P-04-251

Oskarshamn site investigation

Sampling of freshwater fish

Description of the fish fauna in four lakes

Alf Engdahl, Ulf Ericsson Medins Sjö- och Åbiologi AB

October 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-04-251

Oskarshamn site investigation Sampling of freshwater fish Description of the fish fauna in four lakes

Alf Engdahl, Ulf Ericsson Medins Sjö- och Åbiologi AB

October 2004

Keywords: Oskarshamn, Fish, Freshwater, Lake, Sampling, Multi-mesh gillnets.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

This document reports the data attained by standardised sampling of freshwater fish, which is one of the activities performed within the site investigation at Oskarshamn. Sampling was performed in August 2004 in four lakes: Lake Jämsen, Lake Söråmagasinet, Lake Frisksjön and Lake Plittorpsgöl.

The aim of the investigation was to achieve representative data about the fish populations in the four lakes respectively. The standardised method for sampling fish in lakes provides a whole-lake estimate for species occurrence, quantitative relative abundance and biomass.

The used multi-mesh gillnets, named NORDEN, are composed of 12 different mesh-sizes ranging between 5 to 55 mm knot to knot. Each gillnet is 30 m long and 1.5 m deep.

The results were basically evaluated according to the Swedish fish index (FIX), which is based on 9 different environment quality parameters.

Lake Jämsen, Lake Söråmagasinet and Lake Frisksjön were all placed in class 1, which means that the fish populations can be regarded as normal for this type of lakes. The catch in Lake Jämsen showed, however, an evident deviation due to somewhat low biomass per unit effort and in Lake Söråmagasinet there was a slight deviation for the proportions of piscivore percides and cyprinids. Lake Plittorpsgöl was placed in class 2, which indicates that the fish population slightly deviates from what is normal for this kind of lake. This was mainly due to low values of biomass and number of individuals.

Catch Per Unit Effort, expressed as numbers and weight per unit effort, varied between the lakes. Lake Söråmagasinet and Lake Frisksjön showed, however, similar results, with relatively high biomass and abundance. The poor catches in Lake Jämsen and Lake Plittorpsgöl is probably due to low levels of oxygen below the depth of two meters.

Six or seven different fish species were caught in Lake Jämsen, Lake Söråmagasinet and Lake Frisksjön. In Lake Plittorpsgöl three species were caught.

The fish condition factor was calculated for perch and roach. The result indicates that the perches and roaches in Lake Frisksjön have a better nutritional and health status than in the other sampled lakes.

A rough approximation was made to estimate the total biomass of the entire fish populations in the lakes, respectively. The values were in the range of 50 kg to 400 kg.

No deformities and signs of external injury were seen.

Some chosen individuals of different species were, for each lake, deep-frozen, to make further analysis possible.

Sammanfattning

Denna rapport redovisar data från standardiserat nätprovfiske i sötvatten. Aktiviteten är en del av de platsundersökningar som utförs i Oskarshamn. Undersökningen genomfördes i augusti 2004 och omfattade fyra sjöar: Jämsen, Söråmagasinet, Frisksjön och Plittorpsgöl.

Syftet med undersökningen var att inhämta representativa data om fiskpopulationerna i respektive sjö. Ett standardiserat nätprovfiske ger mått på antalet förekommande arter, deras relativa förekomst uttryckt som fångst per ansträngning i antal individer respektive biomassa, samt arternas storleksfördelning.

Översiktsnät av typen Norden användes i undersökningen. De består av 12 olika maskstorlekar från 5 till 55 mm. Näten är 30 m långa och 1,5 m höga.

Resultaten har i huvudsak utvärderats enligt den standard som definieras i svenskt fiskindex (FIX). Denna utvärdering grundar sig på nio olika parametrar, som kan betraktas var för sig, men som också "slås samman" till ett samlat index, där sjöarna klassas i fem olika klasser.

Jämsen, Söråmagasinet och Frisksjön bedömdes alla tillhöra klass 1, vilket betyder att fisksamhället, för sjötypen, kan betraktas som "normalt" och att resultatet är förväntat. En tydlig avvikelse i Jämsen visade dock på något låg biomassa. I Söråmagasinet avvek fångsten något när det gäller andelen piscivora abborrfiskar samt andelen cyprinider. Plittorpsgöl bedömdes tillhöra klass 2. Med detta menas att fisksamhället avvek något mot det förväntade resultatet, främst på grund av låg individtäthet och biomassa.

