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Preface (by Urban Svensson) 
 
 
 
As the first author of this report, I take the liberty to write a preface and explain a 
few things about the work leading to version 2.1 of DarcyTools. This is necessary as 
Hans-Olof and Michel have not been involved in the writing of the main part of the 
report, and they may not even share all the views expressed. 

The contributions from Hans-Olof and Michel can be specified as follows: 

Hans-Olof: Development of methods and writing of software for generation of  
fracture networks and their representation (in terms of properties) in the 
continuum model. Development of methods and writing of software for 
the particle tracking routine PARTRACK. Author of Appendices B, C 
and D. 

Michel: Development and writing of the software for the solution of the 
continuum problem. Author and owner of the solver MIGAL. Author of 
Appendix A. 

My contribution has been in the development of concepts and methods, real world 
applications and tests. I have also coordinated the efforts and done my best to ensure 
that we deliver the product our client, SKB, expects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 
 

 

 

DarcyTools is a computer code for simulation of flow and transport in porous and/or 
fractured media. The fractured media in mind is a fractured rock and the porous 
media the soil cover on the top of the rock; it is hence groundwater flows, which is 
the class of flows in mind. 

DarcyTools is a general code for this class of problems, but the analysis of a 
repository for nuclear waste is the main intended application. 

A number of novel features are introduced in DarcyTools. The most fundamental is 
perhaps the method to generate grid properties (DarcyTools is a continuum porous-
media code); a fracture network, with properties given to each fracture, is 
represented “directly” in the computational grid. This method is believed to result in 
very accurate anisotropy and connectivity properties. 

The report focuses on the concepts, assumptions, equations and key features of 
DarcyTools. The main part of the report is fairly short; a number of appendices give 
more detailed accounts of various aspects of the code. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract (Swedish) 
 

 

 

DarcyTools är ett datorprogram för simulering av flöde och transport i ett poröst 
och/eller sprickigt medium. Det sprickiga mediet är ett sprickigt berg och det porösa 
mediet jordlagret som täcker berget; det är således grundvattenströmning som är 
applikationsområdet. 

DarcyTools är ett generellt program för grundvattenströmning, men tillämpningar 
som rör analyser av förvar för uttjänt kärnbränsle står i fokus. 

Ett antal nya koncept och metoder utgör hörnpelare i DarcyTools. Den kanske mest 
fundamentala av dessa rör metoden för att representera hydrauliska egenskaper i 
beräkningsnätet (DarcyTools är en så kallad ”porös kontinuum kod”). Metoden 
bygger på en direkt representation av ett spricknätverk, som kan innefatta upp till en 
miljon sprickor. Tanken är att denna metod skall ge en god beskrivning av bergets 
anisotropi och sprickors konnektivitet. 

Rapporten beskriver koncept, antaganden, ekvationer och illustrerar 
nyckelegenskaper. Huvuddelen av rapporten är tämligen kort; ett antal appendix 
beskriver olika aspekter av programmet mer i detalj. 
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1 Introduction 
 
 
 
1.1 Background 
DarcyTools is a computer code for simulation of flow and transport in porous and/or 
fractured media. The fractured media in mind is a fractured rock and the porous media 
the soil cover on the top of the rock; it is hence groundwater flows, which is the class 
of flows in mind. 

DarcyTools is developed by a collaborative effort by SKB AB (The Swedish Nuclear 
Waste Management Company AB) and CFE AB (Computer-aided Fluid Engineering 
AB). It builds upon earlier development of groundwater models, carried out by CFE 
AB during the last ten years. The following reports, by the present writer, give a 
general account of this work and hence give a background to the work to be described 
in this report: 

• Groundwater flow at Äspö and changes due to the excavation of the laboratory, 
Svensson (1991). This report gives predictions of the influence of the laboratory 
prior to its construction. 

• A regional analysis of groundwater flow and salinity distribution in the Äspö area, 
Svensson (1997a). Results from this study have been useful for generating 
boundary conditions for smaller scale models. 

• A site scale analysis of groundwater flow and salinity distribution in the Äspö area, 
Svensson (1997b). This model may be considered as representing a synthesis of 
the detailed information provided in Rhén et al. (1997). 

• Representation of fracture networks as grid cell conductivities, Svensson (1999a). 
This report describes, for the first time, the principles used for generating property 
fields in DarcyTools. 

• A laboratory scale analysis of groundwater flow and salinity distribution in the 
Äspö area, Svensson (1999b). In this study the new methods were applied and 
evaluated. 

• PARTRACK –A particle tracking algorithm for transport and dispersion of solutes 
in a sparsely fractured rock, Svensson (2001a). This report describes the particle 
tracking techniques used in DarcyTools. 

• Impact of the tunnel construction on the groundwater system at Äspö. Task 5, 
Äspö Task Force on Groundwater Flow and Transport of Solutes. Svensson, 
Laaksoharju and Gurban (2002). 

These reports give a general overview of the developments that have lead to the 
present version of DarcyTools. It should also be pointed out that in the listed reports 
the CFD code PHOENICS (Spalding, 1981) was used as an equation solver. 
DarcyTools is based on a solver called MIGAL (Ferry, 2002). It has however been 
carefully evaluated that the two solvers produce very similar solutions and the reports 
listed are thus still valid as background reports for DarcyTools. 
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The present report will focus on the theoretical basis of DarcyTools. Two 
accompanying reports cover other aspects: 

- Verification and Validation, Svensson (2004) (Hereafter Report 2). 

- User’s Guide, Svensson and Ferry (2004) (Hereafter Report 3). 

“Real world applications” of DarcyTools can be found in Svensson (2001c) and in 
Follin and Svensson (2002). 

Two basic approaches in groundwater modelling can be identified; in one we define 
grid cell conductivities (sometimes called the continuum porous-medium (CPM) 
approach, Jackson et al., 2000), in the other we calculate the flow through the fracture 
network directly (DFN approach). Both approaches have their merits and drawbacks, 
which however will not be discussed here (for a discussion, see Sahimi, 1995). Instead 
we will try to combine the approaches, meaning that we first generate a fracture 
network and then represent the network as grid cell properties. 

The traditional way to calculate grid cell conductivities in continuum models is 
through an upscaling procedure (for reviews see: Wen and Gómez-Hernández (1996), 
Renard and de Marsily (1997) and Pozdniakov and Tsang (1999)). These methods are 
however of no direct use in the present work. Attempts have been made, see La Pointe 
et al. (1995), Niemi et al. (1999) and Jackson et al. (2000), to use a DFN-model to 
calculate grid cell conductivities. This method has similarities with the present 
approach as the cell conductivity will be based on the properties of a fracture network. 
We will however not use a DFN-model to estimate the grid cell conductivities; instead 
the fracture network is represented “directly” in the continuum model. Methods to 
include a limited number (say 10-20) of major fracture zones in a CPM-model have 
been presented, see for example Svensson (1997) and Gómez-Hernandez et al. (1999). 
The method in DarcyTools is different from these methods in that all fractures and 
fracture zones are considered, when the conductivity field is generated. This means 
that we may need to represent 105 to 106 fractures as grid cell conductivities. Further, 
if the properties (geometry, transmissivity, etc) of the major fracture zones are known, 
these zones are treated deterministically, while unknown, or background, fractures are 
generated from statistical distributions. 
 
1.2 Objectives and scope 

The objectives of this report can be summarised as: 

• Provide the theoretical basis of DarcyTools 

• Illustrate how DarcyTools works, through simple demo simulations 

• Discuss and evaluate the present status of DarcyTools 

It will not be possible to review applications of DarcyTools in this report. 
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1.3 The Äspö HRL 
The present report will not describe real world applications. Several references to 
model studies and field data related to Äspö Hard Rock Laboratory (HRL) will 
however be made and a brief introduction to Äspö HRL will therefore be given. 

The Äspö Hard Rock Laboratory is located near the Oskarshamn nuclear power plant 
on the east cost of Sweden, see Figure 1-1. The access tunnel starts on the mainland, 
continues under the Baltic and reaches the spiral part of the tunnel beneath the island 
of Äspö. The total length of the tunnel is 3600 metres and it reaches a depth of 450 
metres below ground surface. A vertical elevator shaft connects the laboratory to the 
Äspö Research Village.  

Mean precipitation minus evapotranspiration, P-E, has been estimated to be about 200 
mm/year for the region, Rhén et al. (1997). For the island of Äspö one can expect that 
the groundwater recharge (i.e. P-E) is smaller as the distance to the sea is shorter (no 
storage of water in lakes and ponds during periods of heavy precipitation). A value of 
100 mm/year was used in the site scale model. 

Around the island of Äspö the Baltic Sea has a salinity of about 0.6%. It is known 
from boreholes on Äspö that the fresh water lens below Äspö has a thickness of 100 to 
200 metres under natural conditions; below this level the salinity increases to reach a 
value of about 2% at a depth of 800 metres below ground. As the water density 
increases with salinity we have a density stratified water below the island of Äspö. 
This is an important feature of the groundwater flow system. 

Three model domains are outlined in Figure 1-1; these will be referred to throughout 
the report. 

The major fracture zones at Äspö are shown in Figure 1-2 and boreholes in Figure 1-3. 
These figures will be referenced to when field measurements are discussed. 

 

1.4 Outline 

The main part of the report is fairly short; this with the intention that the reader should 
be able to get a good overview of DarcyTools from a few hours of reading. The 
appendices will provide more detailed descriptions of various central topics. 
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Figure 1-1. The island of Äspö and the Äspö Hard Rock Laboratory. The black 
rectangle shows the area of the Site scale model, Svensson (1997b). The red rectangle 
shows the Laboratory model (Svensson, 1999) and the blue rectangle indicates the 
domain for the Repository model (Svensson, 2001). 
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Figure 1-2. Major fracture zones in the area, after Rhén et al. (1997). 
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Figure 1-3. Boreholes in the Äspö area. 
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2 Situation considered 
 
 
 
2.1 Introduction 

As mentioned, it is flow and transport in fractured and/or porous media that is the 
application area for DarcyTools. In this section a general description of physical 
processes, scales, etc that need to be considered will be given. It is hoped that the 
picture painted is one that most geohydrologists can agree upon (concepts and 
assumptions built into DarcyTools are not discussed in this context). The description is 
generic, but inspired by the conditions at and experiences from the Äspö Hard Rock 
Laboratory (HRL). The fractured rock in mind is hence a sparsely fractured granite. 
 
2.2 The 10 km scale view 

The regional groundwater flows in unconfined aquifers introduces the concepts of 
recharge and discharge areas, see Figure 2-1. Recharge areas, i.e. where a net inflow is 
found, are usually found in topographically high places while the discharge areas are 
located in topographic lows. The discharge areas may take the form of a stream, river 
or a lake. 

The general flow pattern is hence from high to low areas; a system of local flow cells 
is formed and the groundwater table follows the surface topography. However, this is 
an idealized picture which is based on the assumptions of a steady, constant density 
flow in a homogeneous aquifer. These assumptions are seldom fulfilled and care 
should hence be taken when interpreting field data, based on this view. In particular, 
most natural aquifers are anisotropic and heterogeneous. 

 

RECHARGE

DISCHARGE

SEA

REGIONAL FLOW

LAKE

RIVER

 

Figure 2-1. Situation considered – the 10 km scale view. 
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2.3 The km scale view 

A km scale view is given in Figure 2-2. Let us assume that it is of interest to determine 
the origin of water leaking into the tunnel. Two main sources are precipitation and 
seawater (excluding brine water from below). To track the precipitation water one has 
to follow a water parcel through the unsaturated zone, down to the saturated soil cover 
and finally its way through the fracture network. It is essential to determine the 
position of the groundwater table, as it determines the pressure gradients in the porous 
media and may influence the conditions deep into the rock. The other source, the 
seawater, introduces density effects, as the seawater is heavier than fresh water. The 
heavier saltwater penetrates the coastal zone and modifies the pressure distribution 
(the Ghübern Herzberg relation). Due to this effect the inflow to the tunnel may be 
dominated by seawater or the precipitation water; all depending on the actual 
conditions (density difference, tunnel position, etc). 
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FRACTURED ROCK

TUNNEL

 

 

Figure 2-2. Situation considered – the km scale view. 
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2.4 The m scale view 
The main novel features of DarcyTools are concerned with the fracture network and 
we will therefore focus on the description of fractures (giving the porous media less 
attention). In Figure 2-3 part of a fracture network is shown. Different parts of the 
network have been marked with letters; these parts will now be described: 

A: Represents a fracture zone. The fracture zone is assumed to be composed of a 
number of smaller fractures through which the flow takes place. Most of the small 
fractures do however not contribute to the flow but are still important for transport and  
dispersion of a tracer. Fracture zones are often the main flow conductors due to their 
high transmissivity and size (length scale >100 metres). The thickness is typically  
> 1 metre. 

B: Some fractures are best characterised as “a single opening”.  
Typically the thickness, or the aperture, is of the order of 10-3 metres. The fractures 
marked with B in Figure 2-3 have a through-flow and may hence contribute to the 
total flow rate. If the transport time through the B fractures is different from the 
transport time in the fracture zone a dispersion effect will also result from the parallel 
flow path. 

C: Isolated fractures of groups of fractures can not contribute to the flow, transport or 
dispersion, as flow in the matrix is neglected. In the numerical model these are 
removed before the generation of grid data is performed. 

D: Some fractures, or fracture zones, may form “dead end systems”. The exchange 
with fractures with a significant flow is then by molecular diffusion. When storage of 
water over long time periods, say longer than 100 years, is studied it is essential to 
represent the dead-end systems correctly. 

E, F: There is always a lower limit on the fracture size that can be represented 
correctly in a numerical simulation. In the present study it will be assumed that 
fractures below a certain size, to be discussed, do not contribute significantly to the 
total flow. However, for transport and dispersion it is probably necessary to consider 
all scales, as a large fraction of the pore volume is expected to be due to the small 
scale features of the porosity field. 

 
2.5 The mm scale view 

It was mentioned above that the opening, or aperture, of a fracture is typically of the 
order of 1 mm or smaller. The aperture has however not a constant value, as is 
illustrated in Figure 2-4. On this scale it is useful to introduce the notions of the 
mobile zone, for the volume that has flowing water, and the immobile zone which 
represents all volumes with stagnant water. In Figure 2-4, the stagnant pools, the 
crossing fractures and the matrix may all contain stagnant water. The fracture may also 
contain material of various kinds, so called gouge material. 

The geometrical complexity of a fracture opening is essential to consider when small 
scale dispersion processes are to be described. The exchange between the mobile and 
immobile zones is often assumed to be due to molecular diffusion only. 
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Figure 2-3. Situation considered – the m scale view. 
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Figure 2-4. Situation considered – the mm scale. 
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2.6 The flow system 

If only the flow field is of interest, we do not need to consider the detailed properties 
of a fracture (as outlined in Figure 2-4). The fracture transmissivity is normally what is 
needed. In addition the following topics may be of importance: 

• A method to handle the unsaturated zone is required. Depending on the situation at 
hand the method may range from quite simple (only position of the groundwater 
table) to complex two-phase algorithms. 

• Density stratification. If waters of different densities meet, it is essential to account 
for the effects. 

• In addition to the fracture transmissivities one needs information about the 
conductivity of the soil cover, if present. 

These are some of the key elements that govern the flow system. Note that we at this 
stage are not discussing the required input to a numerical model, which of course is 
more extensive (boundary conditions, properties, etc). 

 
2.7 Transport and dispersion 

When discussing transport and dispersion of solutes it is useful to distinguish between 
two different problems with respect to the time scale. The first kind of problem is the 
field experiment with a time scale from weeks to perhaps a year. A longer time scale, 
which may be thousands of years, needs to be considered when the water types present 
in the fracture network is to be analysed. At Äspö HRL, water from the last glaciation 
(about 11 000 years ago) has been found already at a depth of a few hundred metres. 
The relevant processes for the two problems will now be described, in turn. 

Let us think of a typical field tracer experiment where a tracer is injected in one 
borehole and the arrival in another, pumped, borehole is studied. The curve describing 
the time distribution of the concentration in the pumped borehole is called the break 
through curve (BTC). Obviously the tracer is transported by advection between the 
two boreholes, and the flow field is hence an important element in the analysis. A 
number of dispersion processes will however affect the tracer as it travels through the 
fracture network. The most important of these are: 

• Intersections. At a fracture intersection a tracer cloud may split up and enter 
pathways with different lengths and fluid velocities. This type of dispersion is 
often called macro-dispersion. 

• Channelling. Spreading occurs within each fracture plane as the different 
streamlines have different path lengths and velocities. The flow channels may also 
merge or split up. 

• Taylor dispersion. A velocity profile exists between the two bounding walls of 
the fracture. The resulting dispersion effect is called shear- or Taylor dispersion. 
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• Matrix diffusion and sorption. Interaction with the rock, stagnant pools and 
microfissures causes a number of processes that in effect lead to a delay and 
dispersion of a tracer pulse. These include: sorption on the fracture walls, diffusion 
into the rock matrix with sorption on inner surfaces and interaction with gouge. 

As mentioned earlier, the diffusion into dead-end fractures of various sizes (see Figure 
2-3 and 2-4) is by molecular diffusion. In order to illustrate the typical penetration 
depth for this process one may think of a substance with a certain molecular diffusion 
constant ( )10 210  m /molD s−=  and an experimental time scale of, say, one month 

( )s 106.2 6×≈t . The penetration length can then be estimated as 016.0=× tDmol  
metres. As the immobile zone is mainly made up of small fractures one can conclude 
that small scale dispersion is mainly governed by processes on the mm to cm scale. 

For the transport problem on long time scales we may use the salinity field to illustrate 
some key features. First we can note the time scale for exchange in larger (> metres) 
dead-end fracture systems. If we put 1010−=molD  m2/s and 10=L  metres, we find 
that the time scale is 1210  seconds, or 30 000 years ( )molDLt /2= . It is thus not 
surprising to find water from the last glaciation, or the Litorina Sea (≈ 7 000 years 
BP), in the fracture system at Äspö HRL. Gravitational forces may further enhance the 
entrapment of water in dead-end zones. If, for example, Litorina water (which has 
higher salinity than the present Baltic water) is located in a dead-end fracture 
extending downwards from the mobile zone gravitational forces will enhance the 
entrapment. The same principle applies to glaciation water (which has a lower density 
than present Baltic water) in a dead-end fracture extending upwards from the mobile 
zone. If we further note that the volume of all immobile zones is larger than the 
volume of the mobile zone, one can draw the conclusion that the salinity field is “stiff” 
and requires very long time scales to reach a steady state. On a shorter time scale all 
processes listed above is of course also active for the dispersion of salt. 

 
2.8 The transient nature of the problem 

From the discussion of the salinity field one can conclude that the groundwater system 
is never in a steady state. Note that any change in the salinity field will modify the 
flow field as these are linked through the gravitational force. 

In order to emphasise the transient nature of the problem the following list of 
processes have been compiled: 

• Glaciations. Time scale of 10 000 to 100 000 years. 

• Diffusion into dead-end fractures. Time scale from minutes to 100 000 years. 

• Sea level variations. From daily variations to long time effects due to the land 
uplift. 

• Precipitation. From daily, seasonal to yearly variations. 

• Tidal effects. Time scale of one day. 

The list can be made longer, but the message is probably clear “transient effects on a 
variety of scales need to be considered”. 
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2.9 Summing up 

It was the intention of this section to describe the problem considered in a way that 
“most geohydrologists can agree upon”. Probably the reader will not accept that this 
has been achieved as one may put emphasis on different aspects of the problem (the 
important area of two-phase flows has for example not been mentioned, nor has the 
storativity and specific yield effects been described). Based on the qualitative 
descriptions given, it is however hoped that most readers will agree upon the following 
consensus statement: 

- Flow, transport and dispersion in a sparsely fractured rock are governed by 
processes that have time scales ranging from minutes to thousands of years and 
space scales ranging from millimetres to several kilometres. The coupling between 
scales, in space and time, is strong and it is generally not possible to neglect these 
interactions. 
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3 Concepts, Assumptions and Methods 
 
 
 
3.1 Introduction 
The qualitative description of the previous section sets the scene for the concepts, 
assumptions and methods to be introduced in this section. If the previous section was 
general, the present section is very specific for DarcyTools. The descriptive 
presentation method will however be continued, leaving the mathematics to the section 
to follow. We will hence not try to “prove” the correctness of the concepts, 
assumptions and methods, as this will be the objective of a separate report (Report 2). 

First a key assumption in DarcyTools will be presented, then the fracture network and 
its representation in the grid (including subgrid processes) is discussed. After this 
concepts related to transport are reviewed, then the groundwater table is discussed and 
finally some assumptions regarding properties are given. 

 
3.2 The key assumption 

The most fundamental assumption in DarcyTools is related to the structure of the 
fracture network, which is assumed to follow a power law distribution. More precisely 
it is assumed that the number of fractures per unit volume, n, in the length interval, dl, 
is given by: 

 I /
a a

ref ref

l dl ln a
l l

    + = ∗ −           
 (3-1) 

 

where I is the intensity, refl  a reference length and a  the power law exponent. 
Depending on how I and a  are chosen, networks with different characteristics can be 
generated. In DarcyTools it will be assumed that 2.6a = −  (following La Pointe et al., 
1999) and that I is given a value resulting in a “sparsely fractured rock” (details later). 
This is the situation at Äspö HRL (Rhén et al., 1997), where the major fracture zones 
have been thoroughly studied and it is believed that they provide the “first order” 
response in, for example, a pump test (Stanfors et al., 1999). The length scale of the 
major fracture zones is typically above, say, 300 metres and the transmissivity is of the 
order of 10-5 m2/s. Fracture zones smaller than 300 metres have also been mapped at 
Äspö, and found to be hydraulically important, and should hence also be considered in 
the conductivity field. DarcyTools is developed for a fracture network of the kind 
found at Äspö HRL. 

From this assumption it follows that the flow is distributed on relatively few flow 
channels, as it is the large scale fractures and zones that provide the connectivity in the 
network. In DarcyTools it will be assumed that all essential flow channels can be 
described in the computational grid. However, as discussed above, dispersion is often 
dominated by processes on the millimetre scale, which can not be described explicitly. 
This Separation Of Scales (SOS-concept) is a consequence of the sparsely fractured 
rock and will form the basis for the subgrid model to be described. 



 15

3.3 Concepts used for fracture descriptions 
The real world fracture network will be represented as a system of conductive 
elements and storage volumes, see Figure 3-1 (which is based on Figure 2-3). As 
mentioned, not all fractures can be represented in the generated fracture network. The 
smallest fracture size, minl , is chosen to be comparable to cell size, ∆ , in the 
computational grid. Fractures smaller than minl  will be represented as storage volumes, 
which are defined as volumes that are in contact with the flow channels and exchange 
matter with these by molecular diffusion. Note that fracture F in Figure 3-1 will not be 
represented as a flow channel in the generated network, as it is supposed to illustrate a 
fracture smaller than minl .  

Each of the conductive elements (A, B and D in Figure 3-1) is assumed to have a 
thickness, eb , conductivity, eK , kinematic porosity, eθ , flow wetted surface, wa  and 
diffusion coefficient, eD . The storage volumes (E and F in Figure 3-1) are described 
by their linear dimensions, volumes and diffusion coefficients. Below, it will be 
discussed how these parameters can be estimated. 

If the open space in a fracture can be described as “the space between two parallel 
walls” it is easy to estimate the flow wetted surface (FWS); it will be 2 m2/(m2 

fracture). If the fracture is very irregular or have parallel flow channels it is harder to 
estimate a realistic value. In DarcyTools the FWS will be given as an input parameter 
for each major (or deterministic) fracture zone and each group of random fractures. 

All properties (conductivity, porosity, diffusivity and FWS) are assumed to be 
uniformly distributed over the thickness of the conductive element. 

Some nomenclature for fractures needs to be introduced. A fracture that has one single 
opening will in the following be called a single fracture, while a fracture zone consists 
of several crossing fractures. For a single fracture we call the width of the opening the 
aperture, which is typically less than 10-3 metres. For a major fracture zone, the 
thickness is typically 10 metres. In the present study, we will make no distinction 
between a single fracture and a fracture zone; both are idealised as an element with 
dimensions H (height), b (thickness) and L (length). If the transmissivity of the single 
fracture, or the fracture zone, is denoted T we can define the hydraulic conductivity of 
the element as bTK /= . In the following we will call the conductive element a 
fracture for short. 

