Svensk Karnbranslehantering AB
Swedish Nuclear Fuel
and Waste Management Co
Box 5864
SE-102 40 Stockholm Sweden
Tel 08-459 84 00
+46 8 459 84 00
Fax 08-661 57 19
+46 8 66157 19




ISSN 1651-4416
SKB P-03-93

Oskarshamn site investigation

Calculation of Fracture Zone Index
(FZI) for KSHO1A

Lennart Lindqvist, Bergsten & Co i Varnamo AB
Hans Thunehed, GeoVista AB

October 2003

Keywords: fracture zone index, FZI, fracture frequency, borehole geophysics,
logging, multivariate analysis.

This report concerns a study which was conducted for SKB. The conclusions
and viewpoints presented in the report are those of the authors and do not

necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se



Abstract

The aim of this work was to carry out a multivariate calculation of a Fracture Zone
Index, FZI, along the borehole KSHO1A in the Simpevarp area. This will generalize
and integrate information from geophysical logs, geological mapping and manual
classification to a numerical description of the fracture properties of the rock.

The available data have been joined into a matrix with common and uniform section
lengths through averaging, interpolation, resampling and manual classification in order
to create comparable sections along the borehole.

A manual classification (GFZI) of the borehole in three types of classes was performed
in order to define the properties that FZI is supposed to describe. These types are core
of fracture zone (GFZI=2), transition zone (GFZI=1) and normal unaffected rock
(GFZI1=0).

Relations between objects and variables were analyzed with Principal Component
Analysis (PCA) and outliers were identified and removed from the data set.

A regression model that describes the relation between the significant input variables
and the manual classification, GFZI, was established with Projection to Latent
Structures (PLS). FZI was then calculated for all sections along the borehole based
on the PLS-model.
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1 Introduction

Multivariate statistics in the form of Principal Component Analysis, PCA, and
Projection to Latent Structures, PLS, is well documented analysis techniques. The
methods for multivariate analysis that were developed during the 1970’s are described
in detail in /1/.

Multivariate analysis has become a popular tool within several sciences, including
geoscience where it has been used for a long time for e.g. analysis and evaluation of
chemical and petrophysical variables in exploration /2/, /3/, /4/.

Large amounts of data have been created during the last years in investigation sites
managed by SKB. These data are well suited for multivariate analysis and applications
are described by /5/, /6/, /7/. The methods are also used in some countries where
assessments of rock volumes for localisation of a repository for spent nuclear is
ongoing, e.g. /8/.

The calculation of FZI was initially described in /7/.

Analysis was performed by Bergsten & Co in Virnamo AB and GeoVista AB

in accordance with the instructions and guidelines from SKB (activity plan

AP PS 400-03-048 and method description MD 810.003, SKB internal controlling
documents) and under supervision of Leif Stenberg, SKB.



2 Objective and scope

The aim of this work was to carry out a multivariate calculation of a Fracture Zone
Index, FZI, along the borehole KSHO1A in the Simpevarp area. This will generalize
and integrate information from geophysical logs, geological mapping and manual
classification to a numerical description of the fracture properties of the rock in a
robust and objective way.

The calculation of FZI with multivariate techniques is based on measured and observed
quantities along the borehole. The PLS-model used to calculate FZI can be used on data
from other boreholes provided that they are from a similar geological environment.

The most important prerequisite for this analysis is the definition of what FZI is
supposed to describe. This will be the quantity that the measured and observed data
will try to model and predict. The borehole is therefore divided into sections of three
discrete intensities of fracturing (GFZI) based on manual classification.

3 Equipment

Multivariate statistical calculations have been performed with Simca-P version 8.0
(Umetrics AB). Grapher (Golden Software) has been used for presentation of the final
results.



4 Execution and results

4.1 Pre processing of data

The pre processing of input data is summarized in Table 4-1.

The upper 100 metres of KSHO1A were percussion drilled. However, a cored borehole
(KSHO1B) was drilled close to and parallel with KSHO1A. The data representing the
first 100 metres in this study are hence from KSHO1B and the remaining data from
KSHO1A.

A common section length of one metre was chosen for all variables in this work. This
choice was partly based on previous experiences but also on the fact that e.g. the core-
mapped fracture frequency is available in one metre sections. This choice is not critical
and appears sound since significant fracture zones often have a width of several metres.

Longer sections of e.g. 5 to10 metres would probably create mixing of different zone
classes and the borders between zones would be blurred.

Shorter section lengths would not create any technical problems and would even be
advantageous for some variables like e.g. the sonic log which show short wave-length
anomalies for fractures.

The alteration parameter was initially given in discrete sections not coinciding with
the one metre sections of the data matrix. The borders between sections with different
degrees of alteration were therefore rounded off to the nearest even metre and sections
shorter than one half metre were removed. Almost all alteration sections were labelled
“oxidation” so no distinction was made between different types of alteration. Radar
reflections were initially given as coordinates of reflectors crossing the hole. This
information was converted to the number of reflectors per one metre section.

The geophysical logs (magnetic susceptibility, density, natural y-radiation, caliper, 16"
and 64" normal resistivity, focussed resistivity, single point resistance and P-wave
sonic) were all initially measured at 0.1 metres intervals. Average values for one metre
sections were calculated. The electrical, sonic and caliper logs were also deconvolved to
give weighted discrete source indications. These were summed in one metre sections.

Missing values are indicated by the number -999 in the data file.
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Table 4-1. Pre processing of data for calculation of FZI.

Processed primary data Pre processing Resulting data file
Core-mapped fracture KSHO1alla_var.xls
frequency from SICADA. (MS Excel).
Core-mapped alteration Alteration: Rounding off to even

from SICADA. metres. Omission of sections < 0.5 m.

Geophysical logs from Geophysical logs: Averaging in

SICADA. one metre sections, resampling.

Electrical, sonic and caliper logs:
Deconvolution and summation.

Radar reflections from Radar reflections: calculation of
SICADA. number of reflections per metre.

Coded GFZI from SICADA. Creation of common data matrix.

4.2 Variables for analysis

A total of 18 input variables were available in the data matrix resulting from the pre-
processing. Additionally there was a column describing the manual classification of
fracture intensity (GFZI), a column for section identity and a column for length along
the borehole.

The GFZI variable was slightly modified so that 5 sections on either side of a fracture
zone were given the value 0.05 to indicate the proximity to the transition zone. These
sections are called the near zone.

The list below shows the acronyms that have been used for the various variables in the
text and in figures in the rest of this report.

