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Abstract 
This report describes the methodology used to develop a machine-learning tool that can be used to 
predict the extent of wetlands at Forsmark. The tool uses the “wetland identification modelling” 
toolbox in ArcGIS® Pro. 10 individual wetland areas in Sweden are used to train 10 individual 
machine-learning algorithms which are used to predict wetland locations and extents at Forsmark. 
Wetland predictions for Forsmark are given in raster format. The suite of algorithms used in this 
study, as well as the specific methods used to train, evaluate and apply the algorithms when 
predicting wetland extents at Forsmark, is given the name “WIM Forsmark” and a version number of 
“1.1”. Preliminary results suggest that WIM Forsmark 1.1 is capable of predicting the extent of 
wetlands at Forsmark and produces results similar to an alternative, more complicated machine-
learning tool produced by the Swedish University of Agricultural Sciences (SLU). It is therefore 
suggested that WIM Forsmark 1.1 could be used to predict the position and extent of future wetlands 
at Forsmark and should be considered in studies of landscape development. Furthermore, the study 
postulates that WIM Forsmark 1.1 may be able to give information surrounding the uncertainty of the 
wetland predictions. 

Sammanfattning 
Den här rapporten beskriver metodiken för att utveckla ett maskininlärningsverktyg som kan 
användas för att prediktera våtmarker i Forsmark. Verktyget använder verktygslådan ”wetland 
identification modelling” i ArcGIS® Pro. 10 olika våtmarksområden i Sverige används för att träna 
10 olika maskininlärningsalgoritmer som används för att prediktera läge och utbredning av våtmarker 
i Forsmark. Våtmarksprediktion för Forsmark erhålls i rasterformat. Uppsättningen av algoritmerna 
som används i denna studie, liksom de specifika metoderna använda för att träna, evaluera och 
applicera algoritmerna vid prediktion av våtmarksutbredning i Forsmark har namngivits till ”WIM 
Forsmark” med versionsnummer ”1.1”. Preliminära resultat antyder att WIM Forsmark 1.1 är 
kapabel att prediktera läge och utbredning av våtmarker i Forsmark och producerar resultat som är 
jämförbara med ett alternativt, mer komplicerat maskininlärningsverktyg utvecklat av Sveriges 
Lantbruksuniversitet (SLU). Det föreslås därför att WIM Forsmark 1.1 skulle kunna användas för att 
prediktera läge och utbredning av framtida våtmarker i Forsmark och bör övervägas i övriga studier 
om landskapsutveckling. Studien postulerar dessutom att WIM Forsmark 1.1 kan ge information 
kring osäkerheten i våtmarksprediktionerna. 
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1 Introduction 
It is the responsibility of the Swedish Nuclear Fuel and Waste Management Company (SKB) to 
manage the management of both radioactive waste and spend nuclear fuel in Sweden. The existing 
Repository for Short-Lived Radioactive Waste (SFR) and the site for the Spent Fuel Repository is in 
Forsmark (Figure 2 1). An extension to the SFR facility is planned to extend the capabilities of the 
repository. As a part of the license applications for the extension of SFR and the construction of the 
final repository for spent fuel, SKB is continually assessing the long-term radiological safety each 
future repository.  

 
Figure 1-1. Location of the Forsmark site in Sweden (right) and in context with the countries in Europe (left). The 
site is situated in the Östhammar municipality, which belongs to the County of Uppsala. 

Hydrological and hydrogeological modelling is an important part of the safety assessments for the 
existing and planned repositories at Forsmark. Comprehensive analyses of the future hydrology and 
future near-surface hydrogeology of the Forsmark area were performed for the license application for 
the SFR extension (Werner et al. 2013) and site-selection for the Spent Fuel Repository (Bosson et al. 
2010). A key point of these modelling studies was that they were required to examine the hydrology 
as affected by a postulated future climate and landscape over very large time-spans (105 years for 
SFR and 106 years for the Spent Fuel Repository). The time-spans under consideration are so large 
that geological events such as large-scale bulk transports of sediment via erosion processes, shore-
line retreat due to isostatic rebound and future ice ages must be accounted for. Geological events like 
these can cause significant changes to quaternary geology and topography of an area, and the nature 
of these changes are only generally understood at regional scales.  

For the hydrological and near-surface hydrogeological investigations for Forsmark, models are 
parameterized using topographical and geological information with <10 – 80 m2 of spatial resolution. 
There are significant uncertainties regarding the topographical and geological characteristics of a 
landscape in the very far future at these smaller spatial scales which can affect the predictive capacity 
of the hydrological models. A review of the safety assessment for the Spent Fuel Repository (SKB 
2011) conducted by the Swedish Radiation Safety Authority (SSM) stated that the deterministic 
nature by which the future landscape at Forsmark was considered in the safety analyses was 
insufficient and that uncertainties in the future landscape need to be accounted for in the dose 
modelling (Section 7.1.2.2, SSM 2018). This implies that landscape development modelling needs to 
be conducted within an uncertainty framework. This further implies that several realizations of the 
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future landscape may need to produced thus strengthening the case for using relatively simple models 
which require minimal computational and personnel resources.  

The primary purpose of this study is focused on developing a model that is capable of predicting the 
extent of future wetlands at Forsmark while providing information on the likelihood of the 
predictions. The model should also be easy to set up and run using minimal personnel and 
computational resources in order to reduce the time required to produce wetland predictions in case 
several different realizations are needed. The model should also be relatively easy to explain in order 
to increase transparency in order to ease the burden on external reviewers.  

This study proposes that machine learning is a viable alternative to process-based modelling of 
wetland development. 
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2 Methodology 
2.1 Overview 
This study uses the Wetland Identification Model (WIM) developed by O’Neil et al. (2018, 2019) to 
generate individual predictions of wetland extent at Forsmark. The WIM tool is available as a part of 
the Arc Hydro toolset in ArcGIS® Pro (ESRI 2021). The WIM tool uses a pre-processed1 digital 
elevation model (DEM), raster data on the spatial location of surface water bodies (lakes and 
streams), and observed data on wetland extent to predict the extent of wetlands in areas missing 
observations. A DEM is used to calculate the topographic wetness index (TWI) (Beven and Kirby 
1979), depth to water index (DTW) and the curvature of the landscape (Ågren et al. 2014).2 The 
TWI, DTW and curvature are used as predictor variables in a “random trees” machine learning 
algorithm which is trained and tested using observed wetland data (Breiman 2001).  

Once deemed satisfactory, the WIM algorithm can be used to predict the occurrence of wetlands in 
areas lacking data. Applying the algorithm to new DEMs is a relatively quick process that is not 
computationally intense. However, a bias in the predictions needs to be assumed given that the 
algorithm is trained using measured data from a location where environmental factors (defined as 
climate, topography and wetland development rate within the context of this study) may differ from 
those of the location where new predictions are being made. For this reason, it is essential that 
algorithms are only used to predict wetland extent in areas with similar environmental conditions.  

