SFM0003	1.64	8.50	10.50	Sand	8.85E-06	
SFM0004	3.71	4.40	5.40	No data	1.59E-07	
SFM0005	6.18	1.40	2.40	Sandy till	8.07E-05	
SFM0006	5.96	2.70	3.70	Clayey sandy-silty till	2.97E-06	
SFM0008	3.54	4.73	5.73	Clayey sandy till	2.27E-05	
SFM0009	4.52	1.70	2.70	Clayey till/Bedrock	1.50E-05	
SFM0010	13.42	0.70	1.70	Clayey sandy-silty till	9.92E-06	
SFM0011	2.19	2.85	3.85	Sandy till	8.71E-06	
SFM0012	2.12	3.73	4.73	Till	7.66E-07	
SFM0013	1.47	3.78	4.78	Till/Bedrock	4.42E-06	
SFM0014	5.78	0.98	1.98	Till	2.30E-05	
SFM0015	5.25	3.15	4.15	Till	5.95E-07	
SFM0016	5.40	6.53	7.53	Clayey-sandy till	1.01E-04	

Well	GSE (m, RH 2000)	Secup (m b gs)	Seclow (m b gs)	Regolith type at well screen depth	K _h (m/s)	Comment
SFM0017	5.83	2.96	3.96	Clayey sandy-silty till	2.80E-04	-
SFM0018	5.96	3.60	4.60	Clayey-gravelly till	4.56E-06	
SFM0019	3.86	3.40	4.40	Sandy till	3.46E-06	
SFM0020	1.85	2.42	3.42	Clayey-sandy till	9.88E-05	
SFM0021	1.61	1.46	2.46	Clayey-sandy till	3.91E-04	
SFM0022	1.16	3.90	4.40	Sandy till	1.56E-06	
SFM0023	0.34	1.42	2.42	Till	3.01E-07	
SFM0024	-0.15	-1.30	1.91	Till	6.98E-04	
SFM0025	-0.27	4.25	5.25	Till	9.75E-06	
SFM0026	0.88	15.11	16.11	Till	5.74E-06	
SFM0027	1.09	6.16	7.16	Silty till/Bedrock	1.02E-06	
SFM0028	0.40	6.15	7.15	Clavey-sandy till	3.90E-05	
SFM0029	0.40	6.13	7.13	Till	4.36E-05	
SFM0030	1.85	2.88	3.88	Clavev-sandy till	1.86E-06	
SFM0031	1.93	2.61	3.61	Clavey-sandy till	1.09E-06	
SFM0032	0.75	1.94	2.94	Till	7.68E-05	
SFM0033	0.72	1.84	2.84	Till/Bedrock	5.50E-04	
SFM0034	0.85	1.09	2.09	Sandy till	2.69E-06	
SFM0035	0.84	1.17	2.17	Sandy till	5.62E-08	
SFM0036	0.80	1.10	2.10	Sandy till	7.17E-05	
SFM0037	0.78	1 10	2 10	Sandy till	2 39E-05	
SFM0049	3 11	2.90	3.90		9.82E-05	
SEM0057	4 4 5	2.00	4 00	Podrook	1 88F-04	
SEM0058	3.38	2.50	3 50	Nedata	6 67E-04	
SFM0061	4 51	4 95	6.99	Crovel stops/Podrock	1 16F-03	
SEM0062	0.86	1.00	2.30	Gravel, stone/bedrock	1.89E-07	
SEM0063	0.02	1.00	2 25	Sandy till	1 23E-07	
SEM0065	0.02	3 10	3 50	Sandy III	3.23E-07	
SEM0067	2.30	0.47	1 47		2.58E-7	
SEM0068	1.80	0.34	1.34	Till	5 78E-07	
SEM0069	2.06	0.37	1.01	Sandy gravel	4 20E-05	
SEM0070	3.45	1.22	2.22	Clavey sandy-silty till	4.20E 00	
SEM0071	3.48	4.69	5.60	Clavey till/Silty till	8.95E-07	
SEM0072	3.46	9.05 8.08	9.00 9.08	Clavey sandy-silty till	4 29E-07	
SEM0073	0.40	3 10	4 10		9.50E-06	
SEM0075	3.46	7 15	4.10 8.15	Silty till	9.50⊑-00 2.83⊑-07	
SEM0077	1 93	5.73	6.73	Till/Bedrock		
SEM0078	5.02	3.10	0.75 / 10	Till/Bedrock	1 05E-06	
SEM0070	3.78	J.10	5 10	Till/Bedrock	1.35L-00	
SEMOORD	3.70	7.10	8.85			
SEM0091	0.62	1.00	0.0J 2.70		2 20E 06	
SEM0004	0.03	2.30	2.10	riii Tiil	2.30E-00	
SEM0004	0.00	J. 13 1 3E	0.00 1 55	1 III Sand		
SEM0000	0.04	1.00	1.00	Janu Till/Podrock	3.00E-U4	
SEMOOOA	1.19	2.44	4.94		2.4/E-00	
SFM0091	0.80	1.10	UC.1	Sand/Clay/Till	2.25E-04	
SEM0095	11.28	4.00	5.00		6.72E-06	
SFM0104	3.13	3.40	4.40		4.50E-06	
SFM0105	3.10	1.30	2.30	I III/Bearock	2.87E-05	
SFM0106	4.48	2.60	3.60		1.95E-08	
SFM0107	2.68	4.35	5.35	Till/Bedrock	2.30E-06	

Well	GSF	Secur	Seclow	Regolith type at well	K _h (m/e)	Comment
	(m, RH 2000)	(m b gs)	(m b gs)	screen depth	(11/3)	
SFM0108	3.60	4.20	5.20	Till/Bedrock	7.50E-05	
SFM0109	7.59	3.35	4.40	Gravelly clay/Silty clay	4.24E-04	
SFM000110	1.75	1.25	1.75	Stone/Gravel	9.30E-07	
SFM000112	2.19	1.10	1.60	Sandy-silty till	4.44E-07	
SFM000114	2.73	1.30	1.80	Silty sand	5.42E-07	
SFM000116	2.76	1.85	2.35	Silty sand/till	2.64E-08	
SFM000118	1.08	0.65	1.15	Silty-sandy till	8.26E-07	
SFM000122	2.63	6.60	7.10	Till	1.69E-05	
SFM000126	5.60	3.23	3.83	Till	4.62E-06	
SFM000132	3.11	1.12	2.02	Sandy-silty gravel/Sandy- silty gravelly till	No data in Sicada	
SFM000133	2.73	1.08	1.98	Sandy-silty till	No data in Sicada	
SFM000134	3.06	0.08	0.98	Silty clay/Sandy-silty till	No data in Sicada	
SFM000135	2.71	0.11	1.01	Silty clay/Sandy-silty till	Sicada	
SFM000138	1.58	-0.16	0.84	Peat/Till	1.66E-04	
SFM000139	3.06	1.20	2.20	Peat/Clay/Till	8.21E-06	
SFM000143	0.95	0.50	1.50	Sandy-silty-gravel till/Sandy-gravelly silty till	No data	
SFM000144	1.15	1.50	2.50	Gravelly-sandy silty till	5.58E-03	
SFM000145	0.65	0.00	1.00	Sandy-silty till	1.04E-05	
SFM000146	2.39	1.10	2.10	Till	3.21E-03	
SFM000147	2.36	0.80	1.80	Sandy-silty till	3.39E-05	
SFM000149	0.67	0.45	1.45	Sandy-gravelly silty till	3.82E-06	
SFM000153	3.55	1.40	2.40	Sandy-silty till	2.40E-05	
SFM000160	2.66	0.92	1.92	Peat/Mud/Till	8.56E-05	
SFM000161	1.48	0.42	1.42	Peat	7.59E-05	
SFM000162	1.23	-0.13	0.87	Peat/Till	4.10E-06	
SFM000163	2.54	1.75	2.75	Unknown	2.12E-04	
SFM000167	1.80	3.62	4.62	Unknown	5.58E-05	
SFM000168	4.65	3.01	4.01	Unknown	3.17E-06	
SFM000169	1.73	1.40	2.40	Silty-sandy till	2.40E-05	
SFM000171	0.74	1.50	2.5	Silty till/Bedrock	1.17E-06	
SFM000174	2.99	0.42	1.42	Silty-sandy till, sandy till	7.55E-08	
SFM000176	4 68	4 40	5 40	Till	7 54E-06	
SFM000177	3.82	3.00	4.00	Clav	6.28E-07	
SFM000179	6.09	3.20	4.20	"Friction soil"	1.68E-05	
SEM000180	6.25	3 30	4 30	Till	3 22F-07	
SFM000182	1.66	2 00	3 00	Silty-sandy till	4 19F-07	
SFM000183	1.50	4.10	5.10	Silty till/Boulder/Till	8.14F-08	
SFM000187	1.04	-0.10	0.90	Silty till	7.76E-05	
SFM000188	0.99	1.70	2.70	Till/Silty till	3.06F-05	
SEM000190	4 70	4 07	5.07	Silty-sandy till	1.97E-07	
SFM000191	3.40	6.11	7.11	Silty-sandy till	4.96F-07	
SEM000192	2 4 1	5.97	6.97	Silty-sandy till	2 01E-06	
SFM000192	5.00	2.05	3.05	Silty-sandy-stony	1.01E-07	
SEM000104	3.00	1 10	2 10	"Eriction coil"/Podrock	8 62E 04	
SEM000405	3.4U 2.90	1.10	2.1U 5.10	"Friction coil"/T:U	0.02E-04	
SEM000193	2.00	-+.10 5.40	6.40		7 625 07	
	2.10	J.40 2.07	0.40		1.02E-01	
SFM000198	2.13	3.97	4.97	Ciay	3.04E-07	

Figure 6-2. Cumulative frequency distribution curve for horizontal hydraulic conductivity Kh (m/s) evaluated from slug tests. Upper plot: Cumulative frequency distribution curve for all slug tests of Table 6-1. Lower plot: Cumulative frequency distribution curve in which slug tests are classified into different classes of regolith types at well screen depth (cf. Table 6-1).

6.2.2 Single hole (permeameter) tests: BAT filter tips (HY675)

This section summarizes results of single hole (permeameter) tests performed in so called BAT filter tips. The map of Figure 6-4 shows the locations of 10 wells equipped with such filter tips and in which permeameter tests have been performed (SFM0050, -52, -54, -82, -85, -88, -92, -96, -99, and -101). The tests are reported in Johansson (2004) and Alm et al. (2006). Note that the tests of Johansson (2004) are reported to Sicada, whereas those of Alm et al. (2006) are not. The results of the permeameter tests are summarized in Table 6-2

Figure 6-3. Locations of BAT filter tips in which permeameter tests have been performed, displayed on the map of the surface distribution of regolith.

Well id	Hydraulic conductivity K _h (m/s)	Regolith type at filter tip	Reference
SFM0050	4.44E-08	Sandy till	Johansson (2004)
SFM0052	3.80E-09	Clayey, sandy silty till	Johansson (2004)
SFM0054	1.03E-08	Boulder clay	Johansson (2004)
SFM0082	3.20E-07	Gyttja	Alm et al. (2006)
SFM0085	2.60E-07	Clay	Alm et al. (2006)
SFM0088	3.30E-07	Clayey gyttja	Alm et al. (2006)
SFM0092	3.40E-07	Gyttja	Alm et al. (2006)
SFM0096	2.90E-07	Clay	Alm et al. (2006)
SFM0099	3.20E-07	Gyttja	Alm et al. (2006)
SFM0101	3.30E-07	Peat	Alm et al. (2006)

Table 6-2. Summary of Kh (m/s) evaluated by permeameter tests in BAT file	ter tips.
---	-----------

6.2.3 Interference (pumping) tests (HY610, HY640 pumping holes, HY645 obs holes)

This section summarizes results of interference (pumping) tests performed in wells installed in regolith or across the regolith/bedrock interface in the Forsmark area. The map of Figure 6-4 shows the locations of the pumping and observation wells of these tests (Werner et al. 2004, Werner and Lundholm 2004, Alm et al. 2006), whereas the results are summarized in Table 6-3.

Figure 6-4. Locations of pumping and observation wells of interference tests performed in regolith and across the regolith/bedrock interface.

Pumping well (appr. regolith depth, m)	Regolith type	Observation well(s)	Distance from pumping well (m)	Regolith type	Hydraulic conductivity K _h (m/s)	Storage coeff. (-)	Reference
SFM0061 (6.5)	Glaciofluvial material				2.1E-04		Werner et al. (2004)
		SFM0060		Glaciofluvial material		4E-03	
SFM0074 (2.0)	Till/Bedrock						Werner and Lundholm (2004)
		SFM0031	175	Clayey-sandy till	5.6E-04	1E-03	
		SFM0032	12	Till	5.6E-05	2.5E-04	
		SFM0062	70	Sandy till	5.5E-05	1.8E-03	
		SFM0063	113	Sandy till	3.7E-04	1.6E-03	
SFM0090 (3.9)	Till/Bedrock				3.6E-06		Alm et al. (2006)
SFM0094 (2.7)	Till/Bedrock				6.7E-06		Alm et al. (2006)
SFM0103 (5.0)	Till/Bedrock				9.1E-05		Alm et al. (2006)
		SFM0095	12	Till	7.6 E-05	3.1E-04	

Table 6-3. Summary of results of interference tests in regolith and across the regolith/bedrock interface.

6.3 Laboratory tests

6.3.1 Permeameter (HY672) and CRS (GE017) tests

This section summarizes results of laboratory permeameter and CRS tests performed on regolith samples. Laboratory permeameter tests were performed on undisturbed regolith samples (\emptyset 7.2 cm, length 5 cm). In addition, CRS tests were performed on glacial clay samples (\emptyset 5 cm, length 2 cm). Due to the nature of the regolith sampling, these tests represent saturated vertical hydraulic conductivities (K_v, m/s). The data set comprises laboratory permeameter tests on 20 regolith samples sampled at different depths along four vertical profiles in trenches (Lundin et al. 2005).

Note that the PFM004459 tests are presented in the Lundin et al. (2005) report but not reported to Sicada. The sampling locations for samples subject to these tests are shown in Figure 6-5, whereas the results are summarized in Table 6-4. Further laboratory permeameter tests were made on regolith samples from investigations of sand and clay (PFM007855–7859). Data from these tests are available in Sicada but have not previously been reported.

Figure 6-5. Sampling locations for regolith samples subject to laboratory permeameter (orange) and CRS tests (yellow), displayed on the map of the surface distribution of regolith.

Sampling point id	Depth (m b gs)	Regolith type	K _v (m/s)	Porosity (vol. %)	Reference
PFM004455	0.50–0.55	Sandy till	1.9E-07	31.0	Lundin et al. (2005)
	0.10–0.15	Gravelly sand	5.8E-05	37.9	-
	0.20–0.25	Sandy till	3.7E-05	42.0	
	1.20–1.25	Sandy till	2.3E-08	27.1	-
	0.80–0.85	Sandy till	1.2E-07	24.3	
	1.70–1.75	Sandy till	1.2E-07	29.8	
	2.50–2.55	Clayey sandy till	9.3E-08	23.0	
PFM004458	1.20–1.25	Gravelly till	2.3E-07	18.3	Lundin et al. (2005)
	2.50–2.55	Clayey sandy till	1.0E-07	17.0	
	1.70–1.75	Sandy till	2.3E-08	16.3	
	0.20–0.25	Sandy till	4.6E-07	27.3	
	0.50–0.55	Sandy till	6.9E-07	22.6	
	0.05–0.10	Sandy till	1.3E-06	26.0	
	0.80–0.85	Gravelly till	9.3E-07	22.2	
PFM004459	3.50–3.55	Clayey sandy- silty till	8.0E-09	19.8	Lundin et al. (2005)
PFM004460	0.50–0.55	Sandy till	3.5E-08	21.9	Lundin et al. (2005)
	0.05–0.10	Gravelly sand	3.0E-05	26.4	
	0.20–0.25	Till clay	4.6E-07	40.2	
	0.80–0.85	Sandy till	2.3E-08	20.7	
	1.20–1.25	Sandy till	1.2E-08	17.0	
	1.70–1.75	Sandy till	8.1E-09	16.0	
PFM007855	0.10–0.45	Sand	8.0E-06	35.2	NR
PFM007856	0.10–0.35	Sand	3.2E-05	50.0	NR
PFM007857	0.10–0.40	Sand	4.7E-05	43.8	NR
PFM007858	0.10–0.43	Sand	5.5E-05	40.9	NR
PFM007860*	1.00	Clay	7.2E-10	69.0	NR
PFM007861*	1.20	Clay	1.3 E-09	74.2	NR
PFM007862*	1.40	Clay	6.4E-11	71.3	NR
PFM007863*	1.00	Clay	3.1E-10	71.3	NR
PFM007864*	1.50	Clay	4.0E-10	74.7	NR
PFM007866*	1.40	Clay	1.3E-09	59.8	NR
PFM007867*	1.40	Clay	6.8E-10	65.5	NR
PFM007868*	1.60	Clay	5.3E-10	66.9	NR
PFM007869*	2.50	Clay	1.1 E-09	71.9	NR
	3.50	Clay	1.2E-09	73.4	-
SFM000133*	0.30–0.90	Glacial clay	1.1E-09	-	Werner at al. 2014

Table 6-4. Results of laboratory permeameter and CRS* tests. NR = not reported.

6.3.2 Sieve and sedimentation analyses: PSD curves (HY673 Grain size analysis, GE514 Sampling for sieving and sedimentation)

This section summarises hydraulic conductivity (K) estimated from PSD (particle size distribution curves) for regolith samples using the Hazen (1893), Fair-Hatch (Fair and Hatch 1933) and the Gustafson (Anderson et al. 1984) estimation methods. Table 6-5 lists all PSD estimations available in Sicada, whereas sampling locations are shown in Figure 6-6.

Note that the Sicada activity type HY673 Grain size analysis comprises hydraulic conductivity calculated using the methods mentioned above, whereas the Sicada activity type GE514 comprises PSD parameters (d_{10} , d_{60}) utilized to calculate hydraulic conductivity by the Hazen and Gustafson methods as part of the present work.

Figure 6-6 summarises the results of the PSD estimations in terms of cumulative frequency distribution curves for K (m/s). As can be seen in the figure, across all three estimations methods, estimated K values are in the approximate interval 5E-09–7E-02 m/s, i.e. spanning seven orders of magnitude, with a cumulative frequency of 50 % at K \approx 5E-07 m/s.

Figure 6-6. Sampling locations for regolith samples subject to sieve and sedimentation analyses, displayed on the map of surface distribution of regolith.

Figure 6-7. Hydraulic conductivity K (m/s) estimated from particle size distribution curves for regolith sampled at different depths (m b gs) using the Hazen (upper plot), Fair-Hatch (middle plot) and Gustafson (lower plot) methods.

