Svensk Karnbranslehantering AB
Swedish Nuclear Fuel
and Waste Management Co
Box 5864
SE-102 40 Stockholm Sweden
Tel 08-459 84 00
+46 8 459 84 00
Fax 08-66157 19
+46 8 661 57 19




ISSN 1402-3091
SKB Rapport R-04-19

DarcyTools, Version 2.1
Concepts, methods, equations
and demo simulations

Urban Svensson, Hans-Olof Kuylenstierna
Computer-aided Fluid Engineering AB, Sweden

Michel Ferry, MFRDC, France

March 2004

This report concerns a study which was conducted in part for SKB. The
conclusions and viewpoints presented in the report are those of the author(s)
and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se



Preface (by Urban Svensson)

As the first author of this report, I take the liberty to write a preface and explain a
few things about the work leading to version 2.1 of DarcyTools. This is necessary as
Hans-Olof and Michel have not been involved in the writing of the main part of the
report, and they may not even share all the views expressed.

The contributions from Hans-Olof and Michel can be specified as follows:

Hans-Olof: Development of methods and writing of software for generation of
fracture networks and their representation (in terms of properties) in the
continuum model. Development of methods and writing of software for
the particle tracking routine PARTRACK. Author of Appendices B, C
and D.

Michel: ~ Development and writing of the software for the solution of the
continuum problem. Author and owner of the solver MIGAL. Author of
Appendix A.

My contribution has been in the development of concepts and methods, real world
applications and tests. I have also coordinated the efforts and done my best to ensure
that we deliver the product our client, SKB, expects.



Abstract

DarcyTools is a computer code for simulation of flow and transport in porous and/or
fractured media. The fractured media in mind is a fractured rock and the porous
media the soil cover on the top of the rock; it is hence groundwater flows, which is
the class of flows in mind.

DarcyTools is a general code for this class of problems, but the analysis of a
repository for nuclear waste is the main intended application.

A number of novel features are introduced in DarcyTools. The most fundamental is
perhaps the method to generate grid properties (DarcyTools is a continuum porous-
media code); a fracture network, with properties given to each fracture, is
represented “directly” in the computational grid. This method is believed to result in
very accurate anisotropy and connectivity properties.

The report focuses on the concepts, assumptions, equations and key features of
DarcyTools. The main part of the report is fairly short; a number of appendices give
more detailed accounts of various aspects of the code.



Abstract (Swedish)

DarcyTools ér ett datorprogram for simulering av flode och transport i ett pordst
och/eller sprickigt medium. Det sprickiga mediet &r ett sprickigt berg och det porosa
mediet jordlagret som técker berget; det dr saledes grundvattenstromning som ar
applikationsomrédet.

DarcyTools ér ett generellt program for grundvattenstromning, men tillimpningar
som ror analyser av forvar for uttjédnt karnbransle stér i fokus.

Ett antal nya koncept och metoder utgér hornpelare 1 DarcyTools. Den kanske mest
fundamentala av dessa ror metoden for att representera hydrauliska egenskaper i
berdkningsnitet (DarcyTools dr en sé kallad ’pords kontinuum kod”). Metoden
bygger pé en direkt representation av ett spricknitverk, som kan innefatta upp till en
miljon sprickor. Tanken &r att denna metod skall ge en god beskrivning av bergets
anisotropi och sprickors konnektivitet.

Rapporten beskriver koncept, antaganden, ekvationer och illustrerar
nyckelegenskaper. Huvuddelen av rapporten ar timligen kort; ett antal appendix
beskriver olika aspekter av programmet mer i detalj.
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1 Introduction

1.1 Background

DarcyTools is a computer code for simulation of flow and transport in porous and/or
fractured media. The fractured media in mind is a fractured rock and the porous media
the soil cover on the top of the rock; it is hence groundwater flows, which is the class
of flows in mind.

DarcyTools is developed by a collaborative effort by SKB AB (The Swedish Nuclear
Waste Management Company AB) and CFE AB (Computer-aided Fluid Engineering
AB). It builds upon earlier development of groundwater models, carried out by CFE
AB during the last ten years. The following reports, by the present writer, give a
general account of this work and hence give a background to the work to be described
in this report:

e Groundwater flow at Aspd and changes due to the excavation of the laboratory,
Svensson (1991). This report gives predictions of the influence of the laboratory
prior to its construction.

e A regional analysis of groundwater flow and salinity distribution in the Aspd area,
Svensson (1997a). Results from this study have been useful for generating
boundary conditions for smaller scale models.

e A site scale analysis of groundwater flow and salinity distribution in the Aspd area,
Svensson (1997b). This model may be considered as representing a synthesis of
the detailed information provided in Rhén et al. (1997).

e Representation of fracture networks as grid cell conductivities, Svensson (1999a).
This report describes, for the first time, the principles used for generating property
fields in DarcyTools.

e A laboratory scale analysis of groundwater flow and salinity distribution in the
Aspd area, Svensson (1999b). In this study the new methods were applied and
evaluated.

e PARTRACK —A particle tracking algorithm for transport and dispersion of solutes
in a sparsely fractured rock, Svensson (2001a). This report describes the particle
tracking techniques used in DarcyTools.

 Impact of the tunnel construction on the groundwater system at Aspb. Task 5,
Aspd Task Force on Groundwater Flow and Transport of Solutes. Svensson,
Laaksoharju and Gurban (2002).

These reports give a general overview of the developments that have lead to the
present version of DarcyTools. It should also be pointed out that in the listed reports
the CFD code PHOENICS (Spalding, 1981) was used as an equation solver.
DarcyTools is based on a solver called MIGAL (Ferry, 2002). It has however been
carefully evaluated that the two solvers produce very similar solutions and the reports
listed are thus still valid as background reports for DarcyTools.



The present report will focus on the theoretical basis of DarcyTools. Two
accompanying reports cover other aspects:

- Verification and Validation, Svensson (2004) (Hereafter Report 2).
- User’s Guide, Svensson and Ferry (2004) (Hereafter Report 3).

“Real world applications” of DarcyTools can be found in Svensson (2001¢) and in
Follin and Svensson (2002).

Two basic approaches in groundwater modelling can be identified; in one we define
grid cell conductivities (sometimes called the continuum porous-medium (CPM)
approach, Jackson et al., 2000), in the other we calculate the flow through the fracture
network directly (DFN approach). Both approaches have their merits and drawbacks,
which however will not be discussed here (for a discussion, see Sahimi, 1995). Instead
we will try to combine the approaches, meaning that we first generate a fracture
network and then represent the network as grid cell properties.

The traditional way to calculate grid cell conductivities in continuum models is
through an upscaling procedure (for reviews see: Wen and Gémez-Hernandez (1996),
Renard and de Marsily (1997) and Pozdniakov and Tsang (1999)). These methods are
however of no direct use in the present work. Attempts have been made, see La Pointe
et al. (1995), Niemi et al. (1999) and Jackson et al. (2000), to use a DFN-model to
calculate grid cell conductivities. This method has similarities with the present
approach as the cell conductivity will be based on the properties of a fracture network.
We will however not use a DFN-model to estimate the grid cell conductivities; instead
the fracture network is represented “directly” in the continuum model. Methods to
include a limited number (say 10-20) of major fracture zones in a CPM-model have
been presented, see for example Svensson (1997) and Gomez-Hernandez et al. (1999).
The method in DarcyTools is different from these methods in that all fractures and
fracture zones are considered, when the conductivity field is generated. This means
that we may need to represent 10° to 10° fractures as grid cell conductivities. Further,
if the properties (geometry, transmissivity, etc) of the major fracture zones are known,
these zones are treated deterministically, while unknown, or background, fractures are
generated from statistical distributions.

1.2 Objectives and scope

The objectives of this report can be summarised as:

e Provide the theoretical basis of DarcyTools

e [llustrate how DarcyTools works, through simple demo simulations
¢ Discuss and evaluate the present status of DarcyTools

It will not be possible to review applications of DarcyTools in this report.



1.3 The Aspé HRL

The present report will not describe real world applications. Several references to
model studies and field data related to Aspd Hard Rock Laboratory (HRL) will
however be made and a brief introduction to Asp6 HRL will therefore be given.

The Aspd Hard Rock Laboratory is located near the Oskarshamn nuclear power plant
on the east cost of Sweden, see Figure 1-1. The access tunnel starts on the mainland,
continues under the Baltic and reaches the spiral part of the tunnel beneath the island
of Aspd. The total length of the tunnel is 3600 metres and it reaches a depth of 450
metres below ground surface. A vertical elevator shaft connects the laboratory to the
Aspd Research Village.

Mean precipitation minus evapotranspiration, P-E, has been estimated to be about 200
mm/year for the region, Rhén et al. (1997). For the island of Aspd one can expect that
the groundwater recharge (i.e. P-E) is smaller as the distance to the sea is shorter (no
storage of water in lakes and ponds during periods of heavy precipitation). A value of
100 mm/year was used in the site scale model.

Around the island of Aspo the Baltic Sea has a salinity of about 0.6%. It is known
from boreholes on Aspd that the fresh water lens below Aspd has a thickness of 100 to
200 metres under natural conditions; below this level the salinity increases to reach a
value of about 2% at a depth of 800 metres below ground. As the water density
increases with salinity we have a density stratified water below the island of Aspé.
This is an important feature of the groundwater flow system.

Three model domains are outlined in Figure 1-1; these will be referred to throughout
the report.

The major fracture zones at Aspd are shown in Figure 1-2 and boreholes in Figure 1-3.
These figures will be referenced to when field measurements are discussed.

14 Outline

The main part of the report is fairly short; this with the intention that the reader should
be able to get a good overview of DarcyTools from a few hours of reading. The
appendices will provide more detailed descriptions of various central topics.
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Figure 1-1. The island of Aspé and the Aspé Hard Rock Laboratory. The black
rectangle shows the area of the Site scale model, Svensson (1997b). The red rectangle
shows the Laboratory model (Svensson, 1999) and the blue rectangle indicates the

domain for the Repository model (Svensson, 2001).
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Figure 1-2. Major fracture zones in the area, after Rhén et al. (1997).



Figure 1-3. Boreholes in the Aspé area.



2 Situation considered

2.1 Introduction

As mentioned, it is flow and transport in fractured and/or porous media that is the
application area for DarcyTools. In this section a general description of physical
processes, scales, etc that need to be considered will be given. It is hoped that the
picture painted is one that most geohydrologists can agree upon (concepts and
assumptions built into DarcyTools are not discussed in this context). The description is
generic, but inspired by the conditions at and experiences from the Aspd Hard Rock
Laboratory (HRL). The fractured rock in mind is hence a sparsely fractured granite.

2.2 The 10 km scale view

The regional groundwater flows in unconfined aquifers introduces the concepts of
recharge and discharge areas, see Figure 2-1. Recharge areas, i.e. where a net inflow is
found, are usually found in topographically high places while the discharge areas are
located in topographic lows. The discharge areas may take the form of a stream, river
or a lake.

The general flow pattern is hence from high to low areas; a system of local flow cells
is formed and the groundwater table follows the surface topography. However, this is
an idealized picture which is based on the assumptions of a steady, constant density
flow in a homogeneous aquifer. These assumptions are seldom fulfilled and care
should hence be taken when interpreting field data, based on this view. In particular,
most natural aquifers are anisotropic and heterogeneous.

RECHARGE

Figure 2-1. Situation considered — the 10 km scale view.



2.3 The km scale view

A km scale view is given in Figure 2-2. Let us assume that it is of interest to determine
the origin of water leaking into the tunnel. Two main sources are precipitation and
seawater (excluding brine water from below). To track the precipitation water one has
to follow a water parcel through the unsaturated zone, down to the saturated soil cover
and finally its way through the fracture network. It is essential to determine the
position of the groundwater table, as it determines the pressure gradients in the porous
media and may influence the conditions deep into the rock. The other source, the
seawater, introduces density effects, as the seawater is heavier than fresh water. The
heavier saltwater penetrates the coastal zone and modifies the pressure distribution
(the Ghiibern Herzberg relation). Due to this effect the inflow to the tunnel may be
dominated by seawater or the precipitation water; all depending on the actual
conditions (density difference, tunnel position, etc).

¢ ¢ ¢ ¢ ¢ i ¢ PRECIPITATION

FRACTURED ROCK

i :
T TUNNEL

N

Figure 2-2. Situation considered — the km scale view.



2.4 The m scale view

The main novel features of DarcyTools are concerned with the fracture network and
we will therefore focus on the description of fractures (giving the porous media less
attention). In Figure 2-3 part of a fracture network is shown. Different parts of the
network have been marked with letters; these parts will now be described:

A: Represents a fracture zone. The fracture zone is assumed to be composed of a
number of smaller fractures through which the flow takes place. Most of the small
fractures do however not contribute to the flow but are still important for transport and
dispersion of a tracer. Fracture zones are often the main flow conductors due to their
high transmissivity and size (length scale >100 metres). The thickness is typically

> 1 metre.

B: Some fractures are best characterised as “a single opening”.

Typically the thickness, or the aperture, is of the order of 10™ metres. The fractures
marked with B in Figure 2-3 have a through-flow and may hence contribute to the
total flow rate. If the transport time through the B fractures is different from the
transport time in the fracture zone a dispersion effect will also result from the parallel
flow path.

C: Isolated fractures of groups of fractures can not contribute to the flow, transport or
dispersion, as flow in the matrix is neglected. In the numerical model these are
removed before the generation of grid data is performed.

D: Some fractures, or fracture zones, may form “dead end systems”. The exchange
with fractures with a significant flow is then by molecular diffusion. When storage of
water over long time periods, say longer than 100 years, is studied it is essential to
represent the dead-end systems correctly.

E, F: There is always a lower limit on the fracture size that can be represented
correctly in a numerical simulation. In the present study it will be assumed that
fractures below a certain size, to be discussed, do not contribute significantly to the
total flow. However, for transport and dispersion it is probably necessary to consider
all scales, as a large fraction of the pore volume is expected to be due to the small
scale features of the porosity field.

2.5 The mm scale view

It was mentioned above that the opening, or aperture, of a fracture is typically of the
order of 1 mm or smaller. The aperture has however not a constant value, as is
illustrated in Figure 2-4. On this scale it is useful to introduce the notions of the
mobile zone, for the volume that has flowing water, and the immobile zone which
represents all volumes with stagnant water. In Figure 2-4, the stagnant pools, the
crossing fractures and the matrix may all contain stagnant water. The fracture may also
contain material of various kinds, so called gouge material.

The geometrical complexity of a fracture opening is essential to consider when small
scale dispersion processes are to be described. The exchange between the mobile and
immobile zones is often assumed to be due to molecular diffusion only.



Figure 2-3. Situation considered — the m scale view.
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Figure 2-4. Situation considered — the mm scale.
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2.6 The flow system

If only the flow field is of interest, we do not need to consider the detailed properties
of a fracture (as outlined in Figure 2-4). The fracture transmissivity is normally what is
needed. In addition the following topics may be of importance:

¢ A method to handle the unsaturated zone is required. Depending on the situation at
hand the method may range from quite simple (only position of the groundwater
table) to complex two-phase algorithms.

e Density stratification. If waters of different densities meet, it is essential to account
for the effects.

e In addition to the fracture transmissivities one needs information about the
conductivity of the soil cover, if present.

These are some of the key elements that govern the flow system. Note that we at this
stage are not discussing the required input to a numerical model, which of course is
more extensive (boundary conditions, properties, etc).

2.7 Transport and dispersion

When discussing transport and dispersion of solutes it is useful to distinguish between
two different problems with respect to the time scale. The first kind of problem is the
field experiment with a time scale from weeks to perhaps a year. A longer time scale,
which may be thousands of years, needs to be considered when the water types present
in the fracture network is to be analysed. At Aspd HRL, water from the last glaciation
(about 11 000 years ago) has been found already at a depth of a few hundred metres.
The relevant processes for the two problems will now be described, in turn.

Let us think of a typical field tracer experiment where a tracer is injected in one
borehole and the arrival in another, pumped, borehole is studied. The curve describing
the time distribution of the concentration in the pumped borehole is called the break
through curve (BTC). Obviously the tracer is transported by advection between the
two boreholes, and the flow field is hence an important element in the analysis. A
number of dispersion processes will however affect the tracer as it travels through the
fracture network. The most important of these are:

e Intersections. At a fracture intersection a tracer cloud may split up and enter
pathways with different lengths and fluid velocities. This type of dispersion is
often called macro-dispersion.

e Channelling. Spreading occurs within each fracture plane as the different
streamlines have different path lengths and velocities. The flow channels may also
merge or split up.

e Taylor dispersion. A velocity profile exists between the two bounding walls of
the fracture. The resulting dispersion effect is called shear- or Taylor dispersion.

11



e Matrix diffusion and sorption. Interaction with the rock, stagnant pools and
microfissures causes a number of processes that in effect lead to a delay and
dispersion of a tracer pulse. These include: sorption on the fracture walls, diffusion
into the rock matrix with sorption on inner surfaces and interaction with gouge.

As mentioned earlier, the diffusion into dead-end fractures of various sizes (see Figure
2-3 and 2-4) is by molecular diffusion. In order to illustrate the typical penetration
depth for this process one may think of a substance with a certain molecular diffusion

constant (D =10"" m? /s) and an experimental time scale of, say, one month

mol

(t ~2.6x10° s). The penetration length can then be estimated as /D, , xt =0.016

metres. As the immobile zone is mainly made up of small fractures one can conclude
that small scale dispersion is mainly governed by processes on the mm to cm scale.

For the transport problem on long time scales we may use the salinity field to illustrate
some key features. First we can note the time scale for exchange in larger (> metres)

dead-end fracture systems. If we put D, , =107"° m%s and L =10 metres, we find
that the time scale is 10" seconds, or 30 000 years (t =L’/D,, ) It is thus not

surprising to find water from the last glaciation, or the Litorina Sea (= 7 000 years
BP), in the fracture system at Aspd HRL. Gravitational forces may further enhance the
entrapment of water in dead-end zones. If, for example, Litorina water (which has
higher salinity than the present Baltic water) is located in a dead-end fracture
extending downwards from the mobile zone gravitational forces will enhance the
entrapment. The same principle applies to glaciation water (which has a lower density
than present Baltic water) in a dead-end fracture extending upwards from the mobile
zone. If we further note that the volume of all immobile zones is larger than the
volume of the mobile zone, one can draw the conclusion that the salinity field is “stiff”
and requires very long time scales to reach a steady state. On a shorter time scale all
processes listed above is of course also active for the dispersion of salt.

2.8 The transient nature of the problem

From the discussion of the salinity field one can conclude that the groundwater system
is never in a steady state. Note that any change in the salinity field will modify the
flow field as these are linked through the gravitational force.

In order to emphasise the transient nature of the problem the following list of
processes have been compiled:

Glaciations. Time scale of 10 000 to 100 000 years.
¢ Diffusion into dead-end fractures. Time scale from minutes to 100 000 years.

e Sea level variations. From daily variations to long time effects due to the land
uplift.

e Precipitation. From daily, seasonal to yearly variations.
e Tidal effects. Time scale of one day.

The list can be made longer, but the message is probably clear “transient effects on a
variety of scales need to be considered”.

12



29 Summing up

It was the intention of this section to describe the problem considered in a way that
“most geohydrologists can agree upon”. Probably the reader will not accept that this
has been achieved as one may put emphasis on different aspects of the problem (the
important area of two-phase flows has for example not been mentioned, nor has the
storativity and specific yield effects been described). Based on the qualitative
descriptions given, it is however hoped that most readers will agree upon the following
consensus statement:

- Flow, transport and dispersion in a sparsely fractured rock are governed by
processes that have time scales ranging from minutes to thousands of years and
space scales ranging from millimetres to several kilometres. The coupling between
scales, in space and time, is strong and it is generally not possible to neglect these
interactions.

13



3 Concepts, Assumptions and Methods

3.1 Introduction

The qualitative description of the previous section sets the scene for the concepts,
assumptions and methods to be introduced in this section. If the previous section was
general, the present section is very specific for DarcyTools. The descriptive
presentation method will however be continued, leaving the mathematics to the section
to follow. We will hence not try to “prove” the correctness of the concepts,
assumptions and methods, as this will be the objective of a separate report (Report 2).

First a key assumption in DarcyTools will be presented, then the fracture network and
its representation in the grid (including subgrid processes) is discussed. After this
concepts related to transport are reviewed, then the groundwater table is discussed and
finally some assumptions regarding properties are given.

3.2 The key assumption

The most fundamental assumption in DarcyTools is related to the structure of the
fracture network, which is assumed to follow a power law distribution. More precisely
it is assumed that the number of fractures per unit volume, 7, in the length interval, d/,
is given by:

n=1I* (”‘”} —[L] /a (3-1)
Zref Zref

where I is the intensity, /

s @ reference length and a the power law exponent.

Depending on how I and a are chosen, networks with different characteristics can be
generated. In DarcyTools it will be assumed that a = —2.6 (following La Pointe et al.,
1999) and that I is given a value resulting in a “sparsely fractured rock” (details later).
This is the situation at Aspé HRL (Rhén et al., 1997), where the major fracture zones
have been thoroughly studied and it is believed that they provide the “first order”
response in, for example, a pump test (Stanfors et al., 1999). The length scale of the
major fracture zones is typically above, say, 300 metres and the transmissivity is of the
order of 10” m%/s. Fracture zones smaller than 300 metres have also been mapped at
Aspd, and found to be hydraulically important, and should hence also be considered in
the conductivity field. DarcyTools is developed for a fracture network of the kind
found at Aspd HRL.

From this assumption it follows that the flow is distributed on relatively few flow
channels, as it is the large scale fractures and zones that provide the connectivity in the
network. In DarcyTools it will be assumed that all essential flow channels can be
described in the computational grid. However, as discussed above, dispersion is often
dominated by processes on the millimetre scale, which can not be described explicitly.
This Separation Of Scales (SOS-concept) is a consequence of the sparsely fractured
rock and will form the basis for the subgrid model to be described.

14



3.3 Concepts used for fracture descriptions

The real world fracture network will be represented as a system of conductive
elements and storage volumes, see Figure 3-1 (which is based on Figure 2-3). As
mentioned, not all fractures can be represented in the generated fracture network. The
smallest fracture size, / . , is chosen to be comparable to cell size, A, in the

computational grid. Fractures smaller than / . will be represented as storage volumes,

which are defined as volumes that are in contact with the flow channels and exchange
matter with these by molecular diffusion. Note that fracture F in Figure 3-1 will not be
represented as a flow channel in the generated network, as it is supposed to illustrate a

fracture smaller than / . .

Each of the conductive elements (A, B and D in Figure 3-1) is assumed to have a
thickness, b,, conductivity, K,, kinematic porosity, &, , flow wetted surface, a, and

diffusion coefficient, D,. The storage volumes (E and F in Figure 3-1) are described

by their linear dimensions, volumes and diffusion coefficients. Below, it will be
discussed how these parameters can be estimated.

If the open space in a fracture can be described as “the space between two parallel
walls” it is easy to estimate the flow wetted surface (FWS); it will be 2 m?*/(m?
fracture). If the fracture is very irregular or have parallel flow channels it is harder to
estimate a realistic value. In DarcyTools the FWS will be given as an input parameter
for each major (or deterministic) fracture zone and each group of random fractures.

All properties (conductivity, porosity, diffusivity and FWS) are assumed to be
uniformly distributed over the thickness of the conductive element.

Some nomenclature for fractures needs to be introduced. A fracture that has one single
opening will in the following be called a single fracture, while a fracture zone consists
of several crossing fractures. For a single fracture we call the width of the opening the
aperture, which is typically less than 10~ metres. For a major fracture zone, the
thickness is typically 10 metres. In the present study, we will make no distinction
between a single fracture and a fracture zone; both are idealised as an element with
dimensions H (height), b (thickness) and L (length). If the transmissivity of the single
fracture, or the fracture zone, is denoted 7" we can define the hydraulic conductivity of
the element as K =7 /b . In the following we will call the conductive element a
fracture for short.

A few more things can be noted in Figure 3-1:
e Isolated fractures, C, are removed in the generated fracture network.

e The fracture zone, A, may have a varying thickness in the generated network. A
method to generate conductive elements with varying thickness has recently been
developed (described in Appendix C), but this method can presently only be used
for major deterministic fracture zones (often 15-20 in number) as it is time-
consuming on the computer.

15



Figure 3-1. Representation of the real world fracture network (top) as conductive
elements and storage volumes.
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3.4 Representation of properties on a grid

Most numerical models of groundwater flow subdivide the studied domain into
smaller volumes. If a computational grid is defined, we call these smaller volumes grid
cells, and we apply the conservation laws and other constitutive relations to these.
Also material properties, like hydraulic conductivity and porosity, need to be specified
for the grid cells. These properties are often measured on a smaller scale (support
scale) and a technique to express these on the scale of the grid cells is thus needed
(upscaling). When material properties for all grid cells have been obtained, the flow
simulation can be performed. In DarcyTools, we will however not follow this
traditional route and the main argument for this can be stated as follows:

- Inasparsely fractured rock it is believed that most of the flow is due to a limited
number of major fractures and fracture zones. The main task is thus to identify
these and to represent them in the numerical model. If a refined modelling is
required, the next size class of fractures or fracture zones should be considered.
From this point of view it seems more logical to first consider large fractures, and
then progressively smaller ones, than to upscale properties from a small scale.

