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Summary

This report presents the verification of a MATLAB-based implementation of an analytical model for 
simulating solute transport through flow channels, stagnant water zones, and diffusion into adjacent 
rock matrices. The model is used to identify canister positions exposed to dilute water concentrations 
that could lead to buffer erosion. A detailed derivation of the model’s analytical solution in the Laplace 
domain is provided alongside its introduction. This derivation ensures clarity and serves as a basis 
for verifying the solution. Additionally, a dedicated section of the report outlines the structure and 
workflow of the code package, providing guidance on generating or modifying new and existing cases. 
This includes altering geometrical dimensions, transport parameters, initial and boundary conditions, 
and pathway characteristics.

The model’s accuracy was verified through a series of tests, comparing the MATLAB implementation 
with an equivalent Python implementation and, where applicable, results from the numerical model 
DarcyTools. The first numerical test disregarded the effect of the stagnant water zone, while the second 
included it. In both cases, the implementations showed excellent agreement. The third test assessed 
the fraction of deposition hole positions, being subject to dilute conditions, defined as a concentration 
of three percent of the initial value.

The successful completion of the verification tests, along with the derivation of the analytical solution 
and detailed guidance on the code workflow, helps to build confidence in the model and its implemen-
tation for safety assessment of radioactive waste repositories.
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Sammanfattning

Denna rapport presenterar verifieringen av en MATLAB-baserad implementering av en analytisk 
modell för simulering av transport av lösta ämnen genom flödeskanaler, stagnanta vattenzoner och 
diffusion till intilliggande bergmatris. Modellen används för att identifiera kapselpositioner med jon
svaga vatten som kan leda till bufferterosion. En detaljerad härledning av modellens analytiska lösning 
i Laplace-domänen tillhandahålls tillsammans med en introduktion av modellen. Denna härledning 
säkerställer tydlighet och utgör en grund för verifiering av lösningen. Dessutom beskriver ett särskilt 
avsnitt i rapporten kodpaketets struktur och arbetsflöde, och ger vägledning i hur man genererar 
eller ändrar nya och befintliga beräkningsfall. Detta inkluderar ändring av geometriska dimensioner, 
transportparametrar, initial- och randvillkor samt egenskaper för flödesvägar.

Modellens noggrannhet verifierades genom en serie tester där MATLAB-implementeringen 
jämfördes med en likvärdig Python-implementering och, i förekommande fall, resultat från den 
numeriska modellen DarcyTools. Det första numeriska testet bortsåg från effekten av den stagnanta 
vattenzonen, medan det andra testet inkluderade den. I båda fallen visade implementeringarna 
utmärkt överensstämmelse. Det tredje testet utvärderade andelen av deponeringshålpositioner som 
uppnådde förhållanden med jonsvaga vatten, definierade som en koncentration av tre procent av 
det initiala värdet.

Det framgångsrika slutförandet av verifieringstesterna, tillsammans med härledningen av den analytiska 
lösningen och den detaljerade vägledningen om kodens arbetsflöde, bidrar till att stärka förtroendet för 
modellen och dess användning inom säkerhetsanalysen av ett förvar för radioaktivt avfall.
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1	 Introduction

SKB (2022) reports on radionuclide transport modelling for the post-closure safety assessment in 
support of SKB’s Preliminary Safety Assessment Report (PSAR) for a final repository for spent nuclear 
fuel at the Forsmark site. Appendix K of (SKB, 2022) briefly describes the solute transport model 
developed by Mahmoudzadeh et al. (2013), which provides a framework for calculating the concentra-
tion of a non-decaying solute as it moves through the flow channel while accounting for the retarding 
effects of finite matrices and stagnant water zones adjacent to the flow channel (collectively referred to 
as “subsystems” in this report). The original solution by Mahmoudzadeh et al. (2013) assumes a zero-
concentration initial condition within these subsystems. To meet the objectives of this study – namely, 
identifying canister positions exposed to dilute water concentrations that may lead to buffer erosion 
– the model has been modified to incorporate a non-zero initial condition. This adaptation enables the 
model to evaluate the impact of low-ionic-strength water infiltrating from the surface on salinity levels 
at repository depth. Specifically, the model determines the temporal distribution of deposition hole 
positions that reach a predefined concentration threshold. The necessary transport data for this analysis 
are derived from flow simulations conducted using ConnectFlow. This report provides a complete 
derivation of the analytical solution and verifies the MATLAB implementation of the solution.

The report is structured as follows: Section 2 provides a conceptual model of the solute transport 
mechanisms; Section 3 presents the mathematical model, including detailed discussions on solute 
transport through various mediums; Section 4 presents the solution for the mediums in the Laplace 
domain; Section 5 outlines the verification process, highlighting three specific tests conducted to 
assess the model’s accuracy; and Section 6 details the code package structure and workflow, offering 
guidance on how to create and modify new and existing cases. References are provided at the end 
of the report for further reading.
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2	 Conceptual model

Groundwater in fractured bedrock primarily flows through conductive parts of the fractures, known as 
channels. These channels can intersect, forming a connected network of transport pathways throughout 
the bedrock. In contrast, the surrounding rock matrix is typically much less permeable, and transport 
in this region is generally dominated by molecular diffusion. To effectively model solute transport in 
these networks, it is essential to consider the different mechanisms influencing solute movement within 
each individual channel. In this study, we adopt a simplified model that uses a straight channel with 
a constant aperture and width. Figure 2‑1 shows the conceptual picture of the model developed by 
Mahmoudzadeh et al. (2013), where water flows through a channel of width and aperture of 2Wf and 
2bf, respectively. The adjacent stagnant water zone is assumed to be a rectangular cuboid with the same 
length as the flow channel but with a different aperture, 2bs, and width, 2Ws. The flow velocity, u, is 
assumed to be uniform through the flow channel, and complete mixing across the fracture is assumed. 
Transport along the fracture is controlled by advection, while the effects of longitudinal dispersion are 
neglected in this study. Solutes can diffuse directly from (and to) the flow channel to (and from) the 
adjacent rock matrix. Alternatively, they may first diffuse into the stagnant water zone before moving 
into the rock matrix, and vice versa. Although, in Figure 2‑1, diffusion to the stagnant water zone and 
rock matrices is shown in positive directions, the model also considers the diffusion in opposite direc-
tions. Solute is also subject to linear equilibrium sorption on the fracture surface and within the porous 
rock matrix. In this study, radioactive decay is not considered.