Well	GSE (m,	Mid-sampling	Regolith type at	K (m/s)	K (m/s)			
	RH 2000)	ooo) depth (m b gs) sampling depth		Н	F-H	G		
SFM0001	1.14	1.75	Gravelly till	2.34E-05	6.43E-06	4.35E-06		
		3	Gravelly till	3.96E-06	2.76E-06	5.37E-07		
		3.75	Clayey sandy-silty till	1.20E-07	8.31E-07	2.67E-08		
SFM0002	1.80	1.5	Sandy till	1.79E-06	1.40E-06	4.48E-07		
		3.5	Sandy till	1.89E-06	1.57E-06	6.03E-07		
		5	Sandy till	2.72E-06	1.40E-06	1.53E-06		
SFM0003	1.64	1.25	Sandy till	3.56E-06	2.97E-06	1.04E-06		
		4	Sandy till	1.95E-06	1.68E-06	1.20E-06		
		8.75	Sand	4.57E-06	2.34E-05	2.18E-06		
SFM0004	3.71	2.75	Clayey sandy till	6.71E-07	1.55E-06	1.64E-07		
SFM0005		1.25	Sandy till	4.90E-07	3.83E-07	9.72E-08		
SFM0006	5.96	1.5	Clayey sandy-silty till		3.45E-07			
SFM0007	6.78	2	Clayey sandy-silty till		3.49E-07			
		4.5	Clayey sandy till	6.97E-08	3.83E-07	1.43E-08		
SFM0008	3.54	1.5	Clay till		3.01E-07			
		4.5	Sandy till	9.23E-07	2.84E-07	1.89E-07		
		5	Clayey sandy till	2.11E-07	9.32E-07	3.88E-08		
SFM0010	13.42	1.05	Clayey sandy silty till	7.98E-08	1.95E-07	3.13E-08		
SFM0011	2.19	0.9	Clayey sandy till	9.53E-08	2.25E-07	7.94E-09		
		1.7	Sandy till	6.08E-07	4.17E-07	1.68E-07		
		3.25	Sandy till	1.58E-06	5.32E-07	5.64E-07		
SFM0013	1.47	5.1	Gravel (drill cuttings)	1.36E-02	1.40E-03	1.77E-02		
		5.45	Gravel (drill cuttings)	4.48E-02	3.70E-03	6.92E-02		
SFM0016	5.40	0.6	Sandy till	6.30E-06	1.64E-06	4.43E-06		
		1.95	Sandy till	1.71E-06	7.65E-07	7.81E-07		
		4.85	Sandy till	1.40E-06		5.50E-07		
		5.9	Clayey sandy silty till		1.99E-07			
		6.9	Clayey sandy till		2.77E-07			
SFM0017	5.83	1.5	Gravelly till	1.95E-06	9.87E-07	2.43E-07		
		1.9	Gravelly till	3.90E-06	1.21E-06	6.70E-07		
		3.35	Clayey sandy silty till		2.08E-07			
SFM0018	5.96	3.2	Clayey sandy till	3.46E-07	2.59E-07	1.83E-07		
		4.3	Clayey gravelly till	5.33E-07	6.15E-07	5.24E-08		
SFM0019	3.86	1.25	Sandy till	2.12E-06	1.06E-06	8.00E-07		
		4.25	Sandy till	3.08E-06	1.20E-06	1.19E-06		
		5.35	Silty sand	1.63E-06	8.97E-07	5.74E-07		
SFM0020	1.85	2.55	Clayey sandy till	3.23E-07	3.25E-07	1.04E-07		
SFM0021	1.61	0.65	Clayey sandy till	2.12E-07	2.34E-07	4.64E-08		
		1.45	Clayey sandy till	2.61E-07	3.58E-07	7.88E-08		
SFM0022	1.16	4.3	Sandy till	8.03E-05	1.08E-05	1.00E-04		
SFM0026	0.88	3.6	Clayey sandy till		2.96E-07			
		6.5	Clayey sandy silty till		1.41E-07			
SFM0027	1.09	3.5	Clayey sandy silty till		1.67E-007			
SFM0028	0.40	3.35	Clayey sandy till		1.71E-07			
		5.75	Clayey sandy silty till	2.14E-07	3.76E-07	8.32E-08		
		6.5	Clayey sandy till	5.03E-08	1.97E-07	1.02E-08		
SFM0030	1.85	0.825	Sandy till	9.23E-07	6.80E-07	2.44E-07		
		1.55	Sandy till	5.92E-07	4.52E-07	1.54E-07		

Table 6-5.	Summary of K	(m/s) estimate	d from PSD.	H = Hazen,	F-H = Fair-Hatch, G	=
Gustafso	າ.	. ,				

Well	GSE (m, RH 2000)	Mid-sampling depth (m b gs)	Regolith type at sampling depth	K (m/s)		
				Н	F-H	G
		3.1	Clayey sandy till	4.17E-07		1.19E-07
SFM0031	1.93	3.1	Clayey sandy till	3.90E-07	3.68E-07	1.17E-07
SFM0032	0.75	1.05	Clayey sandy till	9.34E-07	6.22E-07	3.33E-07
SFM0034	0.85	0.35	Clayey sandy till	4.88E-07	4.75E-07	1.02E-07
		1.45	Sandy till	4.62E-07	3.87E-07	1.59E-007
SFM0036	0.80	0.8	Sandy till	3.41E-07	2.52E-07	1.52E-007
SFM0049	3.11	2	Gravelly till	2.09E-06	9.65E-07	2.63E-07
SFM0057	4.45	1.0	Gravelly till	9.73E-06		2.11E-06
		1.5	Clayey sandy till	5.67E-07		1.13E-07
SFM0062	0.86	2.95	Sandy till	3.24E-05	5.19E-06	4.27E-005
SFM0063	0.02	2.5	Sandy till	1.15E-04	8.02E-06	1.30E-004
SFM0065	0.21	3.85	Clayey sandy till	7.39E-07	8.52E-07	2.61E-007
SFM0069	2.06	0.5	Sandy gravel	3.35E-04	2.37E-05	2.19E-004
SFM0070	3.45	1.525	Clayey sandy silty till		1.24E-07	
SFM0071	3.48	3.375	Clay till		1.42E-07	
SFM0072	3.46	8.45	Clayey sandy silty till	3.79E-08	1.46E-07	1.07E-008
SFM0081	0.63	3.25	Till	9.26E-05	1.39E-05	1.10E-04
SFM0084	0.87	1.625	Sandy gravel	5.51E-04	9.67E-06	4.35E-04
		1.875				
SFM0091	0.80	1.21	Sandy gravel	1.10E-03	1.23E-03	5.85E-04
		1.285				
SFM0094	0.75	1.1	Clayey sandy till	5.59E-07	5.06E-07	9.30E-08
		1.75	Clayey sandy till	3.42E-07	1.16E-07	1.47E-07
		2.45	Clayey sandy till		9.09E-08	
SFM0095	11.28	2.26	Till			
		2.85				
SFM0103	11.22	4	No data	4.29E-05	4.42E-07	1.16E-05
SFM0104	3.13	6	Sandy till	1.38E-06	1.22E-07	9.26E-07
SFM0105	3.10	0.75	Sandy till	2.96E-07	8.64E-08	7.74E-08
		1.85	Sandy till	2.11E-07	7.26E-08	5.93E-08
SFM0106	4.48	0.75	Clayey sandy till		1.26E-08	
		3.3	Clayey sandy silty till	4.08E-08	1.48E-08	8.84E-09
SFM0107	2.68	3.7	Sandy till	4.22E-07	1.23E-07	1.89E-07
		4.15	Sandy till	6.33E-07	1.76E-07	1.23E-07
SFM0108	3.60	0.7	Sandy till	3.63E-06	8.76E-07	1.19E-06
SFM000133	2.73	1.2		1.23E-06	6.62E-08	
		1.75		2.12E-06	7.08E-08	4.12E-07
HFM01		6	Sandy till	4.86E-06		2.12E-06
		9	Sandy silty till	1.87E-06		1.49E-06
		1.25	Sandy till	1.23E-05		4.69E-06
HFM02		4	Gravelly till	2.71E-05		6.83E-06
		2	Gravelly till	1.06E-04		8.24E-05
		11	Sandy-silty till	3.89E-07		2.01E-07
HFM03		6	Sandy till	2.08E-06		1.50E-06
		1.5	Gravelly till	1.82E-04		9.69E-05
		9	Sandy-silty till	1.32E-06		9.12E-07
HFM04		0.7	Gravelly till	9.80E-06		1.30E-06
HFM05		3.25	Clayey sandy till	7.22E-07		2.49E-07
HFM06		1.25	Clayey sandy till	4.18E-08		4.73E-09
HFM09		1.75	Sandy silt	1.04E-07		7.98E-08

Well	GSE (m, RH 2000)	Mid-sampling depth (m b gs)	Regolith type at sampling depth	K (m/s)		
				н	F-H	G
		1	Sandy till	9.37E-07		3.65E-07
HFM10		0.75	Gravelly till	2.27E-06		4.17E-07
KFM01A		5.25	Clayey sandy silty till	2.56E-07		8.72E-08
		2.5	Silty sand	9.58E-07		5.66E-07
PFM002461		1.25	Clayey sandy till	4.17E-07		9.60E-08
PFM002462		2.3	Sandy till	1.40E-06		4.51E-07
PFM002462		0.2	Gravelly sand	2.27E-04		2.30E-04
PFM002463		10.45	Sandy till	2.60E-06		1.85E-06
PFM002463		7.5	Clayey sandy till	1.85E-07		5.16E-08
PFM002464		5.75	Clayey sandy silty till	4.63E-08		1.10E-08
PFM002464		7.4	Clayey sandy silty till	1.85E-07		7.56E-08
PFM002572		4.2	Clayey sandy till	2.89E-07		8.57E-08
PFM002572		5.4	Clayey sandy till	1.85E-07		5.42E-08
PFM002573		3.55	Clayey sandy till	1.85E-07		5.35E-08
PFM002576		5	Sandy till	1.67E-06		8.63E-07
PFM002576		1.9	Sandy till	1.67E-06		9.73E-07
PFM002577		0.6	Clayey sandy till	4.17E-07		9.75E-08
PFM002578		3.8	Clayey sandy silty till	2.89E-07		1.90E-07
PFM002581		1	Sandy silty till	9.37E-07		6.28E-07
PFM002582		0.6	Sandy till	1.16E-06		2.97E-07
PFM002582		1.7	Sandy till	5.67E-07		1.02E-07
PFM002586		0.6	Clayey sandy till	1.85E-07		5.01E-08
PFM002586		1.4	Sandy silty till	2.89E-07		7.88E-08
PFM002587		3	Sandy till	7.40E-07		1.76E-07
PFM002587		1	Gravelly till	7.40E-07		6.63E-08
PFM002589		4.7	Sandy till	4.17E-07		1.78E-07
PFM002591		0.9	Clayey gravelly till	1.85E-07		1.01E-08
PFM002594		1.4	Clayey sandy till	4.63E-08		1.01E-08
PFM002670		0.325	Clayey sandy till	1.04E-07		2.16E-08
PFM002687		1.5	Clayey sandy silt	1.18E-07		5.41E-08
PFM002687		0.5	Clayey sandy till	3.76E-07		1.44E-07
PFM002687		1	Sandy till	5.51E-07		2.21E-07
PFM002761		0.5	Clayey sandy till	3.75E-08		6.78E-09
PFM002768		1	Clayey sandy till	1.85E-07		3.35E-08
PFM002783		0.3	Sandy gravel	7.34E-04		4.35E-04
PFM002801		0.4	Sandy till	1.32E-06		4.15E-07
PFM002802		1.3	Sandy till	1.96E-06		6.35E-07
PFM003742		0	Sandy silty till	7.40E-07		3.58E-07
PFM004222		1.9	Sand	3.46E-04		4.77E-04
PFM004294		0	Gravelly sand	2.02E-04		2.39E-04
PFM004396		0.44	Clayey silty sand	1.40E-06		1.24E-06
PFM004454		1.425	Clayey sandy till	7.40E-07		2.37E-07
PFM004455		2.075	Clayey sandy silty till	4.17E-07		1.81E-07
PFM004455		0.125	Gravelly sand	8.37E-04		6.39E-04
PFM004455		1.725	Sandy till	1.67E-06		8.85E-07
PFM004455		0.825	Sandy till	7.40E-07		1.65E-07
PFM004455		0.225	Sandy till	2.27E-06		4.80E-07
PFM004455		2.525	Clayey sandy till	1.04E-07		2.08E-08
PFM004455		1.225	Sandy till	7.40E-07		1.98E-07
PFM004455		0.525	Sandy till	5.67E-07		1.25E-07

Well	GSE (m, RH 2000)	Mid-sampling depth (m b gs)	Regolith type at sampling depth	K (m/s)		
				н	F-H	G
PFM004456		1.925	Clayey sandy silty till	2.89E-07		1.38E-07
PFM004458		1.225	Gravelly till	1.11E-05		4.60E-06
PFM004458		1.725	Sandy till	5.67E-07		1.11E-07
PFM004458		0.225	Sandy till	6.66E-06		2.50E-06
PFM004458		2.525	Sandy till	9.37E-07		2.00E-07
PFM004458		0.525	Sandy till	5.60E-06		7.95E-06
PFM004458		0.825	Gravelly till	1.18E-05		3.94E-06
PFM004458		0.075	Sandy till	8.43E-06		3.36E-06
PFM004460		1.075	Gravelly sand	1.05E-03		9.33E-04
PFM004460		1.325	Clayey sandy till	4.17E-07		1.04E-07
PFM004460		1.575	Clayey sandy till	2.89E-07		5.67E-08
PFM004460		1.925	Clayey sandy silty till	1.04E-07		5.66E-08
PFM004460		1.225	Sandy till	7.40E-07		2.04E-07
PFM004460		0.075	Gravelly sand	8.13E-04		7.78E-04
PFM004460		0.525	Sandy till	7.40E-07		1.87E-07
PFM004460		0.825	Sandy till	5.67E-07		1.40E-07
PFM004460		1.725	Sandy till	4.17E-07		8.67E-08
PFM004514		0.9	Clayey sandy silty till	4.63E-08		8.58E-09
PFM004514		2.8	Clayey sandy till	2.89E-07		6.70E-08
PFM004514		1.5	Sandy till	2.96E-06		9.96E-07
PFM004531		0	Sandy gravel	5.60E-04		3.61E-04
PFM004752		0	Sandy till	2.27E-06		8.47E-07
PFM004760		1.25	Sandy till	5.67E-07		1.58E-07
PFM004761		0.55	Sandy till	2.27E-06		6.33E-07
PFM004762		0.45	Clayey sandy till	1.85E-07		4.38E-08
PFM006094		1.71	Sand	8.36E-05		1.20E-04
PFM006095		0.44	Sand	1.61E-04		2.35E-04
PFM007855		0.275	Sand	3.58E-04		5.16E-04
PFM007856		0.225	Sand	3.07E-04		4.41E-04
PFM007857		0.25	Sand	2.89E-04		4.17E-04
PFM007858		0.265	Sand	2.47E-04		3.58E-04
PFM007786		0.6	Silty till	5.83E-05		6.76E-06
PFM007786		0.95	Coarse sand/fine gravel	1.89E-03		1.67E-03
PFM007786		1.2	Sandy/gravelly till	4.09E-04		1.33E-04
SFM000191/ QFM000297		1.2	Gravelly stony till	5.65E-04		8.33E-05
SFM000192/ QFM000298		0.25	Sandy silty gravelly till	3.34E-06		2.37E-07
PFM002890		0.5		2.85E-04		1.99E-04
PFM002891		0.5		3.13E-05		5.22E-06

Figure 6-8. Cumulative frequency distribution curves for hydraulic conductivity K (m/s) estimated from particle size distribution curves using the Hazen, Fair-Hatch and Gustafson methods.

6.3.3 Properties related to water storage and retention in the unsaturated zone (HY672)

This section summarises properties related to water storage and retention in the unsaturated zone (Lundin et al. 2005). The sampling locations are shown in Figure 6-9. Figure 6-10 and Figure 6-11 summarise storage properties (total porosity and specific yield) as function of sampling depth (metres below ground surface), whereas Figure 6-12 to Figure 6-15 present soil water retention curves (for regolith types, see Table 6-5). According to these data, both the total porosity and the specific yield decrease with depth. The total porosity is 25–40 % down to a depth of c 0.25 m below ground surface, and 15–30 % below a depth of c 1 m. The specific yield decreases from c 15–30 % close to the ground surface to c 5 % below a depth of c 1 m. According to Figure 6-12 to Figure 6-15, the field capacity (by convention, the water content at a suction head of 100 cm) is relatively constant (c 15 %) irrespective of depth.

Figure 6-9. Sampling locations for regolith samples subject to laboratory tests for estimation of water storage and retention properties in the unsaturated zone.

Figure 6-10. Total porosity (% by volume) for regolith sampled at different depths (m b gs) at the PFM004455, -4458, -4459 and -4460 sampling locations.

Figure 6-11. Specific yield (% by volume) estimated from laboratory tests on regolith sampled at different depths (m b gs) at the PFM004455, -4458, -4459 and -4460 sampling locations.

Figure 6-12. Water retention curves for regolith sampled at different depths (m b gs) at the PFM004455 sampling location. By convention, field capacity corresponds to a suction head of 100 cm.

Figure 6-13. Water retention curves for regolith sampled at different depths (m b gs) at the PFM004458 sampling location. By convention, field capacity corresponds to a suction head of 100 cm.

Figure 6-14. Water retention curve for regolith sampled at a depth of 3.50–3.55 m b gs at the PFM004459 sampling location. By convention, field capacity corresponds to a suction head of 100 cm.

Figure 6-15. Water retention curves for regolith sampled at different depths (m b gs) at the PFM004460 sampling location. By convention, field capacity corresponds to a suction head of 100 cm.

7 Hydraulic characterisation of the near-surface bedrock

7.1 Hydraulic characterisation in SDM-Site and SDM-PSU

The uppermost bedrock in the Forsmark area contains transmissive sub-horizontal discrete features. Several of these are termed sheet joints (or sheeting joints) and typically occur in the uppermost tens of metres below the bedrock surface. However, sub horizontal features can occur as deep as 150 m below the bedrock surface. Hydraulically, the combination of transmissive sub horizontal discrete features at different depths and outcropping deformation zones, both gently dipping and steeply dipping, is believed to form a well-connected lattice of potential conduits for groundwater flow. Groundwater levels measured in percussion-drilled boreholes suggest that such conduits may short circuit both recharge from above and discharge from below (Figure 7-1).

Figure 7-1. Two-dimensional cartoon of the near-surface bedrock in Forsmark. The connectivity caused by horizontal sheet joints and outcropping deformation zones is envisaged to create a hydraulic cage in the north-western part of the tectonic lens. Strands of evidence that support the envisaged hydraulic interplay between the groundwater in the superficial bedrock and in the regolith are presented in Follin et al. (2007a).

Examples of sub-horizontal features were documented during the construction of the cooling water canal, which runs between the Baltic Sea and the nuclear power plant (Figure 7-2); the trace lengths of these sheet joints were observed to be in the order of hundreds of metres. In addition to geo-structural evidence obtained during construction, there are three pieces of hydrogeological evidence that support the hydraulic importance of these structures (Follin et al. 2008):

- 1. Elevated groundwater yields. The median yield of the first 22 percussion-drilled boreholes (HFM01–HFM22) is approximately 12,000 L/h. This is roughly 20 times higher than the median yield of domestic water wells drilled outside but in close proximity to the candidate area, and which in turn is no different from the median yield of approximately 200,000 bedrock wells registered with the Geological Survey of Sweden (Gentzschein et al. 2007).
- 2. The near uniform groundwater level in the uppermost 150 m of bedrock observed among the percussion-drilled boreholes within the target area. This is on the average roughly 0.5 m above sea level. In contrast, the average groundwater level among the percussion-drilled boreholes outside the candidate area is roughly 2.8 m above the sea level (Gentzschein et al. 2007).
- 3. The extensive and rapid transmission of fluid pressure changes (drawdown) during the large-scale interference test, which was conducted over three weeks during the summer of year 2006 in borehole HFM14, located in the centre of the target area (Follin et al. 2007c).

Figure 7-2. Picture from the construction of the 13 m deep and more than one kilometre long canal between the Baltic Sea and the nuclear power plant. Horizontal fractures/sheet joints were encountered along the entire excavation. As seen in the picture, there are several "beds" of extensive sheet joints on top of each other. The picture is taken from the southern side of the canal where the current bridge crosses the canal between HFM20 and HFM22 (Carlsson and Christiansson 2007).

Based on the results obtained from the interference test in HFM14, the lateral extent of the horizontal fractures/sheet joints was hypothesised to correspond approximately to fracture domain FFM02, but stretching north all the way to the Singö deformation zone (ZFMWNW0001). The other hypothesised physical boundaries are deformation zone ZFMENE0062A to the southeast and the border of fracture domain FFM02 to the southwest and west, with the modification that the boundary passes between boreholes HFM20 and HFM28 (*Figure 3-2*). The core-drilled part of core-drilled boreholes in Forsmark generally starts at –100 m elevation, with the uppermost 100 m often being percussion-drilled and cased with a steel casing in order to allow for hydraulic testing with the PFL-f method and installation of groundwater monitoring equipment, which require a large-diameter borehole in order to host the equipment. This means that there are neither many cores collected nor fractures tested in detail with the PFL-f method in the uppermost part of the bedrock at the time of the site investigation for SDM-Site.