A few more things can be noted in Figure 3-1: 

• Isolated fractures, C, are removed in the generated fracture network. 

• The fracture zone, A, may have a varying thickness in the generated network. A 
method to generate conductive elements with varying thickness has recently been 
developed (described in Appendix C), but this method can presently only be used 
for major deterministic fracture zones (often 15-20 in number) as it is time-
consuming on the computer. 
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Figure 3-1. Representation of the real world fracture network (top) as conductive 
elements and storage volumes. 
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3.4 Representation of properties on a grid 

Most numerical models of groundwater flow subdivide the studied domain into 
smaller volumes. If a computational grid is defined, we call these smaller volumes grid 
cells, and we apply the conservation laws and other constitutive relations to these. 
Also material properties, like hydraulic conductivity and porosity, need to be specified 
for the grid cells. These properties are often measured on a smaller scale (support 
scale) and a technique to express these on the scale of the grid cells is thus needed 
(upscaling). When material properties for all grid cells have been obtained, the flow 
simulation can be performed. In DarcyTools, we will however not follow this 
traditional route and the main argument for this can be stated as follows: 

- In a sparsely fractured rock it is believed that most of the flow is due to a limited 
number of major fractures and fracture zones. The main task is thus to identify 
these and to represent them in the numerical model. If a refined modelling is 
required, the next size class of fractures or fracture zones should be considered. 
From this point of view it seems more logical to first consider large fractures, and 
then progressively smaller ones, than to upscale properties from a small scale. 

It is not possible to represent all fractures in the grid, simply because there are too 
many. In DarcyTools the smallest fracture considered will often be of the same size as 
the grid size. Smaller fractures, minll < , are however also of importance (for 
dispersion) and in DarcyTools represented as storage volumes (immobile zones), see 
Figure 3-2. In fact, storage volumes are defined as all immobile zones , with minll < , 
that exchange matter with the flowing water by molecular diffusion only. 
We have thus subdivided all fractures in contact (isolated fractures are not considered) 
into conductive elements and storage volumes. Storage volumes will be treated as 
subgrid effects and are represented in the subgrid model FRAME, to be described 
below. Conductive elements generate all grid properties by the GEHYCO-method 
which can now be formulated as: 

- A conductive element contributes to the grid value of a variable by an amount 
which is equal to the intersecting volume times the value of the variable in 
question. Contributions from all elements that intersect the control volume are 
added and the sum is divided by the volume of the cell. 

This basic principle will now be explained and illustrated, using Figure 3-3. A 
conductive element of thickness b is crossing a computational grid, which has a cell 
size of ∆ . A staggered grid is to be used, which means that scalar quantities, like 
pressure and salinity, are stored at cell centres while velocity vectors are stored at cell 
wall centres, see Figure 3-3. This grid arrangement was first introduced by Harlow and 
Welch (1965) and is described in textbooks, see for example Patankar (1980). Each 
variable is assumed to be representative for a certain control volume, which is the 
volume the discretized equations are formulated for. For a velocity cell it is clear that 
the driving pressure force can be easily formulated. As we are going to apply the 
Darcy law to the velocity cell we also need a relevant cell conductivity to obtain the 
cell wall velocity. How to calculate this conductivity, and other properties, is the main 
subject of the GEHYCO-method. 

To obtain the porosity, as an example, of the scalar cell marked in Figure 3-3 the 
following steps are performed. 
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• Calculate the intersecting volume between the conductive element and the cell; this 
volume is marked in the figure. 

• If the porosity of the conducting element is eθ , the contribution to the free volume 
is e iVθ , where iV  is the intersecting volume. 

• Calculate the contributions from all conductive elements that cross the cell. 

• Obtain the cell porosity as the sum of all contributions divided by the cell volume. 

In Figure 3-3 a control volume for a velocity cell is also marked. The procedure to 
obtain the conductivity for this control volume is analogue to the steps above. 

By this procedure the porosity, flow wetted surface and storativity are determined for 
all scalar cells and the conductivities and diffusivities for all cell walls. 

An assumption in the statement above is that "contributions from all elements that 
intersect a cell are added". If two, or more, fractures intersect a velocity cell, the cell 
conductivity should represent a fracture intersection (neglecting the case of parallel 
fractures of various orientation). Neretnieks (1993) discusses various concepts about 
channelling at intersections, but concludes that no firm information is available. He 
cites however a number of observations that support the idea that "fracture 
intersections form easy pathways". In lack of any firm information, it will therefore be 
assumed that contributions can be added. Fracture intersections will hence form "easy 
pathways". 

The basic principle of the method is obviously very simple but, as will be 
demonstrated, still general enough to handle even complex fracture networks. A few 
properties of the method can already at this stage be identified: 

• All cell wall conductivities will be different, as we generate three conductivity 
values  (in a 3D case) for each scalar cell. A conductivity field that is anisotropic 
on the cell scale is hence always generated. 

• A fracture smaller than the cell size can not generally contribute to the anisotropy 
or correlation of the conductivity field. 

Some simple calculations that illustrate the GEHYCO method, and also demonstrates 
the accuracy that can be expected, can be found in Appendix G. 
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Figure 3-2. Representation of kinematic (or mobile) and storage (or immobile) 
volumes in the grid. The open rectangle in the grid represents a kinematic volume 
(generated by the conductive element), while filled rectangles represent storage 
volumes. 

.

V

U
P,S

INTERSECTING VOLUME
b

 
 
 
Figure 3-3. Illustration of concepts and methods for calculating grid properties. 
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3.5 Subgrid processes, FRAME 

In Figure 3-4 some subgrid processes and concepts are introduced. Let us consider a 
computational cell with a through flow, i.e. a cell with a flow channel. The flow “sees” 
a certain surface area, the flow wetted surface (FWS), as it passes the cell. The FWS 
may bring the flowing water in contact with other fractures, gouge material, stagnant 
pools, etc. Most of these volumes can be expected to have stagnant water and mass 
exchange is hence due to molecular diffusion. For a stagnant pool the relevant 
diffusion coefficient may be that for pure water, while diffusion into crossing fractures 
and the rock matrix may proceed with a diffusion rate that is several orders of 
magnitude smaller. As above, we will call the volume with flowing water the mobile 
zone and the volumes with no advection the immobile zone. Fractures and volumes 
which are not in contact with the mobile zone are of course of no relevance and can be 
excluded from the discussion.  

The situation outlined in Figure 3-4 is quite complicated and does not lend itself to 
direct descriptions of individual processes. In order to derive a simple model that can 
be employed in large (many grid cells) 3D models, the following basic assumption 
will be made: 

- The immobile zones can be represented by a set of boxes, each with its own length 
scale, volume and effective diffusion coefficient. 

The idealised problem is illustrated in Figure 3-5. The box with the smallest length-
scale (dimension perpendicular to the mobile zone) will have the largest diffusion 
coefficient and normally also the largest contact area with the mobile zone. This 
volume will hence have a fast response. The actual response time can be estimated 
from the length scale, l, and the effective diffusion coefficient, eD , as: 

 
eD

lt
2

≈   

For 310−=l  m and 1010−=eD  m2/s the time is 410  s ( )hours 3≈ . For l= 1 m and 
1210−=eD  m2/s the time will be 1012 s (30 000 years), which illustrates that both short 

and long time scales may be treated within the same concept. In the following we will 
call these boxes storage volumes, which thus represent an idealised view of the 
immobile zones. 

The next step is to devise methods to calculate the FWS, storage volumes, diffusion 
coefficients, etc. Fractal scaling laws will be used in this context and as we have 
adopted a multirate diffusion approach we call the subgrid model FRAME (a subgrid 
model based on FRActal scaling laws and Multirate Equations). Methods to derive the 
FWS are described in detail in Appendix E, and here we will focus on the properties of 
the storage volumes. The following steps will determine these: 

• Divide the immobile volumes, illustrated in Figure 3-4, into a number of size 
groups with respect to the length-scale. 

• Generate the number of fractures in each size group from a power-law with 
exponent a  (fractal dimension). Note that the same power-law as used for the 
resolved fracture network is used also for the subgrid system. This will give the 
number of fractures per m3, for the size group in question. 
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• Only immobile zones in contact with the FWS can be in contact with the mobile 
zone. Modify the number of fractures in each size group with respect to this 
constraint.  

• Assume that the aperture of a fracture is proportional to the length scale, i.e. 
γleT ~ . Note that for minll >> , it can be expected that the immobile zones are due 

to fractures. For minll ≈  the volumes are perhaps due to stagnant pools and it may 
be questionable to speak about an aperture. 

• The effective diffusion coefficient, eD , is expected to be close to the molecular 
value for water, mD , for the smallest volumes and then show a decreasing trend 
with the length scale of the immobile zone. The following relation is assumed: 

Ψ









=

minl
lDD me   

By these steps the volume, contact area and effective diffusion coefficient have been 
determined for each storage volume, as a function of a , γ  and Ψ . However, these 
parameters will not be specified individually as they can be related to the “late time 
slope of the breakthrough curve”; this will be further discussed in Section 4 (see also 
Appendix B), where the details of the model implementation are described. 

Regarding the size interval to be considered, it was shown above that a length scale of 
10-3 m results in a storage volume that has a response of the order of a few hours. 
Smaller, or faster, boxes are probably not required, unless a very fast experiment is to 
be simulated. The upper limit should be the cell size, ∆ , as larger fractures are 
normally treated explicitly in the resolved fracture network. However, ∆  is often in 
the range 1-10 metres and the largest storage volume will hence be very slow. From a 
practical point of view (save computer time) the upper limit may hence be chosen with 
respect to the time scale of the problem considered. Note also that fractures in the 
resolved network may form dead-end systems that exchange matter with the flowing 
water by molecular diffusion only. 

The concepts and assumptions introduced give a very simplified view of the expected 
subgrid processes. However, it should be remembered that the objective is to derive a 
subgrid model that can be employed in large 3D, transient models. It is hoped that 
FRAME strikes a good balance between complexity and efficiency. 
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Figure 3-4. Illustration of subgrid processes and concepts. 

 
 
 
 

 
 
 
 
 
 
 
 
Figure 3-5. The assumed structure of subgrid volumes and areas. 
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3.6 Transport 
DarcyTools has two built-in options for transport simulation; a particle tracking 
algorithm, PARTRACK, and advection/dispersion equations. The reasons why two 
methods are needed are based on the following assumptions: 

• Salinity. The salinity field strongly influences the flow field through the density 
field. It is difficult to describe the salinity field by a set of particles and an 
advection/dispersion equation is therefore the best choice. 

• Temperature. The main heat flux component is conduction and an 
advection/dispersion equation is hence the obvious choice for this variable. It will 
further be assumed that the water and rock is always in thermal equilibrium and 
only one temperature is thus solved for. 

• Tracers. Simulation of tracer transport is best performed with a particle approach 
as this method is free from numerical dispersion effects. It is also possible to treat 
sorbing tracers (like radionuclides) with this technique. 

These are the main scalars that need to be considered in applications. If additional 
scalar simulations are requested a decision about the most appropriate method has to 
be taken. 

Transport of salt and tracers are assumed to be restricted to the water phase. 
Dispersion is hence due to mixing at fracture intersections (macro dispersion) and 
exchange with immobile zones (micro dispersion, as embodied in FRAME). FRAME 
is hence developed for both the advection/dispersion equation (as used for salt) and 
PARTRACK (as used for tracers). 

 
3.7 Groundwater table 

As was stated in Section 2, the groundwater table may determine the pressure field 
deep down into the rock. Unfortunately it is not straight forward to calculate the 
position of the groundwater table. From the literature two methods are available: 

- The variably saturated approach, which means that the unsaturated zone is 
included in the simulation and that the so called Richards equation is solved. 

- Free surface approach. The main assumption of the method is that the conditions in 
the unsaturated zone do not significantly affect the position of the groundwater 
table. 

A novel method to determine the groundwater table, which is inbetween these two, is 
introduced in DarcyTools. The basic idea is as follows: If a simulation like the one in 
Figure 3-6 is performed without taking any notion of the groundwater table a certain 
pressure distribution results. A surface with atmospheric is calculated, but pressure 
gradients and hence a horizontal flow is calculated above this surface; this is obviously 
not correct. The key feature of the method is to prevent the horizontal flow above the 
surface of atmospheric pressure by simply reducing the horizontal conductivity. This 
is done in an iterative manner, meaning that the position of the atmospheric pressure is 
determined and horizontal conductivities are recalculated (note that if a rising surface 
is calculated, the horizontal conductivities below the surface should be restored to the 
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fully saturated values). It can be shown, see Report 2, that this method gives a steady 
state groundwater table that is in agreement with available analytical solutions. 

The transient problem introduces a new feature; if the groundwater table is lowered a 
delayed drainage of the volumes above the water table will occur. A significant 
amount of water can be released and affect the position of the water table. In 
DarcyTools this specific yield effect is described by a source term in the mass balance 
equation: 

( ) 3    m /ssy sy syQ k V t  =    

sy
sy

dV
Q

dt
= −  

where syV  is the volume of drainable water at time t and syk  a time constant for the 
drainage. We thus keep track of the drainable water in each cell above the water table 
and let this water be transported, by gravity, down to the water table. In the 
Verification and Validation report, it is shown that this approach gives results that are 
in fair agreement with available analytical solutions. 
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Figure 3-6. Illustration of concepts used for determination of the groundwater table. 
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3.8 Porosity and state laws 
Finally, we will briefly review some assumptions related to the properties of the media 
and fluid. 

The porosity field is based on the porosities ascribed to the conductive elements. In the 
analysis of the resulting porosity field it is however of interest to also characterise the 
porosity as based on the volume of the computational domain. For this reason the 
following definitions will be used: 

- aθ  is the porosity based on all generated fractures, including isolated fractures or 
clusters of fractures. 

- cθ  is the connected part of aθ , i.e. isolated fractures and clusters have been 
removed.  

- fθ  is the part of cθ  that has a significant flow, i.e. stagnant volumes have been 
removed. 

fθ  requires a definition of what should be called "stagnant volumes". The definition to 
be adopted here is: 

- If the stagnant parts of the kinematic porosity field are neglected, i.e. the porosity 
is put to zero, this should result in a reduction of the flow through the domain that 
is smaller than 1%. This should be fulfilled for pressure gradients in all three 
coordinate directions. 

These porosity measures will be further analyzed in Section 7.3. Other media 
properties are flow wetted surface and storativity. Also these will be calculated as grid 
cell data, based on the ascribed values to the conductive elements. In the fracture 
network the conductivity of conductive elements is specified; this because input data 
are often given as a transmissivity, T, and a thickness, b, and the conductivity is then 

/T b . In the simulation model the permeability is however used as the influence of 
fluid properties needs to be taken into account. 

State laws for water that take into account the effects of pressure, temperature and 
salinity are very complex indeed. For the present range of applications, it is expected 
that the following assumptions are adequate: 

- Density is linearly and quadraticly (i.e. two terms) related to both salinity and 
temperature. 

- Viscosity is linearly and quadraticly (i.e. two terms) related to temperature. 

- Specific heat of mass is linearly and quadraticly (i.e. two terms) related to salinity. 

As the user will have access to the coefficients of these relations, details in next 
section, it is expected that it will always be possible to tune the relations to a specific 
application, with a high degree of accuracy. 
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4 Mathematical formulation 
 
 
 
4.1 Introduction 

As all concepts and assumptions have been discussed, the equations can be presented 
without lengthy discussions. 

First the conservation and state laws will be presented and then, as in the previous 
sections, various features will be dealt with; now with focus on the mathematical 
formulation. 

 
4.2 Conservation and state laws 
Conservation of mass: 

( ) ( ) ( )u v w Q
t x y z
ρθ ρ ρ ρ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

  (4-1) 

where ρ  is fluid density, θ  porosity, u, v and w Darcy velocities and Q a source/sink 
term. The coordinate system is denoted x, y, z (space) and t (time). 

Mass fraction transport equation: 

x

y

z C

C CuC D
t x x

CvC D
y y

CwC D QC Q
z z

ρθ ρ ργ

ρ ργ

ρ ργ

∂ ∂ ∂ + − ∂ ∂ ∂ 
 ∂ ∂

+ − ∂ ∂ 
∂ ∂ + − = + ∂ ∂ 

  (4-2) 

where C is transported mass fraction, xD , yD  and zD  the normal terms of the diffusion-
dispersion tensor and cQ  a source/sink term. When C is salinity, the source term 
represents the exchange with immobile zones and cQ  is determined by the subgrid 
model FRAME. Note that the diffusion coefficients are the effective coefficients that 
include the porosity, see further explanation in connection with Equation (4-11) below. 
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Conservation of heat: 

(1 )p

p x

p y

p z p T

c T cT
t t

Tuc T
x x

Tvc T
y y

T u v wwc T c T Q
z z x y z

θρθ

ρ λ

ρ λ

ρ ρ ρρ λ

∂ ∂ −
+

∂ ∂
∂ ∂ + − ∂ ∂ 
 ∂ ∂

+ − ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ + − = + + +  ∂ ∂ ∂ ∂ ∂   

  (4-3) 

where xλ , yλ and zλ  are the normal terms of the equivalent (i.e. rock with fluid) 
thermal conductivity tensor, c is the rock thermal capacity and cp the specific heat of 
the fluid and TQ  a source/sink term. We are hence only solving for one temperature, 
assuming thermal equilibrium between the rock and the water. 
 
The mass conservation equation is turned into a pressure equation under the well 
known Darcy’s assumption: 
 

 

0( )
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∂
= −

∂

∂
= −

∂
∂

= − − −
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   (4-4) 

where Kx, Ky and Kz are the local hydraulic conductivities in x, y and z direction, g the 
gravity acceleration, 0ρ  a reference fluid density and P the dynamic fluid pressure 
relative to the reference hydrostatic pressure. 
 

0P p g zρ= +  (4-5) 

where p is the total pressure. The hydraulic conductivity, K, is related to the 
permeability, k, by the relation.  

 gkK ρ
µ

=  (4-6) 

where µ  is dynamic viscosity.  

The fluid properties like the dynamic viscosity, µ , the density, ρ , and the specific 
heat, pc , are given by state laws: 

 ( ) ( )2

0 1 21
n

a T T a T T
µ

µ µµ µ  = + − + −  
 (4-7) 
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 ( ) ( )22
0 1 2 1 21 S S T T T Tρ ρρ ρ α α β β = + + − − − −  

 (4-8) 

 ( )2
0 1 21p pc c b S b S= + +  (4-9) 

while the porosity θ  and the compaction, γ , of the matrix are given the following 
dependencies: 

0θ θ γ=    (4-10) 

0 01 ( ) ( )P P gγ σ θ ρ= + −    (4-11) 

In the above formulas S represents the salinity (salt mass fraction), 0θ  a reference 
porosity field given for a reference pressure field P0 and σ  the specific storativity 
field. nµ , ia , ib , iα , iβ , 0µ , 0ρ , 0Cρ , Tµ  and Tρ are constants. 

In the advection/diffusion equation (4-2), it is common to write the diffusion 
coefficient as molDθ , where molD  is the molecular diffusion coefficient. In DarcyTools 
we choose to write the term as 0mol molD D Dθ θ γ γ= = , where D is now the effective 
diffusion coefficient. The reason is that it is the effective diffusion coefficient that is 
specified for a conductive element and the GEHYCO-algorithm will hence deliver 
effective diffusion coefficients for cell walls. When a porous media case is simulated 
and the diffusion coefficients are specified, one thus needs to remember that it is the 
effective coefficients that should be given. 

 
4.3 Fractures and fracture network 
The relations to be discussed below are not an integral part of DarcyTools as they can 
be altered based on site specific information. It is hence more an illustration of the 
input data required. The relations given are largely based on data from Äspö HRL. 

Fracture properties. The relations used to determine fracture properties, like 
transmissivity and porosity, are taken from a recent evaluation/ compilation  
(Appendix F). This compilation is far from exhaustive or complete, but is what is 
presently available. The following summarises the main relations: 
 
- Transmissivity-fracture size: 

 
( ) [ ]

[ ]





>

≤
=

−

−

metres  100for   /                10
 metres  100for   /  100/10

25

225

lsm
lsml

T     (4-12) 

where T is transmissivity and l fracture size. The coefficients of this relation are 
accessible to the user and it is also possible to include a random term in the relation, 
see Report 3 for details. 

- Transmissivity-transport aperture: Based on empirical relations and the cubic law 
it was found that the transport aperture, Te , can be estimated as: 

 6.00.2 TeT =    (4-13) 
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- Fracture size-thickness: Field data from Äspö HRL indicate that a fracture 
thickness, b, of 1% of the fracture length is a good choice. The fracture thickness is 
defined to include the flow channel, the gauge material, parallel flow paths, etc. It 
is hence often one or two orders of magnitude larger than the aperture. The 
kinematic porosity, n, is calculated from Te  and ( )benb T / = . 

- Diffusion coefficients: Molecular diffusion in a conductive element should be 
proportional to the product of the transport porosity and the diffusivity value in the 
pore water (Neretnieks, 1993). The proportionality constant is related to the 
properties of the pore space (constrictivity and tortuosity). In the simulations 
carried out in this report, we will simply assume that the diffusion coefficient for a 
conductive element is equal to the product of the kinematic porosity and the 
diffusion value in pure water. 

Fracture orientation. Several projects have been carried out with the objective to 
characterise the fracture orientation at Äspö. In DarcyTools fracture sets of different 
orientations can be generated and the spread around these orientations is governed by a 
Fisher distribution (see Appendix D). 

Fracture intensity. The fracture intensity is specified from a power law distribution. 
For a length interval, dl, we then get: 

 I /
a a

ref ref

l dl ln a
l l

    + = ∗ −           
   (4-14) 

where n is the number of fractures per unit volume, I the intensity, refl  a reference 
length (=500 m) and a , the power law exponent, put to -2.6 (see LaPointe et al., 
1999). At Äspö the intensity was determined to 810−  by generating fractures in the 
interval 320 to 1 000 metres and compare the number with the number of deterministic 
fracture zones in the Laboratory domain. The intensity chosen gives 10 to 15 (different 
realisations) fracture zones in the length interval which can be compared to 12 
deterministic fracture zones. 

Fracture shape: The fractures are assumed to be squares, with length, L, and have a 
thickness, b. DarcyTools can apply a varying thickness, and hence properties, for a 
limited number of major fracture zones. A correlation structure can be specified for 
each of these zones by a method described in Appendix C. 

 
4.4 FRAME 
We will now return to the subgrid model FRAME described in Section 3. The 
influence from the immobile zones on the mobile concentration of a tracer is given by 
the source/sink term cQ  in Equation (4-2). Before cQ  can be specified some further 
developments of the ideas introduced in Section 3 are needed.  

The starting point is the representation of the immobile water in storage volumes, as 
outlined in Figure 4-1. To simulate the mass transfer within a storage volume one 
needs to solve a 1D diffusion equation. However, as has been shown by Haggerty and 
Gorelick (1995), it is possible to simulate the transport within the storage volume by a 
series of boxes that exchange matter with the kinematic volume; see Figure 4-1. Using 
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this approach the term cQ  (in Equation 4-2) and the equations for the boxes will take 
the following form: 

 
( )

1

N im j
c j

j

C
Q

t
β

=

∂
= −

∂∑   (4-15) 

( )
( )( ) ,    1, 2,..im j

j im j

C
C C j N

t
α

∂
= − =

∂
  (4-16) 

 
where jβ  represents the capacity ratios, jα  the first order mass transfer coefficient 

and ( )im j
C , the tracer concentration in the immobile water represented by box j. The 

total capacity 
1

N

t j
j

β β
=

 
= 
 
∑  is equal to the volume ratio between the immobile and 

mobile zones (for a non sorbing tracer). For "layered diffusion", which is the situation 
when a storage volume is in contact with a kinematic volume, Haggerty and Gorelick 
(1995) give the following expressions: 
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  (4-18) 

where aD  is the apparent pore diffusion coefficient and a the linear dimension of the 
storage volume. For further details about this "multi-rate model of diffusion", see 
Haggerty and Gorelick (1995). 

As discussed in Section 3, FRAME is based on a power-law formulation. The main 
argument for this is that the fractal properties of the subgrid fracture network should 
be the same as for the resolved network. The use of a power-law formulation does 
however also support a further development of the model. 

• As mentioned, all storage volumes are represented by a series of first order 
capacity boxes. When all storage volumes have been represented, the continuous 
distribution of capacities is also a power-law. This can be shown both numerically 
and analytically. 

