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Preface

This report originally occurred as an appendix to a strategy report for geological modelling 
/Munier et al, 2003/. Strategy reports were intended to be successively updated to include 
experience gained during site investigations and site modelling. Rather than updating the 
entire strategy report, we choose to present the update of the appendix as a stand-alone 
document. This document thus replaces Appendix A2 in /Munier et al, 2003/.

In short, the update consists of the following:

• The target audience has been broadened and as a consequence thereof, the purpose of  
the document.

• Correction of errors found in various formulae. All expressions have been rewritten.

• Inclusion of more worked examples in each section.

• A new section describing area normalisation.

• A new section on spatial correlation.

• A new section describing anisotropy.

• A new chapter describing the expected output from DFN modelling, within  
SKB projects.
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1 Introduction

A geological model can be said to consist of three parts or aspects: A lithological model that 
describes the geometries and properties of various lithological units and/or domains and 
a structural model that equivalently describes the geometry and properties of deformation 
zones at various scales. The third aspect is the fracture array within lithological units. But 
fractures and small deformation zones that are too small to be described deterministically 
are therefore instead described statistically in terms of various distributions, and their 
relations. The fractures and small scale zones are described using DFN (discrete fracture 
network) parameters, which define the sizes, directions, and spatial distributions of the 
fractures, together with other characteristics such as mineralogy, transmissivity, etc.

RVS models, and their inherent DFN parameters, are subsequently used in DFN codes 
specially developed for that purpose, for analysing how the fractures influence, for example, 
stability, flow and transport in and through the rock mass.
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2 Purpose

The present report describes the parameters which are necessary for DFN modelling, the 
way in which they can be extracted from the data base acquired during site investigations, 
and their assignment to geometrical objects in the geological model.

The purpose here is to present a methodology for use in SKB modelling projects. Though 
the methodology is deliberately tuned to facilitate subsequent DFN modelling with other 
tools, some of the recommendations presented here are applicable to other aspects of 
geo-modelling as well. For instance, we here recommend a nomenclature to be used within 
SKB modelling projects, which are truly multidisciplinary, to ease communications between 
scientific disciplines and avoid misunderstanding of common concepts.

DFN modelling can be broken down into two main tasks: One task consist of a block of 
exploratory data analyses, typically seeking various correlations, fitting distributions and 
testing hypotheses, another task, synthesis, consist of ennobling the result of the exploratory 
analysis to a self-contained DFN model. Exploratory data analysis, which mainly consists 
of basic statistics, can to some extent be standardised and we therefore provide guidelines 
for how results of such analysis could be presented in order to enable consistency in SKB 
reports, and to ensure that all receivers of DFN models within SKB projects base their 
DFN reasoning on a common ground. The synthesis of base statistics into a DFN model is, 
however, a complex task that requires skilled expertise and cannot be readily dictated by 
a guideline or methodology. The methodology must often be adapted to local conditions, 
and may also be tainted by style such that different DFN modellers may use disparate 
conceptual assumptions. Thus this report can only provide principles and guidelines 
aimed at promoting the integrative and iterative interpretation of fracture information. 
Accordingly, this report focuses mainly on the exploratory aspect of DFN modelling and 
since it is not intended as a tutorial, the reader is kindly expected to, when necessary, 
address cited references for technical details.

This report is structured as follows: In Chapter 3 we advocate for the need of a initial block 
of formal, exploratory data analysis using a worked example. The chapter also contains 
recommendations of a nomenclature to be used when reporting DFN-related work to SKB. 
In Chapter 4 we propose a structure for the various modelling steps described in Chapter 3 
and how these can eventually be synthesized into a DFN description. A set of flowcharts 
briefly summarises the expected minimum output from each modelling step and from the 
synthesis.
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3 DFN parameters

In order to create a fracture network, the following minimum amount of information  
is required:

• orientation of the fractures,

• size of the fractures,

• fracture density,

• fracture termination (how fractures cross each other), and

• the spatial distribution of the fractures (the fractures relative position in space, 
correlation).

This key information is preferably given in terms of statistical distributions, with 
appropriate moments and correlations. Other parameters of interest, such as mineralogy, 
water-conducting properties, rock mechanical properties, etc, are not treated here. Such 
parameters can be determined using conventional tools, if necessary, and, together with the 
geometrical aspects of the DFN parameters described here, can be used as a basis for more 
or less complex DFN models for different uses and users. Many of these parameters are 
estimated by similar techniques and we therefore also provide guidelines for such standard 
statistical analyses to endorse coherent terminologies, presentations, etc.

In the present section, we describe geometry-related parameters and how they could 
be determined and presented. Note that the analysis of fracture statistics is a very wide 
scientific subject area, and there exist many more analysis methods than those presented 
below. The methods presented here are, however, judged to provide adequate information 
for a proper construction of “base” DFN models.

3.1 Orientation
Fractures are rarely randomly oriented in the bedrock. Commonly, one or several 
dominating orientations occur, hereafter called fracture sets /see, for example, Stråhle,  
2001 for nomenclature/. The fracture array is the entire ensemble of such sets, and  
their properties, i.e. the fracture population. The data for identification of fracture sets  
(Figure 3-1) stems from various sources e.g. outcrop mapping (scanline or area mapping), 
borehole logging and lineament analysis.

Sampling of fracture orientation is always more or less biased by the geometry and scale  
of the sampling domain; e.g. fractures that are subparalell to an outcrop are less likely to  
be sampled than fractures that make a high angle to the outcrop. There are methods to 
correct-, or take into account, biased orientation data, some of which are treated in the  
next section.

Regardless of whether bias correction has been applied or not, there are basically only 
two methods to present orientation data graphically: Rose diagrams are used when the 
information is essentially 2-dimensional e.g. lineament maps, whereas stereographic 
projections of poles to fracture planes are preferred when there is sufficient information  
also regarding the dip of the fractures.
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Figure 3-2 shows examples of rose diagrams. Unless the rose diagram is intended to display 
vectors (Figure 3-2a), the bars are symmetric about the principal axes. It is therefore 
common practice to represent lineament trends in half-roses (Figure 3-2b). In either case, 
the following information should be clear in the graph, in the figure caption or elsewhere in 
the written documentation:

• The number of observations.

• The width of bars (class width).

• A scale (usually expressed as %).

An alternative representation is achieved by connecting the centre points of the bars, such 
as in Figure 3-3a, or to apply a filtering technique, such as in Figure 3-3b, to smooth and, 
in some circumstances, to highlight intricate details. In the latter case, we recommend to 
display also the histograms since smoothing can significantly distort the original data.

For visualising and analysing fracture data, the most commonly used tool in structural 
geology is the stereonet, an equal-area projection (sometimes referred to as the Schmidt 
net). The orientation data from the individual fractures (strike/dip) can either be plotted 
as great circles or as poles (plane normals). For large amounts of data, and for fractures in 
general, it is more appropriate to plot the fracture poles, since, otherwise, it is difficult to 
visually identify fracture sets (see 3.1.1).

Figure 3-1. Data sources used for the estimation of fracture orientations a) outcrop mapping, b) 
lineament analysis and c) borehole logging.
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Figure 3-2. Example of rose diagram. A full rose a) is appropriate for (horizontal) vector data 
whereas a half rose is appropriate for axial data such as lineament orientations.

Figure 3-3. Example of alternative representations of 2D orientation data. In a) centre points 
are connected. In b) the data has been subjected to a spline technique to smooth the jagged 
appearance of the histograms, shown in the background. Both diagrams were scaled to the largest 
bar, using 10° bar widths.
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Different contouring methods /Starkey, 1977; Lewis and Gray, 1985; Robin and Jowett, 
1986; Adam, 1989; Vollmer, 1993; 1995/ can facilitate the identification of different  
fracture sets by visual inspection, and, at the same time, provide a basis for evaluating 
whether a pole concentration is statistically significant (Figure 3-4b). Of the standard 
methods available for contouring which are found in the literature, those which are  
based on the early work of /Kamb, 1959/ are preferred e.g. /Robin and Jowett,1986/ or 
/Vollmer, 1993; 1995/. This is because these use the spatial orientation of the plane normals 
rather than the projected position of poles in the stereogram as a basis for data processing. 
Additionally, Kamb’s use of a normalisation by an expected value /see Kamb, 1959, for 
details/ makes it possible to compare different stereograms on a statistically correct basis.
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There are numerous softwares that aid in the plotting of poles and the computation of 
contours. Regardless of which software is used, the following should be made clear in the 
graph, in the figure caption or elsewhere in the written documentation:

• whether the data represents planes, poles or dip directions,

• the choice of contouring method, contouring intervals and significance level,

• the chosen projection, and

• the number of observations.

Additionally, it is good practice for borehole data to also plot the direction of the borehole. 
Unless otherwise motivated, we recommend the use of the poles to fracture planes and 
contouring according to the Kamb method. We further recommend that the plot of poles is 
separated from the graph of contours, as shown on Figure 3-4.

3.1.1 Correction for orientation bias

Fracture trace lengths are usually recorded on one-dimensional (e.g. scanline, borehole) 
or two-dimensional (e.g. outcrop, road cut, tunnel face) sampling domains. There are 
essentially two categories of bias affecting fracture arrays. One is governed by the size 
of the sampling volume and affects estimation of trace lengths. Another is governed by 
the orientation of the sampling domain in relation to the sampled structures and affects 
orientation analyses of the various fracture sets. This section discusses the latter.