During the SDM-PSU site investigation phase (SKB 2011) it was observed that the hydraulic network within the uppermost bedrock within the SFR bedrock volume is dominated by transmissive, connected and sub-horizontal fractures, although these fractures were notably less transmissive and less extensive than similar structures observed within the tectonic lens. An additional deterministic modelling structure was developed, termed Shallow Bedrock Aquifer (SBA) structures (Öhman et al. 2012). These structures were interpreted from hydrogeological data during the SDM-PSU site investigation, wherein it was concluded that the upper 200 m of the bedrock is hydraulically dominated by a system of transmissive, connected, sub-horizontal fractures. The purpose of modelling these data separately was to honour deterministic data from single-hole and cross-hole hydraulic tests, and to avoid an over-representation of hydraulically transmissive fractures in the stochastic DFN model.

The orientations of the selected PFL-f data are sub-horizontal and, with one exception, had estimated transmissivity values in the order of $T > \approx 10^{-6} \text{ m}^2/\text{s}$. The selection of borehole intercepts data was supported by hydraulic head data, meaning that boreholes intersecting the same feature showed similar drilling responses and associated drawdown. In several cases the locations and orientations of the intercepts are supported by oriented radar reflectors and other geophysical data (Öhman et al. 2012). The features were subjectively terminated against deterministically modelled deformation zones and/or borehole feature intercepts lacking hydraulic responses.

It should be pointed out that in reality each SBA structure is envisaged to represent a network of connected sub-horizontal fractures, rather than a single fracture, and that the extension outside borehole coverage is highly uncertain. Also, the deterministically modelled features are probably only a sub-set of the total number of horizontal hydraulic conductors in the model area, since only features intercepted by boreholes are possible to observe.

7.2 Transmissivity data correlated to modelled sheet joint intercepts

Supporting single-hole hydraulic data correlated to deterministically modelled sheet joints (JFMxxx) as part of the DMS geological model include PFL tests, hydraulic injection tests or impeller flow logging (Table 7-1). As some of these structures have no modelled thickness, PFL-f anomalies within a set $(\pm 3 \text{ m})$ distance along the borehole from the upper and lower JFM-intercepts were summed and associated with to provide a representative conceptual understanding of hydraulic transmissivity in close proximity to each JFM structure. It was assumed that the sheet joints would account for the most transmissive structure within intercepts of injection test or impeller flow logging sections. In the absence of other data, the impeller flow logging transmissivity for the entire borehole was evaluated under the assumption that sheet joints would likely account for the most transmissive structures intercepted by the borehole.

Table 7-1. Summary of hydraulic data available for interpreting sheet joint intercepts in Forsmark boreholes. PFL-f anomaly transmissivity values were summed within three metres of the upper or lower intercept. No. PFL is the number of PFL anomalies within this borehole length interval. L_{PSS} and L_{HTHB} are the lengths of intercepting injection test sections and recorded impeller flow logging lengths, respectively. $\sum T_{PFL-f}$, $\sum T_{INJ}$ and $\sum T_{HTHB}$ are the sum of the included flow anomalies, injection test transmissivity or impeller flow logging transmissivity, respectively. Eval. meth. (or Data type) indicates whether Moye's transmissivity estimate (TM) or an estimate based on a 2D radial flow model (TT) was used. HTHB type indicates whether the transmissivity presented is that of an inferred flow anomaly (TFa) or is based on the entire borehole section (E.H.) considered representative for the flow logging.

SHEET	BH		T								
JUINT		(BH lend	cri ath m)	No.		L _{PSS}		Eval.	L _{HTHB}		HTHB
		(211 101)	g,	PFL	∑T _{PFL-f}	(m)	∑T _{INJ}	meth.	(m)	∑Т _{нтнв}	type
ID	ID	Upper	Lower	(-)	(m²/s)						
JFM002	KFM26	6.31	6.56	4	9E-07						
JFM003	KFM19	7.5	7.5						1.8	1E-05	TFa
JFM004	HFM39	7.07	7.07						14.0	3E-07	TFa
JFM004	KFM13	11.1	11.1						2.6	1E-04	TFa
JFM004	KFM14	6.79	6.79	1	1E-07				54.3	8E-05	E.H.
JFM004	KFM15	8.0	8.0	2	1E-08				2.0	3E-04	TFa
JFM004	KFM16	10.1	10.1	4	1E-06				55.9	2E-05	E.H.
JFM004	KFM17	6.3	6.3						54.5	2E-06	E.H.
JFM004	KFM18	10.5	10.5						5.1	1E-06	TFa
JFM004	KFM20	5.91	5.99	1	4E-06				6.7	3E-04	TFa
JFM004	KFM21	6.8	6.8	2	7E-05				3.2	1E-04	TFa
JFM004	KFM08B	10.77	10.77			5.0	2E-06	TT			
JFM005	KFM08B	21.36	21.39			5.0	1E-05	TT			
JFM005	KFM13	23.19	23.19						142.0	1E-04	E.H.
JFM005	KFM14	18.91	18.91	4	6E-06				1.3	3E-06	TFa
JFM005	KFM16	18.63	18.63	5	8E-06				6.5	2E-06	TFa
JFM006	HFM39	22.51	22.72						145.2	3E-07	E.H.
JFM006	KFM15	21.14	21.4	4	3E-07				54.8	3E-04	E.H.
JFM006	KFM18	20.62	21.08						51.6	3E-06	E.H.
JFM006	KFM20	20.05	20.19	4	2E-06				58.2	3E-04	E.H.
JFM007	KFM14	22.79	22.79	4	7E-06				54.3	8E-05	E.H.
JFM007	KFM13	27.06	27.23						142.0	1E-04	E.H.
JFM007	KFM21	23.7	23.7	5	1E-05				5.5	1E-05	TFa
JFM007	KFM23	23.5	23.5	2	1E-05				96.0	3E-04	E.H.
JFM007	KFM17	23.97	23.97						54.5	2E-06	E.H.
JFM007	KFM16	28.14	28.14	4	2E-06				3.4	1E-05	TFa
JFM007	HFM22	28.85	28.85						1.0	1E-05	TFa

SHEET JOINT	BH	TARGE INTERC (BH len	T EPT gth m)	No.		L _{PSS}		Eval.	L _{HTHB}		нтнв
			,	PFL	∑T _{PFL-f}	(m)	∑T _{INJ}	meth.	(m)	∑Т _{НТНВ}	type
ID	ID	Upper	Lower	(-)	(m²/s)						
JFM008	KFM08B	30.96	30.99			5.0	2E-05	TT			
JFM008	KFM14	24.17	24.17	4	7E-06				1.8	5E-06	TFa
JFM008	KFM16	28.14	28.14	4	2E-06				3.4	1E-05	TFa
JFM008	KFM21	26.99	26.99	5	2E-05				5.5	1E-05	TFa
JFM008	KFM23	27.1	27.1	4	2E-05				96.0	3E-04	E.H.
JFM008	HFM22	28.85	28.85						1.0	1E-05	TFa
JFM009	KFM08B	61.92	61.92			5.0	3E-08	TT			
JFM009	KFM14	53.3	53.3	2	4E-05				2.0	3E-05	TFa
JFM009	KFM23	54.5	54.5	4	3E-06				96.0	3E-04	E.H.
JFM009	KFM24	51.84	51.84	1	4E-08						
JFM009	HFM22	62.23	62.27						3.5	1E-04	TFa
JFM010	HFM42	12.37	12.42						195.0	7E-04	E.H.
JFM011	HFM21	27.21	27.21						175.0	7E-04	E.H.
JFM011	HFM42	23.3	23.3						195.0	7E-04	E.H.
JFM012	HFM21	48.08	48.08						175.0	7E-04	E.H.
JFM012	HFM42	41	41						195.0	7E-04	E.H.
JFM014	KFM07A	178.5	178.53	1	2E-05	5.0	2E-05	TT			
JFM014	KFM07C	156.3	156.38	1	5E-05						
JFM014	HFM42	157.86	157.86						1.0	2E-04	TFa
JFM015	KFM25	6.63	6.63	1	4E-06						
JFM016	KFR117	11.8	11.8			6.0	1E-04	ТМ			
JFM016	KFR119	11.4	11.4	3	7E-06	6.0	6E-04	TM			

7.3 Transmissivity data correlated to modelled SBA structure intercepts

Hydraulic intercept data, obtained during the SDM-PSU site investigations (Table 7-2), were used to deterministically model the geometries of the SBA-Structures. Five boreholes that were later established in the SFR area (KFR117-KFR121) intercept the modelled geometries of the modelled SBA structures (Table 7-3).

			Longth	Orientation				DEI	Head
SBA- struct.	вн	PFL-f ID	along BH (m)	Elev. (m)	Strike	Dip	T (m²/s)	head ²⁾ (m)	Sect. ³⁾ (m)
SBA1	HFR102	_	55.04	-44.1	_	_	2.8E-06	_	-0.8
SBA1	KFR27	_4)	50.17	-48.1	322	13	1.8E–06	_	-0.5
SBA1	KFR27	_4)	54.74	-51.1	14	31	1.8E–06	_	-0.5
SBA2	KFR102A	KFR102A_001	72	-63.1	-	-	8.6E–08	-	-1.4
SBA2	KFR103	KFR103_031	84.58	-66.1	357	15	1.2E–06	-0.20	-0.5
SBA2	KFR103	KFR103_032	85.67	-67.0	223	2	9.5E-06	-0.20	-0.5
SBA2	KFR103	KFR103_033	86.61	-67.7	157	9	4.7E-06	-0.10	-0.5
SBA2	KFR103	KFR103_034	89.15	-69.8	318	32	3.3E-07	-0.10	-0.5
SBA2	KFR103	KFR103_035	89.69	-70.2	321	18	2.8E-08	-	-0.5
SBA2	KFR103	KFR103_036	91.83	-71.9	327	16	1.5E–08	_	-0.5
SBA2	KFR27	_4)	98.5	-96.1	84	9	1.1E–06	_	-0.5
SBA3	HFR106	HFR106_001	39	-31.9	233	7	3.1E–05	-	-0.2
SBA3	KFR103	KFR103_031	84.58	-66.1	357	15	1.2E-06	-0.20	-0.5
SBA3	KFR103	KFR103_032	85.67	-67.0	223	2	9.5E-06	-0.20	-0.5
SBA3	KFR103	KFR103_033	86.61	-67.7	157	9	4.7E-06	-0.10	-0.5
SBA3	KFR103	KFR103_034	89.15	-69.8	318	32	3.3E-07	-0.10	-0.5
SBA3	KFR103	KFR103_035	89.69	-70.2	321	18	2.8E-08	_	-0.5
SBA3	KFR103	KFR103_036	91.83	-71.9	327	16	1.5E–08	-	-0.5
SBA4	KFR103	KFR103_041	180.69	-143.1	268	33	6.8E-08	_	-0.6

Table 7-2. PFL-f and HTHB flow anomalies used for parameterisation of the deterministically modelled SBA structures, adapted from Öhman et al. (2012).

			Orientation						Head
			Length		1)		_	PFL	BH
SBA-	вц		along	Elev.	Striko	Din	T (m^2/c)	head	Sect. ³⁾
Struct.	ВП	FFL-I ID	вп (III)	(11)	SUIKe	ыр	(111-75)	- [,] (III)	(11)
SBA4	KFR103	KFR103_042	181.23	-143.5	120	11	2.1E–07	-	-0.6
SBA4	KFR103	KFR103_043	181.89	-144.0	130	6	4.8E-06	0.3	-0.6
SBA4	KFR106	KFR106_015	67.22	-62.1	307	22	2.2E-07	-	-0.3
SBA4	KFR106	KFR106_016	68.24	-63.0	286	19	1.3E–05	-	-0.3
SBA4	KFR106	KFR106_017	69.38	-64.1	255	40	1.0E–07	-	-0.3
SBA4	KFR106	KFR106_018	71.5	-66.1	284	37	6.3E-06	-	-0.3
SBA4	KFR106	KFR106_019	73.02	-67.5	206	26	4.6E-06	0.2	-0.3
SBA5	KFR103	KFR103_041	180.69	-143.1	268	33	6.8E–08	_	-0.6
SBA5	KFR103	KFR103_042	181.23	-143.5	120	11	2.1E-07	-	-0.6
SBA5	KFR103	KFR103_043	181.89	-144.0	130	6	4.8E-06	0.3	-0.6
SBA5	KFR106	KFR106_047	154.36	-143.7	98	38	2.3E-06	_	-0.6
SBA5	KFR106	KFR106_048	154.58	-143.9	100	32	4.0E-06	_	-0.6
SBA5	KFR106	KFR106_049	156.08	-145.3	116	7	1.8E–05	0.8	-0.6
SBA6	KFR101	KFR101_026	180.95	-143.6	124	18	1.3E–05	-1.80	-2.5
SBA6	KFR102A	KFR102A_034	188.3	-169.0	109	9	2.6E-06	-1.10	-0.9
SBA6	KFR102A	KFR102A_035	188.77	-169.5	345	9	5.4E-07	_	-0.9
SBA6	KFR102A	KFR102A_036	190.35	-170.9	196	23	6.0E-07	-1.10	-0.9
SBA6	KFR102A	KFR102A_037	192.01	-172.4	205	30	2.3E-08	-	-0.9
SBA6	KFR102A	KFR102A_039	196.32	-176.3	208	16	5.9E–09	_	-0.9
SBA6	KFR102A	KFR102A_040	196.89	-176.8	246	14	3.0E-08	_	-0.9
SBA6	KFR102A	KFR102A_041	197.45	-177.3	125	40	3.1E–08	-	-0.9
SBA6	KFR102A	KFR102A_042	200.81	-180.4	147	20	2.2E-06	-1.00	-0.9
SBA6	KFR102A	KFR102A_043	201.52	-181.0	146	12	7.0E-07	_	-0.9
SBA6	KFR102A	KFR102A_044	202.01	-181.5	201	39	4.1E-07	-	-0.9
SBA6	KFR102A	KFR102A_045	202.38	-181.8	205	9	3.5E-07	-	-0.9
SBA6	KFR102A	KFR102A_046	203.32	-182.7	163	18	4.8E-08	-	-0.9
SBA6	KFR102A	KFR102A_047	204.5	-183.8	195	20	5.3E-07	-	-0.9
SBA6	KFR102A	KFR102A_048	205.89	-185.0	166	16	3.4E-06	-0.60	-0.9
SBA6	KFR102B	KFR102B_086	171.95	-136.4	214	6	8.7E-07	-0.80	-2.5
SBA6	KFR102B	KFR102B_087	172.6	-136.9	216	13	2.0E-07	_	-2.5
SBA6	KFR102B	KFR102B_088	173.15	-137.3	161	10	2.3E-07	-	-2.5
SBA6	KFR102B	KFR102B_089	173.57	-137.7	115	41	3.6E-07	-	-2.5
SBA6	KFR27	KFR27_013	192.51	-189.6	63	23	6.8E-06	-1.80	-3.0
SBA6	KFR27	KFR27_014	193.01	-190.1	33	19	1.0E–08	_	-3.0

 Orientation of associated fracture. ²⁾ Calculated freshwater head for PFL-f. ³⁾ Monitored point water head for the borehole section containing the flow anomaly. ⁴⁾ No detailed flow logging, flow anomaly evaluated from 5-m measurement.

Table 7-3. Modelled intercepts of KFR117–121 with SBA structures and corresponding transmissivity from either nearest injection-test section (KFR117, KFR118, KFR119) or summed PFL-f anomaly transmissivity (KFR119, KFR121).

	Intercept (borehole length, m)								
	KFR117	KFR118	KFR119	KFR120	KFR121				
SBA1	38.26	52.95	57.92	48.72	-				
SBA2	-	-	-	90.26	102.21				
SBA6	-	-	-	-	321.9-327.5 ⁴⁾				
		Transmissivity (m²/s)							
	KFR117	KFR118	KFR119	KFR120	KFR121				
SBA1	3E-07	1E-06	3E-06 ¹⁾	2E-07	-				
SBA2	-	-	-	2E-07	2E-07 ²⁾				
SBA6	-	-	-	-	8E-06 ⁴⁾				

¹⁾Summed transmissivity from 3 PFL-f ±3 m (BH length) from SBA intercept. ²⁾Summed transmissivity from 5 PFL-f ±3 m (BH length) from SBA intercept. ³⁾Summed transmissivity from 1 PFL-f ±3 m (BH length) from SBA intercept. 4) Geometrical intercept adjusted from original modelled values based on PFL measurements and subsequent analyses in KFR121 (Earon et al. 2022)

8 Summary

This report presents and summarises geo-structural information related to the Baseline Forsmark modelling stage, and cross-references this information to available single-hole hydraulic test data. Similar work was carried out for 21 core-drilled and 32 percussion-drilled boreholes during the site investigation period for SDM-Site (Follin et al. 2007b), whereas the present report contains information from 52 core-drilled and 57 percussion-drilled boreholes. Additionally, in order to characterize the uppermost bedrock both from a geo-structural and hydrogeological perspective, an update of previous work includes the addition of gently dipping and sub-horizontal structures.

A set of field and laboratory methods is also presented in this report to assess the hydraulic properties of the regolith and the regolith/bedrock interface. Field methods include single-hole slug tests, single-hole permeameter tests, and multi-hole interference tests. Laboratory methods include permeameter and CRS tests, sieve and sedimentation analyses, as well as methods to assess water storage and retention properties of the unsaturated zone.

Hydraulic test methods vary in terms of theoretical basis, spatial resolution, duration and support scale. In addition, there are various methodologies available for analysis of hydraulic test data. Such methodologies are associated to different underlying assumptions, affecting interpretations in terms of hydraulic properties of bedrock and regolith. In the report, a hierarchical order of test methods is used to propose most representative hydraulic properties for each geo-structural unit.

References

SKB's (Svensk Kärnbränslehantering AB) publications can be found at <u>www.skb.com/publications</u>. SKBdoc documents will be submitted upon request to <u>document@skb.se</u>.

Alm P, Gebrezghi M, Werner K, 2006. Forsmark site investigation. Supplementary hydraulic tests in Quaternary deposits. SKB P-06-224, Svensk Kärnbränslehantering AB.

Andersson O, Gustafson G, 1984. Brunnar. Undersökning – Dimensionering– Drift. BFR Report R42:1984. Byggforskningsrådet (BFR). (In Swedish.)

Bosson E, Gustafsson, L-G, Sassner M, 2008. Numerical modelling of surface hydrology and nearsurface hydrogeology at Forsmark. Site descriptive modelling SDMSite Forsmark. R-08-09, Svensk Kärnbränslehantering AB.

Bosson E, Sassner, Sabel U, Gustafsson L-G, 2010. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere. SKB R-10-02, Svensk Kärnbränslehantering AB.

Brooks R H, Corey AT, 1964. Hydraulic properties of porous media. Hydrology papers, Colorado state university, March 1964.

Butler J J Jr, 1998. The design, performance, and analysis of slug tests. Boca Raton, FL: CRC Press.

Campbell G S, 1974. A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data. Soil Science, 117, 311-314.

Carlsson A, Christiansson R, 2007. Construction experiences from underground works at Forsmark. Compilation Report. SKB R-07-10, Svensk Kärnbränslehantering AB.

Earon R, Rasul H, Ohman J, 2022. Utredning angående förekomst av Flacka Strukturer med underlag från KFR117, KFR118, KFR119, KFR120 och KFR121. SKBdoc 1966551 ver 1.0, Svensk Kärnbränslehantering AB.

Fair GM, Hatch LP, 1933. Fundamental factors governing the streamline flow of water through sand. J. Am. Water Works Ass. 25, 1551–1563.

Follin S, 2008. Bedrock hydrogeology Forsmark. Site descriptive modelling SDM-Site Forsmark. SKB R-08-95, Svensk Kärnbränslehantering AB.

Follin S, Johansson P-O, Levén J, Hartley L, Holton D, McCarthy R, Roberts D, 2007a. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2. SKB R-07-20, Svensk Kärnbränslehantering AB.

Follin S, Levén J, Hartley L, Jackson P, Joyce S, Roberts D, Swift B, 2007b. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2. SKB R-07-48, Svensk Kärnbränslehantering AB.

Follin S, Johansson P-O, Hartley L, Jackson P, Roberts D, Marsic N, 2007c. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.2. SKB R-07-49, Svensk Kärnbränslehantering AB.

