International Progress Report

IPR-04-17

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase, test campaign 1, single hole tests

Torbjörn Forsmark Ingvar Rhén

SWECO VIAK

April 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Äspö Hard Rock Laboratory

Report no.	^{No.}
IPR-04-17	F63K
^{Author} Torbjörn Forsmark Ingvar Rhén	Date 2004-04-07
^{Checked by}	Date
Ingvar Rhén	2004-04-13
Lars-Erik Johannesson	2004-05-28
Approved Christer Svemar	Date 2004-08-23

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase, test campaign 1, single hole tests

Torbjörn Forsmark Ingvar Rhén

SWECO VIAK

April 2004

Keywords: Äspö HRL, Prototype Repository, hydrogeology, hydraulic tests, pressure build-up tests, hydraulic parameters, transmissivity, storage coefficient

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Abstract

The Prototype Repository project is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects.

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

Single hole tests were done in 13 boreholes of the Prototype Repository tunnel. There is a tenth HM section in KA3550G01, which, however, could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The results are shown in the table below.

Section	HM section	Specific capacity (m ² /s)	T _{MOYE} (m ² /s)	T _{eval} (m ² /s)	Skinfactor
KA3550G01:2	Х	(1)	(1)	(1)	(1)
KA3552G01:2	Х	$9.4 \cdot 10^{-9}$	$8.8 \cdot 10^{-9}$	-	-
KA3554G01:2	Х	$8.2 \cdot 10^{-8}$	$5.2 \cdot 10^{-8}$	$6.4 \cdot 10^{-7}$	43
KA3554G02:4	Х	$1.3 \cdot 10^{-9}$	$8.2 \cdot 10^{-10}$	$1.1 \cdot 10^{-8}$	51
KA3548A01:3	Х	$1.1 \cdot 10^{-7}$	7.1 · 10 ⁻⁸	$8.1 \cdot 10^{-8}$	-2
KA3542G01:3	Х	$5.4 \cdot 10^{-8}$	$3.6 \cdot 10^{-8}$	9.5 · 10 ⁻⁸	5
KA3544G01:2	Х	$7.8 \cdot 10^{-10}$	$5.1 \cdot 10^{-10}$	-	-
KA3542G02:2	Х	5.4 · 10 ⁻¹⁰	$3.5 \cdot 10^{-10}$	$2.2 \cdot 10^{-10}$	-0.3
KA3563G:4	-	$1.7 \cdot 10^{-8}$	5.6 · 10 ⁻⁹	-	-
KA3546G01:2	Х	$6.1 \cdot 10^{-10}$	$3.9 \cdot 10^{-10}$	$7.8 \cdot 10^{-11}$	-2
KA3566G01:2	-	$6.8 \cdot 10^{-10}$	$4.4 \cdot 10^{-10}$	-	-
KA3572G01:2	-	$1.9 \cdot 10^{-10}$	$1.3 \cdot 10^{-10}$	-	-
KA3574G01:3		$8.7 \cdot 10^{-10}$	6.1 · 10 ⁻¹⁰		-
KA3539G:2	Х	1.9 · 10 ⁻⁷	$1.3 \cdot 10^{-7}$	$7.0 \cdot 10^{-7}$	1.5

Table 1 Results from test campaign 1. ⁽¹⁾ Indicates packer system failure, ⁽²⁾ indicates
no tests were done this test campaign, "-" indicates it was not possible to
evaluate any value with selected method.

Sammanfattning

Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB: s djupförvars system. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototyp förvaret men även i andra projekt.

Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer.

Enhålstester gjordes i totalt 13 stycken borrhål. Ett tionde borrhål är utrustad med HM sensorer men har ej kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM sensorer installerade. Det hålet är tänkt att användas såsom referenshål. Resultaten från denna testomgång presenteras i tabellen nedan.

Sektion	HM sektion	Specifik kapacitet (m ² /s)	T _{MOYE} (m ² /s)	$\begin{array}{c} T_{eval} \\ (m^2\!/\!s) \end{array}$	Skinfaktor
KA3550G01:2	Х	(1)	(1)	(1)	(1)
KA3552G01:2	Х	9.4 · 10 ⁻⁹	$8.8 \cdot 10^{-9}$	-	-
KA3554G01:2	Х	$8.2 \cdot 10^{-8}$	$5.2 \cdot 10^{-8}$	$6.4 \cdot 10^{-7}$	43
KA3554G02:4	Х	1.3 · 10 ⁻⁹	$8.2 \cdot 10^{-10}$	$1.1 \cdot 10^{-8}$	51
KA3548A01:3	Х	1.1 · 10 ⁻⁷	7.1 · 10 ⁻⁸	8.1 · 10 ⁻⁸	-2
KA3542G01:3	Х	$5.4 \cdot 10^{-8}$	$3.6 \cdot 10^{-8}$	9.5 · 10 ⁻⁸	5
KA3544G01:2	Х	$7.8 \cdot 10^{-10}$	$5.1 \cdot 10^{-10}$	-	-
KA3542G02:2	Х	$5.4 \cdot 10^{-10}$	$3.5 \cdot 10^{-10}$	$2.2 \cdot 10^{-10}$	-0.3
KA3563G:4	-	$1.7 \cdot 10^{-8}$	5.6 · 10 ⁻⁹	-	-
KA3546G01:2	Х	$6.1 \cdot 10^{-10}$	$3.9 \cdot 10^{-10}$	$7.8 \cdot 10^{-11}$	-2
KA3566G01:2	-	$6.8 \cdot 10^{-10}$	$4.4 \cdot 10^{-10}$	-	-
KA3572G01:2	-	$1.9 \cdot 10^{-10}$	$1.3 \cdot 10^{-10}$	-	-
KA3574G01:3	-	$8.7 \cdot 10^{-10}$	$6.1 \cdot 10^{-10}$	-	-
KA3539G:2	Х	$1.9 \cdot 10^{-7}$	$1.3 \cdot 10^{-7}$	$7.0 \cdot 10^{-7}$	1.5

Tabell 1 Resultat från testomgång 1. ⁽¹⁾ indikerar läckageproblem med manschetterna, ⁽²⁾ indikerar att inga tester gjordes i dessa sektioner denna testomgång, "-" indikerar att inget värde kunnat beräknas med valt utvärderingsmetod.

Executive Summary

In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on.

In Table 1 the evaluated specific capacity during the different test campaigns are shown. The specific capacity is obtained by dividing the final flowrate with the maximum decline in pressure during the flow period. It is a simple way to get an estimation of the hydrological capacity of a well or borehole.

Table 2 contains the evaluated T_{MOYE} which is a standard procedure to obtain a first and approximate, based on stationary evaluation methods, estimation of the transmissivity. The transmissivity gives the flow capacity of a 2D feature, thus transmissivity divided by the thickness of the feature (normally test section length) gives the hydraulic conductivity.

Table 3 details the evaluated transmissivity, based on transient evaluation of the pressure time curve, which can be looked upon as the best estimation of the transmissivity.

The evaluated skinfactor are shown in Table 4. The skinfactor gives an indication of the resistance of water to enter a borehole. It can usually be explained by clogging of the borehole walls or by a turbulent water flow.

Section	HM section	Test campaign 1 (-0 days)	Test campaign 2	Test campaign 3	Test campaign 4	Test campaign 5	Test campaign 6
KA3550G01:2	Х	(1)					
KA3552G01:2	Х	$9.4 \cdot 10^{-9}$					
KA3554G01:2	Х	$8.2\cdot10^{-8}$					
KA3554G02:4	Х	$1.3 \cdot 10^{-9}$					
KA3548A01:3	Х	$1.1 \cdot 10^{-7}$					
KA3542G01:3	Х	$5.4 \cdot 10^{-8}$					
KA3544G01:2	Х	$7.8 \cdot 10^{-10}$					
KA3542G02:2	X	$5.4 \cdot 10^{-10}$					
KA3563G:4	-	$1.7 \cdot 10^{-8}$					
KA3546G01:2	X	$6.1 \cdot 10^{-10}$					
KA3566G01:2	-	$6.8 \cdot 10^{-10}$					
KA3572G01:2	-	$1.9 \cdot 10^{-10}$					
KA3574G01:3	-	$8.7 \cdot 10^{-10}$					
KA3539G:2	Х	$1.9 \cdot 10^{-7}$					

Table 1 Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ Indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Table 2 T_{MOYE} . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	Test campaign 1 (-0 days)	Test campaign 2	Test campaign 3	Test campaign 4	Test campaign 5	Test campaign 6
KA3550G01:2	X	(1)					
KA3552G01:2	Х	8.8 · 10 ⁻⁹					
KA3554G01:2	Х	$5.2 \cdot 10^{-8}$					
KA3554G02:4	Х	$8.2 \cdot 10^{-10}$					
KA3548A01:3	Х	7.1 · 10 ⁻⁸					
KA3542G01:3	Х	$3.6 \cdot 10^{-8}$					
KA3544G01:2	Х	$5.1 \cdot 10^{-10}$					
KA3542G02:2	Х	$3.5 \cdot 10^{-10}$					
KA3563G:4	-	5.6 · 10 ⁻⁹					
KA3546G01:2	Х	$3.9 \cdot 10^{-10}$					
KA3566G01:2	-	$4.4 \cdot 10^{-10}$					
KA3572G01:2	-	$1.3 \cdot 10^{-10}$					
KA3574G01:3	-	$6.1 \cdot 10^{-10}$					
KA3539G:2	Х	$1.3 \cdot 10^{-7}$					

Table 3 Transmissivity . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	Test campaign 1 (-0 days)	Test campaign 2	Test campaign 3	Test campaign 4	Test campaign 5	Test campaign 6
KA3550G01:2	Х	(1)					
KA3552G01:2	Х	-					
KA3554G01:2	Х	$6.4 \cdot 10^{-7}$					
KA3554G02:4	Х	$1.1 \cdot 10^{-8}$					
KA3548A01:3	Х	$8.1 \cdot 10^{-8}$					
KA3542G01:3	Х	9.5 · 10 ⁻⁸					
KA3544G01:2	Х	-					
KA3542G02:2	Х	$2.2 \cdot 10^{-10}$					
KA3563G:4	-	-					
KA3546G01:2	Х	$7.8 \cdot 10^{-11}$					
KA3566G01:2	-	-					
KA3572G01:2	-	-					
KA3574G01:3	-	-					
KA3539G:2	Х	$7.0 \cdot 10^{-7}$					