It is hypothesized that WIM could be used to help predict wetland extent at Forsmark within the 
context of the safety analyses for both SFR and the Spent Fuel Repository. To accomplish this, any 
potential WIM algorithm would have to be trained using a landscape with environmental factors 
characteristic of the Forsmark landscape in the far future (i.e. +103 – +106 years).  

Past and planned safety analyses assume substantial uncertainty surrounding the climate, topography 
and hydrological conditions of the future Forsmark landscape. It is therefore not reasonable to 
assume that a single landscape proxy can be chosen which could adequately represent the future 
landscape of Forsmark. This study proposes that a suite of WIM algorithms, trained using a variety of 
landscapes, could be used simultaneously when predicting wetland extent for the future Forsmark 
landscape. This would not only ensure that a large variation in climactic, topographic and wetland 
ages are considered in the algorithm training, but could also provide some insight into the uncertainty 
surrounding the predictions by considering prediction frequency across the suite of algorithms. 

2.1.1 Uncertainty management using WIM 

As previously mentioned in Section 2.1, climate, topography and wetland development rate are 
considered to be the primary factors which are capable of being accounted for using the WIM tool. 
While topography is considered directly by the WIM tool (via the DEM inputs), climate and wetland 
age are not implicitly considered in the training of the WIM algorithms. Instead, it is up to the user to 
train the algorithm using areas where both the climate and approximate wetland age are similar to 
that of the area where wetland extent is to be predicted. In the context of the safety analyses pursued 
for the SFR and Spent Fuel Repository, prediction of wetland extent needs to be performed for 
landscapes in the far future where the climate and conditions conducive for wetland development are 
highly uncertain. 

As briefly mentioned in Section 1, it is essential that any tool that is used to predict the future state of 
the Forsmark landscape is capable of providing information on the uncertainty surrounding 
predictions. The current distribution of the WIM tool in ArcGIS provides Boolean outputs of wetland 
predictions; raster cells either do or do not contain a wetland. However, raw outputs from the random 
trees algorithms are reported as probabilities which the WIM tool in ArcGIS then converts to 

                                                           
1 Preprocessing includes smoothing (removal of data “noise”) and producing a hydroconditioned DEM 
(filling local sinks and generating a flow-direction raster). The DEM may also be used to generate a 
surface water raster (i.e. locations of lakes and streams).   
2 TheTWI, DTW and curvature are calculated at the same resolution as the input DEM and used within the 
WIM tool as raster inputs. 
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Boolean predictions.3 This suggests that it is possible to instead use the probabilistic outputs from 
WIM, instead of the default Boolean outputs, to try and quantify the uncertainty of the prediction as 
quantified by the random tress algorithm. 

While this step may help in quantifying the uncertainty surrounding wetland predictions for an area 
based on a single trained algorithm, the user must be confident that the wetland area used to train the 
algorithm is characteristically similar (i.e. climatologically and topographically) to the area where the 
predictions are being made. The tool in development will be used to predict wetland extent for the 
landscape at Forsmark in the far future which includes a substantial area of land which currently 
resides at the bottom of the Baltic Sea. This means that it is not realistic to assume that a user would 
be able to select any one single area that will be characteristically similar for this future landscape as 
the climactic conditions of this future landscape are highly uncertain. 

In order to overcome this issue this study proposes that a suite of WIM algorithms can be considered 
simultaneously when predicting wetland extent. The variation of the climactic, topographic, and 
wetland development conditions across the selected landscapes used to train the individual 
algorithms is intended to represent the uncertainty surrounding these factors in the far future. By 
considering each output simultaneously (i.e. overlay raster outputs), the user could then ascertain 
some degree of the uncertainty in the predictions by examining the frequency of predictions for a 
given location (i.e. the number of simultaneous predictions for a single raster cell). 

In this study, 10 different Swedish landscapes are used to train 10 different WIM algorithms. Each 
individual algorithm is then simultaneously applied to the area where wetland extent and location is 
to be predicted. Results are then presented in two different forms: one using the default “Boolean” 
outputs of the WIM tool in ArcGIS for the suite of algorithms, and results which attempt to present 
the uncertainty of the prediction by examining the probabilistic outputs from the suite of algorithms. 

When considering the Boolean outputs of WIM, results are presented in the form of “hit maps” 
wherein each predicted raster cell has a value range of zero to 10: a value of zero indicates that none 
of the algorithms have predicted a wetland in that cell, and a value of 10 indicates that every 
algorithm has predicted a wetland in that cell (Figure 2-1). When considering the probabilistic 
outputs, a mean probability of wetland prediction, or “p-means”, is calculated for each cell using the 
outputs of the 10 different WIM algorithms. Results are then presented as a raster where each cell 
containing a probability of prediction. 

This study proposes that, by presenting results in this fashion, the user will be able to gather some 
insight into the uncertainty of the wetland predictions that may be applied to future analyses. The hit 
maps may be applied within a less “formal” uncertainty framework which does not require the user to 
motivate the use of probabilities which, as calculated via the WIM tool in ArcGIS, are largely black-
box in nature and may not be meant to be further applied within a larger uncertainty framework. The 
user could instead use qualitative reasoning to include/exclude predictions (e.g. only consider cells 
with five or more hits) instead of purporting to have a rigorous, statistical understanding of the 
predictions. On the other hand, the p-means presentation of the results may be better suited for an 
application of the results as their use is relatively intuitive (e.g. only consider cells with a probability 
greater than 0.50) and would likely not require a substantial amount of exploratory text before results 
could be further explored. However, it is not entirely certain how the “p-means” method of 
presenting results would compare to the results of a single WIM algorithm (via an examination of the 
probabilistic outputs) that was trained using all 10 of the Swedish landscapes simultaneously. 
However, questions surrounding the use of the WIM results are considered outside the scope of this 
study. This study will instead present both types of results with the assumption that any further 
application of the tool discussed herein will assess the assumptions and caveats associated with the 
tool’s results prior to the application of said results. 

                                                           
3 For all cells with a probability of predicted wetland greater than 0.50, the cell is reported as containing a 
wetland. For all cells with a probability of predicted wetland less than 0.50, the cell is reported as 
containing no wetland.  
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Figure 2-1. Example of a “hit map” used to display results from 10 different WIM algorithms. Note: this 
figure is produced using synthesized data. 