• It can further be shown that the slope of this distribution is related to the late time 
slope of the breakthrough curve, k. 
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Figure 4-1. Illustration of how a storage volume is simulated as a series of first 
order boxes. 

 

• In Section 3 the properties of the storage volumes were stated to be a function of 
three parameters: a , γ  and Ψ . It can be shown, see Appendix B, that these are 
related to k as follows: 

2 1
2

ak γ Ψ
Ψ

− − +
=

−
 (4-19) 

These developments form the basis for the implementation of FRAME. 

We will now return to the source term cQ  (Equation 4-15) and see how FRAME is 
specified for an advection/diffusion equation like (4-2). Let us further assume that C is 
salinity in this equation. The parameters that specify the model are: 

• tβ , the volume ratio between the immobile and mobile zones. 

• minα  and maxα , the minimum and maximum mass transfer coefficients. Note that 
these specify the length interval of the storage volumes considered as 

2
min max/molD lα =  and 2

max min/molD lα = , where molD  is the molecular diffusion 
coefficient and maxl  and minl  the maximum and minimum lengths of storage 
volumes. 

• k, the late time slope of the break-through curve. k determines how tβ  is 
distributed over the spectrum of mass transfer coefficients. 

In the numerical implementation a few more parameters need to be considered: 

• nα , the number of α -intervals that the total spectrum should be divided into. 

• The FWS is also needed to consider in applications were a cell to cell variation of 
FWS is taken into account. The method employed is to calculate a tβ  that varies 
from cell to cell. This is done by using FWS/ mvol  (where mvol  is the volume of 
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the mobile zone) as a weighting factor and then ensure that the global mean of tβ  
has the prescribed value.  

      Thus: 

,, /t cellt cell
m mcell cell

FWS FWS
vol vol

β β
   

=    
   

 (4-20) 

where overbars indicate a global average. 

 
4.5 PARTRACK 
The particle tracking routine in DarcyTools is called PARTRACK. 

PARTRACK has two basic modes of operation; the first is the traditional way of 
moving the particle along the local velocity vector, while the second method uses the 
so called “cell-jump” approach. The second approach is believed to be more 
appropriate for transport in a fracture media and is therefore described in some more 
detail: 

• A particle entering a scalar cell will, if no dispersion effects are activated, travel 
through the cell in a time which is equal to the free volume of the cell divided by 
the flow rate through the cell (a so called plug-flow). If dispersion effects are 
active the travel time will however be different and will also be different for 
different particles. 

 
• When the particle is ready to leave the cell, it will leave through one of the cell 

walls that have an outgoing flow direction. The choice between cell walls with an 
outgoing flow is made with a likelihood that is proportional to the outflows. If 
several particles are traced, the cloud will thus split up in proportion to the flow 
rates. Complete mixing in a cell is hence assumed. 

 
It should be noted that no time is spent when moving from one cell to the neighbour. 
Next we will discuss some details about the two points above. 
 
When the particles are travelling through the cell, the retardation due to matrix 
diffusion, sorption and Taylor dispersion need to be accounted for. The concept of 
particle states is used to simulate these processes. As an illustration let's outline how 
Taylor dispersion can be simulated. If the velocity profile is described as a number of 
layers, each with a certain velocity, we identify these layers as the different states a 
particle can be in. If correct frequencies can be ascribed for moving to a neighbouring 
layer, it is realised that particles will experience different velocities when travelling 
through the cell and a Taylor dispersion effect will result. If we further should like to 
account for sorption on the fracture walls a particle state is also needed for this 
process. We also need to find out the frequency by which a particle will leave the 
velocity layer close to the wall and enter the "sorbed state" and also the frequency by 
which it will go back. 

PARTRACK uses FRAME to account for matrix diffusion and sorbtion processes. 
The parameters introduced for FRAME applies also to PARTRACK. However, as 
PARTRACK can also handle sorbing tracers we need to introduce the retardation 
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factors for the mobile, mR , and immobile zone, imR . These will affect the FRAME 
parameters as follows: 

• n,  where im
t n

m

R
R

β β β=  is the volume ratio for a non-sorbing tracer. 

• ( )2
min max/mol imD l Rα =  

• ( )2
max min/mol imD l Rα =  

If Taylor dispersion is simulated by PARTRACK a “cross diffusion coefficient”, 
fxdift, needs to be specified. A parabolic velocity profile is assumed and fxdift is then 
equal to the diffusion coefficient divided by the square of the aperture. 

 
4.6 Finite volume equations and solver 
CFD (Computational Fluid Dynamics) methods transform the differential equations 
into algebraic ones, which can be solved by a computer and a computer program. 
DarcyTools uses the so-called finite volume method, which can be thought of as 
having three well-defined stages: 

1) Discretize the computational domain into a number of cells, which fill entirely the 
domain. 

2) Integrate each differential equation for each cell, to yield an algebraic equation. 

3) Solve the resulting set of algebraic equations. 

The differential equations were given in the previous sections. After the integration, 
step 2 above, an algebraic equation of the following type results: 

φSaaaaaaa SSEEWWPP +Φ+Φ+Φ+Φ+Φ+Φ=Φ ΤΤΒΒΝΝ    (4-21) 

where Φ  denotes the variable in question, a coefficients and φS  source terms. For 
further details see Appendix A. 

It is equations of type (4-21) that are solved by the solver MIGAL (see Appendix A); 
in fact MIGAL can solve linked systems of this kind of equations, a feature that is 
used for the pressure-salinity coupling in the present set of equations. 
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5 Confidence building 
 
 
 
5.1 Some definitions 
During the last twenty years CFD (Computational Fluid Dynamics) has become a 
standard simulation tool in most engineering problems, dealing with groundwater flow 
and transport. This development has been driven by readily available software 
packages and the significant increase in affordable computer speed and memory 
capacity. CFD is however not a simple technique to use; generally speaking a basic 
understanding of several subjects like fluid mechanics, numerical analysis and 
computer software programming is required. For groundwater modelling an 
understanding of geohydrology is of course also needed. In an ongoing project, 
ERCOFTAC (Casey and Wintergerste, 2000), guidelines for CFD simulations are 
discussed and summarised. Partly based on this report, the following main sources of 
errors and uncertainties in groundwater simulations can be identified: 

• Mathematical model. The mathematical model does not describe the real flow 
exactly. For example, in textbooks the approximations inherent in the Darcy 
equation are often analysed and listed. Another often used approximation is that 
the water is incompressible.  

• Discretisation. Numerical solutions are performed on a grid in space and time. 
The difference between the solution on this grid and the exact solution of the 
modelled equations is called the discretisation error. 

• Convergence and round-off errors. Typically a CFD simulation involves 
iterative procedures. Convergence errors occur because these iterations are stopped 
by a certain criteria before they are completed. Round-off errors are due to the 
limited number of digits when a number is stored in the computer memory. 

• Application uncertainties. This includes uncertainties about the geometry of the 
domain (for example a fracture network), boundary conditions, fluid properties, 
etc. 

• Code errors. It is difficult to get software “bug-free”. 

• User errors. These are the errors that result from misstakes or carelessness by the 
user. 

More points could have been listed (errors in postprocessing, interpretation of results, 
etc) but the list given probably gives the most important ones. In this context it may be 
of interest to refer to the following definitions (from ERCOFTAC): 

Error:   A recognisable deficiency that is not due to lack of  
 knowledge. 

Uncertainty: A potential deficiency that is due to lack of  
 knowledge. 
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As the present report will deal with flow and transport in a fractured rock, one should 
view the points given from this perspective. The significance of the different points 
may still vary depending on the modelling approach chosen and the problem studied. 
Here we concern ourselves with a fracture network, as represented in a continuum 
model. All of the above discussed errors and uncertainties may still be relevant to 
consider and it is not easy, in the author’s view, to neglect (or set priority to) any of 
the points. For the modelling approach chosen it is however expected that the 
“quality” of a simulation is strongly dependent on how well the fracture network is 
represented in the continuum model. The fracture network is however only partly 
known (geometry, properties, etc) and we therefore need to consider the uncertainty 
introduced. 

The question whether a computer code is credible or not and methods to answer this 
question are given in a recent issue of the AIAA journal (AIAA, 1998). Based on the 
papers presented, Table 5-1 has been created. The table is an attempt to illustrate the 
actions involved in the confidence building process. A few comments to the table: 

• The order (from top to bottom) is essential. It is not possible to achieve 
certification without having demonstrated verification and validation. 

• There is a consensus in the literature about the definitions of verification and 
validation. Additional steps and actions in the confidence building are still open to 
discussion. 

• Some authors emphasise that it is important to distinguish between confidence 
building in a computer code and in a specific application. Related to this issue is 
the concept “fitness for purpose”. It is for example of little value to have a very 
accurate numerical solution if the algorithm is so slow that the code is impractical 
for its intended use. 

Table 5-1. Processes and actions involved in confidence building. 

Process 
 

Definition Action 

Verification Demonstrate that 
the equations are 
solved correctly. 
 

Comparison with 
analytical solutions 
and other models. 

Validation Demonstrate that 
the right equations 
are solved. 
 

Comparison with 
measurements 
(laboratory and 
field data). 

Certification Assess whether the 
right things are 
done and whether 
they are done 
right. 
 

Evaluate software 
construction and 
working 
procedures. 

C 
O 
N 
F 
I 
D 
E 
N 
C 
E 
 
B 
U 
I 
L 
D 
I 
N 
G 

More (QA-systems, wide range of applications, publications 
in international journals, etc) 
 

 



 36

5.2 Verification of DarcyTools 
The verification cases performed can be found in Report 2 and are summarised in 
Table 5-2. 

All cases tested show “good result”, i.e. the comparison with the corresponding 
analytical solution, or another model study, is satisfactory; the reader is referred to the 
report to study the details. 

A few words may however be needed to explain the objectives when selecting the test 
cases and the way the comparisons have been carried out. 

- The test cases should include one, two and three dimensional, steady and transient 
cases. 

- A wide range of relevant physical processes should be included, i.e. density 
stratification, unsaturated zones, storativity effects, etc. 

- The representation of fractures in a continuum model is a key feature of 
DarcyTools and should be well covered by the test cases. 

Some verification studies described in the literature are focused on grid refinement 
studies. Here the listed objectives have however been considered to be more important 
with the “fitness for purpose” argument in mind. 
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Table 5-2. Compilation of verification cases. 

Group Case Comment 

A. Numerical methods A1. One dimensional transient 
diffusion 
A2. One dimensional steady 
advection/diffusion 
A3. Flow through a complex 
channel 
A4. Tests of grids  
A5. Test of pressure-salinity 
coupling 
 

This group of cases intends to 
show that the numerical methods 
work as expected 

B. Porous media  B1. Regional groundwater 
circulation 
B2. Steady ground-water table 
B3. Theis problem 
B4. Transient pressure in a 
borehole 
B5. Specific yield, Neuman 
(1975) 
B6. Horizontal well problem 
 

This group considers some 
classical geohydrological 
testcases 

C. Fractured media C1. Three fractures in a two 
dimensional domain 
C2. Intersecting fracture zones 
C3. Single fracture in a box 
C4. Many fractures in a box 
C5. Percolation theory 
C6. Diffusion in a dead-end 
fracture 
C7. Matrix-fracture temperature 
problem 
 

This group of cases deals with 
the representation of fractures in 
a continuum model 

D. Transport and dispersion D1. Taylor dispersion 
D2. Break-through-curve, 
PARTRACK 
D3. Break-through-curve, 
adv/diff egn 
D4. Seven fractures in a 2D 
domain, PARTRACK 
D5. Three fractures in a 2D 
domain, PARTRACK 
D6. Single fracture in a box, 
PARTRACK 
 

This group considers transport, 
retention, dispersion and particle 
tracking cases. 

E. Buoyancy effects E1. Henry’s problem 
E2. The salt dome  
E3. Coupled temperature-  
salinity fields 
E4. Upconing 
E5. The floating island 
E6. Two fluid problem 
 

This group considers 
comparisons where density 
stratification, due to salinity and 
temperature gradients, is a key 
factor. 
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5.3 Validation of DarcyTools 
As validation should be concerned with comparisons with measurements and this 
report describes version 2.1 of DarcyTools, it is not surprising that very few such 
comparisons can be reported at this stage. However, as discussed in Section 1, it is 
relevant to include cases that were carried out with PHOENICS as the equation solver, 
as it has been carefully evaluated that the two solvers give very similar solutions. Note 
that the descriptions of the fracture network (GEHYCO) and other descriptions of 
physical processes are in most respects the same in the PHOENICS cases to be 
discussed, as in the present version of DarcyTools. 

For simulations of flow and transport in a fractured rock, it is difficult to separate the 
steps “validation” and “calibration”. To discuss this we first need to define 
“calibration” (following AIAA, 1998): 

• Calibration is the process of tuning a code, in order to improve its prediction of 
global quantities, for realistic geometries, of design interest. 

If we require that validation studies should be concerned with comparisons with field 
measurements, we also need to accept that these measurements are obtained in 
conditions that are to a large extent unknown. We do not know the fracture network 
(its geometry, fracture properties, boundary conditions, etc). In the author’s view, we 
therefore have to accept the following tentative definition of validation: 

- For the flow and transport in a fractured rock, validation of a simulation can be 
claimed if calibration can be performed with all adjustable parameters within 
realistic limits. 

This definition immediately raises the question “what is realistic limits?”. For major 
fracture zones we may be able to define bounds for properties (thickness, 
transmissivity, porosity, etc) and these bounds then define the “realistic limits”. 
However, for most applications properties and boundary conditions can not be given 
with error bounds and we have to accept the admittedly weak definition given. 

Validation cases are described in Report 2 and summarised in Table 5-3. As can be 
seen the validation cases are taken from calibration studies in various projects. We 
thus follow the definition of validation given above. 
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Table 5-3. Compilation of validation cases. 
 

Case Project (Reference) Comments 
A site scale validation 
(Case V1) 

Impact of the tunnel 
construction on the 
groundwater system at 
Äspö. Task #5 Svensson et 
al. (2002). 
 

Calibration focuses on: 
- Groundwater table 
- Pressure in boreholes 
- Kinematic porosity 
- Water composition 
 
Code: PHOENICS 
 

A laboratory scale 
validation (Case V2) 

A laboratory scale analysis 
of flow and salinity 
distribution in the Äspö 
area, Svensson (1999). 

Calibration focuses on: 
- Fracture 

transmissivities 
- Pressure in boreholes 
- Conductivity 

distributions 
 
Code: PHOENICS 
 

A repository scale 
validation (Case V3) 

Prototype Repository 
Groundwater flow, pressure 
and salinity distributions 
around the Prototype 
Repository. Continuum 
model No1, Svensson 
(2001). 
 

Calibration focuses on: 
- Tunnel inflows (skin) 
- Pressure in boreholes 
- Conductivity 

distributions 
 
Code: DarcyTools 

An experimental scale 
validation (Case V4) 
 

Simulation of tracer 
transport considering both 
experimental and natural, 
i.e. long, time scales, 
Svensson (2003). 
 

Calibration focuses on  
- PARTRACK 
- Sorbing and non-

sorbing tracer retention.
 
Code: DarcyTools 
 

 
5.4 Concluding remarks 

It is clear from this section that the process of confidence building is complex and 
involves many aspects. The bottom line is if a particular simulation is credible or not. 
The computer code, and its verification and validation, is of course a key factor when 
credibility is judged, but the user of the code is also important. CFD simulations are 
still far from routine calculations and the modeller normally takes a number of 
decisions when formulating the problem conceptually and mathematically. The 
“credibility of the modeller” is hence also factor to consider. 
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6 A SITE-LABORATORY-EXPERIMENTAL 
SCALE DEMO 

 
 
 
6.1 Introduction 
In the section on Confidence Building it was noted that DarcyTools, for obvious 
reasons, has not been widely tested in real world applications. The application to be 
discussed in this section has similarities with the conditions at Äspö HRL, but is 
generic in nature; it will hence not add to the validation studies reported. Instead the 
objective is to show some of the features and capabilities of DarcyTools in a realistic, 
but generic, application. The reason for keeping the demo generic is that the 
description of input data and results can be brief, as we can not discuss these in 
relation to field data. 

The situation studied is outlined in Figure 6-1. It is a coastal site, with seawater of a 
brackish nature (salinity of 1%). We assume a certain precipitation on land and we 
hence have a density stratification to take into account. Two hills give a certain 
topography on land. A tunnel, with a certain inflow, will be placed below the small 
island in the laboratory volume shown in the figure. The focus of the analysis will be 
on the effects of the tunnel. The situation has a clear resemblance with the Äspö 
region. The fracture system will however be much simpler in this demo, as compared 
to the detailed information available for Äspö HRL. Four major fracture zones, shown 
in Figure 6-1, are assumed to represent the deterministic system. Random fractures 
will be generated to build a working fracture network. 

It should be mentioned that the set-up of this demo in DarcyTools will be used as a 
worked example in the User’s Guide (Report 3). 

 
6.2 Problem specification 
A summary of the problem specification is given in Table 6-1. It is not the intention to 
give a complete account of the input data; this is considered to be outside the scope 
(the specification of the fracture network would be lengthy, for example). A few 
comments may be needed as a complement to the key features in the table (see also 
Figure 6-1): 

• Domains. The site model covers the whole domain, while the laboratory model is 
located below the island. The first of these two grids are of the BFC:s type 
(follows the topography), while the second grid is a cartesian one. The 
experimental model is placed in the laboratory model, but outside the tunnel area. 

• Properties. Porosity is specified for each fracture and fracture zone. The diffusion 
coefficient is given a value of ten times the value for molecular diffusion for salt; 
this process is hence insignificant. Transmissivities, orientations, etc for the 
random fractures are set according to the values found appropriate for Äspö HRL. 

• Random fractures. When the fracture network for the site domain is generated, 
random fracture in the interval 20 → 1000 metres are generated. Those random 
fractures that intersect the laboratory volume are imported as deterministic 
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fractures to this domain. Random fractures in the interval 10 - 20 metres are then 
added. The same procedure is repeated for the experimental volume; now with all 
fractures larger than 10 metres as deterministic and random fractures in the interval 
2 – 10 metres. 

 
6.3 Results 

Some sample results will be presented for the situation with the tunnel present. 

In Figure 6-2 a vertical section showing the salinity field can be found. The salinity 
fields show the typical fresh water lenses below land and the island. The upconing of 
salt water below the tunnel is also worth noting.  

Next we study the flow field around the tunnel, see Figure 6-3. Two horizontal planes, 
roughly 100 metres above and below the tunnel, are shown. The lines formed by the 
vectors indicate fracture zones that supply the water flowing into the tunnel. 

Finally the pressure field on the boundaries of the experimental volume is illustrated, 
see Figure 6-4. The blue colour indicates low pressure, which is generated by the 
tunnel. 

 
6.4 Concluding remarks 
The most important feature demonstrated in this application is probably the three fully 
coupled grids. The site domain covers a volume of 2 x 2 x 1 km3, while the resolution 
in the experimental domain is 2 metres. The demo also demonstrates some important 
DarcyTools features like sections with prescribed inflow or skin, etc. 
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Figure 6-1. Situation considered (top) and deterministic fracture zones. 
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Table 6-1. Summary of problem specification. 

Domains and grids  
Site:             2 x 2 x 1 km3 
                    NX = 100, NY = 100, NZ = 50,  
                    ∆  =20 

Laboratory: 500 x 500 x 300 m3 
                    NX = 50, NY = 50, NZ = 30,             
                    ∆  = 10 
 
Experimental: 100 x 100 x 100 m3 
                        NX = 50, NY =50, NZ = 50 
                        ∆  =2 
 

Properties  
- Deterministic zones according to Figure 6-1, 

Transmissivity = 10-5 m2/s 
 
- Random fractures 
      Site:             20 1000 ml = →  
      Laboratory: 10 20 ml = →  
      Experimental: 2 10 ml = →  

- Diffusion coefficients: 810−  m2/s, constant 

- Porosity: 310− , constant 

Boundary conditions  
Top: Precipitation on land , 50 mm/year    
        Pressure and salinity fixed below sea  

Vertical boundaries: Zero flux when   
                                 boundary on land,   
                                 prescribed pressure   
                                and salinity when  
                                below sea. Fixed  
                                salinity at bottom   
                                boundary. 

Tunnel : Three tunnel sections are defined; two 
with a prescribed skin (= 0.01) and one with a 
prescribed inflow (= 1 l/s). 

Groundwater table: As part of the simulation the 
groundwater table is calculated. The specific yield 
feature is not activated as we are only considering 
the steady state. 
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Figure 6-2. Vertical section through the island. Salinity field with upconing due to the 
tunnel. Blue colour indicates fresh water. 
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Figure 6-3. Velocity field above and below the tunnel, laboratory volume. 
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Figure 6-4. Pressure field on the boundaries of the experimental volume. Blue colour 
indicates low pressure. 
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7 Illustration of some key concepts 
 
 
 
7.1 Introduction 
Several development projects proceeded the present report on DarcyTools. A number 
of fundamental issues dealing both with flow and transport in fractured rocks and 
numerical modelling techniques were addressed. It is not possible to include these 
studies in the present report, but a brief review of some key results is within scope. 
The reason for reviewing these related studies is that they illustrate the concepts used 
and highlight some aspects of DarcyTools that are believed to be essential for a 
groundwater code. 

The laboratory model of Äspö HRL, see Section 1, will be used for the simulations as 
we going to illustrate features that are believed to be important in real world 
applications. 

 

7.2 Spatial and temporal discretisation errors 
In this section results that show the magnitude of the discretisation errors, that can be 
expected in a real world application, will be presented. As we are interested in general 
trends and results, the estimated magnitudes will be based on the average of ten 
realisations of the background fracture network. This will also give a perspective on 
the discretisation error, as it can be compared to the variations due to different 
realisations. 

It was stated in Section 3, that the smallest generated fracture size should be of the 
same size as the grid cells, i.e. ∆≈minl . In a grid independence study, it is however 
preferable to keep all parameters the same, except for the studied parameter ∆ . For 
this reason minl  is equal to 3 metres when flow rates are studied and 10 metres in the 
transport simulations.  

Flow and Pressure 

As a background to the grid independence study some general characteristics of the 
fracture network will be discussed. It was stated in Section 3, that an underlying 
assumption of the present method to represent a fracture network is that “large 
fractures are more important for the flow rate than small ones”. In Table 7-1 some 
calculations of the mean block, or domain, conductivity in the West to East direction 
are shown. As can be seen the block conductivity does not change a lot if minl  is 5, 10 
or 15 metres. In the following minl  will be put to 3 metres, which ought to ensure that 
all fractures important for the flow simulation are included. Table 7-1 also shows that 
the block conductivity changes more when ∆  is changed; this aspect will be analysed 
in detail below. Table 7-2 shows the block conductivity in different realisations for 
three of the values shown in Table 7-1. Different realisation can clearly result in rather 
different block conductivities. Block conductivities with only the major deterministic 
fracture zones present are shown in Table 7-3. There is no stochastic element in these 
simulations and there is hence no need for several realisations. Some grid dependence 



 47

is found for the South to North direction, while the two other directions show very 
little sensitivity to variations in ∆ . We may also note that, for the West to East 
direction, the block conductivity is 30-50 % of the block conductivity shown in Table 
7-1. The major fracture zones and the background fracture network thus have about 
the same significance for the flow rate. 

The block conductivities in the West to East direction, as a function of ∆ , are shown 
in Figure 7-1. Ten realisations of the background fracture network were generated to 
get the average values shown in the figures; minl  was equal to 3 metres in all 
calculations. In the figure two graphs are shown. In the top one block conductivity is 
shown as a function of iN , the number of cells in the coordinate direction studied. 
This curve shows that the block conductivity approaches a certain value in an 
asymptotic manner; this is the normal behaviour in grid refinement studies. The lower 
figure shows the same data, but expressed as a function of ∆ . The advantage of this 
representation is that it is possible to extrapolate the curve to 0.0=∆ , and hence get 
an estimate of the discretisation error. At this stage we will only note that the error is 
around 10% (from extrapolation) for the solutions with 3=∆  metres. 