Figure 2‑1. Different paths for solute transport in fractured rock where solute diffuses to the stagnant water 
zone (denoted as the blue zone in the figure) and rock matrices in both positive and negative directions, after 
Mahmoudzadeh et al. (2013).
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3	 Mathematical model

Solute transport can be described with the coupled one-dimensional approach, as was done by 
Mahmoudzadeh et al. (2013). Because the system has been conceptualized into four subsystems, four 
mass balance equations are formulated to describe transport in the flow channel, stagnant water zone, 
rock matrix adjacent to the flow channel and rock matrix adjacent to the stagnant water zone, respec-
tively. To provide the coupling between the subsystems, solute exchange at the interfaces is described 
by introducing sink and source terms in the governing equations and by providing continuity of the 
concentration near the interfaces. The following sections present the system of equations that describe 
solute transport in each subsystem.

In each section, the process begins with the presentation of the transport equation, where the initial 
concentration in each subsystem is given as C = C0. This form represents the model of solute transport 
considering the initial non-zero concentration. Following the introduction of this equation, a change of 
variable is applied to simplify the problem. Specifically, the transformed concentration C̃ = C−C0 is 
introduced. This transformation shifts the initial concentration to zero across all subsystems, allowing 
for an analytical approach (the Laplace transformation) to solve the transport equations. The modified 
equations are then presented, demonstrating how the system is now expressed in terms of the 
modified variable.

3.1	 Solute transport through the flow channel
Based on the above considerations and by taking diffusive transport and linear equilibrium sorption into 
account, the one-dimensional transport equation of species i in the flow channel can be formulated as:

,
, , , , , , 	 (3‑1)

In the above equation, x denotes the coordinate along the flow channel and y and z are the coordinates 
into the stagnant water zone and into the rock matrix adjacent to the flow channel, respectively; both 
are perpendicular to the channel. The terms on the right-hand side of the equation describe the diffu
sional process at the interfaces between the channel and the stagnant water zone and between the 
channel and the rock matrix adjacent to it, respectively. The initial condition is

, ( , 0) = 0 	 (3‑2)

and boundary condition is given by:

, (0, ) = 	 (3‑3)

Upon introducing the following change of variable

̃
, =  , − 0	 (3‑4)

the transport equation and initial and boundary conditions becomes:

,
,,  , , , , 	 (3‑5)

̃
, ( , 0) = 0 	 (3‑6)

̃
, (0, ) = − 0 	 (3‑7)
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3.2	 Solute transport in the stagnant water zone
Neglecting diffusion in the direction parallel to the flow, the one-dimensional transport equation 
of species i in the stagnant water zone can be formulated as:

,
,

,
, , , 	 (3‑8)

where zs is the coordinate along the rock matrix adjacent to the stagnant water zone, and it is perpen-
dicular to the interface between the stagnant water zone and the adjacent rock matrix. Here we neglect 
the diffusion in zs direction within the stagnant water zone, assuming complete mixing across the thin 
fracture. The initial condition is

, , 0 	 (3‑9)

and boundary conditions are given by:

, 0,  , 	 (3‑10)

and

, 0 	 (3‑11)

The second term at the right-hand side of Equation (3‑8) describes diffusion at the interface between 
the stagnant water zone and the rock matrix adjacent to it. Because complete mixing is assumed 
across the fracture, solute transport in the flow channel and in the stagnant water zone is coupled 
through Equation (3‑10), which describes the continuity of the solute concentration at the interface. 
Equation (3‑11) shows a no-flux boundary condition at y = 2Ws in the stagnant water zone. The no-
flux condition can be motivated as a symmetry condition with the neighbouring water zone in which 
transport occurs simultaneously. It may also be a physical boundary. Upon introducing the following 
change of variable:

, , 	 (3‑12)

The transport equation and initial and boundary conditions becomes:

, ,
,, , , 	 (3‑13)

, , 0 0 	 (3‑14)

, 0,  ,  , 	 (3‑15)

0 , 	 (3‑16)

3.3	 Solute transport in the rock matrix adjacent to the 
flow channel

Transport in the porous rock matrix is primarily controlled by molecular diffusion, as the rock matrix 
usually has a very low hydraulic conductivity. The one-dimensional transport equation of species i in 
the matrix adjacent to the flow channel can be formulated as

,
, , , 	 (3‑17)

The initial condition is

, , 0 	 (3‑18)
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and the boundary conditions are given by:

, 0,  , 	 (3‑19)

and

∂z

∂C ,
0 	 (3‑20)

Because concentration does not vary across the fracture, transport in the flow channel and matrix 
is coupled through Equation (3‑19), which describes the continuity of the solute concentration. 
Equation (3‑20) describes a no-flux boundary condition at z = δf for a rock matrix adjacent to the flow 
channel. The rock matrix extends for a limited distance where no flux is permitted. The no-flux condi-
tion can be motivated as a symmetry condition with a neighbouring matrix in which transport occurs 
simultaneously. When a large value is used for the matrix depth, the matrix may act as a semi-infinite 
domain with infinite fracture spacing. Upon introducing the following change of variable:

,  , 	 (3‑21)