2.1.2 Alternative tool: SLU’s land “wetness” map 

The Swedish University of Agricultural Sciences (SLU) has developed a tool based on the work of 
Lidberg et al. (2020) which is used to predict the “wetness” of a forested landscape in areas where 
observations may not be available. The tool uses machine learning and other publicly available data 
to generate maps of potentially “wet” soils (Lidberg et al. 2020). Outputs of the tool are given as 
raster data where the soil is classified as one of four different “wetness” classes ranging from “dry” to 
“wet”4. The “soil wetness maps” are publicly available for download via the Swedish Forestry 
Agency5. 

Both SLU’s tool for generating the “wetness maps” and the WIM tool in ArcGIS® Pro use machine 
learning to aid in their predictions. Both tools require a DEM as input and both use the DTW and 
TWI (both calculated based on a hydro-conditioned DEM6) as predictor variables. However, SLU’s 
tool uses additional predictor variables (generated using the DEM) and requires additional geographic 
inputs which WIM does not. SLU’s tool requires five separate raster inputs and uses 24 predictor 
variables to train the algorithm (Ågren and Lidberg 2020) while WIM requires only one raster input 
and uses three predictor variables to train the algorithm (O'Neil et al. 2018)7. 

At the beginning of this study, it was decided that SLU’s wetland prediction tool was not well suited 
for the intended application of the tool for two primary reasons: a) the SLU tool is not publicly 
available and any new estimates of wetland extent, especially for areas that do not currently exist, 
                                                           
4 The four “wetness classes” (fuktighetsklasser in Swedish) are (SV/EN): torr/dry, frisk-fuktig/mesic-
moist”, fuktig-blöt/moist-wet, and blöt/wet. The wet class is used for mapping of surface waterbodies. 
5 SLU’s” soil wetness map” (Markfuktighetskarta in Swedish) for Sweden - 
https://www.skogsstyrelsen.se/sjalvservice/karttjanster/geodatatjanster/rest/ 
6 A hydo-conitioning is a process where minor adjustments are performed on the DEM in order to ensure 
that routing of runoff is calculated correctly. This involves “smoothing” of the DEM in order to remove 
local outliers in the elevation data and filling of hydrological sinks.  
7 It should be noted that, while not required by either tool, additional input data showing the observed 
locations of surface water bodies (i.e. lakes and streams) can be used to modify/verify the processed data 
layers which are further used to calculate the TWI. 
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would limit SKB’s ability to quickly adapt the tool to the needs of the safety analyses. And b) 
because the SLU tool requires more input data and uses more predictor variables, any analyses of 
prediction uncertainty would become more complicated due to the larger amount of input data needed 
for the SLU tool. The WIM tool is available to all with an ArcGIS® Pro which increases SKB’s 
ownership of the results and modelling methodology, and uncertainty analyses are relatively simple 
(compared to the SLU tool) given that its only data input is the DEM and the location of surface 
waterbodies. For these reasons, this study has chosen to examine WIM as a tool to aid in the 
prediction of future wetlands instead of the SLU tool.  

2.1.3 Model application 

This study plans to produce a suite of WIM models which will be used to help predict the extent of 
wetlands for the future landscape at Forsmark. The model will be applied to the portions of the 
Forsmark DEM8 relevant for the safety analyses of both SFR and the Spent Fuel Repository. The 
model may also be applied to several alternate versions of the Forsmark DEM which have been 
manipulated in order to account for erosion and sedimentation processes.9   

The two primary purposes of modelling the extent of future wetlands at Forsmark are: a) to aid in the 
delineation of future biosphere objects, i.e. the areal demarcation of the landscape wherein special 
focus is given in the modelling of radionuclide transport through the regolith and at the land surface, 
and b) to aid in the prediction of peat development by helping parameterize the extent of future 
wetlands.  

The suite of WIM models produced in this study is called “WIM Forsmark 1.1”. The workflow used 
in the production of WIM Forsmark 1.1 is presented in Figure 2-2. A version number is given in 
order to denote potential additions/subtractions of individual WIM algorithms to/from the suite 
and/or to denote changes in the individual WIM algorithms which make up the suite. Any changes in 
the number of algorithms used and/or the training of the algorithms would warrant an update of the 
version number as would any updates or deviations from the workflow presented in Figure 2-2. It is 
assumed that any updates to the version number will not warrant a comprehensive re-iteration of the 
modelling methods described herein and that study will suffice as the primary documentation of the 
modelling methodology. 

                                                           
8 The current version of the Forsmark DEM (at the time of this report was published) is presented in 
Petrone and Strömgren (2020) 
9 Future safety analyses will most likely consider results from the landscape development model 
UNTAMO (Gunia and Gunia 2021) which may include several updated DEMs.  



    
   

 

 

 9 
 

 
Figure 2-2. WIM Forsmark 1.1 workflow. Figure is largely informed by Figure 2 in ESRI (2021). 

2.1.4 Presentation of results 

The workflow presented in Figure 2-2 details the flow of data through WIM Forsmark 1.1. The 
primary output of the workflow being the trained random trees models, the wetland prediction raster 
and the performance metrics of the wetland predictions for the specific random-trees algorithm under 
investigation. The workflow in Figure 2-2 does not, however, specify how results of the 10 individual 
algorithms is presented. As mentioned in Section 2.1.1, this study presents two different methods to 
examine the wetland predictions produced by WIM Forsmark 1.1:  

• The first method examines predictions from an amalgamation of all 10 individual 
algorithms; an examination of the “hit-maps” (see Section 2.1.1) is presented along-side this 
presentation of results. 

• The second method examines the probability of wetland prediction for each cell averaged 
across the 10 individual algorithms used in WIM Forsmark 1.1 (see Section 2.1.1). This 
method is termed “p-means” in this study. 
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2.1.5 Definition of “wetland” in the context of this study 

Training of the individual WIM algorithms that make up WIM Forsmark 1.1 requires data for 
observed wetlands (see Section 2.1 and Figure 2-2). All data for observed wetlands was taken from 
the online services provided by The Swedish Land Survey (Lantmäteriet) (see Section 2.2.3). 
Therefore, within the context of this study, the definition of a wetland (denoted as “marshlands by 
Lantmäteriet) is taken from the description of the data layers used as input data. The definition of a 
wetland, according to Lantmäteriet, is divided into two parts where each respective definition 
corresponds to the description of a single data-layer; the observed wetland data used in this study is 
an amalgamation of the two data layers defined in Table 2-1. 
Table 2-1. Data layer names and definitions for marshlands (or wetlands in the context of this study) according to 
Table 81 in Lantmäteriet 2020. 