Acronym
Id = Identity consisting of borehole number plus length in metres

e.g. 1588 means hole #1 (KSHO1A) and length 588 to 589 metres
GFZI = Geological Fracture Zone Index

=2 core of fracture zone
=1 transition zone
= 0.05 near zone
=0 normal rock
Ra = Radar reflex

Ff = Fracture frequency

Ms = Magnetic susceptibility (SI)

Sr = Single point resistance, SPR (QQ)
So = Sonic P-wave velocity (m/s)
No6o = 64" normal resistivity (Q2m)
Nlo = 16" normal resistivity (QQm)

Ng = Natural y-radiation (uR/h)

F3o = Focussed resistivity (Q2m)
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De = Density (kg/m’)

Cp = Caliper (mm)

Srd = SPR deconvolved

Sod = Sonic deconvolved

No6d = 64" normal resistivity deconvolved
N1d = 16" normal resistivity deconvolved
F3d = Focres300 deconvolved

Cpd = Calip deconvolved

Al = Alteration

Output variables

NGFZI = Numerical Geological Fracture Zone Index calculated with PLS-technique
FZI1 = Continuous Fracture Zone Index based on NGFZI

FZI can also be assigned discrete values according to:

= 2 core of fracture zone, NGFZI> 1.5

= 1 transition zone, 0.5 <NGFZI<1.5

= 0 unaffected rock, NGFZI < 0.5

4.3 Incomplete sections and outliers

Values are missing for all input variables in the interval 99 to 101 metres. These three
sections were therefore omitted from the analysis. The section between 97 and 98
metres also contained missing values for some variables but this section was kept in the
analysis. Out of total 988 sections, three were omitted and the analysis was performed
on the remaining 985.

No random outliers should be allowed to influence the analysis in a serious way.
Multivariate statistics was used to identify such outliers. A total of six sections were
removed for this reason namely Id 1249, 1250, 1251, 1254, 1560 and 1590 and a new
analysis was performed resulting in a model denoted M2.

The results from the model M2 gives a reliable and robust view of the data matrix.

37 multivariate outliers were identified to be outside the confidence limit of the PLS
model where FZ1 is calculated.

The model becomes stable after removal of the outliers and no significant difference in
the model can be observed if additional sections are removed. This makes the analysis
less dependent upon which subset of the data matrix that is used to calculate the model.

The modelling with the help of PLS is also performed with cross validation, where parts

of the data matrix are alternately removed to test the significance and repeatability of
the model.
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4.4 Multivariate analysis

Multivariate statistics is treated in detail in /1/ and summarized in Appendix 1 (See also
MB 810.003, SKB internal controlling document). A brief introduction is given below.

Two main techniques are used. Principal Component Analysis (PCA) is used to
describe the relations and correlations between different variables. The second
technique, Projection to Latent Structures (PLS), is used to describe the relations
between a number of independent variables X and a dependent variable Y. The result is
similar to regression analysis with full graphical control in all steps of the measurements
and variables that are related to Y. Stepwise components from the X-space are added to
describe the variation in Y-space and to create the description model.

The correlation structure between the input variables is used to calculate a model. A
single measured value can be assumed to consist of two parts, one that can correlate
with other variables and a second that can be treated as uncorrelated noise (Figure 4-1).
The benefit with multivariate statistics is that the uncorrelated part of the total value can
be eliminated and only the rest remains for further analysis.

Measured value
54 = _
Random, uncorrelated noise
Part of value correlated with
other variables
0o ==

Figure 4-1. The contents of a single measurement.

4.5 Definition of FZI

Initially a manual classification of information from the borehole called GFZI was
performed. This classification describes the intensity of fracturing in discrete levels.

The core of the fracture zone has been given the value GFZI=2 whereas the transition
zone to normal rock has been given the value GFZI=1. The vicinity of the transition
zone have been complemented with a near zone where GFZI1=0.05. Rock out side these
zones, normal unaffected rock, have been given the value GFZI=0.

The approach is that of looking for a model that describes the rock in terms of fracturing
only and where other properties e.g. lithology does not interfere. The model might
consist of several components with the common properties that they correlate with
GFZI and that they contribute to a more robust description of FZI. Those properties

14



of the rock mass that are reflected in the variables but not correlate to GFZI are
automatically eliminated.

4.6 General relations between variables

The general relations between data have been analyzed with PCA. No attempt has been
made at this stage to make any kind of prediction of FZI. A seek of an understanding of
the relations within the data set was performed.

The correlations between variables are visualised in a number of variable loading plots
below. Variables that plot close to each other show correlation in these plots whereas
variables on the opposite side of the plot show reverse correlation. Variables in the
distal parts of the plot show strong correlation whereas variables close to the origin
shows weak correlation with the other variables. The horizontal and vertical direction
vectors are orthogonal and by definition uncorrelated to each other.

4.6.1 Principal Component Analysis

Principal Component transformation was performed for all variables and objects in the
data matrix. The normalized distance to the centre of the model is shown in Figure 4-2.
Some outliers are evident in the plot.

Sections with DmodX(PS),N >3.0, i.e. those that have a normalized distance to the

centre of the model greater than 3 standard deviations, were omitted from further
analysis. Six sections were removed (Id 1249, 1250, 1251, 1254, 1560, 1590) and
979 sections remained for analysis.

KSHO01_pc.M1 (PC), PCA 01, Alla data, Work set
DModX, Comp 1(Cum)

DModX[1]

Ll Ik
: )

:
%
K
Z
i

0 100 200 300 400 500 600 700 800 900

Dcrit [1] = 1,29714, Normalized distances, Non weighted residuals
Simca-P 8.0 by Umetrics AB 2003-08-31 15:10

Figure 4-2. Normalized distance (in standard deviations) of sections in the data matrix
from the centre of the initial PCA-model.
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PCA for model M2

A new PCA-model was calculated for the remaining data called model M2. The
normalized distance from the model centre is plotted in Figure 4-3. Some sections show
distances greater than 3 in the plot but they appear to be located to the extreme ends of
significant trends in the data set. They were therefore not removed.

The PC-analysis of the data matrix revealed four significant components that describes
58.7 % of the total variation in the data. The first two components show typical
properties related to fracturing (first component — horizontal) and lithology (second
component — vertical) (Figure 4-4 and 4-5).

KSHO01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
DModX, Comp 4(Cum)

[

DModX[4]

TR |
Ilwﬂ’ i i %NW T i
by

0 100 200 300 400 500 600 700 800 900

Dcrit [4] = 1,32351, Normalized distances, Non weighted residuals
Simca-P 8.0 by Umetrics AB 2003-08-31 15:11

Figure 4-3. Normalized distance (in standard deviations) of sections in the data matrix
from the centre of the PCA-model M?2.
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KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Loadings: p[1]/p[2]
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Simca-P 8.0 by Umetrics AB 2003-08-31 15:11

Figure 4-4. Variable loadings for the first two PC’s for model M2.

KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Scores: t[1]/t[2]

2]

t[1]

Ellipse: Hotelling T2 (0,05)
Simca-P 8.0 by Umetrics AB 2003-08-31 15:11

Figure 4-5. Object scores for the first two PC’s for model M2.