The transport equation and initial and boundary conditions becomes:

,
, , 

 
, 	 (3‑22)

, , 0  0	 (3‑23)

, 0,  ,  , 	 (3‑24)

0, 	 (3‑25)

3.4	 Solute transport in the rock matrix adjacent to the stagnant 
water zone

Similar to Equation (3‑17), the one-dimensional transport equation of species i in the rock matrix 
adjacent to the stagnant water zone can be formulated as:

,
, , , 	 (3‑26)

The initial condition is

, , 0 	 (3‑27)

and boundary conditions are given by:

, 0,  , 	 (3‑28)

and

, 0	 (3‑29)

Equation (3‑28) describes the continuity of concentration between the stagnant water zone and its 
adjacent rock matrix. Equation (3‑29) also describes a no-flux boundary condition at zs = δs for the 
rock matrix adjacent to the stagnant water zone. Upon introducing the following change of variable:

, , 	 (3‑30)
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The transport equation and initial and boundary conditions becomes:

,
, , 

 
, 	 (3‑31)

, , 0 0 	 (3‑32)

, 0,  , , 	 (3‑33)

0, 	 (3‑34)
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4	 Solution in the Laplace Domain

In this section, we begin with the Laplace transformed solutions to transport equations in the rock 
matrices and then continue with the equations describing solute transport in the stagnant water zone 
and the flow channel. The solutions are obtained for the modified equations and are expressed according 
to the parameter groups introduced by Mahmoudzadeh et al. (2013), which help to characterise the 
mechanisms contributing to solute transport. These parameter groups together with their definitions 
and physical significance are listed in Table 4‑1.

Table 4‑1. Parameter groups used to characterize the transport equations.

Definition Physical Significance

 Material property group for the rock matrix adjacent to the flow channel (Moreno and 
Crawford, 2009).

 Material property group for the rock matrix adjacent to the stagnant water zone 
(Moreno and Crawford, 2009).

 

Ratio of the flow-wetted surface of the rock matrix adjacent to the flow channel to 
the advection conductance (volumetric water flow rate). Ff gives a measure of the ratio 
of diffusion through the rock matrix to advection in the flow channel and quantifies the 
relative importance of these two types of solute transport in the channel. A high value 
of the Ff indicates that a large amount of solute carried by the flowing water can quickly 
be transported into the rock matrix.

 . 

Ratio of the flow-wetted surface of the rock matrix adjacent to the stagnant water zone 
to the diffusion conductance of the stagnant water zone. Fs gives a measure of the 
ratio of diffusion through the rock matrix to diffusion into the stagnant water zone and 
quantifies the relative importance of these two types of solute transport. A high value 
of Fs indicates that a large amount of solute diffusing from the flow channel into the 
stagnant water zone can quickly be sucked by the rock matrix.

 Characteristic time for advection through the flow channel, which is equivalent to the 
water residence time.

 
,

Characteristic time for diffusion into the stagnant water zone.

, 
,

Characteristic time for diffusion into the rock matrix adjacent to the flow channel.

, 
,

Characteristic time for diffusion into the rock matrix adjacent to the stagnant water zone.

/ Ratio of the characteristic rate of diffusion into the stagnant water zone to the 
characteristic rate of advection through the flow channel. N gives a measure of the 
fraction of solutes that can depart from the flow channel into the stagnant water zone.

In the table above, Daf,i and Das,i are the apparent diffusivity of species i within rock matrices adjacent 
to the flow channel and stagnant water zone, respectively, defined as.

, 
,

,
	 (4‑1)

, 
,

,
	 (4‑2)
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4.1	 Solute transport through the rock matrix adjacent to the 
flow channel

We define T and P representing the Laplace-transformed concentrations in the flow channel and in 
the rock matrix adjacent to it, respectively, hence 

 , 	 (4‑3)

 , 	 (4‑4)

It follows that, the partial differential equation in the Laplace domain for solute transport through the 
rock matrix adjacent to the flow channel can be derived as: 

,
 0 	 (4‑5)

where s denotes the Laplace transform variable. The Laplace-transformed boundary conditions become:

0,  	 (4‑6)

 0 	 (4‑7)

The general solution for this type of partial differential equations can be expressed as (Bird et al. 2002):

⎝

⎛
⎜ 

,

⎠

⎞
⎟

⎝

⎛
⎜

,

⎠

⎞
⎟	 (4‑8)

Applying the boundary conditions given in Equations (4‑6) and (4‑7), it can be shown that the final 
solution for solute transport equation in Laplace domain in rock matrix adjacent to flow channel can 
be obtained as:

 
 ,

,
	 (4‑9)

Hence

,  
. ,     	 (4‑10)

The above equation will be used later to solve the solute transport equation in the flow channel, 
Equation (4‑26).

4.2	 Solute transport through the rock matrix adjacent to the 
stagnant water zone

We define H and E representing the Laplace-transformed concentrations in the stagnant water zone 
and in the rock matrix adjacent to it, respectively, hence

 , 	 (4‑11)

 , 	 (4‑12)
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It follows that, the partial differential equation in the Laplace domain for solute transport through the 
rock matrix adjacent to the stagnant water zone can be derived as:

, 0	 (4‑13)

with the Laplace-transformed boundary conditions:

  0,  	 (4‑14)

0	 (4‑15)

The solution to the above transport equation can be obtained by following the same procedure used 
in Section 4.1. The final solution reads:

 

⎝

⎛
⎜

 ,

,
 	 (4‑16)

Hence

 ,  
. ,  	 (4‑17)

The above equation will be used later to solve the solute transport equation in the stagnant water 
zone, Equation (4‑18).