Data layer name Description 

“Marshland (wetland)” “Commonly peat forming fen with shrubs and grass sedge. 
The area is usually accessible for walking. Can be covered 
by trees or completely free from trees as well as just a few 
trees” 

“Marsland (wetland), almost 
impassable” 

“The area is usually hard to access and can be 
waterlogged. Peat forming watery fens and soft bed without 
vegetation. Overgrown lakes with reed. Can be covered by 
trees or completely free from trees as well as just a few 
trees.” 

 

2.2 Input data used for training of WIM algorithms 

2.2.1 Areas used for training of individual WIM algorithms 

As mentioned above in Section 2.1.1, WIM Forsmark 1.1 consists of a suite of 10 separate WIM 
algorithms that are examined simultaneously in the prediction of wetland extent. The methods used in 
the production of the WIM algorithm specific to each area i (i = 1-10) are presented in Figure 2-2. 
The location of each area i is presented in Figure 2-3. 

All of the areas were chosen due to their similar topographical conditions (i.e. mean percent slope of 
the area) and land use characteristics relative to Forsmark (Table A-1 and A-2 and Figures A-1 – A-
9). One exception to this is the Krycklan area where the topographic gradient is significantly larger 
than that for Forsmark (the mean percent slope of Krycklan and Forsmark is 9.9% and 3.1% 
respectively, Table A-1). Krycklan was included anyway as it is often considered as a hydrological 
proxy of the Forsmark landscape in the far future. The island of Gräsö, directly east of Forsmark, is 
considered separate from the terrestrial portions of the Forsmark investigation area. Due to much 
higher prevalence of exposed bedrock on Gräsö relative Forsmark (Figure B-1), it is assumed that the 
conditions conducive for wetland formation on Gräsö will be significantly different than those at 
Forsmark and it would therefore be beneficial to consider the areas separately when training the 
individual WIM algorithms within the context of this study.  

The areas selected for the algorithm training span the entire length and breadth of Sweden. This was 
done in order to try and capture a wide range of climatological conditions that would affect wetland 
development. Temperature and precipitation statistics from the Swedish Meteorological and 
Hydrological Institute (SMHI) for the 10 areas used for training of the WIM algorithms are presented 
in Appendix C. 

Delineation of the area boundaries was done using watershed delineations from SMHI10. The SMHI 
watershed IDs used to delineate the 10 areas in Figure 2-3 are presented in Table A3. 

                                                           
10 Data publicly available via SMHI’s Svenskt vattenarkiv (SVAR 2012): 
https://www.smhi.se/data/utforskaren-oppna-data/vattendrag-svar-2012 
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Figure 2-3. The 10 individual areas used for the training of the 10 WIM algorithms that make up WIM Forsmark 
1.1. Note that at the eastern edge area 7: Forsmark a smaller area is delineated; this smaller area corresponds to 
the Forsmark validation area and is excluded from “area 7: Forsmark”.  
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2.2.2 Elevation data 

Elevation data in the form of a digital elevation model (DEM) is a primary data input in the WIM 
tool in ArcGIS Pro® (ESRI 2021) and, therefore, in the production of WIM Forsmark 1.1 (Figure 
2-2). The DEM is used to calculate the TWI, DTW and curvature (Section 2.1 and Figure 2-2). The 
DEM is also used to generate surface water input rasters which are used in the calculation of the 
DTW (Section 2.2.4 and Figure 2-2). 

DEMs for each of the 10 areas was downloaded via the online services provided by Lantmäteriet.11 
DEMs for each area were resampled from a 2×2 m to a 10×10 m grid using a “nearest neighbour” 
algorithm in order to be compatible with the WIM tool in ArcGIS Pro®. The DEM is then “clipped” 
using the boundaries for each area (Figure 2-3). The resulting DEMs for each area are presented in 
Appendix A. 

Within the WIM tool in ArcGIS Pro®, a “smoothing algorithm” is applied to the DEM (Figure 2-2) 
in order to remove variations in the data deemed too small to be indicative of an actual topographic 
feature (ESRI 2021). For this study, the “median” smoothing method is used with a smoothing width 
of 50 m (see Section 7.2 in ESRI 2021).  

2.2.3 Observed wetlands 

Land-use data which maps the location of observed wetlands is a primary data input in the WIM tool 
in ArcGIS Pro® (ESRI 2021). The observed locations are input as 10×10 m raster data using the 
same grid as the DEM (see Section 2.2.2). Observed wetland data from each training area i is used 
only for the training of the individual algorithms (Figure 2-2). Observed wetland data used to test the 
performance of the individual algorithms is discussed later in Section 2.3. 

Observed wetland data was downloaded via the online services provided by Lantmäteriet.12 At the 
time of this study, data wetland data from Lantmäteriet was provided as in vector format (i.e. a 
“shapefile”) which was then converted to a raster with the same grid as the DEM. Wetland data for 
each area is presented in Appendix A.  

Lantmäteriet limits wetland observations to wetlands with a cohesive area of at least 2500 m2 (Table 
81, Lantmäteriet 2020); any observed wetlands with areas smaller than this are not used in the 
training of the individual WIM algorithms. The accuracy of the location data for wetlands is ±20 m 
(Table 68, Lantmäteriet 2020). Data on observed wetlands does not account for dried or artificially 
drained wetlands that are currently used or have previously been used as productive forest land 
(Table 81, Lantmäteriet 2020). It should also be noted that the data on observed wetlands also does 
not account for “old” wetlands that have been drained and are currently being used as arable land. 

2.2.4 Surface water 

The locations of surface waterbodies such as lakes, streams and rivers are a primary data input in the 
WIM Forsmark 1.1 workflow (Figure 2-1). Stream and lake locations are input as 10×10 m raster 
data using the same grid as the DEM (see Section 2.2.2). Surface water data is used in the calculation 
of the DTW (see Section 2.1 and ESRI 2021). 

Data for lakes uses the same dataset used for the observed wetlands11, however, the accuracy of the 
location data for shoreline location is ±5-10 m (instead of ±20 m for wetlands, see Section 2.2.3) 
depending on whether the shoreline is or is not diffuse in nature. Much like the wetland data (see 
Section 2.2.3), original data was proved as a shapefile which was then converted to a raster with the 
same grid as the DEM (Lantmäteriet 2020).11 Due to the fact that many wetlands are located 
surrounding lakes, raster conversion of the lakes and wetland shapefiles was conducted 
simultaneously in order to avoid overlapping raster cells. 

In this study, data for the stream network in each area was estimated using the “D8” flow-
accumulation algorithm available in the “Hydrology toolset” in ArcGIS PRO® as applied to the 

                                                           
11©Lantmäteriet: https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/markhojdmodell-
nedladdning/ 
12©Lantmäteriet: https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/hydrografi-visning-
inspire/#qry=HY.PhysicalWaters.Wetland 
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DEM for each respective area. An accumulation threshold of 4 ha was used to determine which cells 
would be included in the stream network. The stream network raster was then combined with the lake 
raster.13 

When using the WIM tool in ArcGIS Pro®, observed stream-network data can be used as a direct 
input or combined with the calculated stream network results from a flow-accumulation algorithm via 
tertiary data-processing steps. For this study, observed data for stream location was only used to help 
verify the calculated stream network. 