Model PCA_M2: 15t PC - 29.4 % of total variation

The horizontal direction in the variable loading plot (Figure 4-4) indicates fractured
rock. The variables to the right indicate fracturing with high/positive values whereas
those to the left indicate fracturing with low/negative values. The interpretation is that
the property of the rock that is most strongly described by the data matrix is fracturing
and that it correlates with the manual classification GFZI.
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Positive direction

GFZI, Ff, Al, Cp, N6d, Srd, N1d, Sod, F3d
Uncorrelated

Ng, Ra, Cpd

Negative direction

N1lo, N6o, Sr, F30, So, Ms, De

Model PCA_M2: 2" PC - 11.9 % of total variation

The vertical direction in the variable loading plot (Figure 4-4) indicates different types
of lithology. Variables in the upper part of the plot typically have high values for felsic
rocks (Ng) and low values for mafic rocks. The opposite applies for variables in the
lower part of the plot (Ms, De). Caliper shows correlation with density and magnetic
susceptibility on the side of fractured rock. This might indicate that fractures in mafic
rocks produce stronger caliper anomalies than fractures in felsic rocks. However, there
is a more or less linear decrease in borehole diameter with length in the hole and at the
same time felsic rocks are more abundant at depth. This might cause a correlation
between caliper and rock type that is not related to the properties of the rock mass.

Positive direction
Ng

Uncorrelated

All other variables
Negative direction
Ms, De, Cp

Model PCA_M2: Pc1 & Pc2 - 41.3 % of total variation

The object score plot in Figure 4-5 (=borehole sections) shows a fairly homogeneous
data set with trends towards the extreme values. An example of an object that relates to
the Ng-variable is Id 1364, to increased fracturing Id 1259, to normal rock Id 1035 and
to the De-variable Id 1108.

Model PCA_M2: 3" PC — 10.0 % of total variation

The variable loadings can be seen in Figure 4-6. The variables So and De are inversely
correlated with electrical logs. The object score plot (Figure 4-7) shows a funnel shape
for the majority of samples and a second group of samples to the left with high N6o, Sr,
Nlo, F30, Ms.

The interpretation of this component is that it at least to some extent indicates the effect
of variations in the salinity of the borehole liquid that has affected the electrical logs.

Positive direction

No6o, Sr, Nlo (and Sod on the side with high fracture frequency)
Uncorrelated

All other variables

Negative direction

So, De
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Simca-P 8.0 by Umetrics AB 2003-08-31 15:19

Figure 4-6. Variable loadings for Pcl and Pc3 for model M?2.

KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Scores: {[1]1[3]

0,20

t[3]

1]

Ellipse: Hotelling T2 (0,05)
Simca-P 8.0 by Umetrics AB 2003-08-31 15:20

Figure 4-7. Object scores for Pcl and Pc3 for model M2.
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Model PCA_M2: 4" PC — 7.4 % of total variation

This PC relates to the fracturing of the rock (Figure 4-8, Figure 4-9). There is also some
correlation with y-radiation.

The component indicates fractures (negative scores) with significant anomalies in some
geophysical logs with high resolution (F3d, Sod) but not in alteration and GFZI. Ng
also contributes to negative scores. This indicates fractures unrelated to alteration but
possibly related to felsic rocks.

Positive direction

GFZI, Al

Uncorrelated

All other variables

Negative direction

F3d, Sod and to some extent Ng

KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Loadings: p[1]/p[4]

AGEZl
0,40 eAf!
0,30 S0 oFf
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0,10 ADe
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0,00 N ARa
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0,10 ASrd
0,20
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0,30
2
-0,40 §3d
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p[1]

Simca-P 8.0 by Umetrics AB 2003-08-31 15:21

Figure 4-8. Variable loadings for Pcl and Pc4 for model M?2.
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KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Scores: t[1]/t[4]

4]

t[1]

Ellipse: Hotelling T2 (0,05)
Simca-P 8.0 by Umetrics AB 2003-08-31 15:21

Figure 4-9. Object scores for Pcl and Pc4 for model M2.

Model PCA_M2: Pc1, Pc2, Pc3 & Pc4 — 58.7 % of total variation

58.7 % of the variation in data is explained with a clear relation to fracturing and
lithology.

The variables Ra and Cpd do not show any correlation with fracturing or lithology and
are located close to the origin in all variable plots. These variables are independent on
this general level.

For completeness, the relations between Pc2/Pc3, Pc2/Pc4 and Pc3/Pc4 are shown
graphically in the Figures 4-10 to 4-15.
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KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Loadings: p[2]/p[3]
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Simca-P 8.0 by Umetrics AB 2003-08-31 20:03
Figure 4-10. Variable loadings for Pc2 and Pc3 for model M2.
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Figure 4-11.

Simca-P 8.0 by Umetrics AB 2003-08-31 20:04

Object scores for Pc2 and Pc3 for model M2.
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KSH01_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
Loadings: p[2]/p[4]
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Figure 4-12. Variable loadings for Pc2 and Pc4 for model M2.
KSHO1_pc.M2 (PC), PCA_01, M1 dist>3.0 uteslutna, Work set
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Simca-P 8.0 by Umetrics AB 2003-08-31 20:05

Figure 4-13. Object scores for Pc2 and Pc4 for model M2.
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Figure 4-14. Variable loadings for Pc3 and Pc4 for model M2.
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Figure 4-15. Object scores for Pc3 and Pc4 for model M2.
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4.6.2 Summary of PC-analysis

The PC-analysis is summarized in Table 4-2.

The results from the PC-analysis generate four significant components. The position
along these components for every section is denoted object score, t1, t2, t3, t4. The
object scores are also plotted against length along the borehole in Figure 4-16.

Additionally, the normalized distance to the model centre has been calculated for every
borehole section and is given in number of standard deviations, DModX(PS),N.

A probability value, PModX(PS), is also calculated for every section that indicates
the probability for the section to be within the confidence limits of the model. If this
probability is grater than 5 % we can assume that the section is within the confidence
limits.

The two parameters that indicate whether a section complies with the model are defined
as:

DModX(PS),N

Distance to the model in X space after n components for the observations used to fit
the model. The distance is the standard deviation of the observations with scaling and
centering. N stands for normalized distance.

PModX(PS)

Probability of belonging to the model in the X-space for observations used to fit the
model. Observations with probability of belonging of less than 5 % are considered to
be non members i.e. they are different from the normal observations used to build the
model.

Table 4-2. PC-analysis of borehole data.

Processed primary data Processing Resulting data file
KSHO1alla_var.xls Creation of initial PCA-model KSHO01_pca_M2_01.xls
(MS Excel)

Removal of outliers
Creation of final PCA-model, M2

Calculation of principal component
scores (i1, t2, t3, t4), distance to
model [DModX(PS),N] and probability
of belonging to model [PModX(PS)].
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Figure 4-16. Principal component object scores plotted versus length along the
borehole. Positive scores in Pcl indicate fracturing while negative scores indicate
normal rock. Positive scores in Pc2 indicate felsic rocks whereas negative scores
indicate mafic rocks. Pc3 indicates fracturing in a similar way as Pcl but has a long
wave-length trend that is reversed, probably related to liquid resistivity effects. Pc4
shows fractures unrelated to alteration and GFZI as negative scores. Constant values
have been added to Pc2, Pc3 and PcA4.

