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Summary

This report presents a comprehensive study on the equivalent flow rate model (Qeq) and its efficacy 
in both 2D and 3D domains for solute transport calculation from a damaged canister. The primary 
focus of the report is the implementation and formulation of the Qeq model withing an Equivalent 
Continuum Porous Medium (ECPM) model framework using DarcyTools. The first part of the report 
provides an in-depth analysis of the fundamental concepts underlying the Qeq model and details its 
integration into the DarcyTools platform. Subsequently, the efficacy of the Qeq model is investigated 
in a 2D domain, by performing sensitivity analyses on parameters such as the Péclet number and 
wall grid size. The key findings and their implications derived from these analyses are highlighted 
and discussed. Building on these findings, next, the Qeq model’s performance is evaluated in a 3D 
domain, focusing on various intersection scenarios. The results obtained demonstrate the model’s 
adaptability and accuracy across diverse geometrical configurations. Finally, to conclude this study, 
the report showcases the application of DarcyTools and the Qeq model in a large-scale repository 
model featuring 50 deposition holes. Both Qeq1 and Qeq2 estimations are provided, demonstrating 
good agreement with ConnectFlow results. This study underscores the potential of DarcyTools and 
the Qeq model for safety assessment applications in geological repositories.
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Sammanfattning

Denna rapport presenterar en omfattande studie om den ekvivalenta flödesmodellen (Qeq) och dess 
effektivitet i både 2D- och 3D-domäner för beräkningar av ämnestransport från en skadad kapsel. 
Huvudfokus i rapporten är implementeringen och formuleringen av Qeq-modellen i en Ekvivalent 
Poröst Kontinuum Medium (ECPM) modell med hjälp av DarcyTools, ett kraftfullt verktyg för 
att simulera flöde i porösa medier. Den första delen av rapporten ger en djupgående analys av de 
grundläggande begreppen i Qeq-modellen, följt av dess implementering och formulering med hjälp 
av DarcyTools. Därefter undersöks effektiviteten av Qeq-modellen i en 2D-domän, inklusive en 
 känslighetsanalys av Péclet-talet och väggarnas rutstorlek. De viktigaste slutsatserna från dessa 
 analyser lyfts fram och diskuteras. Nästa steg är att utvärdera Qeq-modellens prestanda i en 3D-domän, 
med fokus på olika skärningsscenarier. De huvudsakliga resultaten från dessa scenarier presenteras, 
vilket visar modellens anpassningsförmåga och noggrannhet i olika geometriska konfigurationer. 
Slutligen visar rapporten användningen av DarcyTools och Qeq-modellen i en storskalig depåmodell 
bestående av 50 deponeringshål. Både Qeq1- och Qeq2-uppskattningar tillhandahålls och visar en god 
överensstämmelse med ConnectFlow-resultaten. Denna studie betonar potentialen för DarcyTools 
och Qeq-modellen för prestandabedömning av geologiska förvar.
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1 Introduction and overview

The Swedish Nuclear Fuel and Waste Management Company (SKB) is currently investigating the 
application of DarcyTools to calculate performance measures (PMs) of radioactive waste repositories 
in future safety assessments. The PM to be considered in this study is the equivalent flow rate, Qeq, 
which represents the transport ability of a fracture, or a fracture set that intersect a deposition hole, 
for a given concentration difference.

1.1 Safety assessment of geological repositories
The safety assessment (SA) of a geological repository is to use mathematical models to predict the 
long-term behaviour of radionuclide transport through the natural and engineered barriers in the 
given repository. The SA analysis is widely regarded as an essential tool to ensure the permanent 
and safe disposal of radioactive waste. The SA results can help to analyse and evaluate the extent to 
which the final repository complies with the established requirements and standards and thus help 
to build confidence in the proposed repository design. The SA analysis can help to determine the 
consequences in scenarios when one or more of the barriers protecting the nuclear waste fail and 
radioactive substances start releasing to the surrounding bedrock.

For the SA purposes, the repository system is conceptually divided into a near-field (NF) and a far-field 
(FF). The repository near-field, depicted schematically in Figure 1-1, comprises the fuel matrix, copper 
canister, and bentonite clay. Additionally, Figure 1-1 shows part of the surrounding geosphere that is 
damaged by excavating operations, a.k.a., excavation damaged zone (EDZ). The repository far-field, 
on the other hand, is the naturally fractured part of the geosphere, i.e., the host bedrock that is not 
significantly affected by human activities.

Should the canister fail, radionuclides would be released from the canister and begin migrating toward 
the biosphere. In the repository nearfield, release of radionuclides is controlled by dissolution of 
the fuel matrix, transport through the canister damage, diffusion through the bentonite clay, as well 
as adsorption and radioactive decay. After escaping from the near-field, the nuclides may further 
migrate in the repository far-field, where different mechanisms control their transport behaviour.

Figure 1‑1. Schematic picture of the repository near-field and possible pathways that radionuclides can 
migrate into flowing water in fractures: into the fracture intersecting the deposition hole (Q1), into the 
excavation damaged zone (Q2), and into the fracture intersecting the deposition tunnel (Q3).

Tunnel backfill

Q2

Q3

Q1

Rock matrix

Excavation damaged zone

Fracture intersecting
the deposition hole

Copper canister

Bentonite buffer
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To assist in estimating the amount of solute that can be transported from a damaged canister by 
flowing water in fractures in the rock, the concept of equivalent flow rate, Qeq [m3/s], was introduced 
(Romero, 1995). This parameter represents a fictitious flow of water which carries with it a concentra-
tion equal to that on the outer surface of the bentonite buffer. The goal is to evaluate the rate of solute 
transport from the canister to the flowing water in fractures and the excavation damaged zone, which 
are key inputs to far-field transport models. Figure 1-1 shows three possible pathways that radio-
nuclides can migrate into flowing water in fractures from a canister, and their associated equivalent 
flow rates, namely, Q1: equivalent flow rate due to the fracture intersecting the deposition hole; Q2: 
equivalent flow rate due to the excavation damaged zone; Q3: equivalent flow rate due to the fracture 
intersecting the deposition tunnel. 

The equivalent flow rate for the transfer from the outer surface of the buffer to the water flowing 
in the fractured rock can be determined by assessing how far out in the flowing water the solute 
can diffuse during the time the water is in contact with the buffer. This is further discussed in the 
following section.

1.2 The basic concepts of the equivalent flow rate model
When a canister is surrounded by highly compacted bentonite clay, advection may be neglected 
 compared to diffusive mass transport through the bentonite buffer. Therefore, in the vicinity of the 
buffer, if the deposition hole is intersected by a high-permeable fracture in the surrounding rock or 
if the surrounding rock is damaged, the water flowing in the fracture and the damaged zone will 
take up solutes from the buffer by diffusion, as illustrated in Figure 1-2.

During the time the flowing water with the concentration cw [mol/m3] is in contact with the bentonite 
buffer, the water is exposed to the concentration at the water-buffer interface, C0 [mol/m3]. Therefore, 
the longer the water contact time with the buffer, the more solute can be transferred to the flowing 
water. We intend to assess how much solute can be transported out of the system by introducing the 
concept of equivalent flow rate, Qeq [m3/s], such that the transport rate, N [mol/s], can be expressed as:

 (1-1)

Such an approach has been presented earlier for solute transport between seeping water in fractured 
rock and a copper canister embedded in a clay buffer (Neretnieks et al. 2010). In what follows, a 
simplified model is presented to describe the above system and quantify the equivalent flow rate. In 
the model, the curvature of the buffer circular surface is flattened, and the flow is linear. A further 
simplification is made by neglecting the diffusion in the x-direction along the fracture. We explore 
two cases, where the available penetration depth for solute particles into the water is a) small and 
b) very large compared to the distance along the fracture. Figure 1-3 depicts the simplified model 
used to conceptualize the system. In these cases, we assume that water flows through porous media. 

Figure 1‑2. Concentration profile and velocity vectors for the transport from a circular shape buffer to 
the flowing water in the fracture (top view). The colour on the plot corresponds to the concentration. Mesh 
resolution of the studied system can be found in Figure 2-1.
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While fractures are typically considered as fully open pathways, this assumption allows us to create 
a general framework that can also account for variations in permeability and obstruction within 
fractures, as may occur in a damaged zone surrounding a deposition tunnel. It’s important to note 
that later in the report, we assume that fractures remain fully open.

1.2.1 Limited available penetration depth (Flat surface)
We study a one-dimensional diffusive transport within a porous domain1 with an initial concentration 
of C = cw. At time t > 0, a concentration of C0 is introduced at the surface, as depicted in Figure 1-3. 
The aim is to analyse the evolution of the concentration profile over time, which is analogous to the 
process of examining how rapidly the concentration between the two farthest surfaces at y = 0 and 
y = d will equalize with time. In the case of a stationary system, where the concentration varies only 
spatially and not temporally, the mass balance equation for a non-sorbing nuclide in the domain can 
be expressed as:

 (1-2)

u represents the true fluid velocity, Dp [m2/s] denotes the pore diffusivity, and x is the spatial coordinate 
along the direction of flow in the domain. Equation (1-2) can be reformulated as:

 (1-3)

Or alternatively,

 (1-4)

where tres [s] denotes water residence time in contact with the surface defined as:

 (1-5)

Here, Ud denotes the Darcy flux2, and ε represents porosity defined as the ratio of the pore volume 
to total volume of the porous domain, i.e. fracture.

1  Noting that the porous domain represents a fracture or a damaged zone. 
2  Volume rate of flow through a unit cross-sectional area of the solid (fracture infilling) plus water (pores).

Figure 1‑3. Diffusive transport from the flattened buffer surface to the flowing water in the fracture with 
a limited available penetration depth, viewed from 2D (a) and 3D (b) perspectives.

(a) (b)(a) ( )
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The boundary conditions for (1-5) are:

c = C0 at y = 0 

 = 0 at y = d

By incorporating the initial and boundary conditions, it is possible to derive an exact analytical solution 
to Equation (1-4). This solution can be expressed as (Bird et al. 2002, Second Edition, p 377):

1 2
1
1 2/

/ cos 1 2/ 1  (1-6)

T is the dimensionless group characterizing the spreading rate of solute, defined as:

/  (1-7)

In fact, T represents the inverse of the Péclet number, Pe, and is commonly referred to as the dispersion 
number. The mean concentration cm can also be obtained by integration over the distance from y = 0 
to y = d to give:

/  (1-8)

The results, as shown in Figure 1-4, demonstrate the evolution of the concentration distribution in 
the y-direction as the contact time increases. In addition, the mean concentration variation in the 
domain over the dimensionless group T is demonstrated in Figure 1-5. When the dimensionless group 
T reaches a critical value, marked as Tcrit = 1.12, the mean concentration deviates from C0 by mere 
5 %. This finding suggests that for T values greater than or equal to 1.12, the mean concentration (cm) 
can be considered practically identical to the surface concentration, indicating a well-mixed state, 
resulted from the diffusion process. Consequently, it can be inferred that in this case the equivalent 
flow rate is approximately equal to the actual volumetric flow rate within the fracture.