2.3 Assessing performance of WIM Forsmark 1.1 
In this study, the performance of the individual WIM algorithms in WIM Forsmark 1.1 is tested 
against their ability to predict wetlands within the “Forsmark validation area” (Figure 2-4). When 
using the WIM tool in ArcGIS Pro®, the user is instructed to delineate the area used for algorithm 
training into a “train” area and a “test” area; the former is used in the algorithm training and the latter 
is used to measure algorithm performance (ESRI 2021). For this study, algorithm performance is 
assessed using the Forsmark validation area; this means that training of the 10 individual algorithms 
is conducted using the entirety of the areas shown in Figure 2-3. 

Delineation of the Forsmark validation area is delineated according to the eight hydrological 
catchments presented in Brundberg et al. 2004. Data for the observed wetlands and lakes shown in 
Figure 2-4 is taken from the same data sources discussed in Sections 2.2.3 and 2.2.4. The DEM for 
the area (Figure A-10) corresponds to the terrestrial portions of the 10×10 m Forsmark DEM as 
presented in Petrone and Strömgren (2020). The drainage network used to generate wetland 
predictions within the Forsmark validation area (not pictured in Figure 2-4) is produced using the 
same methods discussed in Section 2.2.4 together with the DEM for the Forsmark validation area 
(see Figure 3-2and Figure 3-1). 

In this study, the performance of WIM Forsmark within the Forsmark validation is assessed in three 
different ways: 

• The primary method of assessing performance examines the amalgamated WIM Forsmark 
1.1 predictions against the observed wetland data. 

• A secondary assessment of model performance is presented which examines each of the 
algorithms included in WIM Forsmark 1.1 individually. This is done in order help provide a 
point of comparison at which the potential added value of using the amalgamated predictions 
to predict wetland extent may be assessed. 

• Finally, a preliminary assessment of model performance for the p-means method is presented 
wherein the prediction accuracy is examined by only accounting for cells with a mean 
probability of prediction greater than 0.50. 

The hit-maps produced in this study are not used explicitly when investigating model performance, 
i.e. no investigation of model performance as a function of the number of hits is examined in this 
study. However, it is the opinion of the authors that this should be investigated if future work with 
WIM Forsmark 1.1 is pursued. 

                                                           
13 The accumulation threshold used to generate the stream network should be consistent with the threshold 
used in the calculation of the TWI predictor variable (see Figure 2-2). 
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Figure 2-4. Delineation and land-use classifications in the Forsmark validation area. The stream network shown 
in the figure is represents the observed data for the area and is not directly used in wetland prediction.  

Following the training of the individual algorithms, individual algorithm performance, as well as the 
performance of the amalgamated predictions, is assessed against the observed wetland data within the 
Forsmark validation area. Algorithm performance is reported using three metrics: 

Precision: The ratio of true positive predictions (i.e. positions where the algorithm correctly 
predicted the existence of a wetland) with the total number of positive positions (i.e. all positions 
where the algorithm predicted a wetland both correctly and incorrectly) as shown in Equation 2-1. 
Precision is used to help quantify the level with which an algorithm may overpredict the wetlands; 
values close to zero indicate substantial overprediction and values close to one indicate near-perfect 
prediction. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 2-1 
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Recall: The ratio of true positive predictions to all of the true wetlands (i.e. positions where observed 
data indicates a wetland) as shown in Equation 2-2. Recall helps quantify the “detection rate” of the 
algorithm or the extent to which an algorithm underpredicts the existence of wetlands; values close to 
zero indicate substantial underprediction and values close to one indicate near-perfect prediction.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 2-2 

F1-score: The harmonic mean of the precision and the recall according to equation 2-3. The F1-score 
can be used examine the over- and underprediction rates simultaneously; values close to zero indicate 
poor overall performance and values close to one indicate near-perfect performance.  

𝐹𝐹1 = 2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 2-3 

Furthermore, the amalgamated model predictions are also compared to wetlands predicted by SLU’s 
land “wetness” maps (see Section 2.1.2) in order assess the performance of WIM Forsmark 1.1 
compared to an alternate, peer-reviewed wetland prediction tool.  
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3 Results 
3.1 Wetland prediction within the Forsmark validation area 
Wetland predictions for the Forsmark validation area presented as an amalgamation of wetland 
predictions from the 10 individual WIM algorithms included in WIM Forsmark 1.1, along with a 
comparison of how the predictions correspond with the observed wetland data for the same area (see 
Section 2.3) are presented in Figure 3-1 and Figure G-1. Wetland predictions for the Forsmark 
validation area from each of the 10 individual algorithms included in WIM Forsmark 1.1 are 
presented in Appendix E. Wetland predictions for the Forsmark validation area presented as a 
“hitmap” (see Section 2.1.1) are shown in Figure 3-2 and Figure F-1. 

 
Figure 3-1. Extraction of Figure G-1. Wetland predictions, presented as the amalgamated results from the 10 
individual algorithms included in WIM Forsmark 1.1, and observed wetlands (Lantmäteriet 2020) within a 
~3.5×3 km portion of the Forsmark validation area surrounding the lakes Bolundsfjärden, Eckarfjärden and 
Fiskarfjärden. The surface water shown in the figure (lakes and waterways) represent the surface water data 
inputs discussed in Section 2.2.4. 
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Figure 3-2. Extraction of Figure F-1. Wetland predictions within a ~3.5×3 km portion of the Forsmark validation 
area surrounding the lakes Bolundsfjärden, Eckarfjärden and Fiskarfjärden; results are presented as a hitmap 
with each “hit” representing a cell predicted to contain a wetland according to one of the 10 individual algorithms 
that make up WIM Forsmark 1.1. The surface water shown in the figure (lakes and waterways) represent the 
surface water data inputs discussed in Section 2.2.4. 

Wetland predictions for the Forsmark validation area presented using the p-means methodology with 
a mean probability of greater than 0.50 (see Section 2.1.1 and 2.1.4), along with a comparison of how 
the predictions correspond with the observed wetland data for the same area (see Section 2.3) are 
presented in Figure 3-3 and Figure I-1. Wetland predictions for the Forsmark validation area using 
the p-means methodology with a probability of 0-1 are shown in Figure 3-4 and Figure I-2. 



