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Abstract

We study the potential impact of a limited rim zone and its spatially variable porosity, on
tracer breakthrough under conditions comparable to those of TRUE-1 and TRUE Block
Scale. For this task, we adopt a relatively simple, semi-analytical Lagrangian approach
(Cvetkovic et al., 2000; Cvetkovic and Cheng, 2002). A rim zone is assumed to exist with
a spatially variable extent (thickness) and variable porosity in the direction of the fracture
plane; retention is assumed to take place in the rim zone only. Retention properties are
assumed consistent with those estimated for Feature A in TRUE-1 tests; the extent of the
rim zone and its correlation to porosity, are treated as sensitivity parameters. We find that
finite injection (or tailing in the injection) will generally “mask” the impact of diffusion
limitations, by making it much less apparent (or apparent much later). A rim zone up to 10
mm thick (4.1 mm in the mean) appears sufficient for observations of diffusion limitations
to be virtually impossible for Cs, relatively difficult for Ba, and possible for HTO, even if
there is tailing in the injection and the mean water residence time is in the range 10-100 h.
The presented methodology can be further used for estimating potential effects in the
forthcoming tests within TRUE BS2A, for re-evaluating breakthrough curves of already
completed tests (TRUE-1 and TRUE Block Scale), as well as for assessing the possible
impact of diffusion limitations for long-term radionuclide transport.
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Sammanfattning

Vi studerar hur diffusion/sorption i en begränsad retentionszon (s k ”rim zone”), zonens
tjocklek och den rumsliga variabilitet i porositet kan påverka transporten av spårämnen i
bergssprickor i Äspöområdet; transportförhållandena för analysen stämmer överens med
förhållandena i TRUE-1- och TRUE-Block-Scale-testerna. Ett relativt enkelt, semi-analytiskt
modelleringskoncept används för analysen. Vi antar att sprickorna har en begränsad reten-
tionszon med varierande tjocklek och att retentionen sker enbart i den zonen. Vi finner att
spårämnesinjektion med lång svans kan dölja effekten av en begränsad retentionszon, så
att den är i praktiken svår att observera i genombrottskurvor. Påverkan av en retentionszon
som är upp till 10 mm tjock (4.1 mm i medelvärde) kan vara möjlig att observera för HTO,
svår att observera för Ba och i praktiken omöjlig att observera för Cs, om injektionskur-
van har svans och medelankomsttiden för vatten är mellan 10-100 h. Den analysmetod
vi presenterar kan användas på olika sätt: för att prediktera vilka effekter en begränsad
retentionszon skulle kunna ha på kommande tester inom TRUE BS2A; för att omvärdera
befintliga data från tidigare spårämnesförsök och möjligtvis uppskatta tjockleken på reten-
tionszonen; samt för att studera vilka effekter en begränsad retentionszon skulle kunna ha
på långtidstransporten av radionuklider i Äspöområdet.
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Executive summary

Laboratory investigations of intercepts from the TRUE-1 site yield a porosity in the vicinity
of fractures (rim zone, including breccia) in the range from one to a few percent; this can
be compared to the porosity of the unaltered rock that is typically in the range 0.1-0.5%.
Laboratory investigations also indicate that porosity adjacent to a fracture varies spatially.
We adopt here a relatively simple, semi-analytical approach of following trajectories along
a flow path (Cvetkovic and Cheng, 2002) to study the potential impact of a limited rim
zone and its spatially variable porosity, on the outcome of tracer tests, in particular under
conditions comparable to those of the TRUE-1 and TRUE Block Scale tests.

We consider a flow (or transport) path through one or several fractures, where retention
properties can vary along the flow path. We assume the existence of a rim zone defined
as a zone adjacent to the fracture with distinct retention properties relative to the unaltered
rock. Retention is assumed to take place in the rim zone only, putting emphasis on the
role of the rim zone for transport. The assumed retention properties of the rim zone are
consistent with those estimated for Feature A in TRUE-1 tests, while its extent is treated
as a sensitivity parameter.

We find that finite injection (or tailing in the injection) will generally “mask” the im-
pact of diffusion limitations, by making it much less apparent (or apparent much later),
in particular for non-sorbing and weakly sorbing tracers. For HTO, for instance, effect
of diffusion limitations would be observable after 50 h if an ideal pulse was injected, and
after almost one year if finite injection is applied. A rim zone up to 10 mm thick (4.1
mm in the mean) appears sufficient for observations of diffusion limitations to be virtually
impossible for Cs, relatively difficult for Ba, and possible for HTO, even if there is tailing
in the injection (as in TRUE-1) and the mean water residence time is in the range 10-100
h. Spatial variability in the rim zone thickness and porosity (diffusivity) has comparatively
little impact on the BTCs, relative to the case where effective parameters are used (here
defined as arithmetic mean).

The presented methodology can be applied in order to assess the possible impact of
diffusion limitations on the results of the forthcoming tests within TRUE BS2A. The pre-
sented methodology could also be used to re-evaluate the breakthrough curves of already
completed tests (TRUE-1 and TRUE Block Scale), in order to assess possible evidence of
diffusion limitations and estimate an average extent of the rim zone. Finally, the method-
ology could be applied for assessing the possible impact of diffusion limitations for long-
term radionuclide transport.
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Chapter 1

Introduction

The TRUE programme addresses radionuclide retention in crystalline rock from the labo-
ratory scale, to the scale of approximately 30-50 m. The main purpose of the TRUE tests is
to improve the understanding of retention mechanisms and hence increase the confidence
in modelling retention on spatial and temporal scales relevant for PA/SA. The central is-
sue addressed in the TRUE programme is one of scale transition, or extrapolation, from
the laboratory, to the near-field (TRUE) scale, as a basis for further extrapolation to the
far-field scale.

1.1 TRUE findings

One of the main finding of the TRUE tests carried so far, has been relatively strong reten-
tion, compared to what was expected based on laboratory investigations on core samples
of unaltered rock. These findings were interpreted as a result on the one side of enhanced
retention properties of the rock adjacent to the fractures along the flow paths, and on the
other due to the presence of small rock fragments (breccia) and gouge material in the frac-
tures.