Follin S, Hartley L, Jackson P, Roberts D, Marsic N, 2008. Hydrogeological conceptual development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3. SKB R-08-23, Svensk Kärnbränslehantering AB.

Gentzschein B, Levén J, Follin S, 2007. A comparison between well yield data from the site investigation in Forsmark and domestic wells in northern Uppland. SKB P-06-53, Svensk Kärnbränslehantering AB.

Hazen A, 1893. Some physical properties of sands and gravels with special reference to their use in filtration. Mass. State Board of Health, 24th Ann. Rep. 541–556, Boston, Mass., USA.

Hermansson J, Petersson J, 2022. Methodology for deterministic geological modelling of the Forsmark site. Application to the development of the final repository for spent nuclear fuel. SKB R-20-10, Svensk Kärnbränslehantering AB.

Johansson P-O, 2004. Forsmark site investigation. Undisturbed pore water sampling and permeability measurements with BAT filter tips. Soil sampling for pore water analyses. SKB P-04-136, Svensk Kärnbränslehantering AB.

Johansson P-O, 2008. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM-Site Forsmark. R-08-08, Svensk Kärnbränslehantering AB

Jönsson S, 2013. Flödesloggningar i projekt SFK byggundersökningar. Geosigma. SKBdoc 1321424 ver 1.0, Svensk Kärnbränslehantering AB. (In Swedish.)

Lundin L, Stendahl J, Lode E, 2005. Forsmark site investigation. Soils in two large trenches. SKB P-05-166, Svensk Kärnbränslehantering AB.

Odén M, Follin S, Werner K, 2025. Methodology for hydrological-hydrogeological modelling of the Forsmark site. SKB R-20-14, Svensk Kärnbränslehantering AB.

Petrone J, Strömgren M, 2020. Baseline Forsmark – Digital elevation model. SKB R-17- 06, Svensk Kärnbränslehantering AB.

Petrone J, Sohlenius G, Ising J, 2020. Baseline Forsmark – Depth and stratigraphy of regolith. SKB R-17-07, Svensk Kärnbränslehantering AB.

Posiva SKB, 2017. Safety functions, performance targets and technical design requirements for a KBS-3V repository. Conclusions and recommendations from a joint SKB and Posiva working group. Posiva SKB Report 01, Posiva Oy, Svensk Kärnbränslehantering AB.

Rasul H, 2022. SFM-Grundvattenrör ritningar_2002 till 2022 (Bilaga C: Drawings of groundwater wells in regolith and across regolith/bedrock interface). SKBdoc 1982312 ver. 1.0, Svensk Kärnbränslehantering AB.

Rasul H, Earon R, Atmosudirdjo A, Werner K, 2023. Slug tests in groundwater monitoring wells in Forsmark in 2021. SKB P-22-26, Svensk Kärnbränslehantering AB.

Rhén I, Follin S, Hermanson J, 2003. Hydrological Site Descriptive Model – a strategy for its development during Site Investigations. SKB R-03-08, Svensk Kärnbränslehantering AB.

Selroos, J-O, Mas Ivars D, Munier R, Hartley L, Libby S, Davy P, Darcel C, Trinchero P, 2022. Methodology for discrete fracture network modelling of the Forsmark site. Part 1 – concepts, data and interpretation methods. SKB R-20-11, Svensk Kärnbränslehantering AB.

SKB, **2008.** Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark. SKB TR-08-05, Svensk Kärnbränslehantering AB.

SKB, **2010.** Platsval – lokalisering av slutförvaret för använt kärnbränsle. SKB R-10-42, Svensk Kärnbränslehantering AB.

SKB, **2011.** Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project. SKB TR-11-01, Svensk Kärnbränslehantering AB.

SKB, **2013.** Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark. SKB TR-11-04, Svensk Kärnbränslehantering AB.

Smith A, 2017. Slugtester i utvalda grundvattenrör i Forsmark sommaren 2016. Genomförande och resultat. SKBdoc 1562216 ver. 1.0, Svensk Kärnbränslehantering AB. (In Swedish.)

Sohlenius G, Svensson M, 2021. Regolith in wetlands with high nature values. Additional studies. SKB P-21-09, Svensk Kärnbränslehantering AB.

Sohlenius G, Wilin L, Hedenström A, Karlsson C, 2019. Quaternary deposits in the drainage area of Gunnarsboträsket in Forsmark. Stratigraphical and surficial distribution of Quaternary deposits. SKB P-19-15, Svensk Kärnbränslehantering AB.

SSM, 2018. Strålsäkerhet efter slutförvarets förslutning. SSM 2018:07, Strålsäkerhetsmyndigheten. (In Swedish.)

Van Genuchten M T, 1980. A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44, 892-898.

Werner K, 2004. Forsmark site investigation. Supplementary slug tests in groundwater monitoring wells in soil. SKB P-04-140, Svensk Kärnbränslehantering AB.

Werner K, 2018a. Bilaga till PM slugtester i grundvattenrör sommaren 2017. SKBdoc 1617130 ver. 1.0, Svensk Kärnbränslehantering AB. (In Swedish.)

Werner K, 2018b. Data compilation and analysis for the description of the access area of the planned spent fuel repository in Forsmark – meteorology, hydrology and near-surface hydrogeology. SKB P-17-19, Svensk Kärnbränslehantering AB.

Werner K, Johansson P-O, 2003. Forsmark site investigation. Slug tests in groundwater monitoring wells in soil. SKB P-03-65, Svensk Kärnbränslehantering AB.

Werner K, Lundholm K, 2004. Forsmark site investigation. Pumping tests in well SFM0074. SKB P-04-142, Svensk Kärnbränslehantering AB.

Werner K, Lundholm L, Johansson P-O, 2004. Forsmark site investigation. Drilling and pumping test of wells at Börstilåsen. SKB P-04-138, Svensk Kärnbränslehantering AB.

Werner K, Sassner M, Johansson E, 2013. Hydrology and near-surface hydrogeology at Forsmark – synthesis for the SR-PSU project. SR-PSU Biosphere. SKB R-13-19, Svensk Kärnbränslehantering AB.

Werner, K, Mårtensson E, Nordén S, 2014. Kärnbränsleförvaret i Forsmark. Pilotförsök med vattentillförsel till en våtmark. SKB R-14-23, Svensk Kärnbränslehantering AB.

Öhman J, Bockgård N, Follin S, 2012. Site investigation SFR. Bedrock Hydrogeology. SKB R-11-03, Svensk Kärnbränslehantering AB.

A Appendix

A1 Figures representing all single-hole test data

KFM01D T_{PFL-f} T_D

т_м т_т

600

700

800

900

Figure A-2. Single hole hydraulic (PFL and injection) test data from core-drilled boreholes at Drill Site 2. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-3. Single hole hydraulic (PFL and injection) test data from Drill Site 3. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-4. Single hole hydraulic (PFL and injection) test data from Drill Sites 4 and 5. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-5. Single hole hydraulic (PFL and injection) test data from Drill Site 6. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-6. Single hole hydraulic (PFL and injection) test data from Drill Site 7. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-7. Single hole hydraulic (PFL and injection) test data from Drill Site 8. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-8. Single hole hydraulic (PFL and injection) test data from Drill Site 9. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-9. Single hole hydraulic (PFL and injection) test data from Drill Site 10, 11 and 12. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

A-11. Single hole hydraulic (PFL and injection) test data from boreholes KFM14, KFM15, KFM16 and KFM20. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-12. Single hole hydraulic (PFL and injection) test data from boreholes KFM21, KFM22, KFM23 and KFM24. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

10-4

KFM26

TD

• T_{PFL-f}

Figure A-13. Single hole hydraulic (PFL and injection) test data from boreholes KFM25, KFM26 and KFM27. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-14. Single hole hydraulic (PFL and injection) test data from boreholes KFR27, KFR101, KFR102A and KFR102B. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-15. Single hole hydraulic (PFL and injection) test data from boreholes KFR103, KFR104, KFR105, and KFR106. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

Figure A-16. Single hole hydraulic (PFL and injection) test data from boreholes KFR118, KFR119, KFR120 and KFR121. Shaded areas indicate interpreted intercept with deterministic modelled deformation zones, with colouring scheme taken from Chapter 4.

B Appendix

B1 Catalogue of reports containing data presented

Table B-1. List of reports corresponding to the information available from core-drilled boreholes presented in this report. SHI = single-hole interpretation. P refers to SKB's P report series, whereas 7-digit numbers refer to doc-id in SKB's document handling system SKBdoc.

IDCODE	Start date of drilling	Drilling	SHI	PFL	Injection test
KFM01A	2002-10-28	P-03-32	P-04-116	P-04-193	P-04-95
KFM01B	2004-01-15	P-04-302	P-04-116		
KFM01C	2017-01-12	P-06-173	P-06-135		P-06-165
KFM01D	2006-02-18	P-06-173	P-06-210	P-06-161	P-06-195
KFM02A	2003-03-12	P-03-52	P-04-117	P-04-188, P-05-37	P-05-145, P-04-100
KFM02B	2007-02-13	P-07-44	P-07-107	P-07-128, P-07-83	
KFM03A	2003-06-23	P-03-59	P-04-118	P-04-189	P-04-194
KFM03B	2003-07-02	P-03-59	P-04-118		P-04-278
KFM04A	2003-11-19	P-03-82	P-04-119	P-04-190	P-04-293
KFM04B	2003-06-30	P-03-82			
KFM05A	2004-05-05	P-04-222	P-04-296	P-04-191	P-05-56
KFM06A	2004-09-21	P-05-50	P-05-132	P-05-15	P-05-165
KFM06B	2005-02-08	P-05-50	P-05-132		P-05-165
KFM06C	2006-06-05	P-05-277	P-06-83		P-06-23
KFM07A	2006-12-05	P-05-142	P-06-134, P-05-157	P-05-63	P-05-133
KFM07B	2005-10-18	P-06-170	· · · , · · · ·		P-06-86
KFM07C	2006-08-08	P-06-170	P-06-208	P-06-247	
KFM08A	2005-01-25	P-05-172	P-05-262	P-05-43	P-06-194
KFM08B	2005-01-26	P-05-172	P-05-262	P-07-85	P-05-235
KFM08C	2006-05-09	P-06-171	P-06-207	P-06-189	P-07-06
KFM08D	2007-02-10	P-06-171	P-07-108	P-07-128	
KFM09A	2005-10-27	P-06-169	P-06-134		P-06-52
KFM09B	2005-12-19	P-06-169	P-06-135		P-06-122
KFM10A	2006-06-01	P-06-172	P-06-207		P-07-31
KFM11A	2006-11-20	P-07-45	P-07-109	P-07-85	
KFM12A	2007-03-12	P-07-46	P-07-110		P-07-121
KFM13	2011-06-27			P-06-190	
KFM14	2011-05-31			P-19-19	
KFM15	2011-06-16			P-19-19	
KFM16	2011-05-25			P-19-19	
KFM20	2011-05-17			P-19-19	
KFM21	2011-06-09			P-19-19	
KFM22	2011-07-01			P-19-19	
KFM23	2011-07-07			P-19-19	
KFM24	2016-06-13	P-16-32	P-16-29	P-16-27	
KFM25	2019-09-19	P-19-25	P-20-13	P-20-17	
KFM26	2019-10-03	P-19-25	P-20-13	P-20-17	
KFM27	2019-10-09	P-09-12 P-19-25	P-20-13	P-20-17	
KFR101	2008-07-02	P-09-13	P-09-34	P-08-98	
KFR102A	2008-12-12	P-09-19	P-09-60	P-09-21	
KFR102B	2008-08-13	P-09-13	P-09-33	P-08-99	
KFR103	2008-08-26	P-09-13	P-09-33	P-08-99	
KFR104	2008-09-29	P-09-13	P-09-35	P-09-20	
KFR105	2009-06-02		P-10-06	P-09-09	P-17-24
KFR106	2009-09-03		P-10-08	P-09-73	
KFR117	2020-05-04	P-20-32			
KFR118	2020-05-07	P-20-32			
KFR110	2020-05-17	P-20-32			
KFR120	2020-00-17	P-20-32			
KFR121	2020-06-16	P-20-32			
KFR27	1981-09-10	/ v=	P-09-35	P-09-20, P-08-98	P-17-24

HFM01 2002-05-03 P-03-30 P-04-116 P-03-33 HFM02 2002-05-21 P-03-30 P-04-116 P-03-33 HFM03 2002-05-28 P-03-30 P-04-116 P-03-33 HFM04 2002-12-03 P-03-51 P-04-117 P-03-34 HFM05 2002-12-16 P-03-51 P-04-117 P-03-36 HFM06 2003-01-14 P-03-58 P-04-118 P-03-36 HFM07 2003-02-12 P-03-58 P-04-118 P-03-36 HFM08 2003-02-12 P-03-58 P-04-118 P-03-36 HFM09 2003-02-12 P-03-58 P-04-118 P-03-36 HFM01 2003-02-12 P-03-58 P-04-118 P-03-36 HFM09 2003-02-12 P-03-58 P-04-118 P-04-74 HFM10 2003-09-01 P-04-76 P-04-119 P-04-74 HFM11 2003-09-01 P-04-166 P-04-120 P-04-64 HFM12 2003-09-16 P-04-455 P-04-296 P-04-71 HFM14 2003-10-15 P-04-85 P-04-296 P-04-71
HFM022002-05-21P-03-30P-04-116P-03-33HFM032002-05-28P-03-30P-04-116P-03-33HFM042002-12-03P-03-51P-04-117P-03-34HFM052002-12-16P-03-51P-04-117P-03-34HFM062003-01-14P-03-58P-04-118P-03-36HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-76P-04-119P-04-74HFM122003-09-01P-04-76P-04-120P-04-64HFM132003-10-02P-04-85P-04-120P-04-64HFM132003-10-02P-04-85P-04-296P-04-71HFM142003-11-16P-04-85P-04-296P-04-71HFM152003-11-11P-04-94P-04-120P-04-65HFM172003-12-16P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-07P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM242005-11-29P-05-278P-06-210P-06-96
HFM032002-05-28P-03-30P-04-116P-03-33HFM042002-12-03P-03-51P-04-117P-03-34HFM052002-12-16P-03-51P-04-117P-03-34HFM062003-01-14P-03-58P-04-118P-03-36HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-76P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-296P-04-71HFM142003-10-09P-04-85P-04-296P-04-71HFM152003-11-16P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM212004-06-01P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM232005-09-01P-05-278P-05-207P-06-96
HFM042002-12-03P-03-51P-04-117P-03-34HFM052002-12-16P-03-51P-04-117P-03-34HFM062003-01-14P-03-58P-04-118P-03-36HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-76P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-296P-04-71HFM142003-10-09P-04-85P-04-296P-04-71HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-07P-04-245P-05-157P-05-14HFM212004-09-10P-04-245P-05-262P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM24205-11-29P-05-278P-06-210P-06-66
HFM052002-12-16P-03-51P-04-117P-03-34HFM062003-01-14P-03-58P-04-118P-03-36HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-76P-04-120P-04-64HFM122003-09-01P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-296P-04-71HFM142003-10-02P-04-85P-04-296P-04-71HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-16P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-07P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM232005-09-01P-04-245P-05-262P-05-14HFM242005-11-29P-05-278P-06-210P-06-96
HFM062003-01-14P-03-58P-04-118P-03-36HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-76P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-120P-04-64HFM142003-10-09P-04-85P-04-296P-04-71HFM142003-11-26HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-01P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM222004-09-10P-04-245P-05-262P-05-14HFM242005-11-29P-05-278P-06-210P-06-96
HFM072003-01-28P-03-58P-04-118P-03-36HFM082003-02-12P-03-58P-04-118P-03-36HFM092003-06-30P-04-76P-04-119P-04-74HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-106P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-296P-04-71HFM142003-11-26PPPHFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-10-17P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM222004-09-10P-04-245P-05-262P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM242005-11-29P-05-278P-06-210P-06-96
HFM08 2003-02-12 P-03-58 P-04-118 P-03-36 HFM09 2003-06-30 P-04-76 P-04-119 P-04-74 HFM10 2003-08-19 P-04-76 P-04-119 P-04-74 HFM11 2003-09-01 P-04-106 P-04-120 P-04-64 HFM12 2003-09-16 P-04-106 P-04-120 P-04-64 HFM13 2003-10-02 P-04-85 P-04-120 P-04-64 HFM14 2003-10-09 P-04-85 P-04-296 P-04-71 HFM14B 2003-10-15 P-04-85 P-04-296 P-04-71 HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM16 2003-11-26 HFM17 2003-12-08 P-04-106 P-04-120 P-04-65 HFM17 2003-12-16 P-04-106 P-04-120 P-04-72 HFM18 2003-12-18 P-04-106 P-04-296 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM19 2004-06-07 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 <td< td=""></td<>
HFM09 2003-06-30 P-04-76 P-04-119 P-04-74 HFM10 2003-08-19 P-04-76 P-04-119 P-04-74 HFM11 2003-09-01 P-04-106 P-04-120 P-04-64 HFM12 2003-09-16 P-04-106 P-04-120 P-04-64 HFM13 2003-10-02 P-04-85 P-04-120 P-04-71 HFM14 2003-10-09 P-04-85 P-04-296 P-04-71 HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM15 2003-10-15 P-04-94 P-04-120 P-04-65 HFM15 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-120 P-04-72 HFM18 2003-12-18 P-04-106 P-04-296 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 </td
HFM102003-08-19P-04-76P-04-119P-04-74HFM112003-09-01P-04-106P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-120P-04-71HFM142003-10-09P-04-85P-04-296P-04-71HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-01P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM222004-09-10P-04-245P-05-262P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM242005-11-29P-05-278P-06-210P-06-96
HFM112003-09-01P-04-106P-04-120P-04-64HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-120P-04-71HFM142003-10-09P-04-85P-04-296P-04-71HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-01P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM222004-09-10P-04-245P-05-262P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM242005-11-29P-05-278P-06-210P-06-96
HFM122003-09-16P-04-106P-04-120P-04-64HFM132003-10-02P-04-85P-04-120P-04-71HFM142003-10-09P-04-85P-04-296P-04-71HFM152003-10-15P-04-85P-04-296P-04-71HFM162003-11-11P-04-94P-04-120P-04-65HFM172003-12-08P-04-106P-04-120P-04-72HFM182003-12-16P-04-106P-04-120P-04-72HFM192003-12-18P-04-106P-04-296P-04-72HFM202004-06-01P-04-245P-05-157P-05-14HFM212004-06-07P-04-245P-05-157P-05-14HFM222004-09-10P-04-245P-05-262P-05-14HFM232005-09-01P-05-278P-06-207P-06-191HFM242005-11-29P-05-278P-06-210P-06-96
HFM13 2003-10-02 P-04-85 P-04-120 P-04-71 HFM14 2003-10-09 P-04-85 P-04-296 P-04-71 HFM14B 2003-11-26 HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM16 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-296 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM14 2003-10-09 P-04-85 P-04-296 P-04-71 HFM14B 2003-11-26 HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM16 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-296 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM14B 2003-11-26 HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM16 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-296 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM15 2003-10-15 P-04-85 P-04-296 P-04-71 HFM16 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-120 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM16 2003-11-11 P-04-94 P-04-120 P-04-65 HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-120 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-262 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM17 2003-12-08 P-04-106 P-04-120 P-04-72 HFM18 2003-12-16 P-04-106 P-04-120 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM18 2003-12-16 P-04-106 P-04-120 P-04-72 HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM19 2003-12-18 P-04-106 P-04-296 P-04-72 HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM20 2004-06-01 P-04-245 P-05-157 P-05-14 HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM21 2004-06-07 P-04-245 P-05-157 P-05-14 HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM22 2004-09-10 P-04-245 P-05-262 P-05-14 HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM23 2005-09-01 P-05-278 P-06-207 P-06-191 HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HFM24 2005-11-29 P-05-278 P-06-210 P-06-96
HEM25 2005-09-08 P-06-166 P-06-210 P-06-139
HEM26 2005-11-18 P-06-166 P-06-208 P-06-139
HEM27 2005-11-10 P-06-166 P-06-210 P-06-191
HEM28 2005-10-14 P-05-278 P-06-207 P-06-191
HEM29 2005-12-19 P-06-166 P-06-210 P-06-192
HEM30 2006-05-11 P-06-166 P-06-207 P-06-192
HEM31 2006-05-19 P-06-166 P-06-207
HEM32 2006-01-14 P-06-166 P-06-207 P-06-96
HEM33 2006-05-03 P-07-11 P-07-109 P-06-193
HEM34 2006-06-02 P-07-11 P-07-109 P-06-193
HEM35 2006-06-14 P-07-11 P-07-109 P-06-193
HEM36 2006-09-04 P-07-43 P-07-110 P-07-22
HEM37 2006-08-16 P-07-43 P-07-110
HEM38 2006-06-22 P-06-166 P-06-207
HEM40 2011-05-19
HEM1 2011-05-28
HEM42 2018-04-11 P-18-09
HEM43 2018-04-23 P-18-09
HEM4 2018-04-26 D-18-09
HEM45 2018-05-04 P-18-09
HEM46 2018-05-09 P-18-09
HEM47 2019-09-05 P-19-25 (1860464.)
HER101 2008-05-15 P-08-95 P-09-34
HER102 2008-05-05 P-08-95 P-09-34
HER105 2008-04-22 P-08-95 P-09-34
HFR106 2009-07-02 P-09-47 P-09-54

Table B-2. List of reports corresponding to the information available from percussiondrilled boreholes presented in this report. SHI = single-hole interpretation.