The plot in Figure 4-16 shows a long wave-length variation for both PC1 and PC3.
This is most certainly due to the effect of variation in borehole fluid salinity along the
borehole. The salinity affects the electrical logs. The caliper log will also introduce a
trend in the PC’s since the borehole diameter slightly decreases with depth. There is
also a discontinuity in the caliper log where data from KSHO1A and KSHO1B have
been merged at 100 metres length.

It might be preferable to include the fluid resistivity log in the analysis and/or
perform some kind of gentle high-pass filtering of electrical and caliper logs in the
pre-processing of data.

26



4.7 PLS-modelling of GFZI
4.71 Manual classification of GFZI for PLS-analysis

GFZI is a manual classification of the rock into fracture zones by taking geological and
geophysical information into account. The numerical value that is assigned to each class
defines the prediction achived with FZI.

A check of the coding indicates the difficulty with manual classification. A comparison
between the classification of the mapped fracture frequency, Ff, for each one metre
section shows great variations within each class.

GFZ1 Mapped fracture Number of sections
frequency,Ff

Core of fracture zone = 2 0 — 29 fractures/m 89

Transition zone =1 1 — 12 fractures /m 111

Near zone =0.05 0— 9 fractures /m 60

Unaffected rock =0.0 0 — 19 fractures /m 725

This spread in fracture frequency might be due to the fact that the actual fracture

zone borders do not coincide with the borders between one metre sections. Also, the
classification is a generalization of the geology meaning that narrow fracture zones are
classified as being outside any fracture zone and vice versa.

Constraints have been put on GFZI in order to make the modelling clear. Only sections
that are within certain intervals of fracture frequency for each value of GFZI have been
used for the modelling.

The sections that were removed from the model calculations will still be classified in
the final prediction of FZI under the condition that they are within the model confidence
limits.

The following constraints were put on the sections in order to include them in the model
calculations:

GFZI =2 and Ff> 10 35 sections
GFZI=1 and 3 <Ff<10 77 sections
GFZI=0.05 and Ff=2 &3 27 sections
GFZI=0 and Ff=0 & 1 283 sections
Total number of sections used for modelling 422 sections
Not used for modelling 563 sections

4.7.2 PLS-model for GFZI and prediction of NGFZI

The initial PLS-model is based on the selected 422 sections and all variables. Outliers
are identified by analysis of DModX, the normalized distance for a section to the central
part of the model (Figure 4-17).

Outliers were stepwise eliminated in order to make the dataset converge to a central
homogeneous data set. 37 outliers were identified after 5 steps. This means that

385 sections remained in the four classes for the final model estimate. The distance
to the model centre for the remaining sections can be seen in Figure 4-18.
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The elimination of outliers had the consequence that all sections with radar reflections
were removed and the variable Ra was therefore excluded from further analysis.

KSHO01_pl.M1 (PLS), Alla data within classes, Work set

DModX, Comp 3(Cum)

DModX[3]
N
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Dcrit [3] = 1,34084, Normalized distances, Non weighted residuals
Simca-P 8.0 by Umetrics AB 2003-09-01 20:09
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Figure 4-17. Normalized distance to model centre for each section included in the

initial PLS model estimation.
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Figure 4-18. Normalized distance to model centre after removal of outliers, model M35.
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The PLS analysis is now directed to the prediction of GFZI with the remaining variables
and objects. This is done by assigning GFZI as Y-values and the other variables as
X-values in a model that can be seen as a stepwise regression analysis. Two data

blocks are defined in this way, X and Y. For each added PLS-component the amount

of explained variation in the two blocks are given, i.e. how much of the variation in the
X-block is used to explain a certain amount of variation in the Y-block.

The analysis gave three significant components after cross-validation. The model is
called M5 in the discussion, tables and figures below:

PLS-M5 X Y accum. Y
Comp.1 34.7 % 50.7 % 50.7 %
Comp.2 6.2 % 325 % 83.2 %
Comp.3 8.7 % 3.0% 86.2 %

With the first component 34,7 % of the variation in X is used to explain 50.7 % of the
variation in Y (GFZI). For component 2, 6.2 % of the variation in X is used to explain
32.5 % of the variation in Y. Finally, with the third component 8.7 % of the variation in
X 1s used to explain 3.0 % of the variation in Y.

A total of 49.6 % of the variation in X was hence used to explain 86.2 % of the variation
in Y with the three components. The remaining variation in Y can be considered as the
noise in the difference between the manual classification and a numerically continuous
model.

Two types of graphs are shown below (Figures 4-19 to 4-24) where the importance of
different variables in the X-block for estimation of GFZI for the three components.
Figures 4-19 and 4-20 show the coefficients of the variables for the first component.
Positive values for variables to the right of the origin will increase the estimated value
of GFZI whereas the opposite applies for variables to the left of the origin.
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Figure 4-19. Model PLS-M5, I* component. The influence of variables on GFZI.
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Figure 4-20. Model PLS-M5, I* component. The coefficients of the variables.
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Figure 4-21. Model PLS-M35, 2" component. The influence of variables on GFZI.
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Figure 4-22. Model PLS-M35, 2" component. The coefficients of the variables.
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Figure 4-24. Model PLS-M5, 3 component. The coefficients of the variables.
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The components are interpreted in the following way:

PLS-component 1 — X: 34.7 % - Y: 50.7 %

The variables Ff and Al are most positively correlated with GFZI and the strongest
negative correlation is seen for F3o. In detail, Cp, Srd, Sod, N6d, N1d, F3d are
positively correlated with GFZI whereas F30, Ms, Sr, So, N6o, N1o, Ng and De shows
a negative correlation. The variable Cpd is uncorrelated with GFZI for this component.

The interpretation of this component is that it describes sections with high fracturing

as well as significant alteration. These properties are also reflected to a greater or lesser
extent by most geophysical logs. The negative coefficients for the electrical logs have
resulted in a long wave-length anomaly in this component (Figure 4-25) due to
variations in the salinity of the borehole fluid.

PLS component 2 -X:6.2% -Y:32.5%

The variable Ff is strongly correlated with GFZI . Some positive correlation is seen with
Sr, So, N6o, N1o and a weak negative correlation with Cp.

The interpretation is that this component indicates high fracturing that is not affected by
other variables including alteration. Apart from a long wave-length trend of the same
kind as mentioned above there is a discontinuity at 100 metres length along the hole
due to a shift in caliper values. Data from KSHO1B have been used above 100 m length
whereas data from KSHO1A have been used below 100 m length.