Figure 1‑4. Concentration distribution in the y-directions, with a limited available penetration depth, with cw= 0.
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Hence, one can estimate the full-mixing time, which refers to the time taken for the domain to reach 
a state of well-mixed condition, denoted as tmix.

 (1-9)

Therefore, if tres is equal or larger that tmix, Qeq can safely be assumed to be equal to the water volumetric 
flow rate, Q [m3/s]. 

1.2.2 Large available penetration depth (Flat surface)
For relatively short residence times such that the tip of the concentration profile has not yet reached 
the outer boundary at y = dFS, i.e., when dFS is very large as depicted in Figure 1-6 and Figure 1-7, the 
solute concentration profile in the water, Equation (1-6) above, can be approximated as (Bird et al. 
2002, Second Edition, p 117):

 (1-10)

where FS stands for the Fracture in the Surrounding rock. 

Figure 1‑5. Mean concentration evolution over time, with a limited available penetration depth, with cw= 0.



12 SKB R-23-20

The mean concentration, cmean
FS , can then be obtained by integrating the concentration profile from the 

buffer surface (y = 0) to infinity (y = dFS), to give:

 (1-11)

Hence, the mean penetration depth of the solute into the flowing water can be determined using the 
following equation:

 (1-12)

The parameter mean
FSη  characterizes the mean distance from the interface between flowing water and 

buffer at which solute exchange can occur within the given contact time. The visual representation 
of this mean penetration depth is denoted by the width of the red region in Figure 1-6. 

Figure 1‑6. Diffusive transport from the buffer surface to the flowing water with a large available penetration 
depth, viewed from 2D (a) and 3D (b) perspectives.

(a) (b)(a) (b)

Figure 1‑7. Concentration distribution in the y-direction, with a large available penetration depth, with cw= 0.
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1.3 Analytical solution for mass transfer from a flat surface
In Figure 1-6, the water flow rate within the mean penetration depth is considered the equivalent 
flow rate, Qeq, which accounts for the solute uptake from the surface. Mathematically, Qeq can be 
expressed using Equation (1-13) and Equation (1-14), where Equation (1-13) links Qeq to the product 
of the mean penetration depth mean

FSη , the fracture thickness3 Δ [m], and the fluid Darcy flux, Ud [m/s]. 
Alternatively, Equation (1-14) establishes a link between the Qeq and the volumetric flow rate Q as 
determined by Darcy’s law. 

  (1-13)

 (1-14)

In other words, the well-mixed condition (C0 –cw) in the fracture over distance mean
FSη  yields the same 

mass in the fracture as the entire concentration profile in the y-direction. By substituting the variable 
tres with its respective definitions from Equation (1-5), Equation (1-13) can be reformulated to provide 
the following expression:

 (1-15)

where L [m] represent the distance travelled by the fluid in the direction of flow. When a fracture 
intersects a deposition hole, the travel distance can be estimated as the length of the intersection 
between the deposition hole and the fracture4. De is the effective diffusivity, expressed as

 (1-16)

By substituting Equation (1-14) into Equation (1-1), the solute transport rate, N, can be expressed as:

 (1-17)

It should be emphasized that Equations (1-10) and (1-12) hold true under specific conditions, primarily 
when the residence time remains relatively short, preventing the concentration profile’s tip from 
reaching the outer boundary. In practice, as illustrated in Figure 1-7 with a solid line and square 
markers (□), this condition is met when (T ≤ 0.065) or equivalently when Pe ≥ 15.4). Alternatively, 
by employing Equation (1-12), this condition holds when the mean

FSη  is approximately 3.5 times smaller 
than the dFS. This conclusion is derived by comparing the complete solution provided by Equation (1-6) 
with the approximate solution of Equation (1-10). 

Furthermore, in cases where the Péclet number becomes excessively large, the concentration profile 
fails to develop due to extremely brief contact time between flowing water and the flat surface. 
To provide a rough estimate of the maximum allowable Péclet number, ensuring the presence of 
a concentration profile, one may assume that this condition is met when the concentration profile 
extends up to 10 % of the diffusion depth, dFS, as shown in Figure 1-7 with a solid line and cross 
markers (×). Under this assumption, the minimum T required is T = 5e−4, corresponding to a maximum 
Péclet number Pe < 2 000. Alternatively, if one assumes an extension of 50 % rather than 10 % for 
the concentration profile, the maximum allowable Péclet number becomes 64, Pe < 64.It is important 
to bear in mind, as discussed earlier in Section 1.2.1, that when the dimensionless group T equals 
or exceeds Tcrit = 1.12, diffusion effectively evens out the concentration in the direction of diffusion. 
Consequently, the equivalent flow rate can be approximated by the actual flow rate.

3  Δ represents the distance between the two fracture (or damaged zone) surfaces.
4  Note that if the deposition hole is entirely contained within the fracture, a factor of 2 should be included to 
consider that fluid passes on both sides of the deposition hole.
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1.4 Analytical solution for mass transfer from a circular cylinder
As discussed above, the estimation of solute transport rate by diffusion and advection from a flat 
surface can be achieved using Equation (1-15). Nevertheless, this expression has limitations when 
applied to curved surfaces such as a cylinder-shaped deposition hole, primarily because it straightens 
out the curvature of the surface. Specifically, it neglects diffusion in the flow direction and velocity 
differences among adjacent streamlines close to the deposition hole. To address these limitations, 
an alternative solution for solute transport from a deposition hole with a curved surface has been 
developed by Chambré et al. (1982). This solution, Equation (1-18), overcomes the shortcomings 
of Equation (1-15) and provides a more accurate depiction of solute transport. It is worth noting 
that this solution is applicable when the Péclet number exceeds 4:

  (1-18)

Given the cylinder-shaped deposition hole, the Péclet number can be defined in terms of the radius 
of the deposition hole, R, as follows:

 (1-19)

Note that the factor 2 in Equation (1-18) comes from the fact that fluid passes both sides of the 
deposition hole. Utilizing the definitions of Pe and De, as provided in Equations (1-19) and (1-16) 
respectively, it is possible to reformulate Equation (1-18) as follows.

 (1-20)

It is also important to note that in the formulations outlined above fracture, or a damaged zone, 
is represented as an equivalent porous medium characterized by a porosity ε. In cases where the 
fracture is considered fully open (ε = 1), Ud is constrained within the open fracture and therefore 
equals the true flow velocity, Ud = u. Thus, Equation (1-20) reduces to Equation (1-21). 

 (1-21)

• b represents the aperture of the fracture that is fully open5 [m].

• R is the deposition hole radius [m].

• Dw denotes the diffusivity in water [m2/s].

• Ud represents the flow velocity6 in the fracture [m/s].

It should be emphasized that in all the simulation that are presented hereafter, it is assumed that the 
fracture is fully open with ε = 1. Further elaboration on the effective diffusivity, De, and how it is 
treated in DarcyTools can be found in Appendix A.

5 Thus, the fracture thickness equals its aperture, b = Δ.
6  In this case, Ud equals the true flow velocity in the fracture, u.
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1.5 Semi-analytical solution for ECPM representation of fractures 
in DarcyTools

Consider a cylindrical deposition hole that is intersected by a single discrete fracture, f, at a right angle, 
as depicted in Figure 1-8(a). The analytical expression, Equation (1-21), can be employed to determine 
the amount of solute that can be transported through the fracture, Q f

eq,

 (1-22)

where bf and Ud,f represents the aperture and Darcy flux in the fully open fracture, f. In the case where 
the deposition hole is intersected by multiple fractures at a right angle, as illustrated in Figure 1-8(b), 
the total equivalent flow rate can be determined by summing the individual equivalent flow rates of 
each intersecting fracture leading to:

 (1-23)

or equivalently

 (1-24)

where H is the height of the deposition hole and εf is a flow porosity over the deposition hole defined as:

 (1-25)

Thus, the last term on the right-hand side of the Equation (1-24) can be interpreted as the weighted 
mean value of , which is denoted by  and is defined as:

 (1-26)

Hence, it is possible to rewrite Equation (1-24) as follows:

 (1-27)

The above formulation concerns the discrete fracture network representation of the parallel fractures inter-
secting the deposition hole, where flow velocity7 and apertures details of individual fractures are known.

7  ConnectFlow gives 2D Darcy flux in a fracture defined as Ud,f  = bf × u. Flow velocity can then be calculated 
from the Darcy flux.

Figure 1‑8. Illustration of a single (a) and three (b) fracture(s) intersecting a deposition hole at a right angle.

(a) (b)
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It is important to note that the DarcyTools solver relies on a finite volume method and represents 
fractures as an Equivalent Continuous Porous Medium (ECPM). This representation can be achieved 
by introducing a pre-defined fracture “object” whose properties are mapped onto the control volumes, 
also known as cells, within the computational domain (Ferry, 2020a). This mapping results in a series 
of interconnected cells representing the intersecting fracture, each assigned with different size and 
upscaled transport properties, including a cell porosity, θ. 

In this ECPM domain, if the fracture object shown in Figure 1-8 (a) is assumed to be located in a 
single layer of cells with a size of ηi , then the cell porosity, denoted as θi, is calculated in DarcyTools 
using the following expression (Ferry, 2020b):

 (1-28)

and DarcyTools computes the Darcy flux in the cell, Ui, as:

,  (1-29)

Subsequently, by incorporating the above cell values in Equation (1-22), we can obtain for cell i:

,  (1-30)

If we include multiple layers of cells along the cylinder to achieve a height of H, the average 
 equivalent flow rate, Qeq, ECPM value across all cells on the deposition hole wall can be computed as:

,  (1-31)

or equivalently,

,  (1-32)

here nc represents the number of cells within the ECPM representation of fracture intersections with 
the deposition hole and  is the mean of square root of Darcy fluxes in vicinity of the 
deposition hole defined as:

 (1-33)

It is important to acknowledge that determining  is not a straightforward process in 
DarcyTools. This is primarily because porosity is assigned as a cell value in DarcyTools while velocity 
(U ) is allocated to the cell faces. To address this issue, an alternative expression, Qeq-Semi-Analytical, has 
been proposed in this study to approximate Qeq,ECPM within the DarcyTools domain. This approach 
involves computing the mean Darcy flux, UM, and mean porosity, θM, for all the cells associated 
with the ECPM representation of fracture intersections with the deposition hole. The expression 
is formulated as follows:

 (1-34)

With

 (1-35)

and

 (1-36)
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where

 (1-37)

 (1-38)

 (1-39)

In the above equations,

• nc is the number of cells within the ECPM representation of fracture intersections with the 
deposition hole.

• vi denotes the volume of cell i [m3].

• θi represents the porosity of cell i [-].

• uk is the Darcy flux on the deposition hole cells’ surfaces [m/s]. Subscript k denotes the flow 
direction.

• Ak denotes the surface area normal to the k-direction [m2].