4.3	 Solute transport in the stagnant water zone
the Laplace-transformed form of Equation (3‑13) for solute transport through the stagnant water 
zone can be derived as:

 , , , , 	 (4‑18)

with the Laplace-transformed boundary conditions:

0,  	 (4‑19)

 0 	 (4‑20)

By substituting Equation (4‑17) in Equation (4‑18) we get:

  0 	 (4‑21)

Where g̴i is defined as:

 , , 
,  

. ,  , , 	 (4‑22)
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The general solution for this type of differential equations can be expressed as:

  
| |

2  
| |

2  	 (4‑23)

Applying the boundary conditions given in Equations (4‑19) and (4‑20), it can be shown that the final 
solution for solute transport equation in Laplace domain in the stagnant water zone can be obtained as:

  
2 | |

| |
2 	 (4‑24)

Hence
 

,
 2 

,   	 (4‑25)

The above equation will be used later to solve the solute transport equation in the flow channel, 
Equation (4‑26).

4.4	 Solute transport through the flow channel
the Laplace-transformed form of Equation (3‑5) for solute transport through the stagnant water zone 
can be derived as:

, ,
, 	 (4‑26)

with the Laplace-transformed boundary condition:

0,  , 	 (4‑27)

By substituting Equations (4‑10) and (4‑25) in Equation (4‑26) we get:

   	 (4‑28)

Where s̴i is defined as:

 ,  ,  , 	 (4‑29)

In the above equation, af s and af p are flow wetted surface areas per volume of water for diffusion 
from flow channel to stagnant water zone and rock matrix, respectively, defined as:

	 (4‑30)

and 
1

	 (4‑31)

The general solution to Equation (4‑28) (first-order linear constant coefficient ordinary differential 
equation) is in the form of (Bird et al. 2002):

| |
  ,  exp 	 (4‑32)
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Applying the boundary condition given in Equation (4‑27), it can be shown that the final solution for 
solute transport equation in Laplace domain in the flow channel can be expressed as:

 , exp 	 (4‑33)

Where Ai is defined as:

|  |
, ,  2 

, 	 (4‑34)

in which we have defined Ωf,i and Ωs,i as:

, ,  , , √ 	 (4‑35)

, , ,  , , √  	 (4‑36)

with

, , , 	 (4‑37)

, , ,  	 (4‑38)

We have defined T as the Laplace transform of the modified concentration, therefore,

 ,  ,  ,  	 (4‑39)

hence

,  , exp 	 (4‑40)

or equivalently:

, 1 exp  , exp 	 (4‑41)

Thus, the final solution is a function of solute concentration at the inlet boundary. By knowing the 
channel inlet condition, solute concentration along the flow channel, and through the other zones can 
be obtained by using the analytical expressions presented in the section. A complete list of characteristic 
parameters is given in Table 4‑1 together with their definition and physical significance.

Equation (4‑41) suggests that for practical applications, i.e., predicting the behaviour of solute trans-
port in fractured media, one needs to follow the change in flow channels (solute particle pathways) 
and document the involved characteristic parameters, particularly τf and Ff. Such information is then 
sufficient to calculate the parameter Ai for each pathway and to obtain the solute concentration at the 
end of the path. The De Hoog algorithm can then be used to numerically invert Equation (4‑41) back 
to the time domain. The algorithm is well described in (De Hoog et al., 1982) and briefly reviewed 
by Boupha et al. (2004).

In the case of fresh water at the inlet boundary (Cin = 0), the solution given in Equation (4‑41) reduced to:

, 1 exp 	 (4‑42)

For a simple case, where there is no stagnant water zone, Ws = 0, and the initial concentration in the 
subsystem is C0 = 0, Equation (4‑41) reduced to:

,  ,  exp ,  , , √ 	 (4‑43)

In this section, we presented the derivation of the analytical solution in the Laplace domain. In the 
following section, we proceed to verify the accuracy of this solution and its implementation in MATLAB. 
This step involves running numerical simulations using other tools to ensure that the MATLAB code 
correctly reproduces the analytical results, thereby verifying the computational approach.
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5	 Verification

This section focuses on the verification of the analytical solution and its implementation in MATLAB, 
against two alternative numerical models: 1) a Python implementation of the same analytical solution 
developed by Amphos21, and 2) the coupling of the numerical model DarcyTools (Svensson et al., 
2010) with the Matrix Diffusion Module (MD Module) (Shahkarami and Sidborn, 2023).

5.1	 Test 1 – Disregarding the effect of the stagnant water zone
In the first test, the MATLAB implementation was compared with both the Python script and 
DarcyTools, where the effect of stagnant water zone was disregarded. The verification phase involved 
evaluating the MATLAB implementation for two distinct cases, denoted Case 1 and Case 2, each 
defined by different values of τf (57 and 137 years, respectively) and Ff+ (3.7 × 105 and 5.6 × 106 year/m, 
respectively). The remaining parameters were assumed to be constants and are summarized in Table 5‑1.

Table 5‑1. Geometrical and physical Properties of fracture and stagnant water used.

Parameter Definition Value

δf = δs Half-size of matrix blocks 12.5 m
εpf = εps Matrix porosity 3.7 × 10−3

Def = Des Effective diffusivity 4 × 10−14 m2/s
Ds Diffusivity in stagnant water zone 1 × 10−9 m2/s
Ws SWZ* Half width 1 m
Cin Concentration of injected water 0.2 g/L
C0 Concentration of initial fracture and matrix waters 10 g/L
Wf Half-width of flow channel 0.1 m

* Stagnant Water Zone.

As shown in Figure 5‑1, the test was completed successfully in both cases, demonstrating agreement 
across the three implementations. This agreement indicates that the implementations are consistent, 
thereby verifying the MATLAB implementation.