Fångst per ansträngning, uttryckt som antal individer och biomassa, varierade mellan sjöarna. I Söråmagasinet och Frisksjön var individtätheten och biomassan relativt hög, medan Jämsen och Plittorpsgöl uppvisade ganska låga värden. De lägre värdena berodde sannolikt på låga syrgashalter, vilket medförde att flera nät var fisktomma.

I Jämsen påträffades sju olika fiskarter, i Söråmagasinet och Frisksjön sex arter, och i Plittorpsgöl tre olika fiskarter.

Konditionsindex för fisk beräknades för abborre och mört. Resultatet indikerar att abborre och mört i Frisksjön har en "hälsostatus" som är något bättre än abborre och mört i de andra tre sjöarna.

En grov uppskattning av den totala fiskbiomassan i var och en av de fyra sjöarna utfördes. Värdena varierade mellan 50–400 kg.

Inga ryggradskrökningar, yttre sår eller andra skador kunde noteras på fångsten.

Contents

1	Introduction	7
2	Objective and scope	9
3 3.1	Equipment Description of equipment	11 11
4 4.1 4.2 4.3 4.4 4.5 4.6	Execution General Presampling preparations Execution of field work Data handling/post processing Analyses and interpretations Nonconformities	13 13 18 18 18 18 19 20
5 5.1 5.2 5.3 5.4	Results Lake Jämsen Lake Söråmagasinet Lake Frisksjön Lake Plittorpsgöl	21 21 23 25 27
6	Summary and discussions	31
7	References	35
Арр	endix 1 Results, lake by lake	37
Арр	endix 2 Catches within each gillnet	49
Арр	endix 3 Deep-frozen fish	55
Арр	endix 4 Caught fish species name in swedish, english and latin	59

1 Introduction

This document reports the data attained by sampling of freshwater fish, which is one of the activities performed within the site investigation at Oskarshamn.

The activity, which is part of the surface ecosystem programme in Oskarshamn, was carried out in accordance with activity plan AP PS 400-04-083 (SKB internal controlling document) (Table 1-1). The activity is included in the detailed activity plan of the site; WBS 1.1.1.3.

Sampling of freshwater fish was performed in four lakes in August 2004. Data are stored in the database SICADA (Table 1-2). Some chosen individuals of different species were, for each lake, deep-frozen, to make further analysis possible (Table 1-2). The locations of the investigated lakes are shown in Figure 1-1.

Table 1-1. Controlling documents for the performance of the activity.

Activity plan	Number	Version
Provfiske av sötvattensfisk I sjöar	AP PS 400 04 083	1.0

Table 1-2. Data references.

Subactivity	Database	Identity number
Sampling of freshwater fish	SICADA	Field note no Simpevarp 521
Stored fish samples	SKB-number	9300

Figure 1-1. General overview over Oskarshamn site investigation area. The sampled lakes are: 1. Lake Frisksjön, 2. Lake Jämsen, 3. Lake Söråmagasinet, 4. Lake Plittorpsgöl.

2 Objective and scope

In order to characterise the fish fauna in the lakes of the area, sampling of freshwater fish was performed in four lakes. The lakes are all located in the regional model area.

The aim of the investigation was to achieve representative data about the fish populations in the four lakes respectively. The standardised method for sampling fish in lakes provides a whole-lake estimate for species occurrence, quantitative relative abundance and biomass expressed as catch per unit effort (CPUE), and size structure of fish assemblages. It also provides estimates comparable over time within a lake, and estimates comparable between lakes.

Today there is no model for calculating the total biomass of the entire fish population in a lake in a reliable way using multi-mesh gillnets. Despite the uncertainty, a rough approximation has been made.

Figure 2-1. View from Lake Frisksjön.