Laboratory data on retention properties using intercept samples, provided values of
porosity, and of microscopic structure and composition (mineralogy) of the rock adjacent
to the fractures (Byegård et al., 2001; Kelokaski et al., 2001). This data indicates two
specific features:

� a relatively thin layer of enhanced porosity where most of the retention presumably
takes place (referred to as the rim zone);

� random spatial variability of both the porosity of the rim zone, and of the extent of
the rim zone.

The porosity of the unaltered rock was found to be in the range 0.1-0.5%, whereas in
the vicinity of fractures (rim zone, including breccia) the porosity was found to be in the
range from one to a few percent. Thus strictly we have three-dimensional variability, with
a clear trend of decreasing porosity from the altered rock adjacent to the fracture, toward
the intact rock of the unaltered matrix. A full three-dimensional deterministic transport
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model can in principle be used for Monte Carlo simulations in order to capture the random
variability. An alternative, simpler approach used for interpreting TRUE-1 and TRUE
Block Scale results (Cvetkovic et al., 1999; Cvetkovic et al., 2000; Cvetkovic and Cheng,
2002), follows trajectories along a flow path and can account for the limited extent of the
rim zone and its spatially variable porosity. The latter approach is to be adopted in this
study.

1.2 Problem formulation and objectives

We consider a flow (or transport) path through one or several fractures, from an injection
to a detection point (borehole). The flow path is conceptualized as consisting of many
trajectories (streamlines, or streamtubes). Flow velocity generally varies along trajectories,
whereby the advective travel time associated with a trajectory, � , is a random variable.
Retention properties of the rim zone can also vary along the trajectories of the flow path.

We assume the existence of a rim zone defined as a zone adjacent to the fracture with
distinct retention properties (in this study porosity and diffusivity), relative to the unaltered
rock. Retention is assumed to take place in the rim zone only, i.e., we simplify the problem
by neglecting the retention that would take place in the unaltered rock once the rim zone is
saturated. This simplification puts more emphasis on the role of the rim zone for transport,
and will affect the transport only at later times.

The assumed retention properties of the rim zone are consistent with those estimated
for Feature A in TRUE-1 tests, while its extent (denoted as

�
[L]) is treated as a sensitivity

parameter. The parameter
�

is treated as uniform or spatially variable along a trajectory,
following a model that will be specified in section 4.1. The porosity of the rim zone �
is also treated as uniform or spatially variable along the flow path; two limiting cases of
correlation between � and

�
will be considered: Perfect positive and negative correlation.

Objectives of this report are:

� To present a semi-analytical (Lagrangian) model for tracer transport between an in-
jection and detection borehole where diffusion is limited to the rim zone and reten-
tion properties are spatially variable.

� To study the potential impact of diffusion limitations, assuming material properties,
flow and injection conditions corresponding to those for TRUE-1 and TRUE Block
Scale tracer tests.

12



Chapter 2

Transport model

Advection and dispersion through fractures coupled with retention in the rim zone are to
be modelled using the dual-porosity concept (Neretnieks, 1980; Cvetkovic et al., 1999).

2.1 Lagrangian formulation

Let a tracer particle be injected at point A and detected at point B; transport of the particle
takes place along a trajectory through one or several interconnected fractures. The prob-
ability density function of the particle residence time is written in a general form in the
Laplace domain as (Cvetkovic et al., 1998)� �������	� 
���
 �

��
����� ���� 
�������� �"!$#%�'&
(2.1)

where
����

denotes Laplace transform,



is the Laplace transform variable,

� �)(��+*,�
is the

memory function which contains information on spatially variable retention processes,
and

���)(+�
is the usual Lagrangian formulation of a trajectory (e.g., Dagan, 1984).

It is convenient for applications to adopt a discretized version of Eq.(2.1) whereby a
trajectory is viewed as a one-dimensional lattice, and the transport as a “walk” between
adjacent lattice sites (Cvetkovic and Haggerty, 2002). We re-write Eq.(2.1) as� �������	�.- ��
 �

�/
�021 � � 1 ��
$�
�

143
(2.2)

where the lattice sites 5 �76 �98 can be interpreted either within a single fracture, or between
fractures if a fracture network with many connected fractures is considered1. Increment of
the water residence time at a given site (location) 5 is �

1
, and we have

� � 021
�

1
Two distinct models of retention are to be compared in this report.

1In the intermediate case, say of a few interconnected fractures, it is appropriate to introduce double
indices say : and ; where : would denote a site within fracture ; (Cvetkovic and Cheng, 2002); here for
simplicity we use only one index.
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2.1.1 Unlimited diffusion

This is the classical case extending the model originally proposed by Neretnieks (1980),
where one-dimensional, Fickian diffusion with sorption takes place in an infinite rock
matrix. In this case, the Laplace transform of the discrete memory function

� 1
in Eq.(2.2)

is defined by � � 1 ��
$� ���
1
� 1 6� 
 � �

1 � �

1 � � 1 � 1
(2.3)

where � is matrix porosity,
�

is pore diffusivity, and
�

is the retardation coefficient
� �6
	 � 6 � �

����
����
� , with

�
[M/L � ] being the rock matrix density and


��
[L � /M] the sorption

coefficient; in general all parameters are variable along a trajectory (streamline), hence
index 5 .

Laplace inversion of Eq.(2.3) yields� 1 �)(+� � �
1
� 1 (�������� (2.4)

whereby Eq.(2.1) can also be inverted to yield� �)(+� � � �)(,�
�
��� � ! �)( � �
� � ��� ���	�#" �$� �% �)( � �

�'&
(2.5)

where � � 021 �
1

�

1
� 1 (2.6)

and � ��( �
is the Heaviside step function. It can be shown that the peak of � is proportional

to 6 �)� � and the peak arrival time is proportional to

� �
;

� �
[T] may in fact be referred to as

the “retention time”, providing a simple and useful direct measure of retention (Cvetkovic
et al., 2003).