    
   

 

 

 18 
 

 
Figure 3-3. Extraction of Figure I-1. Wetland predictions presented as all cells with a mean probability of a 
positive wetland prediction greater than 0.50 according to the p-means methodology, and observed wetlands 
(Lantmäteriet 2020) within a ~3.5×3 km portion of the Forsmark validation area surrounding the lakes 
Bolundsfjärden, Eckarfjärden and Fiskarfjärden. The surface water shown in the figure (lakes and waterways) 
represent the surface water data inputs discussed in Section 2.2.4. 
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Figure 3-4. Extraction of Figure I-2. Wetland predictions within a ~3.5×3 km portion of the Forsmark validation 
area surrounding the lakes Bolundsfjärden, Eckarfjärden and Fiskarfjärden; results are presented as the mean 
probability of a positive wetland prediction for each cell according to the p-means methodology. The surface water 
shown in the figure (lakes and waterways) represent the surface water data inputs discussed in Section 2.2.4. 

3.2 Algorithm performance 
Performance metrics (see Section 2.3) for the 10 individual algorithms included in WIM Forsmark 
1.1, the amalgamation of all of the algorithms and the p-means method (p > 0.50) are presented in 
Table 3-1. The average Precision, Recall and F1-score for the methods considered were 0.476, 0.799 
and 0.588 respectively (Table 3-1). 

For the 10 individual algorithms (Maps showing predictions from the individual algorithms are 
presented in Appendix E), results indicated that the algorithm trained using “area 3: Krycklan” was 
the worst performing (i.e. lowest F1-score) of all of the individual algorithms considered as this 
algorithm resulted in the largest overprediction of wetlands in the Forsmark validation area 
(Precision = 0.347), see Figure E-3. The best performing algorithm (i.e. highest F1-score) was trained 
using “area 1: Karesuando”; this is due to above average values for both the Precision and Recall, see 
Figure E-1. 
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For the amalgamation of all of the algorithms (i.e. predictions from all 10 algorithms considered 
simultaneously) results indicated that this method produced the lowest F1-score; this indicates that 
the amalgamation greatly overpredicted the existence of wetlands within the Forsmark validation area 
(Precision = 0.315) according to the observed data. However, this method had the highest recall 
score of all of the methods used to assess model performance meaning that the amalgamated results 
was most capable of predicting cells with observed wetland data. Further work with WIM Forsmark 
1.1 should include an assessment of model performance using the hit-map in order to further quantify 
the predictive capacity of the amalgamated results.  

The performance metrics for the p-means methodology (see Sections 2.1.1 and 2.1.4), which 
examines all cells with an average probability of a positive wetland prediction greater than 0.50, 
indicated that this method produced the highest F1-score for all of the methods used to assess 
algorithm performance. This was due to the values of both Precision and Recall being well above 
average. 

Table 3-1. Performance metrics for the 10 individual algorithms. Algorithm performance is 
assessed using the Forsmark validation area (Figure 2-4). Algorithm names can be found 
in Appendix D. 
Area Reference location  Precision Recall F1-score 

1 Karesuando 0.509 0.807 0.624 
2 Sangis 0.541 0.694 0.608 
3 Krycklan 0.347 0.903 0.501 
4 Norum 0.447 0.842 0.584 
5 Hammerdal 0.556 0.724 0.629 
6 Skattungbyn 0.533 0.738 0.619 
7 Forsmark 0.541 0.694 0.608 
8 Gräsö 0.463 0.825 0.593 
9 Tranemo 0.448 0.796 0.573 
10 Simpevarp 0.479 0.792 0.597 
 Amalgamation 0.315 0.956 0.474 
 P-means (p>0.50) 0.536 0.815 0.647 

3.2.1 Predicted wetlands in drained agricultural areas 

Observed wetland data from Lantmäteriet does not account for previous wetland areas that may have 
been drained to be used as agricultural land. This implies that at least some of the overprediction of 
wetlands seen for all of the individual algorithms included in WIM Forsmark 1.1 (Table 3-1) may be 
due to the prediction of wetlands in drained areas that do not appear in the observed data. Data 
showing a limited extent of observed drainage ditches was obtained from SLU14 in order to 
investigate whether WIM Forsmark 1.1 predicted the existence of wetlands in areas that may have 
been drained for agricultural use. Amalgamated wetland predictions in a portion of the Forsmark area 
is plotted together with data on observed locations of drainage ditches in Figure 3-5. Results show 
that WIM Forsmark 1.1 does predict the existence of wetlands in drained areas that are currently used 
as arable land. It is assumed that these areas likely contained wetlands prior to being drained. 

                                                           
14 Data for drainage ditches (obtained via email from SLU on August 26th, 2021) is “working material” 
used by SLU in the studies with the wetness maps and is not yet publicly available. 
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Figure 3-5. Amalgamated wetland predictions within and outside the eastern extents of the Forsmark validation 
area, observed drainage ditches an aerial photo of the area (left) and the same aerial photo without added data 
showing the arable land in the area (right). The waterways shown (left) represent the surface water data inputs 
which were calculated using the flow-accumulation algorithm in ArcGIS® Pro in Section 2.2.4. 

3.3 Model predictions compared to SLU wetness map 
Wetland predictions for the Forsmark validation area presented as an amalgamation of wetland 
predictions from the 10 individual WIM algorithms included in WIM Forsmark 1.1, along with a 
comparison of how the predictions correspond with both the observed wetland data and SLU’s 
wetness map (see Section 2.1.2) is presented in Figure 3-6. and Figures H-1, H-2 and H-3 . Results 
indicate that wetland predictions from WIM Forsmark 1.1 agree remarkably well with SLU’s wetness 
map’s predictions when examining the amalgamation of the “moist-mesic” and “wet-moist” 
classifications (Figure 3-6. and Figure H-1); performance of the wetland predictions from WIM 
Forsmark 1.1 was markedly worse when compared to the SLU maps for “moist-mesic” and “wet-
moist” individually (Figures H-2 and H-3 respectively). It should however be noted that the 
definition of a “wetland” differs between that used in this report  and that used for the SLU wetness 
maps: the definition of the observed wetlands used in this study is based primarily on the 
classification of vegetation (see Section 2.1.5) while SLU’s definition centers around a qualitative 
definition of the soil-moisture content (see Section 2.1.2). 
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Figure 3-6. Extraction of Figure H-1. Wetland predictions, presented as the amalgamated results from the 10 
individual algorithms included in WIM Forsmark 1.1, observed wetlands and wetland predictions from SLU’s 
wetness maps within a ~3.5×3 km portion of the Forsmark validation area surrounding the lakes Bolundsfjärden, 
Eckarfjärden and Fiskarfjärden. The surface water shown in the figure (lakes and waterways) represent the 
surface water data inputs discussed in Section 2.2.4. Wetness classes “mesic-moist” (frisk-fuktig) and “moist-wet” 
(fuktig-blöt) from the SLU wetness map are used in the comparison (see Section 2.1.2).  