PLS component 3-X:8.7% -Y:3.0%

The variable Ff again shows the strongest correlation with GFZI. Deconvolved
geophysical variables that are supposed to indicate fracturing, Srd, N6d, N1d, Cpd and
also alteration, Al, show negative correlation with GFZI. The component is not of great
magnitude but significant.

The interpretation is that negative scores in this component might indicate alteration
associated with fractures but not high fracture frequency.
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Figure 4-25. Object scores for the three significant PLS-components of model M5
plotted against length along the hole. Constant values have been added to PLS2 and
PLS3. See text for interpretation.

4.7.3 PLS-model for GFZI without fracture frequency and alteration

An attempt was made to calculate NGFZI without using the two variables Ff and Al
that relies on manual mapping of the drillcore as X-variables. The new model is called
M6 below. The same data set was used as for model M5 and DModX is shown in
Figure 4-26.
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KSHO1_pl.M6 (PLS), M5 ./. Ff & Al, Work set
DModX, Comp 1(Cum)

DModX[1]

Dcrit [1] = 1,35319, Normalized distances, Non weighted residuals
Simca-P 8.0 by Umetrics AB 2003-09-04 09:04

Figure 4-26. Model PLS-M6, normalized distance to model centre.

The analysis did only reveal one significant component after cross-validation:

PLS-M6 X Y accum. Y
Comp. 1 353 % 30.9 % 30.9 %

The influence of the variables shows similarity with the first component for model M5.
The variation in GFZI that was explained was however 19,8 % less than for the first
component of M5. The selection of sections to be included in the modelling was
however partly based on their Ff-values which to some extent might explain this
difference between the models. Since the second component of M5 was a “pure”
Ff-component it was not possible to find any corresponding component in F6 since Ff
was excluded. Figures 4-27 and 4-28 show the influence of the variables on the first
component of model M6.

The first component of model M6 is given the following interpretation:

The variables show the same coefficient pattern as when Ff and Al was part of the
analysis. The model shows variation in fracturing. The difference from model M5 is that
manual core mapping was not used. Another difference from MS5 is that there is only
one significant component in the model.
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Loadings: w*c[1]/w*c[1]
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Figure 4-27. Model PLS-M6 I*' component. The influence of variables on GFZI.
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Figure 4-28. Model PLS-M6 1*' component. Coefficients of variables.
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4.7.4 Residual between observed GFZI and predicted NGFZI

A Fracture Zone Index, FZI, has been calculated with the model M5 that consists of
three components. This value is here called Numerical Geological Fracture Zone Index,
NGFZI. The result from the prediction of NGFZI has been analyzed in the form of a
normal probability plot for the residual between the observed value of GFZI and the
predicted value of NGFZI. Figure 4-29 shows two extreme values for Id 1426 and 1627
in the lower left of the graph. The remaining residual values fall along a fairly straight
line, which indicates a normal distribution of the residuals.
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Figure 4-29. Normal probability plot for the residual from model M5, Y, — Yprea,
(GFZI s — NGFZ,eq)

4.7.5 Conclusions for PLS-modelling of NGFZI

The general conclusion is that only 35 % of the variation in GFZI can be explained
when the variables Ff and Al were removed from the analysis. By using Ff and Al as
subjective observations on the drillcore the explained variation in GFZI was increased
to around 50 % for the first component. Two additional components became significant
when Ff and Al were included in the analysis and the variation of GFZI that is
explained by the model has increased to 86 %. The explained variation of Y of 86 %
indicates a strong and robust model and the remaining 14 % of the variation in GFZI is
probably noise due to generalization in the manual classification of GFZI. This noise
will be filtered away by the PLS-model automatically.

This NGFZI was calculated for all sections along the borehole and describes the
subdivision of the rock into classes of different fracturing with a continuous value
from the core of a fracture zone to unaffected normal rock. This value is FZI after
adjustments for intervals and outliers.
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4.8 Calculation of FZI

NGFZI is a continuous variable varying between —0.5 and +3.5 along the borehole.
Some minor adjustments have been done since the model is not aware of the limitations
on the index that was predicted.

Sections that are outside the confidence limits of the model according to the variable,
DModX, have been assigned a “missing value” during the analysis. In order to avoid
missing predictions in the final FZI vector, these values have been replaced by the
original GFZI value for the corresponding section.

The final NGFZI value has been truncated so that the minimum value is 0.0 and the
maximum is 2.5. This constitutes the final continuous value of FZI. The index can be
split into discrete classes according to e.g.:

Core of fracture zone 1.5<FZI<2.5
Transition zone 0.5<FZI<1.5
Unaffected rock 0.0<FZI<0.5

The PLS-modelling and FZI-calculation is summarized in Table 4-3. The result of FZI
calculation is shown in Figure 4-30.

Table 4-3. PLS-analysis and FZI-calculation.

Processed primary data Processing Resulting data file
KSHO1alla_var.xls Creation of initial PLS-model KSHO1_pls_01.xIs
(MS Excel)

Removal of outliers.
Creation of PLS-models M5 and M6
Calculation of NGFZ| and DModX

Back substitution of GFZI-values for
outliers (M5)

Truncation to 0<FZI<2.5 (M5)

38



9 9.9 9.9 9 PP PPV VYV
ZSRIKKLELKLK

R T T

200 — 200 — 200 —

X XXX X%
PRI

400 | 400

s

S929-9.9.9-9-9.9.9.9.9.9.9.9.9
R IR IERTK

L eemememeremermermemes
2 S R
00702020 %0270 %0207 %0200 %0 %0 % e %% te %% e Yo te e e

OO TOTOTOTOTOTITOTOT OIS
RORRRRRRRRRRRRRS
B e o reTererererere

600

74 "0'QVQVQVQvQVQVQVQVQVQVQVQv0"
R RRHAAXH A AN AHANAXHAX

800 800 —

2=
L

1000 1000 — 1000 —

Figure 4-30. Result of the FZI calculation. The left graph shows the predicted FZI as a
black line and the original classified GFZI with red cross-hatching versus length along
the borehole. The central graph shows GFZI and FZI in grey after smoothing with a

5 point median filter. The right graph shows FZI in grey as discrete classes according
to the intervals: FZI<0.5 — discrete FZI=0; 0.5<FZI<1.25 — discrete FZI=1;
FZI>1.25 — discrete FZI=2. Note that the border between the two highest classes was
set to 1.25 in this presentation instead of 1.5 since this choice gave a slighter better
agreement with GFZI.
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4.9 PC-analysis of the classes in NGFZI

NGFZI was analyzed by principal components to give some insight into the behaviour
of different variables within the classes. The number of sections that were predicted in
each class was:

NGFZI1 Number of sections

Core of fracture zone 1.5-2.5 38
Transition zone 05-1.5 273
Unaffected rock 0.0-0.5 674

491 PC-analysis of the class, fracture zone cores

The class for the core of fracture zone contained 38 sections. Four of these were outliers
that were removed in order to make a reliable PC-analysis of the class. The model
contained one significant component that explained 30.1 % of the total variation.