Some illustrations of what happens when ∆  is varied are given in Figures 7-2, and  
7-3. In the first figure, the flow and pressure distributions for a mean pressure gradient 
from West to East are shown. The general impression from these figures is that a ∆  
equal to 3 metres resolves the major fracture zones (deterministic and stochastic) with 
high accuracy. For 10=∆  metres some of the details in the flow distribution are lost. 
One may also note that the pressure distributions are rather similar for 3=∆  and 10 
metres. Figure 7-3 shows the conductivity fields for 3=∆  and 10 metres. The smaller 
∆  gives a fairly detailed picture of the fracture network. 
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Table 7-1. Block conductivity for a pressure gradient in the West to East 
direction, for various lmin and ∆ . 

Conductivity x 10-7 (m/s) for various ∆  (m). minl  
5 10 15 20 

5 0.66 0.84 1.00 1.17 
10 0.66 0.81 0.97 1.14 
15 0.66 0.81 0.97 1.13 
20 0.61 0.76 0.93 1.07 

 
 
Table 7-2. Block conductivity for a pressure gradient in the West to East 
direction. Ten realisations based on lmin = 5 metres and various∆ . 

Conductivity x 10-7 (m/s) for various ∆  (m). Realisation 
5 10 20 

1 0.76 0.94 1.20 
2 0.66 0.83 1.06 
3 0.63 0.79 1.04 
4 0.57 0.74 1.01 
5 0.65 0.78 1.03 
6 0.59 0.83 1.18 
7 0.56 0.75 1.02 
8 0.59 1.06 1.08 
9 0.87 0.92 1.36 
10 0.71 0.77 1.21 

 
 
Table 7-3. Block conductivity in the three coordinate directions with only major 
deterministic fracture zones present, for various ∆ . 

Conductivity x 10-7 (m/s) for various ∆  (m). Direction 
3 5 10 15 20 

West-East 0.30 0.31 0.31 0.32 0.33 

South-North 0.80 0.85 0.98 1.10 1.22 

Low-High 4.26 4.22 4.23 4.22 4.26 

 
 
 
 
 
 
 
 
 
 
 
 
 



 49

 

Figure 7-1. Block conductivity in the West to East direction as a function of the 
number of cells in the coordinate direction (top) and as a function of ∆ . 

(               ) All fractures included. 

(               ) Only major fracture zones. 
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Figure 7-2. Flow and pressure distribution for a mean pressure gradient from West to 
East. Pressure distribution shown with 20 isolines. 3=∆  metres (top) and 10 metres. 
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Figure 7-3. Conductivity fields for 3=∆  metres (top) and 10 metres. All 
conductivities larger than 810−  m/s shown. 
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 Transport and Dispersion 

Estimating the discretisation errors when simulating a tracer pulse that moves through 
the domain is more difficult, as we then have to consider the errors both in space and 
time. In order to simplify the analysis only flow in the West to East direction will be 
considered. As the flow simulations further indicate that 10>∆  metres produce quite 
“smeared” solutions, only 5 ,3=∆  and 10 metres will be discussed. 

The following situation is studied. In a steady flow field a tracer marks the water at the 
inlet (Western) boundary during a period of one year. After about fifteen years the 
pulse leaves through the Eastern boundary. 

A typical breakthrough curve is shown in Figure 7-4. It is the concentration at the 
outlet, in fracture zone NE1, that is shown in the figure. The tracer will leave the 
domain through several fractures but the maximum flux is expected through NE1. 
Regarding minl  it was argued in Section 3 that a good choice is to put it equal to ∆ . 
However in a grid refinement study it is preferable to keep the geometry fixed and 
only vary ∆ . For this reason minl  will be put to the largest ∆ , i.e. 10 metres, in the 
following calculations.  

In the grid refinement study, we will use the maximum concentration at the outlet as a 
simple description of the breakthrough curve. The main result of the exercise is given 
in Figure 7-5. The smallest time step use, 0.25 months, is seen to be close to the time 
step independent solution (from an extrapolation). It is also interesting to note that ∆  
= 3 and 5 metres give very similar results. Hence, with ∆  = 3 metres and 25.0=∆t  
months, we are probably close to a grid independent (in space and time) solution. The 

st :∆  discussed are of course related to the mean transport time, and hence to the 
prescribed mean head gradient. 

In Figure 7-6 the tracer distribution after ten years is shown for two ∆ . As can be 
seen, the main characteristics of the plume are quite well described in both grids. The 
breakthrough curves for the smallest time steps used are given in Figure 7-7. Also this 
figure indicates that ∆  = 3 metres resolves the transport problem with acceptable 
accuracy. The main difference between the three curves is the arrival time for the peak 
concentration. This difference is due to the increase in flow rate with ∆ , as discussed 
above. 

A concluding comment on the discretisation errors in the transport simulations shown 
may be in place. The breakthrough curves in Figure 7-7 mainly differs in the arrival 
times, which can be explained by the increase in flow rate with ∆  (as discussed 
above). The peak value and the shape of the breakthrough curves are however very 
similar. This is a strong indication that the grid representation of the flow and porosity 
fields is based on sound principles. The flow field looks quite different for 3=∆  and 
10 metres (see Figure 7-2) and the grid representation of the porosity fields is smeared 
in a similar way as the conductivity field (see Figure 7-3). Still the transport problem 
is solved in a similar way in both grids. 
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Figure 7-4. Breakthrough pulse through NE1 at the outlet boundary. 
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Figure 7-5. Maximum concentration in fracture zone NE1 at the outlet plane, as 
resolved by different ∆  and t∆ . 
(             ) =∆  3 metres 
(             ) =∆  5 metres 
(             ) =∆  10 metres 
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Figure 7-6. Tracer distribution after ten years.  
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Figure 7-7. Breakthrough curves for 3=∆  metres (           ), 
5 metres (        ) and 10 metres (           ). 25.0=∆t  months. 
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Conclusions 

The objective of the work presented has been to estimate the discretisation error, in 
space and time, in simulations of flow and transport in a realistic fracture network. 
This has been done for a test case with a prescribed mean pressure gradient in a 
coordinate direction. The block conductivity and transport characteristics for such 
situations have been studied for a range of grid cell sizes, ∆ , and time steps, t∆ . 

From the study the following main conclusions can be formulated: 

• The space resolution, ∆ , should be of the order of 1%, or smaller, of the domain 
size. For the test case studied the error, i.e. the difference between the actual and 
the estimated grid independent solution, in the block conductivity may then be 
around 10%. 

• The estimated magnitude of the discretisation errors is regarded to be small in 
comparison to the uncertainty in input data (for example transmissivities and 
porosities). 

• The minimum fracture size in the background fracture network should be 
comparable to the grid size. This ensures that all important flow channels are 
resolved and provides a natural link to a subgrid model (the subgrid model 
considers the dispersion effect due to all fractures smaller than the grid size). 

 

7.3 Porosity and connectivity 
In this section we will apply the porosity concepts to the laboratory model of the Äspö 
HRL. 

In Section 3.6, some domain related porosity concepts were defined ( ),   and a c fθ θ θ . 

fθ  is the porosity based on "all volumes with a significant flow", i.e. stagnant parts 
have been removed from cθ . As outlined in Section 3.8, some calculations are 
required to identify the stagnant volumes. 

A typical sequence of calculations is shown in Table 7-4. For a head gradient of 10-3, it 
is found that disregarding all cells with a maximum absolute cell wall flux of 11103 −×  
m/s will result in a decrease of the average flux through the domain that is smaller than 
1%. Note that the number of stagnant cells is not related to the flux value 11103 −×  
m/s, as a different head gradient would result in another flux value; the 1% reduction 
limit will however still be valid. 
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Table 7-4. Determination of stagnant parts of the kinematic porosity field. The 
ratio Q/Qm, where Q is the actual flow rate and Qm the flow rate for cθ  , is 
determined for various limits on the absolute maximum flow rate through a cell 
wall, limitV . 
 

[%]/ mQQ  
 

limitV  
[m/s] 

East-West North-South High-Low 
1010−  93.7 96.9 99.0 

11105 −×  97.3 98.8 99.5 
11103 −×  99.0 99.5 99.7 

 
 
Table 7-5. Kinematic porosity values based on total volume of domain and on 
volume of active cells. 
 
 

Case Porosity based 
on total volume

Number of 
active cells (%)

Porosity based 
on volume of 
active cells 

All fractures 
included 

41019.1 −×  70 4107.1 −×  

Isolated 
fractures or 

clusters 
removed 

 
41013.1 −×  

 
45 
 

 
4105.2 −×  

Stagnant 
volumes and 

isolated 
fractures 
removed 

 
41009.1 −×  

 
35 

 
4101.3 −×  

 

In Figure 7-8 three porosity fields are shown; in the top one all generated fractures 
contribute to the porosity field, in the middle one all isolated volumes are disregarded 
and in the lower one also the stagnant volumes have been removed. It is clear that 
most of the flow is due to a limited number of fractures. Table 7-5 gives some further 
details. It is interesting to note that the porosity based on the total volume varies little 
between the cases listed. The explanation is that the isolated and stagnant parts of the 
porosity field are due to small fractures with low transmissivity and hence also low 
porosity. Figure 7-9 provides support for this explanation. When isolated and stagnant 
parts are removed 66% of all cells have a porosity of 10-8, which is the prescribed 
lower limit. 

A visualisation of the kinematic porosity ( )cθ and flow field is shown in Figure 7-10. 

The porosity is illustrated with an isosurface for a value of 5103 −× , while the 
isosurface for the magnitude of the Darcy flux has a value of 11103 −×  m/s (this was 
the value that identified stagnant volumes). The flow direction is from west to east. 
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Figure 7-8. Kinematic porosity fields at a depth of 450 metres, based on all generated 
fractures (top), all connected fractures (middle) and all connected fractures 
disregarding stagnant volumes. 
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Figure 7-9. Porosity distribution in the computational grid. Number of cells with 
different kinematic porosity shown for the case where all generated fractures are kept 
(top), isolated fractures removed (middle) and isolated fractures and stagnant volumes 
removed. 
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Figure 7-10. Illustration of porosity (top) and flow fields. Depth interval shown is 400 
to 500 metres below ground level. The flow is from west to east. View from south. 
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Gravitational effects 

At the Äspö HRL old water types (like Glacial water) have been found already at a 
depth of a few hundred metres. As discussed earlier, it is possible to explain the 
storage of water by a slow exchange with the storage volumes. Gravitational effects 
may however also contribute to the isolation of a water volume; salt water in the 
bottom of a fracture is not easily replaced by fresh water. 

A qualitative study of the gravitational effects will be carried out. As in the previous 
case we specify a pressure gradient in the west to east direction. The inflow and 
outflow sections are however now limited to a 10 metres high horizontal band at a 
depth of 380 metres. The initial salinity in the domain is zero, while the inflowing 
water has a salinity that varies in time, according to Figure 7-11. The total integration 
time is 10 000 years. What one can expect is that the salt water will replace the water 
in the lower half of the domain, while some water with zero salinity may remain (note 
that the inflowing water always has a salinity %0> ) in the upper half of the domain. 

The result after 10 000 years of integration can be studied in Figure 7-11. The two 
vertical sections show the result with (top) and without gravity activated. Obviously 
gravity is a very important factor when storage of old water types is to be analysed. 

A comment may be needed on the "horizontal band of 10 metres" giving the inflow 
and outflow boundaries. The salinity of the inflowing water is intended to illustrate 
different stages, with different salinities, of the Baltic Sea. In the present model set-up 
we do not simulate the contact with the Baltic Sea, as the top of the model domain is at 
a depth of 200 metres, and we are thus forced to specify "unrealistic" boundary 
conditions. It should however be noted that the purpose of the simulation is to 
illustrate the effect of density variations, in a qualitative way. 
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Figure 7-11. Effect of gravity. Vertical sections of salinity field after 10 000  
years of integration with (top) and without gravity activated (middle). Salinity of 
inflowing water as a function of time (bottom). 
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Conclusions 

The key feature of the GEHYCO method is that properties (conductivity, flow wetted 
surface and kinematic porosity) are defined for conductive elements that form a 
fracture network. The specific results from the present study can be summarised as 
follows: 

• The fracture network generates a connected system of pore-space that we define as 
the kinematic porosity. Part of this porosity is defined as stagnant volumes, based 
on a flow criterion. 

• Storage volumes are representing fractures smaller than the minimum fracture size 
in the network and all other volumes that exchange matter with the kinematic 
volumes by molecular diffusion only. Computationally storage volumes are 
simulated by the model FRAME. 

• Simple test cases, generic studies and applications to the Äspö HRL demonstrate 
that the concepts are useful and easily employed in numerical models of the 
continuum type. 

 

7.4 PARTRACK 
Transport simulations can be based on two principally different methods, solving an 
advection/diffusion equation for the solute or tracking particles. In DarcyTools both 
methods are used. It is of course of value to base both methods on the same concepts 
and assumptions concerning the subgrid processes. 

The particle tracking routine PARTRACK is described and tested in Svensson 
(2001a). That version was however based on a lognormal distribution of rate 
coefficients. FRAME, as described in this report, is based on power-law distributions, 
which are preferred as the general fracture network is based on such distributions.  

As part of the general development of FRAME, a power-law distribution has also been 
introduced in PARTRACK. The objective of this section is to show some sample 
results that demonstrate that this has been achieved. 

As PARTRACK is now based on FRAME, it will also use the same input parameters. 
For the results to be presented the following was specified: 10tβ = , 8.1=k  and 

1010−=eD  m2/s (constant for the applications presented). 

A one-dimensional channel with a steady state flow, with uniform velocity, is used. 
The length of the channel is 10 metres and the transport velocity 10-4 m/s. This gives 
an advective transport time of 105 s (≈ 28 hours). The concentration at the outlet as a 
function of time, i.e. the breakthrough curve (BTC), is used to illustrate the results. 

In Figure 7-12, three BTC:s are shown. If no dispersion effects are active, all particles 
will arrive after about 27 hours. If Taylor dispersion is added an insignificant 
dispersion will result for 1010−=mD  m2/s. Decreasing mD  to 10-12 m2/s gives some 
dispersion as can be seen in Figure 7-12. If FRAME is added, the BTC will be 
significantly modified as can be expected. 
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Next we use the laboratory model in order to show a real world application. In the 
west to east flow considered, particles are released in fracture zone EW1, see  
Figure 1-1, and then tracked through the domain till they reach the eastern boundary. 
Figure 7-13 shows the flow paths generated by 100 particles. The main flow path is 
through EW1, changing to the NNW structures and leaving through NE1. Note that in 
this view from above, NE1 gives a wider impression, as this zone is not vertical. It is 
also worth noting that rather few flow channels are active in the transport. 

The only objective of these simulations is to demonstrate that PARTRACK is now 
based on the subgrid model FRAME. More sensitivity studies and applications of this 
new version of PARTRACK will be presented elsewhere (for example in Task #6, 
initiated by the Äspö Task Force on modelling of groundwater flow and transport of 
solutes). Verification and Validation studies are also found in Report 2. 
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Figure 7-12. BTC:s in a one-dimensional channel. 
               No dispersion. 
               Taylor dispersion added ( 1210−=mD  m2/s) 
               FRAME and Taylor dispersion added. 
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Figure 7-13. Flow channels formed by 100 particle tracks in a flow from west to east. 
Blue indicates high intensity of tracks, red low. 
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8 Discussion 

 
 
 
Even if the main part of this report is, intentionally, short it may be difficult to “put the 
pieces together” and get a good grasp of DarcyTools. We will therefore use the 
discussion section to summarise the key features of DarcyTools and also to give a hint 
about possible future developments. 

Key features 

• Mathematical model. DarcyTools is based on conservation laws (mass, heat, 
momentum and massfractions) and state laws (density, porosity). The subgrid 
model utilise the multi-rate diffusion concept and the fracture network (resolved 
and subgrid) is based on fractal scaling laws. 

• Continuum model. Even if a fracture network forms the basis of the approach, 
DarcyTools should be classified as a continuum porous-medium (CPM) model. 

• Fractures and fracture network. Fractures and fracture zones are idealised as 
conductive elements, to which properties (conductivity, porosity and flow wetted 
surface) are ascribed. Empirical laws are used for the determination of these 
properties. The fracture network is based on fractal scaling laws and statistical 
distributions (random in space, Fisher distribution for orientation, etc). 

• GEHYCO. This is the algorithm, based on the intersecting volume concept, that 
transforms the fracture network (with properties of conductive elements) to grid 
cell properties. 

• FRAME.   Subgrid processes are parameterised as “diffusive exchange with 
immobile zones”. FRAME uses the multi-rate diffusion model and fractal scaling 
laws, to formulate a simple and effective subgrid model. 

• SOLVE. When the continuum model is generated, effective CFD-methods are 
used to solve the resulting finite-volume equations. DarcyTools uses the MIGAL-
solver, which is a multigrid solver with the capability to solve coupled problems 
(like pressure and salinity) in a fully coupled way. 

• PARTRACK. This particle tracking algorithm is fully integrated with DarcyTools 
and uses the same basic concepts as FRAME. PARTRACK can handle Taylor 
dispersion, sorption and matrix diffusion simultaniously in large 3D grids (> 106 
cells). 

• Verification and Validation. A large number and wide range of verification and 
validation studies have been carried out, see Report 2. 
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Version 3.0 

The work leading to DarcyTools, Version 2.1 has been focused on the needs and 
requirements from the SKB Site Investigations. It is believed that V2.1 fulfils these 
requirements. 

The development of V2.1 was not carefully planned and structured, simply because 
time did not allow it. Version 3.0 is intended to last longer (perhaps 3-5 years) and 
should hence be preceded by a more thorough investigation of expected future tasks. 

A tentative suggestion, or guess, is that the following key words can describe the 
directions for work leading to Version 3.0: 

• Repository stages. All stages in the construction and building (including the 
present Site Investigations) of the repository should considered, as well as the long 
term behaviour after closure. 

• Research tool. Hopefully DarcyTools will be useful for the research carried out at 
Äspö HRL and in the simulation projects defined by the Äspö Task Force on 
groundwater flow and transport of solutes. 

• Technically it is expected that DarcyTools V3.0 will include an unstructured grid 
option and the capability to make use of multi-processor computers. 
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9 Conclusion 

 
 
 
The main objective of this report is to provide the theoretical basis of DarcyTools. The 
main part of the report is written in a descriptive style, with the intention that also non-
specialists in groundwater modelling may find it accessible. More detailed accounts of 
various topics are provided in appendices. Hopefully, the report still fulfills the 
objective stated. 

It is the ambition to establish DarcyTools as a state of the art computer code for 
simulation of flow and transport in fractured and/or porous media. Many novel and 
powerful features have been introduced, but more work is needed before this ambition 
has been achieved. 
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Introduction 
 

DarcyTools computes fracture network flows using a continuum model in which 

the mass conservation equation (1) is associated to several mass fraction 

transport equations (2) for the salinity and/or particle mass concentrations, and 

to a heat transport equation (3). In relations (1), (2) and (3)  ρ, u, v, w, T and C 

represent respectively the fluid density, the velocity components, the 

temperature and the mass fraction of the transported quantity. Q, Qc and QT are 

source terms per unit volume of fluid mass (i.e. injection-withdrawal), of mass 

of transported quantity (e.g. local exchanges with the rock) and of heat (i.e. 

enthalpy).   
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Dx, Dy and Dz are the normal terms of the diffusion-dispersion tensor. λx, λy and 

λz are the normal terms of the equivalent (i.e. rock with fluid) thermal 

conductivity tensor, c is the rock thermal capacity and cp the specific heat of the 

fluid.  

 

The mass conservation equation is turned into a pressure equation under the 

well known Darcy’s assumption (4). 
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where Kx, Ky and Kz are the local hydraulic conductivities in x, y and z direction, 

g the gravity acceleration, ρ0 a reference fluid density (8) and P the dynamic 

fluid pressure relative to the reference hydrostatic pressure. 

 

 
 zgpP 0ρ+=   (5) 

 

 

The hydraulic conductivities K are related to the permeability k field through 

relation (6): 

 

 

 
µ

ρgk
K =   (6) 

 

 

The fluid property like the dynamic viscosity µ, the density ρ and the specific 

heat cp are given by state laws: 
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while the porosity θ and the compaction γ of the matrix are provided with the 

following dependencies: 

 

 
 γθθ 0=   (10) 

 
 gPP ρθσγ )()(1 00 −+=   (11) 

 

 

In the above formulas S represents the salinity (salt mass fraction), θ0 a 

reference porosity field given for a reference pressure field P0, σ the specific 

storativity field. nµ, ai, bi, αi, βI, µ0, ρ0, cp0, Tµ, and Tρ are constants. 

 

 

 

 

 

Finite Volume Integration 
 

The finite volume method integrates equations (1), (2) and (3) over the six 

faces of a finite number of control volumes by converting volume integrals into 

surface integrals using Ostrogradsky’s theorem: 
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So that, according to the Mean Value Theorem: 
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where, for example, Ae and ne are respectively the area and the outside-normal 

of the “east” cell-face and where Fe is evaluated at east face center. 

 

 

 
Figure 1 : Control volumes, normals and vertex labeling  

 

 

 

Grid arrangement 

Among the common grid arrangements, DarcyTools uses the “node-centered” 

arrangement in which the pressure and the scalar variables (mass fractions) are 

located at center of grid cells. The main advantage of this formulation is that the 

control volumes coincide with the grid cells and that the cell vertexes are 

directly defined by grid nodes.  

 

 
 

Figure 2 : Node-centered arrangement labeling  
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more sophisticated interpolations for second order accurate discretisation of 

convective fluxes. A second drawback is that the algorithm or the grid definition 

for embedded grids interpolations is more complicated than for the “cell-

centered” arrangement. 

 

 

Stability  

The strength of the finite volume integration is its conservative formulation for 

which any flux getting out from a control volume is automatically entering the 

neighboring volume. Nevertheless this strength may be a drawback when 

considering the convergence process. Given a bounded conservative scheme, 

the convective term interpolation at east cell face can be written: 
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where the value of αe depends on u to ensure the monotony and remains in the 

interval [0,1] to ensure the  boundess of the scheme. The subscripts e, E, and P 

indicate respectively the east face value, the east variable and the center 

variable. 

 

 

  
Figure 3 : East-West stencil labeling  

 

 

 

Therefore, for the convective term of the transport equation (2), applying 

relation (14) to approximate the integrals of relation (12) leads to the following 

algebraic relation: 
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Because of (1) and for stationary problem with no internal mass source term, 

relation (15) apparently leads to a central coefficient (applied to φP) equal to the 

opposite sum of neighboring coefficients. This property, even if not necessary, is 

highly desirable for stability. Unfortunately, during the convergence process, 

relation (1) may be temporarily highly unsatisfied. Hence, in spite of the 

P E W 

e w 
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bounded form (14) the discretisation of the transport equation from (2) may 

become unstable. For this reason, DarcyTools substitutes the source term CQ of 

equation (2) by its evaluation from relation (1) and finally solves equations (16) 

and (17) instead of (2) and (3). 
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The main advantage of this technique is to ensure a central coefficient always 

equal to the opposite sum of neighboring coefficients. A second advantage is 

that the source terms (CQ and cpQT) due to fluid mass source disappears from 

relation (16) and (17). This simplifies the implementation of boundary conditions 

since the internal mass source terms have to be specified only once: for the 

mass conservation equation (1). In return, the mass fractions C must be 

specified where the fluid mass source Q is positive (no necessary condition when 

Q<0). It should also be noted that, for time varying density or porosity, the time 

derivative term lost its conservative form. 

 

 

 

 

Spatial scheme  

Also for stability reason, the fluxes discretisation in space must involved both 

convective and diffusive terms in order to produce positive coefficients. Then, 

considering the face f separating two control volumes, 
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Figure 4 : East-West face flux labeling  

 

 

DarcyTools uses the hybrid scheme to express the fluxes as: 
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with the faces values linearly interpolated as: 
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Time derivative 

To ensure the precision of time dependent simulations, DarcyTools implements 

two different implicit time schemes. The default one is the Euler first order 

implicit scheme given by: 
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The alternative is a second order implicit scheme that differentiates a parabola 

forced through solutions at three non-equally spaced time levels: 
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where ∆t1 and ∆t2 represent respectively the time steps tn-tn-1 and tn-1-tn-2.  