Table 4 Skinfactor. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, ⁽²⁾ indicates no tests were done this test campaign, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	Test campaign 1 (-0 days)	Test campaign 2	Test campaign 3	Test campaign 4	Test campaign 5	Test campaign 6
KA3550G01:2	Х	(1)					
KA3552G01:2	Х	-					
KA3554G01:2	Х	43					
KA3554G02:4	Х	51					
KA3548A01:3	Х	-2					
KA3542G01:3	Х	5					
KA3544G01:2	Х	-					
KA3542G02:2	Х	-0.3					
KA3563G:4	-	-					
KA3546G01:2	Х	-2					
KA3566G01:2	-	-					
KA3572G01:2	-	-					
KA3574G01:3	-	-					
KA3539G:2	Х	1.5					

Contents

1	Background	17
1.1	Äspö Hard Rock Laboratory	17
1.2	Prototype Repository	18
1.2.1	General objectives	18
2	Objective	19
3	Scope	21
4	Equipment	23
4.1	Description of equipment	23
4.2	Sensors	24
4.3	Deformation measurements	25
4.3.1	Measurement equipment	25
5	Execution	29
5.1	Preparations	29
5.2	Execution of tests/measurements	29
5.2.1	Test principle	29
5.2.2	Test procedure	29
5.3	Data handling	30
5.4	Analyses and interpretation	30
5.4.1	Single hole tests	30
6	Results	33
6.1	Single hole tests	33
6.1.1	KA3552G01:2, test No 1:1	33
6.1.2	KA3554G01:2, test No 1:2	36
6.1.3	KA3554G02:4, test No 1:3	39
6.1.4	KA3548A01:3, test No 1:4	42
6.1.5	KA3542G01:3, test No 1:5	45
6.1.6	KA3544G01:2, test No 1:6	48
6.1.7	KA3542G02:2, test No 1:7	51
6.1.8	KA3563G:4 , test No 1:8	54
6.1.9	KA3546G01:2, test No 1:9	57
6.1.10	KA3566G01:2, test No 1:10	60
6.1.11	KA3572G01:2, test No 1:11	63
6.1.12	KA3574G01:3, test No 1:12	66
6.1.13	KA3539G:2, test No 1:13	69
6.2	Deformation measurements	72
	References	73

Tables

Table 3-1 Single hole tests during the campaign in May 2003. ⁽¹⁾ indicates packer system failure, "X" indicates that section is equipped with HM sensors.	21
Table 4-1 Data of the measurement sections (sensors, length, number of fractures etc).	27
Table 6-1 General test data for the pressure build-up test in section 4.35-6.05 m	33
Table 6-2 General test data for the pressure build-up test in section 22.60-24.15 m	36
Table 6-3 General test data for the pressure build-up test in section 10.50-12.20 m	39
Table 6-4 General test data for the pressure build-up test in section 8.80-10.75 m	42
Table 6-5 General test data for the pressure build-up test in section 18.60-20.30 m	45
Table 6-6 General test data for the pressure build-up test in section 8.90-10.65 m	48
Table 6-7 General test data for the pressure build-up test in section 25.60-27.20 m	51
Table 6-8 General test data for the pressure build-up test in section 1.50-3.00 m	54
Table 6-9 General test data for the pressure build-up test in section 6.75-8.30 m	57
Table 6-10 General test data for the pressure build-up test in section 20.0-21.50 m	60
Table 6-11 General test data for the pressure build-up test in section 2.70-5.30 m	63
Table 6-12 General test data for the pressure build-up test in section 1.80-4.10 m	66
Table 6-13 General test data for the pressure build-up test in section 15.85-17.60 m	69

Figures

Figure 1-1 Äspö Hard Rock Laboratory	17
Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.	23
Figure 4-2 Pressure transducers connections	24
Figure 4-3 A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.	26
Figure 4-4 A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.	28
Figure 6-1 Flow rates during draw down in KA3552G01. Time in minutes.	34
Figure 6-2 Flow rates during draw down in KA3554G01:2. Time in minutes.	37
Figure 6-3 Flow rates during draw down in KA3554G02:4. Time in minutes.	40
Figure 6-4 Flow rates during draw down in KA3548A01:3. Time in minutes.	43
Figure 6-5 Flow rates during draw down in KA3542G01:3. Time in minutes.	46
Figure 6-6 Flow rates during draw down in KA3544G01:2. Time in minutes.	49
Figure 6-7 Flow rates during draw down in KA3542G02:2. Time in minutes.	52
Figure 6-8 Flow rates during draw down in KA3563G:4. Time in minutes.	55
Figure 6-9 Flow rates during draw down in KA3546G01:2. Time in minutes.	58
Figure 6-10 Flow rates during draw down in KA3566G01:2. Time in minutes.	61
Figure 6-11 Flow rates during draw down in KA3572G01:2. Time in minutes.	64
Figure 6-12 Flow rates during draw down in KA3574G01:3. Time in minutes.	67
Figure 6-13 Flow rates during draw down in KA3539G:2. Time in minutes.	70
Figure 6-14 Deformation measurements in KA3546G01:2 (hourly measurements)	72

1 Background

1.1 Äspö Hard Rock Laboratory

In order to prepare for the siting and licensing of a spent fuel repository SKB has constructed an underground research laboratory.

In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see *Figure 1-1*, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m.

The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out.

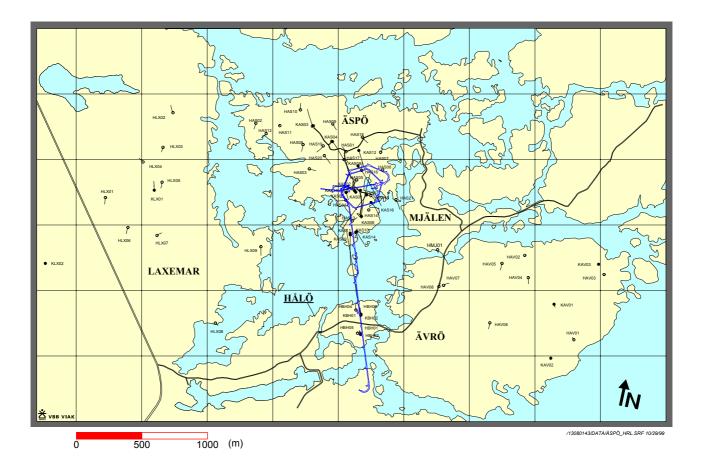


Figure 1-1 Äspö Hard Rock Laboratory

1.2 Prototype repository

The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation "Prototype Repository Test". The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment.

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test.

1.2.1 General objectives

The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity.

The major objectives for the Prototype Repository are:

- To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions.
- To develop, test and demonstrate appropriate engineering standards and quality assurance methods.
- To simulate appropriate parts of the repository design and construction process.

The objective for the operation phase program is:

• To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass

2 Objective

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

3 Scope

Single hole tests were done in 13 boreholes of the Prototype Repository tunnel. There is a tenth HM section in KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in *Table 3-1*. The first figure in the test number indicates this being the first single hole test campaign, while the second number indicate the chronological order of the single hole tests. Also indicated in the table is whether the section is equipped for Hydro Mechanical measurements (HM).

Bore hole	Section	HM section	Single hole test no.	Date of test	Start of test	Flow start	Flow stop	Test stop
KA3550G01:2 ⁽¹⁾	5.20-7.30	Х	-	-	-	-	-	_
KA3552G01:2	4.35-6.05	Х	1:1	2003-05-08	10:00:00	10:52:00	11:39:00	13:58:00
KA3554G01:2	22.60-24.15	Х	1:2	2003-05-08	13:15:00	13:46:00	14:16:00	16:00:00
KA3554G02:4	10.50-12.20	Х	1:3	2003-05-08	14:45:00	15:16:00	15:46:00	18:00:00
KA3548A01:3	8.80-10.75	Х	1:4	2003-05-08	16:15:00	16:46:00	17:16:00	20:00:00
KA3542G01:3	18.60-20.30	Х	1:5	2003-05-08	17:53:00	18:23:00	18:53:00	21:00:00
KA3544G01:2	8.90-10.65	Х	1:6	2003-05-08	19:23:00	19:53:00	20:43:00	23:00:00
KA3542G02:2	25.60-27.20	Х	1:7	2003-05-09	05:55:00	06:25:00	07:25:00	10:00:00
KA3563G:4	1.50-3.00	-	1:8	2003-05-09	05:55:00	06:26:00	07:26:00	10:00:00
KA3546G01:2	6.75-8.30	Х	1:9	2003-05-10	06:00:00	06:30:00	07:30:05	10:00:00
KA3566G01:2	20.0-21.5	-	1:10	2003-05-10	06:00:00	06:34:00	07:34:00	10:00:00
KA3572G01:2	2.70-5.30	-	1:11	2003-05-11	08:00:00	08:30:00	09:30:00	12:00:00
KA3574G01:3	1.80-4.10	-	1:12	2003-05-11	08:00:00	08:32:00	09:32:00	12:00:00
KA3539G:2	15.85-17.6	Х	1:13	2003-05-09	08:00:00	08:40:00	14:50:00	06:30:00

Table 3-1 Single hole tests during the campaign in May 2003. ⁽¹⁾ indicates packer system failure, "X" indicates that section is equipped with HM sensors.

In chapter 6 the results of the tests are presented.

4 Equipment

4.1 Description of equipment

A large number of boreholes were instrumented with one or several packers. In all packed-off sections, the water pressure will be measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency (*Figure 4-1*). The maximum scan frequency is every 3^{rd} second. During periods with no hydraulic tests, preliminary the sampling (storing a value in the data base) frequency will be every 2^{nd} hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to 3^{rd} second.

Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.

4.2 Sensors

The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, *see Figure 4-2*.

The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 - 50 bar (absolute).

According to the manufacturer the uncertainty for these transducers is \pm -0.2 % (type500) and \pm -0.08 % (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max. 0.05 % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every two seconds. If the change since the latest stored value exceeds a "change value" of approximately 2 kPa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes.

Figure 4-2 Pressure transducers connections

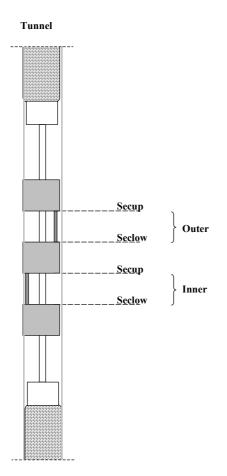
4.3 Deformation measurements

During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will close, *see Rhen et al*, 2004.

It is of great interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment.

In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered.

The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures.


The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Hydro tests will be performed in the same sections as the mechanical measurements are made, *see Table 3-1*.