On an infinite, perfectly flat sampling surface, the probability of intersecting an infinitely 
large fracture is directly proportional to the angle between the sampling surface and 
the fracture. As a consequence, outcrop mapping will generally yield fracture arrays 
depleted in subhorisontal factures. Similarly, mapping of oriented, vertical boreholes will 
generally yield fracture arrays depleted in subvertical factures. This was recognised early 

Figure 3-4. Fracture data from Forsmark site investigation, borehole KFM01A. (a) Equal area/
lower hemisphere stereogram of poles to fracture planes. The red symbol represents the mean 
direction of the borehole. (b) The same stereogram as (a), contoured according to the /Kamb, 
1959/ method (contour interval 2σ, significance level 3σ).
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by /Terzaghi, 1965/ who devised a simple correction procedure based on a trigonometric 
correction factor and assuming that the fracture spacings of the different sets are fairly 
equal. The density of each set, Nobs, is then weighted using the solid angle, θi, between the 
mean pole of the fracture set and the orientation of the borehole, i.e.

( )
1

cos
i i
adj obs i
N N

θ
=         Equation 1

were the superscript i denotes the i:th fracture set Nobs and Nadj the observed and adjusted 
number of fractures, respectively.

In analogue, a similar expression might be formulated for outcrops:

( )
1

sin
i i
adj obs i

N N
θ

=         Equation 2

It is also possible to weight each individual observation and take these weights into account 
when contouring the data. In either case, it should be noted though, that the weighting factor 
approaches infinity as the solid angle approaches 90°. To avoid artefacts it is common 
practice to limit the correction factor to some value, e.g. 5 or 10. For illustrative purposes, 
we present the result of such correction procedure in Figure 3-5. A comparison with the 
original data (Figure 3-4) shows that, as expected, the subvertical sets are enhanced whereas 
the subhorisontal set is relatively less dominant.

Figure 3-5. Fracture data from Forsmark site investigation, borehole KFM01A (Figure 3-4) 
corrected for orientation bias.
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One problem is that outcrops and fractures have finite sizes and that any correction 
factor applied will be very much influenced by initial assumptions. The /Terzaghi, 1965/ 
correction, for instance, assumes that all fracture sets have the same spacing. In practice, 
though, the problems with orientation bias become less dominant if there is access to both 
boreholes and outcrop maps within the same rock volume, which is the case in SKB site 
investigations, assuming, of course, that the samples represent the same fracture population. 
Outcrop orientation data can be combined with borehole data to produce realistic estimates 
of the fracture orientations using spacings from both outcrops and boreholes. Though 
this is usually sufficient to define the orientation characteristics of the fracture sets, it is 
insufficient for the estimation of their densities. This because we assume that there is little 
difference in the size distributions between the vertical and horizontal fracture sets, which 
is not necessarily the case. However, as will be shown later, modern algorithms, such 
as those described in e.g. /Dershowitz et al, 1995/ and subsequent publications, enables 
iterative searches for the moments of the size distributions that best can reproduce the 
observed spacings in boreholes and trace lengths on outcrops. In summary, therefore, we 
do not anticipate any need for classical Terzaghi correction procedures on orientation data 
provided, of course, that the densities of the different sets are addressed by other means  
(see 3.2).

3.1.2 Identification of fracture sets

The example in Figure 3-4 shows that it is relatively easy to visually identify pole clusters 
on a contoured stereogram, given, of course, that the orientations are not random and that 
the number of observations is sufficient. However, the sensitivity of the contouring can be 
influenced by the choice of contour interval, so that the number of pole clusters can vary, 
which introduces a certain amount of subjectivity. It is not possible to give any general 
guidelines about how the algorithm should carry out the contouring, since the result of the 
contouring is dependent on the number of observations, the distribution of the data, the 
sensitivity, etc. Hence, it is very important that the contouring method and the parameters 
used are stated when describing stereonets or interpretations based on them, and that the 
same contouring method is used throughout in one and the same model.

A large number of methods have been published which, in a more objective way, help 
the modeller to identify fracture sets on a stereonet /e.g. Shanley and Mahtab, 1976; 
Miller, 1983a; Mahtab and Yegulalp, 1984; Schaeben, 1984; Kohlbeck and Scheidegger, 
1985; Huang and Charlesworth, 1989; Vollmer, 1993; 1995/. It is difficult to recommend 
a particular one of these methods, since, in our opinion, they all have both advantages 
and disadvantages. Taking into account the uncertainties in the fracture orientation 
measurements, due to measurement errors, inadequate exposure, etc, the differences 
between the methods are thought to have relatively little significance for the present  
area of application. However, should the use of search algorithms be regarded necessary, 
 it is important that the same clustering method be used throughout the modelling work.

Many methods for set identification /e.g. Pecher, 1989/ are based on the user or the code 
starting with an initial evaluation of the number of pole clusters visually identifiable in the 
contoured stereogram and the approximate orientation of the mean of each cluster. The 
algorithm then attempts to decide, by systematically working through all the data, whether 
a particular pole with a certain statistical significance can be regarded as belonging to one 
or other of the pole clusters (sets). An example of the result of such a search algorithm is 
shown in Figure 3-6.
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This identification algorithm, however, is only apparently objective. As the example in 
Figure 3-6 shows, the algorithm assigns all data points uniquely to one of the pole clusters 
(sets). This is, of course, not correct, since the pole clusters (sets) are overlapping by 
definition. In other words, the algorithm can contribute to assessing to which pole cluster 
(set) a data point presumably belongs and to, recognising that the assignment to a cluster  
is always associated with some uncertainty. Sometimes, it is possible to obtain clarification 
from other geological information, such as mineral coatings, but such cases are generally 
fortunate exceptions.

The advantage of the use of a clustering algorithm is that the mean orientation of the 
fracture sets are always calculated in same way and that this process can be carried out 
consistently within a study area with many sampling points (outcrops, boreholes, etc).  
Also, a measure of the dispersion of each set is obtained.

3.1.3 Orientation distribution and its moments

The identification algorithm for fracture sets, discussed above, is mainly used to separate 
out the data belonging to each set from a fracture matrix with several sets. The next step 
in the process is to analyse each set separately in order to determine a representative 
distribution function in terms of a mean orientation (expected values, mean) and dispersion 
about the mean (e.g. variance).

There are a number of distribution functions which can be used to describe fracture 
orientations. The most common ones are the Dimroth-Watson /Watson, 1966/, /Bingham, 
1964/ and /Fisher, 1953; Fisher et al, 1987/ functions.

 
Figure 3-6. Visual inspection of a contoured diagram (Figure 3-4b) suggests the presence of 4 
pole clusters, one with a subvertical mean pole and three with subhorizontal mean poles, oriented 
approximately W, NW and NNW. Using these visual estimates, the algorithm of /Pecher, 1989/ 
assigns each data point to one of the three sets, and calculates the mean orientation and the 
maximum eigenvalue, E, of each set. Here we used Fisher κ to describe the dispersion.

Equal Area
(Schmidt)

Axial N = 1518

N

Cluster 2

Number of Data Points 325

Center 308.5°/13.5°

κ 30.5

Cluster 3

Number of Data Points 349

Center 256.5/10.0°

κ 9.6

Cluster 4

Number of Data Points 614

Center 357.0°/82.9°

κ 19.4

Cluster 1

Number of Data Points 330

Center 

κ 17.5

337.3°/2.2°



18

The calculation of the eigenvector and eigenvalue of the normal axes gives directly the 
mean orientation and a measure of the dispersion. It is also possible to use Fisher statistics 
to calculate the mean vector and the dispersion, κ (kappa) for fracture poles, on condition 
that the fracture set is first rotated so that the mean fracture plane of the set is horizontal. 
This is due to the right-hand-rule convention and the standard of lower hemisphere 
projection. If this is not done, the mean orientation computed with the Fisher method  
will be incorrect, especially for steep fracture sets /see, e.g. Davis, 1986/.

Using different statistical tests /e.g. Hext, 1963; tex. Giné, 1975; Woodcock and Naylor, 
1983/, one can test which of the distributions best fit the observed data. In practice, 
however, it is rarely necessary, since the measurement errors, the natural variations in 
orientation and the complexity of geological formations, etc makes it virtually impossible 
to choose one distribution in favour of another. On the other hand, it is important that the 
distribution is clearly stated in the description, with the mean orientation as well as the 
dispersion, independent of whether it was calculated with the aid of the eigenvalue method, 
Fisher, Bingham or Dimroth-Watson statistics. The aim is thus to express mathematically 
the orientation of the different fracture sets in terms of distribution functions with their 
moments, so that these can be used as parameters in a DFN model.

The following should be made clear in the documentation:

• Which distribution has been used and rationale for the choice.

• The moments of the distribution.

• The method by which the moments were derived.

Unless otherwise motivated, we suggest the use of the Fisher distribution for the description 
of orientations, despite being formulated for vectors, because it is common in the geologic 
literature, easy to compute, easy to simulate and fairly intuitive. In the following, we briefly 
describe the Fischer distribution and recommend modellers to adopt the nomenclature and 
notations used here to ease communication within the SKB modelling environment.