 

 

 

 

Algebraic Set of Equations 

After the discretisation step, equation (1) as well as all the equations (16) can 

be written with the general algebraic form: 
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where ap and anb are positive coefficients and where ap, because of the transient 

term, is greater than the sum of the neighboring coefficients anb. Whenever it is 

possible, if the source term operator Sφ depends on the solution field φ 

DarcyTools increases the diagonal dominance of the operator by rewriting it as 

follows: 

 

 
 Pphisrc QQS φφ −=       with       0>phiQ  (24) 

 

 

and by including Qphi into the central coefficient. 
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This linearization of the operator source term is also a practical way for users to 

fix different kind of boundary conditions. For example, setting a BIG value in Qphi 

and a BIGxVAL value in Qsrc becomes equivalent to the Dirichlet boundary 

condition: φ=VAL. Setting Qsrc to VQ and Qphi to zero is also the easiest way to 

specify an inlet fluid mass flux in the pressure equation (1) When an inlet fluid 

mass is set (Q>0) it can also be of interest to specify only the inlet salinity 

instead of fixing the mean cell value by a Dirichlet condition. In that case the 

implicit input must be removed by setting Qphi to VQ and the effective input 

forced by setting Qsrc to VQSin. 
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Figure 5 : 3-D discretisation stencil labeling  

 

 

 

 

BFC Discretisation 
 

When the computational domain is meshed by a Boundary Fitted Coordinate 

(BFC) grid, a generalized coordinate space (ξ,η,ζ ) is introduced to link the 

(I,J,K) location indexes to the spatial domain (x,y,z).  

 

 

 

 
Figure 6 : Curvilinear BFC grid transformation  

 

 

A continuum metric transformation can be introduced between the generalized 

coordinate space (ξ,η,ζ ) and the physical space (x,y,z) as follows: 
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With the above notations (26) and (27), the areas and normals appearing in 

relation (12) are given by: 
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With curvilinear coordinates the evaluation partial derivatives of governing 

equations in X, Y and Z direction is not straightforward because variables are not 

distributed along X, Y or Z coordinate-lines but along the ξ, η and ζ lines of the 

transformed space. Nevertheless, with the continuum metric transformation, 

they are given by: 
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Finally the governing equations are written as follows: 
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Those equations keep their primary form but differ from (1), (16) and (17) in 

that the diffusion coefficients K, D and λ change for: 
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in that buoyancy terms appear (see SDM) in each direction with: 
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in that mass fluxes are given by: 
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and in that cross derivatives now appear. In spite of the indirect coupling they 

introduce between (30) and (31) these new derivatives are explicitly treated in 

separated sources terms SDM and SDC in order not to enlarge the algebraic 

stencil. Their magnitude reduces to zero when the curvilinear coordinate lines 

are orthogonal and the diffusion is isotropic. 
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The cross derivative diffusion coefficients are given by: 
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BFC:s Discretisation 
 

The use of Boundary Fitted Coordinate (BFC) grids requires a lot of memory to 

store the 31 arrays of the metric and the 9 property arrays per control volume. 

Moreover, the computation of the multiple cross derivatives is an expensive task 

that should be avoided when unnecessary. For this reasons, DarcyTools also 

uses a Simplified BFC formulation (BFC:s) in which X and Y are Cartesian 

coordinates depending only on I and J indexes respectively and Z is a floating 

coordinate. A first simplification concerns the areas and normals involved in 

relation (12): 
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where hx and hy are the spatial steps in X and Y directions and where functions 

f1, f2 and f3 are the discrete expressions of the Z coordinate transformed 

derivatives (see Figure 1 for notation): 
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The volume of control volume is given by: 

 

 

 )(
4 43218765 zzzzzzzz
hh

V yx −−−−+++=   (46) 



Numerical Methods           BFC:s Discretisation 
 

DarcyTools 2.1    15 

 

 

The finite volume integrated governing equations become: 
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with explicit sources terms: 
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and mass fluxes given by: 
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The second simplification of the BFC:s formulation concerns the normal 

derivative along Z direction. Due to the vertical east-west and north-south faces 

this derivative reduces to: 
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where zc represents the Z coordinate of variable locations, i.e. of the centers of 

control volumes: 
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Like with BFC formulation X and Y derivatives suffer of non-alignment with the ξ 

and η lines connecting variable locations. For example, the X derivative at center 

of east face is: 
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Where the points E* and P* are the projections of the points E and P on X 

direction at the altitude zf of the face center.  

 

 

 
Figure 7 : East face partial X derivative labeling 

 

 

Because the E* and P* values are not directly known, DarcyTools approximates 

them by: 
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Therefore, since Z derivatives are straightforward, partial X derivative at east 

face becomes: 
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Again, like with BFC formulation, the top and bottom diffusive fluxes involve 

cross derivatives since face normals are not vertical.  

  

 

 
Figure 8 : Top face partial X derivative labeling 

 

 

DarcyTools approximates these cross derivatives as follows: 
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where the E* and W* values are linearly interpolated as before: 
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zf is now the top face center’s altitude. The partial X derivative at top face finally 

becomes: 
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At boundaries, extreme points in relation (61) are replaced by central points. For 

example for I=1, W and WT are respectively replaced by P and T. For two 

dimensional (Y-Z) and (X-Z) problems partial X and Y derivatives at top and 

bottom faces are respectively ignored.  

 

 

 

 

Cartesian Discretisation 
 

The fastest and the less memory consuming formulation in DarcyTools is the 

Cartesian grid formulation for which the X, Y and Z coordinates of grid nodes 

depend only on I, J and K indexes respectively. Many simplifications are 

therefore possible and, in particular, areas and normals of relation (12) become:  
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so that the governing equations do not contain any cross derivatives in 

additional explicit sources terms and simplify to: 
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where the only additional source term is given by: 
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the mass fluxes by: 
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and the normal partial derivatives by: 
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Embedded Grids Strategy 
 

To reduce the amount of computational work when high resolution of the 

fractured network is needed, DarcyTools applies an embedded grids strategy. 

Starting from a large domain, local block refinements are embedded in one or 

several parent grid footprints.  

 

Child (embedded) grids are defined by three refining factors so that every 

parent cell of the footprint is subdivided into fI, fJ and fK child cells in the I, J and 

K direction respectively (fI, fJ and fK being integer values). An additional plane of 

cells is also used where boundaries of the footprint do not coincide with the 

parent grid boundaries (Figure 9). DarcyTools uses these cells to specify 

Dirichlet boundary conditions to the embedded grid problem from the parent 

grid solution.  
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Figure 9 : Footprint and embedded grid arrangement 

 

 

To solve the interdependence of grid solutions, DarcyTools starts by solving the 

most embedded grid solution with Dirichlet boundary conditions on the 

additional cell planes. The fixed values are obtained from a tri-linear 

interpolation of the parent grid node values. Actually, DarcyTools uses the 

parent grid node values because the location of child cell grid centers is linearly 

defined from the parent grid nodes and not from the parent grid cell centers. 

The advantage of this procedure is that it is faster compare to a fully non linear 

interpolation procedure but the drawback is that the parent grid node values 

themselves have to be interpolated from the parent solution. For this DarcyTools 

implements an inverse volume weighting such as: 
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Then, given the child solutions, the parent grid solution is computed outside the 

footprints with fixed fluxes boundary conditions on cells at footprints’ borders 

(e.g. I=I1-1 or I=I2+1).  The fixed fluxes are obtained by summation of the 
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child grids fluxes entering the additional cells in order not to loose the 

conservative property of the finite volume procedure.  

 

 

 
 

Figure 10 : Fluxes transfer from child to parent grids 

 

 

For interpolation purpose, the footprints values of the parent grid are also fixed 

at mean values of the child grids solutions. Mean values are obtained by a 

volume weighting of the fIxfJxfK child grid cells embedded in each parent cell.  

 

 

 ( ) ( )∑∑= iiiv VolVol φφ  (70) 

 

 

Finally, the interdependence of grid solutions is solved by completing iterations 

until the boundary conditions and the residuals converged on each grid.  

 

Users will note that DarcyTools also implements an alternative for parent grid 

boundary conditions in which the footprint fluxes are not fixed but only the 

footprint values, and that, because of boundary conditions on the parent 

footprints, the mass sources terms must be specified on the most embedded 

grids only when occurring on a footprint and on the parent grid otherwise 

(additional boundary cells of the embedded grids must be considered as laying 

outside the footprints).  

 

 

 

  

 Coupled Procedure  
 

Density driven flows are problems in which the governing partial differential 

equations may be strongly coupled with instabilities arising from nonlinearities. 

To reliably and efficiently solve this king of challenging flows DarcyTools uses 

the MIGAL solver capabilities and allows for example a fully coupled solution of 

the pressure-salinity coupling. For this purpose, the buoyancy terms appearing 

in the fluid mass conservation equation is implicitly treated instead of being 
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included into the additional source term SDM (38), (50) and (66) using the 

density state law:  

 

 
 Sαρρρ 00 =−   (71) 

 

 

For stability reason, the face salinity involved in this transformation is 

approximated by its upwind the value (e.g. St is substituted by SP). The 

algebraic set of equations resulting from the coupled system follows the same 

form than the single variable generic equation (23) but coefficients are now 2x2 

matrixes:  
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The practice of coupled solutions between pressure and salinity showed that low 

diffusivity field requires special treatment for convergence. For this purpose, 

instead of solving the linearized operator resulting from the discrete form of the 

governing equations, DarcyTools solves iteratively an approximated defect 

correction operator: 

 

 

  φδφ ASA −=*  (73) 

 

 

where A represents the original operator, φ a solution guess (P,C)T and δφ the 

correction such as: 

 

 

 δφφφ +=new  (74) 

 

 

The operator A* is initially set to the original operator A but can be modified to 

stabilize the global convergence.  
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MIGAL solver 
 

DarcyTools uses the MIGAL algebraic multi-grid solver to solve the successive 

algebraic sets of equations resulting from discretisation. This use sums up in a 

single call to the routine MIGAL and in the possibility of programming several 

routines for efficiency control: NLINS, SETRELAX or SETDOMI.  

 

 

The basics 

The set of linear equations (23) or (72) resulting of the discretisation of the 

continuity and the transport equations can be expressed as: 

 

 
 SxA =  (75) 

 

 

where A represents the matrix of coefficients, x the variables array and S the 

right hand side vector of source terms.  

 

They are several well-established iterative schemes to solve this set of linear 

equations. These include Jacobi, Gauss-Seidel, incomplete LU factorization, etc. 

But, each of them has a rate of convergence depending on the condition number 

of the matrix A. Hence, as the number of cells will increase, and because of the 

elliptic nature of the diffusion operator contained in the equation, the condition 

number of the matrix will increase and the rate of convergence will deteriorate. 

Further, a characteristic of all these iterative schemes is that the initial rate of 

convergence is rapid for the first iterations, and deteriorates as the iterations 

progress. It can be shown that the cause of this slow convergence is primarily 

the sluggish rate of convergence of the low frequency errors that are present in 

the solution. As the grid refined, these low frequency errors dominate the overall 

rate of convergence. 

 

 

 
Figure 11: Fine to coarse grid error frequency mutation.  

 

Coarse grid nodes 

Fine grid nodes 

NIc NIF 1 1 
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Hence, the concept of the multi-grid technique as implemented by MIGAL is as 

follows. Given the fact that the low frequencies converge slowly, it is possible to 

accelerate their rate of convergence by making them behave as high frequencies 

on coarser grids. For this, the basic principle consists in working on a subset of 

the fine grid points (e.g. keeping only odd or even nodes) to reduce the number 

of points and automatically raise the error signal frequency in the transformed 

grid space (see Figure 11). 

 

MIGAL proceeds as follows. Consider that we initiate a solution on a given fine 

grid. A few iterations are then performed on this fine grid to obtain an 

estimation xF. For these iterations, the convergence is usually fast.  

 

 

 SAx F
1~ −=  (76) 

 

 

The notation (~) means Ã-1 is not the inverse of matrix A but only an 

approximate (e.g. few relaxations of an iterative solver). Subsequently, the 

convergence begins to worsen so that the calculations are switches to a coarser 

grid with the aim of improving the fine grid estimation xF at lower cost.  For that, 

the residuals and the corresponding defect correction operator are formed on 

the fine grid and interpolated (“restricted”) to the next coarse grid by: 

 

 
 )( FF AxSRxAR −=δ  (77) 

 

 

where the restriction operator R (e.g. pure injection) is a (NIc x NIF) matrix that 

shorten the dimension of the right hand side from NIF to NIc. 

 

 

 
Figure 12 : Pure injection restriction.  

 

 

At this point a second operator is introduced to shorten the left hand side of the 

operator. It is done by changing the fine grid correction variable δxF for a coarse 

grid variable named δxc so that the former can be interpolated (“prolongated”) 

from the latter by: 

 
 cF xPx δδ =  (78) 

Coarse grid  

Fine grid 

NIF 1 

NIc 1 
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where the prolongation operator P (e.g. linear interpolation) is a (NIF x NIc) 

matrix that reduces the coarse grid operator size to (NIc x NIc) 

 

 
 )()( Fc AxSRxPAR −=δ  (79) 

 

 

Once the coarse grid operator (RAP) is formed, a few iterations are performed to 

obtain δxc to the required accuracy and the fine grid correction is retrieved using 

(78). 

 

 

 
Figure 13: Linear prolongation.  

 

 

Of course, since the error spectrum contains a wide range of frequencies, it is 

necessary to consider a number of coarse grids and to successively build the 

coarse operator of the coarse operators. On the coarsest grid, which must be a 

small grid, a direct solver can be used or, like with MIGAL, the necessary 

number of iterations can be performed. Finally the manner in which the grids are 

visited can vary.  

 

 

 
 

Figure 14 : V and W multi-grid cycles 
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In the simplest case, called V-cycle, each grid is visited in turn on the downward 

and upward legs of a V-cycle. On each grid a number of iterations are performed 

and the next grid is visited. With the W-cycle, each grid is visited in turn on the 

downward leg of the a W-cycle, then after that the correction is prolongated by 

one level, the error is again restricted to the lower level and the correction 

prolongated up to the next upper level (see Figure 14). The iterations can be 

done during both the restriction part of the cycle (downward limb) and during 

the prolongation part (upward limb). 

 

 

GMRES acceleration 

The emphasis of basic multi-grid procedures is to improve the performance of 

the classical iterative solver (smoother) by adapting the operator to their 

intrinsic capabilities. This technique encounters some limits when the coefficients 

are highly anisotropic and when the mesh aspect ratios are quite large but the 

ILU0 smoother of MIGAL has demonstrated to be robust enough in many 3D 

applications. The main difficulty of the flows processed by DarcyTools comes 

from the sharp spatial variations of the coefficients that couple the high and low 

frequencies error components during the restriction/prolongation procedure and 

finally deteriorate the overall performance. To fight this wavelength coupling 

problem DarcyTools may use MIGAL as a GMRES preconditioner.  

 

The GMRES method is a projection method based that consists in finding the 

optimal solution of the system (75) that belongs to the m-th Krylov subspace 

Km. 

 

 

 [ ] [ ]{ }0
11

0
21

0
1

0 ...,,,, rAMrAMrAMrspanK
m

m
−−−−=  (80) 

 

 

where r0 is the initial residual of (75) and where M-1 is a right preconditioning 

matrix whose function is to lower the condition number of the algebraic set of 

equations.  

 

  

 SuMA =−1 ,       xMu =  (81) 

 

 

For a given dimension m, the MIGAL-GMRES algorithm involves an Arnoldi loop 

that constructs an orthogonal basis of the right-preconditioned Krylov subspace 

by a modified Gram-Schmidt process, in which the new vector to be 

orthogonalized is obtained from the previous vector of the process.  
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1. Start: Choose x0 and a dimension m of the Krylov subspaces and initialize 

a (m+1) x m matrix H  to zero 

2. Arnoldi process: 

• Compute r0=S-Ax0, b=||r0|| and v1 = r0/b 

• For j=1,…,m 

- Compute zj =M-1 vj 

- Compute w = A zj 

- For i=1,…,j 

Hi,j = (w,vi) 

w = w – Hi,j vi 

- Compute hj+1,j = ||w|| and vj+1 = w/Hj+1,j 

• Define Zm = [z1,…,zm] 

3. From the approximate solution: Compute xm = x0 + Zm ym where 

ym=argminy||be1 – Hy|| and e1=[1,0,…,0]T 

4. Restart: if satisfied stop, else set x0 = xm and goto 2. 

 

 
Figure 15 : MIGAL-GMRES algorithm 

 

 

The preconditioning matrix is only involved in the z=M-1v products and does not 

need to be explicitly formulated. Instead, since relation (81) shows that M=A is 

the best preconditioning choice, some multi-grid cycles of MIGAL are 

advantageously used to compute an approximated value of z as being the 

solution of Az=v.  

 

The drawback is that, since M now changes for each vector z depending on the 

convergence of MIGAL, it is necessary to store the orthogonal basis Zm to 

retrieve the solution xm.  Therefore, since reaching an expected level of accuracy 

usually involves large sub-spaces, the method may become impractical because 

of large memory and computational requirements. For this reason MIGAL use a 

restarted GMRES procedure (step 4. Figure 1) which limits the Krylov-subspace 

basis to a given size and iterates the initial estimation x0. 

 

MIGAL preconditions the Krylov subspace by one multi-grid cycle. To increase 

this number of preconditioning cycles users may specify the parameter 

IPRECO in the MIGAL parameters list. For particularly difficult problems it is 

possible, on coarse grid levels, to replace the ILU(0) smoother by a GMRES 

ILU(0) preconditioned smoother. For this users have to stipulate the size of 

the desired Krylov subspace by setting the parameter IGMS to any non-zero 

value. The coarse grid smoother then becomes a GMRES solver right-

preconditioned by NBPRER or NBRELAX ILU(0) relaxations depending of the 

limb of the multi-grid cycle actually performed.  For flexibility, the IGMS 

parameter may be set independently of IGMRES, i.e. that MIGAL can 

implement different combinations of the multi-grid and GMRES algorithms. 
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SOLVER NBGRID IGMRES IPRECO IGMS 

ILU(0) 1 0 - 0 

GMRES not-preconditioned 1 n 0 0 

GMRES ILU(0) preconditioned 1 n n 0 

Multi-grid[ILU(0)]* n 0 - 0 

GMRES multi-grid[ILU(0)] preconditioned n n n 0 

Multi-grid[GMRES-ILU(0) preconditioned] n 0 - n 

GMRES multi-grid[GMRES-ILU(0) preconditioned] 
preconditioned 

n n n n 

 
Figure 16 : Multi-grid/GMRES possible combinations. (*)=default 
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with a power law distribution of rates

Hans-Olof Kuylenstierna

19th April 2002

1 Introduction

This paper deals with some aspects of using the multirate model of the

immobile zone with a power law distribution of �rst-order rates. For an

introduction to the subject, see Refs. 1 and 2. Sections 2, 3, 4 and 5 have

a mathematical character and mainly discuss the relation between power

law distributions for di�usion rates and �rst-order rates. The main conclu-

sion is that the two power law distributions will have the same exponent if

some conditions are ful�lled, a fact which was brie
y mentioned in Ref. 2.

Section 6 describes how the power law distribution for di�usion rate can be

obtained starting from a power law distribution for fracture size and many

other assumptions. Finally, Section 7 suggests how the theory presented in

the earlier sections can be applied to computer simulations of tracer motion

in fractured rock.

Many of the ideas in the paper originate from Refs. 1 and 2. Urban

Svensson has contributed with basic ideas for Sections 6 and 7, while I have

concentrated on mathematical issues.

2 The base of the model for the immobile zone

Consider a region of fractured rock. The fractures are �lled with water

(apart from possible solid material). A tracer is dissolved in the water at

varying concentration. Water and tracer particles are subject to di�usion in

the entire water-�lled volume. Let the mobile zone be the part of the water-

�lled volume where also advection can occur. The mobile zone is assumed

to be connected. (This means that a water or tracer particle anywhere in

the zone can travel through the zone by means of advection or di�usion to

any other location in the zone.) Let the immobile zone be the parts of the

water-�lled volume which do not belong to the mobile zone but which are

accessible to particles in the mobile zone by means of di�usion. (There can

also be parts of the water-�lled volume which are inaccessible to water and
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tracer in the mobile zone, and which we shall not consider further.) The

solid material surrounding both the mobile and immobile zones can adsorb

tracer particles. Adsorbed particles are still regarded as being located in the

respective zones.

Consider a volume of water belonging to the mobile or immobile zone.

Assume that the concentration of tracer in the water is uniform in the volume

and that the dissolved and adsorbed tracer are in equilibrium. Let us form

the ratio of the amount of tracer, dissolved and adsorbed, to the concen-

tration of tracer in the water. (If there is no adsorption, the ratio is equal

to the volume of the water.) With the capacity of the volume I mean this

ratio. (I hope I use the term correctly.)

The total capacity ratio �tot is the ratio of the capacity of the immobile

zone to the capacity of the mobile zone. When the mobile and immobile

zones are in equilibrium, the ratio of the amount of tracer in the immobile

zone to that in the mobile zone is equal to �tot.

According to the multirate model described in Ref. 1, the immobile zone

can be modelled as a continuous spectrum of �rst-order boxes. Each box is

characterized by a �rst-order rate � > 0, and the probability that a tracer

particle in the box will leave the box and enter the mobile zone during a

time interval dt is � dt, regardless of the particle's history. The capacity

ratio density function b(�) � 0 speci�es how the total capacity ratio �tot
is distributed over the spectrum of boxes. The capacity ratio for the boxes

with rates in the interval (�; � + d�) is b(�) d�, andZ
1

0

b(�) d� = �tot: (1)

This means that when the mobile zone and all the �rst-order boxes are

in equilibrium, the ratio of the amount of tracer in the boxes with rates

in the interval (�; � + d�) to the amount of tracer in the mobile zone is

b(�) d�. It is possible to conclude from this that if the tracer particles have

an equilibrium distribution within the mobile zone, the probability that a

randomly chosen particle in the mobile zone will enter any of the boxes with

rates in the interval (�; � + d�) during a time interval dt is b(�) d� �dt,

regardless of whether the mobile zone is in equilibrium with the �rst-order

boxes.

It may seem natural to divide the immobile zone into a spectrum of

parts characterized by their sizes. (This could be done if we modelled the

immobile zone as a collection of square fractures extending perpendicularly

from the mobile zone, for example.) We shall however use a characteristic

di�usion rate �d > 0 instead of the size as the characterizing variable in the

spectrum. (It is usual to assume that there is a simple relationship between

size and di�usion rate, as we will do in Section 6 using Formula 37.) Let

us introduce the capacity ratio density function bd(�d) � 0 to specify the

distribution of the total capacity ratio �tot over the new spectrum. I.e.,
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the capacity ratio for the parts of the immobile zone whose di�usion rates

belong to the interval (�d; �d + d�d) is bd(�d) d�d, andZ
1

0

bd(�d) d�d = �tot: (2)

For �xed di�usion rate �d, let us model the corresponding part of the

immobile zone with a multirate model speci�ed by bfojd(� j �d) � 0 (\fo"

for \�rst order"), where Z
1

0

bfojd(� j �d) d� = 1: (3)

The multirate model for the entire immobile zone (all �d) will then be

speci�ed by

b(�) =

Z
1

0

bfojd(� j �d)bd(�d) d�d: (4)

(Some of the terminology and notation in this section is inspired by

probability theory.)

3 A power law distribution for the di�usion rate

In Ref. 2 a power law distribution for the di�usion rate �d is suggested

(among a few other distributions). Power law distributions occur in connec-

tion with fractals and are therefore theoretically attractive. The distribution

is given by the formula

bd(�d) =

8><
>:

�tot

I(�d;min; �d;max; k � 2)
�k�3
d

; �d;min < �d < �d;max;

0 otherwise;

(5)

where

I(xmin; xmax; p) =

Z
xmax

xmin

xp�1 dx =

8>><
>>:
ln

xmax

xmin

; p = 0;

x
p

max � x
p

min

p
; p 6= 0:

(6)

The exponent k � 3 has been chosen in conformance with Formula (27a) in

Ref. 2.
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4 Multirate models for �xed di�usion rate

In this section we shall study multirate models for the part of the immobile

zone corresponding to a �xed di�usion rate �d. In other words, we shall

study bfojd(� j �d).

bfojd(� j �d) may or may not have properties P1 and P2(k), which are

de�ned as follows. k is a given real number.

P1: There exists a function f(�) such that

bfojd(� j �d) =
f(�=�d)

�d
(7)

for all �d and �.

P2(k): The integral Z
1

0

f(�)�2�k d�; k 6= 2; (8)

or the integral Z
1

0

f(�) ln � d�; k = 2; (9)

converges at both 0 and 1. (There is thus a di�erent variant of this

condition for each of the cases k 6= 2 and k = 2.)