3 Equipment

3.1 Description of equipment

The used multi-mesh gillnets, named NORDEN, are composed of 12 different mesh-sizes ranging between 5 to 55 mm knot to knot. The mesh-sizes follow a geometric series, with a ratio between mesh-sizes about 1.25. The mesh panels are stratified in three size groups, and within in each mesh-size group, the mesh panels have been randomly distributed over the gillnet. All gillnets have the same order of mesh panels. The gillnets are made of homogenous, uncoloured nylon. Each gillnet is 30 m long and 1.5 m deep. Each mesh panel is 2.5 m long and mounted on buoyancy line and lead line. The diameter of the threads varies between 0.10 mm for the 5 mm mesh, to 0.23 mm for the 55 mm mesh.

For measurements of weight, an electronical balance with an accuracy of +/-0.5 g was used. For measurements of length, a millimetre-graded plate was used.

Positions of all gillnets were given from GPS (+/-10 m) and water depth was measured using an echo sounder.

Figure 3-1. Handling of caught fish.

4 Execution

4.1 General

The methods and measurements used in this investigation are described in "Standardiserad metodik för provfiske i sjöar" /1/ and in documents written by the Swedish Environmental Protection Agency (Naturvårdsverket) /2, 3/. The work was conducted according to Activity Plan AP PS 400-04-083 (SKB internal controlling document).

The amount of gillnets needed in a lake is determined by the precision demand, the lake area and maximum depth of the lake. The precision demand in this study was described as the number of gillnets required to achieve a precision which makes it possible to statistically determine 50% differences between sampling occasions in relative abundance of the most abundant fish species /1/.

Since the distribution of fish in a lake varies considerable and is not randomly distributed, stratified random sampling has been used. In short this means that by randomising the location of each gillnet within each depth stratum, and randomising the angle of the gillnet in relation to shoreline, an independent sample of the fish in each stratum will be achieved /1/.

In Lake Plittorpsgöl inventory sampling was performed, which is a simplified method for fish sampling. This was because of the small size of the lake. The minimum amount of gillnets was used in order to not affect the whole fish population. Two gillnets were set above the thermocline, and two gillnets below.

Sampling of freshwater fish was performed in the middle of August 2004. The four sampled lakes are small, and it was only in Lake Jämsen that two fishing nights were needed to fulfil the determined net effort (Table 4-1). All gillnets were set between 5 and 7 p.m. and lifted between 6 and 8 a.m. This ensured that activity peaks of each fish species were included.

The gillnets were rinsed and the catch within each gillnet was registered as number of individuals, length and weight for each specimen. Some chosen individuals of different species were, for each lake, deep-frozen to make further analysis possible.

Table 4-1. The sampled lakes, their areas and maximum depths, and number of efforts (gillnets) distributed in different depth zones.

Lake	Lake area (ha)	Maximum depth (m)	Number 0–3 m	of gillnets i 3–6 m	in depth zone: 6–12 m	Total number of gillnets
Jämsen	24	11	5	6	5	16
Frisksjön	11	3.2	8	0	0	8
Söråmagasinet	8.9	4.5	4	4	0	8
Plittorpsgöl	3.3	ca 8	2	1	1	4

Figure 4-1. Sampling positions for the multi-mesh gillnets in Lake Jämsen.

Figure 4-2. Sampling positions for the multi-mesh gillnets in Lake Söråmagasinet.

Figure 4-3. Sampling positions for the multi-mesh gillnets in Lake Frisksjön.

Figure 4-4. Sampling positions for the multi-mesh gillnets in Lake Plittorpsgöl.

4.2 Presampling preparations

Before sampling could take place some preparations regarding equipment and placement of the gillnets were necessary.

The condition of the gillnets was checked prior to sampling. Buoys were marked up with numbers corresponding to the gillnets, they were also marked with "sampling in progress". Protocols for field observations were copied on water resistant paper and GPS receiver and echo sounder were also checked.

Maps with depth contours were used to randomly place the gillnets in the fixed depth zones and direction (Figure 4-1 to 4-4). A criterion was that the gillnets should be located at least 30 m apart from each other. Some minor adjustments of the positions of a few gillnets were made in the field, due to local depth conditions, and obstacles along the shore.

Water temperature and oxygen data from three of the lakes were available from the surface water programme. Measurements had been performed with a sonde a few days earlier. In Lake Plittorpsgöl a microprocessor oximeter was used to measure water temperature and oxygen in order to determine the depth of the thermocline.