The plot in Figure 4-31 shows the variable loadings for Pc1/Pc2. Note that the second
Pc is not significant. The first Pc shows high values for NGFZI to the left in the plot
together with other parameters that are indicative for the core of a fracture zone.

It can be noted that Ff is to the right of the origin in the plot. This indicates that Ff,
although important in the creation of the PLS-model, is not a strong variable in this
context and even negatively correlated with NGFZI. Strong variables are: Cp and Al to
the left in the plot and N1o and Sr to the right in the plot. These variables will indicate
variations within the core of the fracture zone.
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Figure 4-31. Variable loadings for Pcl and Pc2 for sections with NGFZI>1.5. Note
that Pc2 is not significant.
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KSHO1_pl.M4 (PC), M3 ./. 1900, 1829, Work set
Scores: t[1]/[2]

2]

t[1]

Ellipse: Hotelling T2 (0,05)
Simca-P 8.0 by Umetrics AB 2003-09-05 10:08

Figure 4-32. Object scores for Pcl and Pc2 for sections with NGFZI>1.5. Note that
Pc?2 is not significant.

Since the class was based on 34 sections only, one should be somewhat cautious about
the interpretation of these results and their applicability to e.g. other boreholes.

Observe that the above mentioned results are valid for the core of a fracture zone and
not for sections outside the core of the fracture zone.

4.9.2 PC-analysis of the class, transition zones

The class for transition zones contained 273 sections with values for NGFZI between
0.5 and 1.5. The model showed 4 significant components describing 56.7 % of the total
variation.

The results for Pcl and Pc2 are shown in Figures 4-33 and 4-34. High values for Ff and
Al will result in high values of NGFZI since they are close in the plot and thus strongly
correlated. Apart from Ra and Ng all other variables will also contribute to NGFZI
through either positive or negative correlation.
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Figure 4-33. Variable loadings for Pcl and Pc2 for sections with 1.5>NGFZI>0.5.

KSHO1_pl.M5 (PC), NGFZI 0,5 - 1,5, Work set
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2]

1]

Ellipse: Hotelling T2 (0,05)
Simca-P 8.0 by Umetrics AB 2003-09-05 10:22

Figure 4-34. Object scores for Pcl and Pc2 for sections with 1.5>NGFZI>0.5.
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4.9.3 PC-analysis of the class, unaffected normal rock

The class for unaffected rock contained 674 sections with values of NGFZI less
than 0.5. The model gave 6 significant components and a total of 66.5 % of the total
variation was explained.

The results for Pcl and Pc2 are shown in Figures 4-35 and 4-36. The results are similar

and the interpretation is the same as for the transition zone class.
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Figure 4-36. Object scores for Pcl and Pc2 for sections with 0.5>NGFZI.
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4.9.4 PC-analysis for subsets of all three classes

An analysis was performed on subsets of all three classes. The existing 34 sections from
the core of fracture zones were used together with 34 sections from transition zones
with NGFZI~1.0 and 34 sections from unaffected normal rock with lowest values,
NGFZI~0.0.

The analysis resulted in one significant component that describes the relation between
fracture zones and unaffected rock. The component is shown in Figures 4-37 and 4-38
together with the insignificant second component.

In the object scores plot in Figure 4-38, that shows the scores for every borehole
section, it can be seen that the sections with NGFZI~0 plot as a separated group
whereas the other two subsets form a continuous pattern.
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Figure 4-37. Variable loadings for Pcl and Pc2 for subsets of data representing the
three FZI classes. Pc2 is not significant.
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KSHO1_pl.M7 (PC), 34 st of each class, Work set
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Figure 4-38. Object scores for Pcl and Pc2 for subsets of data representing the three
FZI classes. Pc2 is not significant.

4.9.5 Conclusion of PC-analysis of fracture zone classes

The Principal Component analysis of the FZI classes shows a similar pattern for the
input variables as the original PLS-analysis that generated the NGFZI values. Inside
the core of a fracture zone there is a tendency that fracture frequency is not the most
indicative variable as one might believe. Some of the geophysical variables and the
alteration classification are the most significant variables within the core of a fracture
zone.
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5 Summary and discussion

Measured and mapped variables along the borehole KSHO1A have been evaluated
with multivariate techniques with the purpose of calculating a Fracture Zone Index,
FZI. This index should subdivide the rock into classes with information that supports
interpretation of deformation zones.

By using multivariate techniques several variables can be considered simultaneously
and only relevant correlated information from the variables are used for calculation of
FZI. This gives a robust estimate and random and manual operator introduced noise not
correlated with FZI will automatically be filtered away.

The models are based on a definition where the rock has been manually classified into
three classes — core of fracture zone, transition zone and unaffected rock. Apart from
this manual classification an additional constraint has been put on the sections to be
included in the modelling between classes property, namely constraints in the mapped
fracture frequency. The sections that constitute a class describe the properties of that
class and can be regarded as the “fingerprint” of the class. Similarity to this fingerprint
is then calculated in the final classification of the rock. This manual subdivision of the
rock into classes is called Geological Fracture Zone Index, GFZI.

It is important that the input variables describe the entire range from the core of fracture
zone to unaffected rock since this range is described by the model. The models will
therefore contain variables that are not just indicative of fracture zones but also of
unaffected rock. With the help of the model a Numerical Geological Fracture Zone
Index, NGFZI, is calculated for all sections along the borehole, including the core of
fracture zones, transition zones and the unaffected rock.

The result of FZI calculation is shown in Figure 5-1.
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Figure 5-1. Result of the FZI calculation. The left graph shows the predicted FZI as a
black line and the original classified GFZI with red cross-hatching versus length along
the borehole. The central graph shows GFZI and FZI in grey after smoothing with a

5 point median filter. The right graph shows FZI in grey as discrete classes according
to the intervals: FZI<0.5 — discrete FZI=0; 0.5<FZI<1.25 — discrete FZI=1;
FZI>1.25 — discrete FZI=2. Note that the border between the two highest classes was
set to 1.25 in this presentation instead of 1.5 since this choice gave a slighter better
agreement with GFZI.
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In order to evaluate the two variables that depends upon manual mapping of the drill
core, fracture frequency and alteration, these were excluded and an analysis was
performed. This had the consequence that only one PLS-component was significant
and that only 35 % of the variation in GFZI could be explained. This is in contrast to
the 86 % of the variation that was explained when the two variables were included.

86 % of the variation in GFZI was explained by the model and the interpretation is that
the remaining 14 % mainly is noise introduced in GFZI due to generalization during the
manual classification that resulted in GFZI. This noise is filtered away by the model.

The analysis of the classes for unaffected rock and transition zones shows that they
mainly are correlated with an increase in fracture frequency and alteration. Inside the
core of a fracture zone other variables become more important, like electrical logs, sonic
and caliper.