If bfojd(� j �d) has property P1, the function f(�) is uniquely determined. It

is de�ned for all � > 0, f(�) � 0 for all � > 0, andZ
1

0

f(�) d� = 1: (10)

Therefore, if k = 2, the integral in Formula 8 will converge. If bfojd(� j �d)

has properties P1 and P2(k), let us de�ne

�mean(k) =

8>>><
>>>:

�Z
1

0

f(�)�2�k d�

�1=(2�k)

; k 6= 2;

exp

Z
1

0

f(�) ln � d�; k = 2:

(11)

The de�nitions etc. in this paragraph will be used in Section 5.

We shall now study three kinds of immobile zones, in order to get ex-

amples of what bfojd(� j �d) can look like.

Consider a narrow and thin fracture which extends straightly a distance

a from the mobile zone into the surrounding material. Let us assume that

the fracture has constant cross-section area along its entire length. If there

4



is any solid material in the fracture, it is assumed to be homogeneously

distributed. Let Da be the apparent di�usivity for tracer particles in the

fracture. Let us choose the ratio Da=a
2 as the characteristic di�usion rate

�d of the fracture. Let us assume that the immobile zone consists entirely

of such fractures. The fractures may have di�erent a and Da values and

therefore di�erent �d values. The part of the immobile zone consisting of

fractures with a given �d value then has the multirate model speci�ed by

bfojd(� j �d) =

1X
j=1

8

(2j � 1)2�2
Æ

�
��

(2j � 1)2�2

4
�d

�
; (12)

where Æ is the Dirac delta function. Immobile zone di�usion to which this

formula applies is called layered di�usion (in �nite layers).

If the cross-section area of a fracture is not constant along the fracture's

length but proportional to the distance to the dead end of the fracture

(i.e., the end which is not in contact with the mobile zone), then the term

cylindrical di�usion is used, and the multirate model is speci�ed by

bfojd(� j �d) =

1X
j=1

4

u2
j

Æ(� � u2
j
�d): (13)

u
j
here denotes the jth solution of J0(uj) = 0, where J0 is a Bessel function

of the �rst kind. It should be noted that u
j+1 � u

j
� � for large j.

If the cross-section area is proportional to the square of the distance to

the dead end, the term spherical di�usion is used, and the formula is

bfojd(� j �d) =

1X
j=1

6

j2�2
Æ(� � j2�2�d): (14)

Formulas 12, 13 and 14 have been taken from Table 1 in Ref. 2, although

the notation has been changed somewhat.

We shall now investigate how the formulas for layered, cylindrical and

spherical di�usion are related to properties P1 and P2(k).

It is rather easy to show that the three formulas all have property P1.

Therefore to each formula there is a corresponding function f(�). For each

formula, f(�) = 0 for small �, and therefore the integrals in Formulas 8 and

9 converge at 0 for all k. Moreover, f(�) = O(��3=2) on average (loosely

speaking) for large �, and therefore the two integrals converge at 1 for all

k > 3=2. Thus, the three formulas all have property P2(k) for all k > 3=2.

Property P1 means that bfojd(� j �d), when viewed as a function of �, is

equal for all �d except for stretching and contraction. P1 therefore indicates

some kind of scale-invariance with respect to �d. Small � correspond to low

�rst-order rates � and therefore to slow �rst-order boxes, i.e. boxes where

particles stay for a long time on average once they have entered. For �xed �d
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the immobile zone fractures in the three di�usion models have �nite length,

or more precisely, they have a �xed Da=a
2 ratio, and therefore it is natural

that there is a limit to how slow �rst-order boxes there are, or equivalently,

that f(�) = 0 for small �. Large �, on the other hand, correspond to high

rates � and fast �rst-order boxes. f(�)'s O(��3=2) behaviour for large � is

common to the three di�usion models, although the shapes of the fractures

vary between the models. Fast boxes in the multirate model mostly have to

do with particles that leave the immobile zone fractures soon after they have

entered them, probably not di�using far into the fractures. The fractures do

not vary much in cross-section area in the parts nearest to the mobile zone,

and therefore it is perhaps natural that all three di�usion models exhibit

the same O(��3=2) behaviour for large �.

From the discussion in the previous two paragraphs we can draw the fol-

lowing conclusions. Consider the class of di�usion models where bfojd(� j �d)

has properties P1 and P2(k) for k > 3=2. The models for layered, cylindrical

and spherical di�usion belong to this class. The three models are prob-

ably members of a rather large group of di�usion models which seem to be

realistic from a mathematical point of view and which belong to the class.

5 The multirate model for the entire immobile

zone

There are two ways to obtain b(�), which speci�es the multirate model for

the entire immobile zone. The �rst way is to choose some suitable b(�)

without consideration of bd(�d) and bfojd(� j �d). The second way is to

choose bd(�d) and bfojd(� j �d) �rst and then use Formula 4 to calculate

b(�).

When b(�) is obtained the �rst way, a power law distribution is a possible

choice, as suggested in Ref. 2. b(�) will then be given by the formula

b(�) =

8<
:

�tot

I(�min; �max; k � 2)
�k�3; �min < � < �max;

0 otherwise:

(15)

Note the similarity to Formula 5.

We shall now see what b(�) will look like when it is obtained the second

way, provided that certain conditions are ful�lled.

We shall assume that bd(�d) is given by Formula 5 and that bfojd(� j �d)

has properties P1 and P2(k) as de�ned in Section 4. The k in P2(k) shall be
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the same as in Formula 5. Using Formulas 4 and 5 and property P1 we get

b(�) =

Z
1

0

bfojd(� j �d)bd(�d) d�d

=

Z
�
d;max

�
d;min

f(�=�d)

�d

�tot

I(�d;min; �d;max; k � 2)
�k�3
d

d�d

=

�
� =

�

�d
; �d =

�

�
; d�d = �

�d�

�2

�

=

Z
�=�

d;max

�=�
d;min

f(�)

�=�

�tot

I(�d;min; �d;max; k � 2)

�
�

�

�
k�3�

�
�d�

�2

�

=
�tot

I(�d;min; �d;max; k � 2)
�k�3

Z
�=�

d;min

�=�
d;max

f(�)�2�k d�: (16)

Had the integral in the last term not been dependent on �, b(�) would have

been proportional to �k�3. Let us therefore study the integral more closely.

Let � > 0 be some small number. Property P2(k) implies that there are

numbers �min and �max with 0 < �min � �max such that

Z
�
0

0

f(�)�2�k d� < �

Z
1

0

f(�)�2�k d� (17)

for all �0 with 0 < �0 < �min andZ
1

�
0

f(�)�2�k d� < �

Z
1

0

f(�)�2�k d� (18)

for all �0 > �max. If also �max�d;min < �min�d;max, then

Z
�=�

d;min

�=�
d;max

f(�)�2�k d�Z
1

0

f(�)�2�k d�

2

8>>>>>>><
>>>>>>>:

[0; �); 0 < � < �min�d;min;

[0; 1]; �min�d;min � � � �max�d;min;

(1� 2�; 1]; �max�d;min < � < �min�d;max;

[0; 1]; �min�d;max � � � �max�d;max;

[0; �); �max�d;max < �:

(19)

This formula suggests that the numerator integral could be approximated

by a function which is equal to the denominator integral when � belongs to

some interval and equal to 0 outside the interval.

Let us assume that �min and �max can be chosen so that they satisfy

the following two conditions in addition to those already given. �min and

�max shall not be too far apart, in order that the intervals �min�d;min � � �
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�max�d;min and �min�d;max � � � �max�d;max in Formula 19 shall not be too

wide. The relation �min � �mean(k) � �max shall hold, where �mean(k) was

de�ned by Formula 11. If such �min and �max can be found, then the nu-

merator integral can be approximated as described with the interval being

�mean(k)�d;min < � < �mean(k)�d;max. b(�) can consequently be approxim-

ated by the function

bappr(�) =

8>>><
>>>:

�tot

I(�d;min; �d;max; k � 2)
�k�3

Z
1

0

f(�)�2�k d�;

�mean(k)�d;min < � < �mean(k)�d;max;

0 otherwise,

(20)

which thanks to the de�nition of �mean(k) can also be written

bappr(�) =

8>>><
>>>:

�tot

I(�mean(k)�d;min; �mean(k)�d;max; k � 2)
�k�3;

�mean(k)�d;min < � < �mean(k)�d;max;

0 otherwise.

(21)

This choice of bappr(�) has the advantages that the intervals in Formulas 5

and 21 are equally wide in a logarithmic sense and thatZ
1

0

bappr(�) d� =

Z
1

0

b(�) d� = �tot: (22)

Note the similarity between Formulas 5, 15 and 21.

The de�nition of �mean(k) in Formula 11, case k 6= 2, was chosen in

order that Formula 22 should hold. When k = 2, Formula 22 would hold

regardless of the value of �mean(k). The de�nition of �mean(k) in Formula 11,

case k = 2, was chosen because

lim
k!2

�Z
1

0

f(�)�2�k d�

�1=(2�k)

= exp

Z
1

0

f(�) ln � d�: (23)

Let us summarize our results about the second way of obtaining b(�) as

follows. Assume that b(�) is calculated from bd(�d) and bfojd(� j �d) using

Formula 4. Assume that bd(�d) is given by Formula 5 and that bfojd(� j �d)

has properties P1 and P2(k), where k is the same as in Formula 5. Let

�mean(k) be de�ned by Formula 11. Let � > 0 be some suitably small number.

Assume that �min and �max can be chosen so that they are not too far apart

and satisfy the conditions 0 < �min � �mean(k) � �max and �max�d;min <

�min�d;max as well as the condition stated using Formulas 17 and 18. Then

b(�) =
�tot

I(�d;min; �d;max; k � 2)
�k�3

Z
�=�

d;min

�=�
d;max

f(�)�2�k d�; (24)
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where the integral satis�es Formula 19. Moreover, b(�) can be approximated

by the function

bappr(�) =

8>>><
>>>:

�tot

I(�mean(k)�d;min; �mean(k)�d;max; k � 2)
�k�3;

�mean(k)�d;min < � < �mean(k)�d;max;

0 otherwise,

(25)

where bappr(�) satis�es Formula 22.

6 A derivation of the power law distribution for

di�usion rate from fracture properties

In this section we shall see how the power law distribution for di�usion rate,

as given by Formula 5, can be obtained starting from a power law distribu-

tion for fracture size and other assumptions. There are many assumptions

made in this section, and some of them are perhaps not realistic.

We assume that fractures are randomly and homogeneously distributed

in the solid material surrounding the mobile zone. We assume that a length

scale a can in some manner be associated with each fracture. The number

d2N of fractures with centres within a volume dV of surrounding material

and with length scales in the interval (a; a + da) is assumed to satisfy the

power law formula

d2N

(
/ a�Df

�1 da dV; amin < a < amax;

= 0 otherwise;
(26)

where \/" denotes proportionality. (Regarding the designation Df see the

end of this section.)

It is reasonable to assume that a fracture intersects the mobile zone if

the distance from the centre of the fracture to the mobile zone is in the order

of a or less. The number d2Nim of fractures intersecting an area dAm of the

mobile zone and with length scales in the interval (a; a + da) is therefore

assumed to satisfy

d2Nim / a�Df
�1 da a dAm = a�Df da dAm: (27)

(From now on, we do not mention the condition amin < a < amax explicitly.)

To simplify the discussion we shall assume that the fractures in the

material surrounding the mobile zone are not in direct contact with each

other. (However, those of the fractures which intersect the mobile zone are

in indirect contact with each other via the zone.) We shall also assume that

fractures which intersect the mobile zone and which have the same length

scale a have equal properties in other respects too.

9



In a fracture intersecting the mobile zone, let the immobile zone volume

denote the volume of water in the fracture which is accessible to water and

tracer in the mobile zone. The immobile zone is formed by the immobile

zone volumes of all the fractures intersecting the mobile zone.

Consider the assumption that the volume of a fracture intersecting the

mobile zone is proportional to a
+2. This should be the case if the length,

width and thickness of the fracture were proportional to a, a and a
 , respect-

ively. We shall however instead assume that the capacity of the immobile

zone volume of the fracture is proportional to a
+2. This assumption is

perhaps less realistic, but it is necessary if we want to arrive at a power law

distribution for the di�usion rate. Consider again the fractures intersect-

ing the area dAm of the mobile zone and with length scales in the interval

(a; a+ da). It follows from our assumption (and from Formula 27) that the

capacity Rim d2Vim of the immobile zone volume of these fractures satis�es

Rim d2Vim / a
+2a�Df da dAm = a
�Df
+2 da dAm: (28)

(Rim and d2Vim are explained in the following paragraph.)

Let Rm and Rim;tot be the retardation factors for the mobile and immob-

ile zones, respectively. The retardation factor for a zone speci�es the ratio

of the total amount of tracer (both dissolved and adsorbed) to the amount

of dissolved tracer in the zone at equilibrium. Let dVm be the volume of the

mobile zone corresponding to the area dAm. dAm=dVm is thus the area-to-

volume ratio of the mobile zone. Let dVim be the volume of the immobile

zone in contact with the area dAm of the mobile zone. The capacities of the

two volumes can be expressed as Rm dVm and Rim;tot dVim, which leads to

the formula

�tot =
Rim;tot dVim

Rm dVm
: (29)

The analogous formula for the part of the immobile zone with length scales

in the interval (a; a+ da) is

b
a
(a) da =

Rim d2Vim

Rm dVm
; (30)

where Rim may depend on a. We have here introduced the capacity ratio

density function b
a
(a), which speci�es how the total capacity ratio �tot is

distributed over the spectrum of length scales a. As usual,Z
1

0

b
a
(a) da = �tot: (31)

Multiplication of Formulas 28 and 30 yields

b
a
(a) /

dAm

Rm dVm
a
�Df

+2: (32)
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From Formulas 31 and 32 we get

�tot /
dAm

Rm dVm
(33)

and

b
a
(a) =

8<
:

�tot

I(amin; amax; 
 �Df + 3)
a
�Df

+2; amin < a < amax;

0 otherwise;

(34)

where we have taken the condition amin < a < amax in Formula 26 into

account.

We shall now set up a relation between a and the di�usion rate �d
(Formula 37), and using this relation we shall transform Formula 34 into

the sought formula for the di�usion rate distribution bd(�d) (Formula 39).

As in Section 4 and in Ref. 2 we shall use the relation

�d /
Da

a2
; (35)

where Da is the apparent di�usivity in a fracture of the immobile zone. We

shall also assume that

Da / a	: (36)

Combining these two formulas yields

�d / a	�2: (37)

We also have the relation

bd(�d)jd�dj = b
a
(a)jdaj; (38)

as both sides express the same capacity ratio in di�erent ways. (Absolute

values have been taken since d�d and da may have equal or opposite signs

depending on 	.) With routine calculations, where Formulas 37 and 38 are

used, we can transform Formula 34 into

bd(�d) =

8><
>:

�tot

I(�d;min; �d;max; k � 2)
�k�3d ; �d;min < �d < �d;max;

0 otherwise;

(39)

where

�d;max

�d;min

=

�
amax

amin

�j2�	j
(40)
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(the exact values of �d;min and �d;max depend on the implicit proportionality

constant in Formula 37),

k =
Df � 
 � 2	 + 1

2�	
; (41)

and (from Formula 33)

�tot /
dAm

Rm dVm
: (42)

As Formula 39 is the same as Formula 5, we have now reached our goal

to derive Formula 5 from our assumptions. Formulas 40, 41 and 42 can be

used to calculate the parameters in Formula 5.

(In Ref. 3, Sections 3.1 and 5.7.2, and Ref. 4, Section 2.2.1, the designa-

tions Df and D are used, respectively, and they are said to denote fractal

dimension. Let us neglect fracture thickness in the present section's model

of the fractures in the material surrounding the mobile zone, so that the

fractures are regarded as surfaces with area proportional to a2. I believe

that the use of Df in this model is then similar to the use of Df and D in

Refs. 3 and 4. Probably there exist one or more exact de�nitions of the

concept fractal dimension in the mathematical literature. I am not sure

whether the use of Df and D in the present section and Refs. 3 and 4 is in

accord with those de�nitions.)

7 Practical use of the multirate model in com-

puter simulations of tracer motion

In this section it will be discussed how the multirate model with a power

law distribution can be included in computer simulations of tracer motion

in fractured rock.

We assume that the domain of rock where tracer motion is to be simu-

lated is divided into cells by a computational grid, as is usual in numerical

calculations. We further assume that the domain can be divided into a num-

ber of subdomains, each consisting of a group of cells. The properties of the

immobile zone are assumed to be similar in cells which belong to the same

subdomain. What is meant by this similarity will be speci�ed further on.

Section 2 starts, \consider a region of fractured rock". This region is

the setting for all of Sections 2, 3, 4 and 5. In connection with the concepts

introduced in the previous paragraph, it is suitable to assume that the region

refers to any one of the cells. If we look at Section 2, �tot, b(�), bd(�d) and

bfojd(� j �d) then all refer to this cell. If we consider the entire domain,

there is one �tot, one b(�), one bd(�d) and one bfojd(� j �d) for each cell.

However, as we have assumed that the cells of a subdomain have similar

immobile zone properties, we shall assume that bfojd(� j �d) is equal in
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all cells of the subdomain, while b(�) and bd(�d) are proportional to �tot
within the subdomain. In other words, each of the three functions b(�)=�tot,

bd(�d)=�tot and bfojd(� j �d) is equal for all cells in a subdomain but may

vary between subdomains. In Section 3, �d;min, �d;max and k are assumed

to be constant within a subdomain, while �tot and bd(�d) may vary between

cells. It follows from Formula 5 that bd(�d) is proportional to �tot within

the subdomain. Regarding Section 4 it is suÆcient to say that bfojd(� j �d)

is assumed not to vary between the cells of a subdomain. In Section 5 two

ways to obtain b(�) are discussed. In the paragraph about the �rst way,

�min, �max and k are assumed to be constant and b(�) proportional to �tot
within a subdomain. What has been said above about Sections 3 and 4 is

true also for the part of Section 5 discussing the second way.

Section 6 can also be read with the domain, subdomains and cells in

mind. amin, amax, �d;min, �d;max, Df , 
, 	, k and Rim;tot should then be

assumed to be constant within each subdomain. Rim and Da may vary with

a, but for �xed a they should be constant within a subdomain. The implicit

proportionality constants in all the proportionality relations (i.e., formulas

including \/") in the section are also assumed to be constant within each

subdomain. The number of fractures d2Nim, the area dAm and the volumes

dVm, dVim and d2Vim are assumed to refer to any one cell and may vary

between cells. dAm is the area of the part of the mobile zone which belongs

to the cell, for example. (However, it is better to assume that dV and d2N

in Formula 26 refer to an arbitrary volume within a subdomain.) Rm, �tot,

b
a
(a) and bd(�d) are also assumed to refer to a cell and may vary between

cells. Formulas 34 and 39 show that b
a
(a) and bd(�d) are proportional to

�tot within a subdomain.

We shall now discuss possible ways to choose a multirate model for in-

clusion in computer simulations of tracer motion.

The task amounts to choosing a function b(�) for each cell. We shall

treat each subdomain separately, so let us focus on one subdomain. Let

us decide that each b(�) shall be of the form given in Formula 15. As has

already been said, �min, �max and k are assumed to be constant within the

subdomain while �tot may vary from cell to cell. The remaining problem

is to choose these parameters. When doing this it is possible to use more

or less of the theory presented in this paper. If as much as possible of the

theory is to be used, we can proceed as follows.

Following Section 6, we assume that dAm, dVm and Rm are somehow

known for each cell in the subdomain. �tot can then be calculated for each

cell using Formula 42, provided that we can somehow choose the implicit

proportionality constant. (If dAm and dVm are known for each cell, a possible

way to calculate Rm is to use the relation (Rm � 1) dVm / dAm.) Let us

also assume that the constants amin, amax, Df , 
 and 	 are known, as well

as the implicit proportionality constant in Formula 37. �d;min and �d;max

can then be calculated using Formula 37, and k using Formula 41. bd(�d)
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for each cell will then be given by Formula 39 or Formula 5.

Following Section 4, we must choose bfojd(� j �d), which should be the

same for all cells in the subdomain. bfojd(� j �d) should have properties

P1 and P2(k). Formulas 12, 13 and 14 are possible choices, provided that

k > 3=2. (The choice of bfojd(� j �d) may in
uence the already mentioned

choice of the implicit proportionality constant in Formula 37.) �mean(k)

should also be calculated using Formula 11. I believe that this calculation

may have to be done numerically.

Now we have both bd(�d) and bfojd(� j �d), and b(�) could then be

calculated using Formula 4. But then b(�) would not generally have the

form given in Formula 15. However, if the conditions stated in Section 5

are ful�lled, we can use bappr(�) given by Formula 21 instead of the b(�)

of Formula 4. The sought �min and �max will then be given by �min =

�mean(k)�d;min and �max = �mean(k)�d;max. We have already obtained k and

�tot, and therefore we now know all parameters for the multirate model for

the subdomain.
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1 INTRODUCTION 
 
 
 
This report describes a numerical method for generating a two-dimensional set of 
random numbers with a multivariate normal distribution characterized by a certain 
covariance structure. 
 
A reader who only wants to learn the numerical method and the character of the 
random numbers that can be calculated using it can read Chapters 1–8 straight 
through and skip the appendices. A reader who is also interested in derivations 
should read the entire report, in which case the following order is recommended: 
Chapters 1–3, Appendix A, Chapters 4–7, Appendix B, Chapter 8, Appendix C. 
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2 MULTIVARIATE NORMAL DISTRIBUTIONS 
 
 
 
In this chapter we shall introduce the concept of multivariate normal distribution. 
 
Let n and m be non-negative integers, and let ,1,1, mjniaij ≤≤≤≤  and bi , 

,1 ni ≤≤  be real numbers. Consider the joint probability distribution of the n 
stochastic variables ∑ += =

m
j ijiji bXaY 1 ,  ,1,   where,1 mjXni j ≤≤≤≤  are 

independent stochastic variables with a standard normal distribution, i.e. a normal 
distribution with expected value 0 and standard deviation 1. This joint probability 
distribution will depend on the choice of ,1,, , niamn ij ≤≤  ,1 mj ≤≤  , and ib  
1 ≤ ≤i n. 
 
Now consider the totality of joint probability distributions obtained from all 
possible choices of ,1, and,1,1,, , nibmjniamn iij ≤≤≤≤≤≤  as described 
in the previous paragraph. These distributions are called “multivariate normal 
distributions”. 
 
The following theorem is an elementary result about multivariate normal 
distributions: Let n be a non-negative integer, let ,1, niX i ≤≤  be stochastic 
variables with a multivariate normal distribution, and let also ,1 , niYi ≤≤  be 
stochastic variables with a multivariate normal distribution. If [ ] [ ]ii YEXE = , 

( ) ( ) ,,1,,Cov,Cov and,1 212121
niiYYXXni iiii ≤≤=≤≤  then the two 

multivariate normal distributions are the same. In other words, a multivariate 
normal distribution is completely characterized by its expected values and 
covariances. 
 
Multivariate normal distributions are discussed in Ross (1985), p. 65–68. 
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3 DEFINITION SET 1 
 
 
 
The definitions in this chapter shall be valid in some parts of the report. In those 
parts, it will be explicitly stated that the definitions in this chapter shall be valid. 
 
Let bayx  and ,, 00  be real numbers which satisfy 0, >ba  and .222

0
2
0 bayx −=+  

Define the quadratic form Q by letting  
 

( ) ( ) ( )
22

22
0

2
00

22
0

2 2
,

ba
yxbxyyxxyb

yxQ
++−+

=  

 
for all real numbers x and y. 
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4 PRESENTATION OF THE QUADRATIC FORM Q 
 
 
 
Definition set 1 shall be valid in this chapter. 
 
In this chapter we shall become a little familiar with the quadratic form Q . 
 
With regard to the result of Section A.2, it is clear that ( ) 0, ≥yxQ  for all x and y, 
equality holding precisely when .0, =yx  
 
In Section A.4 it is shown that the equation ( ) 1, =yxQ  describes an ellipse with 
foci ( ) ( )0000 , and , yxyx −−  and half axis lengths a and b. 
 
More generally, in Section A.5 it is shown that for every real number 0>d  the 
equation ( ) 2, dyxQ =  describes an ellipse which has the same centre, orientation 
and shape but which is d times as large as the one described by ( ) .1, =yxQ  
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5 PRESENTATION OF THE NUMERICAL PROBLEM 
 
 

 
Definition set 1 shall be valid in this chapter. 
 