It is not possible to represent all fractures in the grid, simply because there are too
many. In DarcyTools the smallest fracture considered will often be of the same size as
the grid size. Smaller fractures, / < [ . , are however also of importance (for

dispersion) and in DarcyTools represented as storage volumes (immobile zones), see
Figure 3-2. In fact, storage volumes are defined as al/l immobile zones , with [ < /. ,
that exchange matter with the flowing water by molecular diffusion only.

We have thus subdivided all fractures in contact (isolated fractures are not considered)
into conductive elements and storage volumes. Storage volumes will be treated as
subgrid effects and are represented in the subgrid model FRAME, to be described
below. Conductive elements generate all grid properties by the GEHY CO-method

which can now be formulated as:

- A conductive element contributes to the grid value of a variable by an amount
which is equal to the intersecting volume times the value of the variable in
question. Contributions from all elements that intersect the control volume are
added and the sum is divided by the volume of the cell.

This basic principle will now be explained and illustrated, using Figure 3-3. A
conductive element of thickness b is crossing a computational grid, which has a cell
size of A. A staggered grid is to be used, which means that scalar quantities, like
pressure and salinity, are stored at cell centres while velocity vectors are stored at cell
wall centres, see Figure 3-3. This grid arrangement was first introduced by Harlow and
Welch (1965) and is described in textbooks, see for example Patankar (1980). Each
variable is assumed to be representative for a certain control volume, which is the
volume the discretized equations are formulated for. For a velocity cell it is clear that
the driving pressure force can be easily formulated. As we are going to apply the
Darcy law to the velocity cell we also need a relevant cell conductivity to obtain the
cell wall velocity. How to calculate this conductivity, and other properties, is the main
subject of the GEHY CO-method.

To obtain the porosity, as an example, of the scalar cell marked in Figure 3-3 the
following steps are performed.
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e Calculate the intersecting volume between the conductive element and the cell; this
volume is marked in the figure.

e [f the porosity of the conducting element is €, , the contribution to the free volume

is 8.V, , where V; is the intersecting volume.

e Calculate the contributions from all conductive elements that cross the cell.
e Obtain the cell porosity as the sum of all contributions divided by the cell volume.

In Figure 3-3 a control volume for a velocity cell is also marked. The procedure to
obtain the conductivity for this control volume is analogue to the steps above.

By this procedure the porosity, flow wetted surface and storativity are determined for
all scalar cells and the conductivities and diffusivities for all cell walls.

An assumption in the statement above is that "contributions from all elements that
intersect a cell are added". If two, or more, fractures intersect a velocity cell, the cell
conductivity should represent a fracture intersection (neglecting the case of parallel
fractures of various orientation). Neretnieks (1993) discusses various concepts about
channelling at intersections, but concludes that no firm information is available. He
cites however a number of observations that support the idea that "fracture
intersections form easy pathways". In lack of any firm information, it will therefore be
assumed that contributions can be added. Fracture intersections will hence form "easy
pathways".

The basic principle of the method is obviously very simple but, as will be
demonstrated, still general enough to handle even complex fracture networks. A few
properties of the method can already at this stage be identified:

e All cell wall conductivities will be different, as we generate three conductivity
values (in a 3D case) for each scalar cell. A conductivity field that is anisotropic
on the cell scale is hence always generated.

e A fracture smaller than the cell size can not generally contribute to the anisotropy
or correlation of the conductivity field.

Some simple calculations that illustrate the GEHY CO method, and also demonstrates
the accuracy that can be expected, can be found in Appendix G.
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FRACTURE ZONE

GRID REPRESENTATION

Figure 3-2. Representation of kinematic (or mobile) and storage (or immobile)
volumes in the grid. The open rectangle in the grid represents a kinematic volume
(generated by the conductive element), while filled rectangles represent storage
volumes.
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Figure 3-3. Illustration of concepts and methods for calculating grid properties.
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3.5 Subgrid processes, FRAME

In Figure 3-4 some subgrid processes and concepts are introduced. Let us consider a
computational cell with a through flow, i.e. a cell with a flow channel. The flow “sees’
a certain surface area, the flow wetted surface (FWS), as it passes the cell. The FWS
may bring the flowing water in contact with other fractures, gouge material, stagnant
pools, etc. Most of these volumes can be expected to have stagnant water and mass
exchange is hence due to molecular diffusion. For a stagnant pool the relevant
diffusion coefficient may be that for pure water, while diffusion into crossing fractures
and the rock matrix may proceed with a diffusion rate that is several orders of
magnitude smaller. As above, we will call the volume with flowing water the mobile
zone and the volumes with no advection the immobile zone. Fractures and volumes
which are not in contact with the mobile zone are of course of no relevance and can be
excluded from the discussion.

b

The situation outlined in Figure 3-4 is quite complicated and does not lend itself to
direct descriptions of individual processes. In order to derive a simple model that can
be employed in large (many grid cells) 3D models, the following basic assumption
will be made:

- The immobile zones can be represented by a set of boxes, each with its own length
scale, volume and effective diffusion coefficient.

The idealised problem is illustrated in Figure 3-5. The box with the smallest length-
scale (dimension perpendicular to the mobile zone) will have the largest diffusion
coefficient and normally also the largest contact area with the mobile zone. This
volume will hence have a fast response. The actual response time can be estimated
from the length scale, /, and the effective diffusion coefficient, D, , as:

For /=107 mand D, =107"° m’/s the time is 10* s (= 3 hours). For /= 1 m and

D, =107 m?/s the time will be 10" s (30 000 years), which illustrates that both short

and long time scales may be treated within the same concept. In the following we will
call these boxes storage volumes, which thus represent an idealised view of the
immobile zones.

The next step is to devise methods to calculate the FWS, storage volumes, diffusion
coefficients, etc. Fractal scaling laws will be used in this context and as we have
adopted a multirate diffusion approach we call the subgrid model FRAME (a subgrid
model based on FRActal scaling laws and Multirate Equations). Methods to derive the
FWS are described in detail in Appendix E, and here we will focus on the properties of
the storage volumes. The following steps will determine these:

e Divide the immobile volumes, illustrated in Figure 3-4, into a number of size
groups with respect to the length-scale.

e Generate the number of fractures in each size group from a power-law with
exponent a (fractal dimension). Note that the same power-law as used for the
resolved fracture network is used also for the subgrid system. This will give the
number of fractures per m’, for the size group in question.
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e Only immobile zones in contact with the FWS can be in contact with the mobile
zone. Modify the number of fractures in each size group with respect to this
constraint.

e Assume that the aperture of a fracture is proportional to the length scale, i.e.
e, ~1". Note that for / >>/_. , it can be expected that the immobile zones are due

to fractures. For / = /_. the volumes are perhaps due to stagnant pools and it may

min °

be questionable to speak about an aperture.

e The effective diffusion coefficient, D, , is expected to be close to the molecular
value for water, D, , for the smallest volumes and then show a decreasing trend
with the length scale of the immobile zone. The following relation is assumed:

l ¥
D, =D | —
[Zmin j

By these steps the volume, contact area and effective diffusion coefficient have been
determined for each storage volume, as a function of a, y and ¥ . However, these

parameters will not be specified individually as they can be related to the “late time
slope of the breakthrough curve”; this will be further discussed in Section 4 (see also
Appendix B), where the details of the model implementation are described.

Regarding the size interval to be considered, it was shown above that a length scale of
10~ m results in a storage volume that has a response of the order of a few hours.
Smaller, or faster, boxes are probably not required, unless a very fast experiment is to
be simulated. The upper limit should be the cell size, A, as larger fractures are
normally treated explicitly in the resolved fracture network. However, A is often in
the range 1-10 metres and the largest storage volume will hence be very slow. From a
practical point of view (save computer time) the upper limit may hence be chosen with
respect to the time scale of the problem considered. Note also that fractures in the
resolved network may form dead-end systems that exchange matter with the flowing
water by molecular diffusion only.

The concepts and assumptions introduced give a very simplified view of the expected
subgrid processes. However, it should be remembered that the objective is to derive a
subgrid model that can be employed in large 3D, transient models. It is hoped that
FRAME strikes a good balance between complexity and efficiency.
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Figure 3-4. Illustration of subgrid processes and concepts.
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Figure 3-5. The assumed structure of subgrid volumes and areas.
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3.6 Transport

DarcyTools has two built-in options for transport simulation; a particle tracking
algorithm, PARTRACK, and advection/dispersion equations. The reasons why two
methods are needed are based on the following assumptions:

e Salinity. The salinity field strongly influences the flow field through the density
field. It is difficult to describe the salinity field by a set of particles and an
advection/dispersion equation is therefore the best choice.

e Temperature. The main heat flux component is conduction and an
advection/dispersion equation is hence the obvious choice for this variable. It will
further be assumed that the water and rock is always in thermal equilibrium and
only one temperature is thus solved for.

e Tracers. Simulation of tracer transport is best performed with a particle approach
as this method is free from numerical dispersion effects. It is also possible to treat
sorbing tracers (like radionuclides) with this technique.

These are the main scalars that need to be considered in applications. If additional
scalar simulations are requested a decision about the most appropriate method has to
be taken.

Transport of salt and tracers are assumed to be restricted to the water phase.
Dispersion is hence due to mixing at fracture intersections (macro dispersion) and
exchange with immobile zones (micro dispersion, as embodied in FRAME). FRAME
is hence developed for both the advection/dispersion equation (as used for salt) and
PARTRACK (as used for tracers).

3.7 Groundwater table

As was stated in Section 2, the groundwater table may determine the pressure field
deep down into the rock. Unfortunately it is not straight forward to calculate the
position of the groundwater table. From the literature two methods are available:

- The variably saturated approach, which means that the unsaturated zone is
included in the simulation and that the so called Richards equation is solved.

- Free surface approach. The main assumption of the method is that the conditions in
the unsaturated zone do not significantly affect the position of the groundwater
table.

A novel method to determine the groundwater table, which is inbetween these two, is
introduced in DarcyTools. The basic idea is as follows: If a simulation like the one in
Figure 3-6 is performed without taking any notion of the groundwater table a certain
pressure distribution results. A surface with atmospheric is calculated, but pressure
gradients and hence a horizontal flow is calculated above this surface; this is obviously
not correct. The key feature of the method is to prevent the horizontal flow above the
surface of atmospheric pressure by simply reducing the horizontal conductivity. This
is done in an iterative manner, meaning that the position of the atmospheric pressure is
determined and horizontal conductivities are recalculated (note that if a rising surface
is calculated, the horizontal conductivities below the surface should be restored to the
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fully saturated values). It can be shown, see Report 2, that this method gives a steady
state groundwater table that is in agreement with available analytical solutions.

The transient problem introduces a new feature; if the groundwater table is lowered a
delayed drainage of the volumes above the water table will occur. A significant
amount of water can be released and affect the position of the water table. In
DarcyTools this specific yield effect is described by a source term in the mass balance
equation:

0, =k, V, (1) [m'ss]

av,
dt

=-0,

where ¥, is the volume of drainable water at time 7 and &, a time constant for the

drainage. We thus keep track of the drainable water in each cell above the water table
and let this water be transported, by gravity, down to the water table. In the
Verification and Validation report, it is shown that this approach gives results that are
in fair agreement with available analytical solutions.

ZERO FLUX
,,,,,,,,,,,,,,,,, ZERO FLUX
HYDROSTATIC
PRESSURE B O
RN I W HYDROSTATIC
I Rl PRESSURE
ZERO FLUX

Figure 3-6. Illustration of concepts used for determination of the groundwater table.
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3.8 Porosity and state laws

Finally, we will briefly review some assumptions related to the properties of the media
and fluid.

The porosity field is based on the porosities ascribed to the conductive elements. In the
analysis of the resulting porosity field it is however of interest to also characterise the
porosity as based on the volume of the computational domain. For this reason the
following definitions will be used:

- 0, is the porosity based on all generated fractures, including isolated fractures or
clusters of fractures.

- 6. is the connected part of &, i.e. isolated fractures and clusters have been
removed.

- 0, isthe part of 6, that has a significant flow, i.e. stagnant volumes have been

removed.

0, requires a definition of what should be called "stagnant volumes". The definition to

be adopted here is:

- If the stagnant parts of the kinematic porosity field are neglected, i.e. the porosity
1s put to zero, this should result in a reduction of the flow through the domain that
is smaller than 1%. This should be fulfilled for pressure gradients in all three
coordinate directions.

These porosity measures will be further analyzed in Section 7.3. Other media
properties are flow wetted surface and storativity. Also these will be calculated as grid
cell data, based on the ascribed values to the conductive elements. In the fracture
network the conductivity of conductive elements is specified; this because input data
are often given as a transmissivity, 7, and a thickness, b, and the conductivity is then
T'/b. In the simulation model the permeability is however used as the influence of
fluid properties needs to be taken into account.

State laws for water that take into account the effects of pressure, temperature and
salinity are very complex indeed. For the present range of applications, it is expected
that the following assumptions are adequate:

- Density is linearly and quadraticly (i.e. two terms) related to both salinity and
temperature.

- Viscosity is linearly and quadraticly (i.e. two terms) related to temperature.
- Specific heat of mass is linearly and quadraticly (i.e. two terms) related to salinity.

As the user will have access to the coefficients of these relations, details in next
section, it is expected that it will always be possible to tune the relations to a specific
application, with a high degree of accuracy.
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4 Mathematical formulation

4.1 Introduction

As all concepts and assumptions have been discussed, the equations can be presented
without lengthy discussions.

First the conservation and state laws will be presented and then, as in the previous
sections, various features will be dealt with; now with focus on the mathematical
formulation.

4.2 Conservation and state laws
Conservation of mass:

opld 0O 0 0
%+a(pu)+§(pv)+g(pw)=Q (4-1)

where p is fluid density, @ porosity, u, v and w Darcy velocities and Q a source/sink
term. The coordinate system is denoted x, y, z (space) and ¢ (time).

Mass fraction transport equation:

opoC 0 aC
== 4 = | puC—pyD —
o o\ TP 8xj
+i pvC — p;/DVE (4-2)
oy SOy
+ 2 pr—sz%j:QﬁQc
0z Oz

where C is transported mass fraction, D,_, D, and D, the normal terms of the diffusion-
dispersion tensor and Q. a source/sink term. When C is salinity, the source term

represents the exchange with immobile zones and Q. is determined by the subgrid

model FRAME. Note that the diffusion coefficients are the effective coefficients that
include the porosity, see further explanation in connection with Equation (4-11) below.
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Conservation of heat:

06T 2(=0)T

P or
0 oT
+ Y pue m-2
ox PG T ox j
0 or (4-3)
+—| pve, T -4, —
oy r )
+i pwe T—/lz(a—Tj: 8pu+8pv+8pw c,T+0;
Oz i Oz ox o oz )7

where A, A and A are the normal terms of the equivalent (i.e. rock with fluid)

thermal conductivity tensor, c is the rock thermal capacity and c, the specific heat of
the fluid and @, a source/sink term. We are hence only solving for one temperature,

assuming thermal equilibrium between the rock and the water.

The mass conservation equation is turned into a pressure equation under the well
known Darcy’s assumption:

u——Kxa—P

p g Ox
K

pv=——ya—P (4-4)
g
K, oP

pw=——=—=K.(p-p,)
g oz

where K., K, and K. are the local hydraulic conductivities in x, y and z direction, g the
gravity acceleration, p, a reference fluid density and P the dynamic fluid pressure

relative to the reference hydrostatic pressure.

P=p+pgz (4-5)

where p is the total pressure. The hydraulic conductivity, K, is related to the
permeability, k, by the relation.

K= ”Tgk (4-6)

where u is dynamic viscosity.

The fluid properties like the dynamic viscosity, u, the density, p, and the specific
heat, ¢, are given by state laws:

ﬂ:ﬂo[ual(T—TH)+a2(T—TH)2T” 4-7)
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p=p0[1+a15+a232—ﬂl(T—Tp)—ﬁz(T—Tp)z] (4-8)

¢, =, (14D S+b, %) (4-9)
while the porosity € and the compaction, y, of the matrix are given the following
dependencies:

0=0,y (4-10)

y=1+(c/6,) (P-F)/pg (4-11)

In the above formulas S represents the salinity (salt mass fraction), 6, a reference

porosity field given for a reference pressure field Py and o the specific storativity
field. n, a, b,a, B, ty, Py, Cpo, T, and T, are constants.

In the advection/diffusion equation (4-2), it is common to write the diffusion
coefficient as D, ,, where D, , is the molecular diffusion coefficient. In DarcyTools

mol >

we choose to write the term as 6D, , =6,y D,

mol

=yD, where D is now the effective
diffusion coefficient. The reason is that it is the effective diffusion coefficient that is
specified for a conductive element and the GEHYCO-algorithm will hence deliver
effective diffusion coefficients for cell walls. When a porous media case is simulated
and the diffusion coefficients are specified, one thus needs to remember that it is the
effective coefficients that should be given.

4.3 Fractures and fracture network

The relations to be discussed below are not an integral part of DarcyTools as they can
be altered based on site specific information. It is hence more an illustration of the
input data required. The relations given are largely based on data from Aspd HRL.

transmissivity and porosity, are taken from a recent evaluation/ compilation
(Appendix F). This compilation is far from exhaustive or complete, but is what is
presently available. The following summarises the main relations:

- Transmissivity-fracture size:

_5 2 2
T:{m (1/100) [m? /5] for1 <100 metres @12)

107 [m2 /s] for/ > 100 metres

where 7 is transmissivity and / fracture size. The coefficients of this relation are
accessible to the user and it is also possible to include a random term in the relation,
see Report 3 for details.

- Transmissivity-transport aperture: Based on empirical relations and the cubic law
it was found that the transport aperture, e, , can be estimated as:

e, =2.0T"° (4-13)
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- Fracture size-thickness: Field data from Aspd HRL indicate that a fracture
thickness, b, of 1% of the fracture length is a good choice. The fracture thickness is
defined to include the flow channel, the gauge material, parallel flow paths, etc. It
1s hence often one or two orders of magnitude larger than the aperture. The
kinematic porosity, 7, is calculated from e, and b (n = e, /b).

- Diffusion coefficients: Molecular diffusion in a conductive element should be
proportional to the product of the transport porosity and the diffusivity value in the
pore water (Neretnieks, 1993). The proportionality constant is related to the
properties of the pore space (constrictivity and tortuosity). In the simulations
carried out in this report, we will simply assume that the diffusion coefficient for a
conductive element is equal to the product of the kinematic porosity and the
diffusion value in pure water.

characterise the fracture orientation at Aspd. In DarcyTools fracture sets of different
orientations can be generated and the spread around these orientations is governed by a
Fisher distribution (see Appendix D).

For a length interval, d/, we then get:

n=1I* [”‘”] —(L] /a (4-14)
lref lreff

where 7 is the number of fractures per unit volume, I the intensity, /,,, a reference

length (=500 m) and a, the power law exponent, put to -2.6 (see LaPointe et al.,

1999). At Aspé the intensity was determined to 10~ by generating fractures in the
interval 320 to 1 000 metres and compare the number with the number of deterministic
fracture zones in the Laboratory domain. The intensity chosen gives 10 to 15 (different
realisations) fracture zones in the length interval which can be compared to 12
deterministic fracture zones.

thickness, b. DarcyTools can apply a varying thickness, and hence properties, for a
limited number of major fracture zones. A correlation structure can be specified for
each of these zones by a method described in Appendix C.

44 FRAME

We will now return to the subgrid model FRAME described in Section 3. The
influence from the immobile zones on the mobile concentration of a tracer is given by
the source/sink term Q. in Equation (4-2). Before Q. can be specified some further

developments of the ideas introduced in Section 3 are needed.

The starting point is the representation of the immobile water in storage volumes, as
outlined in Figure 4-1. To simulate the mass transfer within a storage volume one
needs to solve a 1D diffusion equation. However, as has been shown by Haggerty and
Gorelick (1995), it is possible to simulate the transport within the storage volume by a
series of boxes that exchange matter with the kinematic volume; see Figure 4-1. Using
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this approach the term Q. (in Equation 4-2) and the equations for the boxes will take
the following form:

G(Cim),
QC=—§ﬂ,- - (4-15)
a(Cvim)/' .
o Za«,(C—(Cl-m)_,.)» j=12,.N (4-16)

where S, represents the capacity ratios, o ; the first order mass transfer coefficient
and (C

. )j , the tracer concentration in the immobile water represented by box j. The
N

total capacity f,| = Z B; | 1s equal to the volume ratio between the immobile and
j=1

mobile zones (for a non sorbing tracer). For "layered diffusion", which is the situation
when a storage volume is in contact with a kinematic volume, Haggerty and Gorelick
(1995) give the following expressions:

(2j-1)'n* D,

o, = i = 4-17)
8
Bi=——=558 (4-18)
(2/-1)

where D, is the apparent pore diffusion coefficient and a the linear dimension of the

storage volume. For further details about this "multi-rate model of diffusion", see
Haggerty and Gorelick (1995).

As discussed in Section 3, FRAME is based on a power-law formulation. The main
argument for this is that the fractal properties of the subgrid fracture network should
be the same as for the resolved network. The use of a power-law formulation does
however also support a further development of the model.

¢ As mentioned, all storage volumes are represented by a series of first order
capacity boxes. When all storage volumes have been represented, the continuous
distribution of capacities is also a power-law. This can be shown both numerically
and analytically.

e It can further be shown that the slope of this distribution is related to the late time
slope of the breakthrough curve, £.
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Figure 4-1. Illustration of how a storage volume is simulated as a series of first
order boxes.

e In Section 3 the properties of the storage volumes were stated to be a function of
three parameters: a, y and ¥ . It can be shown, see Appendix B, that these are

related to & as follows:

_a-y-2¥+1
2-¥

k (4-19)

These developments form the basis for the implementation of FRAME.

We will now return to the source term O, (Equation 4-15) and see how FRAME is

specified for an advection/diffusion equation like (4-2). Let us further assume that C is
salinity in this equation. The parameters that specify the model are:

e [, the volume ratio between the immobile and mobile zones.

e o . and « the minimum and maximum mass transfer coefficients. Note that

min max

these specify the length interval of the storage volumes considered as
a, =D, /I anda, =D, /I’ ,where D  isthe molecular diffusion

min mol mol min ?

coefficient and /_,

X

ax

and /. the maximum and minimum lengths of storage

volumes.

e [k, the late time slope of the break-through curve. k determines how S, is
distributed over the spectrum of mass transfer coefficients.

In the numerical implementation a few more parameters need to be considered:

e n,,the number of « -intervals that the total spectrum should be divided into.

e The FWS is also needed to consider in applications were a cell to cell variation of
FWS is taken into account. The method employed is to calculate a f, that varies

from cell to cell. This is done by using FWS/vol  (where vol, is the volume of
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the mobile zone) as a weighting factor and then ensure that the global mean of S,
has the prescribed value.

Thus:

—  (FwsS FWS
Bcan = Bican [ j / [ ] (4-20)
1l cell

vol vol

m

where overbars indicate a global average.

4.5 PARTRACK
The particle tracking routine in DarcyTools is called PARTRACK.

PARTRACK has two basic modes of operation; the first is the traditional way of
moving the particle along the local velocity vector, while the second method uses the
so called “cell-jump” approach. The second approach is believed to be more
appropriate for transport in a fracture media and is therefore described in some more
detail:

e A particle entering a scalar cell will, if no dispersion effects are activated, travel
through the cell in a time which is equal to the free volume of the cell divided by
the flow rate through the cell (a so called plug-flow). If dispersion effects are
active the travel time will however be different and will also be different for
different particles.

e When the particle is ready to leave the cell, it will leave through one of the cell
walls that have an outgoing flow direction. The choice between cell walls with an
outgoing flow is made with a likelihood that is proportional to the outflows. If
several particles are traced, the cloud will thus split up in proportion to the flow
rates. Complete mixing in a cell is hence assumed.

It should be noted that no time is spent when moving from one cell to the neighbour.
Next we will discuss some details about the two points above.

When the particles are travelling through the cell, the retardation due to matrix
diffusion, sorption and Taylor dispersion need to be accounted for. The concept of
particle states is used to simulate these processes. As an illustration let's outline how
Taylor dispersion can be simulated. If the velocity profile is described as a number of
layers, each with a certain velocity, we identify these layers as the different states a
particle can be in. If correct frequencies can be ascribed for moving to a neighbouring
layer, it is realised that particles will experience different velocities when travelling
through the cell and a Taylor dispersion effect will result. If we further should like to
account for sorption on the fracture walls a particle state is also needed for this
process. We also need to find out the frequency by which a particle will leave the
velocity layer close to the wall and enter the "sorbed state" and also the frequency by
which it will go back.

PARTRACK uses FRAME to account for matrix diffusion and sorbtion processes.
The parameters introduced for FRAME applies also to PARTRACK. However, as
PARTRACK can also handle sorbing tracers we need to introduce the retardation
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factors for the mobile, R, and immobile zone, R,,. These will affect the FRAME

m >

parameters as follows:

R . . .
o [ =p —" where £ isthe volume ratio for a non-sorbing tracer.
t n R n

m

e a,,=D,, /(lriax Rim)

e « :Dmol/(lz R)

max min " Yim

If Taylor dispersion is simulated by PARTRACK a “cross diffusion coefficient”,
fxdift, needs to be specified. A parabolic velocity profile is assumed and fxdift is then
equal to the diffusion coefficient divided by the square of the aperture.