Multivariate techniques give an objective classification of the rock as a continuous
variable. Error, random and operator introduced noise in the input data is to a great
extent eliminated and the resulting FZI becomes robust and repeatable. This work also
shows the importance of proper pre-processing of the data. Long wave-length trends in
the electrical logs and in the caliper log propagated into the multivariate components in
an unwanted way, probably because they, by chance, to some extent correlated with
GFZI. These logs are also represented by deconvolved data that do not show this effect.
Before further work with FZI is carried out it is important that such long wave-length
effects can be removed or alternatively it is checked if logs showing such trends can be
omitted from the analysis.

The delivered data have been inserted in the database (SICADA) of SKB. The SICADA
reference to the present activity is Field note No. 111.
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Appendix 1

Multivariat analys

PCA-analys

Har f6ljer en kort beskrivning av Principal Component Analysis utan ingdende
statistiska eller matematiska detaljer. For detaljer refereras till /Wold et al, 1987/.

Multivariat analys bearbetar en matris med data for ett antal objekt och ett antal
variabler med syfte att skapa robustare analys 4n att bara tolka en variabel i taget.

Vanligtvis finns ndgon struktur i en datatabell, t ex nir en variabel okar, okar dven

ett antal andra variabler och samtidigt minskar vardena for ytterligare nagra andra
variabler. Vi kan séiga att vi i tabellerna kan finna att vissa variabler &r korrelerade
och att vissa dr omvint korrelerade med varandra och att dessa korrelationer beskriver
typiska egenskaper i tabellen som vi kan tolka och namnge.

Fran teori och véra erfarenheter kan vi kdnna igen att vissa variabler samverkar
och ger oss en forstéelse for hur olika egenskaper upptrader i métviardena. Att bara
analysera en variabel i taget blir en grov och ibland allvarlig férenkling av den
komplexa verkligheten dir slumpmissiga variationer eller mitfel kan inverka pa
resultatet.

Multivariat analys ger en generell beskrivning av en datatabell i form av egenskaper
som kan visas i1 tva-dimensionella bilder. Bilderna visar extrema objekt med avvikande
egenskaper samt vilka variabler och objekt som &r viktiga och typiska for varje
egenskap.

Ju storre tabellen dr desto svarare blir det att forsta innehallet och desto fler variabler
tenderar att beskriva samma typ av egenskap fran olika synvinklar. Genom analys av
tabellerna med en multivariat metod och grafisk presentation forenklas tolkningen
avsevdrt. Samtidigt elimineras slumpméssiga fel nédr endast korrelationsstrukturen
anviands for att beskriva en egenskap.

Nedan foljer ett forenklat exempel av data och hur dessa hanteras av en multivariat
analys. Figur A-1 visar en enkel tabell med en identitet och tre variabler for 15 objekt.
Objekten PO1-P15 kan vara vara 1-meters sektioner beskrivna med tre variabler och
varje objekt far d& en unik position i den tredimensionella rymden.
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Obj Varl Varz Vard

B0l 12.4 12.9 8.2 var 31 PCA
B02 11.6 13.2 8.6

P03 12.1 14.6 8.4 P10 *

P04 11.8 14.7 8.5 PO1-PO9

P05 12.5 14.%5 8.2 . e,

PO6 11.4 15.1 8.5 . | v,

P07 12.2 15.9 8.1 -

P09 12.6 16.4 8.6 . v, P11-P15
P10 10.2 15.9 12.8 et
P11 15.3 15.3 8.5 .

P12 15.1 15.2 8.4 T

P13 15.2 15.4 8.6 xv.ar 1
P14 15.1 15.3 8.5 + Var 2 *
P15 15.5 15.2 8.3

Figur A-1. Femton objekt med tre variabler och dess position i rymden.

Bilden visar ett extremvérde, P10 och en grupp av extremvérden, P11-P15. Dessutom
finns en central grupp av objekt som visar den dominerande egenskapen i datamatrisen.

Det dr dessa egenskaper vi vill kunna se grafiskt for att béttre forstd och sortera objekt
och variabler i tabellen. Vi kan tinka oss att man tar den tredimensionella bilden frén

Figur A-1 och héller den 1 handen. Sedan vrider vi och vénder p4 bilden for att se data
fran olika hall.

Beroende pa hur man vrider handen ser man olika trender, grupper och hur varje
enskild datapunkt ligger i den tre-dimensionella rymden. Pa bilden i Figur A-2 har
den avldnga centrala gruppen omslutits av en cylinder och tolkats som den egenskap
vi vill analysera.

Var 3 PCA

% _h_x\Kmrponant 1

=z

Figur A-2. Centrala gruppen av datapunkter omsluts med en konfidensvolym.

52



Idén med multivariat analys &r att berékna de riktningar som visar den storsta
spridningen av objekten och att samtidigt projicera de ursprungliga variablerna ldngs
dessa axlar och plan. For att gora detta anvénder vi vedertagna matematiska metoder.

Forst berdknas den riktning som beskriver den storsta variationen, dérefter de
vinkelrita riktningarna som stegvis beskriver sa stor del som mgjligt av den
aterstdende variationen tills hela matrisen har beskrivits till 100 %. Dessa riktningar
kallas komponenter, egenskaper eller egenskapsriktningar och parvis kan dessa
riktningar anvidndas som projektionsplan.

Om vi anger att hela tabellen innehéller 100 % variation, kan vi ocksé ange i procent
hur stor del av variationen som varje komponent beskriver. Genom att summera dessa
procenttal for de tva komponenter som visas i en bild kan vi ange hur stor del av
variationen som bilden visar, vilket blir en viktig del i var analys, beddmning och
forstaelse av matrisen.

I Figur A-3 har de tva forsta komponenterna lagts in 1 den tredimensionella rymden med
tillhérande plan tillsammans med de enskilda objekten och variablerna.

R PCA
Var 3
Komponent 1
-
.:—'-'-F -. F-""— .:-'-"'-J
T ’:3—?—._
o L] L] = -
. - e ——
f-'#_'% s ¥ s e -\-"'“-\-.\_
— .-_:_F LN -E"‘---___ - —
_f__.:—:‘::_____ * f":!JI ““_'i'ﬂlf:_
— -,__q_\_q_ e - ey
— Komponent 2
-_f__‘_.-_-;%
Var 27 T
ol Var 1

Figur A-3. Varje punkt projiceras mot planet definierat av komponent 1 och 2.

Vi ser dven att Var 1 drar i samma riktning som komponent 2, Var 2 drar i motsatt
riktning av komponent 1 och Var 3 dr néstan vinkelrdt mot planet och hamnar néra
centrum och tillfor inte ndgon spridning eller information till planet.

Genom att bara anvianda den information som finns beskriven av t ex de tva forsta
komponenterna i planet kan man eliminera residualerna och ddrmed eliminera dessa
som icke relevant variation.

