
 

 

 

 

          SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO     Box 3091, SE-169 03 Solna     Phone: +46 8 459 84 00  

   
 

 SVENSK KÄRNBRÄNSLEHANTERING  

 

 

 

 

SKB R-24-17 
ISSN 1402-3091 

ID 2064797 

April 2025 

Modelling electrohydrodynamics 
in porous media 
Fundamentals and model selection 

Pirouz Shahkarami 
Kemakta Konsult AB 

This report concerns a study which was conducted for Svensk Kärnbränslehantering AB (SKB). The 
conclusions and viewpoints presented in the report are those of the author. SKB may draw modified 
conclusions, based on additional literature sources and/or expert opinions. 

This report is published on www.skb.se 

© 2025 Svensk Kärnbränslehantering AB 

http://www.skb.se/


    
   

 

 

SKB R-24-17 1 
 

Content 
1 Preface ................................................................................................................................... 2 

2 Electrohydrodynamics in microchannels ........................................................................... 3 
2.1 Basic concepts of electrokinetic flow ..................................................................................... 3 

2.1.1 Electrophoresis ......................................................................................................... 3 
2.1.2 Electrical double layers ............................................................................................ 4 
2.1.3 Electroosmosis ......................................................................................................... 4 
2.1.4 Streaming potential................................................................................................... 4 

2.2 Mathematical formulation at pore scale ................................................................................. 5 
2.2.1 Continuity equation .................................................................................................. 5 
2.2.2 Navier-Stokes equation: motion of a fluid ............................................................... 6 
2.2.3 Nernst-Planck equation: transport of a charged particle........................................... 6 
2.2.4 Poisson equation: distribution of the electrical potential ψ ...................................... 6 
2.2.5 Poisson-Nernst-Planck equations ............................................................................. 6 

2.3 Upscaling from pore scale to porous media scale .................................................................. 7 

3 Pore Network Model ............................................................................................................ 8 
3.1 Basic idea of the PNM............................................................................................................ 8 
3.2 Developed PNM by Kemakta ................................................................................................. 9 
3.3 Future improvements ............................................................................................................ 10 

4 The lattice-Boltzmann method .......................................................................................... 12 
4.1 Introduction .......................................................................................................................... 12 
4.2 Basic idea of the LBM.......................................................................................................... 12 
4.3 Computational algorithm ...................................................................................................... 14 
4.4 Lattice Boltzmann Advection-Diffusion .............................................................................. 14 
4.5 LBM applications relevant to our objectives ........................................................................ 14 
4.6 Steps in a healthy progression to incorporate LBM into our projects. ................................. 15 

5 Final remarks ...................................................................................................................... 17 

References .................................................................................................................................... 18 
  



    
   

 

 

SKB R-24-17 2 
 

1 Preface 
This report summarizes recent tasks and research conducted within the Pore Network Model project, 
without detailing specific findings. Previous results were documented in the memorandum 
Development of microstructural pore network models- Phase A. The primary objective of this 
document is to consolidate insights gained from modelling and research efforts to date. It aims to 
provide all stakeholders with a clearer understanding of the project’s progress and support the 
planning of future tasks in alignment with SKB's objectives. 

The document is structured as follows: Section 2 introduces the fundamentals of 
electrohydrodynamic modelling in microchannels. Section 3 outlines the core principles of the Pore 
Network Model, summarizes completed work, and proposes two potential directions for further 
development. Section 4 provides a brief overview of the Lattice Boltzmann Method (LBM), explores 
its applications in electrokinetic and electromigration modelling, and discusses its integration into 
electrohydrodynamic simulations for pores and porous media. 
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2 Electrohydrodynamics in microchannels 
This chapter presents the fundamental physics of electrokinetic flow, with a focus on a modelling 
approach that couples the Navier-Stokes, Nernst-Planck and Poisson equations. 

2.1 Basic concepts of electrokinetic flow 
Electrohydrodynamics examines the influence of electrical forces on fluid dynamics, particularly in 
fluids containing charged particles, such as electrolytes. This field explores how these fluids respond 
to external electric fields and interact with charged surfaces. Electrokinetic phenomena commonly 
arise from: 

• Ion motion under an external electric field (Electrophoresis in a stationary medium). 

• Ion interaction with charged surfaces, forming the Electric Double Layer (EDL). 

• Electrolyte motion driven by an external electric field (Electroosmosis near stationary charged 
surfaces). 

• Induced electric potential due to an applied external force, such as a pressure gradient (Streaming 
Potential). 

These phenomena will be briefly reviewed in the following sections. 

2.1.1 Electrophoresis 

Electrophoresis refers to the application of electric fields to move charged particles or ions in a 
stationary fluid. When an electric field is applied, charged particles experience an electrostatic force 
that drives their movement—Negatively charged particles (anions) migrate towards the positive 
electrode (anode), and positively charged particles (cations) migrates towards the negative electrode 
(cathode). However, their motion is opposed by two resistive forces. Frictional force arises as 
particles travel through the medium, with resistance depending on factors like particle size and the 
medium's viscosity—smaller particles face less friction and move faster than larger ones. 
Additionally, an electrophoretic retardation force comes into play due to the formation of an ionic 
cloud (or double layer) around each charged particle. This cloud, made up of oppositely charged ions 
from the surrounding fluid, creates a drag effect that slightly slows the particle’s movement. The 
balance between these forces determines the particle’s final velocity and migration behaviour during 
electrophoresis. Note that in electrophoresis, one does not apply any pressure gradients to cause a 
flow. 