4.6 Finite volume equations and solver

CFD (Computational Fluid Dynamics) methods transform the differential equations
into algebraic ones, which can be solved by a computer and a computer program.
DarcyTools uses the so-called finite volume method, which can be thought of as
having three well-defined stages:

1) Discretize the computational domain into a number of cells, which fill entirely the
domain.

2) Integrate each differential equation for each cell, to yield an algebraic equation.
3) Solve the resulting set of algebraic equations.

The differential equations were given in the previous sections. After the integration,
step 2 above, an algebraic equation of the following type results:

a,®@p =a, Py +a,0; +a;Pg +ayOy +agPy +a; P+ (4-21)
where @ denotes the variable in question, a coefficients and S, source terms. For
further details see Appendix A.

It is equations of type (4-21) that are solved by the solver MIGAL (see Appendix A);
in fact MIGAL can solve linked systems of this kind of equations, a feature that is
used for the pressure-salinity coupling in the present set of equations.
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5 Confidence building

5.1 Some definitions

During the last twenty years CFD (Computational Fluid Dynamics) has become a
standard simulation tool in most engineering problems, dealing with groundwater flow
and transport. This development has been driven by readily available software
packages and the significant increase in affordable computer speed and memory
capacity. CFD is however not a simple technique to use; generally speaking a basic
understanding of several subjects like fluid mechanics, numerical analysis and
computer software programming is required. For groundwater modelling an
understanding of geohydrology is of course also needed. In an ongoing project,
ERCOFTAC (Casey and Wintergerste, 2000), guidelines for CFD simulations are
discussed and summarised. Partly based on this report, the following main sources of
errors and uncertainties in groundwater simulations can be identified:

e Mathematical model. The mathematical model does not describe the real flow
exactly. For example, in textbooks the approximations inherent in the Darcy
equation are often analysed and listed. Another often used approximation is that
the water is incompressible.

e Discretisation. Numerical solutions are performed on a grid in space and time.
The difference between the solution on this grid and the exact solution of the
modelled equations is called the discretisation error.

e Convergence and round-off errors. Typically a CFD simulation involves
iterative procedures. Convergence errors occur because these iterations are stopped
by a certain criteria before they are completed. Round-off errors are due to the
limited number of digits when a number is stored in the computer memory.

e Application uncertainties. This includes uncertainties about the geometry of the
domain (for example a fracture network), boundary conditions, fluid properties,
etc.

e Code errors. It is difficult to get software “bug-free”.

e User errors. These are the errors that result from misstakes or carelessness by the
user.

More points could have been listed (errors in postprocessing, interpretation of results,
etc) but the list given probably gives the most important ones. In this context it may be
of interest to refer to the following definitions (from ERCOFTAC):

Error: A recognisable deficiency that is not due to lack of
knowledge.

Uncertainty: A potential deficiency that is due to lack of
knowledge.
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As the present report will deal with flow and transport in a fractured rock, one should
view the points given from this perspective. The significance of the different points
may still vary depending on the modelling approach chosen and the problem studied.
Here we concern ourselves with a fracture network, as represented in a continuum
model. All of the above discussed errors and uncertainties may still be relevant to
consider and it is not easy, in the author’s view, to neglect (or set priority to) any of
the points. For the modelling approach chosen it is however expected that the
“quality” of a simulation is strongly dependent on how well the fracture network is
represented in the continuum model. The fracture network is however only partly
known (geometry, properties, etc) and we therefore need to consider the uncertainty
introduced.

The question whether a computer code is credible or not and methods to answer this

question are given in a recent issue of the AIAA journal (AIAA, 1998). Based on the
papers presented, Table 5-1 has been created. The table is an attempt to illustrate the
actions involved in the confidence building process. A few comments to the table:

e The order (from top to bottom) is essential. It is not possible to achieve
certification without having demonstrated verification and validation.

e There is a consensus in the literature about the definitions of verification and
validation. Additional steps and actions in the confidence building are still open to
discussion.

e Some authors emphasise that it is important to distinguish between confidence
building in a computer code and in a specific application. Related to this issue is
the concept “fitness for purpose”. It is for example of little value to have a very
accurate numerical solution if the algorithm is so slow that the code is impractical
for its intended use.

Table 5-1. Processes and actions involved in confidence building.

C Process Definition Action

Q)

N Verification Demonstrate that | Comparison with

F the equations are | analytical solutions

i) solved correctly. and other models.

E Validation Demonstrate that | Comparison with

N the right equations | measurements

C are solved. (laboratory and

E field data).
Certification Assess whether the | Evaluate software

B right things are construction and

Y done and whether |working

I they are done procedures.

L right.

D

I More (QA-systems, wide range of applications, publications

1(\1; v in international journals, etc)
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5.2 Verification of DarcyTools

The verification cases performed can be found in Report 2 and are summarised in
Table 5-2.

All cases tested show “good result”, i.e. the comparison with the corresponding
analytical solution, or another model study, is satisfactory; the reader is referred to the
report to study the details.

A few words may however be needed to explain the objectives when selecting the test
cases and the way the comparisons have been carried out.

- The test cases should include one, two and three dimensional, steady and transient
cases.

- A wide range of relevant physical processes should be included, i.e. density
stratification, unsaturated zones, storativity effects, etc.

- The representation of fractures in a continuum model is a key feature of
DarcyTools and should be well covered by the test cases.

Some verification studies described in the literature are focused on grid refinement
studies. Here the listed objectives have however been considered to be more important
with the “fitness for purpose” argument in mind.
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Table 5-2. Compilation of verification cases.

Group

Case

Comment

A. Numerical methods

Al. One dimensional transient
diffusion

A2. One dimensional steady
advection/diffusion

A3. Flow through a complex
channel

A4, Tests of grids

AS. Test of pressure-salinity
coupling

This group of cases intends to
show that the numerical methods
work as expected

B. Porous media

B1. Regional groundwater
circulation

B2. Steady ground-water table
B3. Theis problem

B4. Transient pressure in a
borehole

BS. Specific yield, Neuman
(1975)

B6. Horizontal well problem

This group considers some
classical geohydrological
testcases

C. Fractured media

C1. Three fractures in a two
dimensional domain

C2. Intersecting fracture zones
C3. Single fracture in a box
C4. Many fractures in a box
C5. Percolation theory

C6. Diffusion in a dead-end
fracture

C7. Matrix-fracture temperature
problem

This group of cases deals with
the representation of fractures in
a continuum model

D. Transport and dispersion

D1. Taylor dispersion

D2. Break-through-curve,
PARTRACK

D3. Break-through-curve,
adv/diff egn

D4. Seven fractures in a 2D
domain, PARTRACK

D5. Three fractures in a 2D
domain, PARTRACK

Dé. Single fracture in a box,
PARTRACK

This group considers transport,
retention, dispersion and particle
tracking cases.

E. Buoyancy effects

El. Henry’s problem
E2. The salt dome

E3. Coupled temperature-
salinity fields

E4. Upconing
ES5. The floating island
E6. Two fluid problem

This group considers
comparisons where density
stratification, due to salinity and
temperature gradients, is a key
factor.
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5.3 Validation of DarcyTools

As validation should be concerned with comparisons with measurements and this
report describes version 2.1 of DarcyTools, it is not surprising that very few such
comparisons can be reported at this stage. However, as discussed in Section 1, it is
relevant to include cases that were carried out with PHOENICS as the equation solver,
as it has been carefully evaluated that the two solvers give very similar solutions. Note
that the descriptions of the fracture network (GEHYCO) and other descriptions of
physical processes are in most respects the same in the PHOENICS cases to be
discussed, as in the present version of DarcyTools.

For simulations of flow and transport in a fractured rock, it is difficult to separate the
steps “validation” and “calibration”. To discuss this we first need to define
“calibration” (following AIAA, 1998):

e Calibration is the process of tuning a code, in order to improve its prediction of
global quantities, for realistic geometries, of design interest.

If we require that validation studies should be concerned with comparisons with field
measurements, we also need to accept that these measurements are obtained in
conditions that are to a large extent unknown. We do not know the fracture network
(its geometry, fracture properties, boundary conditions, etc). In the author’s view, we
therefore have to accept the following tentative definition of validation:

- For the flow and transport in a fractured rock, validation of a simulation can be
claimed if calibration can be performed with all adjustable parameters within
realistic limits.

This definition immediately raises the question “what is realistic limits?”. For major
fracture zones we may be able to define bounds for properties (thickness,
transmissivity, porosity, etc) and these bounds then define the “realistic limits”.
However, for most applications properties and boundary conditions can not be given
with error bounds and we have to accept the admittedly weak definition given.

Validation cases are described in Report 2 and summarised in Table 5-3. As can be
seen the validation cases are taken from calibration studies in various projects. We
thus follow the definition of validation given above.
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Table 5-3. Compilation of validation cases.

Case Project (Reference) Comments
A site scale validation Impact of the tunnel Calibration focuses on:
(Case V1) construction on the - Groundwater table

groundwater system at
Aspd. Task #5 Svensson et
al. (2002).

- Pressure in boreholes
- Kinematic porosity
- Water composition

Code: PHOENICS

A laboratory scale
validation (Case V2)

A laboratory scale analysis
of flow and salinity
distribution in the Aspd
area, Svensson (1999).

Calibration focuses on:

- Fracture
transmissivities

- Pressure in boreholes

- Conductivity
distributions

Code: PHOENICS

A repository scale
validation (Case V3)

Prototype Repository
Groundwater flow, pressure
and salinity distributions
around the Prototype
Repository. Continuum
model Nol, Svensson
(2001).

Calibration focuses on:

- Tunnel inflows (skin)

- Pressure in boreholes

- Conductivity
distributions

Code: DarcyTools

An experimental scale

Simulation of tracer

Calibration focuses on

validation (Case V4) transport considering both |- PARTRACK
experimental and natural, |- Sorbing and non-
i.e. long, time scales, sorbing tracer retention.
Svensson (2003).
Code: DarcyTools
5.4 Concluding remarks

It is clear from this section that the process of confidence building is complex and
involves many aspects. The bottom line is if a particular simulation is credible or not.
The computer code, and its verification and validation, is of course a key factor when
credibility is judged, but the user of the code is also important. CFD simulations are
still far from routine calculations and the modeller normally takes a number of
decisions when formulating the problem conceptually and mathematically. The
“credibility of the modeller” is hence also factor to consider.
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6 ASITE-LABORATORY-EXPERIMENTAL
SCALE DEMO

6.1 Introduction

In the section on Confidence Building it was noted that DarcyTools, for obvious
reasons, has not been widely tested in real world applications. The application to be
discussed in this section has similarities with the conditions at Aspdé HRL, but is
generic in nature; it will hence not add to the validation studies reported. Instead the
objective is to show some of the features and capabilities of DarcyTools in a realistic,
but generic, application. The reason for keeping the demo generic is that the
description of input data and results can be brief, as we can not discuss these in
relation to field data.

The situation studied is outlined in Figure 6-1. It is a coastal site, with seawater of a
brackish nature (salinity of 1%). We assume a certain precipitation on land and we
hence have a density stratification to take into account. Two hills give a certain
topography on land. A tunnel, with a certain inflow, will be placed below the small
island in the laboratory volume shown in the figure. The focus of the analysis will be
on the effects of the tunnel. The situation has a clear resemblance with the Asp
region. The fracture system will however be much simpler in this demo, as compared
to the detailed information available for Aspé HRL. Four major fracture zones, shown
in Figure 6-1, are assumed to represent the deterministic system. Random fractures
will be generated to build a working fracture network.

It should be mentioned that the set-up of this demo in DarcyTools will be used as a
worked example in the User’s Guide (Report 3).

6.2 Problem specification

A summary of the problem specification is given in Table 6-1. It is not the intention to
give a complete account of the input data; this is considered to be outside the scope
(the specification of the fracture network would be lengthy, for example). A few
comments may be needed as a complement to the key features in the table (see also
Figure 6-1):

¢ Domains. The site model covers the whole domain, while the laboratory model is
located below the island. The first of these two grids are of the BFC:s type
(follows the topography), while the second grid is a cartesian one. The
experimental model is placed in the laboratory model, but outside the tunnel area.

e Properties. Porosity is specified for each fracture and fracture zone. The diffusion
coefficient is given a value of ten times the value for molecular diffusion for salt;
this process is hence insignificant. Transmissivities, orientations, etc for the
random fractures are set according to the values found appropriate for Aspd HRL.

¢ Random fractures. When the fracture network for the site domain is generated,
random fracture in the interval 20 — 1000 metres are generated. Those random
fractures that intersect the laboratory volume are imported as deterministic
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fractures to this domain. Random fractures in the interval 10 - 20 metres are then
added. The same procedure is repeated for the experimental volume; now with all
fractures larger than 10 metres as deterministic and random fractures in the interval
2 — 10 metres.

6.3 Results

Some sample results will be presented for the situation with the tunnel present.

In Figure 6-2 a vertical section showing the salinity field can be found. The salinity
fields show the typical fresh water lenses below land and the island. The upconing of
salt water below the tunnel is also worth noting.

Next we study the flow field around the tunnel, see Figure 6-3. Two horizontal planes,
roughly 100 metres above and below the tunnel, are shown. The lines formed by the
vectors indicate fracture zones that supply the water flowing into the tunnel.

Finally the pressure field on the boundaries of the experimental volume is illustrated,
see Figure 6-4. The blue colour indicates low pressure, which is generated by the
tunnel.

6.4 Concluding remarks

The most important feature demonstrated in this application is probably the three fully
coupled grids. The site domain covers a volume of 2 x 2 x 1 km’, while the resolution
in the experimental domain is 2 metres. The demo also demonstrates some important
DarcyTools features like sections with prescribed inflow or skin, etc.
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Figure 6-1. Situation considered (top) and deterministic fracture zones.
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Table 6-1. Summary of problem specification.

Domains and grids

Site: 2x2x1km
NX =100, NY =100, NZ = 50,
A =20

Laboratory: 500 x 500 x 300 m’
NX =50, NY =50, NZ = 30,
A =10

Experimental: 100 x 100 x 100 m’
NX =50, NY =50, NZ = 50
A =2

Properties

- Deterministic zones according to Figure 6-1,
Transmissivity = 10 m%/s

- Random fractures
Site: [=20—>1000 m
Laboratory: /=10 — 20 m

Experimental: /=2 —> 10 m
- Diffusion coefficients: 107 rnz/s, constant

- Porosity: 10~ , constant

Boundary conditions

Top: Precipitation on land , 50 mm/year
Pressure and salinity fixed below sea

Vertical boundaries: Zero flux when
boundary on land,
prescribed pressure
and salinity when
below sea. Fixed
salinity at bottom
boundary.

Tunnel : Three tunnel sections are defined; two
with a prescribed skin (= 0.01) and one with a
prescribed inflow (= 1 I/s).

Groundwater table: As part of the simulation the
groundwater table is calculated. The specific yield
feature is not activated as we are only considering
the steady state.
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Figure 6-4. Pressure field on the boundaries of the experimental volume. Blue colour
indicates low pressure.
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7 lllustration of some key concepts

71 Introduction

Several development projects proceeded the present report on DarcyTools. A number
of fundamental issues dealing both with flow and transport in fractured rocks and
numerical modelling techniques were addressed. It is not possible to include these
studies in the present report, but a brief review of some key results is within scope.
The reason for reviewing these related studies is that they illustrate the concepts used
and highlight some aspects of DarcyTools that are believed to be essential for a
groundwater code.

The laboratory model of Aspd HRL, see Section 1, will be used for the simulations as
we going to illustrate features that are believed to be important in real world
applications.

7.2  Spatial and temporal discretisation errors

In this section results that show the magnitude of the discretisation errors, that can be
expected in a real world application, will be presented. As we are interested in general
trends and results, the estimated magnitudes will be based on the average of ten
realisations of the background fracture network. This will also give a perspective on
the discretisation error, as it can be compared to the variations due to different
realisations.

It was stated in Section 3, that the smallest generated fracture size should be of the
same size as the grid cells, i.e. / . ~ A . In a grid independence study, it is however

preferable to keep all parameters the same, except for the studied parameter A. For
this reason /_. is equal to 3 metres when flow rates are studied and 10 metres in the

n

transport simulations.
Flow and Pressure

As a background to the grid independence study some general characteristics of the
fracture network will be discussed. It was stated in Section 3, that an underlying
assumption of the present method to represent a fracture network is that “large
fractures are more important for the flow rate than small ones”. In Table 7-1 some
calculations of the mean block, or domain, conductivity in the West to East direction
are shown. As can be seen the block conductivity does not change a lotif /_. is 5, 10

will be put to 3 metres, which ought to ensure that

or 15 metres. In the following /.
all fractures important for the flow simulation are included. Table 7-1 also shows that
the block conductivity changes more when A is changed; this aspect will be analysed
in detail below. Table 7-2 shows the block conductivity in different realisations for
three of the values shown in Table 7-1. Different realisation can clearly result in rather
different block conductivities. Block conductivities with only the major deterministic
fracture zones present are shown in Table 7-3. There is no stochastic element in these
simulations and there is hence no need for several realisations. Some grid dependence
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is found for the South to North direction, while the two other directions show very
little sensitivity to variations in A. We may also note that, for the West to East
direction, the block conductivity is 30-50 % of the block conductivity shown in Table
7-1. The major fracture zones and the background fracture network thus have about
the same significance for the flow rate.

The block conductivities in the West to East direction, as a function of A, are shown
in Figure 7-1. Ten realisations of the background fracture network were generated to
get the average values shown in the figures; / . was equal to 3 metres in all

calculations. In the figure two graphs are shown. In the top one block conductivity is
shown as a function of N, , the number of cells in the coordinate direction studied.

This curve shows that the block conductivity approaches a certain value in an
asymptotic manner; this is the normal behaviour in grid refinement studies. The lower
figure shows the same data, but expressed as a function of A. The advantage of this
representation is that it is possible to extrapolate the curve to A = 0.0, and hence get
an estimate of the discretisation error. At this stage we will only note that the error is
around 10% (from extrapolation) for the solutions with A =3 metres.

Some illustrations of what happens when A is varied are given in Figures 7-2, and
7-3. In the first figure, the flow and pressure distributions for a mean pressure gradient
from West to East are shown. The general impression from these figures is thata A
equal to 3 metres resolves the major fracture zones (deterministic and stochastic) with
high accuracy. For A =10 metres some of the details in the flow distribution are lost.
One may also note that the pressure distributions are rather similar for A =3 and 10
metres. Figure 7-3 shows the conductivity fields for A =3 and 10 metres. The smaller
A gives a fairly detailed picture of the fracture network.

47



Table 7-1. Block conductivity for a pressure gradient in the West to East

direction, for various /i, and A.

[ Conductivity x 107 (m/s) for various A (m).
5 10 15 20

5 0.66 0.84 1.00 1.17

10 0.66 0.81 0.97 1.14
15 0.66 0.81 0.97 1.13

20 0.61 0.76 0.93 1.07

Table 7-2. Block conductivity for a pressure gradient in the West to East
direction. Ten realisations based on /i, = 5 metres and variousA.

Realisation Conductivity x 107 (m/s) for various A (m).
5 10 20
1 0.76 0.94 1.20
2 0.66 0.83 1.06
3 0.63 0.79 1.04
4 0.57 0.74 1.01
5 0.65 0.78 1.03
6 0.59 0.83 1.18
7 0.56 0.75 1.02
8 0.59 1.06 1.08
9 0.87 0.92 1.36
10 0.71 0.77 1.21

Table 7-3. Block conductivity in the three coordinate directions with only major
deterministic fracture zones present, for various A.

Direction Conductivity x 107 (m/s) for various A (m).
3 5 10 15 20
West-East 0.30 0.31 0.31 0.32 0.33
South-North 0.80 0.85 0.98 1.10 1.22
Low-High 4.26 4.22 4.23 4.22 4.26
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Figure 7-1. Block conductivity in the West to East direction as a function of the
number of cells in the coordinate direction (top) and as a function of A.

(—) All fractures included.

(-------- ) Only major fracture zones.
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Figure 7-2. Flow and pressure distribution for a mean pressure gradient from West to
East. Pressure distribution shown with 20 isolines. A =3 metres (top) and 10 metres.
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Figure 7-3. Conductivity fields for A =3 metres (top) and 10 metres. All
conductivities larger than 107 m/s shown.
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Transport and Dispersion

Estimating the discretisation errors when simulating a tracer pulse that moves through
the domain is more difficult, as we then have to consider the errors both in space and
time. In order to simplify the analysis only flow in the West to East direction will be
considered. As the flow simulations further indicate that A > 10 metres produce quite
“smeared” solutions, only A =3,5 and 10 metres will be discussed.

The following situation is studied. In a steady flow field a tracer marks the water at the
inlet (Western) boundary during a period of one year. After about fifteen years the
pulse leaves through the Eastern boundary.

A typical breakthrough curve is shown in Figure 7-4. It is the concentration at the
outlet, in fracture zone NEI, that is shown in the figure. The tracer will leave the
domain through several fractures but the maximum flux is expected through NE1.
Regarding / . it was argued in Section 3 that a good choice is to put it equal to A.

However in a grid refinement study it is preferable to keep the geometry fixed and
only vary A. For this reason /. will be put to the largest A, i.e. 10 metres, in the

n

following calculations.

In the grid refinement study, we will use the maximum concentration at the outlet as a
simple description of the breakthrough curve. The main result of the exercise is given
in Figure 7-5. The smallest time step use, 0.25 months, is seen to be close to the time
step independent solution (from an extrapolation). It is also interesting to note that A
=3 and 5 metres give very similar results. Hence, with A = 3 metres and Az = 0.25
months, we are probably close to a grid independent (in space and time) solution. The
At : s discussed are of course related to the mean transport time, and hence to the
prescribed mean head gradient.

In Figure 7-6 the tracer distribution after ten years is shown for two A. As can be
seen, the main characteristics of the plume are quite well described in both grids. The
breakthrough curves for the smallest time steps used are given in Figure 7-7. Also this
figure indicates that A = 3 metres resolves the transport problem with acceptable
accuracy. The main difference between the three curves is the arrival time for the peak
concentration. This difference is due to the increase in flow rate with A, as discussed
above.

A concluding comment on the discretisation errors in the transport simulations shown
may be in place. The breakthrough curves in Figure 7-7 mainly differs in the arrival
times, which can be explained by the increase in flow rate with A (as discussed
above). The peak value and the shape of the breakthrough curves are however very
similar. This is a strong indication that the grid representation of the flow and porosity
fields is based on sound principles. The flow field looks quite different for A =3 and
10 metres (see Figure 7-2) and the grid representation of the porosity fields is smeared
in a similar way as the conductivity field (see Figure 7-3). Still the transport problem
is solved in a similar way in both grids.
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Figure 7-4. Breakthrough pulse through NEI at the outlet boundary.
A =5 metres, At =1 month
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Figure 7-5. Maximum concentration in fracture zone NE1 at the outlet plane, as
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Figure 7-6. Tracer distribution after ten years.
A =3 metres (top) and A =10 metres
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Conclusions

The objective of the work presented has been to estimate the discretisation error, in
space and time, in simulations of flow and transport in a realistic fracture network.
This has been done for a test case with a prescribed mean pressure gradient in a
coordinate direction. The block conductivity and transport characteristics for such
situations have been studied for a range of grid cell sizes, A, and time steps, At .

From the study the following main conclusions can be formulated:

e The space resolution, A, should be of the order of 1%, or smaller, of the domain
size. For the test case studied the error, i.e. the difference between the actual and
the estimated grid independent solution, in the block conductivity may then be
around 10%.

e The estimated magnitude of the discretisation errors is regarded to be small in
comparison to the uncertainty in input data (for example transmissivities and
porosities).

e The minimum fracture size in the background fracture network should be
comparable to the grid size. This ensures that all important flow channels are
resolved and provides a natural link to a subgrid model (the subgrid model
considers the dispersion effect due to all fractures smaller than the grid size).

7.3 Porosity and connectivity

In this section we will apply the porosity concepts to the laboratory model of the Aspd
HRL.

In Section 3.6, some domain related porosity concepts were defined (Ha, 0. and Hf) .
0, is the porosity based on "all volumes with a significant flow", i.e. stagnant parts

have been removed from 6.. As outlined in Section 3.8, some calculations are

required to identify the stagnant volumes.

A typical sequence of calculations is shown in Table 7-4. For a head gradient of 107, it
is found that disregarding all cells with a maximum absolute cell wall flux of 3x107"'
m/s will result in a decrease of the average flux through the domain that is smaller than

1%. Note that the number of stagnant cells is not related to the flux value 3x107"
m/s, as a different head gradient would result in another flux value; the 1% reduction
limit will however still be valid.
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Table 7-4. Determination of stagnant parts of the kinematic porosity field. The
ratio Q/Q,, where Q is the actual flow rate and Q,, the flow rate for 6. , is

determined for various limits on the absolute maximum flow rate through a cell

wall, |V, .| -
‘I/limit Q / Qm [%]
[m/s] :
East-West North-South High-Low
107" 93.7 96.9 99.0
5x107" 97.3 98.8 99.5
3x107" 99.0 99.5 99.7

Table 7-5. Kinematic porosity values based on total volume of domain and on
volume of active cells.