4.3 Execution of field work

Sampling of freshwater fish was performed from August 15 to August 20. All gillnets were set between 5 and 7 p.m. The maximum effort for one fishing night was eight gillnets. For the largest lake, Lake Jämsen, two fishing nights were required. The gillnets were set at the predetermined locations and were marked with a buoy. Water depth and co-ordinates were recorded at both ends. Sampling information as water temperature, secchi depth, weather observations etc were also recorded.

The gillnets were lifted between 6 and 8 a.m. the next day. After landing the nets, they were rinsed and the fish was collected in marked buckets, separately for each gillnet.

The caught fish from each gillnet and species was registered as number of individuals and the total weight for each species. Also, length and wet weight for every single specimen was registered. Length was determined to the nearest millimetre and weight to the nearest gram.

Any deformities and signs of external injury was noted.

Some chosen individuals of perch, roach and pike were, for each lake, deep-frozen, to make further analysis possible (Appendix 3). For perch and roach, most of the stored individuals varied between 150 and 200 mm. All caught pikes were stored.

4.4 Data handling/post processing

The data obtained from the activity was reported digitally to SKB and stored in the database SICADA. The field note number was Simpevarp 521. These data will later be used for further interpretation and modelling.

4.5 Analyses and interpretations

The results in Chapter 5 are basically evaluated according to the Swedish fish index (FIX). A Detailed description how to calculate FIX is published by the Swedish Environmental Protection Agency, in "Bedömningsgrunder för miljökvalitet, sjöar och vattendrag" /2/. The assessment involves two aspects: (i) a classification of the state of the environment and (ii) a classification of the extent to which the recorded state deviates from a comparative value, which in most cases represent an estimate of a "natural state". For both classifications an average index is calculated, based on the variables. The variables are presented in Table 4-2. The results of both classifications are graded on a scale of 1–5 (Table 4-3).

Table 4-2. Variables for determination of Swedish fish index (FIX). For classification of state parameters 1–5 are used, and for classification of deviation all nine parameters are used.

- 1 Number of domestic species
- 2 Diversity of domestic species (Shannon-Wiener diversity index)
- 3 Relative biomass of domestic species WPUE*
- 4 Relative number individuals of domestic species NPUE**
- 5 Proportion of piscivore percides based on weight of the total catch
- 6 Proportion of cyprinids based on weight of the total catch
- 7 Presence of species sensitive to low pH-levels
- 8 Proportion of biomass from species resistant against low oxygen levels
- 9 Proportion of biomass from alien species

* Weight per unit effort

** Number per unit effort

Table 4-3. Classification of state and deviation.

Classification of state Class Legend		Classification of deviation Class Legend		
1	Very high value	1	No or insignificant deviation	
2	High value	2	Slight deviation	
3	Moderately high value	3	Evident deviation	
4	Low value	4	Large deviation	
5	Very low value	5	Very large deviation	

The condition factor was calculated for perch and roach. The basic assumption underlying the use of condition factors is that fish in better "condition" (nutritional and health status) are more full-bodied and therefore heavier at a given length. Fish condition has therefore been traditionally estimated by the equation proposed by Fulton (1911):

 $K = (W/L^3) * 10^5$

Where K = condition factor, W = body mass in gram, L = body length in millimetre

This equation assumes isometric growth, i.e. that the relative proportions of body length, height and thickness do not change in fish of similar condition as they increase in weight. It has, however, been shown that fish often grow allometrically, i.e. that these proportions are not constant /4/.

To reduce the effects of allometry and the scatter around the mean condition factor of the populations, a limited length frequency distribution data has been chosen for calculation of condition factors. For perch, lengths between 100–150 mm were used, and for roach 100–200 mm. The fish from the four lakes are sampled at the same time of the year, which also makes comparisons between the lakes more accurate. The effects of allometry are, however, hard to eliminate, and the condition factors should be viewed as a relatively blunt tool when comparing condition factors between the different lakes.