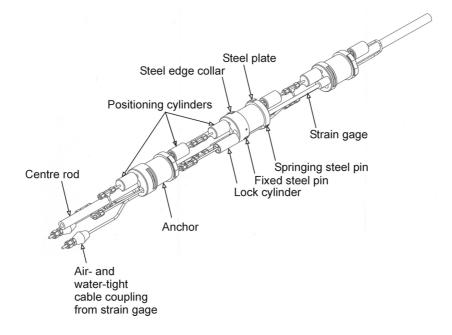
Displacement measurements will be made continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. Most tests will be made during the first years of operation when the largest displacements are expected to be measured.

4.3.1 Measurement equipment

In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature measurement equipment has been developed.

The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors, *see Figure 4-3* and *Figure 4-4*. The temperature is also measured in each sensor by a thermistor.

Figure 4-3 A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.


The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock.

Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two-six fractures, see *Table 4-1*.

Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections.

Label	Cable mark	Sensor S/N	Position	Secup	Seclow	Section length (m)	Number of fractures
KA3539G-2-1	HRA 1121	3511	Inner	16.77	16.97	0.20	2
KA3539G-2-2	HRA 1122	3510	Outer	16.47	16.67	0.20	0
KA3542G01-3-1	HRA 1231	3513	Inner	19.47	19.67	0.20	0
KA3542G01-3-2	HRA 1232	3512	Outer	19.17	19.37	0.20	1
KA3542G02-2-1	HRA 1321	3515	Inner	26.50	26.70	0.20	1
KA3542G02-2-2	HRA 1322	3514	Outer	26.20	26.40	0.20	0
KA3544G01-2-1	HRA 1621	3509	Inner	9.82	10.02	0.20	1
KA3544G01-2-2	HRA 1622	3508	Outer	9.52	9.72	0.20	0
KA3546G01-2-1	HRA 1721	3517	Inner	7.67	7.87	0.20	1
KA3546G01-2-2	HRA 1722	3516	Outer	7.37	7.57	0.20	0
KA3548A01-3-1	HRA 1831	3526	Inner	9.70	10.15	0.45	2
KA3548A01-3-2	HRA 1832	3518	Outer	9.40	9.60	0.20	0
KA3550G01-2-1	HRA 2121	3527	Inner	6.10	6.70	0.60	6
KA3550G01-2-2	HRA 2122	3519	Outer	5.80	6.00	0.20	0
KA3552G01-2-1	HRA 2521	3521	Inner	5.25	5.45	0.20	0
KA3552G01-2-2	HRA 2522	3520	Outer	4.95	5.15	0.20	2
KA3554G01-2-1	HRA 2821	3525	Inner	23.54	23.80	0.26	2
KA3554G01-2-2	HRA 2822	3522	Outer	23.24	23.44	0.20	0
KA3554G02-4-1	HRA 2941	3524	Inner	11.40	11.60	0.20	0
KA3554G02-4-2	HRA 2942	3523	Outer	11.10	11.30	0.20	1
KG0010B01-1-1	-	3238	Inner	3.66	3.86	0.20	-
KG0010B01-1-2	-	3507	Outer	3.36	3.56	0.20	-

 Table 4-1
 Data of the measurement sections (sensors, length, number of fractures etc).

Figure 4-4 A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.

5 Execution

5.1 **Preparations**

Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes.

Preparations also include checking of equipment to be used in the tests. The equipment included

- measuring glasses of various sizes
- synchronizing watches with the HMS system (only normal time)
- protocols for flow measurements
- water sampling bottles
- hand calculator

5.2 Execution of tests/measurements

5.2.1 Test principle

The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section.

5.2.2 Test procedure

The following measurement cycle was used:

- Initialising of the HMS system 30 minutes before flow start with logger frequency 5 minutes
- A couple of minutes before flow start and until 5 minutes after flow start the highest logging frequency of 3 seconds were used. Thereafter the logging frequency was 30 seconds, which was used until 30 minutes after flow start. Then a logging frequency of 5 minutes was used
- From shortly before flow stop until 5 minutes after flow stop the highest logging frequency of 2 seconds were used. Thereafter the logging frequency was 30 seconds which was used until 30 minutes after flow start and a logging frequency of 5 minutes was used
- The flow was measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop
- The valve shutting was done as swiftly as possible

5.3 Data handling

The test operator was keeping a diary during the test period. Data from the hydro tests includes:

- daily logs in accordance with Äspö Hard Rock Laboratory routines
- Protocols from flow measurements

The test coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling.

5.4 Analyses and interpretation

5.4.1 Single hole tests

When plotting the data, three different kinds of graphs can be produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change, Δp , is plotted versus the equivalent time, dt_e, in minutes. The equivalent time, dt_e, is defined as

$$dt_e = (t_p \cdot dt) / (t_p + dt)$$
 where

 $t_p =$ the flowing time of the borehole before shutting the valve

dt = the time after shutting the valve

The pressure change $\triangle p$ is calculated as

$\Delta \mathbf{p}$	=	p(dt) - p(tp)
p(dt)	=	measured pressure after shutting the valve
p(tp)	=	measured pressure just before shutting the valve

The third plot is made in a logarithmic diagram, where the change of pressure, Δp , is plotted versus the equivalent time, dt_e , in minutes. The derivative of the pressure is also plotted in this diagram.

The pressure normally is signed using the p and a change of pressure using a Δp . In the diagrams the pressure can be expressed in bar, kPa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and Δs for the difference of pressure over one decade in a logarithmic diagram. The s or Δs values shall be expressed in metres before used in the formulas.

Hydrogeologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests). The improvement in hydrogeologic test analysis is attributed to the sensitivity of the derivative response to small variations in the rate of pressure change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to:

- diagnostically determine formation response (homogeneous vs. heterogeneous) and boundary conditions (impermeable or constant head) that are evident during the test,
- determine when radial flow conditions are established and, therefore, when straight-line solution analysis of draw down data is valid, and
- assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects.

The software DERIV is used to produce the derivative. DERIV is software for converting slug and constant-rate discharge test data and type curves to derivative format. The software has features that permit the smoothing of noisy test data, accounts for pressure derivative end-effects, and can be used to convert slug test data to equivalent constant-rate test responses.

Two different geohydrological parameters of the borehole can easily be evaluated. These parameters are:

- the specific capacity, Q/s (m²/s)
- the transmissivity, $T (m^2/s)$

The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test.

To evaluate the transmissivity, T, the following methodology should be used:

The flow regime can be estimated from the logarithmic plot. In most cases the flow can be said to be radial to the borehole approximately 1.0-1.5 decades after the time the curve has left the 1:1 curve. The 1:1 curve indicates the well bore storage, WBS. The transmissivity is then calculated with Jacob's semi logarithmic approximation of Theis well function,

 $T=0.183\cdot Q \ / \ \triangle s$

- Q = the average flow rate before shutting the valve (m³/s)
- $\Delta s =$ the pressure change in metres during a decade along <u>the straight line</u> (radial flow period) in the semi logarithmic diagram (m).

Sometimes both the logarithmic and the semi logarithmic diagrams indicate a more complicated flow regime than described above (WBS, transition, radial flow) and in these cases it is necessary to decide what part of the curve and what evaluation method that is appropriate for estimating the hydraulic properties.

The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity

$$T_{Moye} = Q \cdot (1 + \ln(L/(2 \cdot r_w))) / (2 \cdot \pi \cdot \Delta h) \text{ where }$$

$\Delta \mathbf{h} = (\mathbf{p}_0 - \mathbf{p}_p) / (\mathbf{\rho}_w \cdot \mathbf{g})$	[m]
L = test section length	[m]
p_0 = absolute pressure in test section before start of flow period	[Pa]
p_p = absolute pressure in test section before stop of flow period	[Pa]
$\rho_{\rm w} =$ water density	$[kg/m^3]$
g = acceleration of gravity	$[m/s^2]$

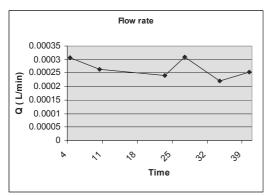
6 Results

6.1 Single hole tests

6.1.1 KA3552G01:2, test No 1:1

General test data for the pressure build-up test in the interval 4.35-6.05 m of borehole KA3552G01 are presented in *Table 6-1*.

Table 6-1 General test data for the pressure build-up test in section 4.35-6.05 m
of borehole KA3552G01


General test data						
Borehole section	KA35520	KA3552G01:2				
Test No	1:1	1:1				
Field crew	J. Magnus	J. Magnusson, A. Blom (SWECO VIAK)				
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	4.35			
Test section- seclow	Seclow	m	6.05			
Test section length	L_{w}	m	1.70			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030508 10:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030508 10:52:00			
Stop of flow period		yymmdd hh:mm:ss	20030508 11:39:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 13:58:00			
Total flow time	t _p	min	47			
Total recovery time	t _F	min	139			

Pressure data

Pressure data	Nomen-clature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	\mathbf{p}_0	kPa	113.9	
Absolute pressure in test section before stop of flow	p _p	kPa	109.4	
Absolute pressure in test section at stop of recovery period	$p_{\rm f}$	kPa	130.4	
Maximal pressure change during flow period	dpp	kPa	4.5	

Flow data

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	4.21 · 10 ⁻⁹
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-1 Flow rates during draw down in KA3552G01. Time in minutes.

Comments to the test

The test was done in a very low-conductive section. The initial pressure and pressure responses are very low. The pressure response is disturbed during the recovery. The reason is unknown.