Figure 5‑1. Comparison of responses from MATLAB, Python, and DarcyTools implementations in Case 1 
(left) and Case 2 (right), where the effect of stagnant water zone was disregarded.
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5.2	 Test 2 – Including the effect of the stagnant water zone
A similar study was conducted that incorporated the effect of the stagnant water zone in the transport 
solution. This study involved a comparison between the MATLAB and Python implementations. It 
should be noted that the MD module in DarcyTools is designed to simulate diffusion within a single 
secondary continuum; thus, it cannot simultaneously model diffusion into or from both a rock matrix 
and a stagnant water zone. Consequently, DarcyTools was not used in this study, and the comparison 
was carried out between the MATLAB and Python implementations. The results for Case 1 and 
Case 2 are shown in Figure 5‑2, which also demonstrate excellent agreement and indicates identical 
performance across the two implementations.

Figure 5‑2. Comparison of responses from MATLAB, Python, and DarcyTools implementations in Case 1 
(left) and Case 2 (right), where the effect of stagnant water zone was included.
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5.3	 Test 3 – Temporal distribution for deposition hole positions 
reaching three percent of the initial concentration

To strengthen the verification process, a comparison of the MATLAB and Python scripts was also 
conducted regarding the plots included in Appendix K of (SKB, 2022). Specifically, Figure K-5 (top) 
in the report was reproduced using both implementations and for Ws = 0.1, Ws = 1.0 and Ws = 5.0 m. 
The results, depicting the temporal distribution of deposition hole positions that reach three percent 
(3 %) of the initial concentration (10 g/L), are shown in Figure 5‑3. The top left figure corresponds to 
Ws = 0.1 m, while the top right figure corresponds to Ws = 1.0 m, and the bottom left figure corresponds 
to Ws = 5. m. The final figure presents an ensemble of all the cases (bottom right). It can be observed 
that the two implementations coincide in both cases, reproducing the same plot as reported in the 
SKB report. This agreement reinforces the notion that the implementations are consistent and robust, 
providing confidence in the ability of the MATLAB implementations to model the studied system.

Figure 5‑3. Comparison of temporal distribution for all deposition hole positions that reach three percent 
of the initial concentration, for Ws = 0.1 (top left), Ws = 1.0 (top right), Ws = 5.0 m (bottom left), and an 
ensemble of all cases (bottom right).
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6	 Code Package Structure and Workflow

6.1	 Introduction
6.1.1	 Purpose of the Code Package
The above formulations are implemented in MATLAB, and the accompanied code package is designed 
to handle various groundwater infiltration scenarios. It employs the De Hoog algorithm to perform the 
numerical inversion of the Laplace-transformed solution, Equation (4‑41), back into the time domain, 
allowing for the analysis of multiple groundwater recharge pathways. Each pathway is characterized 
by unique values of Ff and τf. By calculating the concentration through these pathways, the code helps 
estimate the potential impact of dilute groundwater infiltration on canisters during temperate and 
glacial conditions.

6.1.2	 Target Audience
To effectively use this code package, users are expected to have a basic familiarity with the 
MATLAB environment, including the ability to run scripts, navigate directories, and manage input/
output files. However, users who wish to modify the code or simulate new cases must be comfortable 
with MATLAB programming and possess prior experience in coding. This includes understanding 
MATLAB’s syntax, debugging capabilities, and working with functions and scripts.

6.2	 Overview of Code Package Structure
6.2.1	 Directory Structure
The code package is organized into a simple structure consisting of scripts, an input data file, and 
supporting resources for simulations. A sample directory layout is shown below:

/code_package

 ├── figures/

 ├── BasicSetting.m

 ├── invlap.m

 ├── Kopia av backward paths.xlsx

 ├── LPSolution.m

 └── PSARcalculations.m

Below is a description of the main directory and its contents:

figures/: This folder contains a compilation of graphical outputs presenting the results, which are 
generated after simulations with varying parameters, i.e., Wf, Ws and α, where α = C/C0.

BasicSetting.m: A script used to define and configure the geometrical dimensions and transport 
parameters for the simulation environment. This includes initializing constants and setting up model 
characteristic parameters, as defined in Table 4‑1.

LPSolution.m: This script processes the output from the previous script to calculate Ppf and Pps as 
defined in Equations (4‑37) and (4‑38), respectively. These values are then utilized to construct the 
final core solution, described by Equation (4‑41), in the Laplace domain. This solution is subsequently 
used by invlap.m for the numerical inversion of Laplace transforms into the time domain.

invlap.m: This script is used for the numerical inversion of Laplace transforms, allowing the simula-
tion to move from the Laplace domain back to the time domain. The De Hoog algorithm, widely used 
for numerical inversion, is implemented here.
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PSARcalculations.m: This script initiates and manages the overall simulation flow, focusing on the 
penetration of dilute water through various pathways. It starts with the initialization of model parameters 
and proceeds to read particle tracking data from the input .xlsx file. This file contains information on tw, 
Ff, validation flags (OKFLAG), the full perimeter criterion (FPC), and effective full perimeter (EFPC). 
The last two parameters are criteria for exclusion of deposition holes. For example, excluding FPC > 0 
means that deposition holes are excluded due to background fractures or deformation zone fractures. 
Please refer to (SKB, 2022) for further information regarding the particle tracking parameters. The script 
keeps desired deposition holes where OKFLAG(i) = 0, FPC(i) = 0, and EFPC(i) < 5, and calculates 
the outlet concentration of the dilute water for each path by recursively calling the function invlap. 
This iterative process ensures that the concentration profile is generated for each valid pathway. Next, 
the script identifies positions experiencing the erosion concentration1 (Ccrit) and computes the fraction 
of these positions. Finally, it plots the calculated fraction, exports the figure as a .png file, and concludes 
the simulation workflow.