IDCUDE Wall installation Pd3:13 Pd3:65 SFM0002 202245-30 Pd3:13 Pd3:65 SFM0002 202245-30 Pd3:13 Pd3:65 SFM0003 202245-30 Pd3:57 Pd3:65 SFM0005 2023-01-30 Pd3:57 Pd3:65 SFM0006 2003-02-17 Pd3:57 Pd3:65 SFM0007 2033-02-17 Pd3:57 Pd3:65 SFM0008 2003-02-27 Pd3:64 Pd3:65 SFM0011 2003-02-27 Pd3:64 Pd3:65 SFM0012 2003-02-28 Pd3:64 Pd3:65 SFM0013 2003-02-29 Pd3:64 Pd3:65 SFM0015 2003-02-20 Pd3:64 Pd3:65 SFM0016 2003-02-20 Pd3:64 Pd3:65 SFM0012 2003-02-21 Pd3:64 Pd3:65 SFM0021 2003-02-21 Pd3:64 Pd3:65 SFM0021 2003-02-21 Pd3:64 Pd3:65 SFM0021 2003-02-21 Pd3:64 Pd3:65		Date of drilling/	Drilling/well	Slug test	Pumping test	In situ permeameter
SH00001 2002-265-30 P-03-13 P-03-63 SFM0002 2002-265-30 P-03-13 P-03-65 SFM0006 2002-12-10 P-03-57 P-03-65 SFM0007 2003-02-17 P-03-57 P-03-65 SFM0008 2003-02-17 P-03-57 P-03-65 SFM0000 2003-02-17 P-03-54 P-03-65 SFM0010 2003-02-27 P-03-64 P-03-65 SFM0010 2003-02-28 P-03-64 P-03-65 SFM0011 2003-02-28 P-03-64 P-03-65 SFM0012 2003-02-28 P-03-64 P-03-65 SFM0013 2003-02-29 P-03-64 P-03-65 SFM0014 2003-02-20 P-03-64 P-03-65 SFM0015 2003-02-21 P-03-64 P-03-65 SFM0020 2003-02-20 P-03-64 P-03-65 SFM0021 2003-02-21 P-03-64 P-03-65 SFM0022 2003-02-21 P-03-64 P-03-65 SFM0022 2003-02-21 P-03-64		well installation	Installation	D 00 05		test
STM0002 2002-05-30 P-03-13 P-03-63 SFM0002 2002-12-10 P-03-50 P-03-65 SFM0002 2002-12-10 P-03-50 P-03-65 SFM0002 2003-01-13 P-03-67 P-03-65 SFM0002 2003-02-17 P-03-64 P-03-65 SFM0002 2003-02-17 P-03-64 P-03-65 SFM0011 2003-02-27 P-03-64 P-03-65 SFM0012 2003-02-28 P-03-64 P-03-65 SFM0013 2003-02-20 P-03-64 P-03-65 SFM0015 2003-02-20 P-03-64 P-03-65 SFM0016 2003-02-20 P-03-64 P-03-65 SFM0017 2003-02-20 P-03-64 P-03-65 SFM0012 2003-02-20 P-03-64 P-03-65 SFM0021 2003-02-21 P-03-64 P-03-65 SFM0022 2003-02-21 P-03-64 P-03-65 SFM0023 2003-02-25 P-03-64 P-03-65 SFM0025 2003-02-25 P-03-64 P-03-65 SFM0026 2003-03-14 P-03-64 P-03-	SFM0001	2002-05-23	P-03-13	P-03-05		
SFM0002 2020.12:03 P.03.850 P.03.85 SFM0006 2023.02:17 P.03.57 P.03.85 SFM0007 2023.02:17 P.03.57 P.03.85 SFM0008 203.03.02:7 P.03.57 P.03.85 SFM0001 203.03.27 P.03.64 P.03.85 SFM0012 2003.02:24 P.03.64 P.03.85 SFM0012 2003.02:24 P.03.64 P.03.85 SFM0012 2003.02:21 P.03.64 P.03.85 SFM0021 2003.03:12 P.03.64 P.03.86 SFM0022 2003.02:2 P.03.64 P.03.86 SFM0022 2003.02:2 P.03.64 P.03.86 SFM0022 2003.02:2 P.03.64 P.03.85 SFM0023 2003.03:12 P.03.64	SFM0002	2002-05-30	P-03-13	P-03-05		
SFM0006 2003-12-10 P.03-85 P.03-85 SFM0007 2003-01-10 P.03-57 P.03-85 SFM0008 2003-02-17 P.03-57 P.03-85 SFM0009 2003-02-17 P.03-57 P.03-85 SFM0010 2003-02-27 P.03-84 P.03-85 SFM0011 2003-02-27 P.03-84 P.03-85 SFM0011 2003-02-28 P.03-84 P.03-85 SFM0013 2003-02-29 P.03-84 P.03-85 SFM0015 2003-02-20 P.03-84 P.03-85 SFM0016 2003-02-20 P.03-84 P.03-85 SFM0017 2003-02-20 P.03-84 P.03-85 SFM0021 2003-02-21 P.03-84 P.03-85 SFM0022 2003-02-21 P.03-84 P.03-85 SFM0023 2003-02-21 P.03-84 P.03-85 SFM0022 2003-02-25 P.03-84 P.03-85 SFM0023 2003-03-14 P.03-84 P.03-85 SFM0025 2003-3-14 P.03-64	SFM0003	2002-03-30	P-03-13	P-03-65		
SFM0007 2003-01-10 P-03-57 P-03-65 SFM0008 2003-02-17 P-03-57 P-03-65 SFM0010 2003-02-27 P-03-54 P-03-65 SFM0010 2003-02-27 P-03-64 P-03-65 SFM0011 2003-02-27 P-03-64 P-03-65 SFM0012 2003-02-28 P-03-64 P-03-65 SFM0014 2003-02-28 P-03-64 P-03-65 SFM0016 2003-02-29 P-03-64 P-03-65 SFM0017 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0012 2003-02-21 P-03-64 P-03-65 SFM0020 2003-02-26 P-03-64 P-03-65 SFM0021 2003-02-27 P-03-64 P-03-65 SFM0022 2003-02-26 P-03-64 P-03-65 SFM0023 2003-02-27 P-03-64 P-03-65 SFM0024 2003-02-26 P-03-64 P-03-65 SFM0025 2003-03-14 P-03-64	SEM0005	2002-12-00	P-03-50	P-03-65		
SFM0007 2003-02-13 P-03-57 P-03-65 SFM0008 2003-02-17 P-03-64 P-03-65 SFM0011 2003-03-26 P-03-84 P-03-65 SFM0011 2003-03-26 P-03-84 P-03-85 SFM0011 2003-02-20 P-03-84 P-03-85 SFM0015 2003-02-21 P-03-84 P-03-85 SFM0016 2003-02-20 P-03-84 P-03-85 SFM0016 2003-02-20 P-03-84 P-03-85 SFM0017 2003-02-20 P-03-84 P-03-85 SFM0018 2003-02-20 P-03-84 P-03-85 SFM0019 2003-02-20 P-03-84 P-03-85 SFM0021 2003-03-21 P-03-84 P-03-85 SFM0022 2003-03-21 P-03-84 P-03-85 SFM0022 2003-03-21 P-03-84 P-03-85 SFM0022 2003-03-18 P-03-84 P-03-85 SFM0022 2003-03-18 P-03-84 P-03-85 SFM0023 2003-03-10 P-03-84	SFM0006	2002-12-10	P-03-57	P-03-65		
SFM0009 2003-02-17 P-03-67 P-03-65 SFM0001 2003-03-25 P-03-64 P-03-65 SFM0011 2003-03-27 P-03-64 P-03-65 SFM0012 2003-03-28 P-03-64 P-03-65 SFM0013 2003-03-28 P-03-64 P-03-65 SFM0014 2003-02-18 P-03-64 P-03-65 SFM0015 2003-02-29 P-03-64 P-03-65 SFM0016 2003-02-20 P-03-64 P-03-65 SFM0017 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-21 P-03-64 P-03-65 SFM0020 2003-03-21 P-03-64 P-03-65 SFM0021 2003-02-26 P-03-64 P-03-65 SFM0022 2003-02-27 P-03-64 P-03-65 SFM0023 2003-02-26 P-03-64 P-03-65 SFM0024 2003-02-27 P-03-64 P-03-65 SFM0025 2003-03-14 P-03-64 P-03-65 SFM0026 2003-03-14 P-03-64	SFM0007	2003-02-13	P-03-57	P-03-65		
SFM0000 2003-03-25 P-03-64 P-03-65 SFM0011 2003-03-26 P-03-64 P-03-65 SFM0013 2003-02-20 P-03-84 P-03-65 SFM0015 2003-02-20 P-03-84 P-03-85 SFM0016 2003-02-20 P-03-84 P-03-85 SFM0017 2003-02-20 P-03-84 P-03-85 SFM0016 2003-02-20 P-03-84 P-03-85 SFM0017 2003-02-20 P-03-84 P-03-85 SFM0012 2003-32 P-03-84 P-03-85 SFM0021 2003-32.4 P-03-84 P-03-85 SFM0022 2003-02-21 P-03-84 P-03-85 SFM0023 2003-02-21 P-03-84 P-03-85 SFM0024 2003-02-21 P-03-84 P-03-85 SFM0025 2003-02-21 P-03-84 P-03-85 SFM0024 2003-02-12 P-03-84 P-03-85 SFM0025 2003-03-12 P-03-84 P-03-85 SFM0026 2003-03-14 P-03-85 <	SFM0008	2003-02-17	P-03-57	P-03-65		
SFM0010 2003-03:27 P-03-64 P-03-65 SFM0011 2003-03:28 P-03-64 P-03-65 SFM0014 2003-02:28 P-03-64 P-03-65 SFM0016 2003-02:29 P-03-84 P-03-85 SFM0016 2003-02:20 P-03-84 P-03-85 SFM0016 2003-02:20 P-03-84 P-03-85 SFM0017 2003-03:20 P-03-84 P-03-85 SFM0019 2003-03:20 P-03-84 P-03-85 SFM0012 2003-03:21 P-03-84 P-03-85 SFM0021 2003-03:21 P-03-84 P-03-85 SFM0022 2003-03:21 P-03-64 P-03-85 SFM0025 2003-03:14 P-03-84 P-03-85 SFM0029 2003-03:14 P-03-84 P-03-85 SFM0031 2003-03:14 P-03-84 P-03-85 SFM0032 2003-03:14 P-03-84 P-03-85 SFM0033 2003-03:14 P-04-136 P-04-132 SFM0032 2003-03:11 P-03-84	SFM0009	2003-03-25	P-03-64	P-03-65		
SFM0011 2003-02-26 P-03-64 P-03-65 SFM0013 2003-02-20 P-03-64 P-03-65 SFM0014 2003-02-10 P-03-64 P-03-65 SFM0015 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0020 2003-02-20 P-03-64 P-03-65 SFM0021 2003-02-21 P-03-64 P-03-65 SFM0022 2003-02-26 P-03-64 P-03-65 SFM0022 2003-03-14 P-03-64 P-03-65 SFM0022 2003-03-14 P-03-64 P-03-65 SFM0022 2003-03-14 P-03-64 P-03-65 SFM0023 2003-03-14 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64	SFM0010	2003-03-27	P-03-64	P-03-65		
SFM0012 2003-02-24 P-03-64 P-03-65 SFM0014 2003-02-18 P-03-64 P-03-65 SFM0016 2003-02-20 P-03-64 P-03-65 SFM0017 2003-02-20 P-03-64 P-03-65 SFM0018 2003-02-20 P-03-64 P-03-65 SFM0019 2003-03-20 P-03-64 P-03-65 SFM0020 2003-03-20 P-03-64 P-03-65 SFM0021 2003-03-24 P-03-64 P-03-65 SFM0022 2004-02-05 P-04-139 P-04-140 SFM0023 2003-02-26 P-03-64 P-03-65 SFM0024 2003-02-26 P-03-64 P-03-65 SFM0025 2003-03-18 P-03-64 P-03-65 SFM0027 2003-30-18 P-03-64 P-03-65 SFM0031 2003-30-40 P-03-64 P-03-65 SFM0032 2003-30-30 P-03-64 P-03-65 SFM0032 2003-30-41 P-03-64 P-03-65 SFM0032 2003-30-41 P-03-64	SFM0011	2003-03-26	P-03-64	P-03-65		
SFM0013 2003-02:8 P-03-64 P-03-65 SFM0014 2003-02:9 P-03-64 P-03-65 SFM0017 2003-02:9 P-03-64 P-03-65 SFM0018 2003-02:0 P-03-64 P-03-65 SFM0019 2003-02:0 P-03-64 P-03-65 SFM0012 2003-03:2 P-03-64 P-03-65 SFM0021 2003-03:2 P-03-64 P-03-65 SFM0022 2004-02:20 P-03-64 P-03-65 SFM0022 2003-02:21 P-03-64 P-03-65 SFM0023 2003-03:12 P-03-64 P-03-65 SFM0024 2003-03:18 P-03-64 P-03-65 SFM0025 2003-03:14 P-03-64 P-03-65 SFM0028 2003-03:14 P-03-64 P-03-65 SFM0030 2003-03:14 P-03-64 P-03-65 SFM0031 2003-03:14 P-03-64 P-03-65 SFM0032 2003-03:11 P-03-64 P-03-65 SFM0032 2003-03:11 P-03-64 P-03-65 SFM0032 2003-04:14 P-04-136	SFM0012	2003-02-24	P-03-64	P-03-65		
SFM0014 2003-02-018 P-03-64 P-03-65 SFM0016 2003-02-019 P-03-64 P-03-65 SFM0017 2003-02-02 P-03-64 P-03-65 SFM0018 2003-02-02 P-03-64 P-03-65 SFM00102 2003-03-12 P-03-64 P-03-65 SFM0020 2003-03-12 P-03-64 P-03-65 SFM0021 2003-03-24 P-03-64 P-03-65 SFM0022 2003-02-21 P-03-64 P-03-65 SFM0025 2003-02-26 P-03-64 P-03-65 SFM0025 2003-02-27 P-03-64 P-03-65 SFM0026 2003-03-18 P-03-64 P-03-65 SFM0027 2003-03-14 P-03-64 P-03-65 SFM0031 2003-03-06 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0034 2003-03-11 P-03-64 P-	SFM0013	2003-03-26	P-03-64	P-03-65		
SFM0016 2003-02:9 P-03-64 P-03-65 SFM0017 2003-02:20 P-03-64 P-03-65 SFM0018 2003-02:20 P-03-64 P-03-65 SFM0019 2003-03:20 P-03-64 P-03-65 SFM0021 2003-03:20 P-03-64 P-03-65 SFM0022 2003-03:21 P-03-64 P-03-65 SFM0022 2003-02:26 P-03-64 P-03-65 SFM0022 2003-02:26 P-03-64 P-03-65 SFM0022 2003-02:26 P-03-64 P-03-65 SFM0022 2003-03:18 P-03-64 P-03-65 SFM0022 2003-03:14 P-03-64 P-03-65 SFM0023 2003-03:14 P-03-64 P-03-65 SFM0031 2003-03:14 P-03-64 P-03-65 SFM0032 2003-03:07 P-03-64 P-03-65 SFM0032 2003-03:10 P-03-64 P-03-65 SFM0032 2003-03:11 P-03-64 P-03-65 SFM0032 2003-04:14 P-04-136 P-04-136 SFM0052 2003-04:16 P-04-136 P-0	SFM0014	2003-02-18	P-03-64	P-03-65		
SFM0016 2003-02:0 P-03-64 P-03-65 SFM0017 2003-02:20 P-03-64 P-03-65 SFM0018 2003-02:20 P-03-64 P-03-65 SFM0020 2003-03:21 P-03-64 P-03-65 SFM0021 2003-03:24 P-03-64 P-03-65 SFM0022 2003-02:26 P-03-64 P-03-65 SFM0022 2003-02:27 P-03-64 P-03-65 SFM0022 2003-02:28 P-03-64 P-03-65 SFM0022 2003-02:28 P-03-64 P-03-65 SFM0022 2003-02:27 P-03-64 P-03-65 SFM0022 2003-03-18 P-03-64 P-03-65 SFM0022 2003-03-11 P-03-64 P-03-65 SFM0033 2003-03-04 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0035 2003-04-16 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136	SFM0015	2003-02-20	P-03-64	P-03-65		
SFM0017 2003-02:20 P-03-64 P-03-65 SFM0019 2003-02:20 P-03-64 P-03-65 SFM0021 2003-03:24 P-03-64 P-03-65 SFM0022 2003-03:24 P-03-64 P-03-65 SFM0022 2003-02:21 P-03-64 P-03-65 SFM0022 2003-02:25 P-03-64 P-03-65 SFM0022 2003-02:26 P-03-64 P-03-65 SFM0022 2003-02:27 P-03-64 P-03-65 SFM0022 2003-03-18 P-03-64 P-03-65 SFM0022 2003-03-14 P-03-64 P-03-65 SFM0022 2003-03-14 P-03-64 P-03-65 SFM0032 2003-03-14 P-03-64 P-03-65 SFM0032 2003-03-14 P-03-64 P-03-65 SFM0032 2003-03-10 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-	SFM0016	2003-02-19	P-03-64	P-03-65		
SFM0018 2003-02-26 P-03-64 P-03-65 SFM0020 2003-03-12 P-03-64 P-03-65 SFM0022 2003-02-21 P-03-64 P-03-65 SFM0022 2003-02-26 P-03-64 P-03-65 SFM0022 2003-02-26 P-03-64 P-03-65 SFM0024 2003-02-26 P-03-64 P-03-65 SFM0025 2003-02-26 P-03-64 P-03-65 SFM0027 2003-02-27 P-03-64 P-03-65 SFM0028 2003-03-18 P-03-64 P-03-65 SFM0029 2003-03-14 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0032 2003-04-16 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 <td>SFM0017</td> <td>2003-02-20</td> <td>P-03-64</td> <td>P-03-65</td> <td></td> <td></td>	SFM0017	2003-02-20	P-03-64	P-03-65		
SFM0020 2003-03-20 P-03-64 P-03-65 SFM0021 2003-03-24 P-03-64 P-03-65 SFM0022 2003-03-24 P-03-64 P-03-65 SFM0023 2003-02-21 P-03-64 P-03-65 SFM0026 2003-02-25 P-03-64 P-03-65 SFM0026 2003-02-25 P-03-64 P-03-65 SFM0027 2003-02-25 P-03-64 P-03-65 SFM0028 2003-03-12 P-03-64 P-03-65 SFM0028 2003-03-14 P-03-64 P-03-65 SFM0028 2003-03-14 P-03-64 P-03-65 SFM0030 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-07 P-03-64 P-03-65 SFM0032 2003-03-01 P-03-64 P-03-65 SFM0032 2003-03-01 P-03-64 P-03-65 SFM0032 2003-03-01 P-03-64 P-03-65 SFM0032 2003-03-01 P-03-64 P-03-65 SFM0032 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-	SFM0018	2003-02-26	P-03-64	P-03-65		
SFM0021 2003-03-12 P-03-64 P-03-65 SFM0022 2004-02-05 P-04-139 P-04-140 SFM0023 2003-02-26 P-03-64 P-03-65 SFM0024 2003-02-26 P-03-64 P-03-65 SFM0025 2003-02-26 P-03-64 P-03-65 SFM0026 2003-03-18 P-03-64 P-03-65 SFM0027 2003-04-09 P-03-64 P-03-65 SFM0028 2003-03-12 P-03-64 P-03-65 SFM0029 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-04 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0035 2003-04-11 P-04-136 P-04-136 SFM0051 2003-04-11 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-05-21 P-04-136 P-04-138 SFM0053 2003-11-13 P-04-138 P-04-138 <td>SFM0019</td> <td>2003-03-20</td> <td>P-03-64</td> <td>P-03-65</td> <td></td> <td></td>	SFM0019	2003-03-20	P-03-64	P-03-65		
SFM0022 2004-02-05 P-04-139 P-04-140 SFM0023 2003-02-21 P-03-64 P-03-65 SFM0024 2003-02-25 P-03-64 P-03-65 SFM0025 2003-03-18 P-03-64 P-03-65 SFM0026 2003-03-14 P-03-64 P-03-65 SFM0027 2003-03-14 P-03-64 P-03-65 SFM0028 2003-03-14 P-03-64 P-03-65 SFM0029 2003-03-14 P-03-64 P-03-65 SFM0030 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-10 P-03-64 P-03-65 SFM0032 2003-03-10 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136	SFM0020	2003-03-12	P-03-64	P-03-65		
SFM0022 2003-02-21 P-03-64 P-03-65 SFM0023 2003-02-26 P-03-64 P-03-65 SFM0026 2003-02-26 P-03-64 P-03-65 SFM0027 2003-03-18 P-03-64 P-03-65 SFM0028 2003-03-18 P-03-64 P-03-65 SFM0029 2003-03-12 P-03-64 P-03-65 SFM0020 2003-03-14 P-03-64 P-03-65 SFM0031 2003-03-06 P-03-64 P-03-65 SFM0032 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0034 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-28 P-03-64 P-03-65 SFM00502 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-14 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-01-11 P-04-136 P-04-136 SFM0052 2003-11-17 P-04-136 P-04-136 SFM0052 2003-11-17 P-04-138 P-04-138 <td>SFM0021</td> <td>2003-03-24</td> <td>P-03-64</td> <td>P-03-65</td> <td></td> <td></td>	SFM0021	2003-03-24	P-03-64	P-03-65		
SFM0023 2003-02-25 P-03-64 P-03-65 SFM0025 2003-02-25 P-03-64 P-03-65 SFM0027 2003-03-18 P-03-64 P-03-65 SFM0028 2003-03-14 P-03-64 P-03-65 SFM0029 2003-03-14 P-03-64 P-03-65 SFM00202 2003-03-14 P-03-64 P-03-65 SFM0030 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-00 P-03-64 P-03-65 SFM0032 2003-03-10 P-03-64 P-03-65 SFM0032 2003-03-11 P-03-64 P-03-65 SFM0033 2003-03-11 P-03-64 P-03-65 SFM0034 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136	SFM0022	2004-02-05	P-04-139	P-04-140		
SFM0024 2003-02-22 P-03-64 P-03-65 SFM0026 2003-03-18 P-03-64 P-03-65 SFM0027 2003-04-09 P-03-64 P-03-65 SFM0028 2003-03-12 P-03-64 P-03-65 SFM0029 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-03 P-03-64 P-03-65 SFM0033 2003-03-04 P-03-64 P-03-65 SFM0035 2003-03-07 P-03-64 P-03-65 SFM0036 2003-03-07 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-28 P-03-64 P-03-65 SFM0050 2003-04-11 P-04-136 P-04-136 SFM0051 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-138 SFM0054 2003-05-21 P-04-138 P-04-138 SFM0055 2003-11-17 P-04-138	SFM0023	2003-02-21	P-03-64	P-03-65		
SFM0022 2003-02-223 P-03-64 P-03-65 SFM0027 2003-04-09 P-03-64 P-03-65 SFM0028 2003-03-14 P-03-64 P-03-65 SFM0029 2003-03-04 P-03-64 P-03-65 SFM0021 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-03 P-03-64 P-03-65 SFM0032 2003-03-03 P-03-64 P-03-65 SFM0033 2003-03-10 P-03-64 P-03-65 SFM0034 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0037 2003-04-16 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-138 SFM0055 2003-11-13 P-04-136 P-04-138 SFM0056 2003-11-17 P-04-138 P-04-138 SFM0065 2004-02-05 P-04-138	SFM0024	2003-02-20	P-03-04	P-03-05		
SFM0027 2003-03-10 P-03-64 P-03-65 SFM0028 2003-03-12 P-03-64 P-03-65 SFM0029 2003-03-04 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-03 P-03-64 P-03-65 SFM0032 2003-03-04 P-03-64 P-03-65 SFM0033 2003-03-07 P-03-64 P-03-65 SFM0035 2003-03-07 P-03-64 P-03-65 SFM0035 2003-03-07 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0036 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-14 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-138 P-04-138 SFM0052 2003-11-26 P-04-138 P-04-138 SFM0052 2003-11-17 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138	SEM0025	2003-02-25	P-03-04	P-03-05		
D1 M0027 2003-00-132 P-03-64 P-03-65 SFM0029 2003-03-14 P-03-64 P-03-65 SFM0031 2003-03-04 P-03-64 P-03-65 SFM0032 2003-03-03 P-03-64 P-03-65 SFM0033 2003-03-04 P-03-64 P-03-65 SFM0033 2003-03-01 P-03-64 P-03-65 SFM0034 2003-03-10 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0036 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-01-19 P-04-136 P-04-136 SFM0056 2003-02-15 P-04-138 P-04-138 SFM0061 2003-11-19 P-04-138 </td <td>SEM0020</td> <td>2003-03-10</td> <td>P 03 64</td> <td>P 03 65</td> <td></td> <td></td>	SEM0020	2003-03-10	P 03 64	P 03 65		