Case Porosity based | Number of | Porosity based
on total volume | active cells (%) | on volume of
active cells
All fractures 1.19x10™ 70 1.7x107*
included
Isolated
fractures or 1.13x107* 45 2.5%107*
clusters
removed
Stagnant
volumes and 1.09x107* 35 3.1x107*
1solated
fractures
removed

In Figure 7-8 three porosity fields are shown; in the top one all generated fractures
contribute to the porosity field, in the middle one all isolated volumes are disregarded
and in the lower one also the stagnant volumes have been removed. It is clear that
most of the flow is due to a limited number of fractures. Table 7-5 gives some further
details. It is interesting to note that the porosity based on the total volume varies little
between the cases listed. The explanation is that the isolated and stagnant parts of the
porosity field are due to small fractures with low transmissivity and hence also low
porosity. Figure 7-9 provides support for this explanation. When isolated and stagnant
parts are removed 66% of all cells have a porosity of 10, which is the prescribed
lower limit.

A visualisation of the kinematic porosity (6{, ) and flow field is shown in Figure 7-10.

The porosity is illustrated with an isosurface for a value of 3x 107, while the

isosurface for the magnitude of the Darcy flux has a value of 3x10™"" m/s (this was
the value that identified stagnant volumes). The flow direction is from west to east.
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Figure 7-8. Kinematic porosity fields at a depth of 450 metres, based on all generated
fractures (top), all connected fractures (middle) and all connected fractures
disregarding stagnant volumes.
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Figure 7-9. Porosity distribution in the computational grid. Number of cells with
different kinematic porosity shown for the case where all generated fractures are kept

(top), isolated fractures removed (middle) and isolated fractures and stagnant volumes
removed.
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Figure 7-10. lllustration of porosity (top) and flow fields. Depth interval shown is 400
to 500 metres below ground level. The flow is from west to east. View from south.
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Gravitational effects

At the Aspd HRL old water types (like Glacial water) have been found already at a
depth of a few hundred metres. As discussed earlier, it is possible to explain the
storage of water by a slow exchange with the storage volumes. Gravitational effects
may however also contribute to the isolation of a water volume; salt water in the
bottom of a fracture is not easily replaced by fresh water.

A qualitative study of the gravitational effects will be carried out. As in the previous
case we specify a pressure gradient in the west to east direction. The inflow and
outflow sections are however now limited to a 10 metres high horizontal band at a
depth of 380 metres. The initial salinity in the domain is zero, while the inflowing
water has a salinity that varies in time, according to Figure 7-11. The total integration
time is 10 000 years. What one can expect is that the salt water will replace the water
in the lower half of the domain, while some water with zero salinity may remain (note
that the inflowing water always has a salinity > 0% ) in the upper half of the domain.

The result after 10 000 years of integration can be studied in Figure 7-11. The two
vertical sections show the result with (top) and without gravity activated. Obviously
gravity is a very important factor when storage of old water types is to be analysed.

A comment may be needed on the "horizontal band of 10 metres" giving the inflow
and outflow boundaries. The salinity of the inflowing water is intended to illustrate
different stages, with different salinities, of the Baltic Sea. In the present model set-up
we do not simulate the contact with the Baltic Sea, as the top of the model domain is at
a depth of 200 metres, and we are thus forced to specify "unrealistic" boundary
conditions. It should however be noted that the purpose of the simulation is to
illustrate the effect of density variations, in a qualitative way.
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Conclusions

The key feature of the GEHYCO method is that properties (conductivity, flow wetted
surface and kinematic porosity) are defined for conductive elements that form a
fracture network. The specific results from the present study can be summarised as
follows:

e The fracture network generates a connected system of pore-space that we define as
the kinematic porosity. Part of this porosity is defined as stagnant volumes, based
on a flow criterion.

e Storage volumes are representing fractures smaller than the minimum fracture size
in the network and all other volumes that exchange matter with the kinematic
volumes by molecular diffusion only. Computationally storage volumes are
simulated by the model FRAME.

e Simple test cases, generic studies and applications to the Aspd HRL demonstrate
that the concepts are useful and easily employed in numerical models of the
continuum type.

7.4 PARTRACK

Transport simulations can be based on two principally different methods, solving an

advection/diffusion equation for the solute or tracking particles. In DarcyTools both

methods are used. It is of course of value to base both methods on the same concepts
and assumptions concerning the subgrid processes.

The particle tracking routine PARTRACK is described and tested in Svensson
(2001a). That version was however based on a lognormal distribution of rate
coefficients. FRAME, as described in this report, is based on power-law distributions,
which are preferred as the general fracture network is based on such distributions.

As part of the general development of FRAME, a power-law distribution has also been
introduced in PARTRACK. The objective of this section is to show some sample
results that demonstrate that this has been achieved.

As PARTRACK is now based on FRAME, it will also use the same input parameters.
For the results to be presented the following was specified: g, =10, k£ =1.8 and

D, =107" m?/s (constant for the applications presented).

A one-dimensional channel with a steady state flow, with uniform velocity, is used.
The length of the channel is 10 metres and the transport velocity 10 m/s. This gives
an advective transport time of 10° s (= 28 hours). The concentration at the outlet as a
function of time, i.e. the breakthrough curve (BTC), is used to illustrate the results.

In Figure 7-12, three BTC:s are shown. If no dispersion effects are active, all particles
will arrive after about 27 hours. If Taylor dispersion is added an insignificant

dispersion will result for D, =107"° m?/s. Decreasing D, to 1072 m?¥/s gives some

dispersion as can be seen in Figure 7-12. If FRAME is added, the BTC will be
significantly modified as can be expected.
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Next we use the laboratory model in order to show a real world application. In the
west to east flow considered, particles are released in fracture zone EW1, see

Figure 1-1, and then tracked through the domain till they reach the eastern boundary.
Figure 7-13 shows the flow paths generated by 100 particles. The main flow path is
through EW1, changing to the NNW structures and leaving through NE1. Note that in
this view from above, NE1 gives a wider impression, as this zone is not vertical. It is
also worth noting that rather few flow channels are active in the transport.

The only objective of these simulations is to demonstrate that PARTRACK is now
based on the subgrid model FRAME. More sensitivity studies and applications of this
new version of PARTRACK will be presented elsewhere (for example in Task #6,
initiated by the Aspd Task Force on modelling of groundwater flow and transport of
solutes). Verification and Validation studies are also found in Report 2.
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Figure 7-13. Flow channels formed by 100 particle tracks in a flow from west to east.
Blue indicates high intensity of tracks, red low.
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8 Discussion

Even if the main part of this report is, intentionally, short it may be difficult to “put the
pieces together” and get a good grasp of DarcyTools. We will therefore use the
discussion section to summarise the key features of DarcyTools and also to give a hint
about possible future developments.

Key features

e Mathematical model. DarcyTools is based on conservation laws (mass, heat,
momentum and massfractions) and state laws (density, porosity). The subgrid
model utilise the multi-rate diffusion concept and the fracture network (resolved
and subgrid) is based on fractal scaling laws.

¢ Continuum model. Even if a fracture network forms the basis of the approach,
DarcyTools should be classified as a continuum porous-medium (CPM) model.

e Fractures and fracture network. Fractures and fracture zones are idealised as
conductive elements, to which properties (conductivity, porosity and flow wetted
surface) are ascribed. Empirical laws are used for the determination of these
properties. The fracture network is based on fractal scaling laws and statistical
distributions (random in space, Fisher distribution for orientation, etc).

e GEHYCO. This is the algorithm, based on the intersecting volume concept, that
transforms the fracture network (with properties of conductive elements) to grid
cell properties.

e FRAME. Subgrid processes are parameterised as “diffusive exchange with
immobile zones”. FRAME uses the multi-rate diffusion model and fractal scaling
laws, to formulate a simple and effective subgrid model.

e SOLVE. When the continuum model is generated, effective CFD-methods are
used to solve the resulting finite-volume equations. DarcyTools uses the MIGAL-
solver, which is a multigrid solver with the capability to solve coupled problems
(like pressure and salinity) in a fully coupled way.

e PARTRACK. This particle tracking algorithm is fully integrated with DarcyTools
and uses the same basic concepts as FRAME. PARTRACK can handle Taylor

dispersion, sorption and matrix diffusion simultaniously in large 3D grids (> 10°
cells).

e Verification and Validation. A large number and wide range of verification and
validation studies have been carried out, see Report 2.
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Version 3.0

The work leading to DarcyTools, Version 2.1 has been focused on the needs and
requirements from the SKB Site Investigations. It is believed that V2.1 fulfils these
requirements.

The development of V2.1 was not carefully planned and structured, simply because
time did not allow it. Version 3.0 is intended to last longer (perhaps 3-5 years) and
should hence be preceded by a more thorough investigation of expected future tasks.

A tentative suggestion, or guess, is that the following key words can describe the
directions for work leading to Version 3.0:

e Repository stages. All stages in the construction and building (including the
present Site Investigations) of the repository should considered, as well as the long
term behaviour after closure.

e Research tool. Hopefully DarcyTools will be useful for the research carried out at
Aspd HRL and in the simulation projects defined by the Aspd Task Force on
groundwater flow and transport of solutes.

e Technically it is expected that DarcyTools V3.0 will include an unstructured grid
option and the capability to make use of multi-processor computers.
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9 Conclusion

The main objective of this report is to provide the theoretical basis of DarcyTools. The
main part of the report is written in a descriptive style, with the intention that also non-
specialists in groundwater modelling may find it accessible. More detailed accounts of
various topics are provided in appendices. Hopefully, the report still fulfills the
objective stated.

It is the ambition to establish DarcyTools as a state of the art computer code for
simulation of flow and transport in fractured and/or porous media. Many novel and
powerful features have been introduced, but more work is needed before this ambition
has been achieved.
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Numerical Methods Introduction

Numerical Methods

Introduction

DarcyTools computes fracture network flows using a continuum model in which
the mass conservation equation (1) is associated to several mass fraction
transport equations (2) for the salinity and/or particle mass concentrations, and
to a heat transport equation (3). In relations (1), (2) and (3) r, u,v,w, Tand C
represent respectively the fluid density, the velocity components, the
temperature and the mass fraction of the transported quantity. Q, Q. and Qr are
source terms per unit volume of fluid mass (i.e. injection-withdrawal), of mass
of transported quantity (e.g. local exchanges with the rock) and of heat (i.e.
enthalpy).

frq , T Al I w) =
Tt +‘”X(ru)+‘”y(rv)+‘"Z (rw) Q (1)
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s Tl 2L C - =~ X
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Dy, Dy and D, are the normal terms of the diffusion-dispersion tensor. |, |, and
|, are the normal terms of the equivalent (i.e. rock with fluid) thermal
conductivity tensor, c is the rock thermal capacity and c, the specific heat of the
fluid.

The mass conservation equation is turned into a pressure equation under the
well known Darcy’s assumption (4).

ru:_&ﬁ
g Tx
K

rv=-—y P 4
g Ty
K, P

=. z 1T . K -
rw g 1z L(r-ry)

where K,, K, and K, are the local hydraulic conductivities in X, y and z direction,
g the gravity acceleration, ro a reference fluid density (8) and P the dynamic
fluid pressure relative to the reference hydrostatic pressure.

P=p+ro,gz ®)

The hydraulic conductivities K are related to the permeability k field through
relation (6):

K :% (6)
m

The fluid property like the dynamic viscosity m the density r and the specific
heat c, are given by state laws:
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m= m)[1+a1(T - Tm)+a2(T - Tm)Z]nm )
r :ro[l+a1$+a2$2— bl(T'Tr)' bZ(T'Tr)Z] C)
¢, =c, (1+b, S +b,s?) ©)

while the porosity q and the compaction g of the matrix are provided with the
following dependencies:

q=0,9 (10)
g :l+(S/QO)(P - Po)/rg (11)
In the above formulas S represents the salinity (salt mass fraction), qo a

reference porosity field given for a reference pressure field Py, s the specific
storativity field. n,, a;, b;, a;, b;, My, ro, Cpo, T, and T, are constants.

Finite Volume Integration

The finite volume method integrates equations (1), (2) and (3) over the six
faces of a finite number of control volumes by converting volume integrals into
surface integrals using Ostrogradsky’s theorem:

Qdiv(ﬁ)dv :QﬁﬁedA+QﬁﬂwdA+QﬁnﬁndA+

12)
Q F xi_dA +Qﬁ i, dA +Qﬁlf>ﬁbdA
So that, according to the Mean Value Theorem:
Q div(F)dV = AF, i, +A,F, s, +AF, xi +
13)
As s >qﬁs +AtFt >¢1t +Abe >qﬁb
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Numerical Methods Finite Volume Integration

where, for example, A and n. are respectively the area and the outside-normal
of the “east” cell-face and where F; is evaluated at east face center.

Figure 1 : Control volumes, normals and vertex labeling

Grid arrangement

Among the common grid arrangements, DarcyTools uses the “node-centered”
arrangement in which the pressure and the scalar variables (mass fractions) are
located at center of grid cells. The main advantage of this formulation is that the
control volumes coincide with the grid cells and that the cell vertexes are
directly defined by grid nodes.

O Variable location (1,J)

Control volume (1,J)

##2 Boundary

Figure 2 : Node-centered arrangement labeling

The main drawback is that, for stretched meshes, the faces of control volumes
are not located mid-way between variable locations (see Figure 3) and require

DarcyTools 2.1 4
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more sophisticated interpolations for second order accurate discretisation of
convective fluxes. A second drawback is that the algorithm or the grid definition
for embedded grids interpolations is more complicated than for the “cell-
centered” arrangement.

Stability

The strength of the finite volume integration is its conservative formulation for
which any flux getting out from a control volume is automatically entering the
neighboring volume. Nevertheless this strength may be a drawback when
considering the convergence process. Given a bounded conservative scheme,
the convective term interpolation at east cell face can be written:

FA| =f ran| =(a,fe +@-a,)f,)ran| (14)

e

where the value of a. depends on u to ensure the monotony and remains in the
interval [0,1] to ensure the boundess of the scheme. The subscripts e, E, and P
indicate respectively the east face value, the east variable and the center
variable.

Figure 3 : East-West stencil labeling

Therefore, for the convective term of the transport equation (2), applying
relation (14) to approximate the integrals of relation (12) leads to the following
algebraic relation:

Q) div (r af )av :EEQ div (ra)dV - & an, o p + QL Auf (15)
nb %) nb

Because of (1) and for stationary problem with no internal mass source term,
relation (15) apparently leads to a central coefficient (applied to fp) equal to the
opposite sum of neighboring coefficients. This property, even if not necessary, is
highly desirable for stability. Unfortunately, during the convergence process,
relation (1) may be temporarily highly unsatisfied. Hence, in spite of the
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bounded form (14) the discretisation of the transport equation from (2) may
become unstable. For this reason, DarcyTools substitutes the source term CQ of
equation (2) by its evaluation from relation (1) and finally solves equations (16)
and (17) instead of (2) and (3).

1C 1 & iC 6
- 4+ C - -
rq it i (éru rab, I
2 Co
+% rvc - rgjy‘l‘l]]_yg (16)
1T & iC 6_a&fru  frv Trwo
+ —cfwC - r — = + + =C +
1z & Py o 8 Ty T 30T
rq 1T, T@-qET
It It
+1§UCPT—IXE+
X e X g
@an
+laervcpT—Iy£g
1% WV g
7 & T ¢_a&ru  Trv  Trwo
+ —c¢fwe T-1,— = + + Tc T+
z& P Z‘ﬂZzg‘ﬂx v Mz g5 ° Q&

The main advantage of this technique is to ensure a central coefficient always
equal to the opposite sum of neighboring coefficients. A second advantage is
that the source terms (CQ and c,QT) due to fluid mass source disappears from
relation (16) and (17). This simplifies the implementation of boundary conditions
since the internal mass source terms have to be specified only once: for the
mass conservation equation (1). In return, the mass fractions C must be
specified where the fluid mass source Q is positive (no necessary condition when
Q<O0). It should also be noted that, for time varying density or porosity, the time
derivative term lost its conservative form.

Spatial scheme

Also for stability reason, the fluxes discretisation in space must involved both
convective and diffusive terms in order to produce positive coefficients. Then,
considering the face f separating two control volumes,
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P()=W(i+1) . E(M=PGi+1)
- + ————————— O-mmmmmmm oo O-----
h h*

Figure 4 : East-West face flux labeling
DarcyTools uses the hybrid scheme to express the fluxes as:
Fe=cfe-df o =-a"fe+afy =-a’fo,+afy, (18)

+

la”=a’ - ¢
h*c +2d ¢ (19)

i
|
i
i U
’I‘ h +h 9

Ta’ = max gé, c

with the faces values linearly interpolated as:

h°f E(i) +h’f PO _ h-fp(iﬂ) +h+fW(i+l)
h* +h- h* +h"

f ¢ = (20)

Time derivative

To ensure the precision of time dependent simulations, DarcyTools implements
two different implicit time schemes. The default one is the Euler first order
implicit scheme given by:

E _fn_fn-l

e (21)
fit n tn - tn-l

The alternative is a second order implicit scheme that differentiates a parabola
forced through solutions at three non-equally spaced time levels:
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20Dt, + +
E = Dtl th fn - Dtl th fn-l + Dtl fn-2 (22)
ﬂt n Dtl(Dtl + [12) DtlDtZ Dtl(Dtl + [12)

where Dt; and Dt, represent respectively the time steps t,-t,.; and t,_;-t, .

Algebraic Set of Equations

After the discretisation step, equation (1) as well as all the equations (16) can
be written with the general algebraic form:

apfp = é_ a,fp tS (23)

nb

where a, and a,, are positive coefficients and where a,, because of the transient
term, is greater than the sum of the neighboring coefficients a,,. Whenever it is
possible, if the source term operator S; depends on the solution field f
DarcyTools increases the diagonal dominance of the operator by rewriting it as
follows:

S¢ = Qe - Qpni fo with Quni >0 24)
and by including Qi into the central coefficient.

(ap + Qphi )f P é. anbf nb + erc (25)
nb

This linearization of the operator source term is also a practical way for users to
fix different kind of boundary conditions. For example, setting a BIG value in Qgp;
and a BIGXVAL value in Qg becomes equivalent to the Dirichlet boundary
condition: f=VAL. Setting Qg to VQ and Qg to zero is also the easiest way to
specify an inlet fluid mass flux in the pressure equation (1) When an inlet fluid
mass is set (Q>0) it can also be of interest to specify only the inlet salinity
instead of fixing the mean cell value by a Dirichlet condition. In that case the
implicit input must be removed by setting Qu, to VQ and the effective input
forced by setting Qg to VQS;,.

DarcyTools 2.1 8
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NWT

NET

NE

NEB

SEB

Figure 5 : 3-D discretisation stencil labeling

BFC Discretisation

When the computational domain is meshed by a Boundary Fitted Coordinate
(BFC) grid, a generalized coordinate space (Xx,h,z) is introduced to link the
(1,J,K) location indexes to the spatial domain (Xx,y,z).

Figure 6 : Curvilinear BFC grid transformation

A continuum metric transformation can be introduced between the generalized
coordinate space (x,h,z ) and the physical space (X,y,z) as follows:

DarcyTools 2.1 9
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gﬂ_Yﬂ_Z_ﬂ_Zﬂ_y fzly Tyfz fyfz TzTy 3
&! b2 b g‘ﬂh 2z 1Th 1z x 9z 9% 9z x Th  1x ‘ﬂhg
gol b2 b3H:é_Xﬂ_Z_ﬂ_Xﬂ_z Ixfz fzfx fzix Wxfz g (26)
e? 7 "0 €fzth thTz XTz Tz Tx fh  Ix Jh U
P b2 bl G
alxfy Tyfix fyx fxfy Ixly fyWx g
gth vz Th1z x 9z Tx 1z x b x Th g
gy 2 fzfyo, xalizfy Ty 120, xalyfz fzIv0

" XxETh Tz Thizy ThEX Tz TxNzg Tz&XTh Tx Thy

With the above notations (26) and (27), the areas and normals appearing in
relation (12) are given by:

A, =b, X +bZy +bi Z AN, =by, X +bi,y +bj, Z
Anﬁn :b;n)_('+b22ny+b23nz ASﬁS :b;S)_(.+bZZSy+b2352 (28)
AN, :b;ti+b§ty+b§ti ANy, :b;bi+b§by+b§b2

With curvilinear coordinates the evaluation partial derivatives of governing
equations in X, Y and Z direction is not straightforward because variables are not
distributed along X, Y or Z coordinate-lines but along the x, h and z lines of the
transformed space. Nevertheless, with the continuum metric transformation,
they are given by:

é1f u } . €ff u
G0 D b b e
e’ a & gs u
éﬂfﬂ 1“1 2 3'§ﬂflﬂ
&&u=—5% b b>U a&— 29
eyy Je’ 2 gy @9
S é Ugx -
?ﬂfu Al 2 3[_'] ?ﬂfg
é—u : b b’s é—1U
&1z g & ° U g1z g

Finally the governing equations are written as follows:
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BFC Discretisation

G, 1@ Ky PO,
it E g g
ﬂaEKZZﬂPO
— 30
hg g 'ﬂhra 0

1 & Ky PO
— —x=JQ +S
1z g g 17, Q DM

1C qC o
J —+— UAC -
rq it gf rob; — q

QJ

1 & Cc o
ﬂ—hngAC rg)zzﬂ—hg+ (D)

—ngAC- rD,, € C 6_&ru ‘ﬂrV ‘ﬂrWo

+ € +J S
= EJ 1 h 7 5 +JQ¢ +Spc

T -

it it
1 & T 0
—e¢rUACc T -1 ,— =
+'|]x gr Cp e :
(32)
1 & 0
—cerVAc T-1,,— =
+‘|]h gr C, 22 g :
= m oé_aryu frv Trwo
+1]_zngACpT | 33 — = r+a g‘l]x + T = gc T +JQ; +Spo;

Those equations keep their primary form but differ from (1), (16) and (17) in
that the diffusion coefficients K, D and | change for:

U
||

(bbiD, +bibiD, +bipiD,)

N
N

(b2b2D, +b2b2D, +b2b2D, ) (33)

)
1

O
&
I

(b2b2D, +b2b3D, +b2b2D, )
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BFC Discretisation

Ky, = Ji(bllbllKX +blbLK, +blbiK, )
Ky = = 202K, +b2b2K, +b2b2K, ) (34)
22 J 1M1 M x 2M2 Ny 337Nz
Kas = = 203K, +b303K,, +b3b3K, )
33 J 1M1 "M x 2M2 Ny 3M3' Mz
_ l( 1K1 1,1 1|1 )
|11 —3 blbll X +b2b2| y +b3b3| z
|, == (0202l +b2b2l , +b2b2l ) (35)
22 J 1M1 x 22y 3~3%' z
55 = b2, +bb31, +b3031 )
in that buoyancy terms appear (see Spy) in each direction with:
Kl :b;Kz
K, =bZK, (36)
K3 :bus
in that mass fluxes are given by:
(UA = Ky(r - rg)- K TP Kip P Ky TP
g X g T g 1z
VA=Kt - 1) KPP Ka TP Ky TP @7
g x g th g 1z
rWA =-K,(r - r)- Ky TP Ky TP Ky TP
g X g fth g 1z

and in that cross derivatives now appear. In spite of the indirect coupling they
introduce between (30) and (31) these new derivatives are explicitly treated in

separated sources terms Spy and Spc in

order not to enlarge the algebraic

stencil. Their magnitude reduces to zero when the curvilinear coordinate lines

are orthogonal and the diffusion is isotropic.

DarcyTools 2.1
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BFC Discretisation

Spy = lmlzﬁ.,.ﬁﬁﬂ(l(r - ro)g+
ixgg Th g Tz P
: EK Tolall e 39)
fhgg X g Tz o
IEP KTy
zg&g Tx g Th &
e .
Spe = ﬂ_g ngZ +r1gD;; =+
& 0
ﬂ_hgrg:)zl rgD,s + (39)
e ic ic o
—Gr —+rgDy, — =
TIZ g332 ﬂh g 31 ﬂX Q
Teg T T 0
S = — — 41 — =+
DT x 12 ﬂh 13 Wz EJ
Tg 1T T o
_— _ — <+ 40
1-Ih g 21 ﬂX 23 ﬂZ a ( )
Te I, To
TZ& 21 g
The cross derivative diffusion coefficients are given by:
11
Ky =K,y :j(b bZK, +bibZK, +bib2K,)
— — 1 2|1 3 21,3 21, 3
K23 - K32 _J_(blble +b2b2Ky +b3b3Kz) (41)
— — 1 14 3 13 1R 3
Kis =Ky _j(b by K, +b2b2Ky +b3b3Kz)
1
D,, =D, :J—(b bZD, +blbZD, +blbZD, )
1 2|43 2| 3 2| 3
D,; =Dy, = j(bllex +b;b;D, +b3b3Dz) (42)
_ _ 1( 1}, 3 1,3 13 )
D,; =Dy =70 b, b’D, +b2b2Dy +bsb;D,
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BFC:s Discretisation

O R Y e

b2b2i, +bib2l, +bib2l,)

I, =15

bzb31 , +b2b31, +b2b31 )

|23

w
N

lis =15 == (bfb31, +bib3l +bib3l )

BFC:s Discretisation

(43)

The use of Boundary Fitted Coordinate (BFC) grids requires a lot of memory to

store the 31 arrays of the metric and the 9 property arrays per control volume.