Consider the following problem: Let kr nn  and  be non-negative integers. 
Construct a numerical method for generating random numbers 

,1,1, krrk nknrH ≤≤≤≤  (Hrk  are treated formally as stochastic variables here) 
which have a multivariate normal distribution characterized by  
 

[ ] ,1,1 ,0 krrk nknrHE ≤≤≤≤=  
 

( ) ( )
.,1,,1,

2
,

 exp ,Cov 2121
1212

2211 krkrkr nkknrr
kkrrQ

HH ≤≤≤≤





 −−

−=  

 
We shall not give an exact solution to this problem in the report. However, in 
Chapter 6 a variant of this problem where the covariances are only specified 
approximately will be given, and in Chapter 8 a solution to this approximate 
problem will be given. 
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6 THE APPROXIMATE VERSION OF THE NUMERICAL PROBLEM 
 

 
 
Definition set 1 shall be valid in this chapter. 
 
The approximate version of the numerical problem is the following: Let kr nn  and  
be non-negative integers, and let ε  be a positive real number. Construct a 
numerical method for generating random numbers ,1 ,1, krrk nknrH ≤≤≤≤  
which have a multivariate normal distribution which satisfies 
 

[ ] ,1,1,0 krrk nknrHE ≤≤≤≤=  
 

( )Var 1, 1 , 1 ,rk r kH r n k n= ≤ ≤ ≤ ≤  
 

( ) ( )
1 1 2 2

2 1 2 1
1 2 1 2

,
Cov ,  exp , 1 , , 1 , .

2r k r k r k

Q r r k k
H H r r n k k nε

 − −
− − ≤ ≤ ≤ ≤ ≤ 

 
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7 DEFINITION SET 2 
 
 
 
The definitions in this chapter shall be valid in some parts of the report. In those 
parts, it will be explicitly stated that the definitions in this chapter shall be valid. 
 
The definitions in this chapter are given under the assumption that definition set 1 
is valid, as the entities introduced there are referred to here. In those parts of the 
report where definition set 2 will be valid, definition set 1 will also be valid. 
 
Numbers which can be written as integers divided by 2 we shall call “half-
integers”. (If this is a standard term I do not know.) As Z  normally denotes the 
set of integers, let 2/1Z  denote the set of half-integers. If e.g. r0  is a half-integer 

variable and r0l  and r0h  are half-integers, the expression ( )2/1h00l0 rrr ≤≤  shall 
mean that r0  shall assume all half-integer values from r0l  to r0h . 
 
Let hh  and yx  be non-negative half-integers. 
 
Let 
 

( ) ,, hh
2
1

2
1n









≤∧≤×∈= yyxxZZyxM  

 

( ) ,, hh
2
1

2
1f









>∨>×∈= yyxxZZyxM  

 
i.e. Mn  is the set of those half-integer pairs in which the absolute value of the first 
half-integer is less than or equal to xh  and the absolute value of the second half-
integer is less than or equal to yh , and M f  is the set of those half-integer pairs that 
do not belong to Mn . “n” and “f” stand for “near” and “far”, respectively. 
 
In the report expressions like ( ) ,, nMkr −  where r and k are integers, will occur. 
( ) n, Mkr −  means the set of half-integer pairs which can be written as differences 
between ( )kr,  and elements in Mn . 
 
Let 
 

( )( )
( )

,,2exp
n,

n ∑
∈

−=
Myx

yxQσ  

 
( )( )

( )
.,2exp

f,
f ∑

∈

−=
Myx

yxQσ  
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In the sum in the definition of nσ , the term ( )( ) ( ) 102 exp0,02 exp =×−=− Q  is 
always present, and all terms are positive, so .1n ≥σ  The definition of fσ  is 
correct because the infinite series converges, which is shown in Section B.4. 
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8 THE SOLUTION TO THE APPROXIMATE NUMERICAL PROBLEM 
 
 
 
Definition sets 1 and 2 shall be valid in this chapter. We also keep the definitions 
from Chapter 6. 
 
The following is a solution to the approximate numerical problem: 
 
Let 
 

,

2
1

,
3

min 

2
ln ,0max 

22
1

,
2
1

max  















































+
××

=
ε
πab

bb
d  

 
and let hh  and yx  be the smallest half-integers that still satisfy 
 

.
4
1

,
4
1 2

0
2

h
2
0

2
h −+≥−+≥ ybdyxbdx  

 
Let ( ) ( ),2/1  1,2/11, h0hh0h00

ynkyxnrxF krkr +≤≤−+≤≤−  be independent 

random numbers with a standard normal distribution  these can be easily 
generated on a computer. Let 
 

( )( )( )
( ) ( ) .1,1,

,exp

n

,,
00

n00

00

kr
Mkrkr

kr

rk nknr
FkkrrQ

H ≤≤≤≤
×−−−

=
∑

−∈

σ
 

 
The joint probability distribution of the Hrk  will then meet the specifications given 
in Chapter 6. 
 
A derivation of this solution is given in Appendix C. 
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 APPENDIX A: PROPERTIES OF THE QUADRATIC FORM Q 
 
 
 

A.1 Introduction 
 
Throughout this appendix, definition set 1 shall be valid. 

 
In this appendix, various properties of the quadratic form Q  will be deduced. The 
results of the appendix are used in different parts of the report. 
 
 

A.2 ( ) ( ) ( ) 222222 b/yxyx,Qa/yx +≤≤+  
 
In this section we shall show that 
 

( ) 2

22

2

22

,
b

yx
yxQ

a
yx +

≤≤
+

 

 
for all real numbers x and y. 
 
Indeed, we have 
 

( ) ( )2
00

2
00 0 yyxxyxxy +≤≤−−  

 
22

000
22

0
22

000
22

0 202 yyxyyxxxyxxyyxxy ++≤≤−+−  
 

( ) ( ) ( ) ( )( )222
0

2
0

222
0

2
00

22
0

2222  2 yxyxbyxbxyyxxybyxb +++≤++−+≤+  
 

( ) ( ) ( ) ( )22222
0

2
00

22
0

2222 2 yxayxbxyyxxybyxb +≤++−+≤+  
 

( ) ., 2

22

2

22

b
yx

yxQ
a

yx +
≤≤

+
 

 
 

A.3 ( ) ( ) ( ) ( )yx,Qyby   yx,Qxbx 2
0

222
0

22 and +≤+≤     
 
In this section we shall show that 

 
( ) ( ) ( ) ( )yxQybyyxQxbx ,,, 2

0
222

0
22 +≤+≤  

 
for all real numbers x and y. 
 
To show the first inequality, we have 
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( ) ( ) ( )yxQ
ba

yxbxyyxxyb
,

2
22

22
0

2
00

22
0

2

=
++−+

 

 
( ) ( ) ( )( ) ( ) ( )yxQxb

ba
yxbxyyxxybxb

,
2 2

0
2

22

22
0

2
00

22
0

22
0

2

+=
++−++

 

 

( ) ( ) ( ) ( ) ( )yxQxb
ba

yxbxyyxxbxyxxbyxb
,

2 2
0

2
22

222
0

2
00

2
0

222
0

2
0

222
0

2
0

2

+=
+++−+++

 
 

( )( ) ( ) ( )yxQxb
ba

yxbxyxxba
,2

0
2

22

22
0

2
00

222

+=
+−+

 

 
( ) ( ).,2

0
22 yxQxbx +≤  

 
The second inequality can be shown analogously. 

 
 

A.4 ( ) ellipse an describes 1=yx,Q  
 
In this section we shall show that the equation ( ) 1, =yxQ  describes an ellipse 
with foci ( ) ( )0000 ,  and  , yxyx −−  and half-axis lengths a and b. 
 
Consider the following sequence of equations: 
 

( )
c

1, =yxQ
 

( ) ( )
c

2222
0

2
00

22
0

2 2 bayxbxyyxxyb =++−+
 

( ) ( ) ( )
c

2
0

2
0

2222
0

2
00

22
0

2 2 yxaayyaxyyxxxa −−=−+−−
 

( ) ( )
c

22
000

22
000

242
00

22
00

22 2222 yyxyyxxxyyxxaayyyyxxxxa ++++±=+±++±

( ) ( )( ) ( )( )
⇑

+±=±+±
2

00
22

0
2

0
2 yyxxayyxxa

 

( ) ( ) ( )
c

yyxxayyxxa 00
22

0
2

0 +±=±+±  

( ) ( ) ( ) ( ) ( ) ( )
c

mm 2
0

2
0

2
0

2
0

22
0

2
0 44 yyxxyyxxayyxxa −−±+±+=±+±  
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( ) ( ) ( ) ( ) +−+−+

 +++ 2

0
2

0
2

0
2

02 yyxxyyxxa  

 

( ) ( ) ( ) ( ) =

+−±+±+ 2

0
2

0
2

0
2

0 yyxxyyxx mm  

 

( ) ( ) ( ) ( ) ×




 +−±+±+= 2

0
2

0
2

0
2

0
24 yyxxyyxxa mm  

 

( ) ( ) ( ) ( )

c






 −+−++++× 2

0
2

0
2

0
2

0 yyxxyyxx
 

 

( ) ( ) ( ) ( ) ×




 ++±+±−= 2

0
2

0
2

0
2

020 yyxxyyxxa mm  

 

( ) ( ) ( ) ( )

⇑






 −+−−+++−× 2

0
2

0
2

0
2

02 yyxxyyxxa
 

 

( ) ( ) ( ) ( )
c

2
0

2
0

2
0

2
020 yyxxyyxxa −+−−+++−=  

 

( ) ( ) ( ) ( ) ayyxxyyxx 22
0

2
0

2
0

2
0 =−+−++++  

 
Obvious equivalences and implications have been indicated with arrows. Each 
equation containing “ ± ” or “m ” signs is to be regarded as the statement that both 
versions of the equation hold. Because of the direction of the two implication 
arrows, it is clear that the last equation in the sequence implies the first one. 
However, the first one also implies the last one, which we shall show here. Start by 
assuming that the first equation holds. Then the fifth equation must also hold. 
Moreover, in Section A.2 it is shown that ( ) ( ).,/ 222 yxQayx ≤+  As ( ) ,1, =yxQ  

we have 2 2 .x y a+ ≤  As ,222
0

2
0 bayx −=+  we also have 2 2

0 0 .x y a+ ≤  Now the 

Schwarz inequality gives us ,2222
0

2
000 aaayxyxyyxx =×≤+×+≤+  which 

in turn yields ( ).0 00
2 yyxxa +±≤  Together with this fact, the fifth equation gives 

us the sixth one. Adding together the two versions of this equation and dividing the 
sum equation by a directly gives us the last equation. 
 
As the first and the last equation in the sequence are thus equivalent, it only 
remains to show that the last equation describes the specified ellipse. 
 
An ellipse can be defined as the set of those points whose distances to two given 
points, the foci of the ellipse, have a constant given sum. This is indeed expressed 
by the last equation of the sequence, if  ( )00 , yx −−  and  ( )00 , yx  are the foci and 2a 
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is the total distance. Imagining an ellipse, one can see that the total distance is equal 
to the length of the long axis of the ellipse, and one can also see that half the  
interfocal distance, half the short axis and half the given total distance form a right 
triangle. The half long axis length must therefore be a, and the half short axis length 

must be ( ) .2
0

2
0

2
2

2
0

2
0

2 byxayxa =−−=+−  
 

 
A.5 ( ) 2=  also describes an ellipseQ x, y d  

 
In this section we shall show that for every real number d > 0 the equation 
( ) 2, dyxQ =  describes an ellipse which has the same centre ( 0, =yx ), orientation 

and shape but which is d times as large as the one described by ( ) 1, =yxQ . (The 
ellipse ( ) 1, =yxQ  is discussed in the previous section.) 
 
We can convince ourselves that the ellipse mentioned which is d times as large as 
the ( ) 1, =yxQ  one, must be described by the equation ( ) 1/ ,/ =dydxQ . 
However, this equation is equivalent to ( ) ,, 2dyxQ =  which is easily seen on 
inspection of the definition of Q . 
 
 
  

A.6 Linear transformation between ( )yx,  and ( )ηξ,  coordinates 
 

In this section we shall introduce a coordinate transformation and determine some 
of its properties. 
 
Define 
 

,, 00
2
0

2

ba
yx

t
ba

abxb
t xx +

=
+
++

= ηξ  

 

,,
2
0

2
00

ba
abyb

t
ba

yx
t yy +

++
=

+
= ηξ  

 
and introduce a linear transformation from new coordinates ξ  and η  to the old 
ones x and y by 
 

., ηξηξ ηξηξ yyxx ttyttx +=+=  
 
The area scale of the transformation is 
 

=− ξηηξ yxyx tttt   
 
( )( )

( )
=

+

−++++
= 2

0000
2
0

22
0

2

ba
yxyxabybabxb
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( ) ( )
( )

=
+

+++++++
= 2

22
0

2
0

222
0

2
0

2

ba

byxbababbyxb
 

 
( )

( )
( )

( )
.

2
2

22

2

2222

ab
ba

abbaba
ba

baababba
=

+
++

=
+

+++
=  

 
I.e., if a variable substitution in a double integral is to be made, the formula 
 

ηξ ddabdydx =  
 
should be used. 
 
We have 
 

( ) ( ) =+−+=− ηξηξ ηξηηξηηη yyxxxyxy ttttttytxt   
 

( ) ,ξξξηηξ abtttt yxyx =−=  
 

( ) ( ) =+++−=+− ηξηξ ηξξηξξξξ yyxxxyxy ttttttytxt  
 

( ) ,ηηξηηξ abtttt yxyx =−=  
 
so the inverse transformation is given by 
 

.,
ab

ytxt

ab

ytxt xyxy ξξηη ηξ
+−

=
−

=  

 
We have 
 

( ) ( )
( )

=
+

+++
=+

2

2
00

22
0

2
22

ba

yxabxb
tt xx ηξ  

 
( )( ) ( )

( )
=

+
++++++

= 2

2
0

2
0

222
0

2
0

222
0

2 2

ba

yxbaxxbabbxb
 

 
( )( ) ( )

( )
=

+
++++++

= 2

222
0

2
0

2
0

222
0

2 2

ba

baxyxbabbxb
 

 
( )( )

( )
=

+
++++

= 2

222
0

222
0

2 2

ba

baxaabbxb
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( )( )
( )

,
2 2

0
2

2

222
0

2

xb
ba

babaxb
+=

+
+++

=  

 
( ) ( )

( )
=

+
+++++

=+ 2

2
0

2
0000

2
0

2

ba

abybyxyxabxb
tttt yxyx ηηξξ  

 
( )

( )
( )

( )
,

22
002

00
22

2
00

22
0

2
0

2

yx
ba

yxbaba

ba

yxbabyxb
=

+
++

=
+

++++
=  

 

( ) ( )
( )

=
+

+++
=+ 2

22
0

22
0022

ba

abybyx
tt yy ηξ  

 
( )( ) ( )

( )
=

+
++++++

= 2

222
0

2
0

222
0

22
0

2
0 2

ba

bayybabbybyx
 

 
( )( ) ( )

( )
=

+
++++++

= 2

222
0

2
0

2
0

222
0

2 2

ba

bayyxbabbyb
 

 
( )( )

( )
=

+
++++

= 2

222
0

222
0

2 2

ba

bayaabbyb
 

 
( )( )

( )
,

2 2
0

2
2

222
0

2

yb
ba

babayb
+=

+
+++

=  

 
and therefore 
 

=






 +−
+







 −
=+

22

22

ab

ytxt

ab

ytxt xyxy ξξηηηξ  

 
( ) ( ) ( )

=
+++−+

= 22

222222 2

ba

yttxyttttxtt xxyxyxyy ηξηηξξηξ  

 
( ) ( ) ( ).,

2
22

22
0

2
00

22
0

2

yxQ
ba

yxbxyyxxyb
=

++−+
=  

 
 

A.7 Identity with four Q   
 
In this section we shall show that 
 

 ( ) ( ) ( ) ( )( )221112122121 ,,2,, yxQyxQyyxxQyyxxQ +=−−+++  
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for all real numbers .  and   , , 2211 yxyx  
 

Using the coordinate transformation in Section A.6, we let ( ) ( )2211 , and , yxyx  
correspond to ( ) ( ),, and , 2211 ηξηξ  respectively. As the transformation is linear, 
( )2121  , yyxx ++  ( )1212  , and yyxx −−  will then correspond to ( )2121  , ηηξξ ++  

( ), , and 1212 ηηξξ −−  respectively. With the new coordinates the above equation 
can be written 
 
( ) ( ) ( ) ( ) ( ),2 2

2
2
2

2
1

2
1

2
12

2
12

2
21

2
21 ηξηξηηξξηηξξ +++=−+−++++  

 
which is an obvious identity. 

 
 

A.8 Triangle inequality with Q  
 
In this section we shall show that 
 

( ) ( ) ( ),,,, 12121122 yyxxQyxQyxQ −−≤−  

 
( ) ( ) ( )22112121 ,,, yxQyxQyyxxQ +≤++  

 
for all real numbers . and  , , 2211 yxyx  
 
Changing to new coordinates as in the previous section, the above inequalities can 
be written 
 

( ) ( ) ,2
12

2
12

2
1

2
1

2
2

2
2 ηηξξηξηξ −+−≤+−+  

 

( ) ( ) .2
2

2
2

2
1

2
1

2
21

2
21 ηξηξηηξξ +++≤+++  

 
These inequalities are the well-known triangle inequality in two dimensions, 
which we do not prove here. 
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APPENDIX B: PROPERTIES OF σ f  
 
 
 

B.1 Introduction 
 
Throughout this appendix, definition sets 1 and 2 shall be valid. 
 
In this appendix, a few properties of fσ  will be deduced. The results of the 
appendix are used in Chapter 7 and Appendix C. 
 
 

B.2 An upper estimation of an integral 
 
In this section we shall show that if c and d are real numbers which satisfy 

,2/0 dc ≤<  then  
 

( )( )( )
( )

≤×−−∫∫
≥

dydxcyxQ
dyxQ 2,

2
,2exp  

 
( )( ).2 exp 2cdab −−≤ π  

 
Indeed, we have 
 

( )( )( )
( )

=×−−∫∫
≥

dydxcyxQ
dyxQ 2,

2
,2 exp  

 
[ ] == A.6Section in  described as  ,  to , fromon substituti ηξyx  

 

( )( ) =×−+−= ∫∫
≥+

ηξηξ
ηξ

ddabc
d 222

2222 exp  

 
[ ] ===== ρϕρηξϕρηϕρξ dddd ,sin ,cos  

 

( )( ) =×−−= ∫ ∫
∞

ρϕρρ
π

ddcab
d

2

0

22 exp  

 

( ) ( )( ) ≤×−−−
−

= ∫
∞

ρρρ
ρ

ρ
π dcc

c
ab

d

22 exp 2  

 

( ) ( )( ) =×−−−≤ ∫
∞

ρρρπ dccab
d

22 exp 4  
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( )( )[ ] ( )( )22 2exp2exp cdabcab
d

−−=−−−=
∞

πρπ , 

 
 

because ( ) .2 when 2/ cc ≥≤− ρρρ  
 
 

B.3 A sufficient condition that σ δf ≤  
 
In this section we shall show that for any given real number δ > 0, if we choose 
the real number d and the half-integers hh  and yx  so that they satisfy 

 

,
22
1

2 exp 4,
2
1 2

2

δπ ≤

















×

−−
×

≥
b

dab
b

d  

 

,
4
1

,
4
1 2

0
2

h
2
0

2
h ybdyxbdx +≥++≥+  

 
then δσ ≤f . 
 
Indeed, we have 
 

( )( )
( )

=′′−= ∑
∈′′ f,

2
f ,2 exp 

Myx

yxQσ  

 

( )( )
( )

∑ ∫ ∫
∈′′

+′

−′

+′

−′

≤×′′−=
f,

4
1

4
1

4
1

4
1

,2 exp 4 
Myx

y

y

x

x

dydxyxQ  

 
[ ] ≤≤ 1comment  

 

( )
( )

∑ ∫ ∫
∈′′

+′

−′

+′

−′

=×

















×

−−≤
f,

4
1

4
1

4
1

4
1

2

22
1

,2 exp  4
Myx

y

y

x

x

dydx
b

yxQ  

 

( ) ≤×

















×

−−= ∫∫
+≥∨+≥

dydx
b

yxQ
yyxx

2

4
1

4
1 22

1
,2 exp       4

hh

 

 
[ ] ≤≤ 2comment  

 

( )
( )
∫∫

≥

≤×

















×

−−≤
2,

2

 
22
1

,2 exp   4
dyxQ

dydx
b

yxQ  
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[ ] ,
22
1

2 exp 43comment 2
2

δπ ≤

















×

−−≤≤
b

dab  

 
i.e. .f δσ ≤  However, some of the above steps need comments: 
 
Comment 1. Because  and 4/1≤′− xx ( ) +′−≤′− 2,4/1 xxyy ( ) ≤′− 2yy  8/1 . 

According to Section A.2, ( ) ( ) ( )( ) ./, 222 byyxxyyxxQ ′−+′−≤′−′−  According 

to Section A.8, ( ) ( ) ( ) .,,, yyxxQyxQyxQ ′−′−−≥′′  Using these facts, we 

have 
 

( ) ( ) ( ) ≥′−′−−≥′′ yyxxQyxQyxQ ,,,  

 

( ) ( ) ( ) ( ) ( )
≥

′−+′−
−≥′−′−−≥

b
yyxx

yxQyyxxQyxQ
22

,,,  

 

( ) .
22
1

,
b

yxQ
×

−≥  

 
Because ( ) .or  ,, hhf yyxxMyx >′>′∈′′  As hh  and  ,, yyxx ′′  are half-

integers, 2/1or  2/1 hh +≥′+≥′ yyxx  must hold. As and 4/1≤′− xx  

,4/1≤′− yy  4/1or  4/1 hh +≥+≥ yyxx  must hold. According to comment 2, 

then ( ) 2, dyxQ ≥  must hold. As ( ),2/1 satisfies bdd ×≥  we have 
 

( ) .
22
1

2
1

,
bb

dyxQ
×

>
×

≥≥  

 
The above inequality ( ) ( ) ( )byxQyxQ ×−≥′′ 22/1,,  can therefore be 
squared, and we obtain 
 

( ) ( ) .
22
1

,,
2









×

−≥′′
b

yxQyxQ  

 
Comment 2. We shall show that if  4/1or  4/1 hh +≥+≥ yyxx , then 

( ) 2, dyxQ ≥ . In fact, remembering that 2
0

2
h 4/1 xbdx +≥+  and 

,4/1 2
0

2
h ybdy +≥+  we can conclude that ( ) 22

0
22 / dxbx ≥+  or 

( ) ./ 22
0

22 dyby ≥+  However, according to Section A.3 ( )yxQ ,  is greater than or 

equal to both ( )2
0

22 / xbx +  and ( )2
0

22 / yby + . Therefore ( ) 2, dyxQ ≥  must hold in 
both cases. 
 
Comment 3. The inequality follows directly from what is shown in Section B.2. 
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B.4 σ f h h is finite for all  and x y   
 
Consider the definition of fσ : 
 

( )( )
( )

.,2 exp 
f,

f ∑
∈

−=
Myx

yxQσ  

 
In order that the definition shall be valid, it is necessary that the infinite series in 
the definition converges. This is indeed the case, as we shall show in this section. 
 
For any choice of the non-negative half-integers hh  and yx , fM  will contain all 
but a finite number of the elements of 2/12/1 ZZ × . Therefore, either the series will 

converge for all choices of hh  and yx , or it will diverge for all choices. But in 
Section B.3 it was shown that if sufficiently large hh  and yx  values are chosen, 
the series will converge. Thus, the series will converge for all choices of 

hh  and yx . 
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APPENDIX C: DERIVATION OF THE SOLUTION TO THE 
APPROXIMATE NUMERICAL PROBLEM 
 
 
 
Definition sets 1 and 2 as well as the definitions made in Chapters 6 and 8 shall be 
valid in this appendix. 
 
In this appendix we shall show that the numerical method described in Chapter 8 
really is a solution to the approximate numerical problem stated in Chapter 6. The 
derivation will be given in four parts. 
 
Part 1. We shall show that the Hrk  have a multivariate normal distribution. 
 
This is really the case, as the Hrk  are linear combinations of a set of independent 
random numbers with a standard normal distribution. 
 