6.3	 Installation and Setup
To run this code package, the only prerequisites are having MATLAB installed and possessing a valid 
MATLAB license. There are no additional installation steps or specific setup procedures required. Once 
MATLAB is installed, users can simply download or clone the code package, navigate to the appropri-
ate directory in MATLAB, and begin by running the script PSARcalculations.m. All necessary files, 
such as input data and scripts, are included in the package, so no further dependencies need to be 
installed to reproduce the existing cases.

6.4	 Creating New Cases
To create new cases, users can modify various aspects of the provided scripts, input data and model 
parameters. Here’s an overview of the different ways to create new cases, along with practical steps 
on how to implement them:

6.4.1	 Modify geometrical dimensions and transport parameters
BasicSetting.m allows users to define essential model parameters, particularly for the stagnant water 
zone, the adjacent rock matrix, and the matrix adjacent to the fracture. These input parameters control 
the physical dimensions and transport properties of the subsystems, affecting the overall simulation. 
User-defined input parameters are:

1.	 Fracture properties
–	 Wf: Fracture half-width. Default value: 0.1 m.
–	 FRf: Ff for the fracture. Default value: provided by the user through input F year/m.
–	 Rf: Retardation factor for the fracture. Default value: 1.0.

2.	 Stagnant water zone properties
–	 Ws: Stagnant water zone half-width. Default value: 1.0 m.
–	 tw: Water resistance time, defined by the user input TW year.
–	 bf: Fracture half-aperture (m) computed as tw/FRf.
–	 Ds: Water diffusivity in the stagnant water zone. Default value: 0.0315 m²/y.
–	 Rs: Retardation factor in the stagnant water zone. Default value: 1.0. It can also be set to 0.0 

if the stagnant water zone effect is neglected.

3.	 Properties of matrix adjacent to the fracture
–	 deltaf: Penetration depths (m). Default value: 12.5 m.
–	 Def: Effective diffusivity for the matrix adjacent to the fracture. Default value: 1.26 × 10−6 m²/y.
–	 KdfRbf: Product of distribution coefficient (based upon the bulk density) and bulk density for the 

matrix. Default value: 4.0 × 10−5 (= εpf, hence, no sorption is considered within the rock matrix).

1  Salinity criterion for buffer erosion, which represents the dilute water concentration at which buffer erosion 
may occur.
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′1 	 (6‑1)

Kd and K׳
d are the matrix sorption coefficients based upon the bulk (ρp) and solid densities (ρs), 

respectively; εpf is the matrix porosity. The relation between the bulk and solid densities is:

1 	 (6‑2)

4.	 Properties of matrix adjacent to the stagnant water zone
–	 deltas: Penetration depths. Default value: 12.5 m.
–	 Des: Effective diffusivity for the matrix adjacent to the stagnant water zone. Default value: 

1.26 × 10−6 m²/y.
–	 KdsRbs: Product of distribution coefficient (based upon the bulk density) and bulk density for the 

matrix. Default value: 4.0 × 10−5 (= εpf, hence, no sorption is considered within the rock matrix).

6.4.2	 Alter initial and boundary conditions and simulation time
PSARcalculations.m can be adapted to simulate new cases by altering the initial condition, C0, 
(Default value: 10 g/L), inlet concentration boundary, Cin (Default value: 0.2 g/L), α (Default value: 
0.03) and hence Ccrit, and simulation time.

6.4.3	 Alter pathway characteristics from the input Excel file
Update the current or create a new Excel input file with different particle tracking data. Ensure to 
follow the same column structure given in the current file, keeping in mind that any data above row 
11 is not used by the script.

6.4.4	 Modify core equation in the Laplace domain
Update the core solution in LPSolution.m to create new cases that reflect new transport mechanisms 
or modified types of boundary conditions.

6.5	 Input/Output Structure
The code package reads input data from an Excel file, which contains five (5) key columns necessary 
for the simulation. It’s important to note that any data above row 11 is not used by the script, and 
the relevant data starts from row 11. The specific columns that are extracted and used in the simulation 
are column #M (τf), column #N (Ff) , column #I (OKFLAG), column #AB (FPC) and column #AC 
(EFPC).

The primary output of the code package is a MATLAB figure that visualizes the simulation results, 
such as concentration evolution over time for different pathways and the corresponding fraction 
of deposition holes that encounter dilute water with a specific concentration. These figures can be 
displayed interactively within the MATLAB environment, and users can also choose to save the 
figure as an image in various formats (e.g., PNG, JPEG, TIFF) for further analysis or reporting. 
Such figures may be compiled in the figures/ directory of the code package.





SKB R-24-15	 29

7	 Conclusion

This report demonstrated verification of the MATLAB-based implementation of the model developed 
by Mahmoudzadeh et al. (2013) for solute transport simulation through flow channels, stagnant water 
zones, and adjacent rock matrices. The model was used to identify canister positions experiencing 
dilute water concentrations that could lead to buffer erosion. The analytical solution was derived 
in the Laplace domain. Verification tests demonstrated excellent agreement between the MATLAB 
and Python implementations, with additional comparisons to the numerical model DarcyTools where 
applicable.

Three verification tests were carried out to assess the performance of the model under different 
conditions. The first test disregarded the effect of the stagnant water zone, while the second included 
it. Both tests confirmed that the MATLAB and Python implementations produced consistent results. 
The third test focused on the temporal distribution of deposition hole positions reaching three percent 
of the initial concentration. Once again, both implementations produced identical results, reinforcing 
the robustness and reliability of the model.