 

 
Figure 2-1. Illustration of electrophoresis. 
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2.1.2 Electrical double layers 

When a charged object contacts an electrolyte, ions with an opposite charge to the object are 
attracted, while ions with the same charge are repelled. As a result, in a neutral electrolyte, an excess 
of counter-ions accumulates near the object, and an excess of co-ions forms at a distance. The region, 
where counter-ions accumulate, is known as the electrical double layer (EDL). The EDL consists of 
two distinct zones: the Stern layer, which includes adsorbed ions, and the diffuse layer, which 
contains mobile ions. Notably, the Stern layer is much thinner than the diffuse layer by several orders 
of magnitude, often leading to its exclusion in modelling considerations. 
 

 
Figure 2-2. Illustration of electric double layers. 

2.1.3 Electroosmosis 

When a fluid carries a net charge, as in the diffuse layer of an EDL, an applied electric field exerts 
forces on the charged particles, causing them to move. This movement, in turn, drives the 
surrounding liquid, resulting in a phenomenon known as electroosmotic flow. 
 

 
Figure 2-3. Illustration of electroosmosis. 

2.1.4 Streaming potential 

An electric field is generated when an electrolyte solution flows along a stationary charged surface 
under the influence of a pressure gradient. For example, a streaming potential develops when an 
electrolyte solution is pumped through a negatively charged capillary (as depicted in Figure 2-4). The 
electric field arises from the interaction between the charged surface and the electrolyte solution, with 
ion movement induced by the flow driven by the pressure gradient. The resulting charge imbalance at 
the interface between the bulk fluid and the charged surface creates the streaming potential. It is 
important to note that, this phenomenon occurs not due to an excess of free negatively charged 
particles in the bulk fluid, but rather due to the relative motion of ions near the surface during flow. 
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Figure 2-4. Illustration of streaming potential. 

2.2 Mathematical formulation at pore scale 
In modelling the motion of a charged fluid under the electrostatic forces, a coupled approach between 
various models is required. The electric field and its potential difference are determined by solving 
Poisson's equation (PE) with a specified charge density, which is derived from a set of Nernst-Planck 
(NP) equations. These equations account for the effects of the electric field, diffusion, and advection 
on the charge distribution, with one NP equation solved for each ion species in the solution. For 
example, in a 1:1 solution with equal concentrations of positive and negative ions, two equations are 
solved—one for positive ions and one for negative ions. The advective charge flux is obtained from 
the velocity field, determined by solving the Navier-Stokes (NS) equations. Additionally, forces 
arising from the electric fields acting on net charged regions of the fluid couple the NP equations 
with the NS equation. The interconnections between these equations are illustrated in Figure 2-5. The 
main transport equations to be solved are briefly discussed in the following sections. 
 

 
Figure 2-5. Solving the complete physical model. Visualization depicting the interconnection between the three 
equations within the model: Poisson's equation (PE), the Nernst-Planck equation (NP), and the Navier-Stokes 
equation (NS). The dependencies are illustrated with arrows, indicating the quantities required from one equation to 
another (Bülling 2012). 

2.2.1 Continuity equation 

For an incompressible fluid, the continuity equation becomes: 

∇ · 𝐮𝐮 =  0 (2-1) 
Here, u represents the velocity vector field and ∇· denotes the divergence operator. 
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2.2.2 Navier-Stokes equation: motion of a fluid 

The Navier-Stokes equation is a fundamental principle in hydrodynamics, governing the motion of a 
fluid under the influence of both internal and external forces. Its general form is derived from the 
principle of momentum conservation: 

𝜕𝜕(𝜌𝜌𝒖𝒖)
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝒖𝒖𝒖𝒖) = −∇P + 𝜇𝜇∇2𝐮𝐮 + 𝐅𝐅 (2-2) 

In this equation, t represents time, ρ denotes density, P is pressure, μ is the dynamic viscosity and F 
accounts for external force contributions. 

2.2.3 Nernst-Planck equation: transport of a charged particle 

The charge concentration, c, within an electrolyte is influenced by several factors, including 
electrolyte advection, diffusion driven by concentration gradients, and the electric field generated by 
charged objects at the boundary or within the flow. These effects are described by the Nernst-Planck 
(NP) equation: 
∂𝑐𝑐
∂𝑡𝑡

= ∇ ⋅ �𝐷𝐷∇𝑐𝑐 − 𝒖𝒖𝑐𝑐 −
𝐷𝐷𝑞𝑞𝑒𝑒
𝑘𝑘𝐵𝐵T

𝑧𝑧𝑧𝑧∇ψ� (2-3) 

In this equation, D is the diffusion coefficient, z is the ion species' charge number, qe is the 
fundamental charge, kB is the Boltzmann constant, and T is the fluid temperature. The final term 
represents the force exerted on charged particles by the electric field, driving positive ions toward 
negative potentials and vice versa. Here, ψ denotes the electric potential, and ∇ψ represents the 
electric field. 

2.2.4 Poisson equation: distribution of the electrical potential ψ 

To accurately model fluid flow dynamics in a pore with existing electrical double layers (EDLs), it is 
crucial to determine both the potential and charge distribution within the channel. These variables are 
interconnected, as described by Poisson's equation, Equation (2-4). In this context, ρe is the electrical 
charge density, ϵr denotes the relative permittivity, and ϵ0 is the vacuum permittivity. Under certain 
assumptions, the charge density can be derived explicitly as a function of the potential distribution, 
leading to the Poisson-Boltzmann equation. 