Varje tvddimensionell projektion kan sedan projiceras pa en datorskérm eller skrivas ut
pa papper for att manuellt tolka och beskriva resultaten, Figur A-4.
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Figur A-4. Projektionsplanet kan visas som en bild pd en datorskdrm.

Maximalt kan man ta fram lika minga komponentriktningar som antalet ursprungliga
variabler och dessa kan ses bara som ett nytt koordinatsystem vars riktningar styrs av
datapunkternas spridning och paverkar inte datapunkternas lige eller inbordes avstind.

Att anvénda fler @n tre variabler som i detta exempel dr inget problem och moderna
pc-program kan hantera hundratals variabler och tusentals objekt.

Om man kan acceptera tanken att analysen endast ger en projektion av de ursprungliga
objekten pi ett strikt geometriskt sétt och utan att forvranga den inbordes relationen,
inser man att dessa projektioner beskriver samma tabell men genom ett fonster eller
projektionsplan vars riktning &r baserat pa flera variabler som korrelerar.

Generellt géller att variabler eller objekt som ligger nira varandra visar stark likhet med
varandra. Variabler eller objekt som ligger pa vardera sidan av centrum, dvs vinkeln
mellan dem &r ca 180 grader genom centrum, dr omvént relaterade till varandra och
saledes ndr den ena variabeln okar sd minskar den andra.

Om vinkeln mellan tvé objekt eller variabler genom centrum &r 90 grader dr variablerna
oberoende och de paverkar eller samverkar inte med varandra. Om en variabel ligger
nira centrum innebdr detta att variabeln inte bidrar till spridningen i planet och ar helt
oberoende till de 6vriga variablerna som beskriver planet.

I en tabell ingér ofta flera variabler som beskriver likartade fenomen. Vi kan séga att
ett fenomen finns beskrivet genom likvérdiga variabler. Dessa variabler hamnar nira
varandra i analysen och bidrar till att beskrivningen av egenskaperna inte fordndras
ndmnvért om vi véljer bort en eller ndgra av dessa likvérdiga variabler — analysen blir
robust. Om vi samtidigt har eliminerat extremvirden, tillfdlliga och avvikande
observationer, ger detta ytterligare stod till en objektiv och robust analys.

Genom den multivariata PCA-analysen skapas en forstaelse av data samt en objektiv
numerisk beskrivning av relationer mellan objekt och variabler ddr man har eliminerat
inverkan av icke Onskvirda objekt, variabler och eventuella slumpmaéssiga variationer.
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PLS-analys

PLS-analys ér en typ av regressionsanalys diar man styr ett antal oberoende variabler X,
att beskriva en eller flera beroende variabler Y, med syfte att kunna prediktera ett
y-virde frén x-vérdena. For detaljer refereras till /Geladi et al, 1986/.

0bi Varl VarZ Vard ¥
POl 12.4 12.9 8.2 8.3 PLS
P02 11.6 13.2 8.6 9.8
P03 12.1 14.6 8.4 8.2
P04 11.8 14.7 8.5 - Y
P05 12.5 14.9 8.2 -
P06 11.4 15.1 8.5 9.3
P07 12.2 15.9 8.1 7.2 . LA
P09 12.6 16.4 8.6 7.1 .
P10 10.2 15.9 12.8 3.5 "?;t “;d‘*
P11 15.3 15.3 8.5 5.2 “pre
P12 15.1 15.2 8.4 -
P13 15.2 15.4 8.6 -
P14 15.1 15.3 8.5 5.1
P15 15.5 15.2 8.3 =
Var3 4 X Regression
L)
P10 *
P01-P0S,
L ]
W " M
L] R Komgz 1
r"*V’arE

Figur A-5. PLS modellering av X-variabler for prediktering av Y.

X-variablerna fran tabellen i Figur A-1 kompletteras med en Y-variabel och en forsta
komponent berdknas med PCA-teknik for X-variablerna, Kompl. Varje objekt 6verfors
till en ny graf dér laget lings komponenten anvinds for den horisontella axeln och
véirdet pd Y som den vertikala axeln och en regressionslinje berdknas i den nya grafen.
For varje x-vérde berdknas med regressionslinjens hjélp ett nytt y-vdrde och metoden
itererar tills y-vérdet stabiliseras. Nu kan vi utlésa vilka variabler i X som visar storsta
relationen med Y for forsta komponenten och hur stor del av variationen i X som
anviands for att beskriva variationen Y.
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Om det 4r mojligt, skapas nista komponent pa samma sétt som for forsta komponenten,
for den resterande variation 1 X, fOr att beskriva sa stor del som mdjligt av den
resterande variationen i Y. Detta utfors sé lange komponenterna dr signifikanta och de
slutliga residualerna i X och Y efter att alla signifikanta komponenter har beréknats
filtreras bort frdén modellen.

Varje ny komponents signifikans verifieras med korsvalidering. Detta utfors genom

att modelldata delas upp 1 sju delméingder, dédr en delméngd 4t gangen utesluts och en
PLS-modell berdknas som anvénds for prediktering av den uteslutna delméngden. Detta
upprepas tills alla data element har uteslutits en gang och ett prediktionsfel berdknats for
skillnaden mellan observerat och predikterat viarde. En modell eller dess komponenter
anses vara signifikant om prediktionsfelet 4r mindre 4n ett definierat vérde.

Slutresultatet blir en regressionsformel, dir man anger f6r varje komponent hur stor
andel av variationen i X som anvénds for att beskriva variationen i Y och bilder dir man
stegvis kan beddma olika variablers och objekts inverkan pa modellen tillsammans med
information av typen,

Med komp. X; anvinds 45 % av variationen i X for att beskriva 60 % av var.1 Y
Med komp. X, anvinds 15 % av variationen i X for att beskriva 20 % av var. 1Y
Totalt anviands 60 % av variationen 1 X for att beskriva 80 % av var.1Y

Regressionsformel har utseende enligt,
Ypred = constant + AX; + BXo +CX3+ ...
Residual av ej beskriven variation = Y gps — Ypred

Resultaten fran analysen visar automatiskt vilka X-variabler som medverkar alternativt
som dr omvént korrelerade med en 6kning av virdet Y, samtidigt som man ser vilka
variabler som inte bidrar med ndgon information till beskrivning av variationen i Y.

Med den skapade relationsformeln kan man prediktera Y-véirden for varje objekt,
baserat pa dess X-variabler &ven om objektet inte har ndgot observerat y-vérde.

Den slutliga modellen beskrivs dven med en konfidensvolym och for varje enskilt
objekt berdknas ett avstind till modellen. Ligger ett objekt ldngt utanfér modellen,
exempelvis med ett avstand storre dn 3 standardavvikelser anses detta objekt vara ett
extremvérde och forsiktighet skall iakttas vid anvindning for modellering och vid
tolkningen av dess berdknade virde, Y pred.
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