Interpreted flow regimes

0 - 2 minutesWell Bore Storage (WBS)2 - 3 minutesTransition period3 - 35 minutesDisturbance. Not possible to evaluate.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

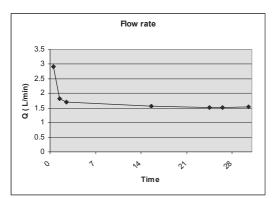
Selected representative parameters

The selected representative parameters from the test in the interval 4.35-6.05 m in KA3552G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	mmary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ	Test no:	1:1			
Borehole ID:	KA3552G01	Test start:	2003-05-08	3 10:00		
Test section (m):	4.35-6.05	Responsible for	SWECO V			
		test performance:		J. Magnusson/A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		SWECO VIAK AB		
		test evaluation:		T. Forsmark		
Linear plot Head		Flow period		Recovery period		
-443		Indata		Indata		
		p ₀ (kPa)	113.9			
		p _i (kPa)				
-444		p _p (kPa)	109.4	p _F (kPa)	130.4	
		$Q_p (m^3/s)$	$4.21 \cdot 10^{-9}$		150.1	
		tp (min)	47	t _F (min)	139	
		S*		S*	1.5^{-6}	
		EC _w (mS/m)	+		1 10	
-446		Te _w (gr C)			+	
		Derivative fact.		Derivative fact.	0.2	
		Derivative lact.			0.2	
-447						
10:00:00 11:00:00 12:00:0	0 13:00:00 14:00:00					
Lin-Log plot		Results		Results		
		Q/s (m ² /s)	9.4 · 10 ⁻⁹	Flow regime:		
0		$T_{Moye}(m^2/s)$	$9.4 \cdot 10^{-9}$ 8.8 \cdot 10^{-9}	dt _{e1} (min)		
- · · · · · · · · · · · · · · · · · · ·		Flow regime:	8.8 . 10	dt_{e1} (min) dt_{e2} (min)		
1 ****A		dt ₁ (min)		T (m^2/s)		
0.4	•			S (-)		
	-1	dt ₂ (min) T (m ² /s)		K _s (m/s)		
	÷\	S (-)				
e i	wil.	K _s (m/s)		S _s (1/m) C (m ³ /Pa)		
	· Ŋ			. ,		
		S _s (1/m) C (m³/Pa)		$C_D(-)$		
				ξ(-)		
1.6		C _D (-)				
-		ξ(-)				
2						
0.1 1 10						
Time (min)					
Log-Log plot incl. derivative-	recovery period	Interpreted form	ation and w			
		Flow regime:		C (m ³ /Pa)		
10		dt ₁ (min)		C _D (-)		
	· · · · · · · · · · · · · · · · · · ·	dt ₂ (min)		ξ(-)		
		T _⊤ (m²/s)				
		S (-)				
Lecovery (m)	\mathbf{V}	K _s (m/s)				
e e		S _s (1/m)				
				onductive section. T		
				valuation uncertain.		
		response is disturb		e recovery. The rea		
		unknown.	-			
0.01						
0.1 1 10 Time (1	100 1000 min)					

6.1.2 KA3554G01:2, test No 1:2

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in *Table 6-2*.


Table 6-2 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

General test data						
Borehole section	KA35540	KA3554G01:2				
Test No	1:2	1:2				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030508 13:15			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030508 13:46:00			
Stop of flow period		yymmdd hh:mm:ss	20030508 14:16:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 16:00:00			
Total flow time	t _p	min	30			
Total recovery time	t _F	min	105			

Pressure data

Pressure data	Nomen-clature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p_0	kPa	3661.0	
Absolute pressure in test section before stop of flow	p _p	kPa	534.3	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3655.0	
Maximal pressure change during flow period	dpp	kPa	3126.7	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$2.55 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-2 Flow rates during draw down in KA3554G01:2. Time in minutes.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3 minutesWell Bore Storage (WBS)0.3 - 8 minutesTransition period8 - 20 minutesRadial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

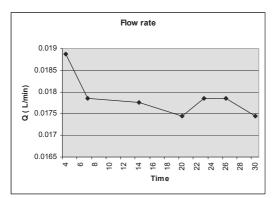
Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

Project: Area:	PROTOTYPE ÄSPÖ	Test type:	PBT		
Area:					
	ASPO	Test no:	1:2		
Borehole ID:	KA3554G01	Test start:	2003-05-08	13:46	
Test section (m):	22.60-24.15	Responsible for	SWECO V		
~ /		test performance:	J. Magnuss	on/A. Blom	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO VI		
· · · · · · · · · · · · · · · · · · ·		test evaluation:	T. Forsmark		
Linear plot Head		Flow period		Recovery period	
		Indata		Indata	
_		p ₀ (kPa)	3661.0		
-100		p _i (kPa)	200110		
		p _p (kPa)	534.3	p _F (kPa)	3655.0
		$Q_p (m^3/s)$	$2.55 \cdot 10^{-5}$		5055.0
8 -200		d_p (m /3)	30	t (min)	105
300 -		tp (min) S*	30	t _F (min) S*	105 $1 \cdot 10^{-6}$
[∞] -300 				3	1 · 10 *
		EC _w (mS/m)			+
-400		Te _w (gr C)			
		Derivative fact.		Derivative fact.	0.2
-500					
	5:00:00 16:00:00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$8.2 \cdot 10^{-8}$	Flow regime:	Radial
0		$T_{Moye}(m^2/s)$	$5.2 \cdot 10^{-8}$	dt _{e1} (min)	8
		Flow regime:	5.2 10	dt _{e2} (min)	20
].		dt_1 (min)		$T (m^2/s)$	$6.4 \cdot 10^{-7}$
100					0.4 · 10
		dt_2 (min)		S (-)	
		T (m²/s)		K _s (m/s)	+
ų 200 – 1		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
°°° − − − − − − − − − − − − − − − − − −		S _s (1/m)		C _D (-)	
300		C (m ³ /Pa)		ξ(-)	43
	-	C _D (-)			
4		ξ(-)			
400					
0.1 1 10 Time (m	100 1000	<u> </u>			
Log-Log plot incl. derivative-	recovery period	Interpreted forma	ation and we	ell parameters.	
	v .	Flow regime:	Radial	C (m ³ /Pa)	
1000		dt ₁ (min)	8	C _D (-)	
		dt_2 (min)	20	ξ(-)	43
		T_{T} (m ² /s)	$6.4 \cdot 10^{-7}$		-
		S (-)	5.1 10		1
Ê 100		K _s (m/s)			
\sim \sim \sim \sim \sim \sim \sim		S_{s} (1/m)			+
		Comments: A su	aggestint tost	I	<u> </u>
	.	Comments: A su	ccessiui test.		
	ri l				
	-				
1	100 1000 min)				

6.1.3 KA3554G02:4 , test No 1:3

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in *Table 6-3*.


Table 6-3 General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02

General test data							
Borehole section	KA35540	KA3554G02:4					
Test No	1:3						
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)				
Test equipment system	HMS						
General comment	Single ho	le test					
	Nomen- clature	Unit	Value				
Test section- secup	Secup	m	10.50				
Test section- seclow	Seclow	m	12.20				
Test section length	L _w	m	1.70				
Test section diameter	$2 \cdot r_w$	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20030508 14:45				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20030508 15:16:00				
Stop of flow period		yymmdd hh:mm:ss	20030508 15:46:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 18:00:00				
Total flow time	t _p	min	30				
Total recovery time	t _F	min	134				

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2427.6	
Absolute pressure in test section before stop of flow	p _p	kPa	103.2	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2418.1	
Maximal pressure change during flow period	dpp	kPa	2324.4	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$2.91 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Qm	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-3 Flow rates during draw down in KA3554G02:4. Time in minutes.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 – 1.5 minutes Well Bore Storage (WBS)
1.5 – 18 minutes Transition period
18 – 20 minutes Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

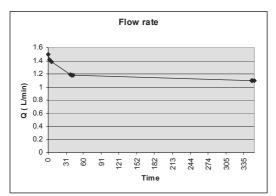
Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:3		
Borehole ID:	KA3554G02	Test start:	2003-05-08	3 14:45	
Test section (m):	10.50-12.20	Responsible for	SWECO V	IAK AB	
		test performance:	J. Magnuss	on/A. Blom	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO V		
		test evaluation:	T. Forsmarl	k	
Linear plot Head		Flow period		Recovery period	
-200		Indata		Indata	
		p ₀ (kPa)	2427.6		
-250		p _i (kPa)			
		p _p (kPa)	103.2	p _F (kPa)	2418.1
8 -300		Q_{p} (m ³ /s)	$2.91 \cdot 10^{-7}$	• • •	
Ë _		tp (min)	30	t _F (min)	134
(is -300		tp (min) S*		S*	1 · 10 ⁻⁶
Ĭ ⁻		EC _w (mS/m)			1
		Te _w (gr C)			1
-400		Derivative fact.		Derivative fact.	0.2
-450					
15:00:00 16:00:00 17:0	0:00 18:00:00				
Lin-Log plot		Results		Results	
B		Q/s (m ² /s)	1.3 · 10 ⁻⁹	Flow regime:	Radial
0		T _{Moye} (m ² /s)	$8.2 \cdot 10^{-10}$	dt _{e1} (min)	18
		Flow regime:		dt _{e2} (min)	20
50		dt_1 (min)		T (m ² /s)	$1.1 \cdot 10^{-8}$
		dt ₂ (min)		S (-)	1.1 10
E 100		T (m ² /s)		K _s (m/s)	
(E) 100 		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	51
200		C _D (-)		517	01
	_	ξ(-)			
250		S (-)			
0.1 1 10	100 1000				
Time (n	nin)				
		T. 4		-11	
Log-Log plot incl. derivative-	recovery period	Interpreted form	Radial	ell parameters. C (m ³ /Pa)	
1000		Flow regime:			
1000		dt_1 (min)	18	$C_D(-)$	51
		dt_2 (min)	20	ξ(-)	51
		$T_T (m^2/s)$	$1.1 \cdot 10^{-8}$		
Ê 100		S (-)			
		K_{s} (m/s)			
(Lu) 100 10 		S_s (1/m)			
		Comments: A su	ccessful test.		
].	\				
1	.7				
Ŧ 1 1	D 100 1000				
0.1 1 1 Time	(min)				

6.1.4 KA3548A01:3, test No 1:4

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in *Table 6-4*.


Table 6-4 General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01

General test data						
Borehole section	KA3548A	KA3548A01:3				
Test No	1:4	1:4				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	8.80			
Test section- seclow	Seclow	m	10.75			
Test section length	L _w	m	1.95			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030508 16:15			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030508 16:46:00			
Stop of flow period		yymmdd hh:mm:ss	20030508 17:16:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 20:00:00			
Total flow time	t _p	min	30			
Total recovery time	t _F	min	164			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3517.3	
Absolute pressure in test section before stop of flow	p _p	kPa	620.2	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3493.0	
Maximal pressure change during flow period	dp _p	kPa	2897.1	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$3.06 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-4 Flow rates during draw down in KA3548A01:3. Time in minutes.

The test was successful in regard to pressure response. The test in KA3542G01:3 (Test 1:5) is influencing the recovery during test 1:5's flow phase.