∇2ψ = −
ρ𝑒𝑒
ε0ε𝑟𝑟

= �
𝑁𝑁𝐴𝐴𝑧𝑧𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒
ε0ε𝑟𝑟𝑖𝑖

 (2-4)  

2.2.5 Poisson-Nernst-Planck equations 

The Poisson-Nernst-Planck (PNP) equations describe the transport of charged ions in an electrostatic 
environment by integrating diffusion, electromigration, and electrostatic interactions. This framework 
combines two fundamental equations: 

• Nernst-Planck Equation – Governs ion transport driven by diffusion and electromigration. 

• Poisson Equation – Determines the electric potential based on charge distribution. 

This coupling introduces nonlinearity, as ion flux depends on the electric field, while the field itself is 
shaped by ion concentrations. The motivation for coupling these equations lies in the need for a self-
consistent description of ion transport in electrostatically influenced systems. The Nernst-Planck 
equation alone describes ion motion but does not account for how ions alter the electric potential. 
Conversely, the Poisson equation computes the potential from charge distribution but does not track 
ion transport. The PNP model resolves this by capturing the two-way interaction: ion concentrations 
shape the electric field, which, in turn, governs ion movement. 
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2.3 Upscaling from pore scale to porous media scale 
Scaling the conventional electrokinetic transport equations, such as the Poisson-Nernst-Planck (PNP) 
and Navier-Stokes (NS) equation, from the microscopic level, where the interactions take place, to 
the macroscopic scale, where most experiments are conducted, poses a significant modelling 
challenge. There are three primary approaches for upscaling pore-scale ion transport in charged 
porous media. 

1. Homogenization: This technique represents ion transport within a representative elementary 
volume (REV) and derives a macroscopic constitutive equation. The resulting partial differential 
equation (PDE) requires effective parameters such as effective diffusivity or conductivity to 
characterize ion transport. However, material heterogeneity and electrokinetic couplings may 
affect the sample-scale behavior, limiting the applicability of this approach in accurately 
reflecting the medium's actual response. This method has been used in safety assessment 
modelling and to interpret experimental results. 

2. Pore Network Modelling (PNM): This approach simplifies the complex topology of a porous 
media by representing the geometry as straight channels or pore networks.  While 
computationally efficient for upscaling, it may require simplifications to facilitate analytical or 
semi-analytical solutions, particularly for the Poisson equation. Additionally, accurately 
capturing the geometric features of porous media within PNM can be challenging. 

3. Direct Numerical Solutions: Solving the coupled PNP and NS equations within complex 
systems offers another upscaling method. However, this approach faces challenges due to limited 
experimental data on material fine structure over varying distances and the high computational 
cost of conducting systematic studies with a representative sample. Techniques like the lattice-
Boltzmann method (LBM) can alleviate these challenges, particularly with the use of image 
scanning, numerical image creation, and parallelization. 

The following sections provide an overview of the PNM and LBM frameworks proposed for 
electrokinetic modelling at both the pore and porous media scales. 
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3 Pore Network Model 
3.1 Basic idea of the PNM 
The Pore Network Model (PNM) conceptualizes porosity as a network of interconnected pores. This 
approach involves solving a set of conservation equations at the network nodes, similar to Kirchhoff's 
law for resistive networks. This solution is based on local fluxes through the pores connecting the 
nodes, influenced by external macroscopic gradient, such as pressure, salt concentration, and electric 
potential gradients. Figure 3-1 illustrates the main features of this PNM. 

 
Figure 3-1. T Two-dimensional representation of a cubic network between two reservoirs, labelled 1 and N. Each 
node is characterized by a pressure Pi, a salt concentration ci, and an electric potential Vi. The flows of solvent, salt, 
and charge between these nodes under the effect of pressure, salt concentration, and potential gradients are, in the 
linear response regime, determined by the transfer matrix (g)ij, which depends on the surface charge density and on 
the salt concentration inside the corresponding pore (Obliger et al. 2014).  

PNM-based models often consider the linear response of a macroscopic sample, such as a rock, 
initially in equilibrium with two solution reservoirs, to the macroscopic gradients. These gradients 
drive flows of solvent, cations, and anions (or equivalently, salt concentration and electric charge) on 
the macroscopic scale. The total flows of solvent, Q0, salt Q1 and charge Q2 through the network are 
proportional to the macroscopic gradients of pressure, P, salt chemical potential, C, and electric 
potential, V, respectively. The goal is to determine the macroscopic transfer matrix K, defined in 
Equation (3-1), by solving the underlying transport equations, namely Poisson’s equation (PE), 
Nernst-Planck (NP), and Navier-Stokes (NS).  

�
𝑄𝑄0
𝑄𝑄1
𝑄𝑄2
� = �

𝐾𝐾𝑃𝑃0 𝐾𝐾𝐶𝐶0 𝐾𝐾𝑉𝑉0

𝐾𝐾𝑃𝑃1 𝐾𝐾𝐶𝐶1 𝐾𝐾𝑉𝑉1

𝐾𝐾𝑃𝑃2 𝐾𝐾𝐶𝐶2 𝐾𝐾𝑉𝑉2
��

∇𝑃𝑃
∇𝐶𝐶
∇𝑉𝑉

� (3-1)  

The transfer matrix K is expected to be symmetric, in accordance with Onsager’s reciprocity 
principle (Onsager 1931).  At the pore scale, the linear response between two nodes i and j follows 
the same structure as the macroscopic response. Thus, the local flows of solvent, q0, salt, q1, and 
charge (electric current), q2, can be expressed as 