The Fisher distribution of vectors which are symmetrically distributed about the vector 
resultant can be expressed as:

cossin( ) ef
e e

κ θ

κ κ
κ θθ

⋅

−

⋅ ⋅=
−

        Equation 3

where θ is the angle of divergence from the resultant vector, in degrees, and κ is the 
dispersion. An estimate of the dispersion factor, κ, is obtained from the relation /Fisher, 
1953/:

N
r

ee
ee n

=−
−

+

−

−

κκκ

κκ
1

        Equation 4

where rn is the resultant vector and N the number of vectors.

/Fisher, 1953/ showed that, for N > 30, the estimation of κ can be simplified to:

1
n

N
N r

κ −≈
−

         Equation 5

An example of simulation of fracture poles, using these statistics, is shown in Figure 3-7. A 
comparison with Figure 3-6 shows that the overall pattern of fracture poles are very similar, 
which is of course expected, but also that the clusters overlap which, again, illustrates the 
difficulties of denoting a particular fracture to a specific set with no other qualifiers than 
orientation.
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3.1.4 Shape of the pole cluster

In crystalline bedrock fracture poles are typically symmetrically distributed about the mean 
pole, thus forming a roughly circular pole cluster on a stereogram (for example, cluster 4 on 
Figure 3-7, However, situations do occur, mainly in sedimentary rocks but sometimes also 
in igneous rocks, in which the fracture poles are distributed asymmetrically (in an ellipse 
rather than a circle) about the mean pole.

There are a number of methods of investigating and quantifying the degree of asymmetry, 
of which those of /Vollmer, 1989/ and /Woodcock, 1977/ (Figure 3-9) are most commonly 
used. Both, equally relevant, methods are based on different aspects of eigenvectors and 
eigenvalues (Figure 3-8) and give similar information when applied to fracture statistics.

If the deviation from a regular cluster shape can be shown to be significant using either of 
the described methods, the pole cluster could be defined using the bi-modal variants of the 
Fisher /Fisher et al, 1987/ or the Bingham distribution /Bingham, 1964/. The estimation 
of the dispersion, κ, then becomes much more complicated since κ varies in different 
directions about the mean pole. Instead of a single measure of the angular variation from 
the mean pole (cf Equation 1), two dispersions, κ1 and κ2, are given, along the two principal 
axes of the elliptical pole cluster.

Analysis of cluster shapes should provide the following information, made clear in the 
graph, in the figure caption or elsewhere in the written documentation:

• The method used for the shape analysis

• The parameters derived from the method (fabric index, ratios)

• The three eigenvectors with their orientations and length, if applicable.

• κ1 and κ2 of the bivariate Fisher distribution, if applicable.

Figure 3-7. Simulated fracture pole orientations based on the data shown in Figure 3-6.
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Figure 3-8. Example of the calculation of the centre of gravity of a pole cluster using 
eigenvectors. In addition to eigenvectors, which indicate direction, the inherent properties of 
eigenvalues can be used to analyse the cluster’s shape (Figure 3-9). The centre of gravity is 
marked by the eigenvector with the largest eigenvalue (E3).

Figure 3-9. Illustration of two statistical methods for analysing the shape of pole clusters: the 
method of /Vollmer, 1989/, on the left, and the method of /Woodcock, 1977/, on the right. The plots 
show that the analysed cluster is symmetrical around the mean pole and that the fractures show 
relatively little dispersion about the mean orientation. In both methods, E1, E2 and E3 are the 
same as in Figure 3-8.
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3.1.5 Comparison of stereograms

Even though mapped outcrops are located within the same rock type, the fracture array  
may differ so much that it might be judged necessary to subdivide the volume into 
smaller, more homogeneous domains or to describe the variation in terms of a transition, 
e.g. rotation, within the domain. However, since the creation of additional subdomains 
is afflicted with considerable modelling efforts, it is advisable, as a first step, to lump all 
outcrop observations within a rock domain defined in the geological model, and express  
the differences in orientation within that domain as a larger spread in orientation data 
unless, of course, the need of subdomains is strongly supported.

Changes in the orientation matrix of a fracture array, whether these are due to changes  
in relative densities between different fracture sets, due to changes in orientation of the  
sets or both, are commonly addressed by studies of stereograms. Comparison of 
stereograms is traditionally performed by visual inspection. Though the human brain is 
extremely capable of distinguishing similarities and dissimilarities between objects by 
visual comparison, in certain situations, however, visual comparison might be difficult.  
For instance, the orientations in two outcrops may be fairly identical whereas the densities 
of the clusters can differ significantly which is harder to detect by visual inspection. 
Differences in relative densities between the sets are important to address, especially if 
there is a significant difference in fracture sizes between the various sets, since this can 
be indicative of anisotropy within the studied volume. In this section we present a method 
slightly altered /Munier, 1995/ from /Miller, 1983a/ but recognise that many equally or  
more potent methods can be applied /e.g. Mahtab and Yegulalp, 1984; Kulatilake et al, 
1990; Kulatilake et al, 1996/.

A commonly encountered problem of elementary statistics is that of comparing a 
distribution of sample observations to some pre-defined standard distribution. A test 
procedure known as χ2 goodness of fit can be applied to the sample to evaluate whether  
the observed and the expected theoretical distributions are reasonably equal. The test 
statistic is calculated according to:

( )2

2
k

i i

i j i

obs exp

exp
χ

=

−
= Σ         Equation 6

where obsi is the number of observations in class i, expi the expected number in class i and 
k the number of classes. The degree of significance can be calculated from k and χ2.

In analogue, orientations of fractures can be compared to the expected, “theoretical” 
orientations and tested by χ2 /Miller, 1983b/ for example, the orientations expected if two 
stereograms were equal. The problem reduces to a division of the stereograms into k patches 
of equal area (Figure 3-10), counting the poles within each patch and performing the test 
according to Equation 6. Care must be taken, however, because valid χ2 tests cannot be 
performed unless the number of observations in each patch exceed 5 (Lancaster’s criterion). 
It is therefore necessary to adjust the number of patches or the patch network until this 
criterion is met. This can be performed in three ways:

• The number of patches is decreased (their area increased) until all contain 5 or more 
poles. This will also result in a less discriminant, but weaker, test.

• The patch network is rotated until the criterion is eventually met.

• Patches with too few observations can be lumped together. This will also result in a less 
discriminant, but weaker, test.
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We have adopted a test that rotates the patches 36° (the width of one patch) about the 
vertical axis in steps of 1° to produce a mesh of χ2 results from which the minimum (best) 
value is chosen. This to avoid that pole concentrations, are transected by a patch boundary 
by mere chance. To fulfil Lancaster’s criterion, we lump all patches with less than 5 
observations.

Figure 3-10 shows two contoured stereograms of poles to fracture planes mapped at 
two outcrops (BP2 and BP3 respectively) within the same rock domain at Forsmark (for 
simplicity we only display the contoured graphs). By visual inspection, the stereograms are 
strikingly similar. However, upon closer inspection, it is evident that the NW striking set is 
more intense in BP3 than in BP2. Further, BP2 displays a weak NNW set that appear to be 
absent from BP3. The question is, are these differences so large that the outcrops will fail 
to pass the test of similarity? A contingency table of frequencies and computed χ2 values 
Table 3-1 shows that the stereonets can indeed not be regarded equal at the 95% confidence 
level, mainly due to differences in densities, as the sum of χ2 by far exceeds the threshold 
value of 18.4 (95% confidence limit, 10 degrees of freedom). However, despite the visual 
similarities, there are significant differences in direction as well, upon closer inspection. In 
the example used, the mean pole direction of the most dominant sets in BP2 are 304/3 and 
204/0.5 whereas the corresponding mean pole direction on BP3 are 312/3 and 217/4.9. This 
corresponds to dihedral angles of 8° and 14° respectively.

Figure 3-10. The figure show the patch configuration used for stereonet comparison /from 
Munier, 1995/.

N

a

b

c

d

ef

g

h

i

j

k

-10˚ +10˚



23

Table 3-1. Contingency table of χ2 frequencies and calculated χ2 values used to 
compare two stereonets (Figure 3-11) for equality.

Patch BP2_obs BP2_exp BP3_obs BP3_exp BP2_χ2 BP3_χ2

 a 160 152 184   192   0.421   0.333

 b 116 182 295   229 23.930 19.020

 c   72   46   32     58 14.690 11.650

 d   79   51   35     63 15.370 12.440

 e   43   29   22     36   6.758   5.444

 f   18   23   34     29   1.086   0.862

 g   38   73 127     92 16.780 13.310

 h 146 107   96   135 14.210 11.260

 i 232 213 248   267   1.694   1.352

 j   43   80 137   100 17.110 13.690

 k   33   25   24     32 2.560   2.000

Sums 980 981 1234 1233 114.600 91.385

The parametric test described in this section is a powerful tool to objectively compare 
orientations on outcrops. However, the test is rather discriminant and might be perceived 
as counterintuitive. Yet, regardless of the outcome of the test, the main point is to present a 
quantitative value of similarity, or lack thereof, so that the issue of spatial continuity with 
respect to orientations can be properly addressed using supportive qualitative arguments.

Figure 3-11. Poles to fracture planes mapped at two outcrops in Forsmark contoured according 
to the /Kamb, 1959/ method (contour interval 2σ, significance level 3σ). a) Drillsite 2 (BP2), b) 
drillsite 3 (BP3).
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3.2 Fracture size distribution
Although outcrop sampling of fractures are widely recognised to be length-biased, they are 
often the best source of data for inferring statistical parameters of fracture sets. Fracture 
trace lengths are mapped on outcrops, with, in the usual case, a lower censoring by policy 
of 1 m for area mapping and 0.1 m for scanline mapping (see SKB MD 132.003 for details). 
Lineament maps provide additional information on larger scale deformation zones. Here, 
we have adopted the terminology of /Jensen et al , 2000/ in which censoring denotes 
unmeasured information that is known, whereas truncation denotes unmeasured information 
that is unknown.