Interpreted flow regimes

0 - 0.2 minutes	Well Bore Storage (WBS)
0.2 – 0.6 minutes	Transition period
0.6 - 2 minutes	Radial flow period
2 – 16 minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

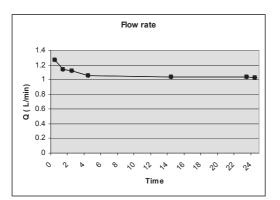
Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	Summary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:4		
Borehole ID:	KA3548A01	Test start:	2003-05-08	16:15	
Test section (m):	8.80-10.75	Responsible for	SWECO V	IAK AB	
		test performance:	J. Magnuss	on/A. Blom	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for SWECO VIAK AB			
		test evaluation:	T. Forsmark	ĸ	
Linear plot Head		Flow period		Recovery period	
0		Indata		Indata	
		p ₀ (kPa)	3517.3		
-100	_	p _i (kPa)	(20.2		2402.0
$\hat{}$		$p_p(kPa)$	620.2	p _F (kPa)	3493.0
		$\overline{Q_p}$ (m ³ /s)	$3.06 \cdot 10^{-5}$		1.64
<u><u> </u></u>		tp (min)	30	t _F (min)	164
-200 -		S^*		S*	1 · 10 ⁻⁶
-300		EC _w (mS/m)			
		Te _w (gr C) Derivative fact.		Derivative fact.	0.2
		Derivative fact.			0.2
-400					
15:00:00 16:00:00 17:00:00 18:00	00 19:00:00 20:00:00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$1.1 \cdot 10^{-7}$	Flow regime:	Radial
0		$T_{Moye}(m^2/s)$	$7.1 \cdot 10^{-8}$	dt _{e1} (min)	0.6
		Flow regime:	/.1 10	dt_{e2} (min)	1
-		dt ₁ (min)		T (m ² /s)	8.1 · 10 ⁻⁸
		dt_2 (min)		S (-)	
		$T(m^2/s)$		K _s (m/s)	
		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
200		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	-2
		C _D (-)			
		ξ(-)			
300					
0.1 1 10 Time (mir	100 1000 רו				
	,				
Log-Log plot incl. derivative- r	ecovery period	Interpreted form	ation and w	ell parameters.	
× •	¥ *	Flow regime:	Radial	C (m³/Pa)	
1000 -		dt ₁ (min)	0.6	C _D (-)	
		dt ₂ (min)	1	ξ(-)	-2
	~	T_{T} (m ² /s)	$8.1 \cdot 10^{-8}$		
		S (-)			
Ê 100		K _s (m/s)			
		S _s (1/m)			
				The test in KA354	
				of this test during	test 1:5's
	II	flow phase, see the	e linear plot.		
j					
1 	100 1000				
0.1 1 10 Time (n	nin)				

6.1.5 KA3542G01:3 , test No 1:5

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in *Table 6-5*.


Table 6-5 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

General test data							
Borehole section	KA35420	KA3542G01:3					
Test No	1:5						
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)				
Test equipment system	HMS						
General comment	Single ho	le test					
	Nomen- clature	Unit	Value				
Test section- secup	Secup	m	18.60				
Test section- seclow	Seclow	m	20.30				
Test section length	L _w	m	1.70				
Test section diameter	$2 \cdot r_w$	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20030508 17:53				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20030508 18:23:00				
Stop of flow period		yymmdd hh:mm:ss	20030508 18:53:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 21:00:00				
Total flow time	t _p	min	30				
Total recovery time	t _F	min	127				

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3434.8	
Absolute pressure in test section before stop of flow	p _p	kPa	278.1	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3454.2	
Maximal pressure change during flow period	dp _p	kPa	3156.7	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$1.72 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-5 Flow rates during draw down in KA3542G01:3. Time in minutes.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3 minutesWell Bore Storage (WBS)0.3 - 15 minutesTransition period15 - 25 minutesRadial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

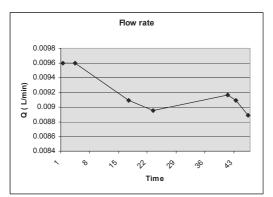
Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	mmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:5		
Borehole ID:	KA3542G01	Test start:	2003-05-08		
Test section (m):	18.60-20.30	Responsible for	SWECO V		
		test performance:	J. Magnuss		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO V		
		test evaluation:	T. Forsmar	K	
Linear plot Head		Flow period		Recovery period	
-100		Indata	2424.0	Indata	1
		p_0 (kPa)	3434.8		
-200		p _i (kPa) p _p (kPa)	278.1	p _F (kPa)	3454.2
		$Q_p (m^3/s)$	$1.72 \cdot 10^{-5}$	р _Е (кга)	5454.2
- 400 - Head (max)		tp (min)	$1.72 \cdot 10$ 30	t _F (min)	127
-300		S*	30	S*	127 $1 \cdot 10^{-6}$
윤 -		EC _w (mS/m)		5	1 10
-400		Te _w (gr C)	+		
		Derivative fact.		Derivative fact.	0.2
				20110110 1001.	0.2
-500		-			
18:00:00 19:00:00 20:00:00	21:00:00 22:00:00				
Lin-Log plot		Results		Results	
		Q/s (m²/s)	$5.4 \cdot 10^{-8}$	Flow regime:	Radial
0		T _{Moye} (m ² /s)	$3.6 \cdot 10^{-8}$	dt _{e1} (min)	15
50		Flow regime:		dt _{e2} (min)	25
		dt ₁ (min)		T (m ² /s)	$9.5 \cdot 10^{-8}$
		dt ₂ (min)		S (-)	
		$T(m^2/s)$		K _s (m/s)	
		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	5
300		C _D (-)			
350		ξ(-)			
0.1 1 10	100 1000				
Time (m	in)				
Log-Log plot incl. derivative-	recovery period	Interpreted form		ell parameters.	
1000		Flow regime:	Radial	C (m ³ /Pa)	
1000		dt_1 (min)	15	C _D (-)	5
		dt_2 (min)	25	ξ(-)	5
		$T_T (m^2/s)$	$9.5 \cdot 10^{-8}$		
Ê 100		S (-)			
		K _s (m/s) S _s (1/m)			
(LL) 100 LL (LL) (LL) (LL) (LL) (LL) (LL) (LL)		Comments: A su	coostil test		
	►	Comments: A Su	eccosiui test.		
<u>ل</u> الا الم					
1 +					
0.1 1 10 Time (r	100 1000				
rine (i					
		1			

6.1.6 KA3544G01:2 , test No 1:6

General test data for the pressure build-up test in the interval 8.90-10.65 m of borehole KA3544G01 are presented in *Table 6-6*.


Table 6-6 General test data for the pressure build-up test in section 8.90-10.65 m of borehole KA3544G01

General test data							
Borehole section	KA35440	KA3544G01:2					
Test No	1:6						
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)				
Test equipment system	HMS						
General comment	Single ho	le test					
	Nomen- clature	Unit	Value				
Test section- secup	Secup	m	8.90				
Test section- seclow	Seclow	m	10.65				
Test section length	L_{w}	m	1.75				
Test section diameter	$2 \cdot r_w$	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20030508 19:23				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20030508 19:53:00				
Stop of flow period		yymmdd hh:mm:ss	20030508 20:43:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20030508 23:00:00				
Total flow time	t _p	min	50				
Total recovery time	t _F	min	137				

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2019.7	
Absolute pressure in test section before stop of flow	p _p	kPa	110.3	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2052.6	
Maximal pressure change during flow period	dpp	kPa	1909.4	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$1.48 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Qm	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-6 Flow rates during draw down in KA3544G01:2. Time in minutes.

The test was successful in regard to pressure response. However the pressure recovery period was too short to establish a radial flow regime.

Interpreted flow regimes

- 0 2 minutes Well Bore Storage (WBS)
- 2 40 minutes Transition period

No radial flow regime is established.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

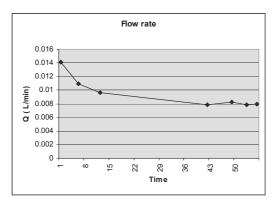
Selected representative parameters

The selected representative parameters from the test in the interval 8.90-10.65 m in KA3544G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

Project: Area: Borehole ID: Test section (m):	PROTOTYPE ÄSPÖ	Test type: Test no:	PBT		
Borehole ID:		Test no:	1.1.1		
		1051 110.	1:6		
Test section (m):	KA3544G01	Test start:	2003-05-08		
	8.90-10.65	Responsible for	SWECO V		
		test performance:	J. Magnuss		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for			
		test evaluation:	T. Forsmarl	ĸ	
				· · · · · · · · · · · · · · · · · · ·	
Linear plot Head		Flow period		Recovery period	
-240		Indata		Indata	
		p ₀ (kPa)	2019.7		
-280		p _i (kPa)			
~ -320		p _p (kPa)	110.3	p _F (kPa)	2052.6
		$Q_p (m^3/s)$	$1.48 \cdot 10^{-7}$		
<u> </u>		tp (min)	50	t _F (min)	137
(is -520		tp (min) S*		S*	1 · 10-6
Ť -400		EC _w (mS/m)			
		Te _w (gr C)			
-440		Derivative fact.		Derivative fact.	0.2
-480 + + + + + + + + + + + + + + + + + + +	00 22:00:00 23:00:00				
18.89.89 18.89.89 20.00.00 21:00	22.00.00 20.00.00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$7.8 \cdot 10^{-10}$	Flow regime:	
0		T _{Moye} (m ² /s)	$5.1 \cdot 10^{-10}$	dt _{e1} (min)	1
		Flow regime:		dt _{e2} (min)	
40		dt_1 (min)		T (m ² /s)	1
		dt_2 (min)		S (-)	
Ê 80		T (m ² /s)		K _s (m/s)	
		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
E 80 Li 80 L		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	
160		C _D (-)			
		ξ(-)			
200	· · · · · · · · · · · · · · · · · · ·				
0.1 1 10 Time (mi	100 1000				
Time (mi	11)				+
Log-Log plot incl. derivative- r	acovery naried	Interpreted form	ation and w	ll noremotors	I
Log-Log plot met. dertvative- i	covery periou	Flow regime:	ation and W	C (m ³ /Pa)	
1000		dt_1 (min)		C (117Fa) C _D (-)	
		dt_2 (min)			
		$T_T (m^2/s)$		ξ(-)	
		S (-)			+
Ê 100		S (-) K _s (m/s)			
$\tilde{\mathbf{z}}$		S _s (1/m)			+
	\		dial flam a a	anne d'alemin a that to	at a suis d
Geoovery (m)		Comments: No ra	adial flow oc	curred during the te	est period.
	N				
↓・					
1-+					
	400 4000				
0:1 1 10 Time (n	100 1000				

6.1.7 KA3542G02:2, test No 1:7

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in *Table 6-7*.


Table 6-7 General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02

General test data						
Borehole section	KA35420	KA3542G02:2				
Test No	1:7					
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	25.60			
Test section- seclow	Seclow	m	27.20			
Test section length	L _w	m	1.60			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030509 05:55			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030509 06:25:00			
Stop of flow period		yymmdd hh:mm:ss	20030509 07:25:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030509 10:00:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	155			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2561.4	
Absolute pressure in test section before stop of flow	p _p	kPa	110.8	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2477.9	
Maximal pressure change during flow period	dp _p	kPa	2450.6	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$1.33 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-7 Flow rates during draw down in KA3542G02:2. Time in minutes.