Part 2. We shall show that [ ] .1 ,1,0 krrk nknrHE ≤≤≤≤=  
 
This is the case because the Hrk  are linear combinations of a set of random 
numbers with expected value 0. 
 
Part 3. We shall show that ( ) .1 ,1 ,1Var krrk nknrH ≤≤≤≤=  
 
As the Fr k0 0

 are independent and have variance 1, we have 
 

( )
( )( )( )

( ) ( ) =














 ×−−−
=

∑
−∈

n

,,
00

n00

00
,exp

VarVar
σ

Mkrkr
kr

rk

FkkrrQ

H  

 
( )( )( ) ( )

( ) ( ) =
−−−

=
∑

−∈

2
n

,,

2
00

n00

00
Var,exp

σ
Mkrkr

krFkkrrQ
 

 
( )( )

( ) .1
,2exp

2
n

, n =
−

=
∑

∈

σ
Myx

yxQ
 

 
Part 4. We shall show that 
 

( ) ( )
1 1 2 2

2 1 2 1
1 2 1 2

,
Cov ,  exp , 1 , , 1 , .

2r k r k r k

Q r r k k
H H r r n k k nε

 − −
− − ≤ ≤ ≤ ≤ ≤  

 
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This part of the derivation of the numerical method is rather complicated. We 
shall derive the inequality in a single sequence of inequalities and equalities. After 
that, some of the steps in the sequence will be commented. 
 

( ) ( )
=






 −−
−−

2
,

exp ,Cov 1212
2211

kkrrQ
HH krkr  

 

( ) ( )
+






 −−
−

+
−=

2
,

exp ,Cov 1212
2
n

2
f

2
n

2211

kkrrQ
HH krkr σ

σσ
 

 

( )2
2 1 2 1f

2
n

,
 exp

2 

Q r r k kσ
σ

 − −
+ − =  

 
 

 
[ ] =−= 21 comments  

 
( ) ( )( )

( ) ( )( ) ( )( ) −
−−−−−−

=
∑

−−∈

2
n

,,,
02020101

n22n1100

,,exp

σ
MkrMkrkr

kkrrQkkrrQ
I  

 
( ) ( )( )

( )
+

−−−−−−

−

∑
×∈

2
n

,
02020101

2
1

2
100

,,exp

 
σ

ZZkr

kkrrQkkrrQ

 

 

( )2
2 1 2 1f

2
n

,
exp   

 2
Q r r k kσ

σ
 − −

+ − = 
 

 

 
( ) ( )( )

( ) ( )( ) ( )( ) −
−−−−−−

−=
∑

−−∈

2
n

,,,
02020101

f22n1100

,,exp

σ
MkrMkrkr

kkrrQkkrrQ
I  

 
( ) ( )( )

( ) ( )( ) ( )( ) −
−−−−−−

−
∑

−−∈

2
n

,,,
02020101

n22f1100

,,exp

σ
MkrMkrkr

kkrrQkkrrQ
I  

 
( ) ( )( )

( ) ( )( ) ( )( ) +
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Comment 3. We shall show that the three sums on the left side of the inequality 
sign are less than or equal to ,fnσσ  2

fnf  and σσσ , respectively. 
 
We shall only derive the first of these three inequalities here, as the other two can 
be derived analogously. 
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It is sufficient to note that ( ) ,0, 1212 ≥−− kkrrQ  which follows from the result of 
Section A.2. 
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Appendix E Deriving estimates of the flow 
wetted surface in DarcyTools 
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1 INTRODUCTION 

A substance dissolved in water (hereafter called a tracer) can be transported 
through a rock volume, provided there is a system of connected fractures and a 
flow through these. The tracer may enter crossing fractures, with or without a 
flow, and may also diffuse into the rock matrix. The strength of the diffusive 
process is related to the flow rate and the flow wetted surface (to be defined 
below) as it is through this surface matrix diffusion and diffusion into smaller 
fractures take place. 

An up to date review of how the flow wetted surface (FWS) can be derived or 
estimated is given by Andersson et al. (1998) and there is hence no need to 
give an extensive background here. An account of how the FWS is derived in 
Discrete Fracture Network (DFN) models is given by Outters and Shuttle 
(2000). 
The present analysis will be concerned with how the FWS can be derived in the 
stochastic continuum model DarcyTools. In DarcyTools the rock volume is 
divided into a regular system of computational cells and the key question is 
hence how the FWS can be estimated for such a cell. In Figure E-1 the 
situation is illustrated, schematically. If, as an illustration, we assume that the 
cell has the dimensions 1 x 1 x 1 m3, the channel shown may have a surface 
area of 1 x 0.5 m2. The FWS would then be 1 m2, as an exposed area is found 
on both sides of the channel. It is clear from this illustration that the FWS can 
not be much larger than 2 m2/m3, if the simple channel model with two 
bounding surfaces is accepted. However, the surface may be very irregular and 
may also comprise parallel channels and the upper limit of 2 m2/m3 is hence 
only a “rough guide”. 
When a tracer travels through the channel illustrated in Figure E-1, it may 
exchange matter by diffusion with the rock volume exposed by the FWS. The 
significance of this exchange can be expected to be related to two parameters: 
the FWS per unit volume of water in the channel, wa , and the residence time, t. 
The exchange will increase with both these parameters and a new variable the 
F-quotient (Andersson et al., 1998) has been introduced for this product: 
 

taF w ×=      (E-1) 
By simple algebra it is possible to write Equation E-1 as: 

 qLaF r /=  
where L is the cell dimension, ra  the FWS per unit rock volume and q the 
Darcy velocity. The present report will mainly be concerned with ra  and F, 
determined locally for a cell or integrated along a flow channel. 
The objective of this appendix is hence to demonstrate how the FWS and       
F- quotient can be determined in DarcyTools. 
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Figure E-1. Illustration of a computational cell with a channel with flow. 
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2 EVALUATED METHODS 

Three different ways of calculating the FWS, for a computational cell, in 
DarcyTools will be investigated; these will now be described. 

2.1 GEHYCO METHOD 
The general method used in DarcyTools to derive hydraulic properties is called 
GEHYCO (GEneral HYdraulic COnditions). The central idea is to calculate 
“how much of a conductive element that intersects a computational cell and let 
that volume generate a contribution to the cell property in question”. A full 
account of this method can be found in Svensson (2001b). 
It is also possible to determine how much of a fracture surface that intersects a 
cell and let this “intersecting surface” give a contribution to the FWS in the 
cell. This method is hence conceptually straight forward and does not involve 
any further assumptions than those involved in the specification and generation 
of the fracture network. 

2.2 P32 METHOD 
When the background fracture network is generated, a power law distribution 
is assumed for the intensity, i.e. number of fractures in a size interval per unit 
volume. It is straight forward to use this power law to calculate the expected 
number of fractures for a number of length intervals and hence obtain the total 
surface area per unit volume, 32P . 
In Table E-1 the contributions from different size groups are given together 
with the total area 32P . As can be seen, fractures down to a length-scale of 
three metres are assumed to contribute to 32P . The reason for choosing three 
metres as the lower limit, is that the cell size in the model simulations to be 
presented is three metres; the assumption being that all flow channels are 
picked up by the fracture network and grid chosen. 
When the global 32P  has been determined, we need to distribute the surface to 
each cell. This is done with the kinematic porosity as a weighting factor, as cell 
porosity values are available from GEHYCO. Finally we note that the local ra  
value is twice the local 32P  value. An underlying assumption of this method is 
that the local ra -value is directly proportional to the local kinematic porosity; 
this is no more than an assumption. 
 
 
 
 
 
 
 
 
 
 
 
 



 
4

Table E-1. Estimate of global P32 value from a power law for fracture 
intensity. The Laboratory scale model (Svensson, 1999) is used for the 
estimates. 

Fracture set Length 
interval [m] 

Number, 
excluding 
isolated 

fractures 

P32 Σ P32 

Determ zones 
1 
2 
3 
4 
5 
6 
7 

 
160-320 
80-160 
40-80 
20-40 
10-20 
5-10 
3-5 

 
12 
70 
425 
2050 
9150 
38800 
95600 

0.014 
0.004 
0.004 
0.007 
0.008 
0.009 
0.008 
0.006 

0.014 
0.018 
0.022 
0.029 
0.037 
0.046 
0.054 
0.060 

    0.06 
 

2.3 APERTURE METHOD 
The third method to be evaluated derives the FWS by the following steps: 
• A conductivity is available at each of the six cell walls. 

• A transmissivity can be obtained by multiplying with the cell dimension, 
∆ . 

• Use the relation between transport aperture and transmissivity 
( )6.00.2 TeT =  presented in Appendix H to calculate Te , based on six cell 
wall values. 

• The free volume in the cell is given by 3
kθ ∆ , where kθ  is the kinematic 

porosity, and the area can hence be calculated as: 

3

2.0 k
r

T

a
e

θ ∆
=      (E-2) 

The method apparently involves a number of assumptions that can not easily be 
evaluated. 



 
5

3 RESULTS 

In the evaluation of the methods a slightly modified version of the Laboratory 
scale model (Svensson, 1999) will be used. One modification is that the cell 
size is put to 3 metres (instead of 5 metres) and another that only a simple 
forcing (flow from west to east) will be used. The Äspö HRL is not included in 
the model and all flow channels will hence start at the western boundary and 
leave through the eastern one. 

3.1 FWS VALUES IN CELLS 
We start by discussing the global mean values of ra , see Table E-2, and the 
corresponding histograms, see Figure E-2. Starting with the mean values, it is 
clear that all three estimates are in fair agreement and are also in agreement 
with the mean value of 0.1 m2/m3 suggested by Andersson et al. (1998). The 
distributions are however different, as can be seen in the histograms, see  
Figure E-2. 

First it should be explained that the bar 2100.15.0 −×−  represents all cells with 
an ra  less than 210−  m2/m3. Roughly two thirds of all cells have a very small 

ra . This is due to the fact that the same fraction of cells is not intersected by 
any fracture and hence get zero porosity and zero ra . From the histograms one 
may also note that all three methods generate most “active” ra -values in the 
two intervals 5.01.0 →  and 0.15.0 → . It is also worth noting that method 
three (aperture based) generates very few cells with an ra -value greater than 
1.0. 

3.2 FWS VALUES ALONG FLOW CHANNELS 

The global ra -values are not of much relevance, as it is the FWS along flow 
channels that will affect the exchange with the rock matrix. For this reason we 
will study the correlation between the cell Darcy velocity and cell ra -value, 
for the simple flow situation described above, see Figure E-3. At a first glance 
the result may look rather similar for the three methods; a closer examination 
reveals however some interesting differences: 
• Method three shows a week correlation between the Darcy velocity, q, and 

ra . If ra  does not increase with q this implies that Te  increases with q, as 
a larger q should be correlated with a larger “channel cross section area”. 

• Method two shows a linear increase of ra  with q. The interpretation of this 
behaviour is that “a doubling of q doubles the width of the channel, with 

Te  kept constant”. 
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Table E-2. Global mean values of ar for the three methods evaluated. 
 Method 

GEHYCO P32 Aperture  
ar 

(m2/m3) 0.12 0.13 0.18 
 

• Method one can be viewed as being in between these two extremes and 
perhaps be interpreted as “increased q is correlated with an increase in both 
width and aperture of the channel”. 

A tentative conclusion is that method one is the more realistic one, from this 
point of view. 

Next we study the variation of ra  along a streamtube. This requires that flow 
paths are calculated. In DarcyTools this is carried out in the submodel 
PARTRACK (Svensson, 2001a). In the west to east flow considered, particles 
are released in fracture zone EW1, see Figure 1-2, and then tracked through the 
domain till they reach the eastern boundary. Figure E-4 shows the flow paths 
generated by 100 particles. The main flow path is through EW1, changing to 
the NNW structures and leaving through NE1. Note that in this view from 
above, NE1 gives a wider impression as this zone is not vertical. It is also 
worth noting that rather few flow channels are active in the transport. 
Figure E-5 shows the variation of ra  for one flow path. The same trends as in 
Figure E-3 can be identified, i.e. method three generates a fairly constant ra , 
method two shows the largest variations and method one is somewhere in 
between. 

3.3 F-QUOTIENTS ALONG FLOW CHANNELS 
Figure E-6 shows the variation of the cell F-quotients ( )iiri qaF / , ∆=  along a 
flow path. The same differences between the methods as for ra can be 
expected, but the implications for the F-quotients are a little bit different: 

• In method three ra  is fairly constant and this is probably the reason for the 
rather small variation seen in this figure. 

• Method two was found to give a correlation between ra  and q. It is hence 
not surprising that the F-quotient is fairly constant for long periods. 

• Method one has a weaker correlation between ra  and q and hence shows a 
larger variability. 

In Outters and Shuttle (2000) the integrated F-quotient along a flow path 
versus time was analysed. In that report also a curve was fitted to the results 
from the numerical model. Here, this curve will be used for comparisons with 
the three methods analysed in the present report. The F-quotient was hence 
summed up along a flow path; this was done for one hundred particles and the 
result can be studied in Figure E-7. The following should be noted: 
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Figure E-2. Histograms of ra  [m2/m3]. Method one (top), two (middle) and 
three (bottom). 

10
−3

10
−2

10
−1

10
0

10
1

Flow wetted surface [m2/m3]

0

10

20

30

40

50

60

70

80

F
ra

ct
io

n 
[%

]

10
−3

10
−2

10
−1

10
0

10
1

Flow wetted surface [m2/m3]

0

10

20

30

40

50

60

70

80

F
ra

ct
io

n 
[%

]

10
−3

10
−2

10
−1

10
0

10
1

Flow wetted surface [m2/m3]

0

10

20

30

40

50

60

70

80

F
ra

ct
io

n 
[%

]



 
8

• All results are in fair agreement with Outters and Shuttle (2000) (straight 
line in the figures). The fact that the present results are generally below the 
straight line can be explained by a somewhat higher P32-value used in the 
model by Outters and Shuttle. Method three, which has the highest average 

ra , is closest to the straight line. 

• Method two, which has a strong correlation between ra  and q, gives the 
smallest spread around the mean value. 
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Figure E-3. Correlation between flow wetted surface ra , and Darcy velocity, 
q. Method one (top), two (middle) and three (bottom). 
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Figure E-4. Flow channels formed by 100 particle tracks in a flow from west 
to east. Blue indicates high intensity of tracks, red low. 
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Figure E-5. Variation of ra  along a single flow path. Method one (top), two 
(middle) and three (bottom). 
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Figure E-6. F-quotients along a flow path. Method one (top), two (middle) and 
three (bottom). 
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Figure E-7. Integrated F-quotients along flow paths. Straight line gives the 
result from Outters and Shuttle (2000). Method one (top), two (middle) and 
three (bottom). 
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4 DISCUSSION AND CONCLUSIONS 

The present analysis assumes that all fractures and fracture zones have a simple 
geometric shape, i.e. the bounding surfaces are two parallel planes. This is of 
course a gross simplification that needs to be taken into account when the 
results are evaluated. The following points should also be considered: 
• The ra  values determined give all the surface area in a cell. It may well be 

the case that only a fraction of this area is in direct contact with the flowing 
water. 

• On the other hand, a real fracture is not made up of two parallel planes, but 
may be highly irregular, which increases the possibly active surface (as 
compared to the assumptions made in this report). 

• A steady flow field was used in the present analysis. In reality one may 
expect transient “pulses” on a variety of times scales; from tidal effects, 
yearly groundwater level variations to periods with an inland ice on the 
very long time scale. These transients may disperse a tracer within a 
fracture plane and also activate fractures that otherwise could not be 
reached by the tracer. A larger flow wetted surface would hence be the 
result. 

The ra -values derived should hence more be considered as index of a flow 
wetted surface, rather than an absolute estimate of the magnitude. 
In Andersson et al. (1998) four topics are suggested, as having the potential to 
improve our understanding of the flow related migration parameters: 
• develop the theoretical understanding of migration and matrix diffusion, 

• study the effect of diffusion into stagnant or low flow zones in a single 
fracture, 

• migration modelling directly in the flow codes, 

• exploring for further evidence of matrix diffusion from tracer tests, static 
diffusion tests, geology and geochemistry. 

This project has not been focused on these suggestions, but it may be the case 
that DarcyTools, with the features introduced in this report (FRAME and FWS-
derivations), goes some way towards these goals. Presently PA-studies use 
global estimates of FWS in estimates of the F-quotients. It is possible to get 
some perspective on these estimates from the present study. In Figure E-8, the 
integrated F-quotients for 100 particles using two methods are compared. In 
one of the methods we use the global estimate of ra , while the other method 
use the local cell values. If the two methods were giving equal results, the 
points should fall on the straight line in Figure E-8. This is not the case, the 
method using local cell values gives a significantly larger variation of F-
quotients. 
With the precautions mentioned above in mind, the following conclusions from 
the study are formulated: 
• Three partly independent methods to estimate the flow wetted surface from 

the groundwater code DarcyTools have been evaluated. All three methods 
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give global estimates of ra  that are in fair agreement and these are also in 
agreement with the expected value for the Äspö HRL (Andersson et al., 
1998). 

• Method one, which is based on the GEHYCO technique, is considered to 
be the best choice as it directly calculates ra from the fracture network 
without any additional assumptions. 
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Figure E-8. F-quotients determined with local and global FWS values. 
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Appendix F Empirical relations for the 
determination of fracture properties 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

Introduction 

It is necessary to specify the properties of the conductive elements, even if some of the 
required information is uncertain or unknown. 

The relations to be presented are not claimed to be the “best possible input data”, but merely 
represent what is presently available (a more complete compilation is needed). 

Transmissivity-fracture size 

The following relation was found in a calibration study for the laboratory domain considered 
also in this report (see Report 2): 
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This relation is shown in Figure F-1 (labelled LABM (99)) together with data from field 
investigations (Äspö Major zones, Prototype Repository, TRUE Feature A, TRUE Block 
Scale) and some mean values from simulation models (DFN Aberg, DFN TRUE Block 
Scale). As already mentioned, the compilation is far from complete and we will restrain from 
any firm statements. However, relation (F-1) does not seem to contradict the information 
compiled. 

Transmissivity-transport aperture 

The transport aperture, Te , will be used to calculate the kinematic porosity of a conductive 
element. In Figure F-2 one experimental curve (Rhén et al., 1997), one curve used in other 
models (Doe, 1993) and the relation resulting from the cubic law are shown. The solid line is 
given by: 

 
 6.00.2 TeT =  (F-2) 
 
This relation is regarded as a good compromise, based on the following arguments: 
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Figure F-1. Relation between fracture size and transmissivity. 
 
Compiled data: 
• TRUE BLOCK fractures (#5, 7, 9, 20) (Winberg, 1998) 
• TRUE Feature A (Winberg et al., 2000) 
• Äspö. Major fracture zones NNW* (Rhén et al., 1997) 
• Prototype Repository. South and North major zones and minor zones (Forsmark and 

Rhén, 2000) 
• DFN, Aberg (Dershowitz et al., 1999) 
• DFN, TRUE Block Scale (Winberg, 2000) 
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• The curve by Rhén et al. (1997) is mainly based on fracture zones with relatively high 
transmissivity. 

• The curve by Doe (1993) is mostly used for transmissivities in the range 
s/m  1010 257 −− → . 

• The cubic law applies to “single opening fractures” and is hence best suited for small 
transmissivities. 

It should once again be pointed out that the only purpose of this compilation is to show that 
the relation used, Equation (F-2), is in fair agreement with some easily compiled information. 

Fracture size-thickness 

It will be assumed that fractures are squares with dimension LL×  m2 and that the fracture 
thickness, b, is 1% of the fracture length scale, L. Field data from Äspö, (see Figure F-3), do 
not seem to contradict this relation. The definition of “fracture thickness” is given in Section 
3.3. 

Diffusion coefficients 

Effective molecular diffusion in a conductive element should be proportional to the product of 
the kinematic porosity and the diffusivity value in the pore water (Neretnieks, 1993). The 
proportionality constant is related to the properties of the pore space (constrictivity and 
tortuosity).  

In DarcyTools, we will simply assume that the diffusion coefficient for a conductive element 
is equal to the product of the kinematic porosity and the diffusion value in pure water. 
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Figure F-2. Relation between fracture transmissivity and transport aperture. 
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Figure F-3. Relation between fracture thickness and length.  
 
Compiled data: 
• Äspö (zones NNW*) (Rhén et al., 1997) 
• TRUE BLOCK (Winberg, 1998) 
• Feature A (Winberg et al., 2000) 
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Appendix G. Some simple calculations  
 illustrating the GEHYCO method 
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Some simple calculations illustrating the GEHYCO method 
Calculations (which can be done without a computer) for a 2D case will be 
presented, with the objective to illustrate the basic idea of GEHYCO. The case to be 
discussed concerns a conductive element that runs at an angle of 45o to the 
coordinate directions and has a thickness, eb , comparable to the grid size, ∆ , see 
Figure G-1. The exact flux, aQ , from cell centre (2, 2) to cell centre (3, 3) is given 
by: 

∆
=

2
dhbKQ eea  (G-1) 

where eK  is the element conductivity and dh  the head difference. In the grid 
representation there will be two flow paths between the points in question. The 
velocity cell conductivity, cK , is calculated as the "element conductivity times the 
intersecting volume divided by the cell volume" according to the basic principle of 
the method, thus: 

∆
=

∆
∆

=
2

2
2
2

2
e

e
e

ec
b

K
b

KK  (G-2) 

for both the velocity cell between (2, 2) and (3, 2) and the cell between (3, 2) and (3, 
3). The head gradient from point (2, 2) to (3, 2) is thus ∆2/dh . We can now 
formulate the flux, as represented in the grid, as:  

 

∆
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Figure G-1. Illustration of how flow and transport is simulated on the grid. 

eb
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As we have two flow paths between the points, it is found that the grid representation 
gives the same flux as the exact solution. 

Next we consider the transport time between the two points in question. Analytically 
it is easily calculated as the distance divided by the pore velocity: 

22 22
/

2

e e

D e e
e

t dhU n K dhK

θ ∆ θ ∆∆

∆

= = =   (G-4) 

where t is the transport time, DU  the Darcy velocity and eθ  the kinematic porosity. 
When estimating the transport time in the grid representation of the element, it is 
instructive to think of a particle that travels the distance. If we further accept that the 
residence time of the particle in a cell is equal to the free volume of the cell divided 
by the flow rate through the cell, the following calculations can be carried out. First 
one should note that the particle has to move through the grid in the "staggered 
arrangement", i.e. from (2,2) to (3,2), or (2,3), and then to (3,3). The two pathways 
have the same transport time and we only need to consider one of them. The two 
cells in question (2,2) and (3,2) have however different free volumes and through 
flows and we need to calculate the residence time for each and add the times. 

Cell (2,2): 2,2
e iVt
Q
θ

=    (G-5) 

Where iV  is the intersecting volume and Q is the flow rate through cell (2.2). After 
some algebra it is found that: 

 

( )2,2
2 2 2

2
e

e
e

t b
K dh
θ ∆ ∆= −   (G-6) 

Cell (3,2): By the same procedure it is found that: 

3,2
2

2
e

e
e

t b
K dh
θ ∆

=    (G-7) 

By adding these two residence times, it is found that the transport time in the grid 
representation is equal to the analytical solution (Equation G-4). 

Diffusive transport can be regarded as a combination of the two cases, flow and 
transport, discussed. First one should note that the diffusive flux is analogue to the 
Darcy flux, if the head gradient is replaced by the concentration gradient and the 
conductivity by the diffusion coefficient. It is clear that diffusion coefficients thus 
need to be evaluated at cell walls. If the diffusive term is part of an 
advection/diffusion equation for a scalar, we should evaluate the balance equation for 
a scalar control volume, see Figure 3-3. It is thus the free volume of the scalar cell, 
discussed already, that is affected by the fluxes at the cell walls. Hence, solving an 
advection/diffusion equation for a scalar quantity, does not require any new elements 
in the grid representation. 
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The calculations presented intend to illustrate how the properties of the conductive 
elements are represented in the grid. It is of course reassuring that the method gives 
correct result for the simple case studied, but it is not a proof that the method is 
exact. In fact, see Svensson (1999a) and Svensson (2001), it is well established that 
some fracture orientations, in relation to the grid, give an error in the simulated flow 
and transport times. This error has also been found to depend on the thickness of the 
element in relation to the grid size ( )∆/eb . Estimating this error is one of the main 
issues in the verification studies, see Report 2. 

 

 

 