The size of fractures can rarely, if ever, be measured directly. Instead we measure the 
intersection of the fracture and the sampling domain, i.e. outcrop, road-cut or tunnel wall. In 
this section we discuss statistics of fracture trace lengths and means of obtaining the fracture 
sizes from these statistics.

It should be noted that, besides censoring due to sampling policy or inability to detect 
short traces, there are two sources of bias entirely due to the size of the sampling domain. 
The first bias is because a scanline or a wall will tend to intersect preferentially the larger 
fracture planes (see Figure 3-13 for schematic illustration). In fact, the probability of 
intersecting a fracture is directly proportional to its size. The second bias is that large 
fracture planes may extend beyond the rock exposure. Measurements are therefore truncated 
at some value dependent upon the size of the sampling domain. For clarity, the cut-off of 
the upper portion of the fracture trace is denoted “truncating” whereas cut-off of the lower 
portion is denoted “censoring”. Censoring can either be due to sampling policy (e.g. choice 
of sampling scale) or a physical inability to detect traces shorter than a specific threshold 
value. Techniques for correcting sampling bias on outcrop data have been widely reported 
and fall into two main categories: Those that assume an underlying parent distribution and 
those that do not. The former approach has been addressed by e.g. /Priest and Hudson, 
1981/ and /La Pointe and Hudson, 1985/ whereas the latter approach was addressed by e.g. 
/Kulatilake and Wu, 1984/. The issue is further discussed below.

Figure 3-12. Mapped fracture traces a) at BP2, an exhumed outcrop b) at the Forsmark site.
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3.2.1 Description of trace lengths

The most common distributions of fracture trace length reported in the literature are 
the lognormal- /e.g. Epstein, 1947; Baecher and Lanney, 1978; Priest and Hudson, 
1981; Rouleau and Gale, 1985/, powerlaw- /e.g. Fujiwara et al, 1977; King, 1983; 
Turcotte, 1986a; b; 1990; An and Sammis, 1994; Dershowitz et al, 1995/ and exponential 
distributions /Call et al, 1976; Cruden and Ranalli, 1977; Priest and Hudson, 1981;  
Cowie et al, 1995; Kagan, 1997; Renshaw and Park, 1997/.

Though the powerlaw distribution has gained increasing attention, and is indeed both 
conceptually and computationally attractive, there are very strong empirical, experimental 
and theoretical arguments for each of these distributions as appropriate descriptors of 
fracture sizes. We therefore here advocate for the need of testing the fit of the distributions, 
and other distributions too if considered appropriate (e.g. gamma /Kagan, 1997/), prior to 
further analysis.

It is common practice to use histograms of the frequency distribution of the trace length  
in which the columns are drawn over the class intervals and the heights of the columns  
are proportional to the class frequencies. Histograms give a good overview of how the data 
is distributed and can, for instance, reveal the presence of several frequency maxima (e.g. 
bimodal distributions). Further, the shape of the histogram can give an indication of which 
type of distribution to test for the studied variable. The analytical power of the histogram 
is, however, fairly restricted and must be used with great care. For instance, the choice of 
class interval will, to a great extent, steer the appearance of the histograms. Unfortunately, 
it is not common practice to exploit the effect of altering the class widths; mostly, analyses 
contempt with standard class width, based on e.g. the range of the data, using built-in 
routines of the various softwares and wrong conclusions are often drawn regarding the 
nature of the distribution.

Figure 3-14 shows how the shape of the histogram changes with using different class width. 
Figure 3-14a rather clearly indicate a lognormal distribution by visual inspection whereas 
the default class width of the software, displayed in Figure 3-14b, indicates an exponential 
distribution using the same data. Unless a goodness of fit test is clearly articulated, we 
strongly recommend against the use of histograms for choosing distribution though we 
appreciate the strength of this graphical representation for visually displaying the fit. 

Figure 3-13. Schematic cartoon of a tentative tunnel face. The intersection point (i) is randomly 
positioned along a–b. The maximum observable trace span from the points a to c and is denoted 
lmax. The length of lmax depend on the angle (r), the intersection angle (rake) between the fracture 
plane and the sampling domain /from Munier, 1995/.
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When describing a trace length distribution, it is good practice to present the histogram, 
showing tested distributions, together with a probability plot (Figure 3-15b) of the chosen 
distribution and a table of the goodness-of-fit test performed Table 3-2.

Figure 3-14. Using the same data, histograms may appear quite differently depending on the 
choice of class width.

Figure 3-15. a) Histogram of trace lengths with fitted distributions. b) Probability plot of best fit 
distribution.
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b) Probability-Probability Plot of Trace length (m) (Spreadsheet1 5v*3512c)
Distribution: Lognormal(σ =  1.01807,µ = 0.518413)
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Table 3-2. Example of a table summarising test statistics for different distributions.

Distribution χ2 ; ν = 11 Pα=0.05

Lognormal 10.48497 0.4874

Exponential 478.21602 0.0000

Powerlaw 1253.28746 0.0000

In order to promote a coherent nomenclature within SKB projects, we briefly present the 
distributions and their moments in the sections below with an appeal to comply with the 
terminology proposed.
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The Exponential Distribution

The variable x has an exponential (or negative exponential) distribution if it has a 
probability density function (swedish “täthetsfunktion” ) of the form /Johnson and Kotz, 
1972/:

( )
min

min

exp
( ) , ; 0

x x

f x x x
σ

σ
σ

−  
    

= > >      Equation 7

The maximum likelihood estimators of xmin and σ are respectively

( )min 1 2min , ,..., nx x x x=        Equation 8

and

min
1

( )
n

i
i

x x

n
σ =

−
=

Σ
        Equation 9

If the sample (fracture traces) is not censored, i.e. by policy or inability to detect values 
smaller than a certain threshold, then xmin = 0 which makes the distribution a one-parameter 
exponential distribution and Equation 7 may be reformulated in a more common form as:

 e if 0
( )

0 if 0

x x
f x

x

λλ − >
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       Equation 10

with a mean and standard deviation which both equal 
λ
1

..

In Figure 3-16 we illustrate how exponentially distributed trace lengths may be represented. 
Note that the histogram Figure 3-16a) displays goodness of fit tests. The moment (mean and 
standard deviation are equal) is displayed in the header of the probability plot Figure 3-16b).

Figure 3-16. Example of histogram (a) and probability plot (b) of a exponentially distributed 
trace lengths.

a)
Variable: Trace length (m), Distribution: Exponential

Kolmogorov-Smirnov d = 0.01022, p = n.s.
Chi-Square test = 8.54018, df = 8 (adjusted) , p = 0.38256
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b) 
Probability-Probability Plot of Trace length (m) (Spreadsheet1 5v*3512c)
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The lognormal distribution

If there exists a number, xmin, such that Z = ln(x–xmin) is normally distributed, then the 
distribution of x is said to be lognormal. For this to be the case it is clearly necessary that x 
can take any value exceeding xmin, but has zero probability of taking any value less than xmin. 
For the case when xmin ≠ 0 the distribution is “three-parameter lognormal”. If the sample 
(fracture traces) is not censored, i.e. by policy or inability to detect values smaller than a 
certain threshold, then xmin = 0 and the distribution is called “two-parameter lognormal” 
or simply lognormal. Commonly, fracture traces are censored by policy and it is therefore 
advisable to use the three parameter version formulation. The probability density function of 
a lognormal distribution has the general (three-parameter) form /Johnson and Kotz, 1972/:
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The estimation of µ and σ presents no difficulties beyond those associated to the normal 
distribution. The maximum likelihood estimator for µ and σ are respectively:
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The mean, median, mode, and variance are expressed as:
2

2mean e
σµ

 
+  = ,        Equation 14

median eµ= ,         Equation 15

( )2

mode e
µ σ−= , and        Equation 16

( )2 22variance e e e 1µ σ σ= − , respectively.     Equation 17

It is, unfortunately, not always made clear if the described parameters refer to the mean of 
x, or the mean of the logarithm of x, µ. We therefore recommend that any description of a 
lognormal variate is expressed in terms of the parameters, µ, σ, and xmin (if ≠ 0), from which 
the mean and other moments always can be computed.

In Figure 3-17 we illustrate how lognormally distributed trace lengths may be represented. 
Note that the histogram (Figure 3-17a) displays goodness of fit tests. The moments are 
displayed in the header of the probability plot (Figure 3-17b).
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The Powerlaw distribution

The probability density function of a powerlaw distribution can be expressed as /Evans et 
al, 1993/:

( ) min
min1 ,

k

k

k xf x x x
x +

⋅
= ≤ < ∞       Equation 18

where xmin is the location parameter (smallest value of x), and k the shape parameter.

The mean and standard deviation of the powerlaw distribution can be expressed as:
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The parameters of the distribution can be estimated using the maximum likelihood 
estimators:

1 min

1 1 lnˆ ˆ
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x
N xk =

  =       ∑        Equation 21

ixx minˆmin =          Equation 22

where N is the total number of data.