…  
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4 Suggested future use of WIM Forsmark 1.1 
As stated in Section 1, this study proposes that machine learning is a viable alternative to process-
based modelling of wetland development. Results indicate that the WIM methodology and the 
amalgamation of algorithms which comprise WIM Forsmark 1.1 is capable of predicting observed 
wetlands within the Forsmark area. Results also indicate that WIM Forsmark 1.1 is capable of largely 
reproducing the results of the SLU wetness map in spite of the relative simplicity of WIM Forsmark 
1.1 relative to the machine learning algorithms used to produce the SLU wetness maps. Furthermore, 
the machine learning algorithms used to produce the SLU wetness maps are not yet publicly available 
which therefore limits the extent to which these algorithms can be used to produce predictions of 
future wetlands within postulated landscapes. The authors therefore suggest that WIM Forsmark 1.1 
(or an updated version) can be used as a tool for predicting the extents of future wetlands and should 
be considered in landscape development studies which focus on the Forsmark area. 

This study briefly examined the performance of WIM Forsmark 1.1 in relation to agricultural areas. 
The training of the algorithms incorporated in WIM Forsmark 1.1 did not consider the effects that 
drained agricultural areas may or may not have on wetland predictions. Future work with WIM 
Forsmark 1.1 should examine the validity of the predictions when pertaining to current or future 
agricultural areas.  
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Appendix A Topography and land-use the areas 
used for training of algorithms 

 
Table A-1. Elevation and slope statistics for each of the 10 areas used to train the WIM 
algorithms that make up WIM Forsmark 1.1. All statistics were calculated using the DEMs 
respective for each area. DEMs for each area were downloaded using Lantmäteriet’s 
online services.a Note: the same statistics are reported for the Forsmark validation area 
which was not used in algorithm training. 
ID Area name Elevation Slope (%)   

Max Min Range Mean STDV Max Min 

1 Karesuando 453.9 320.4 134.0 3.0 4.2 71.7 0.0 

2 Sangis 60.2 -1.7 61.9 3.2 5.0 98.5 0.0 

3 Krycklan 372.6 107.0 265.6 9.9 9.3 185.5 0.0 

4 Norum 62.1 -0.1 62.2 3.0 3.1 65.2 0.0 

5 Hammerdal 385.6 302.9 82.7 3.5 4.4 60.7 0.0 

6 Skattungbyn 392.4 246.0 146.4 3.5 3.3 58.3 0.0 

7 Forsmark 55.2 -10.0 65.2 3.1 3.0 82.7 0.0 

8 Gräsö 27.1 -0.1 27.1 5.0 4.1 62.7 0.0 

9 Tranemo 276.9 150.7 126.2 5.1 5.4 101.6 0.0 

10 Laxemar 110.8 -3.6 114.3 7.4 6.1 79.0 0.0 
 

Forsmark 
Validation area 

27.4 -1.6 29.0 3.8 3.3 32.8 0.0 

a: ©Lantmäteriet: https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/markhojdmodell-nedladdning/ 

Table A-2. Total area, proportion of wetlands and proportion of land use for each of the 10 
areas used to train the WIM algorithms that make up WIM Forsmark 1.1. Note: the same 
statistics are reported for the Forsmark validation area which was not used in algorithm 
training. Land use data for each area was downloaded using Lantmäteriet’s online 
services.a 

ID Area name Total Area 
(m2) 

Wetland (%)b Land use (%)c 

   Total In forest In open land Lake Forest Open land Arable land Developed 

1 Karesuando 1.639 ×108 34.9 0.5 33.4 11.5 50.1 37.6 0.0 0.0 
2 Sangis 2.468 ×108 18.3 9.6 8.8 1.9 82.5 12.8 2.1 0.2 
3 Krycklan 1.215 ×108 8.1 5.4 2.7 0.6 93.8 3.7 1.8 0.0 
4 Norum 3.192 ×108 17.9 9.6 8.3 3.0 81.3 12.2 3.1 0.5 
5 Hammerdal 1.619 ×108 34.3 15.7 18.6 4.0 74.0 20.5 1.5 0.0 
6 Skattungbyn 1.509 ×108 25.5 13.4 12.1 3.0 84.3 12.5 0.2 0.0 
7 Forsmark 8.938 ×108 10.8 5.9 4.9 2.6 80.7 9.3 7.4 0.0 
8 Gräsö 1.002 ×108 3.8 1.9 1.9 0.4 84.2 11.4 4.0 0.0 
9 Tranemo 1.804 ×108 14.2 9.6 4.6 3.1 69.8 12.9 12.7 1.5 
10 Laxemar 3.044 ×108 3.3 1.5 1.8 4.7 86.0 5.9 3.4 0.0  

Forsmark 
Validation area 

1.948 ×107 13.1 3.6 9.5 7.5 78.1 12.7 1.7 0.0 

a: ©Lantmäteriet: https://www.lantmateriet.se/sv/geodata/vara-produkter/produktlista/hydrografi-visning-
inspire/#qry=HY.PhysicalWaters.Wetland 
b: Percentages are calculated relative the total area 
c: Percentages are calculated relative the total area. Wetlands are assumed to exist in either a forested or an open landscape, i.e. the 
statistics reported under ‘Land use – Forest’ and ‘Land use – Open land’ may or may not contain wetlands. The statistics reported under 
the ‘Land use’ columns sum to 100% for each respective area. 
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Table A-3. The Svenskt vattenarkiv (SVAR 2012) catchment IDs (listed in comma-
deliminated form) for the main- and sub-catchments used to delineate the 10 areas used 
to train the algorithms used in WIM Forsmark 1.1. 12-digit IDs containing a “-” indicate 
that the catchment is a “sub-basin”. Five-digit IDs that do not contain a “-” indicate that 
the catchment is a “main catchment”. 