�
𝑞𝑞0
𝑞𝑞1
𝑞𝑞2
�
𝑖𝑖𝑖𝑖

= �
𝑔𝑔𝑃𝑃0 𝑔𝑔𝐶𝐶0 𝑔𝑔𝑉𝑉0

𝑔𝑔𝑃𝑃1 𝑔𝑔𝐶𝐶1 𝑔𝑔𝑉𝑉1

𝑔𝑔𝑃𝑃2 𝑔𝑔𝐶𝐶2 𝑔𝑔𝑉𝑉2
�

𝑖𝑖𝑖𝑖

�
∇𝑖𝑖𝑖𝑖𝑃𝑃
∇𝑖𝑖𝑖𝑖𝐶𝐶
∇𝑖𝑖𝑖𝑖𝑉𝑉

� (3-2)  

The coefficients in the matrix G= gij in Equation (3-2) can be determined by analysing and solving 
the mechanisms underlying the coupling between solvent and ionic flows. These coefficients can, in 
principle, be calculated as a function of relevant parameters using both analytical and numerical 
techniques. The conventional description of these coupled solvent and ionic flows involves solving a 
set of coupled differential equations, (a) Navier-Stokes, which accounts for momentum conservation 
in the fluid and incorporates the effect of all local forces, including the electric force due to the local 
electric charge and electric field; (b) Nernst-Planck equation, which governs ion conservation and 
includes advection effect from the fluid flow; and (c) Poisson equation, which determines the electric 
potential distribution from the charge distribution. The fluxes of solvent and ions under gradients of 
pressure, salt concentration, and electric potential can then be solved for a given pore geometry and 
boundary conditions. It is important to note that simplifications are often required to solve these 
coupled systems for each pore. Local fluxes are computed at each node by ensuring the conservation 
of solvent, salt, and charge, resulting in a set of equations for the node variables Pi, Ci, and Vi. These 
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equations are then solved to determine the distribution of these variables across the network. Finally, 
local, and macroscopic fluxes, as well as the elements of the macroscopic transfer function in the K 
matrix, can be derived. 

3.2 Developed PNM by Kemakta 
In our initial attempt to develop and implement a PNM, we introduced certain simplifications based 
on Martin Löfgren’s formulations in the Task Description document1.  
 

 
Figure 3-2. Illustration of a segment of the water-filled pore where the pore walls 1 and 2 are smooth parallel plates 
with uniform aperture, bp. 

• Pore Geometry: Pore segments are modelled as flat parallel plate structures, as illustrated in 
Figure 3-2.  

• Fluid Flow: The pore water flow driven by a pressure difference ∆P (Pa) across the rock sample 
is approximated using the viscous flow assumption between parallel plates, consistent with 
channel-network models. For a rectangular pore segment, the cubic law equation describes the 
volumetric flow Q (m3/s) as: 

𝑄𝑄 =  
𝑊𝑊𝑠𝑠

η𝐿𝐿𝑠𝑠
𝑏𝑏𝑝𝑝𝑝𝑝

3

12
∙ ∆𝑃𝑃 (3-3)  

Where bps (m) is the segment’s uniform aperture, Ls (m) is the length of the pore segment, Ws (m) is 
the width, and η (Pa·s) is the dynamic viscosity.  

• Electromigration: In the first phase of the project, several assumptions are made to simplify 
electromigration modelling: 

1. The tracer bulk concentration is assumed to remain constant throughout the porous system. 

2. In the absence of a concentration gradient, diffusion is neglected in the Nernst-Planck 
equation, leaving the electrical potential gradient as the sole driving force. 

Under these conditions, the anionic and cationic electrical current in the x-direction of each 
rectangular segment is given by:  

𝐼𝐼𝑎𝑎,𝑠𝑠 = 𝑏𝑏𝑝𝑝,𝑠𝑠κ𝑎𝑎,𝑠𝑠⋅
𝑊𝑊𝑠𝑠

𝐿𝐿𝑠𝑠
∙ ∆𝑈𝑈 (3-4)  

𝐼𝐼𝑎𝑎,𝑠𝑠 = 𝑏𝑏𝑝𝑝,𝑠𝑠κ𝑐𝑐,𝑠𝑠⋅
𝑊𝑊𝑠𝑠

𝐿𝐿𝑠𝑠
∙ ∆𝑈𝑈 (3-5)  

 

  

                                                           
1 SKBdoc 1981119 ver 1.0, Svensk Kärnbränslehantering AB (internal document) 

bp 
Pore wall 1 
 
Pore water 
 
Pore wall 2 

z 
y 

x 
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Where κa (S/m) and κc (S/m) is the average anionic and cationic conductivity within the pore water 
of the segment. For a two-component electrolyte the anionic and cationic conductivities are given by: 

κ𝑎𝑎 = �1 −
2λ𝑠𝑠
𝑏𝑏𝑏𝑏

�
𝐹𝐹2

𝑅𝑅𝑅𝑅
𝐷𝐷𝑤𝑤,𝑎𝑎𝑧𝑧𝑎𝑎2ξ𝑎𝑎,𝐷𝐷𝐷𝐷𝑐𝑐𝑎𝑎

𝐵𝐵 (3-6) 

κ𝑐𝑐 = �1 −
2λ𝑠𝑠
𝑏𝑏𝑏𝑏

�
𝐹𝐹2

𝑅𝑅𝑅𝑅
𝐷𝐷𝑤𝑤,𝑐𝑐𝑧𝑧𝑐𝑐2ξ𝑐𝑐,𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐

𝐵𝐵 (3-7)  

 
Here, it is assumed that cations sorbed in the Stern layer do not contribute to the cationic 
conductivity. In the above equations Dw (m2/s) is the diffusion coefficient of the ion in free water, 
ξa,DL (–) and ξc,DL (–) are the anion exclusion and cation enhancement factors for the diffuse layer, 
and λs (m) is the Stern layer thickness, F (C/mol) denotes the Faraday constant, zi (−) is the charge 
number of the tracer, R (J/mol⋅K) is the gas constant, and T (K) is the temperature. 