In a simple case where a fracture f intersects the deposition hole at a right angle, θM becomes:

 (1-40)

DarcyTools then calculates UM as:

,  (1-41)

Hence, the Qeq value of an intersecting fracture represented as an ECPM within the DarcyTools 
domain can be obtained by applying the expressions for UM and θM to give:

 (1-42)

This is equivalent to the analytical expression presented in, Equation (1-22). Alternatively, when 
two parallel and identical fractures intersect the deposition hole at a right angle, the semi-analytical 
solution can be expressed using the following general form:

 (1-43)

For this system θM becomes

 (1-44)

Hence, 

  (1-45)

Which is correct and expected for two identical parallel fractures. Similarly, Appendix B presents a 
mathematical analysis that employs the Cubic law to calculate Qeq for both DFN and ECPM models 
for single and parallel fractures with varying aperture. The analysis demonstrates that Qeq values are 
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comparable for both single fractures and multiple parallel fractures with similar aperture and length 
in both DFN and ECPM models. Even for parallel fractures with varying apertures, minor deviations 
in aperture size result in similar Qeq values for DFN and ECPM models.

Additionally, Appendix C focuses on deriving relationships between flow parameters in the DFN and 
ECPM formulations, particularly addressing the mean Darcy flux as it appears in the DFN formulation, 
(Ud)M–DFN. The appendix explores normal and lognormal distributions for the (square root of) fracture 
velocity with mean μ and standard deviation σ. It is shown that within the ECPM domain near the 
deposition hole, θM × UM can estimate the mean Darcy flux if the variance, σ 2, is small. In Chapter 3, 
θM × UM is reported alongside the Qeq-Semi-Analytical values for different intersection scenarios.

Beyond its application in straightforward intersection scenarios, Equation (1-34) can also be employed 
in complex situations where multiple fractures intersect the deposition hole at various angles. However, 
accurately estimating the mean transport properties of the underlying fracture network that intersects 
the deposition hole presents a primary challenge in such cases. For further insights into this topic, refer 
to Chapter 3, where different intersection scenarios are investigated in a three-dimensional, 3D, domain.
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2 Investigation of the Qeq model’s efficacy in 
a 2D domain

This section is dedicated to detailing the implementation of the equivalent flow rate model in a 
two-dimensional, 2D, domain using DarcyTools. The primary objective of this study is to determine 
the solute transport rate, N, using a numerical integration technique and the Qeq analytical formulation, 
Equation (1-21). Furthermore, the study aims to identify the transport conditions that satisfy the validity 
of the equivalent flow rate model given the cylindrical shape of a deposition hole. The discussions 
presented in this section offer insights into the mathematical modelling and computational techniques 
employed in models presented in this study. This section specifically focuses on a relatively simpler 
2D model, while later sections in this report will explore modelling efforts of more complex 3D models. 

In the 2D model, the flow and transport equations are solved within the framework depicted in Figure 2-1. 
The model consists of a cylindrical deposition hole with a radius of 0.875 [m], which is intersected 
by a fracture with a thickness of 0.25 [mm]. In 2D space, the cylinder is depicted as a circular entity, 
and the fracture is represented by a squared permeable zone that extends 55 [m] and 50 [m] in X and 
Y directions, respectively. In the present study, the intersecting fracture is fully open (ε = 1) and is 
modelled with a uniform Darcy flux, Ud [m/s], in the x-direction that remains constant throughout the 
entire fracture. As a result, it is not necessary to create a distinct fracture “object” and map its properties 
on to the grid. Instead, constant permeability, pressure gradient and effective diffusivity are assigned 
to the entire computational domain. In this example, this results in a constant Péclet number of Pe = 50, 
as defined by Equation (1-19).

Figure 2‑1. Geometry and mesh resolution of the studied system, hollow cylinder case, in the XY plane.
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2.1 Numerical solution (Qeq-Numerical)
In DarcyTools, the total amount of solute that is transported from a deposition hole can be calculated 
by numerical integration over boundary surfaces of a measurement box, as shown by the pink dashed 
lines in the 2D case depicted in Figure 2-2. The Qeq values estimated via numerical integration are 
herein referred to as Qn or Qeq-Numerical and is defined as:

 (2-1)

In the above equations,

• C is a solute concentration [gr/m3].

• u→ is the Darcy flux vector [m/s].

• n→ is the normal vector8.

The following section investigates the impact of grid size and boundary condition (BC) location on 
the numerical solution. Specifically, the study explores how varying the wall grid size and location 
of concentration boundary conditions affect the accuracy and precision of the Qeq-Numerical. The findings 
from this analysis can help optimize the selection of grid size for similar problems.

8  The vector of the box plotted by the dashed pink line in Figure 2-2.

Figure 2‑2. Illustration of transport from a hollow cylinder and its measurement box (delineated by pink 
borders) used for capturing the transport rate, in the XY plane. The colour on the plot corresponds to the 
concentration.
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2.2 Effect of wall grid size and BC location on Qeq-Numerical

From a physical standpoint, we intend to simulate a scenario where no flow occurs within the 
deposition hole. In DarcyTools, this system can be set up in two alternative models, where the 
accuracy of the numerical solution can be significantly affected by the choice of wall grid size and 
transport boundary conditions, particularly due to the small characteristic length of diffusion. This 
study, therefore, investigate the impact of wall grid size on simulation results in two cases:

1) Hollow Cylinder Case: In which C=1 is set on the wall cells, the interior cells of the deposition 
hole are eliminated, and the boundary condition C=1 is applied to the wall cells.

2) Filled Cylinder Case: In which the deposition hole’s internal cells are preserved, but rendered 
non-conductive, and the boundary condition C=1 is enforced on these non-conductive internal cells.

By examining these two scenarios, our objective is to assess the extent to which variations in wall 
grid size affect the numerical solution, Qeq-Numerical. The results for these scenarios at Pe = 50 are 
presented in Figure 2‑3. Notably, altering the ratio of wall cell size to radius, Δwall/R, has no impact 
on the Qeq values obtained from the analytical expression Equation (1-21). This is expected since 
the transport properties and applied radius remain constant. 

In the filled cylinder case, where C=1 is applied to the inside cells, the difference between the estimated 
equivalent flow rate, Qeq, and the calculated transport rate, Qn, decreases as the cell size decreases. 
It approaches zero as the cell size approaches 0.5 % of the deposition hole radius. Larger cell sizes, 
however, fail to accurately capture the details of the deposition hole perimeter and the boundary 
conditions, resulting in a computed Qn value of zero. Therefore, a fine grid resolution is imperative 
for a robust and reliable numerical solution.

Additionally, the results suggest that implementing the hollow cylinder case introduce an artificial 
quantity of solute proportional to the size of the wall cell. This artificial solute is then transported to 
the surrounding cells, affecting flow rate measurement. Figure 2-3 shows that at Pe =50, the amount 
of artificial solute is negligible when the wall cell size is smaller than a few percent of the deposition 
hole radius, but becomes significant beyond that threshold, approximately 4.4 [mm] in this example. 
At higher Péclet numbers, such as 4 018, the artificial solute becomes increasingly significant even 
for smaller wall cell sizes, larger that than 0.1 % times the deposition hole radius (Ferry, 2020c). Thus, 
careful selection of an appropriate wall cell size is recommended when implementing this approach 
to avoid introducing artificial solute and ensure accurate flow rate measurement.

Figure 2‑3. Effect of wall cell size and boundary condition on the calculated flow rates, Qeq.
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2.3 Effect of transport conditions, Péclet number
In addition, a comparative analysis is conducted to assess the performance of the Qeq and Qn, under 
varying transport conditions, specifically focusing on the Péclet numbers. To maintain consistency, 
the ratio of wall cell size9 to radius, Δwall/R, is kept constant at 7 × 10−4 for all simulations. Figure 2-4 
presents the results of this analysis, which align with the sensitivity analysis findings reported in 
(Ferry, 2020c).

Our analysis confirms that for an accurate estimation of Qeq, the Péclet number must fall within the 
range of 4 to 700. Deviations from this range lead to significant discrepancies in Qeq prediction due to 
the assumptions underlying the analytical formulation. When Péclet is less than 4, the Qeq overestimates 
Qn due to the absence of longitudinal transport (refer to Figure 2-5a), whereas for Péclet values greater 
than 700, Qeq underestimates Qn due to the brief contact time between flowing water and the deposition 
hole surface (as depicted in Figure 2-5 d).

These findings underscore the importance of selecting an appropriate Péclet number when using 
the Qeq model in DarcyTools simulations to ensure accurate predictions of transport rate. It is worth 
noting that these conclusions are independent of the specific values of transmissivity, porosity, and 
effective diffusivity in the domain; they remain valid for the specified Péclet numbers.

Furthermore, Appendix D extends the Péclet number analysis to square and elliptical-shaped deposition 
holes. The results reveal that a similar range of Péclet values exists for which the Qn and Qeq align 
for these geometric configurations. 

9  In DarcyTools, grids are represented as lattices with Δx and Δy as grid spacings. In 2D, Δwall refer to Δx= Δy.

Figure 2‑4. Estimated Qeq values at different Péclet numbers for a deposition hole with circular cross-section 
area. Δwall/R = 7 × 10−4. The green zone indicates where the relative deviation between Qn and Qeq is less 
than 10 %.
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Figure 2‑5. Solute concentration profile around a deposition hole with circular cross-section area at 
different Péclet numbers.

(a) (b)

(c) (d)





SKB R-23-20 25

3 Investigation of the Qeq model’s efficacy in 
a 3D domain

3.1 Introduction and overview
The 2D model results have demonstrated that achieving a close match between Qn value obtained 
through numerical integration and the analytically calculated Qeq requires a fine mesh at the wall 
boundary of the deposition hole. For a cylindrical deposition hole with radius R, it has been found 
that the minimal difference can be attained with a wall cell size of Δwall = 5.0 × 10−3 × R, for Pe = 50 
(as depicted Figure 2-3) and Δwall = 2.8 × 10−4 × R for Pe = 4 018 (Ferry, 2020c) when Pe falls within 
the range of 4 and 700. For a radius of R = 0.875 m, these required cell sizes translate to Δwall = 4.4 
[mm] and 0.25 [mm] for Pe = 50 and Pe = 4 018, respectively. However, implementing such small 
cell sizes in realistic 3D repository-scale models is computationally expensive.

In contrast to the numerical integration approach, which demands a fine grid and significant computa-
tional resources, the semi-analytical formulation of Qeq offers a computational advantage as it utilizes 
flow information to estimate solute transport without requiring a very fine grid or numerical integration. 
This alternative approach can be executed using a coarser mesh, making it a more efficient method 
for assessing Qeq values in large-scale 3D models.

To build confidence in the application of the Qeq model within DarcyTools, this section provides an 
in-depth investigation of the model’s performance across various intersection scenarios, as outlined 
below: 

1. A single fracture intersecting a deposition hole at a right angle.

2. Two parallel fractures intersecting a deposition hole at a right angle.

3. Single fracture intersecting a deposition hole at an angle. 

4. Two fractures intersecting each other inside the deposition hole.

5. A single fracture with spatially variable conductivities and porosity intersecting a deposition hole 
at a right angle.

All test cases are conducted using DarcyTools version 4.2.37, and values of Qeq-Numerical and Qeq-Semi-Analytical 
are compared. In cases where applicable, Qeq-Analytical values are also computed using equivalent 2D 
models. It is important to note that in all scenarios, the fractures are assumed to be completely open 
and fully intersect with the deposition hole. The following sections provide detailed descriptions 
of each scenario and their corresponding results, thereby assessing the model’s capacity to deliver 
accurate predictions across a range of intersection settings. 