If retention parameters �
�*
+�

and
�

are all uniform along a trajectory, then� � ��, � , � 021
�

1
� 1 � � �

� � �
(2.7)

For a structurally uniform fracture where the aperture is constant, the flow path is a rectan-
gular “channel” of width - [L] and length . [L], carrying a volumetric flow rate / [L � /T].
In this case, � � ��, � , �  .0-/
and we recover from Eq.(2.5) the basic result of Neretnieks (1980).

A common assumption in the evaluation of TRUE tracer tests, as well as in PA/SA, is
that , can be linearized in � , as , �21 �

� 1 � 6��35476 (2.8)

where
 ��35476

is an effective “retention” aperture, for a given fracture or a network of frac-
tures. This assumption replaces a heterogenous fracture (or network of fractures) with a
homogeneous “effective” fracture and the key problem is determining

 �835476
, for instance,

from the correlation slope between � and , if simulations are used (Cvetkovic et al., 2000;
Cvetkovic et al., 2003).
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2.1.2 Limited diffusion

Let the retention zone of a given segment 5 be of limited extent, denoted by
�
1
; we can

refer to this finite zone also as the “rim” zone. Then the Laplace transform of the memory
function

� 1
in Eq.(2.2) is defined as (Cvetkovic et al., 1999)� � 1 ��
$� ���

1
� 1�� 1 ��
$�� 
 (2.9)

where � 1 ��
$� � ���	���  �
1 � 
 � 1 � � 1 ! ������� � 6���	� �  �
1 � 
 � 1 � � 1 ! ������� 	 6 (2.10)

For
���	�

,
� � 6 and we recover the unlimited diffusion case Eq.(2.3).

2.2 Transport predictions

Let the total injected tracer mass be 
 [M] and the injection rate � [1/T]. Then tracer
discharge at the detection point B (denoted as � [M/T]) is given by:� �)(+� � 
�
���� ��� (2.11)

where “*” denotes convolution, and the averaging is over all streamlines (trajectories)
which constitute a flow path between the pumping and detection locations, A and B. With� specified and identical for all streamlines, we have� �)(+� � 
 � � �)(+� ��� �)(+�"! (2.12)

where � �)(+� � 
 ��� is an unconditional probability density function (pdf) of particle resi-
dence time from point A to B. If the volumetric flow rate which discharges the tracer at
point B is / [L � /T], then the measurable tracer concentration � [M/L � ] at B is evaluated as

� �)(+� � � �)(+�/ � 
 / ���� � �)( � (��4� 
 � �)(�� � � #�(���� (2.13)

We discuss below different ways of computing � , depending on the type of retention
heterogeneity.

2.2.1 Unlimited diffusion

If the retention zone is unlimited and Eq.(2.3) is applicable, then we compute � as

� �)(+� � 
 ��� � � � �)(�� � �*� � � � �
�*� � #

�
#��

(2.14)

where

�
is a joint pdf for � and

�
. If the retention parameters are uniform then Eq.(2.8) is

applicable and we have

� �)(+� � 
 ��� � � � �)(�� � � , �!� � �
� , � # �

# , (2.15)

We note that the joint pdf

� �
�
� , � is dependent only on advective/structural properties of

the fractures, and not on retention properties.
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2.2.2 Limited diffusion

If the rim zone is of limited extent with Eq.(2.9) applicable in the general case, then a
closed form � is not available and consequently � cannot be written in an integral form as
Eq.(2.14) or Eq.(2.15). In this case, a Monte Carlo computational approach can be used,
whereby the ensemble average is performed over many realizations of the trajectories. We
explore different means for simplifying the calculations.

If the discretization segments (or lattice sites) are viewed in the temporal domain, then
the tracer particle takes steps along a time axis � , rather than the conventional spatial
domain (Cvetkovic and Haggerty, 2002). In such a case, the integral (summation) term in
Eq.(2.1)-Eq.(2.2) can be written as���� � ��
������ #�� � 0 1 � � 1 ��
$�

�

1 ��� �
�0 1
� � 6� 1 � 1 ��
$�� 
 �

1
(2.16)

where the time increment � � is specified as a constant. We consider

8
equal steps, or

segments, where retention parameters are assigned values for each step 5 � 6 �98 , and
write021 � � 1 ��
$�

�

1 � 8 � �
6� 
 - 68 �0 1

� � �
1
� 1 � 1 ��
$� 3 � �

6� 
 - 68 �0 1
� � �

1
� 1 � 1 ��
$� 3 (2.17)

since by definition � � 8 � � ��� �

1
.

If the trajectories are sufficiently long relative to the integral scale of the variable pa-
rameters such that the ergodic hypothesis is applicable, we may replace the average in the
brackets on the RHS of Eq.(2.17) by an ensemble average as021 � � 1 ��
$�

�

1 	 �
6� 
�
 � � � ��
$�
� (2.18)

where angular brackets denote ensemble averaging along the flow path. Equation (2.18)
defines the summation term of Eq.(2.2) as being proportional to an expected value, with
the Laplace transform variable



as a parameter. The computations based on Eq. (2.18) are

complicated by the fact that in general, the expected value is not constant with respect to
� .

The parameters that are being averaged in Eq. (2.18) (i.e., the material properties group� , the rim zone parameters in
� ��
$�

and the half-aperture
�
) are all Lagrangian as they

follow trajectories; hence in principle they all depend on the trajectory

���)(+�
and thereby

on advective travel time � . We shall simplify our following analysis in two ways:

� We neglect the possible correlation between the structural properties as quantified
by the aperture

 �
, and the retention properties as quantified by parameters in � and�

. We can then write 
 � � � ��
$� � 	�� 6� � ��� �
�"!�� 
 � ��
$� � � (2.19)
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� We assume that

� 6� � ��� �
�"! � 	 6��35476 (2.20)

where
 ��35476

is the “retention aperture” associated with , and defined in Eq. (2.8).