Area name Area ID SMHI catchment ID 
Karesuando 1 758977-175857, 760776-177497, 760804-177366, 760741-176313, 

760684-177152, 759398-176020, 759481-176034, 759172-175457, 
759505-176123, 761033-176142, 759150-175943, 759625-176072, 
761277-176507, 759720-176027, 759279-175746, 760999-176342, 
759856-176168, 760806-176499, 761255-176708, 761267-176650, 
761105-176953 

Sangis 2 732555-184877, 732544-187258, 732979-184722, 732761-184831, 
733232-184793, 732011-186799, 733048-184870, 732731-185797, 
732414-185285, 732697-185974, 732615-185421, 732774-187357, 
733312-187676, 732659-185466, 732696-185485, 733590-187486, 
732945-186658, 732649-187029, 732717-185384, 732727-184952, 
732670-186175, 732792-186267, 732716-185088, 732391-186445, 
732857-186066, 732409-185687, 732842-185741, 732857-185513, 
733120-187291, 733374-187244, 733125-187027, 732723-187905, 
733086-185217, 733093-185275, 732925-187482, 733106-187550, 
732991-185241, 732206-186976 

Krycklan 3 712659-169980, 712982-169611, 712323-169978, 713141-169627, 
712229-170068, 713548-169451, 712821-169332, 712482-169517, 
713350-169154, 713172-169136, 713355-169235, 712742-169722, 
713087-169457, 713374-169328 

Norum 4 711559-174978, 711436-174783, 711237-174844, 708715-173940, 
710770-174663, 708851-174073, 709580-174269, 711486-174894, 
711785-174889, 711003-174802, 710592-174441, 711000-174361, 
710560-174136, 710535-174536, 710374-174552, 710217-174390, 
711417-174646, 710109-174403, 710310-174312, 711149-174519, 
711242-174626, 708758-173529, 708757-173790, 709207-173589, 
709279-173691, 709958-174448, 709811-173637, 709380-174080, 
709201-173856, 709640-173923, 708103-173369, 707855-173482, 
709240-172796, 709143-172731, 709385-173293, 709598-173329, 
709771-173281, 709445-173333, 709369-173142, 709312-173342, 
709544-173195, 708183-172902, 708172-173439, 708796-173251, 
708540-172972, 708562-173418, 709108-173100, 708565-173342, 
708164-172846, 708402-172842, 708818-173029, 708898-172918, 
708064-172847, 708984-173426, 709173-172907, 708908-173007 

Hammerdal 5 705390-148350, 705381-148128, 706256-148244, 706550-148088, 
705541-148627, 705568-148239, 706843-147805, 705819-148033, 
706255-147748, 705590-148190, 705846-148193, 705559-148064, 
705801-147965, 705534-148148, 706039-147703, 706255-148711, 
706586-147673, 706642-147579, 706514-147905 

Skattungbyn 6 676905-145172, 677563-145665, 677362-144530, 677042-145019, 
676791-145449, 676470-145713, 676727-145982, 677293-145224, 
677489-145077, 677133-145392, 677217-145917, 677269-145796, 
677237-145546 

Forsmark 7 54055, 55000, 55056 

Gräsö 8 26059 

Tranemo 9 637874-135277, 637555-135206, 638416-135438, 638666-135357, 
638963-135817, 638695-135875, 639366-135836, 638608-134746 

Laxemar 10 636578-155016, 637033-154600, 635774-154026, 635692-154142, 
636262-154861, 636090-152653, 636524-153063, 636336-153466, 
635916-153969, 636210-153946, 636951-155398, 636862-155291, 
636430-154920, 637086-155019, 637364-155203, 637309-155066, 
635959-153712, 635692-153888, 636175-154352, 635864-152650, 
636760-152993, 636755-153128, 636691-155175, 636014-153136, 
636687-154890, 635573-154461 
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Figure A-1. Maps showing the DEM (left) and the surface water, wetland cover, and “other” land use (right) for 
Area 1: Karesuando. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-2. Maps showing the DEM (top) and the surface water, wetland cover, and “other” land use (bottom) for 
Area 2: Sangis. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-3. Maps showing the DEM (left) and the surface water, wetland cover, and “other” land use (right) for 
Area 3: Krycklan. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-4. Maps showing the DEM (left) and the surface water, wetland cover, and “other” land use (right) for 
Area 4: Savar. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-5. Maps showing the DEM (left) and the surface water, wetland cover, and “other” land use (right) for 
Area 5: Hammerdal. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-6. Maps showing the DEM (top) and the surface water, wetland cover, and “other” land use (bottom) for 
Area 6: Orsa. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-7. Maps showing the DEM (top) and the surface water, wetland cover, and “other” land use (bottom) for 
Areas 7 and 8: Forsmark and Gräsö. All land use data that is neither classified as surface water or wetland is 
classified as other. Note that the Forsmark validation area is excluded from the maps. 
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Figure A-8. Maps showing the DEM (left) and the surface water, wetland cover, and “other” land use (right) for 
Area 9: Tranemo. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-9. Maps showing the DEM (top) and the surface water, wetland cover, and “other” land use (bottom) for 
Area 10: Simpevarp. All land use data that is neither classified as surface water or wetland is classified as other. 
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Figure A-10. Maps showing the DEM (top) and the surface water, wetland cover, and “other” land use (bottom) 
for the Forsmark validation area. All land use data that is neither classified as surface water or wetland is 
classified as other. 
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Appendix B SGU soil map of Forsmark and Gräsö 
 

 

 
Figure B-1. SGU Surface soil map of portions of Forsmark and Gräsö.  
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Appendix C SMHI temperature and precipitation 
statistics for Sweden 

 
Figure C-1. Average temperature and yearly precipitation in for Sweden for the period 1991 – 2020 
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Figure C-2. Average winter temperature and winter precipitation for Sweden for the period 1991 – 2020 
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Figure C-3. Average spring temperature and spring precipitation for Sweden for the period 1991 – 2020 
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Figure C-4. Average summer temperature and summer precipitation for Sweden for the period 1991 – 2020 
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Appendix D WIM Forsmark 1.1 algorithm names 
and details 

 
Table D-1. Areas and their respective algorithm names and file-sizes. All algorithms have 
the file-type “JOBLIB”  
Area Reference location Algorithm name Size (KB) 
1 Karesuando Train_model_1_1 2544698 

2 Sangis Train_model_2_1 1978310 

3 Krycklan Train_model_3_1 497844 

4 Norum Train_model_4_1 2568630 

5 Hammerdal Train_model_5_1 2637563 

6 Skattungbyn Train_model_6_1 1942300 

7 Forsmark Train_model_7_1 4288116 

8 Gräsö Train_model_8_1 91274 

9 Tranemo Train_model_9_1 1289532 

10 Simpevarp Train_model_10_1 355962 

 
All algorithms for WIM Forsmark 1.1 are stored on SVN at the following address: 
svn://svn.skb.se/projekt/Otherprojects/Landscape/WIM Forsmark/WIM Forsmark 1.1 
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Appendix E Wetland prediction for individual 
algorithms in WIM Forsmark 1.1 
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Appendix F Wetland prediction “hitmap” for the 
Forsmark validation area 
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Appendix G Amalgamated predictions for Forsmark 
validation area 
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Appendix H Amalgamated predictions for Forsmark 
validation area and wetland predictions 
from SLU wetness map 
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Appendix I Wetland predictions using “p-means” 
for Forsmark validation area 
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