3.2 A single fracture intersecting a deposition hole at 
a right angle

In this scenario, flow and transport are simulated around a 3D deposition hole (DH) that is intersected 
by a single fracture at a right angle, as illustrated in Figure 1-8(a). In this scenario, our primary objective 
is to evaluate Qeq-Semi-Analytical with Qeq-Numerical by checking the influence of the deposition hole’s cell size. 
We seek to determine the appropriate cell size within and surrounding the deposition hole, such that 
Qeq-Semi-Analytical equals Qeq-Numerical.

Computational domain
The vertical deposition hole is created with height and radius of 8.2 m and 0.875 m, respectively. 
The horizontal fracture extends 50 m in x- and y-directions and has a thickness of 0.25 mm. The 
fracture transport properties are listed in Table 3-1. Centres of the domain boundary cells on east and 
west sides stand in −25 m and +25 m, respectively, while the y and z directions extend from −25 m 
to +25 m, independent of the cell size.
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Pressure boundary condition
The pressure head gradient is specified as 0.01 m/m by fixing the pressure to 4 905 Pa at the centre 
of west cells and 0.0 Pa at the centre of east cells. The south, north, high, and low boundaries are 
no-flow boundary conditions.

Table 3-1. General flow and transport properties used in simulations. 

Property Value

DH radius, R, [m] 0.875 
DH height, H, [m] 8.2
Fracture thickness, ∆, [mm] 0.25
Fracture porosity, ε, [-] 1.0
Fracture conductivity, k1 [m/s] 5.71 × 10−6

Water diffusivity, Dw, [m2/s] 1 × 10−9 
Head gradient, [m/m] 0.01
Péclet, Pe 50.0

3.2.1 Numerical framework
The Qeq-Numerical is computed by the solute transport integration technique, over a measurement box 
object that encloses the intersection zone. The box extends 0.5 m above and below the intersection 
zone and has a rectangular section with length and width of 6 m and 4 m, respectively, as shown in 
Figure 3-1. 

Grid generation
The grid is constructed in several stages. The initial grid is built for the entire domain with a 5.0 m 
cell size. This is followed with a 0.01 m refinement in the area between the deposition hole and the 
measurement box, and a 0.001 m refinement at the edges of the deposition hole, which gives 0.61 mm 
wall cell size in x‑, y‑ and z‑directions, Δwall/R = 7 × 10−4. The cell properties are then computed based 
on the properties of the known fracture. Finally, the non-conductive cells are removed. The refinement 
at the wall of the deposition hole is selected so that wall cells are small enough for an accurate solute 
transport integration, Qeq-Numerical, on a cylinder with R = 0.875 m and at Pe = 50 (See Figure 2-3).

Figure 3‑1. Illustration of the measurement box (grey) used for capturing the rate of solute transported 
from deposition hole (yellow).
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Properties 
In the numerical scheme, the remaining conductive cells (after removal of non-conductive cells) 
standing inside the deposition hole are forced to be non-conductive, similar to the “filled cylinder” 
case in the 2D study. Furthermore, a suggested pseudo-transient technique10, which consists in 
 setting a non-zero storativity and porosity in non-conductive cells is applied (Ferry, 2020c). 

Concentration boundary condition
Concentration is set to C = 1 for cells standing inside the deposition hole, while the default no-flux 
concentration boundary conditions are set at the boundary of the domain.

Qeq-numerical calculation
The measurement box surrounding the deposition hole is used for integrating Qeq-numerical. The solute 
flow rate is computed by the <flux> command with ‘vfr’ as the <type> argument, the concentration 
variable name ‘C’ as <cval> argument, and with <bycell> ‘F’. The <loc> argument of the command 
<flux> is set to its default value, i.e., “all”. 

3.2.2 Semi-analytical framework
Grid generation
To improve computational efficiency compared to the Qeq-Numerical, a coarser grid is constructed in the 
semi-analytical framework. The initial grid is built for the entire domain, with a 5.0 m cell size. This 
is followed with a 0.1 m refinement both at the edges of the deposition hole, and in the area between 
the deposition hole and the measurement box. This results in 0.078 m cell size inside and around the 
deposition hole, in x-, y- and z-directions. Furthermore, during the removal of the non-conductive 
cells, the cells standing inside and at the wall of the deposition hole are not removed. These cells are 
kept for the sake of estimating the UM and θM, yet many of them are non-conductive.

Properties 
The cell properties are computed based on the properties of the known fracture object. However, 
contrary to the Qeq-Numerical, the cell standing inside the deposition hole are not forced to be non- conductive. 
The flow boundary conditions are not changed from the Qeq-Numerical. It should also be emphasized that 
because we intend to use Equation (1-34) to estimate Qeq-Semi-Analytical, it is not necessary to solve the 
solute transport equation for this problem.

Qeq-Semi-Analytical calculation
The Qeq-Semi-Analytical is computed using the flow information and Equation (1-34). UM, can be computed 
via Equation (1-36) using the net flow values in x-, y- and z- directions, Equations (1-37) to (1-39)11. 
The corresponding <loc> argument gathers the cells standing inside and at the border of the deposi-
tion hole. The mean porosity, θM, is estimated by a built-in user function12 on the same location, see 
Equation (1-35). For a sample implementation of the process described above in DarcyTools, please 
refer to the CIF and FIF file examples provided in Appendix E. 

10  The pseudo-transient technique is a trick to enhance the efficiency of the solvers. It is particularly useful in 
cases where residual non-conductive cells exist in the computational domain, for example, after a cell removal 
operation.
11  Provided by the <flux> command with the <type> argument ‘vfl’ in DarcyTools.
12  GET_VAR_MEAN
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3.2.3 Cell size study
Since the estimations of UM and θM are sensitive to the fracture cell size as well as the sizes of the 
cells standing inside and at the border of the deposition hole, while we keep these cell sizes equal, 
we vary them to study their size effect on the Qeq-Semi-Analytical results, at Pe = 50. The results, as shown in 
Figure 3-2, suggest that as the cell size reduces, the difference between Qeq-Semi-Analytical and Qeq-Numerical 
reduces and tends toward a limit. With a Pe value of 50, a cell size of 0.078 m and a Δwall/R ratio of 0.09 
can provide a reliable estimation of Qeq-Numerical. Notably, this cell size is not excessively small, and it 
can be applied in realistic 3D repository cases. Therefore, this refinement is utilized in subsequent 
3D studies to estimate Qeq-Semi-Analytical in various intersection scenarios.

3.2.4 Parameter study
We also run a parameter study for the single fracture model, in which the three Qeq values are estimated 
for increasing values of fracture conductivity in Case 1A with k= k1, Case 1B with k= 5 × k1 and 
Case 1C with k=10 × k1. The reader may note in this specific scenario where a single horizontal 
fracture intersects a vertical deposition hole, it is possible to estimate the analytical equivalent flow 
rate, denoted as Qeq by using a two-dimensional model similar to the one presented in Chapter 2. This 
involves incorporating the flow information obtained from the numerical setup mentioned above in 
Section 3.2.1. 

The results, summarized in Table 3-2, show good agreement between Qeq-Semi-Analytical and Qeq-Numerical. 
It can also be seen that the Qeq-Analytical and Qeq-Semi-Analytical values in Case 1B and Case 1C are √

_
5 and 

√
_
10 times larger than those in Case 1A, respectively. This is expected from Equation (1-21) and the 

linear dependence of Darcy flux on the fracture conductivity.

Table 3-2. Transport parameters and Qeq results for a single fracture for Pe = 50, 250, 500.

Parameter Case 1A, k = k1 Case 1B, k = 5 × k1 Case 1C, k = 10 × k1

Fracture aperture13, bf, [mm] 0.25 0.25 0.25
Head gradient, h, [m/m] 0.01 0.01 0.01
Fracture conductivity, k, [m/s] 5.71E−6 2.86E−5 5.71E−5
Péclet 50 250 500

Qeq-Numerical, [m3/s] 7.96E−12 1.79E−11 2.60E−11
Qeq−2D-Analytical, Qeq, [m3/s] 7.98E−12 1.78E−11 2.52E−11
Qeq-Semi-Analytical, [m3/s] 7.91E−12 1.77E−11 2.50E−11

θM, [-] 3.02E−05 3.02E−05 3.02E−05
UM, [m/s]14 1.73E−12 8.65E−12 1.73E−11
θM × UM, [m/s] 5.23E−17 2.61E−16 5.22E−16

13  Mechanical aperture
14  In this case, UM = θMUd, f , where Ud,f  = k × h.
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Figure 3‑2. The relative difference between Qeq-Semi-Analytical and Qeq-Numerical as a function of cell size in and 
around the deposition hole. The highlighted point, denoted by a green circle represents the chosen wall 
cell size.

Figure 3‑3. QN, QA, QS denote Qeq-Numerical, Qeq-2D-Analytical and Qeq-Semi-Analytical, respectively.
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3.3 Two parallel fractures intersecting a deposition hole at 
a right angle

In this scenario, flow and transport are simulated around a vertical 3D deposition hole that is intersected 
by two fractures at a right angle, as shown in Figure 3-4. The spacing between the fractures is 1.0 m. 
We study three cases, namely Case 2A, 2B and 2C, where the hydraulic conductivity of the second 
fracture is 1, 5 and 10 times larger than the reference fracture, as defined in Case 1A. Given the 
numerical and semi-analytical frameworks discussed in Sections 3.2.1 and 3.2.2, the Qeq values for 
this system are obtained and the following equations are investigated. Transport parameters of the 
2nd fracture, Qeq results, and relative errors for the three cases are listed in Table 3-3. 

 (3-1)

 (3-2)

The results indicate that the Qeq-Semi-Analytical estimations in this scenario are in good agreement with 
Qeq-Numerical values. As observed, the relative error in Equation (3-1) increases when the conductivity, 
represented by the Péclet number, is elevated in the second fracture. This result aligns with the con-
clusions presented in Figure 2-4, which indicates that an increase in the Péclet number leads to a rise 
in the relative error between Qeq-Numerical and Qeq. This correlation can be attributed to the fact that a 
higher Péclet number signifies a more pronounced advection-dominated transport, which can cause 
a deviation from the assumptions underlying the analytical model used to estimate Qeq.

Table 3-3. Transport parameters of the 2nd fracture and results for the parallel fractures system.