The evolution of distinct properties of the rim zone are related to geochemical pro-
cesses facilitated by the flow. Moreover, a feedback mechanism may have been present
over long times, where the flow affected the properties of the rim zone (porosity and thick-
ness) and then these properties to some extent affected flow. Thus it is conceivable that
the porosity and thickness of the rim zone, are to some extent correlated to the fracture
aperture locally. At this time, we do not have sufficient information to establish such a
correlation. Although such a correlation could be considered as part of the sensitivity, we
shall neglect it in the present analysis and limit the sensitivity to the correlation between
the rim zone thickness

�
and porosity � , as quantified by the variability parameter � .

The calculation of � can be simplified by taking advantage of the above assumptions;
we now re-write Eq.(2.18) as021 � � ��
$�

�

1 	 �
6� 
 6��35476 
 � ��
$� � � � � 1 6� 
 
 � ��
$� � � (2.21)

Note that in Eq.(2.21), a structurally heterogeneous fracture is replaced by a homogeneous
(effective) one based on Eq. (2.8), but the variability in retention properties is retained.

Inserting Eq.(2.21) into Eq.(2.2) we get� � � ���	��� � ���

 	 1 � 
 
 � ��
$� � ����� (2.22)

where � is the only random variable since 
 � ��
$� � � has been assumed constant for a given
flow path (i.e., for all trajectories) and independent of � .

To compute � , we take the expected value of � Eq.(2.22) and obtain in the Laplace
domain � � ��
$� � 
 � ��� � � � � ��
 � � � � � �

� #
� (2.23)

where

� �
�
�

is the water residence time density. Inserting Eq.(2.22) into Eq.(2.23), we have� � ��
$� � � ���	� � � � �

 	 1
	 ��
$� � 
 ��� � � �

� #
� (2.24)

where 	 ��
$� � 
 � ��
$� � �
If the Laplace transform of

� �
�
�

is available, then the form Eq.(2.24) enables a rela-
tively simple computation of

� � as (Cvetkovic et al., 1998)� � ��
$� � �� � � ��
$�"!
(2.25)
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where

� ��
$� � 
 	 1 	 ��
$� � 
 (2.26)

Analytical or numerical inversion of
�� � � ��
$�"!

yields the desired solution for � . Finally,
we compute the normalized tracer discharge � � 
 in the Laplace domain as�� �)(+�
 � �� � � � �� ��
$� �� � � ��
$�"!

(2.27)

where 	
��
$�

is written in full as

	 ��
$� � 
 � ��
$� � � � �
�
� � � ���	� �  � � 
 � � � ! ������� � 6���	� �  � � 
 � � � ! ����� � 	 6�� (2.28)

In general, all the parameters �
� � � �

and
�

are variable along trajectories. For specified
distributions of �

� � � �
and

�
, we can compute 	 for a given



, and therefrom compute �

and � by Laplace inversion. The measurable tracer concentration at the pumping location
B is then � �)(+� � � �)(+� � / , Eq.(2.13).

If the rim zone is sufficiently large (formally
� � �

), we have
� ��
$� � 6 and 	 �
 � � , whereby Eq.(2.24) reduces to the unlimited diffusion case with variable retention

parameters which has been considered earlier (Cvetkovic et al., 2000).
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Chapter 3

Assumptions for sensitivity analysis

We shall consider here the following variants in the sensitivity analysis:

1. A non-sorbing tracer (HTO), moderately sorbing tracer (Ba) and strongly sorbing
tracer (Cs), consistent with the tracers used in the TRUE experiments; the interest is
to see how diffusion limitations affect transport depending on the sorption properties
of a tracer.

2. Three statistical models of
�
�

� variability are to be used in the analysis: One where
the rim zone is relatively thick (

�
is large) with a low porosity � (negative corre-

lation), one where the rim zone is relatively thin (
�

is small) with high porosity �
(negative correlation), and one where the rim zone is relatively thin with low poros-
ity (positive correlation).

3. Two types of boundary conditions for transport (injection modes): Pure pulse and
pulse with a tailing, where the latter is designed to mimic injection conditions of
the TRUE tests; the interest is to see if/how the impact of diffusion limitations is
influenced by the injection conditions.

4. Two values of the mean water residence times: 10 h and 100 h, designed to cover
the range of the TRUE tracer tests; the interest is to see if and how water residence
time affects the impact of diffusion limitations.

3.1 Retention zone heterogeneity

First, we shall deterministically relate matrix diffusivity and porosity using Archie’s law
in order to reduce the number of parameters. Pore diffusivity and porosity are related as�

� � �����
where

���
is the diffusivity in water, and

�
is the formation factor, whereby� � ����� �

� . Archie’s law implies
� � ��� where 
 is a parameter here to be assumed

as 1.5 (Cvetkovic et al., 2000); then
� � ��� �

� . Inserting
� � ��� �

� in Eq.(2.28), we
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have

	 ��
$� � � �
�
� � � ��� � ���	� "  � � 
 � � ��� � �

& � 6���	� "  � � 
 � � ��� � �
& 	 6 � (3.1)

which has reduced the variable parameters of 	 to three: �
� �

and
�
.

The retardation coefficient of the rock matrix is defined by
� � 6 	 ��
 �8�

� where

�
is the rock density and


+�
is the sorption coefficient. Our further simplification is that

the sorption coefficient


+�
, as well as the rock density

�
, are uniform. Although


 �
presumably also varies, we currently do not have sufficient information and choose to
simplify the calculations for illustration purposes.

The number of variable parameters is now reduced to two: finite thickness of the rim
zone

�
, and matrix porosity � . For our sensitivity analysis, we shall consider positive and

negative correlation between
�

and � . Note that
�

is variable due to variability in � .
The parameter group 	 Eq.(3.1) can be written as

	 ��
$� � 
�� � �
�

�
� 
$� � (3.2)

where

� � �
�
� � � ��� � ���	� "  � � 
 � � ��� � �

& � 6���	� "  � � 
 � � ��� � �
& 	 6

and we emphasize the parametrization with respect to the Laplace transform variable



.