Today there is no model for calculating the total biomass of the entire fish population in a lake in a reliable way using multi-mesh gillnets. Despite the uncertainty, a rough approximation has been made, based on results and experiences, that the Institute of Freshwater Research, Drottningholm has conveyed /Persson, 2004, pers com/. The approximation used is:

20 * WPUE * A

where 20 = constant, WPUE = weight per unit effort, A = area of the lake in ha

4.6 Nonconformities

There were no significant nonconformities that affect the results or nonconformities with respect to activity plan or method descriptions.

5 Results

In this section the main results are presented, for each lake respectively. Fore more details see Appendix 1 where the results and field notes are presented lake by lake. The catch within each gillnet was registered as number of individuals and total weight for each species and can be viewed in Appendix 2. A register of fish placed in the freezer is presented in Appendix 3. A list of caught fish species and their names in swedish, english and latin is presented in Appendix 4.

Data is reported to SICADA, field note number Simpevarp 521.

5.1 Lake Jämsen

In Lake Jämsen, seven species were caught, which can be considered as a high value in a small lake as Lake Jämsen (Table 5-1). The species found are of frequent occurrence and the result is consequently expected.

The catch was dominated by perch in numbers, as well as in biomass, followed by roach and bream (Table 5-1 and Figure 5-1).

Catch per unit effort in numbers and in weight, for the caught species, can be seen in Table 5-1 and Figure 5-2. The values are relatively low, particularly for weight per unit effort. An explanation to this is probably the low oxygen levels below the depth of two meters.

Classification by the Swedish fish index (FIX) placed Lake Jämsen in class 1, which means that the fish population can be regarded normal, for this type of lake (Table 5-2). The catch showed, however, an evident deviation due to somewhat low biomass per unit effort.

Calculated Condition index for perch was 1.14 and for roach 0.93.

No deformities or signs of external injury were seen on the caught fish.

Species	Total number of caught fish	Number per unit effort	Total weight of caught fish (g)	Weight per unit effort (g)
Perch	145	9.1	4,739	296
Roach	64	4.0	1,089	68
Bream	49	3.1	2,206	138
Bleak	25	1.6	444	28
Pike	2	0.1	1,745	109
Ruffe	23	1.4	157	10
Rudd	1	0.1	108	7
Sum:	309	19.3	10,488	656

Table 5-1. Compiled results of fish data from Lake Jämsen.

Figure 5-1. Number and weight distribution of caught fish in Lake Jämsen.

Figure 5-2. Catch per unit effort, with 95% confidence intervals in Lake Jämsen.

Table 5-2. Classification by the Swedish fish index (FIX) in Lake Jämsen.

Classification of state	Value	Class	The value is
Number of domestic species	7	2	high
Diversity index (Shannon Wiener)	0.64	2	high
Biomass (g/unit effort)	656	3	moderately high
Number of individuals /unit effort	19.3	3	moderately high
Proportion of piscivores	0.31	3	moderately high
Average index	2.6	3	moderately high

Classificaton of deviation from comparative value	Class	The deviation is
Number of domestic species	1	no or insignificant
Diversity index (Shannon Wiener)	1	no or insignificant
Biomass (g/unit effort)	3	evident
Number of individuals /unit effort	2	slight
Proportion of piscivores	2	slight
Proportion of cyprinids	2	slight
Presence of species sensitive to low pH-levels	1	no or insignificant
Proportion of alien species	1	no or insignificant
Average index	1	no or insignificant

5.2 Lake Söråmagasinet

In Lake Söråmagasinet, six species were caught, which can be considered as a high value in such a small lake (Table 5-3). The species found are of frequent occurrence and the result is consequently expected.

The catch was dominated by perch in numbers, as well as in biomass, followed by roach and bream (Table 5-3 and Figure 5-3).

The values were relatively high of catch per unit effort, both in numbers and in weight, for the caught species (Figure 5-4).

Classification by the Swedish fish index (FIX) placed Lake Söråmagasinet in class 1, which means that the fish population can be regarded as normal for this type of lake (Table 5-4). There was only slight deviation, with a slightly lower proportion of piscivores and a slightly higher proportion of cyprinids, in comparison with the comparative value..

Calculated Condition index for perch was 1.06 and for roach 0.96.

No deformities or signs of external injury were seen on the caught fish.