Moreover, the computation of the multiple cross derivatives is an expensive task

that should be avoided when unnecessary. For this reasons, DarcyTools also

uses a Simplified BFC formulation (BFC:s) in which X and Y are Cartesian

coordinates depending only on | and J indexes respectively and Z is a floating

coordinate. A first simplification concerns the areas and normals involved in

relation (12):

AR, = h, f X A, =-h, fg,%

Annn = hx f3n)7 Asﬁs :_hx fSSY

(44)

Af, =-h, f,%-h f,y+hhZ AR, = h, fuX+h, fy-hhz

where h, and hy are the spatial steps in X and Y directions and where functions

f,, f, and f; are the discrete expressions of the Z coordinate transformed

derivatives (see Figure 1 for notation):

flt:%(26+28_25_z7) flb:%(22+z4_zl_23)
th:%(Z7+Zs'Zs'Ze) f2b:%(23+z4'21'22)

(45)
fse:%(ze+zs'zz'z4) fng%(25+z7-zl-23)
fsn:%(z7+zs'zs'z4) fSS:%(Zs"'Ze'Zl'Zz)

The volume of control volume is given by:
— hxhy
V= 4 (Zs+zg+2,+25-2,-2,-25-2,) (46)
DarcyTools 2.1 14
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BFC:s Discretisation

The finite volume integrated governing equations become:

Irq K, P K., TP
vaIra g g, D 1T B
ﬂt y '3e g ﬂxe y 3w g TIXW
K K
- hx f3n - E X f3s = E @7
|, g Tyl
K, TP K,, P
_ hxh zt 17| . zb4| :VQ+S
Y g Tz, Y g Tzl o
1C 1c 1C
quﬁ - hy f3eregere O | + hy f3wrwngxw ﬂ_XW
- hx f3nrngnDyn E + hx f3srsgsDys E
yl, Ty,
1C [
hxhyrtgtDZt —t + hxhyrbngZb ﬂ_Zb (48)
+TUA,C, - C,) - TUA,(C, - C,)
+TVA,(C, - C,) - IVA,C, - C,)
+rWA,(C, - C,) - TUA,C, - C,) = VQ. +S,.
c, T -
Vrq e +V - QT
It It
1T 1T
- hy f3e| xe ﬂ_xe + hy f3w| XW TI_XW
1T 1T
- hx f3n|yn Wn X 3s|ys ﬂ_s
(49)
h,hl m + h,h 1, £|
Tz, 1z |,
+ rUAe(cpeTe - cpTP) - rUAW(chTW - cpTP)
+TVA,C T, - CpTp) - TVASC T, - €, Tp)
+ITWA(C T, - ¢,Tp) - TUA,CpTp - C,Tp) = VQ; +Sy;

DarcyTools 2.1
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with explicit sources terms:

Ky TP K, P
SDM = 'hy flt tﬂ_Xt - Hx Tot gtht+ hxhszt(rt - ro)
(50)
K
+h, f,, Kao Ei +h, f, —2 Al hthbi(rb - 1)
g x|, g Ty
1C (@
SDC = 'hy fltrtgtht oo | - hx thrtgtDyt o |
t iy |,
(51)
1C [
+hy f,1,0,Dy _Xb +h, f,r,9,Dyp Wb
1T 1T
S =-h, fl — -h, fl,, —
DT y "1t tﬂxt 2t yt ﬂyt
(52)
1T 1T
+hy Tl _Xb +h, fuly Wb
and mass fluxes given by:
K, TP
ruUA=-h, f,—>*—
y '3 g ﬂX
K
rVA =-h, fa—"E (53)
g Ty
K
WA =-hh K2 h k(- o)+, £ R TP g, Sy TP
g 1z g Tix g Ty

The second simplification of the BFC:s formulation concerns the normal
derivative along Z direction. Due to the vertical east-west and north-south faces
this derivative reduces to:

T_ fr-fe (54)
izl Zer - Zep

DarcyTools 2.1 16



Numerical Methods BFC:s Discretisation

where z; represents the Z coordinate of variable locations, i.e. of the centers of
control volumes:

1
ZC:g(zl+22+23+24+25+ZG+Z7+ZS) (55)

Like with BFC formulation X and Y derivatives suffer of non-alignment with the x
and h lines connecting variable locations. For example, the X derivative at center
of east face is:

E = (f Ex ~ fP*) (56)
fix e Xe = Xp

Where the points E* and P* are the projections of the points E and P on X
direction at the altitude z; of the face center.

T ET

© o
\ /
W SO E* |
(@)
P 5; _\L —
E X

B EB —
(@] (@]
th th X

Figure 7 : East face partial X derivative labeling

Because the E* and P* values are not directly known, DarcyTools approximates
them by:

Cr))
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Therefore, since Z derivatives are straightforward, partial X derivative at east
face becomes:

ﬂ _fe-1fo +Zf_ZE£ET_fEBQ+ZP_Zf agT'fBQ

TIXe Xeg - Xp Xe - Xp 8Zpr " Zep g Xg - Xp 827 - Zp g

(58)

Again, like with BFC formulation, the top and bottom diffusive fluxes involve
cross derivatives since face normals are not vertical.

ET

E*

E
\ ,
o

Figure 8 : Top face partial X derivative labeling

DarcyTools approximates these cross derivatives as follows:

f foe-fys
ﬂ_ - ( E w ) (59)
fix t Xe = Xw
where the E* and W* values are linearly interpolated as before:
_ i _ it
fE*_fE+(Zf_ZE)ﬂ_zE fw*_fw+(zf_zp)‘|]_zw (60)

Z; is now the top face center’s altitude. The partial X derivative at top face finally
becomes:
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E
x

_Zf_ZEEHET'fEQ_ Zf-ZW"’éWT'fWQ

t Xg = Xw ZET'ZEéI Xg = Xy ZWT'ZTéI

(61)

At boundaries, extreme points in relation (61) are replaced by central points. For
example for I=1, W and WT are respectively replaced by P and T. For two
dimensional (Y-Z) and (X-Z) problems partial X and Y derivatives at top and
bottom faces are respectively ignored.

Cartesian Discretisation

The fastest and the less memory consuming formulation in DarcyTools is the
Cartesian grid formulation for which the X, Y and Z coordinates of grid nodes
depend only on I, J and K indexes respectively. Many simplifications are
therefore possible and, in particular, areas and normals of relation (12) become:

AJfi, = h h, X A, =-h,h,
Anﬁn = hx hzy Asﬁs :'hxhz)7 (62)
Afi, = hh 7 Afi, =- h.h 7

so that the governing equations do not contain any cross derivatives in
additional explicit sources terms and simplify to:

hh, T4 o pon, e Py K TP
It g Xl g x|y
K K
- X hz . E + hx hz = E (63)
g Ty|, g Ty|,
- hX y&ﬁ + hxhyﬁﬁ = hxhthQ +SDM
g Tzj g Tzi,
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1C

It

ic
hxhyhzrq - hyhzr

x
- hx hzrngnDyn

ic
hxhyrtgtth o |

+ rU'A‘e(ce - CP)

+ rV'A‘n(cn - CP)

+rWA(C, - C;)

fic -

h.,h,h,rq

c. T
. +h,h,h,
t

T

- hy hzl xe il
qx

e

m
iy
m
9z

+TUA,(CpeTe

- hx hzl yn

n

h.h,l

x'ly ozt

t

+IVA, (Cp T,

+ WA, ( ptTt

egere o |

1c
Ty

t

e

qxT
t

n

- CpTP) -
- CpTP) -

- CpTP) -

+ hy hz r wngxw

+ h,h,r gDy
+ hxhyrbngzb
- rUA,(C,, - C,)
- IVA,(C, - C,)

- TUA,C, - Cp)

T

+ hy hzI XW

LN

+ hx hzI ys

m
Iz

+ h,hl

x''y' zb

b

ruA,,(c ow 1w

rVACpsTs - C

rUA,C T, - C

where the only additional source term is given by:

SDM = hxhszt(rt - rO)_ hxhszb(rb - rO)

the mass fluxes by:

1c

1c

x
1
y

w

s

. (64)

hxhythC

w

(65)

- CpTP)

olp)

Te) = h.hoh,Q,

(66)
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rUA:—hthKXE
g fix
K
rVA:-hXhZ—VE (67)
g fy
rwA =-hh, K2 TP hn k(- )
g fz
and the normal partial derivatives by:
M _fe-fo ] o fw-fe
1. Xg - Xp X1 Xw = Xp
oo ffe T fs-Te (68)
ﬂyn Yn - Yp ﬂys Ys - Yo
E _fL -1 E _fg-fp
Tz |, Z; - Zp 1z |, Zg - Zp

Embedded Grids Strategy

To reduce the amount of computational work when high resolution of the
fractured network is needed, DarcyTools applies an embedded grids strategy.
Starting from a large domain, local block refinements are embedded in one or
several parent grid footprints.

Child (embedded) grids are defined by three refining factors so that every
parent cell of the footprint is subdivided into f,, f; and fx child cells in the I, J and
K direction respectively (f;, f; and fx being integer values). An additional plane of
cells is also used where boundaries of the footprint do not coincide with the
parent grid boundaries (Figure 9). DarcyTools uses these cells to specify
Dirichlet boundary conditions to the embedded grid problem from the parent
grid solution.
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[1 Parent Grid
] Embedded Grid

Boundary Cells

Embedded Grid Parent Grid

Figure 9 : Footprint and embedded grid arrangement

To solve the interdependence of grid solutions, DarcyTools starts by solving the
most embedded grid solution with Dirichlet boundary conditions on the
additional cell planes. The fixed values are obtained from a tri-linear
interpolation of the parent grid node values. Actually, DarcyTools uses the
parent grid node values because the location of child cell grid centers is linearly
defined from the parent grid nodes and not from the parent grid cell centers.
The advantage of this procedure is that it is faster compare to a fully non linear
interpolation procedure but the drawback is that the parent grid node values
themselves have to be interpolated from the parent solution. For this DarcyTools
implements an inverse volume weighting such as:

¢ @ 1 ; ) /e 1
V—ga\ﬁi E gaﬁi

I--O:

(69)

Q

Then, given the child solutions, the parent grid solution is computed outside the
footprints with fixed fluxes boundary conditions on cells at footprints’ borders
(e.g. I=11-1 or I=12+1). The fixed fluxes are obtained by summation of the
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child grids fluxes entering the additional cells in order not to loose the
conservative property of the finite volume procedure.

Figure 10 : Fluxes transfer from child to parent grids

For interpolation purpose, the footprints values of the parent grid are also fixed
at mean values of the child grids solutions. Mean values are obtained by a
volume weighting of the fxf;xf¢ child grid cells embedded in each parent cell.

t, =@ vol,f,)/ (& vol,) (70)

Finally, the interdependence of grid solutions is solved by completing iterations
until the boundary conditions and the residuals converged on each grid.

Users will note that DarcyTools also implements an alternative for parent grid
boundary conditions in which the footprint fluxes are not fixed but only the
footprint values, and that, because of boundary conditions on the parent
footprints, the mass sources terms must be specified on the most embedded
grids only when occurring on a footprint and on the parent grid otherwise
(additional boundary cells of the embedded grids must be considered as laying
outside the footprints).

Coupled Procedure

Density driven flows are problems in which the governing partial differential
equations may be strongly coupled with instabilities arising from nonlinearities.
To reliably and efficiently solve this king of challenging flows DarcyTools uses
the MIGAL solver capabilities and allows for example a fully coupled solution of
the pressure-salinity coupling. For this purpose, the buoyancy terms appearing
in the fluid mass conservation equation is implicitly treated instead of being
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included into the additional source term Spy (38), (50) and (66) using the
density state law:

r-ry, =ryas (71)

For stability reason, the face salinity involved in this transformation is
approximated by its upwind the value (e.g. S; is substituted by Sp). The
algebraic set of equations resulting from the coupled system follows the same
form than the single variable generic equation (23) but coefficients are now 2x2
matrixes:

&y, a,l @i éy; a,u @u | Sl (72)

@21 aZZHD@& - % @21 azanb@gnb @cH

The practice of coupled solutions between pressure and salinity showed that low
diffusivity field requires special treatment for convergence. For this purpose,
instead of solving the linearized operator resulting from the discrete form of the
governing equations, DarcyTools solves iteratively an approximated defect
correction operator:

A'df =S - Af (73)

where A represents the original operator, f a solution guess (P,C)" and df the
correction such as:

frew —f 4qf (74)

The operator A” is initially set to the original operator A but can be modified to
stabilize the global convergence.
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MIGAL solver

DarcyTools uses the MIGAL algebraic multi-grid solver to solve the successive
algebraic sets of equations resulting from discretisation. This use sums up in a
single call to the routine MIGAL and in the possibility of programming several
routines for efficiency control: NLINS, SETRELAX or SETDOMI.

The basics

The set of linear equations (23) or (72) resulting of the discretisation of the
continuity and the transport equations can be expressed as:

AXx=S (75)

where A represents the matrix of coefficients, x the variables array and S the
right hand side vector of source terms.

They are several well-established iterative schemes to solve this set of linear
equations. These include Jacobi, Gauss-Seidel, incomplete LU factorization, etc.
But, each of them has a rate of convergence depending on the condition number
of the matrix A. Hence, as the number of cells will increase, and because of the
elliptic nature of the diffusion operator contained in the equation, the condition
number of the matrix will increase and the rate of convergence will deteriorate.
Further, a characteristic of all these iterative schemes is that the initial rate of
convergence is rapid for the first iterations, and deteriorates as the iterations
progress. It can be shown that the cause of this slow convergence is primarily
the sluggish rate of convergence of the low frequency errors that are present in
the solution. As the grid refined, these low frequency errors dominate the overall
rate of convergence.

O Coarse grid nodes

® Fine grid nodes

1 NIe 1 NI,

Fine grid space : freq=1/4 Coarse grid space : freq=1/2

Figure 11: Fine to coarse grid error frequency mutation.
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Hence, the concept of the multi-grid technique as implemented by MIGAL is as
follows. Given the fact that the low frequencies converge slowly, it is possible to
accelerate their rate of convergence by making them behave as high frequencies
on coarser grids. For this, the basic principle consists in working on a subset of
the fine grid points (e.g. keeping only odd or even nodes) to reduce the number
of points and automatically raise the error signal frequency in the transformed
grid space (see Figure 11).

MIGAL proceeds as follows. Consider that we initiate a solution on a given fine
grid. A few iterations are then performed on this fine grid to obtain an
estimation xg. For these iterations, the convergence is usually fast.

X =A'S (76)

The notation (~) means A is not the inverse of matrix A but only an
approximate (e.g. few relaxations of an iterative solver). Subsequently, the
convergence begins to worsen so that the calculations are switches to a coarser
grid with the aim of improving the fine grid estimation x; at lower cost. For that,
the residuals and the corresponding defect correction operator are formed on
the fine grid and interpolated (“restricted”) to the next coarse grid by:

RAdx, =R (S- AX;) @

where the restriction operator R (e.g. pure injection) is a (NI, X NIg) matrix that
shorten the dimension of the right hand side from NI to Nl..

1 NIe
Fine grid | } } } } } } } } >
Coarse grid  —} } } } >
1 NI¢

Figure 12 : Pure injection restriction.

At this point a second operator is introduced to shorten the left hand side of the
operator. It is done by changing the fine grid correction variable dxg for a coarse
grid variable named dx. so that the former can be interpolated (“prolongated”)
from the latter by:

dx. =P dx, (78)
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where the prolongation operator P (e.g. linear interpolation) is a (NI x NI,)
matrix that reduces the coarse grid operator size to (NI; x NI,)

(RAP)dx, =R (S - AX;) (79)

Once the coarse grid operator (RAP) is formed, a few iterations are performed to
obtain dx. to the required accuracy and the fine grid correction is retrieved using
(78).

AL

Figure 13: Linear prolongation.

Of course, since the error spectrum contains a wide range of frequencies, it is
necessary to consider a number of coarse grids and to successively build the
coarse operator of the coarse operators. On the coarsest grid, which must be a
small grid, a direct solver can be used or, like with MIGAL, the necessary
number of iterations can be performed. Finally the manner in which the grids are
visited can vary.

VA

— Restriction (Q Pre-Restriction relaxations O

. . . Last level relaxations
—>> Prolongation @ Post-Prolongation relaxations

Figure 14 : V and W multi-grid cycles
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In the simplest case, called V-cycle, each grid is visited in turn on the downward
and upward legs of a V-cycle. On each grid a number of iterations are performed
and the next grid is visited. With the W-cycle, each grid is visited in turn on the
downward leg of the a W-cycle, then after that the correction is prolongated by
one level, the error is again restricted to the lower level and the correction
prolongated up to the next upper level (see Figure 14). The iterations can be
done during both the restriction part of the cycle (downward limb) and during
the prolongation part (upward limb).

GMRES acceleration

The emphasis of basic multi-grid procedures is to improve the performance of
the classical iterative solver (smoother) by adapting the operator to their
intrinsic capabilities. This technique encounters some limits when the coefficients
are highly anisotropic and when the mesh aspect ratios are quite large but the
ILUO smoother of MIGAL has demonstrated to be robust enough in many 3D
applications. The main difficulty of the flows processed by DarcyTools comes
from the sharp spatial variations of the coefficients that couple the high and low
frequencies error components during the restriction/prolongation procedure and
finally deteriorate the overall performance. To fight this wavelength coupling
problem DarcyTools may use MIGAL as a GMRES preconditioner.

The GMRES method is a projection method based that consists in finding the
optimal solution of the system (75) that belongs to the m-th Krylov subspace
Km.

K, =span { ro, AM 'y, [AM '1]2r0, [AM '1]m'1r0} (80)

where rq is the initial residual of (75) and where M is a right preconditioning
matrix whose function is to lower the condition number of the algebraic set of
equations.

AM'u =S, u=Mx (81)

For a given dimension m, the MIGAL-GMRES algorithm involves an Arnoldi loop
that constructs an orthogonal basis of the right-preconditioned Krylov subspace
by a modified Gram-Schmidt process, in which the new vector to be
orthogonalized is obtained from the previous vector of the process.
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1. Start: Choose X, and a dimension m of the Krylov subspaces and initialize

a (m+1) x m matrix H to zero
2. Arnoldi process:
Compute ro=S-AXo, b=||ro|l] and vi = ro/b
For j=1,..,m
- Compute z; =M™ v;
- Compute w = A z;
- For i=1,...,j
Hij = (w,vi)
W =W — Hj; Vi
- Compute hj:1; = ||w]]| and vji1 = W/Hj.1
Define Zy,, = [21,...,Zm]

3. From the approximate solution: Compute X, = Xo + Zm Ym Where

ym=argminy||be; — Hy|| and e;=[1,0,...,0]"

4. Restart: if satisfied stop, else set xo = xm and goto 2.

Figure 15 : MIGAL-GMRES algorithm

The preconditioning matrix is only involved in the z=M™v products and does not
need to be explicitly formulated. Instead, since relation (81) shows that M=A is
the best preconditioning choice, some multi-grid cycles of MIGAL are
advantageously used to compute an approximated value of z as being the
solution of Az=v.

The drawback is that, since M now changes for each vector z depending on the
convergence of MIGAL, it is necessary to store the orthogonal basis Z, to
retrieve the solution x,,. Therefore, since reaching an expected level of accuracy
usually involves large sub-spaces, the method may become impractical because
of large memory and computational requirements. For this reason MIGAL use a
restarted GMRES procedure (step 4. Figure 1) which limits the Krylov-subspace
basis to a given size and iterates the initial estimation Xg.

MIGAL preconditions the Krylov subspace by one multi-grid cycle. To increase
this number of preconditioning cycles users may specify the parameter
IPRECO in the MIGAL parameters list. For particularly difficult problems it is
possible, on coarse grid levels, to replace the ILU(0) smoother by a GMRES
ILU(O) preconditioned smoother. For this users have to stipulate the size of
the desired Krylov subspace by setting the parameter IGMS to any non-zero
value. The coarse grid smoother then becomes a GMRES solver right-
preconditioned by NBPRER or NBRELAX ILU(O) relaxations depending of the
limb of the multi-grid cycle actually performed. For flexibility, the IGMS
parameter may be set independently of IGMRES, i.e. that MIGAL can
implement different combinations of the multi-grid and GMRES algorithms.
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SOLVER NBGRID IGMRES IPRECO IGMS
1LU(0) 1 0 - 0
GMRES not-preconditioned 1 n 0 0
GMRES ILU(O0) preconditioned 1 n n (o]
Multi-grid[ILU(0)]* n (o] - (o]
GMRES multi-grid[ILU(0)] preconditioned n n n [¢]
Multi-grid[GMRES-1LU(0) preconditioned] n (o] - n
GMRES multi-grid[GMRES-ILU(0) preconditioned] n n n n
preconditioned

Figure 16 : Multi-grid/GMRES possible combinations. (*)=default
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1 Introduction

This paper deals with some aspects of using the multirate model of the
immobile zone with a power law distribution of first-order rates. For an
introduction to the subject, see Refs. 1 and 2. Sections 2, 3, 4 and 5 have
a mathematical character and mainly discuss the relation between power
law distributions for diffusion rates and first-order rates. The main conclu-
sion is that the two power law distributions will have the same exponent if
some conditions are fulfilled, a fact which was briefly mentioned in Ref. 2.
Section 6 describes how the power law distribution for diffusion rate can be
obtained starting from a power law distribution for fracture size and many
other assumptions. Finally, Section 7 suggests how the theory presented in
the earlier sections can be applied to computer simulations of tracer motion
in fractured rock.

Many of the ideas in the paper originate from Refs. 1 and 2. Urban
Svensson has contributed with basic ideas for Sections 6 and 7, while I have
concentrated on mathematical issues.

2 The base of the model for the immobile zone

Consider a region of fractured rock. The fractures are filled with water
(apart from possible solid material). A tracer is dissolved in the water at
varying concentration. Water and tracer particles are subject to diffusion in
the entire water-filled volume. Let the mobile zone be the part of the water-
filled volume where also advection can occur. The mobile zone is assumed
to be connected. (This means that a water or tracer particle anywhere in
the zone can travel through the zone by means of advection or diffusion to
any other location in the zone.) Let the immobile zone be the parts of the
water-filled volume which do not belong to the mobile zone but which are
accessible to particles in the mobile zone by means of diffusion. (There can
also be parts of the water-filled volume which are inaccessible to water and



tracer in the mobile zone, and which we shall not consider further.) The
solid material surrounding both the mobile and immobile zones can adsorb
tracer particles. Adsorbed particles are still regarded as being located in the
respective zones.

Consider a volume of water belonging to the mobile or immobile zone.
Assume that the concentration of tracer in the water is uniform in the volume
and that the dissolved and adsorbed tracer are in equilibrium. Let us form
the ratio of the amount of tracer, dissolved and adsorbed, to the concen-
tration of tracer in the water. (If there is no adsorption, the ratio is equal
to the volume of the water.) With the capacity of the volume I mean this
ratio. (I hope I use the term correctly.)

The total capacity ratio Siot is the ratio of the capacity of the immobile
zone to the capacity of the mobile zone. When the mobile and immobile
zones are in equilibrium, the ratio of the amount of tracer in the immobile
zone to that in the mobile zone is equal to Biot.

According to the multirate model described in Ref. 1, the immobile zone
can be modelled as a continuous spectrum of first-order boxes. Each box is
characterized by a first-order rate o > 0, and the probability that a tracer
particle in the box will leave the box and enter the mobile zone during a
time interval dt is adt, regardless of the particle’s history. The capacity
ratio density function b(«) > 0 specifies how the total capacity ratio St
is distributed over the spectrum of boxes. The capacity ratio for the boxes
with rates in the interval (o, o + da) is b(«) dev, and

/oo ba) dor = Bros. (1)
0

This means that when the mobile zone and all the first-order boxes are
in equilibrium, the ratio of the amount of tracer in the boxes with rates
in the interval (o, @ + da) to the amount of tracer in the mobile zone is
b(a) da. Tt is possible to conclude from this that if the tracer particles have
an equilibrium distribution within the mobile zone, the probability that a
randomly chosen particle in the mobile zone will enter any of the boxes with
rates in the interval (o, @ + da) during a time interval dt is b(«) da o dt,
regardless of whether the mobile zone is in equilibrium with the first-order
boxes.

It may seem natural to divide the immobile zone into a spectrum of
parts characterized by their sizes. (This could be done if we modelled the
immobile zone as a collection of square fractures extending perpendicularly
from the mobile zone, for example.) We shall however use a characteristic
diffusion rate g > 0 instead of the size as the characterizing variable in the
spectrum. (It is usual to assume that there is a simple relationship between
size and diffusion rate, as we will do in Section 6 using Formula 37.) Let
us introduce the capacity ratio density function bg(cgq) > 0 to specify the
distribution of the total capacity ratio Syt over the new spectrum. I.e.,



the capacity ratio for the parts of the immobile zone whose diffusion rates
belong to the interval (aq, aq + dag) is bg(aq) dayg, and

/Ooo ba(aq) dog = Biot- (2)

For fixed diffusion rate agq, let us model the corresponding part of the
immobile zone with a multirate model specified by by, q(a | ag) > 0 (“fo”
for “first order”), where

| boata g da =1, 3)

The multirate model for the entire immobile zone (all ag) will then be
specified by

b(a) = /0 " bigia(0r | a)ba(oa) dag. (4)

(Some of the terminology and notation in this section is inspired by
probability theory.)