Parameter/Value Case 2A, k2 = k1 Case 2B, k2 = 5 × k1 Case 2C, k2 = 10 × k1

Fracture aperture, bf, [mm] 0.25 0.25 0.25
Head gradient, h, [m/m] 0.01 0.01 0.01
2nd Fracture conductivity, k, [m/s] 5.71E−6 2.86E−5 5.71E−5

Qeq-Numerical, [m3/s] 1.60E−11 2.60E−11 3.41E−11
Qeq1 + Qeq2 [m3/s] 1.60E−11 2.58E−11 3.32E−11
Qeq-Semi-Analytical, [m3/s] 1.58E−11 2.74E−11 3.70E−11

θM, [-] 6.04E−05 6.04E−05 6.04E−05
UM, [m/s] 3.46E−12 1.04E−11 1.90E−11
θM × UM, [m/s] 2.09E−16 6.26E−16 1.15E−15

Relative error, ∈1, (%) −0.06 0.57 2.70
Relative error, ∈2, (%) −0.93 5.36 8.61

Figure 3‑4. Illustration of two parallel fractures intersecting a deposition hole at a right angle.
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The reader may note that the three Qeq values in Case 2A are twice larger than their  corresponding 
values in Case 1A. This is expected as the transport capacity of the system is now doubled by introducing 
the second identical fracture. Similarly, the reader may also note that increasing the conductivity of the 
2nd fracture in Cases 2B and 2C by 5 and 10 times causes the Qeq-Analytical values to, respectively, increase 
by factors (1+√

_
5) and (1+√

_
10), relative to the Qeq-Analytical value in Case 1A. This is also expected given 

the Qeq-Analytical formulation, Equation (1-21)

It can also be seen that Qeq-Semi-Analytical value in Case 2B is 2 1 5  times larger than that in Case 1A 
and the one of Case 2C is 2 1 10  times larger than that in Case 1A. This is also expected 
given the Qeq-Semi-Analytical formulation, Equation (1-34). In general, in this scenario where two parallel 
fractures with similar aperture intersect the deposition hole at a right angle, and k2 = β × k1, θM can be 
expressed as:

 (3-3)

and DarcyTools calculates UM through the following calculation:

 (3-4)

Hence Qeq-Semi-Analytical expression gives:

 (3-5)

3.4 Single fracture intersecting a deposition hole at an angle
Objectives in this scenario are similar to those in Section 3.2. The only exception is that flow and 
transport are simulated around a vertical deposition hole that is intersected by a fracture at an angle. 
This is illustrated in Figure 3-6. We study three cases, namely, Case 3A, 3B and 3C, where the inter-
section angle, α, is, respectively, 60°, 45° and 30°. In all the cases, it is assumed that the fracture fully 
intersects the deposition hole.

Figure 3‑5. QN, QA, QS denote Qeq-Numerical, Qeq-2D-Analytical and Qeq-Semi-Analytical, respectively.
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The analytical Qeq for these inclined fractures are estimated using Equation (1-21) and flow information 
from 2D models with elliptical intersection area and with similar transport conditions to their  associated 
3D models. Qeq-Numerical and Qeq-Semi-Analytical are estimated using the numerical and semi-analytical frame-
works discussed in Sections 3.2.1 to 3.2.2. The resulted Qeq values for the three cases are found and 
the following equations are investigated.

 (3-6)

 (3-7)

Figure 3‑6. Illustration of a single fracture intersecting a deposition hole at an angle.

Case Concentration (3D View) Concentration (2D View)

Case 3A

α=60⁰

Case 3B

α=45⁰

Case 3C

α=30⁰

Figure 3‑7. Concentration distributions in the single fracture intersecting the deposition hole at different angles.
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The study’s findings are summarized in Table 3-4, indicating that Qeq-Numerical provides close estimates 
to Qeq (obtained from the 2D models) for all three cases, as expected. However, achieving this level 
of accuracy comes at a high computation cost. On the other hand, Qeq-Semi-Analytical values demonstrate 
good agreement with the Qeq results, particularly for intersection angles ranging between 45° < α < 90°. 
Nevertheless, it noteworthy that as the intersection angle decreases, the relative error in Equation (3-7) 
increases, reaching a maximum of 13.7 % at α=30°.

Table 3-4. Results for the single fracture intersecting the deposition hole at different angles.

Fracture Property Case 3A Case 3B Case 3C

Fracture aperture, bf, [mm] 0.25 0.25 0.25
Head gradient, h, [m/m] 0.012 0.014 0.020 
Fracture conductivity, k, [m/s] 5.71E−6 5.71E−6 5.71E−6
Intersection angle, α 60° 45° 30°

Qeq-Numerical, [m3/s] 8.31E−12 9.17E−12 1.01E−11
Qeq, [m3/s] 8.27E−12 8.70E−12 9.49E−12
Qeq-Semi-Analytical, [m3/s] 8.33E−12 9.78E−12 1.15E−11

θM, [-] 3.49E−05 4.27E−05 6.04E−05
UM, [m/s] 1.66E−12 1.87E−12 1.83E−12
θM × UM, [m/s] 5.80E−17 8.00E−17 1.11E−16
ϵ1 in Equation (3-6), (%) 0.4 5.35 6.74
ϵ2 in Equation (3-7), (%) 0.32 6.69 13.68

Figure 3‑8. QN, QA, QS denote Qeq-Numerical, Qeq-2D-Analytical and Qeq-Semi-Analytical, respectively.
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3.5 Two fractures intersecting each other inside the deposition 
hole

In this scenario, flow and transport are simulated around a 3D deposition hole that is fully intersected 
by two fractures at different angles, as shown in Figure 3-9. Note that none of the fractures in this 
case reach the two faces of the domain where the pressure is fixed. Thus, flow enters by one fracture 
and leave by another one and, therefore, only part of fracture 1 and part of fracture 2 contribute to 
the solute diffusion. We study three cases where the hydraulic conductivity of the second fracture 
is 1, 5, and 10 times larger than the reference fracture, k1, with α1 = α2= 60°. We investigate how 
Qeq-Semi-Analytical compares to the Qeq-Numerical, Equation (3-8). Note that no easy way could be found to 
estimate the analytical solution Qeq-Analytical for these cases. The results are summarized in Table 3-5.

 (3-8)

The Qeq-Numerical result in Case 4A (for identical fractures) is comparable to the Qeq-Numerical value in 
Case 3A. This is expected due to the symmetry of the fractures. That is, half of the fracture 1 and half 
of the fracture 2 contribute to the solute transport. On the other hand, Qeq-Semi-Analytical overestimates 
Qeq-Numerical in this scenario, and the relative error in Equation (3-8) is generally high, ranging from 
21.8 % (for k2=10 × k1) to 27.5 % for (k2=k1). The difference between Qeq-Numerical and Qeq-Semi-Analytical 
comes from the fact that during calculation of the Qeq-Semi-Analytical, volumes of the dead-end parts of 
the fractures contribute to the mean porosity value, θM, via Equation (1-35). However, in practice, 
the dead-end parts do not participate in the transport of solute.

Figure 3‑9. Illustration of two fractures with different transmissivities intersecting each other inside the 
deposition hole.
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Table 3-5 Transport parameters and results for the two fractures with different transmissivities 
intersecting each other inside the deposition hole.

Fracture Property Case 4A, k2 = k1 Case 4B, k2 = 5 × k1 Case 4C, k2 = 10 × k1

Fracture aperture, bf, [mm] 0.25 0.25 0.25
Head gradient, h, [m/m] 0.012 0.014 0.020 
2nd Fracture conductivity, k, [m/s] 5.71E−6 2.86E−5 5.71E−5

Qeq-Numerical, [m3/s] 8.59E−12 1.17E−11 1.23E−11
Qeq-Semi-Analytical, [m3/s] 1.10E−11 1.43E−11 1.50E−11

θM, [-] 18.1 30.8 33.9
UM, [m/s] 6.97E−05 6.97E−05 6.97E−05
θM × UM, [m/s] 1.44E−12 2.45E−12 2.70E−12

∈2 in Equation (3-8), (%) 27.52 22.60 21.88

Figure 3‑10. Concentration and velocity distributions of the two fractures with different transmissivities 
intersecting each other inside the deposition hole.

Case Concentration Velocity magnitude

Case 4A

Case 4B

Case 4C
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3.6 A single fracture with spatially variable properties
In this scenario, we study flow and transport in a similar system described in Section 3.2, i.e., a fracture 
fully intersecting the deposition hole at a right angle. The only exception is that now we introduce 
a fracture with spatially variable transport properties, i.e., conductivity and porosity. 

Questions of interest in this scenario are: 

How does Qeq-Semi-Analytical compare to the Qeq-Numerical?

How does Qeq-Semi-Analytical compare to its corresponding value in a smooth parallel plate fracture with 
uniform properties?

The above questions are investigated for different realizations of the fracture with stochastic porosity 
and conductivity values. In DarcyTools, this property variability can be introduced by using the 
“inhomogeneous” feature of a known fracture command <knwf> (Ferry, M., 2020a). We investigate 
the accuracy of the following equations:

 (3-9)

 (3-10)

 (3-11)

The simulation results are summarized in Table 3-6. The results indicate that by increasing the 
inhomogeneity level, both in terms of increasing the standard deviation in porosity and conductivity, 
and by reducing the correlation length, the relative errors in Equations (3-9) and (3-10) increase. In the 
studied cases, the observed differences between Qeq-Numerical and Qeq-Semi-Analytical in Equations (3-9) ranges 
between −0.54 % (for a small level of heterogeneity) to 28.8 % (for a greater level of heterogeneity). 

Figure 3‑11. QN, QS denote Qeq-Numerical and Qeq-Semi-Analytical, respectively.



SKB R-23-20 37

The difference between Qeq-Numerical (for homogeneous fracture) and Qeq-Semi-Analytical (Equation (3-10)) 
follows a similar pattern, but the error is generally of larger magnitude, i.e., up to 48.6 %. Finally, it 
is shown that if an inhomogeneous fracture is treated as a homogeneous fracture with uniform mean 
properties15, the maximum relative error in estimating Qeq-Numerical becomes 18.6 % in the studied cases. 
Please note that only one “fracture realization” is made for each case. To improve the reliability of 
the results, more realizations should be considered to confirm the results and to exclude the influence 
of random artefacts.

Table 3‑6. Transport parameters and results for a single inhomogeneous fracture.

Parameter/Value Case 1A Case 5A Case 5B Case 5C Case 5A_2 Case 5A_3

Fracture thickness, ∆, [mm] 0.25 0.25 0.25 0.25 0.25 0.25 
Mean porosity 1.0 1.0 1.0 1.0 1.0 1.0
Mean conductivity, [m/s] 5.71E−6 5.71E−6 5.71E−6 5.71E−6 5.71E−6 5.71E−6 
STDV (porosity & conductivity) 0.0 1.0 0.5 0.1 1.0 1.0
Correlation length (x- and y-direction) 0.0 0.1 0.1 0.1 0.001 0.0001

Qeq-Numerical, [m3/s] 7.96E−12 8.21E−12 7.79E−12 7.88E−12 9.44E−12 9.18E−12
Qeq-Semi-Analytical, [m3/s] 7.91E−12 9.74E−12 8.10E−12 7.84E−12 1.12E−11 1.18E−11

θM, [-] 3.02E−05 4.11E−05 3.16E−05 3.00E−05 4.60E−05 4.85E−05
UM, [m/s] 1.73E−12 1.93E−12 1.74E−12 1.72E−12 2.27E−12 2.41E−12
θM × UM, [m/s] 5.23E−17 7.94E−17 5.48E−17 5.14E−17 1.05E−16 1.17E−16

ϵ2 in Equation (3-9), (%) −0.67 18.74 3.99 −0.54 18.47 28.80
ϵ3 in Equation (3-10), (%) −0.67 22.41 1.75 −1.50 40.54 48.57
ϵ4 in Equation (3-11), (%) 0.0 3.09 −2.16 −0.97 18.63 15.35

15  It is possible that the effective homogeneous aperture differs from the mean aperture.

Figure 3‑12. QN, QS denote Qeq-Numerical and Qeq-Semi-Analytical, respectively.
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Figure 3‑13. Concentration and velocity distributions in a single fracture with inhomogeneous properties.