Species	Total number of caught fish	Number per unit effort	Total weight of caught fish (g)	Weight per unit effort (g)
Perch	192	24.0	7,145	893
Roach	92	11.5	3,837	480
Bream	52	6.5	4,815	602
Rudd	7	0.9	117	15
Pike	1	0.1	1,116	140
Ruffe	11	1.4	140	18
Sum:	355	44.4	17,170	2,146

Table 5-3. Compiled results of fish data from Lake Söråmagasinet.

Figure 5-3. Number and weight distribution of caught fish in Lake Söråmagasinet.

Figure 5-4. Catch per unit effort, with 95% confidence intervals, in Lake Söråmagasinet.

Table 5-4. Classification by the Swedish fish index (FIX) in Lake Söråmagasinet.

Classification of state	Value	Class	The value is
Number of domestic species	6	2	high
Diversity index (Shannon Wiener)	0.57	2	high
Biomass (g/unit effort)	2146	2	high
Number of individuals /unit effort	44.4	2	high
Proportion of piscivores	0.28	3	moderately high
Average index	2.2	2	low

Classificaton of deviation from comparative value	Class	The deviation is
Number of domestic species	1	no or insignificant
Diversity index (Shannon Wiener)	1	no or insignificant
Biomass (g/unit effort)	1	no or insignificant
Number of individuals /unit effort	1	no or insignificant
Proportion of piscivores	2	slight
Proportion of cyprinids	2	slight
Presence of species sensitive to low pH-levels	1	no or insignificant
Proportion of alien species	1	no or insignificant
Average index	1	no or insignificant

5.3 Lake Frisksjön

In Lake Frisksjön, six species were caught, which can be considered as a high value in such a small lake (Table 5-5). The species found are of frequent occurrence and the result is consequently expected.

The catch was dominated by perch in numbers, as well as in biomass, followed by roach and bream (Table 5-5 and Figure 5-5).

The catch per unit effort in numbers and in weight, for the caught species was relatively high (Table 5-5 and Figure 5-6).

Classification by the Swedish fish index (FIX) placed Lake Frisksjön in class 1, which means that the fish population can be regarded as normal for this type of lake (Table 5-6).

Calculated Condition index for perch was 1.25 and for roach 0.99.

No deformities or signs of external injury were seen on the caught fish.

Species	Total number of caught fish	Number per unit effort	Total weight of caught fish (g)	Weight per unit effort (g)
Perch	258	32.3	8,273	1,034
Roach	63	7.9	2,498	312
Bream	26	3.3	2,177	272
Rudd	8	1.0	252	32
Pike	2	0.3	892	112
Ruffe	7	0.9	65	8
Sum:	364	45.5	14,157	1,770

Table 5-5. Compiled results of fish data from Lake Frisksjön.

Figure 5-5. Number and weight distribution of caught fish in Lake Frisksjön.

Figure 5-6. Catch per unit effort, with 95% confidence intervals, in Lake Frisksjön.

Classification of state	Value	Class	The value is
Number of domestic species	6	2	high
Diversity index (Shannon Wiener)	0.51	3	moderately high
Biomass (g/unit effort)	1,770	3	moderately high
Number of individuals /unit effort	45.5	2	high
Proportion of piscivores	0.42	3	moderately high
Average index	2.6	3	moderately high

Classificaton of deviation from comparative value	Class	The deviation is
Number of domestic species	1	no or insignificant
Diversity index (Shannon Wiener)	2	slight
Biomass (g/unit effort)	1	no or insignificant
Number of individuals /unit effort	1	no or insignificant
Proportion of piscivores	1	no or insignificant
Proportion of cyprinids	1	no or insignificant
Presence of species sensitive to low pH-levels	1	no or insignificant
Proportion of alien species	1	no or insignificant
Average index	1	no or insignificant

Two different cyprinide species, caught in Lake Frisksjön can be viewed in Figure 5-7 and Figure 5-8. Roach was far more abundant than rudd was.

Figure 5-7. Roach caught in Lake Frisksjön.

Figure 5-8. Rudd caught in Lake Frisksjön.

5.4 Lake Plittorpsgöl

In lake Plittorpsgöl, three species were caught, which can be considered as a normal value in such a small lake (Table 5-7). The species found are of frequent occurrence and the result is consequently expected.