3 A power law distribution for the diffusion rate

In Ref. 2 a power law distribution for the diffusion rate aqg is suggested
(among a few other distributions). Power law distributions occur in connec-
tion with fractals and are therefore theoretically attractive. The distribution
is given by the formula

«@ Odmin < 0d < Qq,
bd(ad) - I(ad,mina ad,max, k - 2) d ’ min max» (5)
0 otherwise,
where
Tmax
Tmax 1 Tmin ’ p= 07
—1
I(xmin, (L‘max,p) = / .’,Ep dr = xp B xp (6)
i max :
Tmin 71,1,1111’ P # 0

The exponent k — 3 has been chosen in conformance with Formula (27a) in
Ref. 2.



4 Multirate models for fixed diffusion rate

In this section we shall study multirate models for the part of the immobile
zone corresponding to a fixed diffusion rate agq. In other words, we shall
study bgoja (e | aq).

boja(@ | aq) may or may not have properties Py and P (k), which are
defined as follows. k is a given real number.

Py: There exists a function f(&) such that

b | ag) = L) )
d
for all ag and .
Py(k): The integral
| rogta bz ®)
or the integral
| romeds k=2, )

converges at both 0 and co. (There is thus a different variant of this
condition for each of the cases k # 2 and k = 2.)

If beoja(cr | aq) has property P, the function f(¢) is uniquely determined. It
is defined for all £ > 0, f(£) > 0 for all £ > 0, and

Awf@ﬁkzl- (10)

Therefore, if k = 2, the integral in Formula 8 will converge. If bgq( | aq)
has properties P; and P»(k), let us define

) 1/(2-k)
(A f@ﬁ”*%) k42,

fmean (k') - .
ng F(6) g de. k=2

(11)

The definitions etc. in this paragraph will be used in Section 5.

We shall now study three kinds of immobile zones, in order to get ex-
amples of what bg,jq(cr | ag) can look like.

Consider a narrow and thin fracture which extends straightly a distance
a from the mobile zone into the surrounding material. Let us assume that
the fracture has constant cross-section area along its entire length. If there



is any solid material in the fracture, it is assumed to be homogeneously
distributed. Let D, be the apparent diffusivity for tracer particles in the
fracture. Let us choose the ratio D,/a? as the characteristic diffusion rate
aq of the fracture. Let us assume that the immobile zone consists entirely
of such fractures. The fractures may have different ¢ and D, values and
therefore different ag values. The part of the immobile zone consisting of
fractures with a given a4 value then has the multirate model specified by

o0 .
2j —1)%*n?
beoja(e | aa) Z <04 - %ad) (12)

j= 1

where ¢ is the Dirac delta function. Immobile zone diffusion to which this
formula applies is called layered diffusion (in finite layers).

If the cross-section area of a fracture is not constant along the fracture’s
length but proportional to the distance to the dead end of the fracture
(i.e., the end which is not in contact with the mobile zone), then the term
cylindrical diffusion is used, and the multirate model is specified by

oo
biojaler | @a) =Y

J=1

ol

da — u?ad). (13)

us

<

u; here denotes the jth solution of Jy(u;) = 0, where Jj is a Bessel function
of the first kind. It should be noted that u; ; —u; ~ 7 for large j.

If the cross-section area is proportional to the square of the distance to
the dead end, the term spherical diffusion is used, and the formula is

o0
6 .
beoja (e | ) Z j— (o — j°7°aq). (14)

Formulas 12, 13 and 14 have been taken from Table 1 in Ref. 2, although
the notation has been changed somewhat.

We shall now investigate how the formulas for layered, cylindrical and
spherical diffusion are related to properties P; and Py (k).

It is rather easy to show that the three formulas all have property P;.
Therefore to each formula there is a corresponding function f(¢). For each
formula, f(£) = 0 for small £, and therefore the integrals in Formulas 8 and
9 converge at 0 for all k. Moreover, f(¢) = O(¢73/2) on average (loosely
speaking) for large £, and therefore the two integrals converge at oo for all
k > 3/2. Thus, the three formulas all have property P (k) for all k& > 3/2.

Property Py means that bgoq(a | q), when viewed as a function of «, is
equal for all ag except for stretching and contraction. P; therefore indicates
some kind of scale-invariance with respect to agq. Small £ correspond to low
first-order rates a and therefore to slow first-order boxes, i.e. boxes where
particles stay for a long time on average once they have entered. For fixed aq



the immobile zone fractures in the three diffusion models have finite length,
or more precisely, they have a fixed D,/a? ratio, and therefore it is natural
that there is a limit to how slow first-order boxes there are, or equivalently,
that f(£) = 0 for small £. Large &, on the other hand, correspond to high
rates o and fast first-order boxes. f(£)’s O(£3/2) behaviour for large ¢ is
common to the three diffusion models, although the shapes of the fractures
vary between the models. Fast boxes in the multirate model mostly have to
do with particles that leave the immobile zone fractures soon after they have
entered them, probably not diffusing far into the fractures. The fractures do
not vary much in cross-section area in the parts nearest to the mobile zone,
and therefore it is perhaps natural that all three diffusion models exhibit
the same O(¢£3/2) behaviour for large £.

From the discussion in the previous two paragraphs we can draw the fol-
lowing conclusions. Consider the class of diffusion models where bgo|q(c | cq)
has properties P; and Py (k) for k£ > 3/2. The models for layered, cylindrical
and spherical diffusion belong to this class. The three models are prob-
ably members of a rather large group of diffusion models which seem to be
realistic from a mathematical point of view and which belong to the class.

5 The multirate model for the entire immobile
zone

There are two ways to obtain b(«), which specifies the multirate model for
the entire immobile zone. The first way is to choose some suitable b(«)
without consideration of bq(aq) and bgq(c | aq). The second way is to
choose bq(aq) and bgq(a | g) first and then use Formula 4 to calculate
b(w).

When b(«) is obtained the first way, a power law distribution is a possible
choice, as suggested in Ref. 2. b(a) will then be given by the formula

/61:01: k-3
in <a<
b(a) = I(amina Omaxs ]{; — 2) « ’ Qmin « Omaxy

0 otherwise.

(15)

Note the similarity to Formula 5.

We shall now see what b(«) will look like when it is obtained the second
way, provided that certain conditions are fulfilled.

We shall assume that bq(aq) is given by Formula 5 and that beojq(o | ca)
has properties P} and P, (k) as defined in Section 4. The k in P,(k) shall be



the same as in Formula 5. Using Formulas 4 and 5 and property P, we get

b(a) = /0 " bioia(er | )ba(ea) dog

= /ad’max fla/aq) Brot

ad  I(0d,min, ¥d,max, k — 2)

k—3
ay " dog

d,min

dg

= /a/ad’max f(€) Brot <g>k_3 (_a_df)
a/ad, min Ck/g I(ad,mina Od max; k— 2) f 52

_ Brot k—3 /4, min 2k
- ot ot o)

I(ad,mina Ad,max;, /@d,max

Had the integral in the last term not been dependent on «, b(«) would have
been proportional to a*~3. Let us therefore study the integral more closely.

Let € > 0 be some small number. Property P»(k) implies that there are
numbers &nin and &nax with 0 < &nin < Emax such that

¢ 0o
/ FOEHde < c / FOE* de (17)
0 0
for all ¢’ with 0 < &' < &pin and
FOEFde < e / F(&)E " ae (18)
& 0

for all fl > Emax- 1f also gmaxad,min < fminad,maxa then
( [Oa E)a 0<a< fminad,mina

C“/C“cl,min
/ f(f)f2_k df [07 1]7 fminad,min <a< gmaxad,mina

/ad,max

€ (1 — 2¢, 1], fma.xad,min <a< £minad,maxa
1]

76)

/0 T HOe ke

fminad,max <a< gmaxad,maxa

[0, 1],
\ [0 ) fmaxad,max < a.

(19)

This formula suggests that the numerator integral could be approximated
by a function which is equal to the denominator integral when a belongs to
some interval and equal to 0 outside the interval.

Let us assume that &nin and £max can be chosen so that they satisfy
the following two conditions in addition to those already given. &y and
Emax shall not be too far apart, in order that the intervals {min0gmin < o <



Emax0d,min a0d Emin®d,max < @ < EmaxOd,max i Formula 19 shall not be too
wide. The relation &nin < €mean (k) < Emax shall hold, where &pean (k) was
defined by Formula 11. If such &nin and €nax can be found, then the nu-
merator integral can be approximated as described with the interval being
Emean (k)0 min < @ < &mean(k)¥d max- (@) can consequently be approxim-
ated by the function

/61:01:

I(ad,mina Qd,max> k—

k—3 > 2—k
T ARG

bapor () = 20
app (0() £mean(k)ad,min <a< fmean(k)ad,maxa ( )
0 otherwise,
which thanks to the definition of &pean (k) can also be written
/Btot ak—3
I(fmean(k)ad,mina fmean(k)ad,maxa k— 2) ,
bappr (@) = (21)

£mean(k)ad,min <a< fmean(k)ad,maxa

0 otherwise.

This choice of bappe () has the advantages that the intervals in Formulas 5
and 21 are equally wide in a logarithmic sense and that

/0 " by (@) dor = /0 " ba) da = oy (22)

Note the similarity between Formulas 5, 15 and 21.

The definition of &mean(k) in Formula 11, case k& # 2, was chosen in
order that Formula 22 should hold. When k£ = 2, Formula 22 would hold
regardless of the value of &ean(k). The definition of &y ean (k) in Formula 11,
case k = 2, was chosen because

) 1/(2—k) 00
i 2-k =ex n .
lim ( /0 F (o) dé) — oxp /0 F(€) e de (23)

k—2

Let us summarize our results about the second way of obtaining b(«) as
follows. Assume that b(c) is calculated from bq(aq) and bgoq(c | q) using
Formula 4. Assume that bq(cq) is given by Formula 5 and that beoq(o | cq)
has properties P; and P»(k), where k is the same as in Formula 5. Let
&mean (k) be defined by Formula 11. Let € > 0 be some suitably small number.
Assume that £nin and &max can be chosen so that they are not too far apart
and satisfy the conditions 0 < &min < &mean(k) < Emax and Emax@d min <

Emin®d,max as well as the condition stated using Formulas 17 and 18. Then

/Btot

I(ad,mina Qd,max

b(er) =

a/ad,min
k=3 2—k
= [ reeta ey

/ad,ma.x



where the integral satisfies Formula 19. Moreover, b(«) can be approximated
by the function

/Btot ak—3
I(fmean(k)ad,mina fmean(k)ad,maxa k— 2) ,

£mean(k)ad,min <a< fmean(k)ad,maxa

bappr (@) = (25)

0 otherwise,

where b,ppr (@) satisfies Formula 22.

6 A derivation of the power law distribution for
diffusion rate from fracture properties

In this section we shall see how the power law distribution for diffusion rate,
as given by Formula 5, can be obtained starting from a power law distribu-
tion for fracture size and other assumptions. There are many assumptions
made in this section, and some of them are perhaps not realistic.

We assume that fractures are randomly and homogeneously distributed
in the solid material surrounding the mobile zone. We assume that a length
scale a can in some manner be associated with each fracture. The number
d?N of fractures with centres within a volume dV of surrounding material
and with length scales in the interval (a,a + da) is assumed to satisfy the
power law formula

—D¢—1
2N { xa P rdadV, amin < a < Gmax, (26)

=0 otherwise,

where “o” denotes proportionality. (Regarding the designation Dy see the
end of this section.)

It is reasonable to assume that a fracture intersects the mobile zone if
the distance from the centre of the fracture to the mobile zone is in the order
of a or less. The number d?Ni, of fractures intersecting an area dA,, of the
mobile zone and with length scales in the interval (a,a + da) is therefore
assumed to satisfy

d2Nim xa Pl daadA;, = a Pida dAg,. (27)

(From now on, we do not mention the condition amin < @ < amax explicitly.)

To simplify the discussion we shall assume that the fractures in the
material surrounding the mobile zone are not in direct contact with each
other. (However, those of the fractures which intersect the mobile zone are
in indirect contact with each other via the zone.) We shall also assume that
fractures which intersect the mobile zone and which have the same length
scale a have equal properties in other respects too.



In a fracture intersecting the mobile zone, let the immobile zone volume
denote the volume of water in the fracture which is accessible to water and
tracer in the mobile zone. The immobile zone is formed by the immobile
zone volumes of all the fractures intersecting the mobile zone.

Consider the assumption that the volume of a fracture intersecting the
mobile zone is proportional to a?*2. This should be the case if the length,
width and thickness of the fracture were proportional to a, a and a7, respect-
ively. We shall however instead assume that the capacity of the immobile
zone volume of the fracture is proportional to ¢”*2. This assumption is
perhaps less realistic, but it is necessary if we want to arrive at a power law
distribution for the diffusion rate. Consider again the fractures intersect-
ing the area dAn, of the mobile zone and with length scales in the interval
(a,a + da). 1t follows from our assumption (and from Formula 27) that the
capacity Rim d?Vin of the immobile zone volume of these fractures satisfies

Rim d*Vim < a7 207 Pt dadAy = " P2 da dAp,. (28)

(Rim and d*Viy, are explained in the following paragraph.)

Let Ry, and Rin 101 be the retardation factors for the mobile and immob-
ile zones, respectively. The retardation factor for a zone specifies the ratio
of the total amount of tracer (both dissolved and adsorbed) to the amount
of dissolved tracer in the zone at equilibrium. Let dV;, be the volume of the
mobile zone corresponding to the area dA;,. dAp/dVy, is thus the area-to-
volume ratio of the mobile zone. Let dViy be the volume of the immobile
zone in contact with the area dA,, of the mobile zone. The capacities of the
two volumes can be expressed as Ry, dVy, and Ry ot dVim, which leads to
the formula

Rim,tot dVim

Btot = Rm de

(29)

The analogous formula for the part of the immobile zone with length scales
in the interval (a,a + da) is

. Ry d2 Vim

be(a) da = RV (30)

where Rj, may depend on a. We have here introduced the capacity ratio
density function b,(a), which specifies how the total capacity ratio ;o is
distributed over the spectrum of length scales a. As usual,

/0 " ba(a) da = Bror. (31)

Multiplication of Formulas 28 and 30 yields

dAm

X Woﬂ_Dﬁ'z. (32)

by (a)

10



From Formulas 31 and 32 we get

dAn,
R dV. 33
/Btot X Rm de ( )
and
Prot v—Dg+2

a , Gmin<a<a ,

ba(a) = I(amin, Qmax, Y — Df + 3) min max (34)
0 otherwise,

where we have taken the condition amin < @ < amax in Formula 26 into
account.

We shall now set up a relation between a and the diffusion rate ag
(Formula 37), and using this relation we shall transform Formula 34 into
the sought formula for the diffusion rate distribution bgq(eq) (Formula 39).

As in Section 4 and in Ref. 2 we shall use the relation

D,

— 35
g X a2a ( )

where D, is the apparent diffusivity in a fracture of the immobile zone. We
shall also assume that

D, xa”. (36)
Combining these two formulas yields
g < a? 2. (37)
We also have the relation
ba(ewa)|dea| = ba(a)|dal, (38)

as both sides express the same capacity ratio in different ways. (Absolute
values have been taken since dag and da may have equal or opposite signs
depending on ¥.) With routine calculations, where Formulas 37 and 38 are
used, we can transform Formula 34 into

@ Od,mi <ag < oy,
bd(ad) = I(ad,min, d,max;> k — 2) d > min maxs (39)

0 otherwise,

where

Od max (amax> 2= (40)

d,min Gmin

11



(the exact values of g min and g max depend on the implicit proportionality
constant in Formula 37),

_ Di—y-20+1

k 41
2—v (41)
and (from Formula 33)
dAn
_ 42
Brot x R dVin (42)

As Formula 39 is the same as Formula 5, we have now reached our goal
to derive Formula 5 from our assumptions. Formulas 40, 41 and 42 can be
used to calculate the parameters in Formula 5.

(In Ref. 3, Sections 3.1 and 5.7.2, and Ref. 4, Section 2.2.1, the designa-
tions Df and D are used, respectively, and they are said to denote fractal
dimension. Let us neglect fracture thickness in the present section’s model
of the fractures in the material surrounding the mobile zone, so that the
fractures are regarded as surfaces with area proportional to a?. I believe
that the use of D¢ in this model is then similar to the use of Dy and D in
Refs. 3 and 4. Probably there exist one or more exact definitions of the
concept fractal dimension in the mathematical literature. I am not sure
whether the use of Dy and D in the present section and Refs. 3 and 4 is in
accord with those definitions.)

7 Practical use of the multirate model in com-
puter simulations of tracer motion

In this section it will be discussed how the multirate model with a power
law distribution can be included in computer simulations of tracer motion
in fractured rock.

We assume that the domain of rock where tracer motion is to be simu-
lated is divided into cells by a computational grid, as is usual in numerical
calculations. We further assume that the domain can be divided into a num-
ber of subdomains, each consisting of a group of cells. The properties of the
immobile zone are assumed to be similar in cells which belong to the same
subdomain. What is meant by this similarity will be specified further on.

Section 2 starts, “consider a region of fractured rock”. This region is
the setting for all of Sections 2, 3, 4 and 5. In connection with the concepts
introduced in the previous paragraph, it is suitable to assume that the region
refers to any one of the cells. If we look at Section 2, Sy, b(), bq(aq) and
boja(a | q) then all refer to this cell. If we consider the entire domain,
there is one fBiot, one b(), one by(aq) and one beoq(a | ag) for each cell.
However, as we have assumed that the cells of a subdomain have similar
immobile zone properties, we shall assume that by, q(a | aq) is equal in
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all cells of the subdomain, while b(«) and by(q) are proportional to Bt
within the subdomain. In other words, each of the three functions b(«)/B;ot,
ba(ca)/Bror and bropq(a | aq) is equal for all cells in a subdomain but may
vary between subdomains. In Section 3, agmin, ®d,max and k are assumed
to be constant within a subdomain, while S0 and bgq(cq) may vary between
cells. It follows from Formula 5 that bq(aq) is proportional to St within
the subdomain. Regarding Section 4 it is sufficient to say that b, q(c | aq)
is assumed not to vary between the cells of a subdomain. In Section 5 two
ways to obtain b(«) are discussed. In the paragraph about the first way,
Omins Omax and k are assumed to be constant and b(«) proportional to Bt
within a subdomain. What has been said above about Sections 3 and 4 is
true also for the part of Section 5 discussing the second way.

Section 6 can also be read with the domain, subdomains and cells in
mind. @min, Gmax, ¥d,mins Xd,max> Df, Vs ¥, k and Ry 1ot should then be
assumed to be constant within each subdomain. Rj,, and D, may vary with
a, but for fixed a they should be constant within a subdomain. The implicit
proportionality constants in all the proportionality relations (i.e., formulas
including “x”) in the section are also assumed to be constant within each
subdomain. The number of fractures d? N, the area dA,, and the volumes
dVm, dVim and d?Viy are assumed to refer to any one cell and may vary
between cells. dAy, is the area of the part of the mobile zone which belongs
to the cell, for example. (However, it is better to assume that dV and d>N
in Formula 26 refer to an arbitrary volume within a subdomain.) Ry, Biot,
bs(a) and bgq(aq) are also assumed to refer to a cell and may vary between
cells. Formulas 34 and 39 show that b,(a) and bq(aq) are proportional to
Biot Within a subdomain.

We shall now discuss possible ways to choose a multirate model for in-
clusion in computer simulations of tracer motion.

The task amounts to choosing a function b(«) for each cell. We shall
treat each subdomain separately, so let us focus on one subdomain. Let
us decide that each b(«) shall be of the form given in Formula 15. As has
already been said, amin, max and k are assumed to be constant within the
subdomain while B0t may vary from cell to cell. The remaining problem
is to choose these parameters. When doing this it is possible to use more
or less of the theory presented in this paper. If as much as possible of the
theory is to be used, we can proceed as follows.

Following Section 6, we assume that dA,,, dV, and R, are somehow
known for each cell in the subdomain. Sy can then be calculated for each
cell using Formula 42, provided that we can somehow choose the implicit
proportionality constant. (If dAp, and dV}, are known for each cell, a possible
way to calculate Ry, is to use the relation (Ry — 1)dVy, o« dAp.) Let us
also assume that the constants amin, tmax, Df, 7 and ¥ are known, as well
as the implicit proportionality constant in Formula 37. agmin and ag max
can then be calculated using Formula 37, and %k using Formula 41. bq(aq)
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for each cell will then be given by Formula 39 or Formula 5.

Following Section 4, we must choose bgq(a | aq), which should be the
same for all cells in the subdomain. by q(a | aq) should have properties
P, and P,(k). Formulas 12, 13 and 14 are possible choices, provided that
k > 3/2. (The choice of bgq(a | aq) may influence the already mentioned
choice of the implicit proportionality constant in Formula 37.) &mean(k)
should also be calculated using Formula 11. I believe that this calculation
may have to be done numerically.

Now we have both bq(ag) and bq(a | @g), and b(«) could then be
calculated using Formula 4. But then b(a) would not generally have the
form given in Formula 15. However, if the conditions stated in Section 5
are fulfilled, we can use bappr(0) given by Formula 21 instead of the b(«)
of Formula 4. The sought api, and apax will then be given by api, =
Emean (k) 0d,min and &max = &mean (k) d max- We have already obtained k& and
Biot, and therefore we now know all parameters for the multirate model for
the subdomain.
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INTRODUCTION

This report describes a numerical method for generating a two-dimensional set of
random numbers with a multivariate normal distribution characterized by acertain
covariance structure.

A reader who only wants to learn the numerical method and the character of the
random numbers that can be calculated using it can read Chapters 1-8 straight
through and skip the appendices. A reader who is also interested in derivations
should read the entire report, in which case the following order is recommended:
Chapters 1-3, Appendix A, Chapters 4—7, Appendix B, Chapter 8, Appendix C.



MULTIVARIATE NORMAL DISTRIBUTIONS

In this chapter we shall introduce the concept of multivariate normal distribution.

Let n and mbe non-negative integers, and let a;, 1£i£n, 1£ j£m, and b,
1£i £ n, berea numbers. Consider the joint probability distribution of the n
stochastic variables Y, =48, X, +b, 1Ei £n, where X, ,1£ j £m, are

independent stochastic variables with a standard normal distribution, i.e. anormal
distribution with expected value 0 and standard deviation 1. Thisjoint probability
distribution will depend on the choiceof n, m, a;, 1£i£n, 1£ jEm, and b,

1£i£n.

Now consider the totality of joint probability distributions obtained from all
possible choicesof n, m, a;, 1£i£n, 1£ j£m, andb, 1£i £ n, asdescribed

in the previous paragraph. These distributions are called “multivariate normal
distributions’.

The following theorem is an elementary result about multivariate normal
distributions: Let n be a non-negative integer, let X,, 1£i £ n, be stochastic

variables with amultivariate normal distribution, and let also Y;, 1£i £ n, be
stochastic variables with amultivariate normal distribution. If E[X,]=E[Y],
1£i £n, and Cov(X,, X, )=CovlY,, Y, ), 1£i,, i, £n, then the two

multivariate normal distributions are the same. In other words, a multivariate
normal distribution is completely characterized by its expected values and
covariances.

Multivariate normal distributions are discussed in Ross (1985), p. 65-68.



DEFINITION SET 1

The definitions in this chapter shall be valid in some parts of the report. In those
parts, it will be explicitly stated that the definitionsin this chapter shall be valid.

Let X,,Y,, aandb berea numberswhich satisfy a, b>0 and x? +y; =a® - b*.
Define the quadratic form Q by letting

Ol y)= O F )X Rk (b> +¢)y?

for al real numbersx andy.



PRESENTATION OF THE QUADRATIC FORM Q

Definition set 1 shall be valid in this chapter.

In this chapter we shall become alittle familiar with the quadratic form Q.

With regard to the result of Section A.2, it isclear that Q(X, y)3 O foral xandy,
equality holding precisely when x, y =0.

In Section A.4 it is shown that the equation Q(X, y) =1 describes an ellipse with
foci (- %,,- y,)and(x,, y,) and half axislengths a and b.

More generally, in Section A.5 it is shown that for every real number d >0 the
equation Q(x, y) = d? describes an ellipse which has the same centre, orientation
and shape but which is d times as large as the one described by Q(x, y) =1.



PRESENTATION OF THE NUMERICAL PROBLEM

Definition set 1 shall be valid in this chapter.

Consider the following problem: Let n, and n, be non-negative integers.

Construct a numerical method for generating random numbers
H..,1Er £n,,1£KEn,, (H, aretreated formally as stochastic variables here)

which have a multivariate normal distribution characterized by

E[H,]=0, 1£r£n,,1£k£En,,

Cov(H,,, Hrzkz):expg? Qlr. - rlz’kz - kl)g, 1£r,r, £n,1£k, k, £n,.

We shall not give an exact solution to this problem in the report. However, in
Chapter 6 avariant of this problem where the covariances are only specified
approximately will be given, and in Chapter 8 a solution to this approximate
problem will be given.



THE APPROXIMATE VERSION OF THE NUMERICAL PROBLEM

Definition set 1 shall be valid in this chapter.