The assumption of perfect correlation between � and
�

implies that their randomness is
derived from a single random variable, � . Then

	 ��
$� � 
�� � �
�
�
���

�
�
�
� � 
 ! � � �

� � �
�
�
���

�
�
�
� � 
 !��,�

�
� #
� � � �� � � �

�	� ���
�
�	� � ��
 !$#
�

(3.3)

where

�,�
�
�

is a specified pdf of � , and

�
is the cumulative distribution function (CDF).

The usual relationship

�,�
�
� � #
� � #

� or

#
� � � #
� , holds, where

�
is the pdf. The

functions �
�	� �

and
�
�	� �

thus specify the statistical model.
A discretized form of Eq.(3.3) is

	 ��
$� ��� � �021
� � �

�	� 1 ���
�
�	� 1 � � 
 !

(3.4)

For illustration purposes, we consider the following functional form

� �	� � � � � 	 6
�
� � � � � � �
��� � 6 ��� 6 � � � ��� ! (3.5)

where
�

stands for either
�

or � ,

� � �� � � � � � � �
� � � � � � ������ (3.6)
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and
� �

and
� �

denote lower and upper bounds of
�

, respectively.
Equation Eq.(3.5) corresponds to a bounded exponential model for � and

�
, in the form� ��� � � Prob �

� � ��� � 6 � �����
	 � 	���
6 � � � (3.7)

The pdf of
�

,

�,� � �
, is obtained by differentiation of

� � � �
as�,� � � � �� � � 6 � ���
	 � 	���
 (3.8)

For � � �
,

�,� � �
converges to a uniform distribution in the interval

� � � � �
, i.e.,

�,� � � �6 � � � � � � � �
. For � � � ,

�,� � �
converges to a Dirac delta distribution; specifically for

� � 	 � , �,� � � ��� � � � � � �
, and for � � � � , �,� � � ��� � � � � � �

.
The mean value 
 � � is obtained by integration as


 � � � � � �,� � � # � � 6� � � 6 " 6� � 6 � � � � 	/� � � � � � � &
(3.9)

The porosity � and the retention zone thickness
�

are defined between two limiting
values, denoted as �

� �
�
�

(minimum, maximum) and
� � � � �

(minimum, maximum), respec-
tively. The minimum values are to be fixed as � � � � � � � % and

� �76 mm, and the maximum
values as �

� ��� � � % and
� � �76 � mm. These limits are not based directly on measurements,

but are derived indirectly from measurements; with these limits (and a specific value of � ),
the variability model Eq. (3.8) yields a consistent comparison with one set of available data,
as will be shown below.

The parameter � will be assigned different values in the sensitivity analysis. The sign
of � decides the shape of the distribution: For ��� � the distribution is skewed to the left,
and for ��� � it is skewed to the right. If � for � and

�
has opposite signs, then we have

perfect negative correlation. The magnitude of � governs the mean value (and/or the form
of the distribution) and is a key sensitivity parameter.

We show in Figure 3.1 the CDFs for the three statistical models (denoted as Models
1,2 and 3) that will be used for illustration. As can be seen from the form of the CDFs, as
well as from the mean values, Model 1 implies a relatively thick retention zone (mean 7.9
mm) and a relatively small mean porosity of 1.2%, thus the two are negatively correlated.
Model 2 also implies negative correlation, however, in this case we have a relatively thin
retention zone (mean 3.1 mm) and a relatively large mean porosity of 3.2%. Finally, Model
3 assumes positive correlation where the mean values are consistent with (limited) data
available from the TRUE-1 Feature A intercepts (Byegård et al., 2001). The comparison
of the mean

�
with the profile porosity measurements is shown in Figure 3.3, as well as the

pdf of Model 3 compared for � with two data sets. The mean values are given in Figure 3.2
as functions of � . We see convergence to a uniform distribution for � � � , and to step
distributions (deterministic values) for � �	�

.
The expressions

�
�	� �

and �
�	� �

are intuitive since they reflect the spatial aspect of the
variability in

�
and � . The probability

�
can be viewed as the normalized distance along

a trajectory in view of the ergodicity assumption; for instance,

� � � � % in Figure 3.1 for
Model 1 would imply that 40% of the trajectory length has a porosity below 0.8%, and
retention zone depth below 8 mm.
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Figure 3.1: Functional dependence ������� and ������� based on Eq.(3.5) for three different variability
models used in the sensitivity analysis: Model 1, Model 2 and Model 3; the parameters� �	�
� and � ���
� are specified in the figures.
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24



3.2 Injection conditions

We assume a general form of the injection as a pulse followed by an exponentially decaying
tail:

� �)(+� � � 6 ��� � � �)(+� 	 �# � � � � � � � � �� ��
$� � � 6 ��� � 	 �# � 6
 	 6 � # � (3.10)

The two controlling parameters are the fraction

�
which quantifies how much of the in-

jected tracer mass is in the pulse and how much in the tail, and decay time

# � [T] which
quantifies the duration (or extent) of the tailing in the injection. For

� ��� we have a pure
(ideal) pulse, whereas for

� �76 , all injected mass is in the tail. For increasing

# � , a thinner
tail extends over longer and longer times; for

# � � � we also recover a pulse.
In our following calculations, we shall assume

# � ��� � ��� years (440 h). Since

���  # � �� � ����� years (300 h) is the half-life of the injection tail (i.e., the time when half of the tracer
mass contained in the tail has been released), we see that for

# � � � � ��� y, the injection
effectively terminates after � 6 � � � h. This is in the range that was applicable for the
TRUE-1 experiments, at least for more sorbing tracers. Note that in the TRUE-1 tests, for
instance, the injection tailing was initially not exponential, as a peak was visible after the
pulse part of the injection terminates (Winberg et al., 2000). Although this peak is not
captured by our current model, the measured asymptotic form of the injection tailing is
reasonably approximated by exponential decay, Eq.(3.10).