Hence, using similar notation as in Equation (3-1), we assumed Q0 to be a function of the pressure 
gradient, while Q2 is solely dependent on the electrical potential gradient. As a result, we considered 
only the diagonal elements in the matrix G. Additionally, Q1 was neglected in this phase, and instead, 
a particle tracking technique was employed to monitor the transport of charged particles within the 
network.  

During this initial phase, the following milestones were achieved: 

1. Development of transport equations for a single pore. 

2. Creation of pore-scale lattice network models. 

3. Creation of pore-scale Voronoi network models. 

4. Calculation of pore apertures based on the Weibull distribution 

5. Establishment of a relationship between aperture and hydraulic conductivity, following the Cubic 
law. 

6. Calculation of steady-state pore water flow and particle tracking. 

7. Establishment of a relationship between aperture and electrical conductivity, utilizing the 
Poisson-Boltzmann equation with the Debye-Hückel approximation. 

8. Calculation of steady-state anionic/cationic currents and cation/anion transport. 

9. Statistical analysis of the network properties. 

We concluded that it is relatively straightforward to create and solve pore network problems, 
provided the necessary input data are available. Furthermore, flow and transport problems can be 
efficiently addressed within this framework. 

3.3 Future improvements 
We propose the following steps for advancing the Pore Network Model: 

1. Revisit and enhance the existing model: 

• Assess the simplifying assumptions, with particular focus on evaluating the feasibility of 
integrating the coupling between the different transport phenomena. 

• Enhance the model's accuracy and expand its applicability. 

• Implement the proposed upgrades within the current programming framework and tools. 
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2. Incorporate the multi-scale model (Alizadeh and Mani 2017) into the Pore Network Model:  

• Model description: This model employs a multi-scale approach to efficiently simulate 
nonlinear electrokinetic phenomena in micro- and nano-scale pore networks. Each pore is 
modelled as a one-dimensional element, with governing equations for fluid flow, charge 
transport, and ion transport derived through area-averaging. Assuming cross-sectional 
equilibrium, the model captures the electric double layer (EDL) effect, which induces non-
uniform flow and concentration profiles. Instead of explicitly resolving these variations, the 
model incorporates their influence through tabulated transport coefficients, ensuring robust 
applicability across different surface charge densities and EDL thicknesses. This multi-scale 
framework enhances computational efficiency while maintaining the fundamental physics of 
electrokinetic transport in complex pore networks. 

• Code package: Dedicate time to thoroughly understanding the accompanying C++ code 
package, which is readily accessible in Alizadeh and Mani (2017). A simple example for a 
single pore has been successfully executed; however, a manual is missing, and there are no 
instructions on constructing a network of interconnected pores. Despite these challenges, 
gradually extending the code to handle pore networks is crucial for scaling the Pore Network 
Model (PNM) to more realistic and complex representations. Utilize an alternative analytical 
solution for cylindrical pores given in (Obliger et al, 2014): 

• Begin by reviewing the simplifying assumptions underlying this model and utilize the 
derived analytical solutions to construct networks of cylindrical channels. 

• Implement a new non-linear solver in Python to solve the system. 

 

Table 3-1. Some features of Pore Network Model. 

Feature Pore Network Model 

Representativeness The model simplifies the geometry of porous media into straight channels or 
pore networks, but matching geometrical features of the porous media, such as 
porosity and BET surface area, can often be challenging. 

Code availability In (Alizadeh and Mani 2017), the code package is readily available, and a 
simple example for a single pore has been successfully executed. However, 
instructions for constructing a network of interconnected pores are not provided.  

Analytical solutions 
and solver 

In (Obliger et al. 2014), while the code is not available, analytical solutions for 
determining transfer functions are provided. To solve the system of equations, a 
non-linear Newton solver must be employed. 

Anion exclusion 
effect 

Anion exclusion effect can be incorporated using the Donnan model and the 
Poisson-Boltzmann equation. 

Computational 
Efficiency 

In the model presented in (Alizadeh and Mani 2017), pre-tabulated data is 
utilized to solve the coupled partial differential equations (PDEs). Additionally, 
the system of equations for a pore network can be solved using a linear solver 
and is suitable for parallelization. 
 
In contrast, the model presented by Obliger et al. (2014) employs analytical 
solutions at the pore scale. However, the formulation leads to a non-linear 
system of equations that requires a non-linear Newton solver for solving the 
pore network. 
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4 The lattice-Boltzmann method 
4.1 Introduction 
In fluid dynamics, discussions often span across microscopic, mesoscopic, and macroscopic 
perspectives. The 'microscopic' perspective refers to a molecular-level description, whereas 
'macroscopic' viewpoint involves a continuous fluid model characterized by observable variables 
such as fluid velocity and density. At the microscopic scale, systems are governed by Newtonian 
dynamics, while the Navier-Stokes equation (NSE) describes the behaviour of fluid continua. 
Between these two extremes lies the 'mesoscopic' scale, which doesn't track individual molecules but 
rather focuses on distributions or representative groups of molecules. The kinetic theory provides the 
mesoscopic framework for fluid behaviour and forms the basis of the lattice Boltzmann method 
(LBM). 