Cl mod20 2003-03-14 P-03-64 P-03-65 SFM0031 2003-03-06 P-03-64 P-03-65 SFM0031 2003-03-06 P-03-64 P-03-65 SFM0032 2003-03-07 P-03-64 P-03-65 SFM0033 2003-03-01 P-03-64 P-03-65 SFM0034 2003-03-07 P-03-64 P-03-65 SFM0035 2003-03-07 P-03-64 P-03-65 SFM0036 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0050 2003-04-16 P-04-136 P-04-136 SFM0051 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0056 2003-04-15 P-04-136 P-04-138 SFM0057 2003-04-15 P-04-138 P-04-138 SFM0058 2003-11-19 P-04-138 P-04-138 SFM0068 2004-02-05 P-04-139 P-04-140 SFM0061 2004-02-12 P-04-139 <td>SFM0027</td> <td>2003-04-09</td> <td>P-03-64</td> <td>P-03-65</td> <td></td> <td></td>	SFM0027	2003-04-09	P-03-64	P-03-65		
Dir M0020 2003-03-04 P-03-64 P-03-65 P-04-142 SFM0031 2003-03-06 P-03-64 P-03-65 P-04-142 SFM0032 2003-03-03 P-03-64 P-03-65 P-04-142 SFM0033 2003-03-04 P-03-64 P-03-65 P-04-142 SFM0034 2003-03-10 P-03-64 P-03-65 S SFM0035 2003-03-11 P-03-64 P-03-65 S SFM0050 2003-03-11 P-03-64 P-03-65 S SFM0051 2003-03-11 P-03-64 P-03-65 S SFM0052 2003-04-16 P-04-136 P-04-136 SFM0051 2003-04-15 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0053 2003-01-15 P-04-136 S P-04-136 SFM0054 2003-01-15 P-04-136 S P-04-136 SFM0055 2003-01-17 P-04-136 S P-04-136 SFM0060 2003-11-19 P-04-138 P-04-138 S SFM0061 2003-11-17 P-04-138	SFM0020	2003-03-12	P-03-64	P-03-65		
SFM0031 2000-03-06 P-03-64 P-03-65 P-04-142 SFM0032 2003-03-04 P-03-64 P-03-65 SF-04-142 SFM0033 2003-03-07 P-03-64 P-03-65 SF-04-142 SFM0037 2003-03-10 P-03-64 P-03-65 SF-04-142 SFM0036 2003-03-11 P-03-64 P-03-65 SF-04-136 SFM0037 2003-03-11 P-03-64 P-03-65 SF-04-136 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-16 P-04-136 P-04-138 SFM0056 2003-05-21 P-04-138 P-04-138 SFM0050 2003-11-26 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 P-04-138 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 <td< td=""><td>SEM0030</td><td>2003-03-04</td><td>P-03-64</td><td>P-03-65</td><td></td><td></td></td<>	SEM0030	2003-03-04	P-03-64	P-03-65		
SFM0032 2003-03-03 P-03-64 P-03-65 P-04-142 SFM0033 2003-03-04 P-03-64 P-03-65 SFM035 SFM0034 2003-03-07 P-03-64 P-03-65 SFM0036 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0050 2003-03-28 P-03-64 P-03-65 SFM0051 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-138 SFM0056 2003-11-19 P-04-138 P-04-138 SFM0051 2003-11-19 P-04-138 P-04-138 SFM0052 2003-11-19 P-04-138 P-04-140 SFM0053 2004-02-05 P-04-138 P-04-140 SFM0061 2004-02-12 P-04-139 P-04-140 SFM0062 </td <td>SFM0031</td> <td>2003-03-06</td> <td>P-03-64</td> <td>P-03-65</td> <td>P-04-142</td> <td></td>	SFM0031	2003-03-06	P-03-64	P-03-65	P-04-142	
SFM0033 2003-03-04 P-03-64 P-03-65 SFM0034 2003-03-10 P-03-64 P-03-65 SFM0035 2003-03-07 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0039 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 S SFM0057 2003-066 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 P-04-140 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0062 2004-02-12 P-04-139 P-04-140 SFM0066 2004-02-24 P-04-139	SFM0032	2003-03-03	P-03-64	P-03-65	P-04-142	
SFM0034 2003-03-10 P-03-64 P-03-65 SFM0035 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0049 2003-03-28 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-14 P-04-136 P-04-136 SFM0052 2003-04-15 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 P-04-138 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-13 P-04-138 P-04-138 SFM0060 2003-11-13 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 P-04-140 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-06 P-04-139 P-04-140 SFM0064 2004-03-23 P-04	SFM0033	2003-03-04	P-03-64	P-03-65		
SFM0035 2003-03-07 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0050 2003-03-28 P-03-64 P-03-65 SFM0051 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-15 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-04-15 P-04-136 P-04-136 SFM0057 2003-04-15 P-04-136 P-04-138 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0059 2003-11-13 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 P-04-138 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-12 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 P-04-140 SFM0065 2004-03-29 P	SFM0034	2003-03-10	P-03-64	P-03-65		
SFM0036 2003-03-11 P-03-64 P-03-65 SFM0037 2003-03-11 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-11 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 P-04-136 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0059 2003-11-17 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 P-04-140 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-06 P-04-139 P-04-140 SFM0064 2004-02-26 P-04-139 P-04-140 SFM0065 2004-03-23 P-04-139 P-04-140 SFM0066 2004-03-24	SFM0035	2003-03-07	P-03-64	P-03-65		
SFM0037 2003-03-11 P-03-64 P-03-65 SFM0049 2003-03-28 P-03-64 P-03-65 SFM0050 2003-04-11 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-04-15 P-04-136 P-04-136 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0059 2003-11-17 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-1143 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-12 P-04-139 P-04-140 SFM0065 2004-02-26 P-04-139 SFM0061 SFM0066 2004-02-26 P-04-139 P-04-140 SFM0067 2004-03-23 P-0	SFM0036	2003-03-11	P-03-64	P-03-65		
SFM0049 2003-03-28 P-03-64 P-03-65 SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 P-04-138 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0059 2003-11-17 P-04-138 P-04-138 SFM0060 2003-11-17 P-04-138 1617130 SFM0061 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 S SFM0065 2004-02-06 P-04-139 S SFM0066 2004-02-20 P-04-139 P-04-140 SFM0066 2004-02-20 P-04-139 P-04-140 SFM0069 2004-03-23 P-04-139	SFM0037	2003-03-11	P-03-64	P-03-65		
SFM0050 2003-04-14 P-04-136 P-04-136 SFM0051 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 P-04-136 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-38 P-04-138 SFM0050 2003-11-13 P-04-138 P-04-138 SFM0060 2003-11-17 P-04-138 1617130 SFM0061 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 P-04-140 SFM0065 2004-02-06 P-04-139 S SFM0066 2004-02-206 P-04-139 P-04-140 SFM0066 2004-02-206 P-04-139 P-04-140 SFM0067 2004-03-23 P-04-139 P-04-140 SFM0068 2004-03-29 P-0	SFM0049	2003-03-28	P-03-64	P-03-65		
SFM0051 2003-04-11 P-04-136 P-04-136 SFM0052 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-08-06 P-04-76 1617130 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0050 2003-11-19 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-138 1617130 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-12 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 S SFM0065 2004-02-06 P-04-139 P-04-140 SFM0068 2004-03-24 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-26 P-04-139	SFM0050	2003-04-14	P-04-136			P-04-136
SFM0052 2003-04-16 P-04-136 P-04-136 SFM0053 2003-04-16 P-04-136 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 P-04-136 SFM0056 2003-05-21 P-04-136 SFM0058 SFM0058 2003-11-26 P-04-6 1617130 SFM0059 2003-11-17 P-04-138 P-04-138 SFM0060 2003-11-17 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-12 P-04-139 P-04-140 SFM0065 2004-02-06 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-26 P-04-139 P-04-140 SFM0073 2004-03-26	SFM0051	2003-04-11	P-04-136			
SFM0053 2003-04-16 P-04-136 SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-04-15 P-04-136 SFM0057 SFM0056 2003-05-21 P-04-136 SFM0057 SFM0057 2003-08-06 P-04-136 SFM0059 SFM0059 2003-11-26 P-04-138 1617130 SFM0060 2003-11-17 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2003-11-17 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-140 P-04-142 SFM0063 2004-02-06 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 S SFM0065 2004-03-24 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-24 P-04-139 P-04-140 SFM0073 2004-03-25 P-04-139 P-04-140	SFM0052	2003-04-16	P-04-136			P-04-136
SFM0054 2003-04-15 P-04-136 P-04-136 SFM0055 2003-05-21 P-04-136 SFM0056 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-138 P-04-138 SFM0050 2003-11-19 P-04-138 P-04-138 SFM0060 2003-11-17 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2003-11-17 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 S SFM0065 2004-02-06 P-04-139 S SFM0066 2004-02-23 P-04-139 P-04-140 SFM0067 2004-03-23 P-04-139 P-04-140 SFM0068 2004-03-25 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-26 P-04-139	SFM0053	2003-04-16	P-04-136			
SFM0055 2003-04-15 P-04-136 SFM0056 2003-05-21 P-04-136 SFM0057 2003-08-06 P-04-76 1617130 SFM0059 2003-11-26 P-04-85 1617130 SFM0060 2003-11-17 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-138 1617130 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-06 P-04-139 SFM0065 SFM0065 2004-02-06 P-04-139 SFM0066 SFM0066 2004-03-24 P-04-139 P-04-140 SFM0067 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0070 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-24 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140	SFM0054	2003-04-15	P-04-136			P-04-136
SFM0056 2003-05-21 P-04-136 SFM0057 2003-08-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-85 1617130 SFM0060 2003-11-13 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-12 P-04-139 SFM0065 SFM0065 2004-02-06 P-04-139 SFM0066 SFM0066 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-26 P-04-139 P-04-140 SFM0072 2004-03-26 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P	SFM0055	2003-04-15	P-04-136			
SFM0057 2003-06-06 P-04-76 1617130 SFM0058 2003-11-26 P-04-85 1617130 SFM0059 2003-11-19 P-04-138 P-04-138 SFM0060 2003-11-17 P-04-138 1617130 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2004-02-05 P-04-139 P-04-140 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-12 P-04-139 SFM0065 SFM0065 2004-02-06 P-04-139 SFM0066 SFM0066 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-23 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-24 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-	SFM0056	2003-05-21	P-04-136	4047400		
SFM0058 2003-11-26 P-04-85 1617130 SFM0059 2003-11-19 P-04-138 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 SFM0062 2003-11-17 P-04-138 1617130 SFM0063 2004-02-05 P-04-139 P-04-140 SFM0064 2004-02-12 P-04-139 P-04-140 SFM0065 2004-02-06 P-04-139 SFM0066 SFM0067 2004-02-06 P-04-139 SFM0067 SFM0067 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-23 P-04-139 P-04-140 SFM0070 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26	SFM0057	2003-08-06	P-04-76	1617130		
SFM00039 2003-11-19 P-04-130 P-04-130 SFM0060 2003-11-17 P-04-138 1617130 P-04-138 SFM0061 2003-11-17 P-04-138 1617130 P-04-138 SFM0062 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0064 2004-02-06 P-04-139 Secondary Secondary SFM0065 2004-02-06 P-04-139 Secondary Secondary SFM0066 2004-02-06 P-04-139 P-04-140 Secondary SFM0067 2004-03-24 P-04-139 P-04-140 Secondary SFM0068 2004-03-23 P-04-139 P-04-140 Secondary Se	SFM0050	2003-11-20	P-04-85	1617130	D 04 120	
SFM0000 2003-11-13 F-04-136 F-04-136 SFM0061 2003-11-17 P-04-138 1617130 P-04-138 SFM0062 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0064 2004-02-06 P-04-139 SFM0065 2004-02-06 P-04-139 SFM0066 2004-02-06 P-04-139 P-04-140 SFM0067 2004-03-24 P-04-139 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-03-26 P-04-140 SFM0076 2004-03-26 P-04-139 P-04-140 <td>SFM0059</td> <td>2003-11-19</td> <td>P-04-130</td> <td></td> <td>P-04-130</td> <td></td>	SFM0059	2003-11-19	P-04-130		P-04-130	
SFM0061 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0063 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0064 2004-02-06 P-04-139 SFM0065 2004-02-06 P-04-139 SFM0065 2004-02-06 P-04-139 SFM0067 2004-03-24 P-04-139 SFM0067 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-29 P-04-139 SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-29 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-24 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-03-26 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-2	SFM0061	2003-11-13	P-04-130 P-04-138	1617130	P-04-130 P-04-138	
SFM0063 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0064 2004-02-05 P-04-139 P-04-140 P-04-142 SFM0065 2004-02-06 P-04-139 SFM0066 2004-03-24 P-04-139 SFM0068 2004-03-24 P-04-139 P-04-140 SFM0069 2004-03-23 P-04-139 SFM0069 2004-03-23 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0072 2004-03-26 P-04-139 P-04-140 SFM0073 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22<	SEM0062	2003-11-17	P_04_130	P-04-140	P_04-142	
SFM0064 2004-02-12 P-04-139 SFM0065 2004-02-06 P-04-139 SFM0066 2004-03-24 P-04-139 SFM0068 2004-03-23 P-04-139 SFM0069 2004-03-23 P-04-139 SFM0070 2004-03-29 P-04-139 SFM0071 2004-03-29 P-04-139 SFM0072 2004-03-29 P-04-139 SFM0071 2004-03-29 P-04-139 SFM0072 2004-03-25 P-04-139 SFM0073 2004-03-25 P-04-139 SFM0074 2004-03-25 P-04-139 SFM0073 2004-03-26 P-04-139 SFM0074 2004-03-26 P-04-139 SFM0075 2004-03-26 P-04-139 SFM0076 2004-03-26 P-04-140 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0070 2005-06-22 P-06-89 P-17-19	SEM0063	2004-02-05	P-04-139	P-04-140	P-04-142	
SFM0065 2004-02-06 P-04-139 SFM0066 2004-02-06 P-04-139 SFM0067 2004-03-24 P-04-139 SFM0068 2004-03-23 P-04-139 SFM0069 2004-03-23 P-04-139 SFM0070 2004-03-29 P-04-139 SFM0071 2004-03-25 P-04-139 SFM0072 2004-03-25 P-04-139 SFM0073 2004-03-25 P-04-139 SFM0074 2004-03-24 P-04-139 SFM0075 2004-03-26 P-04-140 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0070 2005-06-22 SFM0079 2005-06-22 P-06-89 <	SFM0064	2004-02-00	P-04-139	1 04 140	1 04 142	
SFM0066 2004-02-06 P-04-139 SFM0067 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-245 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0070 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19	SFM0065	2004-02-06	P-04-139			
SFM0067 2004-03-24 P-04-139 P-04-140 SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0075 2004-06-16 P-04-245 P-04-140 SFM0076 2004-06-16 P-04-245 P-05-07 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0070 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-	SFM0066	2004-02-06	P-04-139			
SFM0068 2004-03-23 P-04-139 P-04-140 SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-142 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-140 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30	SFM0067	2004-03-24	P-04-139	P-04-140		
SFM0069 2004-03-29 P-04-139 P-04-140 SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-25 P-04-139 P-04-140 SFM0074 2004-03-24 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-142 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-140 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0068	2004-03-23	P-04-139	P-04-140		
SFM0070 2004-03-25 P-04-139 P-04-140 SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-140 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0069	2004-03-29	P-04-139	P-04-140		
SFM0071 2004-03-29 P-04-139 P-04-140 SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-26 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-140 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0070	2004-03-25	P-04-139	P-04-140		
SFM0072 2004-03-25 P-04-139 P-04-140 SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-30 P-04-139 P-04-140 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-179 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0070 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0071	2004-03-29	P-04-139	P-04-140		
SFM0073 2004-03-24 P-04-139 P-04-140 SFM0074 2004-03-30 P-04-139 P-04-142 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 P-04-719 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-22 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0072	2004-03-25	P-04-139	P-04-140		
SFM0074 2004-03-30 P-04-139 P-04-142 SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0073	2004-03-24	P-04-139	P-04-140		
SFM0075 2004-03-26 P-04-139 P-04-140 SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0074	2004-03-30	P-04-139		P-04-142	
SFM0076 2004-06-16 P-04-245 SFM0077 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0075	2004-03-26	P-04-139	P-04-140		
SFMUU// 2005-06-20 P-06-89 P-17-19 SFM0078 2005-06-21 P-06-89 P-17-19 SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0076	2004-06-16	P-04-245	D 47 40		
SFM0079 2005-06-22 P-06-89 P-17-19 SFM0080 2005-11-30 P-05-278 P-06-224	SFM0070	2005-06-20	Г-Ub-89 D 06 90	P-17-19		
SFM0080 2005-11-30 P-05-278 P-06-224	SEM0070	2000-00-21	F-00-09 P-06-80	P-17-19		
	SFM0080	2005-11-30	P-05-278	P-06-224		