3.3 Advective travel times

To apply Eq.(2.13), we require

� �
�
�
. Here we shall assume a Fickian (advection-dispersion)

form of

� �
�
�

as � �
�
� �	� ��

� � � ! � � ���	� � � � �

� � �% ��� (3.11)

where

� � � � �� �� � � � � � ���� �  � � (3.12)

� � is the mean water residence time for a given flow path (i.e., averaged over all trajectories
of a flow path), and

� �� is the variance. The Laplace transform of

� �
�
�

Eq.(3.11) is�� ��
$� � ���	��� � � � � � � � 	 
��
(3.13)

We shall assume in this analysis the coefficient of variation ��� � �
� � � � � 
 � � � � � �

to be given (fixed), a value corresponding approximately to the estimated value of the
TRUE-1 tests. Two values of the mean water residence time � � are to be considered in the
computations, 10 h and 100 h; the former corresponds to a longer flow path and/or higher
pumping rate, whereas the latter corresponds to a longer flow path and/or lower pumping
rate.
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Table 3.1: Summary of data for HTO, Ba and Cs used in the calculations.��� 
��
TRACER � 6 � ���

[m

�
/yr] [m � /kg]

Tritium 1 –
Barium 1.3 0.001
Cesium 1.3 0.05

3.4 Tracer selection

We shall consider three tracers: tritium (HTO), barium (Ba) and cesium (Cs). The retention
parameters

���
and


��
are tracer-dependent and are specified in Table 3.1. The values

� �
are given in Byegård et al. (1998), while


��
are close to the calibrated values for TRUE-1

(Cvetkovic et al., 2000).
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Chapter 4

Computations

For the computations, we shall use a discretized form of 	 Eq.(3.4); the full expression for	 reads

	 ��
$� ��� � �0 1 �
�
� � �1 ��� � 1��� � ���	���  �

1 � 
 � 1 � ��� � �

1�� � 6���	���  �
1 � 
 � 1 � ��� � �

1�� 	 6 � 	
 (4.1)

where
�
1 � �

�	� 1 �
, �

1 � �
�	� 1 �

,
� 1 � � �	� 1 �

, and
�
�	� �

and �
�	� �

are given in Eq.(3.5). We
shall consider 50 segments (steps), i.e.,

8 � � � , which implies that � � � 6 � � � �  ��
is

the probability significance margin.
Inserting Eq.(4.1) into Eq.(2.26) and then into Eq.(2.25), we have the final Laplace

transform expression for � which needs to be inverted�� ��
$�
 � � 6 � � � ���	��
 �
�
�� �� - 6 ��� 6 	  �� ��

� �
� 
 	 1 � 
 	 ��
$� � 3�� 	

(4.2)�# � 6
 	 6 � # � ���	��
 �
�
�� �� - 6 ��� 6 	  �� ��

� �
� 
 	 1 � 
 	 ��
$� � 3��

where for a pulse we set

� � � .
If the parameters are constant, we use Eq.(4.2) with

	 ��
$� � �
�
� � � ��� � ���	� "  � � 
 � � ��� � �

& � 6���	� "  � � 
 � � ��� � �
& 	 6 (4.3)

where it is understood that all parameters represent effective (uniform) values.
For the case of unlimited diffusion, we have

	 � 
 � � (4.4)
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which is constant with respect to



.

Inverting
�� Eq.(4.2), we get the normalized tracer discharge � �)(+� � 
 which will be

shown in the figures. For Laplace inversion, we use a code originally developed by J.
Barker (British Geological Survey) and subsequently extended and used in Shapiro (2001)
.
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Chapter 5

Results

5.1 Tritium

Model 1

Breakthrough curves for the non-sorbing tracer Tritium are shown in Figures 5.1- 5.3. The
curves in Figure 5.1 are based on Model 1 of retention heterogeneity (Figure 3.1), i.e.,
for a relatively thick retention zone (mean equal to 7.9 mm, Figures 3.1 and 3.2), and a
relatively low porosity (mean equal to 1.2%, Figures 3.1 and 3.2). For pulse injection, we
see that the tails of the BTCs diverge between the unlimited and limited diffusion models
already after � 90 h for mean water residence time of 6 � h (Figure 5.1), and after � 350 h
for a longer flow path (or lower pumping rate) with mean water residence time of 6 � � h
(Figure 5.1).

For finite injection where a pulse carrying 20% of the mass is followed by a relatively
long tail carrying 80% of the tracer mass, the divergence of the tails in the BTCs between
the limited and unlimited retention models occurs significantly later, after � 2600 h. In
fact, the divergence point in time of � 2600 h is almost identical for the shorter and longer
mean water residence times ( 6 � h and 6 � � h, Figure 5.1). The reason for this is that for
finite injection (Figures 5.1 with

� � � � �

), the tail in the BTCs is maintained, not by
diffusion in the rim zone, but by the injection characteristics. Thus the time when the tail
attenuates asymptotically is independent of mean water residence time and depends only
on injection conditions which are identical in both cases.

The curves in Figure 5.1 indicate that explicitly accounting for variability in retention
parameters has no effect for Model 1 (blue and black solid lines overlap), and that the
effective parameters are sufficient for accurately quantifying transport.

Model 2

Results for Tritium assuming Model 2 for the retention zone heterogeneity are given in
Figure 5.2. Because Model 2 implies a relatively small retention zone with a compara-
tively high porosity (Figures 3.1 and 3.2), the divergence in the tail between the limited
and unlimited diffusion models begins earlier than for Model 1. In particular, for pulse in-
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Figure 5.1: Breakthrough curves for HTO assuming variability Model 1, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.2: Breakthrough curves for HTO assuming variability Model 2, for different mean wa-
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Eq.(3.10).
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jection and � �
� 6 � h, the observable divergence occurs around

% � h (Figure 5.2), whereas
for � �

� 6 � � h, it occurs after � 260 h. For finite injection, the divergence point is again
independent of � � , and is around 2600 h (Figures 5.2 with

� ��� � �

).
For Model 2, the variability in � and

�
has some effect only for a pulse and � � =10 h,

where using effective (uniform) parameters somewhat underestimates retention (difference
between blue and black solid curves).