The approximate version of the numerical problem isthe following: Let n, and n,

be non-negative integers, and let e be a positive real number. Construct a
numerical method for generating random numbers H ., 1£r £n.,1£ Kk £ n,,

which have a multivariate normal distribution which satisfies

E[H,]=0, 1£r£n, 1£kEn,,

Var(H,)=1 1£r£n, 1£kEn,

COV(Hrlkl’ Hrzkz) - eXp ? Q(rz- rl, kz- kl)

5
~|Ee, 1fr
e 2 [}

1

r,En, 1£k, k, £n,.



DEFINITION SET 2

The definitions in this chapter shall be valid in some parts of the report. In those
parts, it will be explicitly stated that the definitionsin this chapter shall be valid.

The definitionsin this chapter are given under the assumption that definition set 1
isvalid, asthe entities introduced there are referred to here. In those parts of the
report where definition set 2 will be valid, definition set 1 will also be valid.

Numbers which can be written as integers divided by 2 we shall call “half-
integers’. (If thisisastandard term | do not know.) As Z normally denotes the
set of integers, let Z,,, denote the set of half-integers. If e.q. r, isahalf-integer
variableand r, and r,, are half-integers, the expression r,, £ 1, £, (1/2) shall
mean that r, shall assume all half-integer values from r,, to r,,.

Let x, and y, be non-negative half-integers.

Let

P \ i
M, =i(x V)T Z,” Z,|X£x, Uly|£ yhg,
| 2 2

i R , . u
Mf zj(xiy)l ZE Z}||XI>Xh U|y|>yhg1
| 2 2

i.e. M, isthe set of those half-integer pairsin which the absolute value of the first
half-integer isless than or equal to x,, and the absolute value of the second half-
integer islessthan or equal to y,, and M, isthe set of those half-integer pairs that
do not belongto M. “n” and “f” stand for “near” and “far”, respectively.

In the report expressions like (r, k)- M, wherer and k are integers, will occur.
(r,k)- M, meansthe set of half-integer pairs which can be written as differences
between (r, k) and elementsin M, .

Let

2= | aep(-2Q(x ),

(xy)im,

7]
1

(x, )1 My

s = \/ a exp(- 2Q(x, y)).



In the sum in the definition of s , , theterm exp(- 2Q(0,0)) =exp(- 2" 0)=1 is
always present, and all terms are positive, so s , 2 1. The definitionof s, is
correct because the infinite series converges, which is shown in Section B.4.



THE SOLUTION TO THE APPROXIMATE NUMERICAL PROBLEM

Definition sets 1 and 2 shall be valid in this chapter. We also keep the definitions
from Chapter 6.

The following is a solution to the approximate numerical problem:

Let
® @ 62
d:maxg 1 , 1 + max%,lnzib__i,
V2 b 2y27 b G o 17,
¢ ming_, =7
g & e3 2gg;

and let x, and y,, bethe smallest half-integers that still satisfy
1 1
X, 3 d b2+x§-z, y, 3 dyb®+y2 - 7

Let F, ,1- X, £1, £n, +x,(1/2), 1- y, £k, £n, +y,(U/2), beindependent

random numbers with a standard normal distribution % these can be easily
generated on a computer. Let

]

a (eXp(‘ Q(r - To, k- ko)), Froko)

H, = ool 1, , 1Er£n,1E£kEn,.
S

n

Thejoint probability distribution of the H,, will then meet the specifications given
in Chapter 6.

A derivation of thissolutionis given in Appendix C.
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A.3

APPENDIX A: PROPERTIES OF THE QUADRATIC FORM Q

I ntroduction
Throughout this appendix, definition set 1 shall be valid.

In this appendix, various properties of the quadratic form Q will be deduced. The
results of the appendix are used in different parts of the report.

(x2 +y?)ra® £Q(x, y) £ (x2 + y2)/b?
In this section we shall show that

X2+ 2 X2 + 2
- EQey)e ™

for al real numbersx andy.

Indeed, we have

- (Yox- %,¥)* £ 0£ (xox+ yoy)°

- YoX +2%YoXy - XgY® EOEXgX" + 2%, YoXy + Yoy

b2(x2 +y?) £ (0% + y2)x2 - 2%, yoxy + (0% + 32 )y? £ (0% + X2 + y2) (2 + y?)

b?(x* +y?) £ (% + y3 )% - 2xyp+ [0 + 5 Jy? £2%(x* +y?)

X2+y2 X2+y2
.~ £Q(x, y)£ o

x2 £(p% +x2)Q(x,y) and y? £ (b% + yZ)Q(x, y)
In this section we shall show that

x* £ (07 +x5)Q(x y). v*£(b* +y§)Q(x )

for al real numbersx andy.

To show the first inequality, we have

10



A4

(b2 + y2)x® - 2x,yoxy + (0% +x2)y* _
a’b?

Q(x,y)

bl so - 2oy b6 1oy

(b2 +5¢ + y2 )02 + 2 y2x? - 207 + %)%,y + b2 + 3¢ y?
a’b?

= o? +x¢)Q(x. )

a’b?x? + (xoyox- (b2 + xé)y)2
a’b?

= b? +x¢)Q(x.y)

x2 £ (b2 +x2)Q(x, y).

The second inequality can be shown analogously.

Q(x, y) =1describesan ellipse

In this section we shall show that the equation Q(x, Y) =1 describes an ellipse
with foci (- x,,-Y,) and (x,, y,) and half-axis lengths a and b.

Consider the following sequence of equations:

Q(x y)=1
g
(b2 + y§)x2 - 2X, Yo XY + (b2 + xg)y2 = a’b?
g
(a2 - x2)x - 2%y +(a - y2)y? =a%(a- X - y2)

a2(X? £ 2x,x +3C + Y2 £ 2y y + Y2 ) =@t £ 227 (xgX + VoY) + XX + 2%, Yo Xy + Y22
)
a?((xx %, )7 +(y £ vo)?) = (a2 £ (xpx+ yoy)f

11



=4a’ +§/(Xi X )+ (v Yo ) - J(xF X )2 +(yTFy,* &

, §/(X+X°)2 +(y+yo) +\/(X' X, )" +(y- YO)ZE
(i

0=8a- y/(xxx ) +(y£y,) +y(xFx ) +(yFy, ) &

?a X"'Xo (y+yo)2 - \/(X' Xo)2 +(Y' yo)zg

0=2a- \/(x+ x0)2 +(y+ y0)2 - \/(X Xo)2 +(y- y0)2
g

V% )7+ (y+ ¥/ +4(x- %) +(y- v,)° =2a

Obvious equivalences and implications have been indicated with arrows. Each
eguation containing “ +” or “ ¥ ” signsisto be regarded as the statement that both
versions of the equation hold. Because of the direction of the two implication
arrows, it is clear that the last equation in the sequence implies the first one.
However, the first one also implies the last one, which we shall show here. Start by
assuming that the first equation holds. Then the fifth equation must also hold.

Moreover, in Section A.2 it is shown that (x? + y2)/a® £ Q(x, y). As Q(x, y)=

wehave /x> +y* £a As xZ +y2 =a®- b*, weaso have \/xZ + Yy, £a Now the
Schwarz inequality gives us [x,X+ Y, Y| £ ng +yo’ \/xz +y? £a” a=a?, which
inturnyields 0 £ a® + (x,x + y, y). Together with this fact, the fifth equation gives

us the sixth one. Adding together the two versions of this equation and dividing the
sum equation by a directly gives us the last equation.

Asthefirst and the last equation in the sequence are thus equivalent, it only
remains to show that the last equation describes the specified ellipse.

An ellipse can be defined as the set of those points whose distances to two given
points, the foci of the ellipse, have a constant given sum. Thisisindeed expressed
by the last equation of the sequence, if (- x,,-Y,) and (x,, Y, ) arethefoci and 2a

12
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A.6

is the total distance. Imagining an ellipse, one can see that the total distance is equal
to the length of the long axis of the ellipse, and one can also see that half the

interfocal distance, half the short axis and half the given total distance form a right
triangle. The half long axis length must therefore be a, and the half short axis length

must be \/a2 —(\/xj +y§)Z =\/a2 —x¢ -y =b.

O(x, y)=d’ also describes an ellipse

In this section we shall show that for every real number d > 0 the equation

Q(x, y) =d” describes an ellipse which has the same centre (x, y = 0), orientation
and shape but which is d times as large as the one described by Q(x, y) =1.(The
ellipse Q(x, y) =1 is discussed in the previous section.)

We can convince ourselves that the ellipse mentioned which is d times as large as
the Q(x, y) =1 one, must be described by the equation Q(x/d , vld ) =1.

However, this equation is equivalent to Q(x, y) =d?, which is easily seen on
inspection of the definition of Q.

Linear transformation between (x, y) and (g", 17) coordinates

In this section we shall introduce a coordinate transformation and determine some
of its properties.

Define
2 2
, birxgrab o xp,
e a+b Ma+ b’
XY, _b2+y§+ab
lye=— "> Ly =——
a+b a+b

and introduce a linear transformation from new coordinates & and 7 to the old
ones x and y by

x=t.S+t,n, y=t,5+i,1.
The area scale of the transformation is

Leelyy —laplye =

3 (bz +x§ +ab)(b2 +y§ +ab)—x0y0x0y0 _

(a+b)

13



_ (07 +x¢ + yZ +b? +ablab+ (b + xZ + yZ)o? _
(a+b)’

_(a*+b* +ablap+a® _[a® +2ab+b’)ab _
(a+b) (a+b) |

l.e., if avariable substitution in adouble integral isto be made, the formula
dxdy = abdxdh

should be used.

We have

t X LY =L (LoX + 100 )- 1 (% +t,h) =

= (tacty - Lty Jx = abx,

St Xt Y = (LeX Fteh )+t (E,x +t,h) =

= (tutyn - Lty Jp = abh,

so the inverse transformation is given by

b X- Loy - L Xty Y
an ab

2 L2 _ (b2 + X5 +ab)2 +(xoyo)2 _
to Tl = (a+b)2 =

(b2 + x§)(b2 +2ab)+ (b2 + x§)x§ +a’b® + x2y? _
(a+b)’

(b2 +x2)(b? + 2ab)+ (b + %2 + y2)x2 +a%* _
(a+b)’

(b2 + xj)(b2 + 2ab)+ a’x; +a’h? _
(a+b)’

14
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_ (b2 +x§)(a2 +2ab+b2)
(a+b)’

:b2+x§’

_ (0% +x2 +ab)xy, + x,y,(b? + yZ +ab) _

t t +1, t
(a+b)

_ (b2+x§ +y? +2ab+b2)x0y0 :( +Zab+b2)xoyo —x
(a+b)2 (a+b)

OyO’

2 vz, = Covo)’ +((b2 +)y +ab) _
a+hb

_ x2y2 +(b? +y2)(b? +2ab)+ 0% + y2 )yZ +a%b® _
(a+Db)’

_ (02 + y2)(0? + 2ab)+ (02 + ¢ + y2 Jy2 +a%? _
(a+b)’
_ (62 + 3)(0? + 2ab) + a%y5 +a%? _
(a+b)*

_ (b2 + yg)(a2 +2ab+ b2)
(a+b)*

:b2+y§,

and therefore

.2 2
<2 +h? zgaéwx- tMg 2 t X+t YE
ab 5 ab

0
g

_ (tjx +g, )X2 - 2(txxtyx +txhtw)xy+(tfx +1g, )y2
- a’b?

_ (07 + y2)x - 2xypxy + (07 + X2 )y?

ol =Qlxy)

Identity with four Q

In this section we shall show that

QU + %, ¥ + ¥5) +Q(%, - %0, ¥, - 1) = 2Q(x, v1) + Q(x,, ¥,))
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A.8

for all real numbers x;, y,, X, and v,.

Using the coordinate transformation in Section A.6, we let (x,, y,)and(x,, y,)
correspond to (x,,h, )and (x,,h, ), respectively. As the transformation is linear,
(x, +%,, v, +V,) and(x, - x,, ¥, - y,) will then correspond to (x, +x,, h, +h,)
and (x, - x,, h, - h,), respectively. With the new coordinates the above equation
can be written

(x, +x, )+, +h, )2 +(x, - x, )+, -h,)* = 2(x12 +h? +x2 +h22),

which is an obvious identity.

Triangleinequality with Q

In this section we shall show that

|\/Q(X2’ yz)' \/Q(Xm y1)|£\/Q(Xz - X Yo yl)’

VM + %, ¥1 +Y,) £4Q(x, 1) +4/Q0%, ¥2)
for all real numbers x;, y;, X, and y,.

Changing to new coordinates asin the previous section, the above inequalities can
be written

£ \/(xz -x ) +h,-h,),

Wxg +hZ - [xZ+h?

JO, 5,7 + by +h, )7 £xZ +hZ + X2 +hZ.

These inequalities are the well-known triangle inequality in two dimensions,
which we do not prove here.
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APPENDIX B: PROPERTIESOF s

I ntroduction

Throughout this appendix, definition sets 1 and 2 shall be valid.

In this appendix, afew propertiesof s, will be deduced. The results of the
appendix are used in Chapter 7 and Appendix C.

An upper estimation of an integral

In this section we shall show that if ¢ and d are real numbers which satisfy
0<c£d/2 then

ool 2yQby)- o)) dxaye

Qxyf d?
£pabexp(- 2(d- c)’).

Indeed, we have

(‘fpxp(- 2(,/Qix, yi- c)z)' dxdy =

Qxy)d?

= [substitution fromx, ytox, h asdescribedin Section A.6] =

= d‘)exp(- 2(\/x2 +h? - c)z)' abdxdh =

x2+h?23d2
=[x =r cosj ,h =r sinj , dxdh =r dj dr | =

¥ 2p

:abb(‘jaxp(- 2(r - c)z)’ rdj dr =
do
- ¥\ r 21~
—2pabor—c(r - c)exp(— 2(r - c) ) dr £
= -

£pab¥(‘)4(r - c)exp(— 2(r - c)z)’ dr =

17



B.3

=pab[— exp(— 2r - C)z)j, =pabexp(— 2(d - C)Z),

because r /(r - ¢)£2whenr 3 2c.

A sufficient condition that s, £ d

In this section we shall show that for any given real number d > 0, if we choose
the real number d and the half-integers x, and y, so that they satisfy

2

1 35‘ & 1 009
ds abexp&- 2¢d - < T£d?,
2z P pg g 22" bg
+%3 dyb* +x3, yﬁ%s dyb? +yg,
thens, £d.
Indeed, we have
si= & exp(- 2Q(x¢yd)=
(x¢ydi M,
y%% XG%
= & 40 oowl- 2Q(x¢yd) dxdy£
(xGyal M, 1 1
yltzxtt71
£[comment1]£
y%% x%% & 026
£4 § O O exp& 29,/Q( E ~ dxdy =
(xayd M, ol & 2\/5 bo 5
50
=4 C‘!\) exp(} 2(;1/Qi y) - ~ dxdy £
\x\3x+ Uy y, +3 2\/5 bﬂg

£ [comment 2] £

2

£4 ® exp(} 291/Qi y)- 2\/5 b il dxdy£

Q(x,y) d?
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2 20
£[comment3]£4pabexp§- 28 - L 9-g42,

22" b(/JQj

D

i.e. s, £d. However, some of the above steps need comments:

Comment 1. Because |x- x$ £V/4and |y- y§ £1/4, (x- x§> + (y- y§* £ 18.
According to Section A.2, Q(x- x¢y- y§ £ ((x x§® +(y- y@z)/bz. According

to Section A.8, /Q(x¢ yg 2 |\/Q(x, y)- JQ(x- x¢y- y©| Using these facts, we
have

\/Q(X¢ y(I) 3 |\/Q(X, y)- \/Q(x- x¢y - y@is

3 JQ(x y)- JQ(x- x¢y- y§2 /Q(x,y)- J(X X‘I) +(y- y“)z

s oY) 1
QXY 2J2° b

Because (x¢ ydT M., [x > x, or|yd > y,. As x( x,, y¢ and y, are half-
integers, [x#3 x, +1/2or|y#3 y, +1/2 must hold. As [x- x4 £ /4 and

ly- YAELV4, [X3 x, +V4or|y|3 y, +1/4 must hold. According to comment 2,
then Q(x, y)? d? must hold. As d satisfiesd ® 7(\/2" b), we have

1 1
A ix, i3 ds > .
Q. y N2°b 2427 Db

The above inequality /Q(x¢ y® 32 /Q(x, y)- 1/(2\/5' b) can therefore be
squared, and we obtain

2

x¢y©39\/Q( y)- 2\/5 -

Comment 2. We shall show that if |X|3 x, +1/4or|y|3 y, +1/4, then

Q(x, y)? d?. In fact, remembering that x, +2/43 d./b®+x? and

y, +1/43 d\/b? + yZ, we can conclude that x?/(b? +x2)3 d? or

y?/(b? +yZ)3 d?. However, according to Section A.3 Q(x, y) is greater than or

equal to both x?/(p? +x2) and y?/(b? + yZ2). Therefore Q(x, y)3 d? must hold in
both cases.

Comment 3. Theinequality follows directly from what is shown in Section B.2.
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B.4

s, isfinitefor all x, and vy,

Consider the definitionof s, :

s, = \/(X a (- 2Q(x, y))

,)’)T My

In order that the definition shall be valid, it is necessary that the infinite seriesin
the definition converges. Thisisindeed the case, as we shall show in this section.

For any choice of the non-negative half-integers x, and y,, M, will contain all
but afinite number of the elementsof Z,,,” Z,,,. Therefore, either the series will

converge for all choices of x, andy, , or it will diverge for all choices. But in

Section B.3 it was shown that if sufficiently large x, and y,, values are chosen,
the series will converge. Thus, the serieswill converge for all choices of
X, and y,, .
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APPENDIX C: DERIVATION OF THE SOLUTION TO THE
APPROXIMATE NUMERICAL PROBLEM

Definition sets 1 and 2 as well as the definitions made in Chapters 6 and 8 shall be
valid in this appendix.

In this appendix we shall show that the numerical method described in Chapter 8
really is asolution to the approximate numerical problem stated in Chapter 6. The
derivation will be givenin four parts.

Part 1. We shall show that the H,, have a multivariate normal distribution.

Thisisreally the case, asthe H,, arelinear combinations of a set of independent
random numbers with a standard normal distribution.

Part 2. We shall show that E[H, |=0, 1£r £n,1£k£n,.

Thisisthe case because the H,, are linear combinations of a set of random
numbers with expected value 0.

Part 3. We shall show that Var(H,)=1, 1£r £n,, 1Ek£n,.

Asthe F,, areindependent and have variance 1, we have

g:" Aé. (eXp(' Q(r - ro’k' ko)), Froko)6
Var(Hrk):Var(;(rkao)l (rk)-M, =

a exp(- 2Q(x, y))

_ blim, _
=ttt =1.

n

Part 4. We shall show that

Cov(Hy, Hy, )- expg- e s —

5
z£e, 1lErn,r,£n,1£k, k, £n,.
g
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This part of the derivation of the numerical method is rather complicated. We
shall derive the inequality in a single sequence of inequalities and equalities. After
that, some of the steps in the sequence will be commented.

Cov(Hrk H_ ) expg? Qlry - 1.k, - kl)g
1™ 22 e 2 ﬂ

2 2 ‘.
Cov(Hrlkl, H,zkz)- Sn +28f expg? Q- 1k, - k1)9+

= [comments1- 2] =

é eXp(' Q(rl' r0’k1' ko)' Q(rz - ro’kz - ko))

(ro ko )T (ke )- M )N((ra Kz )- My, )

(ko)1 2,724
- 2 2 +
S,
s 2 @ Q(rz- r, K, I<1)o
+—1exp ==
Sn e 2 4]

é exp(- Q(rl' rO’ki_ ko)' Q(rz' r0’k2 - ko))

(o ko)t (12, ke )- M )N((r2.kz )- My )

2
n

S

é eXp(' Q(rl = To, k1 - ko)' Q(rz - Ty, kz - ko))
_ (ro.ko )T (7 ke )- My N((r2 ko )- M)

SZ

n

é eXp(' Q(rl - To, kl - ko)' Q(rz - Tos kz - ko))
_ (ro.ko )T (ke )- M )N((r2.k)- My )

> +
S

n
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) ) Ry
+ 3 exp ?Q(rz ALSLILP
S, e 2 a

£ [triangleinequality + comments3- 4] £

2 2 Iy
S S; S.S, S’ s’ _s s, 0
R e A e :—fa%+2—fi£[comment55-6]£
S, S, S, S, S, S,g
e ae 16
3¢ 2~

£20+2 Size
18 1

e g
Comment 1. We shall show that

Cov(H, . H,. )=

é eXp(' Q(rl' rO’kl_ ko)' Q(rz - ro’kz - ko))

— (ro.ko )1 (7 ke )- M )N((r2 K, )- M)

SZ

n

The F,, areindependent and have variance 1, so Cov(F,mkm, F,Ozkoz) isequal to 1
when (ro,, ks, ) = (rep. ks, ) @nd O otherwise. Therefore we have

Cov(H,,  H,. )=

& Aé. (exp (' Q(rl - Tos k1 - ko)), Froko)
— COV(; (ro.ko )1 (ri ke )- M,

MD~O O
(7]
5

= (rg.ko)1 (1 ke )- M )N((rz ks )- M) —
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é. exp(- Q(rl' rO’kl- ko)' Q(rz - ro’kz - ko))

= (ro.ko)1 (1 ke )- M )N((rz ks )- M)

2
n

S

Comment 2. We shall show that

é eXp(' Q(rl' For Ky - ko)' Q(rz - Tou K, - ko)):

(o ko)1 21" 24
2

N

=(snz+sf2)exp€$ Q(rz -1, K, - k1)9
e 2 @

From the definition of Q it iseasy to seethat 2Q((r, - r,)/2,(k, - k,)/2) =
=Q(r, - r,,k, - k;)/2. Thisfact together with the result of Section A.7 gives us

Q(rl' Fos Ky - ko)"'Q(rz' ro. Ky - ko):

:23?-\)(?2'rl’kz'k19+Q¢ﬁ1+r2_ro’k1+k2_ 00_
e 2 2 %] e 2 2 %7}

:Q(rz' rl’k2_ k1)+2Q§1+r2 _ ro’k1+k2 _ kog-
2 e 2 2 7}

Thisidentity enables us to conclude that

é eXp(' Q(rl - Ty, k1 - ko)' Q(rz - To k2 - ko)):
(ko)1 2,724

— 2 & Q(rz - I kz kl) o tr, k1 + kz 00 _
. expas 2 1, k, 2=
(rOv%)?Z;' Zy pg 2 Qg 2 ° 2 0 29
—op ezl ko 3 o ook y)-
e 2 B (xyiz, z,
- expg Q(rz -1, k2 - kl)g, g é exp(- ZQ(X, y))+ é exp(- ZQ(X, y))g:
e 2 B &xy)im, (xy)i My 2
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Comment 3. We shall show that the three sums on the left side of the inequality
sgnarelessthanorequalto s s, s S, ands 7, respectively.

We shall only derive the first of these three inequalities here, as the other two can
be derived analogoudly.

é exp (' Q(rl' rO’kl_ ko)' Q(rz' ro’kz' ko)):
Mn)n((rZ'kZ)'Mf)

(roko )T (. )-

- a(em (- Q- 1ok - k) expl- Qlr, - 1ok, - ko)) £
(ro.ko )T ((re ke )- Mo )N ((rz kz)- M)

£ [Schwarzinequality] £

£ é. (exp (' Q(rl - To, k1 - ko)))2 ’
(roko )T (1 ke )- M,

,\/( )é (exp(- Q(rz - Tou K; - ko)))2 =

o)l (1. )- My

= | aewp(- 20(xy)" | aexp(-2Q(xy) =

(xy)i M, (xy)i My

Comment 4. We shall show that exp(- Q(r, - 1., k, - k,)/2)£1

It is sufficient to note that Q(r, - r,, k, - k,)3 0, which follows from the result of
Section A.2.

Comment 5. s | 3 1, aswe noted in Chapter 7.
Comment 6. We shall convince ourselvesthat s, £e/3and s, £1/2.

The conditionson d, x, and y, givenin Chapter 8 imply that

2

1 E e B
3 . dpabexp - 2c¢d - minc—, ===
2z P pg g 2\/5 bgﬂ % &3’ 2%

+%3 dyb® +xZ, yh+%3 dyb? +v;.

According to Section B.3, then s, £min (e /3, 1/2).
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APPENDIX D Generation of random points with a
Fisher distribution



Generation of random points with a Fisher
distribution

Hans-Olof Kuylenstierna

13th March 2003

1 The Fisher distribution

The Fisher distribution is a probability distribution for the location of a
point 'V on a unit sphere. (We let points be represented by their position
vectors from the centre of the sphere.) The distribution has two paramet-
ers, the location parameter A, which is a point on the sphere, and the
concentration parameter s, which is a real number. If dS is the area of an
infinitesimally small portion of the sphere around a point v on the sphere,
the probability that V will belong to this portion is

K KAV
- . 1
47 sinhﬁe ds (1)
From now on we shall assume that A = (0,0, 1) for simplicity. The formula

then takes the form

K RrwW
— e dS 2
Arsinhk ’ @)
where v = (u, v, w).

The total probability is obtained by integrating Formula 2 around the
unit sphere. Let us check that the total probability equals 1. Let u =
sinf cos ¢, v = sinfsin ¢, w = cosf. We get

T 1 T 2
/0/0 encosﬂsin0d¢d9:27T|:_Eencosﬂi| :__(eK,COSTl'_eK,COSO)

0 K
2r, . o 47 sinh k

= —— — - 3
(e ey = TERE )

which is correct.