Since the advent of fractal geometry /Mandelbrot, 1982/ and its application to the earth 
sciences /e.g. Okubo and Aki, 1983; Scholz and Aviles, 1986; Turcotte, 1986a; Korvin, 
1992/ it has been common practice, in geologic literature in particular, to denote the shape 
parameter (exponent) of the powerlaw distribution “D” implying the close relationship to 
the fractal dimension. This is misleading, because it is perfectly possible to have powerlaw 
distributed fracture sizes that do not form a fractal spatial pattern, and vice versa. Though 
the two concepts are related, they should under no circumstances be equated. We therefore 
strongly recommend against the use of “D” for the shape parameter, to avoid any such 
confusion within SKB projects.

Figure 3-17. Example of histogram (a) and probability plot (b) of lognormally distributed trace 
lengths.

a) Variable: Trace length (m), Distribution: Log-normal
Kolmogorov-Smirnov d = 0.00891, p = n.s.

Chi-Square test = 36.48369, df = 44 (adjusted) , p = 0.78225
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 b) 
Probability-Probability Plot of Trace length (m) (Spreadsheet1 5v*3512c)
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In Figure 3-18 we illustrate how powerlaw distributed trace lengths may be represented. 
Figure 3-18b shows the complementary cumulative distribution (ccdf) of the trace lengths 
in log-log scale. Basically, the absolute value of the slope of the linear regression should 
equal the shape parameter, k, of the powerlaw distribution. However, since the powerlaw 
is heavily skewed, estimation by linear regression is less accurate, despite eventually 
high r2 values, than the estimator proposed in Equation 21; the linear fit does not take into 
consideration that almost all of the data are located on the first few point of the distribution 
and will be largely steered by the few, more “noisy” data in the tail of the distribution. We 
therefore call for caution when using the slope of the ccdf for estimation of k though we 
appreciate the strength of this graphical representation for visually displaying the fit.

Figure 3-18. Example of histogram (a) and probability plot (b) of powerlaw distributed trace 
lengths.

a) Histogram (Spreadsheet1 7v*3512c)
Distribution: Powerlaw (Xmin = 1.000243, k = 2.510931)
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b) 
Scatterplot (Spreadsheet1 7v*3512c)

 ln(x):ln(N>x):  r2 = 0.9991;  r = -0.9995; p = 00.0000
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3.2.2 Computation of fracture sizes from trace lengths

Techniques for correcting sampling bias were early reported by, e.g. /Priest and Hudson, 
1981/ and /Priest, 1993/ who devised formulae to identify the parent distribution from a 
biased sample. In /Priest and Hudson, 1981/, an exponential parent size distribution was 
assumed, in fact also the uniform and normal distributions, rarely reported for fractures in 
literature, which yielded a gamma distribution of the sampled trace length. Munier /Munier, 
1995/ later applied the formulae to the lognormal distribution which yielded a trace length 
distribution that mimicked the exponential distribution and also to the powerlaw distribution 
which yielded a powerlaw trace length distribution with the same shape parameter. The 
latter has also been confirmed by others /e.g. LaPointe et al, 2000/. The drawback of these 
methods is that the deduced parent distribution can, in some circumstances, assume non-
standard forms for which there are no standard analytical tools, and that might be conceived 
as counter-intuitive.

Another approach is based on the assumption that fractures can be represented by circular, 
perfectly flat, and infinitely thin discs with radii that are independent of both their position 
and orientation. With the additional assumption that fracture radii are distributed according 
to a Powerlaw distribution, /Marrett and Allmendinger, 1991/, /Berkowitz and Hadad, 
1997/, /Piggot, 1997/and others /e.g. La Pointe, 2002/ have demonstrated that trace lengths 
on outcrop are also powerlaw distributed with a shape parameter k2D = k3D –1. Additionally, 
it has be shown that a scanline intersecting traces will yield a sample of trace lengths that 
relates to the fracture radii as k1D = k3D –2. In many, if not most, cases the assumptions 
required do, however, not prevail, especially the assumption of random positions in 3D 
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space and independence of size and position. In fact, assuming a truly fractal fragmentation 
mechanism requires a solid correlation between position and size and, arguably, also 
orientation.

Due to these uncertainties, we would recommend, unless otherwise motivated, another 
approach based on stochastic simulation. The basic idea is to simulate multiple realisations 
of a fracture network, and place tentative outcrops and boreholes within /e.g. Geier et al, 
1988; Dershowitz et al, 1991a; Dershowitz et al, 1991b/. The artificial fracture traces and 
borehole intersections are then compared to the field observations. The parent distribution 
functions, and their moments, are systematically altered to cover a wide, yet realistic, range. 
The similarities, or lack thereof, between the mapped and simulated data are quantified 
using, for instance, Chi-Square or Kolmogoroff-Smirnov convergence criteria. Using such 
criteria, it is possible to find the size distribution, and its parameter(s), that best fit each 
fracture set of the array, simultaneously honouring statistics of mapped trace data and 
borehole intercepts. The iteration, which can be fairly tedious, can be made more efficient 
by the use of different search algorithms such as the “simulated annealing” /Kirkpatrick et 
al, 1983/ or “conjugate gradient” /Hackbusch, 1985/ methods.

Note, however, that trace length distributions cannot alone be used in such a procedure. 
Equally important is the number of fractures in the simulated system. In fact, both the 
amount and sizes of fractures must be simultaneously expressed in a measure called fracture 
density (or intensity) which is the subject of Section 3.2.4.

The process of determining the size distribution of the parent population of the different 
fracture sets should be articulated clearly. We recommend that such an analysis should 
contain at least the following information:

• The distributions that were tested.

• The range of moments that was tested for each distribution.

• If applicable, the search algorithm that was used for finding the best fit.

• The amount of realisations used for each test.

• The test statistic used.

• The chosen limit between deterministic and stochastic structures.

• The concepts/assumptions made if large- and small-scale features are modelled 
simultaneously (e.g. for borehole data, if the internal fracture array of a deformation 
zone is replaced by a single value representing the largescale feature).

3.2.3 Comparison of (mean) trace lengths

The construction of a DFN initiates, as shown earlier, by the identification of fracture 
sets. This is a classification based on orientation and its importance cannot be sufficiently 
stressed. The fracture orientation combined with fracture size steer the degree of fracture 
anisotropy in the rock. Combined with yet other qualifiers, such as transmissivity, the 
anisotropy will more or less directly steer the flow and transport properties of the rock,  
and might also to some degree steer the repository layout.

During site investigations, the only means to obtain information of fracture sizes is by 
mapping their traces on outcrop. Naturally, a comparison of fracture sizes must be based 
on statistics on trace lengths or, alternatively, on the fracture radii once these have been 
determined (cf 3.2.2).
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For small samples it might be convenient, to consider a non-parametric (also called 
distribution-free) test. The most commonly used test is the Friedman analysis of variance. 
This test should be used if one is not sure of the distribution of the variables used in the 
comparison. For example, the data may actually consist of rankings rather than precise 
measurements. However, it turns out that when the data set is large (e.g. n > 100) it often 
makes little sense to use nonparametric statistics at all. The central limit theorem /Pólya, 
1920/ states (in a nutshell) that when the samples become very large, the sample means will 
follow the normal distribution even if the respective variable is not normally distributed 
in the population, or is not measured very well. Thus, the parametric methods, which are 
usually much more sensitive (i.e. have more statistical power) are in most cases appropriate 
for large samples.

A way of comparing means makes use of confidence intervals which are graphically 
displayed together with the means in boxplots (Figure 3-19). The strength of this method is 
that any differences in means, under a certain confidence level, are immediately revealed; 
Significant differences in mean values are manifested as non-overlapping confidence 
intervals.

The problem is, for small samples, that computation of confidence intervals for the 
lognormal and powerlaw distributions are complex and there are different opinions in the 
literature of which method should be used /see Xiao-Hua and Sujuan, 1997, for a review/. 
For lognormally distributed variates, it is tempting to compute confidence intervals on the 
mean of the logarithm and then back-transform the calculations. Though this will indeed 
yield a statistically correct measure of differences, the calculated measure is the median 
and not the mean of the variates. Since lognormal distributions can be heavily skewed, 
the median is a poor measure for the expected value and this method is not recommended. 
Using simulations, /Xiao-Hua and Sujuan, 1997/ showed that a method of Cox /Land, 1972/ 
have the smallest coverage error, among the tested methods, for moderate sample sizes (as 
small as 50). The expression for computing the confidence interval of a lognormal variate is 
according to Cox:
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−
± +

−
       Equation 23

where the Z value can be obtained from standard statistical tables. The three trace length 
samples in Figure 3-19 (n= 30 for all) are compared with two methods. Using the method 
of Cox reveals that there is indeed not any statistically significant difference between the 
sample means whereas the traditional way of computing confidence intervals /e.g. Tukey, 
1977/ indicate that sample 3 differs from the other two samples. When the sample sizes 
were made to exceed about 200, the statistics were virtually identical (not shown in  
Figure 3-19).

In summary, we recommend the use of presentations as the one displayed in Figure 3-19, 
as the method is both intuitive and powerful. However, for small sample sizes (< 100 /e.g. 
Xiao-Hua and Sujuan, 1997/), should parametric methods be used, it should be made clear 
by which method the confidence intervals were computed.