The catch was dominated by perch in numbers, as well as in biomass, followed by roach. (Table 5-7 and Figure 5-9).

The catch per unit effort in numbers and in weight, for the caught species, was relatively low (Table 5-7 and Figure 5-10). This was probably due to low oxygen levels below the depth of two meters in the lake.

Classification by the Swedish fish index (FIX) placed Lake Plittorpsgöl in class 2, which indicates that the fish population slightly deviates, compared to the expected, in this kind of lake (Table 5-8). This was due to low values of biomass and number of individuals.

Calculated Condition index was for perch 1.06 and for roach 0.89.

No deformities or signs of external injury were seen on the caught fish.

Species	Total number of caught fish	Number per unit effort	Total weight of caught fish (g)	Weight per unit effort (g)
Perch	24	6.0	1,623	406
Roach	21	5.3	1,057	264
Pike	1	0.3	534	134
Sum:	46	11.5	3,214	804

Table 5-7. Compiled results of fish data from Lake Plittorpsgöl.

Number distribution

Weight distribution

Figure 5-9. Number and weight distribution of caught fish in Lake Plittorpsgöl.

Figure 5-10. Catch per unit effort, with 95% confidence intervals, in Lake Plittorpsgöl.

Classification of state	Value	Class	The value is
Number of domestic species	3	3	moderately high
Diversity index (Shannon Wiener)	0.44	3	moderately high
Biomass (g/unit effort)	804	3	moderately high
Number of individuals /unit effort	11.5	4	low
Proportion of piscivores	0.44	3	moderately high
Average index	3.2	3	moderately high

Table 5-8. Classification by the Swedish fish index (FIX) in Lake Plittorpsgöl

Classificaton of deviation from comparative value	Class	The deviation is
Number of domestic species	1	no or insignificant
Diversity index (Shannon Wiener)	1	no or insignificant
Biomass (g/unit effort)	3	evident
Number of individuals /unit effort	3	evident
Proportion of piscivores	1	no or insignificant
Proportion of cyprinids	1	no or insignificant
Presence of species sensitive to low pH-levels	3	evident
Proportion of alien species	1	no or insignificant
Average index	2	slight

Figure 5-11. Handling the catch and gillnets.

6 Summary and discussions

The number of caught fish species varied somewhat between the lakes (Table 6-1). In Lake Söråmagasinet and Lake Frisksjön the same species were found. In Lake Plittorpsgöl, however, only three species were caught. This was not surprising considering the small size of the lake.

Lake	Species	Roach	Pike	Bream	Ruffe	Rudd	Bleak	Sum
Jämsen	x	x	х	x	х	x	х	7
Söråmagasinet	х	х	х	х	х	x		6
Frisksjön	х	х	х	х	х	x		6
Plittorpsgöl	х	х	х					3

Table 6-1. C	Caught species	in the sampled	lakes.
--------------	----------------	----------------	--------

Figure 6-1. Caught species in Lake Frisksjön. From the top: pike, perch, bream, roach, rudd and ruffe.

31

Catch Per Unit Effort, expressed as numbers and weight per unit effort, varied quite a lot between the lakes (Table 6-2). Lake Söråmagasinet and Lake Frisksjön show, however, similar results. The relatively low catch in Lake Jämsen is probably due to low levels of oxygen below the depth of two meters. Since the lake has a maximum depth of eleven meters, several gillnets were set deeper than two meters, and consequently the catch in these gillnets were none or very poor. Similarly, in Lake Plittorpsgöl, only four gillnets were set and two were placed below the thermocline. There was no catch in these two gillnets.

Lake	Number per unit effort	Weight per unit effort (g)	
Jämsen	19.3	656	
Söråmagasinet	44.4	2,146	
Frisksjön	45.5	1,770	
Plittorpsgöl	11.5	804	

Table 6-2. Catch Per Unit Effort in the sampled lakes.

Perch was the dominating species in all the sampled lakes, a result that was expected (Figure 6-2). It can, however, be noticed that the proportion of cyprinids (roach and bream), is higher in Lake Söråmagasinet than in the other lakes (weight proportion). This indicates that Lake Söråmagasinet has a higher nutrient load. The lake is a former sea bay, which was enclosed during the 1970's.