In addition to verifying the solute transport model, the report provides a complete description of the 
code package structure and workflow. This guidance enables users to modify existing cases or create 
new ones by altering parameters such as geometrical dimensions, transport properties, and initial and 
boundary conditions. The model’s adaptability, coupled with the verification results, demonstrates its 
suitability for safety assessment calculations of radioactive waste repositories.
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8	 Source Code Documentation (temperate case)

8.1	 PSARcalculations.m
% PSAR calculation: penetration of dilute water 
%% Initialisations

clc; clear all; close all;

alph_in = 0; tol = 1.0e−40; % Parameters for the inverse Laplace 
function

%

STWZ	 = 1; % 1:STWZ will be included, 0:TWZ will be ignored

flag	 = 1; % 1:Heaviside input function, 0:Pulse input function

t	 = logspace(1, 9, 90);% Define logarithmic time vector(y)

C0	 = 10;			   % Initial concentration (g/L)

Cin	 = 0.2;			   % Inlet concentration (g/L)

alpha	 = 0.03;			   % Reduction factor from C0 to C_crit.

C_crit = alpha*C0;		  % Erosion concentration (g/L)

%% Reading the input files and filtering the paths

fname	 = ‘Kopia av backward paths’; % read data from excel file

TW	 = xlsread(fname,’Blad1’,’M11:M6926’);

F	 = xlsread(fname,’Blad1’,’N11:N6926’);

OKFLAG = xlsread(fname,’Blad1’,’I11:I6926’);

FPC	 = xlsread(fname,’Blad1’,’AB11:AB6926’);

EFPC	 = xlsread(fname,’Blad1’,’AC11:AC6926’);

valid_indices = OKFLAG == 0 & FPC == 0 & EFPC < 5; %Valid path 
criteria

TW	 = TW(valid_indices); % Filtered TW values

F	 = F(valid_indices);	 % Filtered F values

num_pos = length(TW);		  % Number of valid positions

%% Calculating the outlet concentration profile

c = zeros(length(t), num_pos);

for j = 1:num_pos

 [dataf,datas] = BasicSetting(TW(j),F(j));

 c(:,j) = 
invlap(‘LPsolution’,t’,alph_in,tol,flag,dataf,datas,C0,Cin,STWZ);

end
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%% Find the positions that experience dilute water c <= C_crit

PH = c <= C_crit;	 % PH(i,j)=1 if c(i,j)<= C_crit

	 % PH(i,j)=0 if c(i,j)> C_crit

% Calculate the fraction of dilute water cases

M = sum(PH, 2)/6919;

%% Plotting the calculated fraction and exporting the figure to 
a png file

colorOrder = [

 0 0.4470	 0.7410; % blue

 0.8500 	 0.3250 0.0980;	 % reddish-orange

 0.9290 	 0.6940 0.1250;	 % yellow

 0.4940 	 0.1840 0.5560;	 % purple

 0.4660 	 0.6740 0.1880;	 % green

 0.3010 	 0.7450 0.9330;	 % light blue

 0.6350 	 0.0780 0.1840;	 % dark red

 0.8	 0.7 0.9 ;		  % light purple

 0.6	 0.9 0.6 ];		 % light green

figure(‘Position’, [100, 100, 800, 600]);

xlabel(‘Time (year)’, ‘FontSize’, 14, ‘FontWeight’, ‘bold’);

ylabel(‘Fraction’, ‘FontSize’, 14, ‘FontWeight’, ‘bold’);

title([‘C_{0} = ‘, num2str(C0), ‘ g/L’, ‘, \alpha = ‘, 
num2str(alpha), ‘, C_{in} = ‘, num2str(Cin), ‘ g/L’]);

legend(‘show’, ‘Location’, ‘northwest’, ‘FontSize’, 12);

set(gca, ‘XScale’, ‘log’, ‘FontSize’, 12);

grid on; grid minor;

box on; hold on;

plot(t, M,’LineWidth’, 2, ‘DisplayName’, [‘C_{crit} = ‘, 
num2str(C_crit), ‘ g/L’], ‘Color’, colorOrder(1,:));

set(gca, ‘XLim’, [min(t), max(t)],’YLim’, [min([M(:, 
1)]),max([M(:, 1)])]);

TL1 = 1e4;

TL2 = 6e4;

plot([TL1 TL1] , [0.0 max([M(:, 1)])],’LineWidth’, 2, ‘Color’, 
colorOrder(8,:), ‘HandleVisibility’, ‘off’);

hold on

plot([TL2 TL2] , [0.0 max([M(:, 1)])],’LineWidth’, 2, ‘Color’, 
colorOrder(9,:), ‘HandleVisibility’, ‘off’);

png_fname = ‘Temperate.png’;

saveas(gcf, png_fname);
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8.2	 BasicSetting.m
function [dataf,datas] = BasicSetting(TW,F)

%% define the fracture properties

Wf	 = 0.1;	 % fracture half-width (m)

Ws	 = 1;		 % stagnant water zone half-width (m)

tw	 = TW;	 % water residence time

FRf	 = F;		 % F-ratio for the fracture

Rf	 = 1.0;	 % retardation factor

bf	 = tw/FRf;

%% define properties of matrix adjacent to the fracture

y2s	 = 365*24*60*60;% year to second factor

deltaf = 12.5; 		  % penetration depth (m)

Def	 = 4e−14*y2s; 	 % effective diffusivity (m^2/y)

KdfRbf = 0.0037; 	 % product of distribution coefficient and 
bulk density

%% define the stagnant water zone properties

bs	 = bf;		  % fracture half-aperture (m)

Ds	 = 0.0315; 	 % water diffusivity

Rs	 = 1.0;		  % retardation factor

%% define properties of matrix adjacent to the stagnant water zone

deltas = 12.5;		  % penetration depth (m)

Des	 = 4e−14*y2s; 	 % effective diffusivity (m^2/y)

KdsRbs = 0.0037;		 % product of distribution coefficient and 
bulk density

%% derived parameters

Daf 	  = Def./KdfRbf;		 % apparent diffusivity for the rock 
adjacent to the flow channel