Case Concentration Velocity magnitude

Case 5A

Case 5B

Case 5C

Case 5A2

Case 5A3
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3.7 Key Observations and Implications
This research focused on assessing the effectiveness of the Qeq-Semi-Analytical estimation in predicting 
Qeq-Numerical , which closely approximate the actual Qeq, across various intersection scenarios and 
fracture properties. The study findings can be summarized as follows:

1. Singular or Parallel Homogeneous Fractures at Right Angles: The Qeq-Semi-Analytical estimation 
demonstrated a high degree of accuracy in predicting Qeq-Numerical in scenarios involving singular or 
parallel homogeneous fractures that intersected the deposition hole at a right angle. The maximum 
relative error encountered during the investigation was 8.6 % for the parallel fracture case, indicating 
the reliability and robustness of this method in such situations.

2. Non-Perpendicular Intersection Angles: In cases where a single homogeneous fracture inter-
sected the deposition hole at a non-perpendicular angle, the Qeq-Semi-Analytical estimations showed 
satisfactory agreement with Qeq-Numerical. However, as the intersection angle (α) decreased, the relative 
error increased. A 13.7 % error was observed for α = 30° emphasizing the need for caution when 
employing this estimation method in scenarios with non-perpendicular intersection angles.

3. Complex Intersection Scenarios with Different Transmissivities: In more complex situations 
involving the intersection of two homogeneous fractures with different transmissivities within 
the deposition hole, the Qeq-Semi-Analytical estimations generally yielded higher values than Qeq-Numerical, 
with a maximum error of 25.5 % in the cases examined. This suggests that extra caution should 
be exercised when using this method in complex intersection scenarios, as the potential for error 
is greater. Further research may be required to develop more accurate estimation methods for 
such cases.

4. Nonhomogeneous Fractures: For nonhomogeneous fractures, the study showed that as the level 
of inhomogeneity in a fracture increased, the differences between Qeq-Semi-Analytical and Qeq-Numerical also 
increased, as well as the difference between Qeq-Semi-Analytical and Qeq-Numerical for the associated homo-
geneous fracture. Maximum errors observed were 28.8 % and 48.6 %, respectively. Furthermore, 
treating an inhomogeneous fracture as a homogeneous one resulted in a maximum relative error 
of 18.6 % in estimating Qeq-Numerical. It’s important to note that these results were based on a single 
realization of the fracture in each case, and in practical applications, generating a sufficient number 
of realizations may reduce statistical errors in estimating Qeq-Numerical.

The observed errors in the Qeq-Semi-Analytical estimation can be attributed to the approximation of Qeq-ECPM 
in Equation (1-32), specifically in the treatment of  as . Accurate calculation 
of Qeq-ECPM necessitates the calculation of the mean value of the square root of θU, , for 
all cells inside and around the deposition hole to correctly represent the underlying fracture network. 
This was demonstrated in Section 3.5, where the dead-end parts of the fractures did not participate 
in solute transport, yet their volumes contributed to the mean porosity value, resulting in relatively 
larger values compared to Qeq-Numerical. Similar explanations can apply to the errors observed in other 
scenarios.

While the authors currently could not identify a more reliable and generalizable alternative solution for 
calculating the mean value  based on the information provided by the ECPM methods 
in DarcyTools, it is crucial to note that the observed level of error in Qeq-Semi-Analytical is reasonable in 
comparison to the fundamental assumptions underlying the Qeq model. For example, if only half of 
the deposition hole is intersected by the fracture, as depicted in Figure 3-14 (middle), Qeq-Analytical will 
be 100 % larger than the effective value (Qeq-Numerical), as the Qeq model assumes both sides of the 
deposition hole are in contact with flowing water. Similarly, if the fracture intersects only a quarter 
of the deposition hole, as depicted in Figure 3-14 (right), Qeq-Analytical will be approximately 180 % 
larger than the effective value (Qeq-Numerical).
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Furthermore, considering the overestimation inherent in the semi-analytical approach discussed in this 
study, Qeq-Semi-Analytical can be considered a conservative estimate. It can serve as a preliminary estimation 
to assess the potential for contaminant transport from a block of rock containing a future deposition 
hole. In cases where problematic deposition holes are identified, the more computationally intensive 
Qeq-Numerical method can be employed as a secondary step.

In conclusion, the findings from this study offer insights into the limitations and applicability of 
the Qeq-Semi-Analytical estimation method. Researchers and DarcyTools users can utilize this information 
to make informed decisions regarding its use in various geological and hydrogeological scenarios, 
considering the level of accuracy required and computational resources available.

Figure 3‑14. Schematics of a fracture fully (left) and partially (middle and right) intersecting the 
 deposition hole.
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4 Qeq model implementation in a large-scale 
repository model 

The present study employs DarcyTools to model flow and transport in a simplified repository system 
comprising a fractured bedrock and fifty (50) deposition holes. The primary objectives are to demonstrate 
the implementation of the Qeq model in a large scale DarcyTools model and to assess the effectiveness 
of the Qeq-Semi-Analytical approach for estimating the rates of solute transport. This will be achieved through 
a comparative analysis of Qeq-Semi-Analytical values with a) Qeq-Numerical values, which are obtained using 
the integration method, and b) Qeq values derived from a Discrete Fracture Network (DFN) model in 
ConnectFlow.

It should be noted that the Qeq values obtained from the DFN modelling were provided by SKB, as 
this modelling approach was not included in the scope of the current modelling effort presented in this 
report. These Qeq values will be used as a reference point for comparing the results obtained using the 
Qeq-Semi-Analytical and Qeq-Numerical.

4.1 Repository model description
The repository model considered in this study consists of 50 deposition holes, a deposition tunnel, 
and an excavation damaged zone (EDZ). The model employs a representation of the deposition holes 
as cylinder structures, while the EDZ is conceptualized as a continuous fracture situated beneath the 
floor of the deposition tunnel, similar to previous studies (Joyce et al. 2010). Figure 4-1 depicts the 
repository’s structural layout, highlighting key elements including deposition holes 24–30, measurement 
boxes (grey), the deposition tunnel (green), and the EDZ (blue). The graphical representation serves 
as a visual aid for facilitating the understanding of the repository layout and the spatial relationships 
between its constituent components.

Table 4-1 provides the properties of the tunnel and EDZ used in the model, including hydraulic con-
ductivity and porosity values that correspond to the buffer properties in each structure. The repository 
domain is modelled using a network of fractures with appropriate hydraulic and transport properties, 
which is initially generated in FRACGEN based on the fracture model developed for the site descriptive 
model of Forsmark (Follin et al. 2007). The fracture network, “seed-12353-500-box-con.fab”, is then 
imported into DarcyTools to represent a connected system of fractures.

Table 4-1 Properties of the Tunnel and EDZ in the Model.

Structure Height [m] Width [m] Hydraulic Conductivity [m/s]

Deposition Tunnel 6.0 4.0 1.0E−10
EDZ 0.3 4.0 3.33E−8

Figure 4‑1. Illustration of the Tunnel (green), EDZ (blue) and measurement boxes (grey) used for capturing 
the rate of solute transported from deposition hole (orange).
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In DarcyTools, the bedrock is represented as a 500 × 500 × 500 m3 domain that is initially discretized 
into a uniform grid with cell sizes of ∆x = ∆y = ∆z = 2 m. To improve the accuracy of the numerical 
solution, a refined mesh is employed in the proximity of the deposition holes, resulting in deposition 
hole wall cells with a size of 0.125 m, corresponding to a Δwall/R ratio of 0.14, See Figure 4-2. In the 
2D model, as depicted in Figure 2‑3, this ratio leads to an approximate −22 % relative error in the 
numerical results, Qn, compared to the analytical Qeq. However, in the 3D model, this ratio results 
in reasonably close Qeq-Numerical and Qeq-Semi-Analytical results, with an approximate −2 % relative error, 
as demonstrated in Figure 3‑2 for Pe = 50. Despite the potential error it may introduce (−22 % as 
 discussed above), this ratio is considered reasonable for application in the large-scale model to 
achieve reasonably accurate results while avoiding high computational costs.

Since the computational domain is discretized into cell volumes, the fracture network properties are 
geometrically upscaled onto the grid using the area-weighting method to create a porous medium with 
equivalent properties. This results in cells with high permeability (mobile cells) and low permeability 
(immobile cells). The immobile cells are removed from the domain to enhance computational efficiency, 
as they are not expected to provide flow paths for water to carry solute particles. The upscaling method 
in DarcyTools is documented in (Ferry, 2020b).

4.2 Boundary conditions
To induce a head gradient of approximately 10−3 [m/m], fixed pressure boundary conditions are applied 
at the inlet (x = −250 m) and outlet (x = 250 m) boundaries. The remaining boundaries of the domain 
are subjected to a no-flux boundary condition. Based on the above conditions, the total flow rate 
through the domain is calculated to be 1.27 × 10−7 [m3/s].

To calculate Qeq-Numerical around each deposition hole i, the transport model is set up with a unity boundary 
condition, C = 1, inside the deposition hole i, while a no-flux boundary condition is assigned at the 
remaining boundaries. It should be noted that this approach results in 50 independent simulation 
cases, one for each deposition hole. 

Figure 4‑2. Partial view of y-plane cut at a deposition hole after cell removal for the numerical framework 
(left), and semi-analytical framework (right).
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4.3 Calculating Qeq
Same numerical and semi-analytical frameworks outlined in Sections 3.2.1 and 3.2.2 are employed 
to calculate Qeq-Semi-Analytical and Qeq-Numerical values. Additionally, corresponding Qeq values obtained from 
a DFN model implemented in ConnectFlow are presented. These Qeq values are then compared to 
those obtained using DarcyTools. The results of this comparative analysis are presented in Figure 4-5 
to Figure 4-8, encompassing both Qeq1

16 and Qeq2
17.

The findings reveal that approximately 30 % of the deposition holes intersected with conductive 
fractures, while the remaining holes remain intact. However, it is important to note that solutes can 
still be released into the EDZ at the top of a deposition hole, contributing to Qeq2. In the studied 
repository model, Qeq1 and Qeq2 accounted for 66 % and 34 % of the total release, respectively. 