The test was successful in regard to pressure response. No radial flow regime period could however be evaluated.

Interpreted flow regimes

- 0 2 minutesWell Bore Storage (WBS)2 31 minutesTransition period
- 31 45 minutes Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

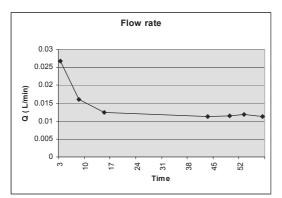
Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	Summary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:7		
Borehole ID:	KA3542G02	Test start:	2003-05-09	05:55	
Test section (m):	25.60-27.20	Responsible for	SWECO V	IAK AB	
		test performance:		on/A. Blom	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for			
w()		test evaluation:	T. Forsmar		
Linear plot Head		Flow period		Recovery period	
-150		Indata		Indata	
-		p ₀ (kPa)	2561.4		
-200		p _i (kPa)			
		p _p (kPa)	110.8	p _F (kPa)	2477.9
<u></u> -250		$Q_p (m^3/s)$	$1.33 \cdot 10^{-7}$		2177.9
(se = 250		$\frac{\alpha_{p}}{tp}$ (min)	60	t _F (min)	155
-300		S*	00	S*	1.55
[™] -350 [−]				3	1 · 10
-350		EC _w (mS/m)			
-400		Te _w (gr C) Derivative fact.		Dorivative fact	
		Derivative fact.		Derivative fact.	<u> </u>
-450					
4:00:00 5:00:00 6:00:00 7:00:00	8:00:00 9:00:00 10:00:00 11:00:00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$5.4 \cdot 10^{-10}$	Flow regime:	Radial
0		T _{Moye} (m ² /s)	$3.5 \cdot 10^{-10}$	dt _{e1} (min)	31
		Flow regime:		dt _{e2} (min)	45
50		dt ₁ (min)		T (m ² /s)	$2.2 \cdot 10^{-10}$
		dt_2 (min)		S (-)	2.2 10
E 100		$T (m^2/s)$		K _s (m/s)	
		S (-)		S_{s} (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
€ 100 Loopoop		S_{s} (1/m)			
		$S_{s}(1/11)$		C _D (-)	0.2
200		C (m ³ /Pa)	-	ξ(-)	-0.3
		C _D (-)			
250	``	ξ(-)			
0.1 1 10	100 1000				
Time (m					
Log-Log plot incl. derivative-	recovery period	Interpreted form		ell parameters.	
		Flow regime:	Radial	C (m³/Pa)	
1000		dt ₁ (min)	31	C _D (-)	
1		dt_2 (min)	45	ξ(-)	-0.3
		T_{T} (m ² /s)	$2.2 \cdot 10^{-10}$		1
		S (-)			
				1	+
Ē 100					
		K _s (m/s)			
overy (m)		K _s (m/s) S _s (1/m)	evaluated tro	nemiesivity may be	too low due
ecovery (m)		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The		nsmissivity may be	
Under the second		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia	al flow conditions. I	t is however
scovery (1		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia		t is however
Geconery (B)		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia	al flow conditions. I	t is however
		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia	al flow conditions. I	t is however
		$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia	al flow conditions. I	t is however
) 100 1000 min)	$\frac{K_{s} (m/s)}{S_{s} (1/m)}$ Comments: The to the not fully dev	veloped radia	al flow conditions. I	t is however

6.1.8 KA3563G:4 , test No 1:8

General test data for the pressure build-up test in the interval 1.50-3.00 m of borehole KA3563G are presented in *Table 6-8*.


Table 6-8 General test data for the pressure build-up test in section 1.50-3.00 m of borehole KA3563G

General test data						
Borehole section	KA35630	G:4				
Test No	1:8	1:8				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	Single hole test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	1.50			
Test section- seclow	Seclow	m	3.00			
Test section length	L _w	m	1.50			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030509 05:55			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030509 06:26:00			
Stop of flow period		yymmdd hh:mm:ss	20030509 07:26:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030509 10:00:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	154			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	319.5	
Absolute pressure in test section before stop of flow	p _p	kPa	106.6	
Absolute pressure in test section at stop of recovery period	p _f	kPa	267.5	
Maximal pressure change during flow period	dpp	kPa	112.9	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$1.89 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Qm	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-8 Flow rates during draw down in KA3563G:4. *Time in minutes.*

The pressure drop during the flow phase was larger than the following pressure recovery, see lin-lin plot below.

Interpreted flow regimes

0 – 20 minutes Well Bore Storage (WBS)

20 – 50 minutes Transition period

No radial flow regime period was established.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

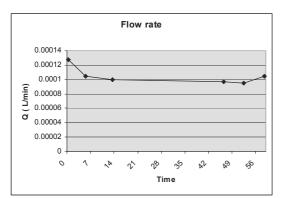
Selected representative parameters

The selected representative parameters from the test in the interval 1.50-3.00 m in KA3563G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	Summary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:8		
Borehole ID:	KA3563G	Test start:	2003-05-09		
Test section (m):	1.50-3.00	Responsible for	SWECO V		
		test performance:	J. Magnuss		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO V		
		test evaluation:	T. Forsmar	k	
Linear plot Head		Flow period		Recovery period	
-420		Indata	210.5	Indata	
-425		p ₀ (kPa)	319.5		
		p _i (kPa)	106.6	m (kDa)	2(7.5
<u></u> -430 − − − −		$p_p(kPa)$	106.6	p _F (kPa)	267.5
		$\overline{Q_p}(m^3/s)$	$1.89 \cdot 10^{-7}$	1 (main)	154
-435		tp (min) S*	60	t _F (min) S*	154
(is 430				3	1 · 10 ⁻⁶
-440		EC _w (mS/m) Te _w (gr C)			
-445		Derivative fact.		Derivative fact.	0.2
		Derivative lact.			0.2
-450				+	
4:00:00 5:00:00 6:00:00 7:00:00	8:00:00 9:00:00 10:00:00 11:00:00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$1.7 \cdot 10^{-8}$	Flow regime:	
0		$T_{Moye}(m^2/s)$	$5.6 \cdot 10^{-9}$	dt _{e1} (min)	
		Flow regime:	5.0 • 10	dt_{e2} (min)	
4		dt_1 (min)		T (m^2/s)	
		dt_2 (min)		S (-)	
Ê		T (m ² /s)		K _s (m/s)	
		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	
16		C _D (-)		<u> </u>	
		ξ(-)			
20		<u> </u>			
0.1 1 10 Time (mi	100 1000				
Time (mi	11 <i>)</i>				
Log-Log plot incl. derivative-	recovery period	Interpreted form	ation and w	ell narameters	
Log-Log plot mer. der wative-	recovery period	Flow regime:	ation and we	$C (m^3/Pa)$	
	-	dt_1 (min)	+	C (III /I 2) C _D (-)	1
10		dt_2 (min)		ξ(-)	
	/ `	$T_T (m^2/s)$	+		
		S (-)		1	
		K _s (m/s)		1	
5 1		S _s (1/m)		1	
Jer			adial flow oc	curred during the to	est period
Leconery (m)		There may have be			est period.
0 .1					
- •					
	<u> </u>				
Time (i	min)				
0.01 0.1 1 1 Time (1					

6.1.9 KA3546G01:2, test No 1:9

General test data for the pressure build-up test in the interval 6.75-8.30 m of borehole KA3546G01 are presented in *Table 6-9*.


Table 6-9 General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01

General test data						
Borehole section	KA35460	G01:2				
Test No	1:9	1:9				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	Single hole test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	6.75			
Test section- seclow	Seclow	m	8.30			
Test section length	L_{w}	m	1.55			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030510 06:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030510 06:30:00			
Stop of flow period		yymmdd hh:mm:ss	20030510 07:30:05			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030510 10:00:00			
Total flow time	t _p	min	60.083			
Total recovery time	t _F	min	150			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	138.0	
Absolute pressure in test section before stop of flow	p _p	kPa	109.4	
Absolute pressure in test section at stop of recovery period	p _f	kPa	138.2	
Maximal pressure change during flow period	dpp	kPa	28.6	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m^3/s	$1.75 \cdot 10^{-9}$
Mean (arithmetic) flow rate during flow period	Q _m	m^3/s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-9 Flow rates during draw down in KA3546G01:2. Time in minutes.

The test only generated a pressure drop and following recovery of some 3 metres.

Interpreted flow regimes

0 -15 minutesWell Bore Storage (WBS)15 - 39 minutesTransition period39 - 46 minutesRadial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