Model 3

Model 3 assumes
�

and � are positively correlated along the flow path, with parameters
that are consistent with available data (Figure 3.3). In this case, BTCs of HTO resemble
those for Model 1, however, the “bump” in the tail appears somewhat earlier since Model
3 implies a smaller retention zone (compare BTCs of Figures 5.3 and 5.1). The divergence
between the unlimited and limited diffusion tails in the BTCs starts for pulse injection
already after 45 h for � �

� 6 � h (Figure 5.3), and after 260 h for � �
� 6 � � h. If tracer

injection is finite, then the divergence occurs after approximately 3500 h, irrespective of
� � .

5.2 Barium

Model 1

Breakthrough curves for the moderately sorbing tracer Barium are shown in Figures 5.4-
5.6. The curves in Figure 5.4 are based on Model 1 of retention heterogeneity (Figure 3.1),
i.e., for a relatively large retention zone (mean 7.9 mm, Figure 3.2), and a relatively low
porosity (mean 1.2%, Figure 3.2). The tails of the BTCs for the unlimited and limited dif-
fusion models begin to diverge after 1 year for both � �

� 6 � h and � �
� 6 � � h, and both

the pulse and finite injection (Figure 5.4). After approximately 1 year, the characteristic
“bump” appears (Figures 5.4 for � �

� 6 � � h), following which the tail of the BTC atten-
uates asymptotically, loosing its power-law (-3/2) dependence. In this case, the variability
has no direct effect up to 1 year (blue and black curves are identical).

Model 2

Results for Barium assuming Model 2 for the retention zone heterogeneity are given in
Figure 5.5. The divergence in the tail between the limited and unlimited diffusion models
begins earlier than for Model 1, because the retention zone is smaller. The characteristic
“bump” (raise) in the tail begins in the interval 450-550 h for a pulse with � �

� 6 � h
(Figure 5.5), and in the interval 550-900 h for a longer flow path (or lower injection rate)
with � �

� 6 � � h. For finite injection, the observable evidence of diffusion limitations
(change in the tail slope) appear later, in the interval 2600-4400 h for � �

� 6 � h, and
850-1700 h, for � �

� 6 � � h (Figure 5.5).
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Figure 5.3: Breakthrough curves for HTO assuming variability Model 3, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.4: Breakthrough curves for Ba assuming variability Model 1, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.5: Breakthrough curves for Ba assuming variability Model 2, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Variability in � and
�

along the flow path has some impact where the variable case pre-
dicts somewhat stronger retention visible in the tail part of the BTCs (difference between
blue and black solid lines in Figure 5.4). However, this effect is still relatively small and
would be difficult to discriminate.
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Model 3

If
�

and � are positively correlated along the flow path, with parameters that are consistent
with available data (Model 3, Figures 3.1 and 3.3), then the BTCs (Figure 5.6) resemble
those for Model 1 (Figure 5.4), but the “bump” in the tail appears somewhat earlier than
for Model 1 (comparing Figures 5.4 and 5.6). For a pulse, the “bump” of limited diffusion
appears around 2600 h for � �

� 6 � h (Figure 9a) and similarly for � �
�76 � � h (Figure 5.6).

In the case of finite injection, evidence of diffusion limitations appear at a comparable time,
around 2600 h for � �

� 6 � h (Figure 5.6), and similarly for � �
� 6 � � h. The mean � and�

provide a accurate effective values for the considered time range (there is no distinction
between blue and black solid lines).

5.3 Cesium

Model 1

Breakthrough curves for the strongly sorbing tracer Cesium are shown in Figures 5.7- 5.9.
Model 1 assumes a relatively large retention zone (mean of 7.9 mm), and a relatively low
porosity (mean 1.2%), hence the differentiation in the tail of the BTCs between the limited
and unlimited diffusion model does not appear for a long time (Figure 5.7). The “bump”
starts appearing after say 20-30 years, whereas the actual drop (or divergence) in the tails
occurs approximately in the interval 100-200 years, irrespective of � � and the injection
conditions (Figure 5.7).

Model 2

Model 2 implies a relatively small retention zone (mean 3.1 mm); consequently, the effect
of diffusion limitations appears earliest and is most pronounced (Figure 5.8). For relatively
short water residence times ( � �

� 6 � ) h, the tails diverge after approximately 10 years
(Figures 5.8), whereas for longer water residence times � �

� 6 � � h, the divergence is
apparent already after 1 year (Figure 5.8). However, the early divergence in the case with
� �

� 6 � � h in Figure 5.8 is in the peak part of the BTC. Prior to the peak (which occurs
after approximately 10 years), one cannot assess the slope of the tailing, and hence cannot
distinguish between a limited and unlimited diffusion model. Variability in � and

�
has

some impact in the tail part of the BTCs, but only for relatively short water residence time
� �

�76 � h (Figure 5.8 for � �
� 10 h, compare blue and black solid curves).

Model 3

If
�

and � are positively correlated along the flow path, with parameters that are consistent
with available data (Model 3), then the BTCs (Figure 5.9) resemble those for Model 1 (Fig-
ure 5.7), but the “bump” in the tail appears earlier than for Model 1 (compare Figures 5.7
and 5.9). The injection condition has no effect on BTCs in this case, only the mean water
residence time. For � �

� 6 � h, the “bump” that signifies limited diffusion effects appears
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Figure 5.6: Breakthrough curves for Ba assuming variability Model 3, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.7: Breakthrough curves for Cs assuming variability Model 1, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.8: Breakthrough curves for Cs assuming variability Model 2, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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Figure 5.9: Breakthrough curves for Cs assuming variability Model 3, for different mean wa-
ter residence time ��� , and injection conditions as quantified by the fraction � in
Eq.(3.10).
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in the interval 7-10 h for � �
� 6 � h, similarly for � �

� 6 � � h (Figure 5.9). The mean � and�
provide accurate effective values for the considered time range (there is no distinction

between blue and black solid lines).
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Chapter 6

Summary and conclusions

We have presented a semi-analytical methodology for modelling tracer transport through
rock fractures which accounts for the effect of diffusion limitations and rim zone het-
erogeneity on breakthrough curves. Using this methodology, we carried out a sensitivity
analysis of potential effects for conditions comparable to the ones in TRUE-1 and TRUE
Block Scale tracer tests, and identified the parameter ranges for which effects could be
observable. The results of the sensitivity analysis are summarized in Tables 6.1-6.2.