In case of the Qeq1, the Qeq-Semi-Analytical approach predicts higher solute transport rates compared to both 
the Qeq-Numerical and Qeq obtained using ConnectFlow. Several factors contribute to these differences in 
results:

1) Qeq‑Semi‑Analytical Overestimation: Part of this discrepancy can be attributed to the inherent behaviour 
of the Qeq-Semi-Analytical approach, which tends to overestimate Qeq when a fracture intersects the deposi-
tion hole at an angle, refer to Figure 4-3. This phenomenon was demonstrated in Chapter 3 of the 
report. Additionally, deposition holes 13 and 33, which are only partially intersected by fractures, 
as shown in Figure 4-3 (bottom), exhibit an overestimation. This overestimation can be attributed 
to the underlying assumption of the Qeq model, where a fracture fully intersects the deposition hole. 

2) Grid Size Influence: Another contributing factor is that the Qeq-Numerical results may have been 
underestimated due to the use of a relatively large grid size in the simulation. This conclusion is 
derived from the results of the studies we conducted to explore the sensitivity of Qeq-Numerical results 
to variations in grid size, both in 2D and 3D models. Refer to Figure 2-3 and Figure 3-2 for visual 
representations of the sensitivity analysis results. 

3) Uncertainties in ConnectFlow: Furthermore, there may be uncertainties associated with the 
ConnectFlow results that are not fully known to the authors, which can also contribute to the 
differences observed. 

Exception: Deposition Hole 16: Interestingly, when examining deposition hole number 16, the 
Qeq-Numerical approach predicts no transport from that hole with Qeq1 = 0. This is because, as shown in 
Figure 4-3 (top), a fracture has only intersected the “wall” of the deposition hole 16, resulting in only 
the properties of the wall boundary cell being updated. Consequently, the properties of the cell located 
inside the deposition hole remained intact and nonconductive. Thus, during the refinement process, 
which dictates that only cells intersected by a conductive fracture will remain in the domain, these 
nonconductive cells were removed from the domain. As a result, the positions of the concentration 
boundary condition, i.e., cells located inside the deposition hole, do not exist, and the transport 
 equation is not solved, leading to the numerical approach returning zero for Qeq-Numerical. In this case, 
the Qeq-Semi-Analytical approach provides a more accurate estimation of Qeq1. This is because the Qeq-Semi-Analytical 
approach utilizes the flow information from both the inside and wall boundary cells, unlike the 
Qeq-Numerical, and returns a Qeq1 value that is very close to the value obtained using ConnectFlow. 

It can also be seen that Qeq1 is zero for the deposition holes 34 and onwards. This is primarily 
because no fracture intersects these deposition holes, leading to Qeq1 = 0.

In the case of Qeq2, it is important to note that the estimated values obtained using the Qeq-Semi-Analytical 
consistently exceed those obtained using the Qeq-Numerical. 

However, in this specific case where the EDZ intersects the deposition hole at a right angle, it has 
been demonstrated that Qeq-Semi-Analytical and Qeq-Numerical yield comparable results for the given Péclet 
values, refer to Section 3.2.4. The lower Qeq-Numerical values in this example can be attributed to the use 
of a larger wall grid size in the simulation. This increased grid size might result is an underestimation 
of the Qeq-Numerical by inadequately representing the boundary conditions with C = 1 on the inside cells.

16  Qeq1: equivalent flow rate to the fracture intersecting the deposition hole.
17  Qeq2: equivalent flow rate to the excavation damaged zone.
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Figure 4‑4. The solute transport integration results, Qeq-Numerical.

Figure 4‑3. Solute concentration in the Qeq1 measurement boxes used for the solute transport integration of 
the deposition hole 16–22 (top), 13 (bottom left ) and 33 (bottom right) intersected by one or two fractures 
at angles.

13 33
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For deposition holes 2–18, where the EDZ flow remains unaffected by intersecting fractures, the 
Qeq-Semi-Analytical approach generally returns higher values compared to Qeq2 values obtained using 
ConnectFlow. However, for deposition holes 19–20–22–23 and 24, where a couple of fractures inter-
sect the EDZ, as depicted in Figure 4-7 (top), ConnectFlow predicts notably larger values compared 
to the Qeq-Semi-Analytical approach. The discrepancies in the results could be attributed to differences in 
how ConnectFlow and DarcyTools handle the situation where multiple fractures intersect the EDZ 
and how they estimate Qeq2.

Figure 4‑5. The Semi-Analytical results, Qeq-Semi-Analytical.

Figure 4‑6. Comparison of the Qeq1 results obtained from, Qeq-Numerical, Qeq-Semi-Analytical, and ConnectFlow
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Moreover, for deposition holes 25–50, ConnectFlow predicts significantly higher Qeq2 values, whereas 
DarcyTools estimates minimal flow rates in the EDZ sections above these holes, as illustrated in 
Figure 4-7 (bottom). Consequently, the Qeq-Numerical and Qeq-Semi-Analytical values estimated by DarcyTools 
become negligible for these deposition holes. However, it is important to note that in this scenario, 
the estimated Péclet number by DarcyTools falls below the Qeq model’s validity range, leading to 
inaccurate Qeq-Semi-Analytical values, as shown in Figure 4-8.

The variations in the results may also arise from the underlying assumptions, approximations, and 
methods employed in each approach, as well as how ConnectFlow and DarcyTools model the under lying 
fracture network. Further investigation is required to fully understand and address these discrepancies 
between the two modelling approaches and to enhance the accuracy of Qeq2 predictions in diverse 
subsurface conditions, especially in complex intersection scenarios.

Figure 4‑7. Solute concentration in the Qeq2 measurement boxes used for the solute transport integration of the 
deposition hole 19–20 (Top) and 30–33 (bottom) intersected by EDZ and a fracture at an angle (20-21-22).

Figure 4‑8. Comparison of the Qeq2 results obtained from, Qeq-Numerical, Qeq-Semi-Analytical, and ConnectFlow.
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Appendix A

A note on the effective diffusivity, De

The Fick’s law describes the movement of a substance through a medium from a region of higher 
concentration to a region of lower concentration. It can be written as:

 (A-1)

where J is the mass of solute transferred per unit area accessible for diffusion and unit time, De is the 
effective diffusivity and C is the solute concentration. In the case of a porous medium, the effective 
diffusivity is a measure of the transport properties of the entire medium, while the pore diffusivity (Dp) 
characterizes the diffusion in the individual pores of the medium. In other words, the effective diffusivity 
considers the fact that the porous medium has a smaller cross-sectional area available for diffusion 
than a solid or a fluid without any pores. This means that when a substance diffuses through a porous 
medium, it encounters obstacles and barriers, such as the solid matrix or the walls of the pores, that 
reduce the effective cross-sectional area available for diffusion. As a result, the rate of diffusion of the 
substance through the medium is slower than it would be in the absence of these obstacles, characterized 
by Dw. The effective diffusivity quantifies this reduction in the rate of diffusion and considers the geo-
metrical characteristics of the porous medium, including its porosity, tortuosity, and constrictivity. 

Porosity, ε, is the fraction of the volume that is made up of pores. Tortuosity, τ, is a measure of how 
tortuous the pore space is, i.e., how much longer the actual path of diffusion is compared to a straight 
line between two points. Constrictivity, δ, is a measure of how much the pores are constricted, which 
can limit the movement of solutes through the medium. The relationship between De, Dp, Dw, ε, τ, and 
δ can be expressed as:

 (A-2)

The parameters G and F are commonly known as the geometry factor and formation factor, respectively. 
According to the work of van Brakel and Heertjes (1974), the formation factor can be mathematically 
expressed as:

 (A-3)

Based on the above consideration, it is worth noting that by substituting the definition of De into the 
Equation (1-20), the Qeq expression for a porous fracture can be expressed as:

 (A-4)

It is noteworthy that the definition of a fracture “object” in DarcyTools requires careful assignment 
of transport parameters, including a diffusion coefficient, De_DT, which include the porosity, θ, and 
is defined as:

 (A-5)

while the porosity θ and the compaction, γ, are given the following dependencies:

 (A-6)

θ0 is a reference porosity field given for a reference pressure field. Based on the information presented 
above, it can be inferred that DarcyTools incorporates the significance of the geometry factor G into γ. 
This leads to:

 (A-7)

The user should be aware of this formulation when calculating Qeq in a fracture or a damaged zone. 
Note, however that in all the 2D and 3D simulation cases that are simulated in this report using 
DarcyTools, it is assumed that the fracture (object) is fully open, with θ0 = γ = 1.
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Appendix B

Average Qeq in DFN and ECPM
The mathematical analysis presented in this appendix has employed the Cubic law to compute the 
equivalent flow rate, Qeq, for both the discrete fracture network (DFN) and the equivalent continuum 
porous medium (ECPM) models, Qeq-Semi-Analytical. It has been demonstrated that for single fractures 
or multiple fractures with the same aperture and length, Qeq values for DFN and ECPM models are 
equivalent. To deal with multiple parallel fractures with varying apertures, both Qeq-DFN and Qeq-Semi-Analytical 
are expressed in terms of the mean aperture and the relative deviations. The key takeaway is that 
when minor deviations in aperture result in similar Qeq values for both DFN and ECPM. Consider a 
single fracture f that completely crosses the deposition hole at a right angle. The equivalent flow rate, 
Q f

eq can be computed using Equation (B-1). This equation closely resembles Equation (1-22) where 
Lf for a circular cylinder is substituted with 4R18.

 (B-1)

In the above equation

• Ud,f is the Darcy flux in the fully open fracture f, [m/s].

• bf is the aperture of the fully open fracture f, [m].

• Lf is the transport distance along the intersection of the circular deposition hole and the fracture f, 
[m], (see Section 1.4).

• Dw is the diffusivity in water, [m2/s].

If multiple fractures cross the deposition hole, the total Qeq-DFN is the sum of the fluxes through the 
nf fractures:

 (B-2)

For parallel fractures, the transport length is constant and denoted as L. 

 (B-3)

Assuming flow in the fractures follows the “Cubic law” and uniform pressure gradient across all 
fractures, we can express Darcy flux using Equation (B-4):

 (B-4)

where:

• kf represent the permeability of fracture f, [m2].

• β denotes the pressure gradient divided by the dynamic viscosity, [m−1s−1].