Currently, the lattice-Boltzmann method (LBM) is predominantly used in fluid dynamics to compute 
solutions for the macroscopic Navier-Stokes equation. However, its application extends beyond this 
domain. Recently, LBM has successfully employed to solve other macroscopic equations including 
the (coupled) Nernst-Planck and Poisson's equations. Several significant applications of LBM are 
discussed in Section 4.5. 

4.2 Basic idea of the LBM 
As previously mentioned, the lattice-Boltzmann method operates at a mesoscopic scale, which means 
that it does not model fluids at the microscopic level (e.g., Molecular Dynamics, MD) nor does it 
directly solve macroscopic equations (e.g. Computational Fluid Dynamics, CFD). Instead, LBM aims 
to solve a macroscopic equation indirectly, by employing a statistical model that uses mesoscopic 
variables. Under certain conditions, these variables mimic the behaviour of the macroscopic 
variables, ensuring that macroscopic conservation equations are satisfied through a specific scheme. 

The fundamental variable in LBM, is the particle distribution function f(x,ξ,t), which serves as a 
generalized representation of mass density, ρ(x,t), while also incorporating microscopic particle 
velocities. While ρ(x,t), reflects mass density in physical space, f(x,ξ,t) simultaneously describes 
mass density in both three-dimensional physical space and three-dimensional velocity space. The 
distribution function f is related to macroscopic variables such as mass density ρ and fluid velocity u 
through its moments. These moments are integrals of f, weighted by functions of particle velocity, ξ, 
across the entire velocity space. For example, the macroscopic mass density can be determined as 
follows: 

ρ(x, t) = �𝑓𝑓(x, 𝛏𝛏, t)  d3ξ (4-1) 

By integrating over velocity space in this way, we are considering the contribution to the density of 
particles of all possible velocities at position x and time t. We can also account for the particles' 
contribution ξf to the momentum density. By considering all conceivable velocities, we derive the 
macroscopic momentum density as follows: 

ρ(𝑥𝑥, 𝑡𝑡)𝒖𝒖(𝑥𝑥, 𝑡𝑡) = �𝝃𝝃𝑓𝑓(𝑥𝑥, 𝛏𝛏, 𝑡𝑡) d3ξ (4-2)  

The distribution function f(x,ξ,t) evolves over time as particles move and interact. This evolution is 
governed by the Boltzmann equation. 
∂𝑓𝑓
∂𝑡𝑡

+ 𝛏𝛏 ⋅ ∇𝒙𝒙𝑓𝑓 + 𝐹𝐹 ⋅ ∇𝛏𝛏𝑓𝑓 = Ω(𝑓𝑓) (4-3)  

This can be perceived as a type of advection equation: the first two terms denote the distribution 
function being advected with the velocity ξ of its particles. The third term encapsulates forces 
influencing this velocity. On the right-hand side, we encounter a source term, which signifies the 
local redistribution of f due to collisions. Thus, the source term Ω(f) is referred to as the ‘collision 
operator’. 
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Through statistical methods and appropriate averaging techniques, it can be shown that the 
macroscopic equations of fluid mechanics like the Continuity and Navier-Stokes equations can be 
derived directly from the Boltzmann equation. This derivation is crucial as it bridges the microscopic 
world of individual particle interactions with the macroscopic behaviours observed in (macroscopic) 
fluid flow. 

Hence, it can be inferred that solving the Boltzmann equation yields the equations of fluid dynamics 
on the macroscale. Consequently, by obtaining a solution to the Boltzmann equation (f) for a specific 
case, we can derive a solution to the NSE for the same scenario. However, the challenge lies in the 
fact that the Boltzmann equation is even more complex to solve analytically compared to the NSE. 
This complexity arises because its fundamental variable, f(x,ξ,t), is a function of seven parameters: x, 
y, z, ξx, ξy, ξz, and t. As a result, numerical solutions are often computationally demanding, 
necessitating access to large-scale computers and substantial programming efforts. 

To mitigate this issue, the lattice Boltzmann equation (LBE) is formulated through a two-step process 
of discretizing the Boltzmann equation. Initially, velocity space is discretized by constraining the 
continuous particle velocity to a discrete set of velocities. Subsequently, physical space and time are 
discretized by integrating along characteristic paths of the discrete velocity set. These characteristic 
paths represent the trajectories that particles follow in a discrete time step based on their assigned 
discrete velocities, ensuring that particle movement aligns with the Lattice Boltzmann framework. 
The combination of these steps yields the lattice Boltzmann equation.  In essence, the lattice 
Boltzmann equation solves a discretized version of the Boltzmann equation, Equation (4-3) to obtain 
the distribution functions, from which macroscopic quantities can be derived. This method discretizes 
both spatial positions and velocity space, enabling distributions to reside only at specific positions 
and to stream solely in certain directions to neighbouring locations. A simplistic way to envision the 
evolution of f is to regard the distribution functions at lattice nodes as pseudo-particles traversing the 
lattice and undergoing collisions. In the lattice Boltzmann method, the velocity space is discretized 
by limiting the continuous particle velocity ξ to a discrete set of velocities {ξi}. There are various 
approaches to construct these velocity sets. The first is based on the Gauss-Hermite quadrature rule. 
These velocity sets are usually denoted by DdQq, where d is the number of spatial dimensions the 
velocity set covers, and q is the set’s number of velocities. The most commonly used velocity sets to 
solve the Navier-Stokes equation are D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27. In practice, the aim 
is to employ the minimum number of velocities feasible to reduce memory usage and computational 
demands. Nonetheless, there exists a trade-off between utilizing smaller velocity sets (e.g., D3Q15) 
and achieving higher accuracy (e.g., D3Q27). In three dimensions, the velocity set most frequently 
utilized is D3Q19. 