33

3.2.4 Area normalisation

When fracture traces are sampled at many different scales, as outcrops, trenches and 
combined with for instance lineament data, it is for some analyses essential to perform 
a process called area normalisation. A fracture sample is area-normalised simply by 
multiplying the amount of mapped fractures with the ratio between the area of the outcrop, 
or sum of outcrop areas if more than one, with the area of the larger scale sampling domain, 
e.g. the lineament map.

The expression for normalising outcrop data to lineament data can be formulated as:

map
n

1
i

1

area

area

n

adj iN N= ∑
∑

        Equation 24

where Nadj is the number of outcrop-scale fractures, mapped on n outcrops, projected onto 
the larger scale map.

For illustrative purposes we here provide an example from Forsmark. As shown on  
Figure 3-20, there is a clear difference in lineament density between the land and sea 
areas. The main reason is that the geophysical signature of smaller geological structures 
is obscured by the water coverage and many lineaments are based solely, or heavily, on 
elevation data. Since large scale lineament show similar density over the model area, it  
is reasonable to assume that the density of small scale lineaments should also be similar  
over the entire model area unless, of course, contradicted by other geological data. To 
compute the lineament density over the entire model area, or the length distribution,  
(see Section 3.3.2), it is essential to area-normalise the number of small-scale lineaments.

Figure 3-19. Boxplots displaying means values and confidence intervals for three samples (n= 
30) of trace lengths that are lognormally distributed.
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Figure 3-20. Lineament map, Forsmark. The insert shows a section of a larger scale lineament 
interpretation (from /Fredén, 1994/).
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The histogram displayed in Figure 3-21a shows the distribution of lineament lengths which 
are area normalised in Figure 3-21b. The portion of the model that has smaller lineaments 
interpreted (mainly the land area), constitutes roughly 32% of the entire model area, and the 
number of lineaments were adjusted accordingly.
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There is a minor complication in this procedure that we wish to stress. It is common 
practice when normalising for area, to superimpose interpretations performed on various 
scale. The insert in Figure 3-20 shows a portion of a lower resolution, nation-wide 
lineament interpretation from which the sub sample of those intersecting the model area has 
been extracted (Figure 3-22). If these lower resolution, but larger scale interpretation is to 
be incorporated into the analysis, then their higher resolution equivalents must be removed 
because they are not equal in amount. As magnification increases, it becomes clear from 
Figure 3-22 that the large scale, single lineament in fact consists of several shorter strands.

The area normalisation exemplified here, is based on the assumption that fracture densities 
scales linearly with model scale, i.e. Euclidian scaling. However, fracture densities often 
scales in a non-linear, i.e. fractal, manner.

A non-linear area normalisation is commonly based on an estimate of the mass dimension. 
From Mandelbrot’s definition of fractal dimension /Mandelbrot, 1982/: 

lim ln ( )
ln( )
N RD
RR

=
→ ∞         Equation 25

where N(R) is the number of objects within volume R, it is possible to express a mass 
dimension Dm such that:

( ) mDL r r→          Equation 26

in which the mass can be defined as the number of fractures or, alternatively, total fracture 
trace length L(r) included in a circular area of radius r. In a nutshell, Equation 26 predicts 
the P21 value for any model area knowing P21 for a particular area and assuming a fractal 
scaling behaviour. It is, however, beyond the scope of this report to elaborate further on 
this issue. The interested reader is therefore kindly referred to e.g. /Bonnet et al, 2001/ for 
details on theory and worked examples.

 

Figure 3-21. Histogram of a) lineament lengths, b) area-normalised lineament lengths.

a) Distribution: Lognorm, µ = 5.98215607, σ = 0.820165037
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Distribution: Lognorm, µ = 6.05910634, σ = 0.973965022
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3.3 Fracture density
3.3.1 Borehole and scanline

Fracture density can be measured in terms of the number of fractures per metre along a 
scanline or a borehole, in which case it is a one-dimensional parameter. This is traditionally 
denoted fracture frequency. It should be noted that, due to sampling bias, the measured 
frequency will be dependent on the orientation of the scanline or borehole (cf Section 3.1.1). 
There are numerous techniques reported to adjust for this bias /Priest and Hudson, 1981/ but 
it is out of the scope of this chapter to present details on such procedures.

Figure 3-22. Detail of Figure 3-20 showing how a large scale lineament (red) is decomposed into 
several shorter strands (green) as magnification and resolution increases.
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It has become common practice within SKB projects to adopt the terminology of /
Dershowitz and Herda, e.g. 1992/ whereby this parameter is termed P10, where the subscript 
1 stands for the dimensionality of the sampling domain and subscript 0 for the measurement 
unit (here, a number, i.e. dimensionless).

It is common practice to section borehole logs into 1-m intervals which directly yields  
the fracture frequency as defined (Figure 3-23a). It is, unfortunately, rarely recognised  
that even this sectioning constitutes an averaging over an interval, albeit small, with a 
lag that is equal to the window widths. Additionally, the class boundary, irrespective 
of the choice of class width, might be located within a local maximum which will be 
partly hidden. This effect can be avoided by the use of several different class width or, as 
advocated for here, filtering techniques such as the moving average /Kenney and Keeping, 
1962; Whittaker and Robinson, 1967/. In addition, the use of moving average with varying 
window sizes can reveal properties of fracturing at different scales of interest. In Figure 
3-23b we illustrate how a moving average of the data in Figure 3-23a might be displayed. 
We used a window size of 30 m, and a lag of 0.1 m. Spikes in the graph are indicative of 
fracture zones, which indeed were confirmed by other means, and the decreasing trend of 
frequency is made rather clear. The choice of window size will certainly depend on the 
length of the borehole and the local geology, but also reflect the purpose of the analysis. 
Often necessary to test various window sizes, e.g. 3 m, 10 m and 30 m it is not possible, 
therefore, to recommend any particular window or lag size. Clearly, the presence of  
fracture zones must be accounted for when computing the fracture density since the DFN 
is intended to reflect fracture statistics between deterministically modelled zones. The 
fracturing within zones is described in other instances of the site investigation. Plots of 
cumulative frequencies have the property of hiding or blurring “spikes”, making visual 
inspection difficult if not impossible.

Regardless of whether smoothing techniques have been applied or not, analysis of fracture 
frequencies in boreholes (and scanlines surveys if applicable) should contain at least the 
following information:

• Length of the studied series.

• Class width.

• For moving averages, window and lag size.

• If deterministic deformation zones are intercepted, the sections that are excluded from 
analysis.

Figure 3-23. a) Fracture frequency in KFM01, Forsmark site as traditionally computed. b) 
Moving average of data in a).

a)
Scatterplot (movav_1_KFM01_Freq_all 3v*9928c)
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b) 
Scatterplot (movav_30_KFM01_Freq_all 3v*9638c)

Moving average: Lag = 0.1 m, window = 30 m. 
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The reciprocal of P10 is the fracture spacing which possesses special qualities. It can be 
shown that for discs randomly distributed in space, a line cutting through will yield  
spacings of the intersections that are exponentially distributed /Gilvarry, 1964; Baecher, 
1983/. Thus the spacing distribution in a borehole can be used to demonstrate spatial 
correlation (or lack thereof) in the direction of the borehole or scanline.

For illustrative purposes we present a histogram, with various tested distributions in  
Figure 3-24. The lognormal distribution appears to fit the data well. However, upon  
closer inspection, all of the tested distribution failed to pass formal, parametric, tests of 
goodness of fit (non-parametric tests, not shown here, accepted both the lognormal and 
exponential distributions). In cases where all distributions show equally poor (or good)  
fits, it is practical to assume an exponential distribution since this will significantly ease 
analysis and simulation of fractures. This is particularly true if the spatial correlation 
(Sections 3.2.4 and 3.4) is Euclidian.

Figure 3-24. Histogram of fracture spacings in subvertical percussion holes, Forsmark.

Distribution: Powerlaw, k= 0.187943999288473, Xmin = 0.0008
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3.3.2 Outcrop

The 2D equivalent of fracture frequency is expressed as m/m2. Again, it need to be 
understood that the outcrop frequency is subject to sampling bias (cf Section 3.2). It is 
common practice in DFN terminology to denote this entity P21, were 2 stands for the 
dimensionality of the sampling domain, and 1 stands for the dimensionality of the  
mapped feature (the fracture trace). The 2D fracture density, P21, for an area, A, can be  
thus expressed as the sum of I fracture traces mapped on the outcrop, that is:

21 2
1

1 I

i
i

P l d l
A =

= =∑         Equation 27.
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where d2 stands for the area centre density and l  for the mean trace length. Both P10 and P21 
are governed by the orientation (and scale) of the sampling domain. The desired measure of 
fracture density, therefore, is P32 which is expressed as total fracture area per volume unit 
(V), or:

32 3
1

1 J

j
j

P a d a
V =

= =Σ         Equation 28. 
 
where d3 stands for the bulk centre density, J the number of fractures and a the mean 
fracture area:

1

1 J

j
j

a a
J =

= Σ          Equation 29.

3.3.3 Computation of 3D fracture density

In order to get a fracture density that is not dependent on sampling direction it has been 
proven very convenient to introduce yet another density measure; Fracture area per  
volume unit. In analogue to the reasoning above, P32 stands for a 2D measure in a 3D 
sampling domain with the unit m2/m3. It is, however, simply not possible to directly  
sample P32 which instead must be derived from the measures P10 and P21.