Table B-3. List of reports corresponding to the information available from field tests in groundwater wells presented in this report. P refers to SKB's P report series, whereas 7-digit numbers refer to doc-id in SKB's document handling system SKBdoc.

	Date of drilling/	Drilling/well	Slug test	Pumping test	In situ permeameter
IDCODE	well installation	installation			test
SFM0081	2006-01-25	P-06-89	P-06-224		
SFM0082	2006-01-25	P-06-89			P-06-224
SEM0083	2006-01-25	P-06-89			
SEM0084	2000 01 20	P-06-89	P-06-224	P-06-224	
SEM0085	2000-02-20	P-06-89	1-00-224	P_06_224	P-06-224
SEM0005	2000-03-07	D 06 90		1-00-224	1-00-224
SFIVI0000	2000-03-07	F-00-69	D 00 004	D 00 004	
SFM0087	2006-03-07	P-06-89	P-06-224	P-06-224	B 00 004
SFM0088	2006-03-07	P-06-89		P-06-224	P-06-224
SFM0089	2006-03-07	P-06-89			
SFM0090	2006-02-23	P-06-89		P-06-224	
SFM0091	2006-02-28	P-06-89	P-06-224	P-06-224	
SFM0092	2006-03-07	P-06-89		P-06-224	P-06-224
SFM0093	2006-03-07	P-06-89			
SFM0094	2006-02-14	P-06-89			
SFM0095	2006-02-15	P-06-89	P-06-224	P-06-224	
SFM0096	2006-02-17	P-06-89		P-06-224	P-06-224
SEM0097	2006-02-17	P-06-89		P-06-224	
SEMOOOO	2000 02 17	P_06_89		P_06_224	P-06-224
SEM0100	2000-02-17	D 06 90		1-00-224	1-00-224
SFM0100	2000-02-17	F-00-09		D 06 004	D 06 004
SFINIUTUT	2000-02-17	P-00-09		P-00-224	P-00-224
SFM0102	2006-02-17	P-06-89			
SFM0103	2006-02-16	P-06-89		P-06-224	
SFM0104	2006-02-24	P-06-89	P-06-224		
SFM0105	2006-02-23	P-06-89	P-06-224		
SFM0106	2006-02-22	P-06-89	P-06-224		
SFM0107	2006-02-21	P-06-89	P-06-224		
SFM0108	2006-02-21	P-06-89	P-06-224		
SFM0109	2006-08-21	P-07-43			
SFM000110	2009-02-12	P-09-17	1562216		
SEM000111	2000-02-12	P_09_17	TOOLETO		
SEM000112	2000-02-12	P 00 17	1562216		
SEM000112	2009-02-09	P-09-17	1302210		
SFM000113	2009-02-09	P-09-17	4500040		
SFM000114	2009-02-12	P-09-17	1562216		
SFM000115	2009-02-12	P-09-17			
SFM000116	2009-02-10	P-09-17	1562216		
SFM000117	2009-02-10	P-09-17			
SFM000118	2009-02-10	P-09-17	1562216		
SFM000119	2009-02-09	P-09-17			
SFM000121	2011-04-14	1325128			
SFM000122	2011-04-14	1325128	P-17-19		
SFM000123	2011-04-14	1325128			
SEM000124	2011-04-14	1325128			
SEM000125	2011-04-14	1325128			
SEM000126	2011_03_01	1385880	1562216		
SEM000120	2011-03-01	1205009	1302210		
SFINI000127	2011-03-03	1303009	4700700		
SFM000132	2012-09-17	1300471	1700798		
SFM000133	2012-09-18	1366471	1700798		
SFM000134	2012-09-18	1366471	1700798		
SFM000135	2012-09-18	1366471	1700798		
SFM000138	2014-06-23	1449026	1617130		
SFM000139	2014-06-23	1449026	P-17-19		
SFM000140	2014-06-23	1449026			
SFM000141	2014-06-23	1449026			
SFM000142	2014-06-23	1449026			
SFM000143	2016-03-08	-	P-17-19		
SFM000144	2016-03-09		P-17-19		
SEM000145	2016-03-00		P_17_10		
SEM000145	2010-03-03		D 17 10		
SFM000140	2010-04-12		F-17-19		
SFM000147	2010-04-20		P-17-19		
SFM000149	2016-04-04		P-17-19		
SFM000153	2016-04-26		P-17-19		
SFM000154	2016-04-11				
SFM000156	2016-03-07				
SFM000157	2016-03-04				
SFM000160	2016-03-18		1617130		
SFM000161	2016-03-18		1617130		
SFM000162	2016-03-18		1617130		
SFM000163	2017-04-26		1617130		
SFM000167	2017-04-20		1617130		
SEM000168	2017-04-20		1617130		
SFM000169	2019-03-11	1877396			
SEM000170	2019-02-13	1877396			
SEM000170	2010-02-13	1877306			
SEM000171	2010_02-10	1877306			
	2010-02-01	1011030			

	Date of drilling/	Drilling/well	Slug test	Pumping test	In situ permeameter
IDCODE	well installation	installation			test
SFM000173	2019-01-30	1877396			
SFM000174	2019-03-12	1877396			
SFM000175	2019-03-05	1877396			
SFM000176	2019-03-07	1877396			
SFM000177	2019-03-08	1877396			
SFM000178	2019-03-08	1877396			
SFM000179	2019-02-14	1877396			
SFM000180	2019-02-25	1877396			
SFM000181	2019-02-26	1877396			
SFM000182	2018-12-05	1877396			
SFM000183	2018-12-05	1877396			
SFM000184	2019-01-31	1877396			
SFM000186	2019-02-01	1877396			
SFM000187	2019-02-20	1877396			
SFM000188	2018-12-04	1877396			
SFM000190	2019-03-19	1877396			
SFM000191	2018-12-06	1877396			
SFM000192	2019-02-27	1877396			
SFM000193	2018-12-05	1877396			
SFM000194	2019-02-28	1877396			
SFM000195	2019-02-28	1877396			
SFM000196	2019-05-10	1877396			
SFM000197	2019-05-14	1877396			
SFM000198	2019-05-16	1877396			

Table B-4. List of reports corresponding to the information available from laboratory tests on regolith samples presented in this report. P and R refer to SKB's P and R report series, respectively whereas 7-digit numbers refer to doc-id in SKB's document handling system SKBdoc. 1Sampling is presented in the report, whereas PSD analyses were performed subsequent to the report. PSD = particle-size distribution, CRS = constant-rate of strain, UZ = unsaturated-zone properties.

IDCODE	PSD	Lab. permeameter test	CRS test	UZ
SFM0001	P-03-14			
SFM0002	P-03-14			
SFM0003	P-03-14			
SFM0004	P-03-14			
SFM0005	P-03-14			
SFM0006	P-03-14			
SFM0007	P-03-14			
SFM0008	P-03-14			
SFM0010	R-08-04			
SFM0011	R-08-04			
SFM0013	R-08-04			
SFM0016	R-08-04			
SFM0017	R-08-04			
SFM0018	R-08-04			
SFM0019	R-08-04			
SFM0020	R-08-04			
SFM0021	R-08-04			
SFM0022	R-08-04			
SFM0026	R-08-04			
SFM0027	R-08-04			
SFM0028	R-08-04			
SFM0030	R-08-04			
SFM0031	R-08-04			
SFM0032	R-08-04			
SFM0034	R-08-04			
SFM0036	R-08-04			
SFM0049	R-08-04			
SFM0057	R-08-04			
SFM0062	R-08-04			
SFM0063	R-08-04			
SFM0065	R-08-04			
SFM0069	R-08-04			
SFM0070	R-08-04			
SFM00/1	R-08-04			
SFM0072	R-08-04			
SFM0081	R-08-04			
SFM0084	R-08-04			
SFM0091	R-08-04			
SFM0094	R-08-04			

IDCODE	PSD	Lab. permeameter test	CRS test	UZ
SFM0095	R-08-04			
SFM0103	R-08-04			
SFM0104	R-08-04			
SFM0105	R-08-04			
SFM0106	R-08-04			
SFM0107	R-08-04			
SFM0108	R-08-04			
SFM000133	R-14-23		R-14-23	
SFM000191 ¹	1877396			
SFM000192 ¹	1877396			
SFM000194'	1877396			
HFM01	P-03-14			
HFM02	P-03-14			
HFM03	P-03-14			
HFM04	P-03-14			
HFM05	P-03-14			
	P-04-111			
	D 02 14			
DEM002461	P 09 04			
PFM002401	R-08-04			
DEM002402	R-08-04			
PFM002403	R-08-04			
PFM002572	R-08-04			
PEM002573	R-08-04			
PFM002574	R-08-04			
PFM002576	R-08-04			
PFM002577	R-08-04			
PFM002578	R-08-04			
PFM002581	R-08-04			
PFM002582	R-08-04			
PFM002586	R-08-04			
PFM002587	R-08-04			
PFM002588	R-08-04			
PFM002589	R-08-04			
PFM002590	R-08-04			
PFM002591	R-08-04			
PFM002592	R-08-04			
PFM002594	R-08-04			
PFM002670	R-08-04			
PFM002687	R-08-04			
PFM002760	R-08-04			
PFM002761	R-08-04			
PFM002762	R-08-04			
PFM002767	R-08-04			
PFM002768	R-08-04			
FFIVIUU2103				
	R-08-04			
	R_08_04			
PFM002891	R-08-04			
PFM003742	R-08-04			
PFM004193	R-08-04			
PFM004204	R-08-04			
PFM004205	R-08-04			
PFM004216	R-08-04			
PFM004222	R-08-04			
PFM004294	R-08-04			
PFM004396	R-08-04			
PFM004454	R-08-04			
PFM004455	R-08-04	P-05-166		R-08-04
PFM004456	R-08-04			
PFM004458	R-08-04	P-05-166		R-08-04
PFM004459	R-08-04	P-05-166		R-08-04
PFM004460	R-08-04	P-05-166		R-08-04
PFM004514	R-08-04			
PFM004531	R-08-04			
PFM004752	R-08-04			
PFM004760	K-08-04			
	K-UÖ-U4 D 04 444			
	P-04-111			
FFIVIUU0U/3	L-00-00			

IDCODE	PSD	Lab. permeameter test	CRS test	UZ
PFM006094	P-06-88			
PFM006095	P-06-88			
PFM006097	P-06-88			
PFM007786	1564669			
PFM007855	1562492	1562492		
PFM007856	1562492	1562492		
PFM007857	1562492	1562492		
PFM007858	1562492	1562492		
PFM007860	1562492		1562492	
PFM007861	1562492		1562492	
PFM007862	1562492		1562492	
PFM007863	1562492		1562492	
PFM007864	1562492		1562492	
PFM007866	1562492		1562492	
PFM007867	1562492		1562492	
PFM007868	1562492		1562492	
PFM007869	1562492		1562492	
PFM008290	R-14-23			
PFM008291	R-14-23			

C Compilation of old single-hole hydraulic test data for geological model domains in the SFR bedrock volume

Table C-1. Single-hole hydraulic test data from core-drilled boreholes at SFR. Blue shaded cells indicate that overlapping transmissivities have been subtracted. Note strategies and methods for collection of the data in the table differ significantly from those for other data presented in the report (cf. Öhman et al. (2012)). PBT = pressure buildup test, TI = transient injection test, FH = falling head test.