As discussed earlier, through discretizing the Boltzmann equation in velocity space, physical space, 
and time, we derive the lattice Boltzmann equation. 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖Δ𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡)− 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) = Ω𝑖𝑖(𝑥𝑥, 𝑡𝑡) (4-4)  
This indicates that particles 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) move with velocity ci to a neighbouring point 𝑥𝑥 + 𝑐𝑐𝑖𝑖Δ𝑡𝑡 at the 
subsequent time step 𝑡𝑡 + Δ𝑡𝑡. Concurrently, particles are influenced by a collision operator Ω𝑖𝑖(𝑥𝑥, 𝑡𝑡). 
This operator simulates particle collisions by redistributing particles among the populations fi at each 
site. While there exists numerous collision operators Ωi available, the simplest one that can be used 
for Navier-Stokes simulations is the Bhatnagar-Gross-Krook (BGK) operator: 

Ω(𝑓𝑓𝑖𝑖) = −
1
τ
�𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒� (4-5)  

The equilibrium distribution function is given by: 

fi
eq = 𝑤𝑤iρ �1 +

1
cs2

ci ⋅ u +
1

2cs4
(ci ⋅ u)2 −

1
2cs2

u ⋅ u� 
(4-6) 

With the weights wi specific to the chosen velocity set, cs is the denotes the speed of sound. 
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4.3 Computational algorithm 
To solve the lattice Boltzmann, Equation (4-4), the distribution functions must be initialized to some 
initial value. The update in each time step is usually divided into two computational tasks. First, the 
new value that later will be propagated to a neighbouring node is computed, i.e. 

𝑓𝑓𝑖𝑖
∗(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) −

1
τ �
𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡)� (4-7)  

This step will be referred to as the collision step since it is here the “collision” is computed. The 
second step consists of propagating the distribution functions to the neighbouring node in its 
corresponding direction, i.e. 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖Δ𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡) = 𝑓𝑓𝑖𝑖
∗(𝑥𝑥, 𝑡𝑡) (4-8)  

This step will be referred to as the streaming step. At each time step, the boundary conditions must 
also be handled. 

4.4 Lattice Boltzmann Advection-Diffusion 
The LBM is not only used for fluid dynamics; it is also a powerful method to solve advection-
diffusion problems. In fact, there is a growing interest in studying systems with coupled fluid 
dynamics and diffusion with LBM. Advection-diffusion problems are prevalent in natural 
phenomena. They encompass processes such as mixing and heat diffusion in fluids. The governing 
equation for such phenomena is the advection-diffusion equation (ADE) for a scalar field C, which 
may represent variables like concentration or temperature. 
∂𝐶𝐶
∂𝑡𝑡

+ ∇ ⋅ (𝐮𝐮𝐶𝐶) = ∇ ⋅ (𝐷𝐷∇𝐶𝐶) + 𝑞𝑞 (4-9)  

The left-hand side describes the advection of C in the presence of an external fluid velocity u, while 
the right-hand side contains a diffusion term with diffusion coefficient D and a possible source term 
q. The advection-diffusion equation (ADE) and the Navier-Stokes equation share strong similarities. 
In fact, we can interpret the Navier-Stokes equation as an ADE for the fluid momentum density 
vector ρu. Therefore, it can be understood that the lattice Boltzmann method is readily adaptable to 
advection-diffusion equation. Similar arguments can be extended to the Nernst-Planck and Poisson 
equations using different change of variables. 

4.5 LBM applications relevant to our objectives 
In the following sections, we present a selection of applications of the Lattice Boltzmann Method in 
the literature, with a focus on electrokinetic and electromigration modelling. The reader is 
encouraged to consult the cited academic papers for further details. It is important to note that these 
papers represent just a portion of existing body of work, and additional relevant research can be 
found in the broader literature. 

• Diffusion (clay): Experiments on anion and cation diffusion along with pore-scale modelling in 
compacted clays were conducted. The purpose of these studies was to compare experimental and 
modelling (LBM) results and to quantify the extents of anion exclusion and cation sorption in 
various types of clay. 

− Anion Diffusion in Compacted Clays by Pore-Scale Simulation and Experiments (Wu et al. 
2020)  

− Cation Diffusion in Compacted Clay: A Pore-Scale View (Yang and Wang 2019) 
− Upscaling scheme for long-term ion diffusion in charged porous media (Yang and Wang 

2017) 
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• Diffusion (cement): Pore-scale modelling of chloride ion diffusion in cement microstructures 
was performed and the results were compared with experimental data. 

− Pore-scale modelling of chloride ion diffusion in cement microstructures (Yang and Wang 
2018). 

• Electrokinetic flows: Pore-scale modelling of electrokinetic flows (electroosmosis) in 
microchannels was conducted. 

− Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels (Wang 
and Wang 2006). 

− Modelling electrokinetic flows in microchannels using coupled lattice Boltzmann methods 
(Wang and Kang 2010). 

• Reactive transport: A modelling framework is proposed for pore-scale fluid flow and reactive 
transport based on a coupled lattice Boltzmann model (LBM). 