There is, fortunately, a relation of proportionality /Dershowitz and Herda, 1992/ between 
P10, P21 and P32 which can be exploited to derive P32. Again, this problem can be addressed 
by stochastic simulation. Having established the orientation and length distributions 
according to Sections 3.1.3 and 3.2.2, the following method can be used to calculate P32.

1. Initially guess a P32 value, P32mod, and simulate a DFN.

2. Sample the DFN with artificial boreholes and outcrops with the same orientations  
and sizes as the ones that have been mapped.

3. Calculate the fracture density parameters for the sampled boreholes, P10mod, and  
surfaces P21mod.

4. Calculate P32 using the relation of proportionality:

10field 21field 32

10mod 21mod 32mod

P P P
P P P

= =        Equation 30

3.4 Evaluation of the spatial pattern of fractures
Fractures are often assumed to occur randomly in rock. Indeed the exact location of 
fractures is virtually impossible to predict whereas, for instance, the bulk fracture density 
(P32) can be rather accurately determined under favourable conditions. In this context, it is 
essential to recognise that the randomness can be structured and itself display patterns that 
are quantifiable. Randomness thus can be said to apply more to the individual fracture than 
the entire fracture array.
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The simplest spatial model assumes that the locations of fracture centroids are completely 
independent, constant and uniform (isotropic) over the volume of interest. Such a 
Poissonian spatial model can be show to possess the following properties: If a line cuts 
through the volume and the fracture locations (centroids) are purely independent, it can be 
shown /e.g. Gilvarry, 1964/ that their spacings are also independent with an exponential 
distribution. Naturally, the first step in assessing the spatial correlation or lack thereof is to 
test if fracture spacings are exponentially distributed. We would like to stress the point that 
spacings should be investigated in as many directions as possible to ensure isotropy.

In addition to the boreholes, it is possible to directly use a map of fracture midpoints to 
test for randomness. The map area is divided into a number of equally sized patches such 
that the patches contain a number of points. If the data are uniformly distributed over the 
study area, then we would expect each patch to contain the same number of points. The 
hypothesis of randomness can then be tested with the χ2 method according to the following:

The expected number of points, E, in each patch is:

,NE
m

=          Equation 31

where N is the total number of points and m the number of patches.

A χ2 test of goodness-of-fit of the expected (uniform) distribution to the observed is given 
by equation Equation 6, here replicated for convenience:
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with ν = (m–2) degrees of freedom.

For illustrative purposes, we applied this technique to lineaments interpreted in the 
Forsmark model, version 1.1 (Figure 3-25). In Figure 3-26, a rectangular excerpt from 
Figure 3-25 has been rotated, for ease of computation, and divided into 30 equal patches, 
each of which we expect to contain about 15 points (451 midpoints in total). The observed 
number of points in each patch and the computations necessary to find the test value are 
displayed in Table 3-3. This test has ν = 28 degrees of freedom, so the critical value of χ2 
at the α = 0.05 significance level is 41.3. The computed χ2 (61) exceed this value so we 
must conclude that the midpoints are probably not Poisson distributed in the investigated 
area or, formally, the null hypothesis that the midpoints are evenly distributed is rejected. 
Though this formalism appear fairly objective it is only apparently so. It is possible to 
slightly alter the result of the test by changing the patch sizes, using patches of unequal 
size, or even using sophisticated search algorithms aiming to find the patch configuration 
that yield the minimum χ2 value. Thus a certain amount of subjectivity is inherent in the 
analysis. However, it is only possible to reverse the result of the test if the tested entity yield 
χ2 that lie very close to the critical value at any given significance level. In our example, the 
calculated χ2 value lies too far from the critical value and it was not possible to find, with 
reasonable efforts, any patch configuration that could reverse the test result.
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Figure 3-25. The figure shows lineaments and centre points used for analysis. The lineaments are 
from the Forsmark model, version 1.1.
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Figure 3-26. Lineament midpoints from Figure 3-25 were rotated for ease of computation. 
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Table 3-3. Number of lineament midpoints in cells as defined Figure 3-26.

Count Num Of Cells χ2

  8 1 4

  9 4 10

10 2 3

11 2 2

13 4 1

14 3 0

15 2 0

17 1 0

18 3 2

19 1 1

20 1 2

22 2 6

23 1 4

24 1 6

25 1 7

29 1 14

Sum 30 61

Another method based on points on fracture traces (e.g. centroids) is based on the so called 
correlation dimension, Dc, as defined by /Hentschel and Proccacia, 1983/. This measure is 
derived from the two-point correlation function and defined as:

( ) ( )2
1

dC r N r
N

=         Equation 32

where N is the total number of points (fracture centroids), Nd is the number of pairs of 
points whose distance apart is less than r /Hentschel and Proccacia, 1983/. For a fractal 
population of points, C(r) scales with r as:

( )
( )

ln
lim

lnc r

C r
D

r→∞

  =         Equation 33

Typically this measure range between 1.5 and 2 /see e.g. Bonnet et al, 2001 for an exposé/ 
and has been recently used within SKB projects /Darcel, 2003/ to demonstrate a fractal 
pattern of fractures at the Äspö HRL.

Using the same set of lineament centroids as displayed in Figure 3-26 and applying 
Equation 33 gives a Dc value of about 1.8 (2 would imply a perfectly poissonian pattern) 
which implies that the lineament pattern is non-poissonian, and thus confirms the result of 
the χ2 method described above.
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The two-point correlation function method is very similar to the box-counting method  
/see e.g. Kulatilake et al, 1996 for application on fracture networks/. In fact, the correlation 
dimension Dc is theoretically equivalent to the box dimension Db /Hentschel and Proccacia, 
1983/. However, /Bour, 1997/ have shown that the method using the two-point correlation 
function was better than the box-counting method at distinguishing natural- from purely 
random patterns. We would therefore, unless otherwise motivated, recommend the use of 
the correlation dimensions in favour for the box dimension.

A more traditional approach is to compute the density of lineament centroids using well-
established algorithms such as nearest neighbour or inverse distance squared. Expanding 
the simple patch counting method discussed above, it is possible to take into account the 
number of centroids in neighbouring cells using a certain search radius. In Figure 3-28 we 
used a patch size of 500 m and a search radius around each point of 250 m. Though such 
analysis can highlight areas of high centroid density, the patch size in Figure 3-28a is too 
coarse to be useful to exploit any correlation of densities between the patches. However, 
using a finer patch configuration (50 m patches) and a larger search radius (500 m), 
clustering becomes apparent by visual inspection Figure 3-28b.

Figure 3-27. Correlation integral of lineament midpoints from Figure 3-25.

Figure 3-28. Density of lineament midpoints from Figure 3-25.
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Using fracture centroids has one severe limitation; it does not take the fracture size or 
orientation into consideration. Both size and orientation govern the structural anisotropy; 
that is, when the spatial correlation is unequal in different directions. Another approach, that 
avoids this drawback, is to directly use one of the estimates of interest, P21. In Figure 3-29 
we computed P21 using a patch size of 50 m, and a smoothing filter using a 500 m wide 
search radius.

The spatial pattern of lineaments densities (Figure 3-29) can be further exploited using 
traditional geostatistics /e.g. Isaaks and Srivastava, 1989/. It is far beyond the scope of 
this report to provide an overview of the available techniques. However, we will for 
completeness present a simple analysis using a standard technique. 

The variability of the lineament density over the map can be found by computing a measure 
of the self-similarity. That is, the map of densities can be compared to itself at successive 
positions and the degree of similarity between corresponding intervals computed. In a way, 
this procedure is very similar to the two-point correlation function with the difference that 
distances are computed in specified directions.

Figure 3-29. P21 values of lineaments. In a) we used a 500 m wide patch with no smoothing. In 
b) we used a 50 m wide patch and a 500 m wide search radius around each patch centre.
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b)

The autocovariance for lag h is the covariance between all observations Xi and Xi+h. That is, 
the covariance is calculated between a series and itself displaced by a lag of length h. The 
autocovariance, Ch, is defined as:

( )
1

i i hh i i hC X X X X
N h

++= −∑       Equation 34

The summation is only over the N(h) pairs of data whose locations are separated by h, iX  
and jX  are the mean values of all the data whose locations are –h and +h away from some 
other locations respectively:

( ) ( )
1 1;i ji jX X X X
N h N h

= =∑ ∑      Equation 35
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The correlation function, ρ(h), is the covariance function standardised by the appropriate 
standard deviations:

( ) ( )
i j

C h
hρ

σ σ
=          Equation 36

An average of all correlation functions computed in the NS direction through the computed 
P21 values (Figure 3-29), is displayed in Figure 3-30a. The correlation between neighbouring 
cells of P21 values drops smoothly and becomes anti-correlated at a lag distance of about 
900 m. The correlation in NS direction is slightly different from the correlation in EW 
(Figure 3-29b), implying an anisotropy in correlation length. This can be exploited by 
calculating the correlation function in many directions and derive the axes of the ellipsoid 
that is formed when the correlograms are combined. Such a computation is displayed in 
Figure 3-31. The anisotropy ratio, approximately 1.93, is the ratio between the largest axis, 
which trends 328°, and the smallest axis of the ellipse.

Figure 3-30. Autocorrelogram of P21 values computed in NS (a) and EW (b) directions.