The three above formulas, as well as other formulas in this paper, are
not valid in the case xk = 0. E.g., 1 should be substituted for (sinhx)/k
when k = 0. In order not to distract the reader (or the author) from the
main subject, the case x = 0 will normally not be treated specially.



2 A generation method from the literature

The following straightforward method to generate random points with a
Fisher distribution on a computer is described in essence on p. 59 in Ref. 1.
Because V’s spherical coordinates ® and ® are independent random vari-
ables, they can be generated independently. © and ® are calculated using
the formulas © = F3'(Ug) and ® = Fy'(Us), where Fg and Fg are the
cumulative distribution functions of ® and ®, and where Ug and Ug are
independent random numbers uniformly distributed over the interval (0, 1).

There is however a possible disadvantage with this method, as we shall
see now.

For simplicity, let us study the case k = 0, where the Fisher distribution
is equal to a uniform distribution on the sphere. In this case © = Fg YUg) =
arccos (1 — 2Up) and ® = Fgl(Uq)) = 27Us. On a computer Ug and Ug
will be calculated by a random number generator. For numerical reasons
Ueo and Ugs will have a discrete rather than a continuous distribution. It is
realistic to assume that the possible Ug and Ug values will be closely and
more or less evenly spaced numbers in the interval (0, 1). (We shall not dwell
on whether the endpoints 0 and 1 are possible values.) The distribution of
generated points on the sphere will also be discrete. As the derivative of Fiy !
is very large near 0 and 1, the points will not be so closely spaced in the 0
direction near the poles of the sphere. On the other hand, the points will be
very closely spaced in the ¢ direction, as a small change in ¢ corresponds to
a much smaller change in location near the poles.

Whether the not-so-close spacing of points in the 6 direction near the
poles is a disadvantage or not depends on the application in which the
generated points are used.

A possible solution to the problem is to calculate Ug with a double
precision random number generator, if one is available. (We assume then
that single precision is used otherwise in the program.) Ug’s increased
resolution will be enough to compensate for the large derivative of Fg ! near
0 and 1. I have not tried this solution in a computer program.

3 A generation method developed by the author

In this section another method to generate random points with a Fisher
distribution will be described. I developed the method in 1998-1999. 1
also wrote a subroutine to generate Fisher-distributed random points based
on the method. The subroutine has been used at Computer-aided Fluid
Engineering AB.

Let r = (z,y,2) denote an arbitrary point in space, and (unless z =
y =2z =0) let v = (u,v,w) be its projection onto the unit sphere defined
by v = r/|r|. With spherical coordinates r, 6, ¢ we have x = rsinf cos ¢,



y=rsinfsin¢, z =rcosf, and u = sinf cos ¢, v = sinfsin ¢, w = cos .
Let D; be the three-dimensional domain consisting of all points r which
satisfy

0<r < elrwlnh/3, (4)

Consider a surface element dS around a point v on the sphere. The volume
of the part of D; projected onto dS is

Kw—|k|
3

Let R be a random point uniformly distributed within D4, and let V =
R/|R| be its projection onto the sphere. Because the volume given by
Formula 5 is proportional to the probability given by Formula 2, V will
have a Fisher distribution.

We can generate R uniformly distributed within D; by generating R
uniformly distributed within the larger domain Dy defined by

e

ds. (5)

o, lyl < \/ A ! (
14+ 1+ (26/3)?
and keeping R only if it is located within D;. It remains to show (1) that
Dq is a subset of Dy, and (2) that the volume ratio of Dy to Do is large
enough that R can be kept often enough.
As a preparation for showing (1), we shall first calculate sin for that 0
in the interval 0 < 6 < 7 which maximizes the expression

e(ncos@—|n\)/3 sinf. (7)

As the expression is positive in the interior of the interval and 0 at the
endpoints, the maximum must be attained when the derivative is 0.

d

(e sing) = 0 (8)
ok cos 0—|k[)/3 (COS 0 _ g sin2 9> =0 (9)
cosf = g sin” 6 (10)
o\ 2
1— Sin2 0= <§> Sin4 0 (11)
o\ 2
sin~4f —sin"20 — (g) =0 (12)
1 1 2
sin_29 = 5 (:|:) Z + (g) (13)



(14)

o 2
S‘“e‘\/lwm

Let 6y denote the 8 which maximizes Formula 7.

To show (1), we shall show that any point r belonging to Dy also belongs
to Ds. In other words, we shall show that if r satisfies Formula 4, then r
also satisfies Formula 6. And this is indeed the case, because if r satisfies
Formula 4, then

|(1;|, |y| < rsinf < e('ﬁw*\ﬁ|)/3 sinf@ = e(ncosef|n\)/3 sin 6

< 6(.‘-@ cos 0p—|k|)/3

2
<S Sin00 S Sin00 = (15)
1+ +/1+(26/3)?
and
2] < r < elromleD/3 < (16)

To show (2), let us first calculate the volumes of Dy and Dy. We obtain
the volume of D; by integrating Formula 5 around the unit sphere and using
Formula 3. The volume is

T 2 encosﬂ—\fﬂ e—|n\ T 2T
/ / ———sinfdgdo = — / / "% gin 0 d¢p db
0 0 0 0

e lfl 4nsinhk B eI~ 47 sinh |k| B 2m(1 — e*ZW)

= = 17
3 K 3 |k 3|k (7
From Formula 6 the volume of D5 is found to be
16
(18)

1+ /1+ (26/3)2

The following inequality shows that the volume ratio of Dy to Dy is greater
than 7/36 for all k.

2m(1 — e“|)/ 16 ol —e 2N (1+ /14 (26/3)?)
3|k 1+ 1+ (26/3)2 24|k

(1 — 6_2|H‘)(1 +2|k|/3)  w[(1+2|k|/3) — (1 + 2|I€|/3)/62|H‘]

> 245 - 245
©[(1+2|k|/3) = 1] =«
== (19
24|k 36 (19)

It is easy to show that the volume ratio equals 7/6 when x = 0, and that it
approaches /36 when kK — 00. The volume ratio therefore varies with &,
but it is always greater than 7/36. We have thus shown (2).



Let us summarize the method to generate Fisher-distributed random
points described in this section. Generate three random numbers uniformly
distributed e.g. over (0,1). Calculate from these numbers a random point R
uniformly distributed within Dy, which is defined by Formula 6. If R belongs
to D1, defined by Formula 4, keep it, otherwise discard it and repeat the
process until an R belonging to D; has been found. Calculate V = R/|R/|.
V is then our random point with a Fisher distribution.

It is evident that the method described in this section does not have the
possible disadvantage of the method in Section 2. As long as || is not large,
the method should work well from all reasonable aspects (possibly except
for speed). To be specific, I think that the method should work well at least
for |k| < 20 or so. (The choice of 20 as the limit will not be explained here.)
I am not sure how well the method works numerically for larger |x]|.
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Appendix E  Deriving estimates of the flow
wetted surface in DarcyTools



INTRODUCTION

A substance dissolved in water (hereafter called a tracer) can be transported
through a rock volume, provided there is a system of connected fractures and a
flow through these. The tracer may enter crossing fractures, with or without a
flow, and may also diffuse into the rock matrix. The strength of the diffusive
process is related to the flow rate and the flow wetted surface (to be defined
below) as it is through this surface matrix diffusion and diffusion into smaller
fractures take place.

An up to date review of how the flow wetted surface (FWS) can be derived or
estimated is given by Andersson et al. (1998) and there is hence no need to
give an extensive background here. An account of how the FWS is derived in
Discrete Fracture Network (DFN) models is given by Outters and Shuttle
(2000).

The present analysis will be concerned with how the FWS can be derived in the
stochastic continuum model DarcyTools. In DarcyTools the rock volume is
divided into a regular system of computational cells and the key question is
hence how the FWS can be estimated for such a cell. In Figure E-1 the
situation is illustrated, schematically. If, as an illustration, we assume that the
cell has the dimensions 1 x 1 x 1 m’, the channel shown may have a surface
area of 1 x 0.5 m”. The FWS would then be 1 m? as an exposed area is found
on both sides of the channel. It is clear from this illustration that the FWS can
not be much larger than 2 m*/m’, if the simple channel model with two
bounding surfaces is accepted. However, the surface may be very irregular and
may also comprise parallel channels and the upper limit of 2 m*m’ is hence
only a “rough guide”.

When a tracer travels through the channel illustrated in Figure E-1, it may
exchange matter by diffusion with the rock volume exposed by the FWS. The
significance of this exchange can be expected to be related to two parameters:
the FWS per unit volume of water in the channel, a,, and the residence time, ¢.

The exchange will increase with both these parameters and a new variable the
F-quotient (Andersson et al., 1998) has been introduced for this product:

F=a, xt (E-1)
By simple algebra it is possible to write Equation E-1 as:

F=allq
where L is the cell dimension, a, the FWS per unit rock volume and ¢q the
Darcy velocity. The present report will mainly be concerned with a, and F,

determined locally for a cell or integrated along a flow channel.
The objective of this appendix is hence to demonstrate how the FWS and
F- quotient can be determined in DarcyTools.



STORAGE VOLUMES

FLOW WETTED SURFACE

Figure E-1. Illustration of a computational cell with a channel with flow.



2.1

2.2

EVALUATED METHODS

Three different ways of calculating the FWS, for a computational cell, in
DarcyTools will be investigated; these will now be described.

GEHYCO METHOD

The general method used in DarcyTools to derive hydraulic properties is called
GEHYCO (GEneral HYdraulic COnditions). The central idea is to calculate
“how much of a conductive element that intersects a computational cell and let
that volume generate a contribution to the cell property in question”. A full
account of this method can be found in Svensson (2001b).

It is also possible to determine how much of a fracture surface that intersects a
cell and let this “intersecting surface” give a contribution to the FWS in the
cell. This method is hence conceptually straight forward and does not involve
any further assumptions than those involved in the specification and generation
of the fracture network.

Ps;; METHOD

When the background fracture network is generated, a power law distribution
is assumed for the intensity, i.e. number of fractures in a size interval per unit
volume. It is straight forward to use this power law to calculate the expected
number of fractures for a number of length intervals and hence obtain the total

surface area per unit volume, P,,.

In Table E-1 the contributions from different size groups are given together
with the total area P,,. As can be seen, fractures down to a length-scale of
three metres are assumed to contribute to P,. The reason for choosing three

metres as the lower limit, is that the cell size in the model simulations to be
presented is three metres; the assumption being that all flow channels are
picked up by the fracture network and grid chosen.

When the global P, has been determined, we need to distribute the surface to

each cell. This is done with the kinematic porosity as a weighting factor, as cell
porosity values are available from GEHYCO. Finally we note that the local a,

value is twice the local P, value. An underlying assumption of this method is
that the local a, -value is directly proportional to the local kinematic porosity;
this is no more than an assumption.



2.3

Table E-1. Estimate of global Ps, value from a power law for fracture
intensity. The Laboratory scale model (Svensson, 1999) is used for the

estimates.

Fracture set Length Number, Ps; 2 P

interval [m] excluding

isolated

fractures
Determ zones 0.014 0.014
1 160-320 12 0.004 0.018
2 80-160 70 0.004 0.022
3 40-80 425 0.007 0.029
4 20-40 2050 0.008 0.037
5 10-20 9150 0.009 0.046
6 5-10 38800 0.008 0.054
7 3-5 95600 0.006 0.060
0.06

APERTURE METHOD

The third method to be evaluated derives the FWS by the following steps:
e A conductivity is available at each of the six cell walls.

e A transmissivity can be obtained by multiplying with the cell dimension,

A.

e Use the relation between transport aperture and transmissivity

(eT =2.0T 0'6) presented in Appendix H to calculate e, , based on six cell

wall values.

e The free volume in the cell is given by §,4°, where 6, is the kinematic

porosity, and the area can hence be calculated as:

a =2.0

The method apparently involves a number of assumptions that can not easily be

evaluated.

oA

€r

(E-2)




3.1

3.2

RESULTS

In the evaluation of the methods a slightly modified version of the Laboratory
scale model (Svensson, 1999) will be used. One modification is that the cell
size is put to 3 metres (instead of 5 metres) and another that only a simple
forcing (flow from west to east) will be used. The Aspd HRL is not included in
the model and all flow channels will hence start at the western boundary and
leave through the eastern one.

FWS VALUES IN CELLS

We start by discussing the global mean values of a, , see Table E-2, and the

corresponding histograms, see Figure E-2. Starting with the mean values, it is
clear that all three estimates are in fair agreement and are also in agreement
with the mean value of 0.1 m*/m?’ suggested by Andersson et al. (1998). The
distributions are however different, as can be seen in the histograms, see
Figure E-2.

First it should be explained that the bar 0.5—1.0x107 represents all cells with
an a, less than 107 m?*/m’. Roughly two thirds of all cells have a very small
a, . This is due to the fact that the same fraction of cells is not intersected by
any fracture and hence get zero porosity and zero a, . From the histograms one
may also note that all three methods generate most “active” a, -values in the
two intervals 0.1 - 0.5 and 0.5 — 1.0. It is also worth noting that method

three (aperture based) generates very few cells with an a, -value greater than
1.0.

FWS VALUES ALONG FLOW CHANNELS

The global a, -values are not of much relevance, as it is the FWS along flow
channels that will affect the exchange with the rock matrix. For this reason we
will study the correlation between the cell Darcy velocity and cell a, -value,
for the simple flow situation described above, see Figure E-3. At a first glance
the result may look rather similar for the three methods; a closer examination
reveals however some interesting differences:
e Method three shows a week correlation between the Darcy velocity, ¢, and
a, . If a, does not increase with ¢ this implies that e, increases with ¢, as
a larger ¢ should be correlated with a larger “channel cross section area”.

e Method two shows a linear increase of a, with g. The interpretation of this

behaviour is that “a doubling of ¢ doubles the width of the channel, with
e, kept constant”.



3.3

Table E-2. Global mean values of a, for the three methods evaluated.

Method
GEHYCO P Aperture
a;
(mz/m3) 0.12 0.13 0.18

e Method one can be viewed as being in between these two extremes and
perhaps be interpreted as “increased ¢ is correlated with an increase in both
width and aperture of the channel”.

A tentative conclusion is that method one is the more realistic one, from this
point of view.

Next we study the variation of a, along a streamtube. This requires that flow

paths are calculated. In DarcyTools this is carried out in the submodel
PARTRACK (Svensson, 2001a). In the west to east flow considered, particles
are released in fracture zone EW1, see Figure 1-2, and then tracked through the
domain till they reach the eastern boundary. Figure E-4 shows the flow paths
generated by 100 particles. The main flow path is through EW1, changing to
the NNW structures and leaving through NE1. Note that in this view from
above, NE1 gives a wider impression as this zone is not vertical. It is also
worth noting that rather few flow channels are active in the transport.

Figure E-5 shows the variation of a, for one flow path. The same trends as in
Figure E-3 can be identified, i.e. method three generates a fairly constant a, ,

method two shows the largest variations and method one is somewhere in
between.

F-QUOTIENTS ALONG FLOW CHANNELS
Figure E-6 shows the variation of the cell F-quotients (E. =a, A/ ql.) along a

flow path. The same differences between the methods as for a, can be
expected, but the implications for the F-quotients are a little bit different:

e Inmethod three a, is fairly constant and this is probably the reason for the
rather small variation seen in this figure.

e Method two was found to give a correlation between a, and g. It is hence
not surprising that the F-quotient is fairly constant for long periods.

e Method one has a weaker correlation between a, and g and hence shows a
larger variability.

In Outters and Shuttle (2000) the integrated F-quotient along a flow path
versus time was analysed. In that report also a curve was fitted to the results
from the numerical model. Here, this curve will be used for comparisons with
the three methods analysed in the present report. The F-quotient was hence
summed up along a flow path; this was done for one hundred particles and the
result can be studied in Figure E-7. The following should be noted:
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Figure E-2. Histograms of a, [m’/m’]. Method one (top), two (middle) and
three (bottom).



All results are in fair agreement with Outters and Shuttle (2000) (straight
line in the figures). The fact that the present results are generally below the
straight line can be explained by a somewhat higher P;;-value used in the
model by Outters and Shuttle. Method three, which has the highest average
a,, 1s closest to the straight line.

Method two, which has a strong correlation between a, and ¢, gives the
smallest spread around the mean value.
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Figure E-4. Flow channels formed by 100 particle tracks in a flow from west
to east. Blue indicates high intensity of tracks, red low.
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DISCUSSION AND CONCLUSIONS

The present analysis assumes that all fractures and fracture zones have a simple
geometric shape, i.e. the bounding surfaces are two parallel planes. This is of
course a gross simplification that needs to be taken into account when the
results are evaluated. The following points should also be considered:

e The a, values determined give al/l the surface area in a cell. It may well be

the case that only a fraction of this area is in direct contact with the flowing
water.

¢ On the other hand, a real fracture is not made up of two parallel planes, but
may be highly irregular, which increases the possibly active surface (as
compared to the assumptions made in this report).

e A steady flow field was used in the present analysis. In reality one may
expect transient “pulses” on a variety of times scales; from tidal effects,
yearly groundwater level variations to periods with an inland ice on the
very long time scale. These transients may disperse a tracer within a
fracture plane and also activate fractures that otherwise could not be
reached by the tracer. A larger flow wetted surface would hence be the
result.

The a, -values derived should hence more be considered as index of a flow

wetted surface, rather than an absolute estimate of the magnitude.

In Andersson et al. (1998) four topics are suggested, as having the potential to
improve our understanding of the flow related migration parameters:

e develop the theoretical understanding of migration and matrix diffusion,

e study the effect of diffusion into stagnant or low flow zones in a single
fracture,

¢ migration modelling directly in the flow codes,

e exploring for further evidence of matrix diffusion from tracer tests, static
diffusion tests, geology and geochemistry.

This project has not been focused on these suggestions, but it may be the case
that DarcyTools, with the features introduced in this report (FRAME and FWS-
derivations), goes some way towards these goals. Presently PA-studies use
global estimates of FWS in estimates of the F-quotients. It is possible to get
some perspective on these estimates from the present study. In Figure E-8, the
integrated F-quotients for 100 particles using two methods are compared. In
one of the methods we use the global estimate of a,, while the other method

use the local cell values. If the two methods were giving equal results, the

points should fall on the straight line in Figure E-8. This is not the case, the

method using local cell values gives a significantly larger variation of F-

quotients.

With the precautions mentioned above in mind, the following conclusions from

the study are formulated:

e Three partly independent methods to estimate the flow wetted surface from
the groundwater code DarcyTools have been evaluated. All three methods

14



give global estimates of @, that are in fair agreement and these are also in

agreement with the expected value for the Aspé HRL (Andersson et al.,
1998).

Method one, which is based on the GEHYCO technique, is considered to
be the best choice as it directly calculates a, from the fracture network

without any additional assumptions.
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Appendix F Empirical relations for the
determination of fracture properties



Introduction

It is necessary to specify the properties of the conductive elements, even if some of the
required information is uncertain or unknown.

The relations to be presented are not claimed to be the “best possible input data”, but merely
represent what is presently available (a more complete compilation is needed).

Transmissivity-fracture size

The following relation was found in a calibration study for the laboratory domain considered
also in this report (see Report 2):

-5 2 2
T:{IO (1/100) [m? /5] for/ <100 metres 1)

107 [m2 /s] for/ > 100 metres

This relation is shown in Figure F-1 (labelled LABM (99)) together with data from field
investigations (Aspd Major zones, Prototype Repository, TRUE Feature A, TRUE Block
Scale) and some mean values from simulation models (DFN Aberg, DFN TRUE Block
Scale). As already mentioned, the compilation is far from complete and we will restrain from
any firm statements. However, relation (F-1) does not seem to contradict the information
compiled.

Transmissivity-transport aperture

The transport aperture, e, , will be used to calculate the kinematic porosity of a conductive

element. In Figure F-2 one experimental curve (Rhén et al., 1997), one curve used in other
models (Doe, 1993) and the relation resulting from the cubic law are shown. The solid line is
given by:

e, =2.07"° (F-2)

This relation is regarded as a good compromise, based on the following arguments:
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Figure F-1. Relation between fracture size and transmissivity.

Compiled data:

TRUE BLOCK fractures (#5,7, 9, 20) (Winberg, 1998)

TRUE Feature A (Winberg et al., 2000)

Aspé. Major fracture zones NNW* (Rhén et al., 1997)

Prototype Repository. South and North major zones and minor zones (Forsmark and
Rhén, 2000)

DFN, Aberg (Dershowitz et al., 1999)

DFN, TRUE Block Scale (Winberg, 2000)
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e The curve by Rhén et al. (1997) is mainly based on fracture zones with relatively high
transmissivity.

e The curve by Doe (1993) is mostly used for transmissivities in the range
107 -107 m?/s.

e The cubic law applies to “single opening fractures” and is hence best suited for small
transmissivities.

It should once again be pointed out that the only purpose of this compilation is to show that
the relation used, Equation (F-2), is in fair agreement with some easily compiled information.

Fracture size-thickness

It will be assumed that fractures are squares with dimension L x L m” and that the fracture
thickness, b, 1s 1% of the fracture length scale, L. Field data from Aspd, (see Figure F-3), do
not seem to contradict this relation. The definition of “fracture thickness” is given in Section
3.3.

Diffusion coefficients

Effective molecular diffusion in a conductive element should be proportional to the product of
the kinematic porosity and the diffusivity value in the pore water (Neretnieks, 1993). The
proportionality constant is related to the properties of the pore space (constrictivity and
tortuosity).

In DarcyTools, we will simply assume that the diffusion coefficient for a conductive element
is equal to the product of the kinematic porosity and the diffusion value in pure water.
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Appendix G. Some simple calculations
illustrating the GEHYCO method



Some simple calculations illustrating the GEHYCO method

Calculations (which can be done without a computer) for a 2D case will be
presented, with the objective to illustrate the basic idea of GEHYCO. The case to be
discussed concerns a conductive element that runs at an angle of 45° to the
coordinate directions and has a thickness, b,, comparable to the grid size, A, see

Figure G-1. The exact flux, Q,, from cell centre (2, 2) to cell centre (3, 3) is given
by:

dh
=K b, — G-1
Qa e“e (2A ( )

where K, is the element conductivity and dh the head difference. In the grid

representation there will be two flow paths between the points in question. The
velocity cell conductivity, K_, is calculated as the "element conductivity times the

intersecting volume divided by the cell volume" according to the basic principle of
the method, thus:

V2Ab,

b2
K, =K,~—~=*=K, N2
2A 2A

(G-2)

for both the velocity cell between (2, 2) and (3, 2) and the cell between (3, 2) and (3,
3). The head gradient from point (2, 2) to (3, 2) is thus dh/2A . We can now
formulate the flux, as represented in the grid, as:

_ g bN2Adh _ Kb, dh
20 20 2 \2A

0. (G-3)
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Figure G-1. lllustration of how flow and transport is simulated on the grid.



As we have two flow paths between the points, it is found that the grid representation
gives the same flux as the exact solution.

Next we consider the transport time between the two points in question. Analytically
it is easily calculated as the distance divided by the pore velocity:

24 a2 204
Upln, g dh K dh

e\/EA

where ¢ is the transport time, U, the Darcy velocity and €, the kinematic porosity.

(G-4)

When estimating the transport time in the grid representation of the element, it is
instructive to think of a particle that travels the distance. If we further accept that the
residence time of the particle in a cell is equal to the free volume of the cell divided
by the flow rate through the cell, the following calculations can be carried out. First
one should note that the particle has to move through the grid in the "staggered
arrangement”, i.e. from (2,2) to (3,2), or (2,3), and then to (3,3). The two pathways
have the same transport time and we only need to consider one of them. The two
cells in question (2,2) and (3,2) have however different free volumes and through
flows and we need to calculate the residence time for each and add the times.

Cell 2,2): t,, = QQV" (G-3)

Where V, is the intersecting volume and Q is the flow rate through cell (2.2). After
some algebra it is found that:

V2 6

. el eA
K.dh

(2\/541 - be) (G-6)

t2,2

Cell (3,2): By the same procedure it is found that:

_N2 64,

t -
2 Kdh'*

(G-7)

By adding these two residence times, it is found that the transport time in the grid
representation is equal to the analytical solution (Equation G-4).

Diffusive transport can be regarded as a combination of the two cases, flow and
transport, discussed. First one should note that the diffusive flux is analogue to the
Darcy flux, if the head gradient is replaced by the concentration gradient and the
conductivity by the diffusion coefficient. It is clear that diffusion coefficients thus
need to be evaluated at cell walls. If the diffusive term is part of an
advection/diffusion equation for a scalar, we should evaluate the balance equation for
a scalar control volume, see Figure 3-3. It is thus the free volume of the scalar cell,
discussed already, that is affected by the fluxes at the cell walls. Hence, solving an
advection/diffusion equation for a scalar quantity, does not require any new elements
in the grid representation.



The calculations presented intend to illustrate how the properties of the conductive
elements are represented in the grid. It is of course reassuring that the method gives
correct result for the simple case studied, but it is not a proof that the method is
exact. In fact, see Svensson (1999a) and Svensson (2001), it is well established that
some fracture orientations, in relation to the grid, give an error in the simulated flow
and transport times. This error has also been found to depend on the thickness of the
element in relation to the grid size (b, /A). Estimating this error is one of the main

issues in the verification studies, see Report 2.