− Coupled Lattice Boltzmann Modelling Framework for Pore-Scale Fluid Flow and Reactive 
Transport (Liu et al. 2023). 

4.6 Steps in a healthy progression to incorporate LBM into our 
projects. 

An extensive open-source LBM software package (LBPM 2020) is available for modelling transport 
problems in porous media in both two-dimensional (2D) and three-dimensional (3D) domains. The 
following progression steps are recommended for utilizing this software package: 

1. Start with 2D models at pore scale: 

• Begin by working with simpler 2D models at the pore scale. A basic example has been 
successfully executed but has not yet been fully validated. This initial phase allows for a 
foundational understanding of the LBM application in various pore representations. 

2. Validation against analytical solutions and COMSOL: 

• Validate the 2D models against analytical solutions under specific limiting conditions. 
Additionally, compare results with simulations in COMSOL. This step establishes 
confidence in the accuracy of your LBM simulations. 

3. Progress to 3D models using rock properties:  

• Transition to 3D models by incorporating rock properties like porosity and surface area. 

• The LBM software package (LBPM 2020) is available, and several examples have been 
successfully executed. However, these models have not yet been validated.  

• Utilize the Quartet Structure Generation Set (QSGS) method (Wang et al. 2007) to create 
realistic digital 3D rock models. QSGS is a stochastic approach that generates porous 
structures by simulating the nucleation and growth of solid grains within a voxel-based 
framework, allowing statistical control over properties such as porosity and surface area. 
These digital rock models can then be used in Lattice Boltzmann Method (LBM) simulations 
to evaluate flow accuracy and computational efficiency. 

• This step will further enhance the realism and applicability of the LBM approach in 
capturing transport processes in realistic porous media. 
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4. Analysis and model evaluation: 

• Run comprehensive analyses on the 3D models to understand their behaviour. Evaluate the 
accuracy of the LBM results against any available experimental data. This step helps assess 
the model's reliability in representing real-world scenarios. 

5. Utilize micro–computed tomography (CT) data: 

• Leverage the high-resolution imaging technique (Micro-CT) to capture detailed 3D 
structures of materials at the microscale. Convert these scans into digital models for 
simulation using LBM. This real-world data integration enhances the project's applicability 
to actual conditions. 

6. Run 3D simulations and compare results: 

• Conduct 3D simulations on the models derived from Micro-CT scans. Compare the results 
with both the 2D simulations and any available experimental data. This comparative analysis 
enhances the understanding of the system's behaviour in a 3D context. 

 

Table 4-1. Some features of Lattice Boltzmann model. 

Feature Lattice Boltzmann Model 

Representativeness QSGS can create digital rock models that match the porosity and surface area 
of a given rock, accommodating both simple and complex porous structures, 
whether derived from scans or artificially generated. 

Code availability A comprehensive software package (LBPM 2020) is available, encompassing 
all Lattice Boltzmann (LB) schemes and fully parallelized, including GPU 
utilization. It has been successfully installed at Kemakta, with several examples 
executed successfully. However, the manual is currently limited and still under 
development. 

Alternative code 
package 

An alternative simpler code package (Bülling 2012) is also available. Several 
tests, including the electromigration example, have been successfully 
conducted. However, it is not fully parallelized and lacks proper packaging. 

Anion exclusion 
effect 

It can be directly incorporated through the coupled Poisson-Nernst–Planck 
equation. 

Computational 
Efficiency 

The coupled Poisson-Nernst-Planck (PNP) model can be computationally 
demanding without high-performance computing capabilities. However, this can 
be mitigated by employing parallel computing with the LBPM and GPU 
acceleration. 
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5 Final remarks 
This report explores the fundamentals of electrohydrodynamic modelling and presents two 
approaches for further development. The first approach focuses on the Pore Network Model (PNM), 
which provides a scalable framework for modelling electrokinetic processes in porous media. The 
second approach utilizes the Lattice Boltzmann Method (LBM), a powerful tool for simulating 
electrokinetic flow and electromigration at the nano-scale. Both approaches are examined in terms of 
their capabilities, challenges, and potential for integration to enhance our understanding of 
electrokinetic phenomena across different scales. 

While the PNM can be scaled up to model rock samples, it requires simplifying assumptions. 
However, the multi-scale model formulation proposed by Alizadeh and Mani (2017) can incorporate 
essential processes for electrokinetic modelling, ensuring an efficient yet computationally feasible 
approach. The software package for this model is available, but it lacks a comprehensive user 
manual. 

The LBM, as a versatile and powerful numerical method, excels in modelling electrokinetic flow and 
electromigration in both 2D and 3D digital geometries. By leveraging techniques such as Micro-CT 
imaging and the Quartet Structure Generation Set (QSGS) method, challenges related to experimental 
data availability and fine-scale material structures can be addressed. Moreover, the high 
computational cost associated with LBM simulations can be mitigated through its parallelization 
capabilities. While an open-source software package for LBM modelling has been released, further 
investigation into its computational efficiency specific to our modelling cases is necessary, as hands-
on experience in this area remains limited. 

It is recommended to continue using both models in parallel. The LBM is ideal for modelling ion 
transport in single pores or nano-scale pore networks, offering valuable insights into electrokinetic 
phenomena in porous environments with diverse geometries, such as clay or cement structures. In 
contrast, the PNM can leverage the insights from LBM modelling to address larger-scale porous-
media models, such as those representing rock samples. This dual approach can enhance the PNM by 
incorporating findings from LBM simulations, helping to refine assumptions and predict 
electromigration effects in scenarios involving complex pore intersections. 
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