Figure 3-31. 2D Autocorrelogram of P21 values.
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Certainly, this measure can be used to address the correlation and anisotropy in 3D. The 
extension of Equation 32 from 2D to 3D is, in principal, trivial though computationally 
extensive in practice. The complication lies in the general lack of underground data. We 
therefore do not provide any worked example on the fracture sample used above. However, 
we recommend the use of the following terminology, standard in structural geology, when 
describing the structural anisotropy:

• Isotropic or Spherical: λ1= λ2= λ3

• Oblate: = λ1> λ2= λ3

• Prolate: λ1= λ2> λ3

where λ is the relative length of the principle axes of the anisotropy ellipsoid.

A closely related, alternative, measure which is favoured by some practitioners is the 
semivariance that can be expressed as /Isaaks and Srivastava, 1989/:

( ) ( )21
2

N h

i i h
i

h X X
N

γ
−

+= −∑        Equation 37

In fact, if the studied variable (P21 in our case) is stationary, the semivariance for a lag h is 
equal to the difference between the variance and the spatial autocovariance for the same 
distance. If the variable is also standardised (mean = 0, variance = 1), the semivariogram is 
a mirror image of the autocorrelogram.

From an SKB modelling perspective, we do not consider it important which method is 
used to address spatial correlation and anisotropy since they are all closely related. We do, 
however, consider it important not to take isotropy for granted, but to explore the potential 
existence of anisotropy in 2D and, if possible, 3D using any of the methods mentioned here 
or, if properly argued for, any other suitable measure.

It is interesting to note, that while certain practitioners prefer to address fracturing patterns 
from a fractal point of view, others approach the problem from a geostatistical point of view. 
Yet, it can be shown that these, too, are very closely related; Consider the following:

If the values of P21 have a fractal spatial pattern, the matrix of P21 values can be regarded as 
a fractal surface. A vertical section through a fractal (self affine) surface X yields a fractal 
(self affine) curve which can be defined as /Peitgen et al, 1992/:

( ) ( ) 2
2 1 2 1variance HX t X t t t − ∝ −        Equation 38

with a so called /Hurst, 1957/ exponent, H, such that 0 < H < 1. An increment of X is said to 
be statistically self-affine with the parameter H or,

( ) ( )0X t X t−  and 
( ) ( )0

H

X rt X t

r

−   are statistically identical. This can be shown by letting
 
t0 = 0 and X(t0) = 0 which yields:

( )X t  and 
( )
H

X rt

r
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A fractal curve, X(rt), can thus be rescaled by dividing the amplitude by rH. The lag, h, 
in Equation 37 corresponds to t2–t1 in Equation 38 and Xi in Equation 37 corresponds to 
X(t2)–X(t1) in Equation 38. Equation 37 can therefore be rewritten:

( ) ( )
2Hh A hγ =          Equation 39

where A is a constant /Gallant, 1992; Gallant et al, 1993/ 

Since H is related to the fractal dimension, D, as :

D = 2 – H         Equation 40

we can relate the semivariance of a section or a surface to its fractal dimension as:

DhAh 24)()( −=γ         Equation 41

thereby bridging two apparently dissimilar modelling approaches.
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4 Expected Output from DFN analyses

The procedure of defining a set of DFNs for a geological model is composed of several, 
somewhat dissimilar, components. Commonly, any DFN analysis is initiated by a thorough 
statistical treatment of the sampled data. The critical parameters to compute for all fractures, 
and also separately for the main fracture classes “open” and “sealed”, are:

• orientation of the fractures,

• size of the fractures,

• fracture density,

• fracture termination (how fractures cross each other), 

• the spatial correlation of the fractures (both horizontally and vertically), 

• structural control, e.g. correlation to neighbouring large scale deformation zones, large 
scale folding, etc.

Additionally, the following properties are regarded important:

• The fracture surface roughness

• Mineralogy

Any potential correlation between these parameters, e.g. between length and orientation, 
mineralogy and orientation, etc, should be addressed, and analyses could be structured in a 
manner similar to the schematic correlation matrix proposed below:

 Orientation Size Density Termination Mineralogy Roughness

Orientation         –     
Size    –    
Density       –   
Termination             –  
Mineralogy             – 
Roughness               –

The analysis of lineaments provides information on the spatial correlation, length 
distribution and 2D orientation of large scale structures (Figure 4-1) over the entire model 
volume. The study of large scale structures can also provide qualitative information such as 
relative age relations and, above all, constitute the geometrical framework within which the 
DFNs are to be defined. Additionally, the impact of large scale structures on smaller scale 
fracturing is addressed by analysing the geometry of lineament in relation to the geometry 
of smaller scale fractures. Figure 4-1 summarises schematically the desired information, 
analyses and briefly the output of such analysis.

The analysis of outcrop fracture data is basically similar to the analysis of lineaments,  
with the main difference that small scale fractures are mapped with both strike and dip 
(Figure 4-2). Additionally, outcrop analysis provides input to define separate DFN models 
for each defined domain in the geological model.
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Analysis of borehole data constitutes a special challenge because:

• borehole data provide the highest possible level of fracture detail and accuracy in 
position, 

• provides depth information, but

• suffers from orientation and sampling bias.

The borehole data is essential to compute the fracture density in a rock volume. 
Additionally, borehole data provide means to address any changes of fracture density with 
depth, boundary between different domains, rotation of fracture orientations, etc. Figure 4-3 
illustrates schematically the minimum amount of analyses required and their expected 
output.

Figure 4-1. Schematic workflow of lineament analyses and expected output for the construction  
of DFNs.

Figure 4-2. Schematic workflow of outcrop analyses and expected output for the construction of 
DFNs.
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Though most analyses briefly outlined above can be denoted “traditional statistics”,  
the synthesis of lineament-, outcrop-, borehole- and generic data paired with conceptual 
understanding of a geological environment is unique to DFN analyses. The procedure  
here called synthesis (Figure 4-4) can be rather heavily stamped by scientific discipline  
(cf fractal vs geostatistical approach), working environment (e.g. preferences or “styles”), 
etc, and it is therefore not possible for SKB to request any specific method of work or  
work plan. We do, however, request that the output of the analyses conforms to the 
expectations of the different “customers” within SKB and that the working procedure is 
transparent, traceable and reproducible. In this context, we find it extremely important  
that the conceptual models are clearly stated, how these were applied in the analysis and, 
finally, how these are manifested in the final outcome.

To achieve this goal, we find it practical to clearly separate the initial statistical treatment 
from subsequent analyses, as schematically illustrated in Figure 4-5. We suggest that 
base statistics constitute the bulk of an appendix in the DFN report, whereas the main 
report should focus on the ennoblement of the base statistics to address issues such as the 
estimation of the true fracture sizes from trace length information, the spatial correlation, 
variations with depth, arguments for subdomains, structural control, assumptions of 
modelling, etc.

Figure 4-4. Schematic workflow of the synthesis of analyses and expected output for the 
construction of DFNs.
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Typically, the base statistics could be comprised of histograms, probability plots, 
contingency tables, etc for each sampling domain, i.e. borehole, outcrops, etc, separately. 
The purpose is to provide the receiver of the DFN model a clear set of background 
information that enables the user to judge the validity and possible consequences of the 
assumptions and conclusions made in subsequent analyses presented in the main DFN-
model report. All data sets extracted from SKB databases should be properly referenced  
by filename, log, SQL, or equivalent so that the presented analysis can be easily and 
accurately reproduced.

The final outcome of the DFN analyses can, in fact, be boiled down to simple tables, 
examples of which are shown below (Table 4-1 and Table 4-2). Such tables should be 
produced for each rock domain, in the geological model, that has been judged internally 
homogeneous with respect to the DFN statistics. That does not exclude the possibility of 
describing a smooth transition of a parameter within a rock domain, e.g. an exponentially 
decreasing fracture density with depth or distance from any other structure, e.g. domain 
boundary or deterministically modelled deformation zone. Should it, however, be judged 
necessary to define subdomains with respect to DFN properties, in addition to those already 
provided by the geological model, it is important to consult with SKB at an early stage in 
this matter, This because discrete, horizontal domain boundaries at repository depth, at the 
moment 400–700 m, may impose severe implication on the projecting.

Table 4-1. Tentative example of a summary table for DFN parameters.

Set # Orientation1 Size distribution2 Density Spatial model 
 (T/P, Fisher κ) (pdf, parameters) (m2/m3) 

1 219.0/83.7, 4.84 Lognormal, µ=2.0, σ =2.0 0.42 Poisson

2 127.0/84.2, 8.35 Lognormal, µ=2.1, σ =2.5, 0.34 Poisson

3 20.6/6.0, 8.33 Powerlaw, k = 2.8, xmin = 0.5 1.2 Poisson

1  The orientation may be given either as the trend/plunge of the pole, or as strike/dip of the plane.
2 The lower censoring, Xmin, and the boundary to discrete structures, Xmax, must be stated regardless of the chosen 

distribution.

Table 4-2. Tentative example of a summary table of additional qualifiers for DFN 
parameters.

Set # Termination Open Roughness Mineralogy % 
  (%) (%) JRC class containing at least indicated

1 25%, set#2 
 40%, set#3 10   4 Chl (80), Ca (60), Ep (20)

2 50%, set#1 
 20%, set#3 10   8 Chl (80), Ca (70), Lau (15)

3 30%, set#1 
 8%, set#2 15 10 Chl (60), Fe (10), Lau (10)
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Figure 4-5. Schematic structure of DFN analysis and reporting.
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