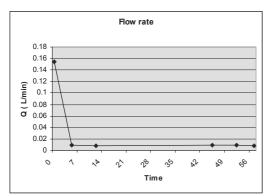
Selected representative parameters

The selected representative parameters from the test in the interval 6.75-8.30 m in KA3546G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	ummary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:9		
Borehole ID:	KA3546G01	Test start:	2003-05-10	06:00	
Test section (m):	6.75-8.30	Responsible for	SWECO V		
		test performance:	J. Magnuss	on/A. Blom	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO V	IAK AB	
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		test evaluation:	T. Forsmarl	k	
Linear plot Head		Flow period		Recovery period	
-442		Indata		Indata	
		p ₀ (kPa)	138.0		
		p _i (kPa)			
-443		p _p (kPa)	109.4	p _F (kPa)	138.2
		$Q_p (m^3/s)$	$1.75 \cdot 10^{-9}$,	
Head (masi)		tp (min)	60.083	t _F (min)	150
		S*		S*	$1 \cdot 10^{-6}$
± /		EC _w (mS/m)			
-445		Te _w (gr C)			1
		Derivative fact.		Derivative fact.	0.2
	9:00:00 10:00:00 11:00:00 12:00:00				
3.00.00 0.00.00 7.00.00 0.00.00	300.00 10.00.00 11.00.00 12.00.00				
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	6.1 · 10 ⁻¹⁰	Flow regime:	Radial
0		$T_{Moye}(m^2/s)$	$3.9 \cdot 10^{-10}$	dt _{e1} (min)	39
		Flow regime:	5.9 · 10	dt_{e2} (min)	46
		dt_1 (min)		$T (m^2/s)$	$7.8 \cdot 10^{-11}$
1		, ,		S (-)	7.8 • 10
Ê		dt_2 (min)			
Recovery (m)		T (m²/s) S (-)		K_s (m/s)	
				S _s (1/m) C (m ³ /Pa)	
		K_{s} (m/s)			
		$S_{s}(1/m)$		C _D (-)	2
-		C (m³/Pa)		ξ(-)	-2
-		C _D (-)			
4		ξ(-)			
0.1 1 10	100 1000				
Time (min)					
	• -				
Log-Log plot incl. derivative- r	ecovery period	Interpreted form		ell parameters.	
10		Flow regime:	Radial	C (m ³ /Pa)	
10		dt_1 (min)	39	$C_D(-)$	2
1		dt_2 (min)	46	ξ(-)	-2
		T_{T} (m ² /s)	$7.8 \cdot 10^{-11}$		
	~~~	S (-)			
		$K_{s}$ (m/s)			
Leconery (m)		S _s (1/m)	1. 1.0	· · · · · ·	<u> </u>
				ime period exists la	te in the test
		during 39 – 46 min	nutes.		
<u> </u>					
0.01					
	100 1000				
V.I I IU					
0.1 1 10 Time (m	in)				

# 6.1.10 KA3566G01:2 , test No 1:10

General test data for the pressure build-up test in the interval 20.00-21.50 m of borehole KA3566G01 are presented in *Table 6-10*.


# Table 6-10 General test data for the pressure build-up test in section 20.0-21.50 m of borehole KA3566G01

General test data						
Borehole section	KA35660	G01:2				
Test No	1:10	1:10				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	Single hole test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	20.00			
Test section- seclow	Seclow	m	21.50			
Test section length	L _w	m	1.50			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030510 06:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030510 06:34:00			
Stop of flow period		yymmdd hh:mm:ss	20030510 07:34:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030510 10:00:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	146			

#### Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	<b>p</b> ₀	kPa	2243.1	
Absolute pressure in test section before stop of flow	p _p	kPa	107.3	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2213.4	
Maximal pressure change during flow period	dpp	kPa	2135.8	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	$m^3/s$	$1.46 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Qm	$m^3/s$	-
Total volume discharged during flow period	V _p	m ³	-



*Figure 6-10 Flow rates during draw down in KA3566G01:2. Time in minutes.* 

The test was successful in regard to pressure response.

# Interpreted flow regimes

- 0 20 minutes Well Bore Storage (WBS)
- 20 45 minutes Transition period

No radial flow regime period was established.

# Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

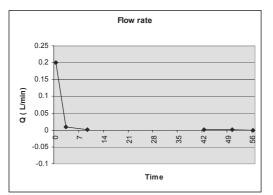
# Selected representative parameters

The selected representative parameters from the test in the interval 20.00-21.50 m in KA3566G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery.

	Test Sı	ummary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:10		
Borehole ID:	KA3566G01	Test start:	2003-05-10	06:00	
Test section (m):	20.00-21.50	Responsible for	SWECO V		
	-	test performance:	J. Magnusson/A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO V		
· · · · · · · · · · · · · · · · · · ·		test evaluation:	T. Forsmarl		
Linear plot Head	1	Flow period		<b>Recovery period</b>	
-200		Indata		Indata	
		p ₀ (kPa)	2243.1		
-250		p _i (kPa )			
		p _p (kPa)	107.3	p _F (kPa )	2213.4
8 -300		$Q_p (m^3/s)$	$1.46 \cdot 10^{-7}$		
300		tp (min)	60	t _F (min)	146
		S*		S*	1+0 $1 \cdot 10^{-6}$
9 -350		EC _w (mS/m)			1 10
┥		Te _w (gr C)			
-400		Derivative fact.		Derivative fact.	0.2
-     /					0.2
-450					
5:00:00 6:00:00 7:00:00 8:00:00 9	9:00:00 10:00:00 11:00:00 12:00:00				
in Log plot		Results		Results	
Lin-Log plot			6.9 10-10		
0		$Q/s (m^2/s)$	$6.8 \cdot 10^{-10}$	Flow regime:	
0		T _{Moye} (m ² /s)	$4.4 \cdot 10^{-10}$	dt _{e1} (min)	<u> </u>
1		Flow regime:		dt _{e2} (min)	ļ
50		dt ₁ (min)		T (m ² /s)	
Ê		$dt_2$ (min)		S (-)	
<u> </u>		T (m ² /s)		K _s (m/s)	
E 100 L 100 100 100 100 100 100 100 100		S (-)		S _s (1/m)	
Q 150		K _s (m/s)		C (m ³ /Pa)	
r 1		S _s (1/m)		C _D (-)	
200		C (m ³ /Pa)		ξ(-)	
200		C _D (-)			
1		ξ(-)			
250					
0.1 1 10 Time (mir	100 1000 n)				
	·· <i>y</i>				
Log-Log plot incl. derivative- r	ecovery period	Interpreted form	ation and w	ell narameters	
205-205 plot men derivative- I	covery period	Flow regime:		C (m ³ /Pa)	
	$\sim$	dt ₁ (min)		C _D (-)	
	$\Lambda$	$dt_2$ (min)		ξ(-)	
100 -			1		+
100					
100		$T_T (m^2/s)$			
		T _T (m ² /s) S (-)			
		T _T (m²/s) S (-) K _s (m/s)			
		$\begin{array}{c} T_{T} \ (m^{2}/s) \\ S \ (-) \\ K_{s} \ (m/s) \\ S_{s} \ (1/m) \end{array}$			
		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r		gime period could b	
		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r		gime period could b system during the t	
		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r			
		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r			
		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r			
(III) (IIII) (IIII) (III) (III) (III) (III) (III) (III) (III) (III) (III) (III		$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r			
	100 1000	$T_{T} (m^{2}/s)$ S (-) K _s (m/s) S _s (1/m) Comments: No r			

# 6.1.11 KA3572G01:2, test No 1:11

General test data for the pressure build-up test in the interval 2.70-5.30 m of borehole KA3572G01 are presented in *Table 6-11*.


# Table 6-11 General test data for the pressure build-up test in section 2.70-5.30 m of borehole KA3572G01

General test data						
Borehole section	KA35720	KA3572G01:2				
Test No	1:11					
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	2.70			
Test section- seclow	Seclow	m	5.30			
Test section length	L _w	m	2.60			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030511 08:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030511 08:30:00			
Stop of flow period		yymmdd hh:mm:ss	20030511 09:30:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030511 12:00:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	150			

#### Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	467.6	
Absolute pressure in test section before stop of flow	p _p	kPa	104.6	
Absolute pressure in test section at stop of recovery period	p _f	kPa	117.5	
Maximal pressure change during flow period	dpp	kPa	363.0	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	$m^3/s$	$6.75 \cdot 10^{-9}$
Mean (arithmetic) flow rate during flow period	Qm	$m^3/s$	-
Total volume discharged during flow period	V _p	m ³	-



*Figure 6-11 Flow rates during draw down in KA3572G01:2. Time in minutes.* 

The test was not successful. There was almost no recovery.

#### Interpreted flow regimes

0 – 45 minutes Well Bore Storage (WBS)

No radial flow regime period was established.

#### Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

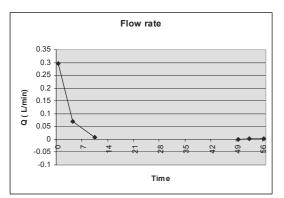
#### Selected representative parameters

The selected representative parameters from the test in the interval 2.70-5.30 m in KA3572G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	Summary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:11		
Borehole ID:	KA3572G01	Test start:	2003-05-11		
Test section (m):	2.70-5.30	Responsible for	SWECO V		
		test performance:		on/A. Blom	
Section diameter, $2 \cdot r_w$ (m): 0.076		Responsible for	SWECO V		
		test evaluation:	T. Forsmar	ĸ	
				-	
Linear plot Head		Flow period		Recovery period	
-400		Indata	1(7)	Indata	
		p ₀ (kPa)	467.6		
-410		p _i (kPa )	104.6		117.5
		$p_p(kPa)$	104.6	p _F (kPa )	117.5
image: second		$Q_p (m^3/s)$	$6.75 \cdot 10^{-9}$	t (min)	150
		tp (min) S*	60	t _F (min) S*	150
-430		_		ວ <u>ື</u>	1 · 10 ⁻⁶
-		EC _w (mS/m)			
-440		Te _w (gr C)		Dorivative fast	0.2
		Derivative fact.		Derivative fact.	0.2
-450					
6:00:00 7:00:00 8:00:00 9:00:00	10:00:00 11:00:00 12:00:00 13:00:00				
• • •		D L		D K	
Lin-Log plot		Results	1.0 10-10	Results	
0		Q/s (m ² /s)	$1.9 \cdot 10^{-10}$	Flow regime:	
		T _{Moye} (m ² /s)	$1.3 \cdot 10^{-10}$	dt _{e1} (min)	
		Flow regime:		dt _{e2} (min)	
0.4		dt ₁ (min)		T (m²/s)	ļ
		$dt_2$ (min)		S (-)	<u> </u>
		T (m ² /s)		$K_{s}$ (m/s)	<u> </u>
E 0.8 L 0.8 1.2 1.2		S (-)		$S_{s}(1/m)$	
00 1.2	• • • • • • • • • • • • • • • • • • •	$K_{s}$ (m/s)		C (m ³ /Pa)	
r	<b>s</b>	$S_s(1/m)$		C _D (-)	
1.6	•	C (m ³ /Pa)		ξ(-)	
	•	C _D (-)			<u> </u>
2		ξ(-)			ļ
0.1 1 10	100 1000				<u> </u>
Time (mi	n)				