Using the above two assumptions, we can reformulate Equation (B-2) to give:

 (B-5)

18  This is to address velocity differences among adjacent streamlines close to the deposition hole, as elaborated 
in Section 1.5.
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Now let’s consider the ECPM approximation of Qeq, as expressed by the semi-analytical solution 
Equation (1-34), (Note that in Equation (1-34) Lf = 4R ):

 (B-6)

θM for the case of parallel fractures can be computed as:

 (B-7)

UM can be obtained using the following expression: 

 (B-8)

Where kM represents the mean permeability. Substituting θM and UM in the Qeq-Semi-Analytical expression 
results in:

 (B-9)

In case of a single fracture (nf = 1) or several fractures with the same aperture (bf =b) and length 
(Lf = L), the Qeq values for DFN and ECPM are identical and can be expressed as:

 (B-10)

In case of several fractures sharing the same length (Lf = L), but having different apertures, Qeq-DFN 
and Qeq-Semi-Analytical can be expressed as a function of the mean aperture, bM and the relative deviations, 
σ, as defined below:

 (B-11)

and

 (B-12)

Consequently, Qeq-DFN and Qeq-Semi-Analytical can be expressed as a

  (B-13)

 (B-14)

From the two equations above, it can be inferred that when small deviations (σf << 1) are present, 
both DFN and ECPM yields similar Qeq values.
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Appendix C

Equivalent Darcy Flux in DFN and ECPM
In DFN models, where properties of individual fractures are available, a 2D Darcy flux has been 
defined as the flow per unit width of the fracture:

 (C-1)

Qf represents the flow rate in fracture f, and af denotes the area of the fracture. Thus √
_
af can be seen 

as a measure of the length of a side. The flow velocity in the fracture can then be obtain from:

 (C-2)

bf is the aperture of fracture f. The Qeq formulation for the discrete fracture network representation of 
the parallel fractures intersecting the deposition hole is given by Equation (1-24):

 (C-3)

Equation (C-3) is similar to equation D-8 in (Joyce et al. 2010). If use definition of u as given in 
Equation (C-2), Qeq_DFN becomes:

 (C-4)

Here, H represents the height of the deposition hole. We can also define the following term as the 
equivalent √

_
u in the vicinity of the deposition hole:

 (C-5)

The primary objective here is to derive an estimate for U2D by using the ECPM formulation 
presented in this study, Equation (C-6):

 (C-6)

By comparing Equation (C-4) with Equation (C-6), and considering the approximation of Qeq, ECPM 
with Qeq-Semi-Analytical, given in Equation (1-34), it can be understood that:

 (C-7)

However, it is important to note that Equation (C-7) solely provides information regarding equiva-
lent √

_
u. Nonetheless, we aim to estimate the equivalent Darcy flux u. This raises the question: How 

can we effectively deduce ueq from (√
_
u )eq?

We illustrate this process for two known distributions for √
_
u, namely, normal, and lognormal 

distribution. Let’s consider the following transformation of variables:

 (C-8)

Consequently,

 (C-9)
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This leads to expressing the mean (expected) values as follows:

 (C-10)

and

 (C-11)

If x follows a normal distribution with a mean μ and a standard deviation σ, then the mean of x, 
E[x], and the mean of x2, E[x2], can be, respectively, expressed as:

 (C-12)

 (C-13)

Alternatively, if we assume that x follows a log-normal distribution with a mean of μ and a 
standard deviation of σ, then the mean of x, E [x], can be calculated as:

 (C-14)

Similarly, the mean of x2, E [x2], can be expressed as:

 (C-15)

It may be noted that in both cases if the variance of x, σ2, is small then.

 (C-16)

Hence, considering Equation (C-7), we can express E[x 2] as follows:

 (C-17)

In the above equations, σ2 represents the variance of √
_
u. Consequently, it is only when σ2 is small, 

indicating that the fracture velocities are comparable, we can deduce:

1
√

 
√

1
   (C-18)

The quantity  can then be computed as: 

    (C-19)

For a single fracture that intersect the deposition hole at a right angle:

 (C-20)

Using Equation (1-40) and (1-41) for θM and UM for a single fracture intersecting the deposition hole 
at a right angle leads to, 

 (C-21) 
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Appendix D

Tests with alternative geometries 
The Qeq analytical solution for a circular deposition hole is given by Equation (1-21). To apply this 
solution to other deposition hole geometries, not just circular ones, it is necessary to use an equivalent 
radius for the inclusion instead of the radius (R) in Equation (1-21). This equivalent radius, denoted 
as Re, represents the radius of a hypothetical circular cylinder that has the same area as the inclusion. 
Re can be defined using the formula:

 (D-1)

where S [m2] denotes the area of the intersection between the inclusion and the deposition surface.

Hence, an analogous Péclet analysis, as the one carried out in Section 2.3 for a circular deposition 
hole, can also be conducted for square and elliptical-shaped deposition holes.

The results of this new study show that there is a similar range of Péclet values (4 < Pe < 700) where 
Qn obtained through numerical integration and Qeq agree for both square and elliptical-shaped 
deposition holes. 

Figure D‑1. Solute concentration profile around a deposition hole with a square cross-section area at 
different Péclet numbers.
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Figure D‑2. Estimated Qeq values at different Péclet number for a deposition hole with square cross-section 
area. Δwall/R = 7 × 10−4. The green zone indicates where the relative error between Qn and Qeq is less than 10 %.

Figure D‑3. Solute concentration profile around a deposition hole with an elliptical cross-section area at 
different Péclet numbers.
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Figure D‑4. Estimated Qeq values at different Péclet number for a deposition hole with elliptical cross-section 
area. Δwall/R = 7 × 10−4. The green zone indicates where the relative error between Qn and Qeq is less than 10 %.
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Appendix E

Nomenclature
Symbol Description Unit
Ak Surface area of a DT cell normal to k-direction m²

C Concentration mol/m³
C0 Concentration at water-buffer interface mol/m³
De Effective diffusivity m²/s
Dp Pore diffusivity m²/s
Dw Diffusivity in water m²/s
F Formation factor -
G Geometry factor -
H Height of the deposition hole m
J Diffusion flux mol/m²s
L Distance travelled by fluid m
Q Volumetric flow rate m³/s
Qeq Equivalent flow rate m³/s
Qeq-DFN Average equivalent flow rate from DFN conceptualisation m³/s
Qeq-Numerical Equivalent flow rate from numerical implementations m³/s
Qeq-Semi-Analytical Equivalent flow rate from semi-analytical method m³/s
Qeq-2D-Analytical Equivalent flow rate in the 2D model from analytical method m³/s
R Radius of the cylinder/deposition hole m
T Dimensionless group characterizing the spreading rate of solute -
Ud Darcy flux m/s
Ud,f Darcy flux in fully open fracture f m/s
Ui Darcy flux in DT cell i m/s
UM Mean Darcy flux of selected cells in DT domain m/s
U2D Flow rate per unit width of the fracture m2/s
Vf Volume of fluid m³
αf Area of fracture f m²
bf Aperture of fully open fracture f m
cm Mean Concentration of water mol/m³
cw Concentration of water mol/m³
h Hydraulic head gradient m/m
nc Number of DT cells within a fracture intersection -

n→ Normal vector -

tmix Time for domain to reach a well-mixed condition s
tres Water residence time in contact with the surface s
u True fluid velocity m/s
uk Darcy flux on DT cells’ surfaces. Subscript k denotes the flow direction m/s

u→ Darcy flux vector m/s

Δ Thickness of a fracture or a damaged zone m
Δwall Size of a wall boundary cell in the 2D model in DT domain m
δ Constrictivity of a porous medium -
ε Porosity of fracture (when fracture is assumed porous) -
ϵ Estimated error between different Qeq values m3/s
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γ Compaction of a porous medium, i.e., rock matrix -

nmean
FS Mean penetration depth m

θi Porosity of DT cell i -
θM Mean cell porosity of selected cells in DT domain -

vi Volume of DT cell i m³

α Angle of fracture intersection with deposition hole degree

Abbreviation Meaning
BC Boundary condition
DH Deposition Hole
DFN Discrete Fracture Network
DT DarcyTools
ECPM Equivalent Continuous Porous Medium
EDZ Excavation Damaged Zone
Pe Péclet Number
PM Performance Measures
Qeq Equivalent flow rate
QA Qeq-2D-Analytical 
Qn Qeq-Numerical in 2D model
QN Qeq-Numerical in 3D model
QS Qeq-Semi-Analytical in 3D model
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Appendix F

Sample Qeq model codes from CIF-FIF files

<cif>

<run>

<title>   ‘Qeq_Semi_Analytical calculation’  </title>

<griddir> ’..\Grid\grids’    </griddir>

</run>

<law_mu><a0> 1.E-3      </a0> </law_mu>

<var> <name> permx      </name> <inifile> ‘..\Prop\properties/PERMX’ </inifile> </var>

<var> <name> permy      </name> <inifile> ‘..\Prop\properties/PERMY’ </inifile> </var>

<var> <name> permz      </name> <inifile> ‘..\Prop\properties/PERMZ’ </inifile> </var>

<var> <name> poros      </name> <inifile> ‘..\Prop\properties/PORO’  </inifile> </var>

<var> <name> stora      </name> <inifile> ‘..\Prop\properties/STORA’ </inifile> </var>

<var> <name> darcy-u    </name> <pos> xface </pos> </var>

<var> <name> darcy-v    </name> <pos> yface </pos> </var>

<var> <name> darcy-w    </name> <pos> zface </pos> </var>

<var> <name> pressure </name> <pos> cell </pos> </var>

<var> <name>  Uxyz      </name> <ini> domain 0.0 </ini> </var>

<var> <name>  Porm      </name> <ini> domain 0.0 </ini> </var>

<flux> <name> UxE       </name> <loc> Q1-DH </loc> <faces> east  </faces> <type> ‘vfl’ </type> 
</flux>

<flux> <name> UxW       </name> <loc> Q1-DH </loc> <faces> west  </faces> <type> ‘vfl’ </
type> </flux>

<flux> <name> UyN       </name> <loc> Q1-DH </loc> <faces> north </faces> <type> ‘vfl’ </type> 
</flux>

<flux> <name> UyS       </name> <loc> Q1-DH </loc> <faces> south </faces> <type> ‘vfl’ </type> 
</flux>

<flux> <name> UzL       </name> <loc> Q1-DH </loc> <faces> low   </faces> <type> ‘vfl’ </type> 
</flux>

<flux> <name> UzH       </name> <loc> Q1-DH </loc> <faces> high  </faces> <type> ‘vfl’ </type> 
</flux>

<loc>  <name> Q1-DH </name> <file>’../Grid/locations/DH.loc’ </file></loc>

<loop> <name> main </name> </loop>
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<slv>  <restart> T </restart </slv>

</cif>

subroutine usrout(eventname)

use M_UTIL

character(len=*), intent(in) :: eventname

real, dimension(:), pointer  :: uxe,uxw,uyn,uys,uzl,uzh

real, dimension(:), pointer  :: umxy, porm

real :: Pe, qeq_sa

*..... Is xecuted only at the start of the computation.

if(eventname.ne.’dts_start’) return

r = 0.875          !Radius of DH.

dw = 1.E-9          !Water diffusivity.

w  = 8.2            !Height of DH. 

*..... Retrieve the values of Darcy fluxes in each direction. 

uxe  => GET_VAR_VAL(’UxE’)

uxw  => GET_VAR_VAL(’UxW’)

uyn  => GET_VAR_VAL(’UyN’)

uys  => GET_VAR_VAL(’UyS’)

uzl  => GET_VAR_VAL(’UzL’)

uzh  => GET_VAR_VAL(’UzH’)

umxy => GET_VAR_VAL(’Uxyz’)

porm => GET_VAR_VAL(’Porm’)

*..... Calculate the mean Darcy flux, denoted as U_M in the report.

umxy = sqrt((0.5*(uxe‑uxw))**2 + (0.5*(uyn‑uys))**2 + (0.5*(uzl‑uzh))**2)

*..... Calculate the mean porosity, denoted as theta_M in the report.

porm = GET_VAR_MEAN(‘poros’,’Q1-DH’)

*..... Calculate the Qeq_Semi_Analytical.

qeq_sa = 4.51*w*sqrt(dw*r*umxy(1)*porm(1))

end subroutine
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