KFR01 0 62 ZFMWNW0001 1.4E-06 50 PBT KFR02 0 33 38 ZFMNE0870 1.1E-06 20 TI 33 38 99 1.4E-07 74 PBT 99 100 PDZ2 5.5E-08 10 TI 115 124 ZFM871 6.5E-08 17 PBT 115 124 ZFM871 6.5E-08 17 PBT 115 124 ZFM871 6.5E-08 17 PBT 124 170 1.2E-07 33 PBT KFR03 0 6 12 PDZ1 1.0E-06 39 PBT 12 48 96 ZFMNE0870 3.6E-07 34 PBT 96 82 92 92 ZFM871 2.2E-08 21 PBT 112 48 96 ZFM871 2.6E-07 76 PBT 96 82 2 ZFM87	Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
0 62 ZFMWNW0001 1.4E-06 50 PBT KFR02 0 33 38 ZFMNE0870 1.4E-06 20 TI 33 38 2FMNE0870 1.1E-06 20 TI 38 99 1.4E-07 74 PBT 99 100 PDZ2 5.5E-08 10 TI 115 124 ZFM871 6.5E-08 17 PBT 124 170 1.0E-07 10 TI 124 170 1.0E-07 33 PBT 124 170 1.0E-06 39 PBT 12 48 96 ZFMNE0870 3.6E-07 34 PBT 96 92 926 96 ZFM871 2.2E-08 21 PBT 96 33 14 91 100 101 Image: 100 101 Image: 100 Image: 100 101 Image: 100 Image: 100 Image: 100 Image: 100 Im	KFR0	1						
0 62 ZFMVNW0001 1.4E-06 50 PBT KFR02 0 33 38 ZFMNE0870 1.4E-07 74 PBT 33 38 99 1.4E-07 74 PBT 99 100 PDZ2 55E-08 10 TI 100 115 1.0E-07 10 TI 124 170 2FM871 6.5E-08 10 TI 115 124 ZFM871 6.5E-08 10 TI 124 170 1.2E-07 33 PBT 6 12 PDZ1 1.0E-06 39 PBT 12 48 96 ZFM870 3.6E-07 34 PBT 96 102 PDZ1 1.0E-06 39 PBT 96 102 PDZ1 2.2E-08 21 PBT 91 100 ZFM871 2.6E-07 17 PBT 93 100 ZFM871 2.6E-07			0	62				
KFR02 0 170			0	62	ZFMWNW0001	1.4E-06	50	PBT
0 170 Image: constraint of the sector of t	KFR0	2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	170				
33 38 2FMNE0870 1.1E-06 20 TI 38 99 14E-07 74 PBT 99 100 PDZ2 55E-08 10 TI 100 115 1.0E-07 10 TI 115 124 2FM871 6.5E-08 17 PBT 124 170 1.2E-07 33 PBT KFR03 1.2E-07 33 PBT KFR04 1.2E-07 33 PBT 124 170 1.0E-06 39 PBT 124 48 96 2FMNE0870 3.6E-07 34 PBT 96 82 296 2FM871 2.2E-08 21 PBT 96 102 76 PBT 3 14 63 2FMNE0870 9.1E-07 76 PBT 100 101 ZFMNE0870 9.1E-07 17			0	33		8.4E-09	10	TI
38 99 1.4E-07 74 PBT 99 100 PDZ2 5.5E-08 10 TI 100 115 1.24 ZFM871 6.5E-08 17 PBT 124 170 1.2E-07 33 PBT KFR03 0 6 1 1.2E-07 33 PBT KFR04 - 0 6 1 1.2E-07 34 PBT 6 12 PDZ1 1.0E-06 39 PBT 1 12 48 96 2FMNE0870 3.6E-07 34 PBT 96 82 96 2FM871 2.2E-08 21 PBT 96 102 PBT 14 63 2FMNE0870 9.1E-07 76 PBT 63 91 91 00 26 96 12 96 11 14 63 2FMNE0870 9.1E-07 76 PBT 63 91 91 100 101 11 14 14<			33	38	ZFMNE0870	1.1E-06	20	TI
99 100 PDZ2 5.5E-08 10 Ti 100 115 1.0E-07 10 Ti 115 124 2FM871 6.5E-08 17 PBT 124 170 1.2E-07 33 PBT KFR03 0 102 0 6 124 170 1.0E-06 39 PBT 12 48 96 2FMNE0870 3.6E-07 34 PBT 12 48 96 2FM871 2.2E-08 21 PBT 96 82 96 102 96 141 63 2FM871 2.2E-08 21 PBT 114 63 2FMNE0870 9.1E-07 76 PBT 100 101 2FM871 2.6E-07 17 PBT 100 131 2FMNE0870 1.1E-07 18			38	99		1.4E-07	74	PBT
100 115 1.0E-07 10 Ti 115 124 ZFM871 6.5E-08 17 PBT KFR03 1.2E-07 33 PBT KFR03 0 102 5 5 0 6 5 5 7 9BT 12 48 96 2 PDZ1 1.0E-06 39 PBT 12 48 96 2 PDZ1 1.0E-06 39 PBT 96 82 96 2FMNE0870 3.6E-07 34 PBT 96 82 96 2FMNE0870 9.1E-07 76 PBT 144 63 2FMNE0870 9.1E-07 76 PBT 63 91 9100 ZFM871 2.6E-07 17 PBT 63 91 910 2.6E-07 17 PBT 63 91 2.6E-07 17 PBT 63 91 2.6E-07 18			99	100	PDZ2	5.5E-08	10	TI
115 124 2FM871 6.5E-08 17 PBT 124 170 1.2E-07 33 PBT KFR03 0 102 1.2E-07 33 PBT 0 6 12 PDZ1 1.0E-06 39 PBT 12 48 96 2FMNE0870 3.6E-07 34 PBT 96 82 96 2FM871 2.2E-08 21 PBT 96 102 2FM870 9.1E-07 76 PBT 144 63 2FMNE0870 9.1E-07 76 PBT 145 65 88 2FM871 2.6E-07 17 PBT 100 101 2FMNE0870 9.1E-07 18 T1 85 <th></th> <th></th> <th>100</th> <th>115</th> <th></th> <th>1.0E-07</th> <th>10</th> <th>TI</th>			100	115		1.0E-07	10	TI
124 170 1.2E-07 33 PBT KFR03 0 102			115	124	ZFM871	6.5E-08	17	PBT
0 102 0 6 12 PDZ1 1.0E-06 39 PBT 12 48 96 2FMNE0870 3.6E-07 34 PBT 96 96 2FM871 2.2E-08 21 PBT 96 102 ZFMNE0870 9.1E-07 76 PBT 0 3 14 14 63 2FMNE0870 9.1E-07 76 PBT 3 14 14 63 ZFM871 2.6E-07 17 PBT 91 100 2FM871 2.6E-07 17 PBT 91 100 2FM871 2.6E-07 17 PBT 91 100 2FM871 1.1E-07 18 TI 85 88 2FM871 1.1E-07 18 TI 85 88 2FM870 1.1E-07 18 TI 85 88 2FM870 1.1E-07 34 TI 85 88			124	170		1.2E-07	33	PBT
KFR03 0 102 0 6 12 48 48 96 96 82 96 82 96 102 96 82 96 102 96 82 96 102 KFR04 January KFR04 January KFR04 January KFR05 January KFR05 January KFR05 January January KFR05 January January <thjanuary< th=""></thjanuary<>								
0 102 0 6 12 48 12 48 96 82 96 82 96 102 82 96 96 102 82 96 96 102 KFR04 V V 0 3 14 63 91 100 14 63 91 100 101 2FM871 14 63 91 100 100 101 2FM871 2.6E-07 17 PBT 85 88 103 131 2FM871 1.1E-07 18 TI 85 88 103 131 2FMNE0870 1.1E-07 18 TI 85 88 103 131 2FMNE087	KFR0	3						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	102				
6 12 48 1.0E-06 39 PBT 12 48 96 2FMNE0870 3.6E-07 34 PBT 96 82 96 2FM871 2.2E-08 21 PBT 96 102 ZFM871 2.2E-08 21 PBT 96 102 ZFM871 2.2E-08 21 PBT 96 102 ZFM870 9.1E-07 76 PBT 0 3 14 2FM871 2.6E-07 17 PBT 63 91 100 ZFM871 2.6E-07 18 TI 63 91 2FM871 1.1E-07 18 TI 0 85 88 ZFM870 1.1E-07 18 TI 85 88 2FM870 1.1E-07 18 TI 103 131 ZFMNE0870 1.1E-07 18 TI 6 39 7.1E-06 34 TI KFR05			0	6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6	12	PDZ1	1.0E-06	39	PBT
48 96 2FMNE0870 3.6E-07 34 PBT 96 82 96 2FM871 2.2E-08 21 PBT KFR04 0 30 PDZ1 3 14 3 14 13 14 63 2FM871 9.1E-07 76 PBT 63 91 2FM871 2.6E-07 17 PBT 63 91 100 2FM871 2.6E-07 17 PBT KFR05 0 131 2FM871 1.1E-07 18 TI 85 88 2FM871 1.1E-07 18 TI 85 88 2FM871 1.1E-07 18 TI 85 88 2FM870 1.1E-07 18 TI 86 0 39 7.1E-06 34 TI 87 39 2FMNE0870 29 PBT 90 39 2FMNE0870 29 PBT 91 9			12	48				
96 82 96 2FM871 2.2E-08 21 PBT KFR04 0 101			48	96	ZFMNE0870	3.6E-07	34	PBT
82 96 96 102 2FM871 2.2E-08 21 PBT KFR04 0 101			96	82				
96 102 KFR04 0 101 0 3 PDZ1 3 14 63 2FMNE0870 9.1E-07 76 PBT 63 91 100 2FM871 2.6E-07 17 PBT 63 91 100 2FM871 2.6E-07 17 PBT KFR05 11E-07 18 TI 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFM870 1.1E-07 18 TI 85 88 ZFM871 34 TI 85 88 ZFMNE0870 1.1E-07 18 TI 85 88 2FMNE0870 7.1E-06 34 TI 86 0 39 7.1E-06 34 TI 87 3 19 2FMNW0805B 6.1E-07 29 PBT			82	96	ZFM871	2.2E-08	21	PBT
0 101 0 3 PDZ1 3 14 14 63 ZFMNE0870 9.1E-07 76 PBT 63 91 2FM871 2.6E-07 17 PBT 0 100 101 ZFM871 2.6E-07 17 PBT KFR05 U U I.1E-07 18 TI 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFMNE0870 1.1E-07 18 TI 85 88 ZFMNE0870 1.1E-07 18 TI 85 88 ZFMNE0870 1.1E-07 18 TI KFR05 U U U U U KFR05 U U U U U KFR05 U U U U U M 39 ZFMNW0805B 6.1E-07 29 PBT M 19 41			96	102				
0 101 0 3 PDZ1 3 14								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KFR0	4						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	101				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	3	PDZ1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	14				
63 91 100 ZFM871 2.6E-07 17 PBT KFR05 0 131 2.6E-07 17 PBT 0 131 2.6E-07 17 PBT 0 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFMNE0870 10 20 20 KFR05 0 39 7.1E-06 34 TI KFR08 0 39 7.1E-06 34 TI KFR08 103 3 19 2FMNW0805B 6.1E-07 29 PBT 9 41 2FMNW0805B 6.1E-07 29 PBT			14	63	ZFMNE0870	9.1E-07	76	PBT
91 100 100 101 ZFM871 2.6E-07 17 PBT KFR05 0 131 70 17 PBT 0 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFM871 1.1E-07 18 TI 85 88 ZFMNE0870 70 29 PBT KFR05 0 39 7.1E-06 34 TI KFR08 0 30 3 19 ZFMNW0805B 6.1E-07 29 PBT 9 41 ZFMNW0805B 6.1E-07 29 PBT			63	91				
100 101 KFR05 0 131 1.1E-07 18 TI 0 85 88 ZFM871 18 TI 85 88 ZFM871 11E-07 18 TI 88 103 131 ZFMNE0870 10 10 KFR05 0 39 7.1E-06 34 TI KFR08 0 30 319 ZFMNW0805B 6.1E-07 29 PBT 19 41 2 2 PBT 10 10 10 10 10			91	100	ZFM871	2.6E-07	17	PBT
No. No. <th></th> <th></th> <td>100</td> <td>101</td> <td></td> <td>-</td> <td></td> <td></td>			100	101		-		
No. No. <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0 131 0 85 1.1E-07 18 TI 85 88 ZFM871 18 TI 88 103 103 131 ZFMNE0870 10 KFR05 0 39 7.1E-06 34 TI KFR08 0 30 3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41 0 10 29 PBT	KFR0	5						
0 85 1.1E-07 18 TI 85 88 ZFM871 100 100 100 88 103 131 ZFMNE0870 100 <th></th> <th></th> <th>0</th> <th>131</th> <th></th> <th></th> <th></th> <th></th>			0	131				
85 88 ZFM871 88 103 103 103 131 ZFMNE0870 KFR05 Second Stress Second Stress 0 39 7.1E-06 34 TI KFR08 Second Stress Second Stres Second Stress Sec			0	85		1.1E-07	18	TI
88 103 ZFMNE0870 KFR05 7.1E-06 34 TI 0 39 7.1E-06 34 TI KFR08 104 9 10 41 10 <th10< th=""></th10<>			85	88	ZFM871			
Mail ZFMNE0870 KFR05 7.1E-06 34 TI KFR08 7.1E-06 34 TI KFR08 7.1E-06 34 TI Stress 7.1E-06 34 TI KFR08 9 9 9 9 Image: Stress 104 9 10 41 10 <th10< th=""> 10 10 <th1< th=""><th></th><th></th><th>88</th><th>103</th><th></th><th></th><th></th><th></th></th1<></th10<>			88	103				
KFR05 0 39 0 39 7.1E-06 34 KFR08 0 104 0 3 3 19 19 41			103	131	ZFMNE0870			
MFR05 0 39 7.1E-06 34 TI 0 39 7.1E-06 34 TI KFR08 0 104 0 2 PBT 10 3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41 41 19 19 10 1								
0 39 7.1E-06 34 TI KFR08 0 104 70 104	KFR0	5						
0 39 7.1E-06 34 TI KFR08 0 104			0	39				
KFR08			0	39		7.1E-06	34	TI
0 104 0 3 3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41								
0 104 0 3 3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41	KFR0	8						
0 3 3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41		_	0	104				
3 19 ZFMNW0805B 6.1E-07 29 PBT 19 41			0	3				
19 41			3	19	ZFMNW0805B	6.1E-07	29	PBT
			19	41				
41 104 ZFMNW0805A 1.9E-05 67 PBT			41	104	ZFMNW0805A	1.9E-05	67	PBT

KFR09

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
		0	80				
		0	59	ZFMNNE0869	4.3E-05	53	PBT
		59	69				
		69	74	PDZ2	2.8E-06	17	PBT
		74	80				
KFR1	0	•	407				
		0	107				
		5	96	ZFIVININE0009	3 1E-06	79	PBT
		96	107	PD72	2.9E-05	20	PBT
		00	107		2.02 00	20	1.01
KFR1	1						
		0	98			_	
		0	19	ZFMNW0805B	9.2E-06	17	PBT
		19	41		1.1E-07	14	PBT
		41	96	ZFMNW0805A	5.8E-05	57	PBT
		96	98				
KED4	2						
NINI.	-	0	50				
		0	21				
		21	32	ZFM871	2.6E-06	13	PBT
		32	50		1.8E-08	16	PBT
KFR1	3						
		0	77				
		0	20	5574	0.05.00		DDT
		20	30	PDZ1	2.9E-09	29	PRI
		30	35	270	765.00	10	DRT
		33 41	41	FUZZ	1.02-09	19	FDI
		48	40 61	ZEMNE3118	14F-06	20	ті
		61	61			20	
		61	68	ZFM871	1.6E-06	10	ΤI
		68	77				
KFR1	9						
		0	110	_		_	
		0	39	0074			
		39	49	PDZT	1 20 00	46	ррт
		49	110		1.52-00	40	FDI
KFR2	0						
		0	110				
		0	49		3.4E-08	8	PBT
		49	52	PDZ1	1.0E-06	14	PBT
		52	109		3.9E-08	34	PBT
		109	110	ZFMNE0870			
KEPO	1						
M MZ		0	251				
		0	109		1.6E-06	66	FH
		109	129	ZFM871	1.2E-05	12	FH
		129	251		4.7E-07	63	FH
KFR2	2						
		0	160				
		0	140	7514074	1.2E-05	114	PSS/FH
		140	160	∠FM8/1	3.3E-06	12	FH
KFR2	3						
		0	160				
Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
------------	-------------	----------	-----------	---------------------------	--------------	------------------------	--------------
		0	10				
		10	11	ZFMNW0805A			
		11	83		1.1E-04	56	PSS/FH
		83	106	ZFM871	3.8E-05	21	FH
		106	160		6.0E-07	45	FH
KFR2	4						
	_	0	159				
		0	8				
		8	41	ZFMNW0805B	8.9E-06	27	PSS
		41	49		1.2E-06	3	PSS
		49	157	ZFMNW0805A	2.0E-05	39	PSS/FF
		157	157				
		157	159	ZFMWNW0836			
KED2	5						
NFR2	5	0	197				
		0	9				
		9	51	ZFMNW0805B	2.4E-05	39	PSS
		51	51		00		
		51	197	ZFMNW0805A	3.2E-05	105	PSS/FH
KFR3	1	•	0.40				
		U	242		4 45 00	2	D00
		U	82	0074	1.4E-06	3	PSS
		82	98	PUZI	1.5E-01	3	PSS
		98	229		9.0E-06	123	PSS
		229	232	ZFM871	2.5E-06	47	PSS
		232	229				
		229	232	∠FMNE0870			
		232	242				
KFR3	2						
		0	210				
		0	156		1.3E-05	15	PSS
		156	159	PDZ1			
		159	163				
		163	186	ZFM871	4.0E-05	24	PSS
		186	210				
KFR3	3	0	467				
		0	46				
		U	40		9 08F-		
		46	115	ZFMNNW 1209	06	105	PSS
		115	158		6.2E-06	20	PSS
		158	167	ZFM871	3.9E-06	3	PSS
KFR3	4	-					
		0	142				
		0	142		9.8E-06	91	PSS
KFR3	5						
	-	0	140				
		0	33				
		33	70	ZFMNNW 1209	1.2E-05	12	PSS
		70	140		2.1E-06	65	PSS
KFR3	6						
		0	124				
		0	45		9.5E-06	9	PSS
		45	116	ZFMNNE0869	4.1E-05	69	PSS

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣΤ (m²/s)	Borehole length (m)	Dat typ
		116	124		1.6E-06	9	PS
KFR37	,						
-		0	205				
		0	37		2.8E-06	12	PS
		37	46	PDZ1	8.9E-07	9	PS
		46	183	7514071	2.8E-05	117	PS
		103	194 205		4.2E-05	9	P3
		134	205				
KFR38	3						
_		0	185				
		0	154		2.2E-05	57	PS
		154	182	ZEMNW0805B	4.3E-05	17	PS
		182	185				
KFR52	2						
		0	30				
		0	20				
		20	22	PDZ1			
		22	30				
KFR53	5						
		0	41				
		0	6	ZFMNE3118			
		6	19		8.4E-09	10	PB
		19	37	ZFMNE0870	2.3E-08	16	PB
		37	41		4.6E-10	7	PB
KFR54							
		0	53				
		0	3	∠FMNE3118		24	
		ა ეუ	21 40		ວ.3⊑-08	∠4	РВ
		27 40	40 53		1.2E-07	9	PR
		10			01	v	. 5
KFR55	5						
		0	62				
		0 2	ა ი	PULI			
		8	17	ZEMNE3118			
		17	17				
		17	38	ZFMNE0870	1.7E-07	17	PB
		38	62		1.2E-07	8	PB
KFR56	;	•	00				
		0	82				
		U 1	4 45				
		45	43 57				
		57	82	ZFMNW0805A	5.5E-07	14	PB
KEDET	,						
NEKJ/		0	25				
		0	16				
		16	25	ZFM871			
KFR61							
		0	71				
		0	1				
		1	71	ZFMWNW0001	1.8E-04	24	PS

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
KFR6	2						
		0	83			-	
		0	46		7.8E-05	8	PSS
		46	83	ZEMW NW 0001	8.6E-05	19	PSS
KFR6	3						
		0	15				
		0	15		5.3E-05	2	PSS
KFR64	4						
	_	0	54				_
		0 13	13 54	ZEM/W/NW/0001	3 2E-05	16	PSS
		15	54		J.ZL-0J	10	100
KFR6	5		10				
		0	40		0.45.07	0	DOO
		U 18	18		3.4E-07 1.6E-05	2	P33 D99
		10	40		1.02-05	0	100
KFR6	6						
		0	29				
		0	15	751 04 (1 04 (000)		10	500
		15	29	ZEMW NW 0001	3.8E-05	10	PSS
KFR6	7						
	-	0	49				
		0	14				
		14	49	ZFMWNW0001	1.4E-05	21	PSS
KFR6	в						
		0	128				
		0	72		1.4E-03	36	PSS
				ZEMNNE0869			
		72	105	ZFMNE0870	4.1E-06	9	PSS
		105	128				
KFR6	9	•					
		0	201		2 1 5 0 7	6	Dee
		U 52	52 70	PD71	2.1⊑-07 2.3E-07	0 6	200 289
		52 79	122		2.50-07	0	1 33
		122	146	PDZ2	1.2E-05	9	PSS
		146	201		6.9E-07	69	PSS
KFR7	0						
		0	173				
		0	35	751 11 15 0 5			-
		35 103	103 173	∠FMNE0870	5.6E-06 1.4E-06	18 70	PSS PSS
KFR7 [,]	1						
	-	0	121				
		0	66		3.7E-05	50	TI
		66 70	70 72	ZFMWNW0001	2.9E-06	10	ΤI
		72	121	ZFMWNW0001	7.8E-04	51	ΤI

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
KFR7	2			-	-		
		0					
		0	13	PDZ1			
		13	24				
		24	153	PDZ2			
KED7	^						
NFN/	A	0	75				
		0	4				
		Ū.	·				
		4	12	ZEMOZ1	1 45 05	11	прт
		4	43		1.4E-05	44	PDI
		13	74	ZEM871	0 1E-05	27	DRT
		74	74	21 1007 1	3.TE-05	21	1 DT
		, 4	10				
KFR7	в						
		0	21				
		0	17	ZFM871	2.6E-05	13	PBT
		17	21				
KFR7	С						
		0	34				
		0	6				
		6	7	ZFMNE0870			
		7	6	7514074	075 05	~~	
		6	32	∠⊢M8/1	6./E-07	28	PBL
		32	34				
KEDO	•						
NFR0	U	٥	20				
		0	13	ZEM871			
		13	20	2110071			
KFR8	3						
		0	20				
		0	6				
		6	20	ZFM871			
KFR8	4	-					
		0	30				
		0	30	∠FMWNW0001			
KEDO	5						
NEKO	J	0	12				
		0	12	ZEM/W/NW/0001			
		0	12				
KFR8	6						
		0	15				
		0	15	ZFMWNW0001			
KFR8	7						
		0	15				
		0	15	ZFM871			
KFR8	8	-					
		0	30	7514074			
		0	30	∠FM8/1			

Zup (m)	Zlow (m)	Secup(m)	Seclow(m)	Deformation zone (ZFM)	ΣT (m²/s)	Borehole length (m)	Data type
KFR8	9						
		0					
		0	11				
		11	14	PDZ1			

D Digital appendices

D1 Digital Appendix D1: KFM and KFR boreholes

Additional data can be found in a supplementary Excel file: (2087698 - Appendix D1_KFM KFR R-22-07.zip)

Can be downloaded from: http://www.skb.com/publication/2519851/

D2 Digital Appendix D2: HFM and HFR boreholes

Additional data can be found in a supplementary Excel file: (2087699 - Appendix D2_HFM HFR R-22-07.zip)

Can be downloaded from: http://www.skb.com/publication/2519851/

E Supplementary data: Borehole casing

Table E-1. Casing lengths for all bedrock boreholes presented in the report. Casing lengths are not reported per se in Sicada, and the data presented in the table are obtained from Sicada (SKBdata_24_004), drilling reports (Appendix B) and BIPS (Borehole Image Processing System) images.

IDCODE	CASING LENGTH (m)	IDCODE	CASING LENGTH (m)
KFM01A	100	HFM01	32
KFM01B	16	HFM02	25
KFM01C	12	HFM03	13
KFM01D*	91	HFM04	12
KFM02A*	102	HFM05	12
KFM02B*	89	HFM06	12
KFM03A*	102	HFM07	18
KFM03B	5	HFM08	18
KEM04A*	109	HEM09	17
KFM04B	12	HFM10	12
KEM05A*	110	HFM11	12
KFM06A*	102	HFM12	15
KEM06B	5	HFM13	15
KEM06C*	102	HFM14**	3
KFM07A*	102	HEM15	6
KEM07B	66	HEM16	12
KEM07C*	98	HFM17	8
KEM08A*	102	HEM18	q
KEM08B	6	HFM19	12
KEM08C*	102	HEM20	12
KEM08D*	60	HFM21	12
KEM09A	8	HFM22	12
KEM09B	9	HFM23	21
KEM09C	9	HFM24	18
KFM10A	63	HEM25	9
KFM11A*	73	HFM26	12
KFM12A*	61	HFM27	12
KFM13	8	HFM28	12
KFM14	6	HFM29	9
KEM15**	8	HFM30	18
KFM16	4	HFM31	9
KFM17	6	HFM32	6
KFM18	9	HFM33	12
KFM19	7	HFM34	12
KFM20	2	HFM35	12
KFM21	6	HFM36	12
KFM22**	8	HFM37	9
KFM23	5	HFM38**	9
KFM24**	37	HFM39	6
KFM25	6	HFM40	6
KFM26	6	HFM41	6
KFM27	9	HFM42	6
KFR101	14	HFM43	6
KFR102A*	72	HFM44	9
KFR102B	14	HFM45	6
KFR103	13	HFM46	6
KFR104*	9	HFM47	12
KFR105	3	HFR101	8
KFR106*	9	HFR102	9
KFR117	9	HFR105	21
KFR118	12	HFR106	9
KFR119	9		
KFR120	12		
KFR121*	41		
KFR27	12		

* The stated length is equal to the total length, encompassing the transition cone and other casing pieces or casing shoes.

** The stated length is based on a BIPS image.