Based on the obtained results we can draw the following conclusions.

� It is possible to analyze the combined effect of diffusion limitations and retention
heterogeneity in a relatively simple and transparent manner, using the proposed
methodology.

� The impact of diffusion limitations is exhibited as a rise (or “bump”) in the BTC tail,
followed by a relatively steep drop relative to the -3/2 (unlimited diffusion) slope.
As an indicator of diffusion limitations, the “bump” is more apparent for tracers with
increasing sorptivity; however, in practice the “bump” will be difficult to observe.

Table 6.1: Summary of results for Model 3 addressing the “observability” of the diffusion
limitation effects. We consider “observable” a sufficient divergence in the tails
(roughly defined as a factor of 2-3 on the log-log scale to account for possible fluc-
tuations in the measurements) occuring up to approximately 1 year; tests longer
than 1 year are therefore not considered practically feasible. Symbol “x” denotes
an observable divergence, “-” possible but difficult, and “0” presumably not ob-
servable.

Tracer � �
� 6 � h � �

� 6 � h � �
� 6 � � h � �

� 6 � � h
Pulse inj. Finite inj. Pulse inj. Finite inj.

HTO x - x -
Ba 0 0 0 0
Cs 0 0 0 0
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Table 6.2: Summary of results for Model 3 as estimates of times when an observation of
divergence in the tailing of the breakthrough could be made. Note that for Cs the
observable divergence is not in the tail but before the peak.

Tracer � �
� 6 � h � �

� 6 � h � �
� 6 � � h � �

� 6 � � h
Pulse inj. Finite inj. Pulse inj. Finite inj.

[yr] [yr] [yr] [yr]
HTO 0.008 0.7 0.08 0.6
Ba 5 5 7 6
Cs 10 15 3 3

A more apparent indicator is the steep drop in the tail, i.e., the divergence of tails
which occurs (sometimes significantly) later, following the rise.

� Finite injection (or tailing in the injection) will generally “mask” the impact of dif-
fusion limitations, by making it much less apparent (or apparent much later), in
particular for non-sorbing and weakly sorbing tracers. For HTO, for instance, effect
of diffusion limitations would be apparent after 50 h if an ideal pulse was injected,
and after almost one year if finite injection is applied.

� A rim zone up to 10 mm thick (4.1 mm in the mean) appears sufficient for observa-
tions of diffusion limitations to be virtually impossible for Cs, relatively difficult for
Ba, and possible for HTO, even if there is tailing in the injection (as in TRUE-1) and
the mean water residence time is in the range 10-100 h.

� Spatial variability in the rim zone thickness and porosity (diffusivity) has compara-
tively little impact on the BTCs, relative to the case where effective parameters are
used (here defined as arithmetic mean).

� It is possible that the BTCs for HTO and weakly sorbing tracers measured in TRUE-
1 and TRUE BS tracer tests, show some indications of diffusion limitations; how-
ever, further analysis of the measured BTCs, in the light of the present results, is
required for a possible estimates of the rim zone thickness.

The presented methodology can be used in different ways. First, it can be applied in
order to assess the possible impact of diffusion limitations on the expected breakthrough
curves of the forthcoming tests TRUE BS2A in structure #19. With the water residence
time specified, and the range of tracers specified, one could establish the potential effects
of diffusion limitations and rim zone heterogeneity based on the available in-situ retention
data. Second, one could re-evaluate the breakthrough curves of already completed tests
(TRUE-1 and TRUE Block Scale), in order to assess possible evidence of diffusion limi-
tations and estimate an average extent of the rim zone; it would be interesting to compare
such an indirect estimate with a direct estimate from intercept data. Finally, the proposed
methodology can be applied, say within Task 6 transport calculations, to assess the possi-
ble impact of diffusion limitations on long-term radionuclide transport. In this context, an
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interesting task would be to develop simple ways of incorporating diffusion limitations for
long term transport calculations, using for instance equilibrium retention in the rim zone
(Cvetkovic et al., 1999), coupled to unlimited diffusion in the unaltered rock.

The semi-analytical methodology presented can be improved and/or extended in sev-
eral ways.

� The intercept data used for Model 3 was based on the statistical variability analysis
of a few samples. There is more similar data available which could be analyzed in
order to define a better (or more representative) model for the rim zone thickness
and porosity variability.

� We assumed a particular statistical model for the variability of the rim zone thick-
ness and the porosity consistent with a few intercept data sets (Model 3), where we
neglected potential correlation between the aperture and rim zone properties. The
analysis could be extended to consider other statistical/variability models consistent
with a larger data set, which could also account for some degree of correlation be-
tween aperture and rim zone properties.

� We limited the retention to the rim zone to highlight the effect of its limitation. A
natural extension would be to also take into account the retention in the unaltered
rock matrix, i.e., to couple diffusion/sorption in the rim zone and unaltered rock.
This can be done either approximately using the analytical results of Cvetkovic et al.
(1999), or exactly by solving numerically the diffusion into the rock matrix.

� The Lagrangian (trajectory) approach presented here can also be implemented as
Monte Carlo simulations where either single fracture flow (Cvetkovic et al., 2000;
Cheng et al., 2003), or discrete fracture network flow (Cvetkovic et al., 2003), is
considered. In both cases, one needs to introduce overlapping random fields based
on retention intercept data, and sum (integrate) along trajectories as for instance
given in Eq. (2.16) or Eq. (2.17). Correlation between aperture and the retention
parameters could in this way be accounted for directly in the simulations.
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