Log-Log plot incl. derivative-	recovery period	Interpreted form	ation and w		1
		Flow regime:		C (m ³ /Pa)	<u> </u>
10		dt ₁ (min)		C _D (-)	<u> </u>
		$dt_2$ (min)		ξ(-)	<u> </u>
1		$T_T (m^2/s)$			<u> </u>
		S (-)			
		K _s (m/s)			ļ
		S _s (1/m)			
		<b>Comments:</b> No r	adial flow re	gime period could b	e evaluated.
on ² 0.1 −					
· ·   • • •					
0.01					
	1000 1000				
0.1 1 10 Time (n	nin)				

# 6.1.12 KA3574G01:3, test No 1:12

General test data for the pressure build-up test in the interval 1.80-4.10 m of borehole KA3574G01 are presented in *Table 6-12*.


# Table 6-12 General test data for the pressure build-up test in section 1.80-4.10 m of borehole KA3574G01

General test data						
Borehole section	KA35740	KA3574G01:3				
Test No	1:12					
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)			
Test equipment system	HMS					
General comment	Single ho	le test				
	Nomen-	Unit	Value			
	clature					
Test section- secup	Secup	m	1.80			
Test section- seclow	Seclow	m	4.10			
Test section length	$L_{w}$	m	2.30			
Test section diameter	$2 \cdot r_w$	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20030511 08:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20030511 08:32:00			
Stop of flow period		yymmdd hh:mm:ss	20030511 09:32:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20030511 12:00:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	148			

#### Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	312.3	
Absolute pressure in test section before stop of flow	p _p	kPa	93.8	
Absolute pressure in test section at stop of recovery period	p _f	kPa	100.9	
Maximal pressure change during flow period	dp _p	kPa	218.5	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	$m^3/s$	1.91 · 10 ⁻⁸
Mean (arithmetic) flow rate during flow period	Qm	$m^3/s$	-
Total volume discharged during flow period	V _p	m ³	-



*Figure 6-12 Flow rates during draw down in KA3574G01:3. Time in minutes.* 

The test was not successful. There was almost no recovery.

#### Interpreted flow regimes

0 – 45 minutes Well Bore Storage

No radial flow regime period was established.

#### Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

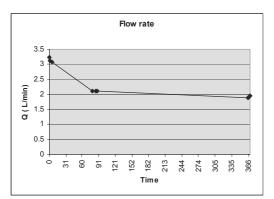
#### Selected representative parameters

The selected representative parameters from the test in the interval 1.80-4.10 m in KA3574G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test S	ummary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	1:12		
Borehole ID:	KA3574G01	Test start:	2003-05-11	08:00	
Test section (m):	1.80-4.10	Responsible for	SWECO V	IAK AB	
		test performance:	J. Magnuss		
Section diameter, $2 \cdot r_w$ (m): 0.076		Responsible for	SWECO V		
		test evaluation:	T. Forsmar	ĸ	
Linear plot Head		Flow period		Recovery period	
-420		Indata	212.2	Indata	
		p ₀ (kPa)	312.3		
		p _i (kPa )	02.0		100.0
<u>-</u> -430		$p_p(kPa)$	93.8	p _F (kPa )	100.9
ar an		$Q_p (m^3/s)$	$1.91 \cdot 10^{-8}$	<b>1</b> (min)	1.40
		tp (min) S*	60	t _F (min) S*	148
		-		3	1 · 10 ⁻⁶
[_] -440		EC _w (mS/m)			
		Te _w (gr C) Derivative fact.		Derivative fact.	0.2
		Derivative fact.		Derivative fact.	0.2
-450					-
6:00:00 7:00:00 8:00:00 9:00:00	10:00:00 11:00:00 12:00:00 13:00:00				+
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$8.7 \cdot 10^{-10}$	Flow regime:	
0		$T_{Moye}(m^2/s)$	$6.1 \cdot 10^{-10}$	dt _{e1} (min)	+
		Flow regime:	6.1 · 10	$dt_{e1}$ (min) $dt_{e2}$ (min)	
0.2		<u> </u>		T ( $m^2/s$ )	+
0.2		$dt_1$ (min) $dt_2$ (min)		S (-)	
Ê	•	$T (m^2/s)$			+
		S (-)		K _s (m/s) S _s (1/m)	+
		K _s (m/s)		C (m ³ /Pa)	+
		$S_{s}$ (1/m)		C (1177 a) C _D (-)	
		C (m ³ /Pa)		ξ(-)	
0.8				ς ( <del>-</del> )	
		C _D (-)			
1		ξ(-)			+
0.1 1 10 Time (mi	100 1000				
Time (mi	in)				
Log Log plating domination	nagavany namiad	Intournated form	ation and	all noremotors	
Log-Log plot incl. derivative-	recovery period	Interpreted formFlow regime:	ation and W	C (m ³ /Pa)	
10		$dt_1$ (min)		C (117Fa) C _D (-)	
		$dt_2$ (min)		ζ(-)	
		$T_{T}$ (m ² /s)		S ( [−] )	
		S (-)			
Ê 1		K _s (m/s)			
- Ali	1	S _s (1/m)			
			adial flow re-	gime period could b	e evaluated
				onic period could t	e e faraated.
0.01					
0.1 1 10 Time (r	100 1000				
I ime (r	1111)				

# 6.1.13 KA3539G:2, test No 1:13

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-13. This test was also done as an interference test (1:21), see *Forsmark*, 2004.


Table 6-13 General test data for the pressure build-up test in section 15.85-17.60 m	۱
of borehole KA3539G	

General test data					
Borehole section	KA3539G:2				
Test No	1:13				
Field crew	J. Magnus	sson, A. Blom (SWEC	O VIAK)		
Test equipment system	HMS				
General comment	Single ho	le test			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	15.85		
Test section- seclow	Seclow	m	17.60		
Test section length	L _w	m	1.75		
Test section diameter	$2 \cdot r_w$	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20030509 06:40:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20030509 08:40:00		
Stop of flow period		yymmdd hh:mm:ss	20030509 14:50:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20030510 06:30:00		
Total flow time	t _p	min	370		
Total recovery time	t _F	min	940		

#### Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	$\mathbf{p}_0$	kPa	2445.6	
Absolute pressure in test section before stop of flow	p _p	kPa	741.6	
Absolute pressure in test section at stop of recovery period	$p_{\rm f}$	kPa	2419.1	
Maximal pressure change during flow period	dpp	kPa	1704.0	

Flow data	Nomen-clature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	$m^3/s$	$3.24 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Qm	$m^3/s$	-
Total volume discharged during flow period	V _p	m ³	-



*Figure 6-13 Flow rates during draw down in KA3539G*:2. *Time in minutes.* 

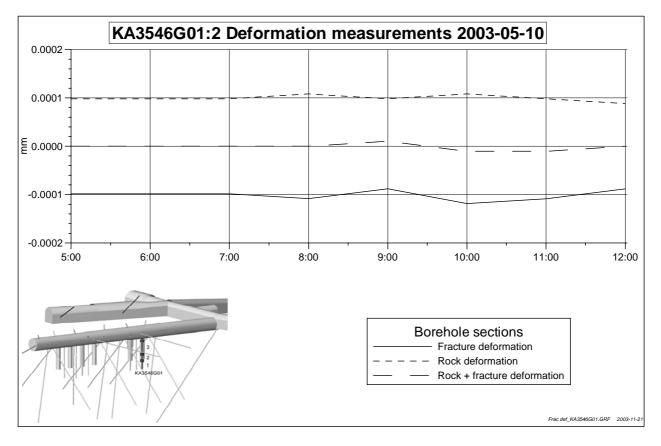
The test was successful in regard to pressure response.

# Interpreted flow regimes

0 - 0.1 minutesWell Bore Storage (WBS)0.1 - 0.2 minutesTransition period0.2 - 0.8 minutesRadial flow period0.8 - 40 minutesLinear channel flow40 - 300 minutesConstant pressure flow boundary

# Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.


# Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	I est s	Summary Sheet					
Project:	PROTOTYPE	Test type:	PBT				
Area:	ÄSPÖ	Test no:	1:13 (Interference test 1:21)				
Borehole ID:	KA3539G	Test start:	2003-05-09				
Test section (m):	15.85-17.60	Responsible for	SWECO V				
		test performance:	J. Magnusson/A. Blom				
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	SWECO VIAK AB				
		test evaluation:	T. Forsmark				
Linear plot Head		Flow period			Recovery period Indata		
-200		Indata					
		p ₀ (kPa)	2445.6				
-240		p _i (kPa )					
		p _p (kPa)	741.6	p _F (kPa )	2419.1		
ā ² 280		$Q_p (m^3/s)$	$3.24 \cdot 10^{-5}$				
		tp (min) S*	370	t _F (min)	940		
				S*	$1 \cdot 10^{-6}$		
\		EC _w (mS/m)					
-360		Te _w (gr C)					
		Derivative fact.		Derivative fact.	0.2		
-400	0:00:00 3:00:00 6:00:00 9:00:00 12:00:00						
Lin-Log plot		Results		Results			
		Q/s (m ² /s)	$1.9 \cdot 10^{-7}$	Flow regime:	Radial		
0		T _{Moye} (m ² /s)	$1.3 \cdot 10^{-7}$	dt _{e1} (min)	0.2		
-		Flow regime:		dt _{e2} (min)	0.8		
40		dt ₁ (min)		T (m ² /s)	$7.0 \cdot 10^{-7}$		
		dt ₂ (min)		S (-)			
80		T (m ² /s)		K _s (m/s)			
		S (-)		S _s (1/m)			
		K _s (m/s)		C (m ³ /Pa)			
		S _s (1/m)		C _D (-)			
		C (m ³ /Pa)		ξ(-)	1.5		
160		C _D (-)					
		ξ(-)					
200 +							
0.1 1 10 Time (m	100 1000 in)				1		
	/						
log-Log plot incl. derivative-	recovery period	Interpreted form	ation and w	ell parameters.			
		Flow regime:	Radial	C (m ³ /Pa)			
1000		$dt_1$ (min)	0.2	C _D (-)			
		dt ₂ (min)	0.8	ξ(-)	1.5		
		$T_T$ (m ² /s)	$7.0 \cdot 10^{-7}$		1		
		S (-)					
Ê 100		K _s (m/s)					
		S _s (1/m)					
			<b>Comments:</b> A channel flow regime is established during th				
		test.					
1 +	<b></b>						
0.1 1 10 Time (	100 1000 min)						
Lime (		1					

# 6.2 Deformation measurements

Deformation measurements started 2003-05-06. However due to technical malfunction no loggings of the measurements were done between 2003-05-08 09:00:00 and 2003-05-09 17:58:00. Therefore recordings from one test only exist, the test in KA3546G01:2 (Test 1:9). The measurement from this test is shown below. The measurements were made hourly. The times are not in normal time but in Swedish summertime (HMS time + 1 hr). Only an overview of deformations is given in this section. Evaluation of the deformations will be made in a separate report.



A negative value of deformation corresponds to a compression.

Figure 6-14 Deformation measurements in KA3546G01:2 (hourly measurements)

# References

**Forsmark T, Rhén I, 1999.** Äspö HRL - Prototype repository Hydrogeology – Interference test campaign 1 after drill campaign 3. SKB IPR-00-07.

**Forsmark T, Rhén I, 2000.** Äspö HRL - Prototype repository Hydrogeology – Interference test campaign 2 after drill campaign 3. SKB IPR-00-21.

**Forsmark T, Forsman I, Rhén I, 2004.** Äspö HRL - Prototype repository– Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Interference tests. SKB IPR-04-16.

**Rhen I, Alm P, Forsmark T, 2004.** Äspö HRL – Prototype repository - Measurements of flow into tunnels, water pressure, in the rock and Hydro mechanical responses in boreholes during the operation phase of the Prototype Repository. SKB IPR-XX-XX. (in prep)