MPGf 	 = sqrt(Def.*KdfRbf);	% material property group for the 
rock adjacent to the flow channel

ts	 = Ws^2/Ds;		  % water diffusion time

FRs	 = Ws^2./(Ds.*bs);	 % F-ratio for the stagnant water zone

Das 	  = Des./KdsRbs;		 % apparent diffusivity for the rock 
adjacent to the stagnant water zone

MPGs 	 = sqrt(Des.*KdsRbs); % material property group for the 
rock adjacent to the stagnant water zone

%% setup the data

dataf = {tw,Rf,Wf,FRf,Def,Daf,deltaf,MPGf};

datas = {ts,Rs,Ws,FRs,Des,Das,deltas,MPGs};
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8.3	 LPsolution.m
function F = LPsolution(s,flag,dataf,datas,C0,Cin,STWZ)

%% Extract the input parameters for the fracture zone

tw  = dataf{1}; Rf  = dataf{2}; Wf  = dataf{3}; 	  FRf 	= dataf{4};

Def = dataf{5}; Daf = dataf{6}; deltaf = dataf{7}; MPGf = dataf{8};

%% Extract the input parameters for the STWZ zone

ts  = datas{1}; Rs  = datas{2}; Ws  = datas{3}; 	  FRs 	= datas{4};

Des = datas{5}; Das = datas{6}; deltas = datas{7}; MPGs = datas{8};

%% Defining the model characteristic parameters in the Laplace domain

ns = length(s);

alphaf	  = zeros(ns,1);

alphas	  = zeros(ns,1);

Pf		   = zeros(ns,1);

Ps		   = zeros(ns,1);

OMEGAf	  = zeros(ns,1);

OMEGAs	  = zeros(ns,1);

F		   = zeros(ns,1);

alphaf(:,1) = deltaf.*sqrt(s./Daf);

Pf(:,1)	  = MPGf.*tanh(alphaf(:,1));

alphas	  = deltas.*sqrt(s./Das);

Ps(:,1)	  = MPGs.*tanh(alphas(:,1));

OMEGAf(:,1) = Rf.* tw.* s + FRf .* Pf(:,1) .* sqrt(s);

OMEGAs(:,1) = Rs.* ts.* s + FRs .* Ps(:,1) .* sqrt(s);

%% Define the Laplace solution of the fracture-concentration

if isequal(STWZ,0); OMEGAs(:,1) = 0; end

if isequal(flag,0)

   F(:,1) = C0./s+(Cin-C0./s).*exp(-OMEGAf(:,1)-((FRf./
FRs).*(Ws./Wf)*sqrt(OMEGAs(:,1)).*tanh(2*sqrt(OMEGAs(:,1)))));

else

   F(:,1) = C0./s+((Cin-C0)./s).*exp(-OMEGAf(:,1)-((FRf./
FRs).*(Ws./Wf)*sqrt(OMEGAs(:,1)).*tanh(2*sqrt(OMEGAs(:,1)))));

end
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Notation

bf Half aperture of the flow channel (L)

bs Half aperture of the stagnant water zone (L)

Cin Concentration at the inlet of the flow channel (ML−3)

C0 Initial concentration in the flow channel and matrix (ML−3)

Cf Concentration in the flow channel (ML−3)

Cpf Porewater concentration in the rock matrix adjacent to the flow channel (ML−3)

Cps Porewater concentration in the rock matrix adjacent to the stagnant water zone (ML−3)

Cs Concentration in the stagnant water zone (ML−3)

Daf Apparent diffusivity in the rock matrix adjacent to the flow channel (L2T−1)

Das Apparent diffusivity in the rock matrix adjacent to the stagnant water zone (L2T−1)

Def Effective diffusivity in the rock matrix adjacent to the flow channel (L2T−1)

Des Effective diffusivity in the rock matrix adjacent to the stagnant water zone (L2T−1)

Ds Diffusivity in the water in the stagnant water zone (L2T−1)

Ff Ratio of the flow-wetted surface of the flow channel to the volumetric flow rate (TL−1)

Fs Ratio of the stagnant-water-wetted surface to the diffusion conductance of the stagnant 
water zone (TL−1)

MPGpf Material property group of the rock matrix adjacent to the flow channel (LT−1/2)

MPGps Material property group of the rock matrix adjacent to the stagnant water zone (LT−1/2)

N Ratio between the diffusion rate into the stagnant water zone and the mass flow rate 
through the channel (-)

Rf Surface retardation coefficient in the flow channel (-)

Rpf Retardation coefficient of the rock matrix adjacent to the flow channel (-)

Rps Retardation coefficient of the rock matrix adjacent to the stagnant water zone (-)

Rs Surface retardation coefficient in the stagnant water zone (-)

s Laplace transform variable (T−1)

t Time (T)

u Groundwater velocity (LT−1)

Wf Half width of the flow channel (L)

Ws Half width of the stagnant water zone (L)

x Distance along the flow direction (L)

y Distance into the stagnant water zone (L)

z Distance into the rock matrix adjacent to the flow channel

zs Distance into the rock matrix adjacent to the stagnant water zone

δf Thickness of the rock matrix adjacent to the flow channel (L)

δs Thickness of the rock matrix adjacent to the stagnant water zone (L)
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εpf Porosity of the rock matrix adjacent to the flow channel (-)

εps Porosity of the rock matrix adjacent to the stagnant water zone (-)

τf Characteristic time of advection (-)

τDF Characteristic time of diffusion in the rock matrix adjacent to the flow channel (-)

τDS Characteristic time of diffusion in the rock matrix adjacent to the stagnant water zone (-)

τs Characteristic time of diffusion through the stagnant water zone (-)

Subscripts

f Refers to the flow channel 

s Refers to the stagnant water zone 

pf Refers to the rock matrix adjacent to the flow channel

ps Refers to the rock matrix adjacent to the stagnant water zone
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