Figure 6-2. Catch Per Unit Effort, for the three most frequent occurring species.

The fish condition factor was calculated for perch and roach (Table 6-3). The basic assumption underlying the use of condition factor is that fish in better "condition" (nutritional and health status) are more full-bodied and therefore heavier at a given length. For perch, lengths between 100–150 mm were used, and for roach 100–200 mm.

The condition factor for perch was highest in Lake Frisksjön, (Figure 6-3). The differences are statistically significant, (students t-test, two-tailed, p < 0.001 in all cases). The result indicates that the perches in Lake Frisksjön have a better nutritional and health status than perches from the other sampled lakes, probably depending on the availability of food.

It is interesting to notice that the condition factor is highest in Lake Frisksjön for roach as well (students t-test, two-tailed, p<0.05 in all cases) (Figure 6-4). The result indicates a "better environment" than for example in Lake Plittorpsgöl.

Table 6-3. Calculated condition factors for perch and roach.

Perch Lake	Mean	Stdev	n
Lake Jämsen	1.14	0.12	54
Lake Söråmagasinet	1.06	0.10	95
Lake Frisksjön	1.25	0.13	66
Lake Plittorpsgöl	1.06	0.08	11

Roach			
Lake	Mean	Stdev	n
Lake Jämsen	0.93	0.06	64
Lake Söråmagasinet	0.96	0.07	91
Lake Frisksjön	0.99	0.08	62
Lake Plittorpsgöl	0.89	0.06	17

Figure 6-3. Calculated condition factors for perch with 95% confidence interval.

Figure 6-4. Calculated condition factors for roach with 95% confidence interval.

Today there is no model for calculating the total biomass of the entire fish population in a lake in a reliable way using multi-mesh gillnets. Despite the uncertainty, a rough approximation has been made (Table 6-4). As can be seen in the table, the approximations are very uncertain. This is due to the large variation of catch between the gillnets, which depends on several factors. The most important factor is the low levels of oxygen, which, especially in Lake Jämsen and Lake Plittorpsgöl, resulted in poor catches at lower depths.

The value of biomass for the entire lake is a very rough approximation, not only due to the large variations in the data series, but also due to the large uncertainty with the factor used for multiplying the weight per unit effort.

Table 6-4. Approximation of the total weight of the fish population per ha, and for the entire lake.

Lake	Weight per unit effort (kg)	Confidence limit (95%)	Weight per ha (kg)	Total weight entire lake (kg)
Jämsen	0.66	0.51	13 +/– 10	315 +/- 243
Söråmagasinet	2.15	1.37	43 +/- 27	382 +/- 243
Frisksjön	1.77	0.54	35 +/- 11	389 +/- 118
Plittorpsgöl	0.80	1.12	16 +/- 22	53 +/- 74

7 References

- /1/ Kinnerbäck A, 2001. Standardiserad metodik för provfiske i sjöar. Fiskeriverket informerar 2001:2.
- /2/ Wiederholm T, 1999. Bedömningsgrunder för miljökvalitet. Sjöar och vattendrag. Naturvårdsverket rapport 4913.
- /3/ Wiederholm T, 1999. Bedömningsgrunder för miljökvalitet. Sjöar och vattendrag. Bakgrundsrapport biologiska parametrar. Naturvårdsverket rapport 4921.
- /4/ Richter H, Lückstädt C, Focken U L, Becker K, 2000. An improved procedure to assess fish condition on basis of length-weight relationships. Arch. Fish. Mar. Res. 48(3), 2000, 226–235.

Appendix 1

Results, lake by lake

Lake	Jäm	sen				S ACF PEI	REPORT utfärdad av ackrediterat laboratorium REPORT issued by an Accredited Laboratory				
Water a	irea info	rmation									
Lake: Co-ordii County: Municip	nates: _ ality	636 C	Jämse 528/15406 Kalma Oskarsham	n 3 ar n	Main cate Topogr. I Altitude (Catchm.	ch area: map: m): (km²):		72/73 6G SC 30	Lake are Max.dept Aver. dep Liming:	ea (ha): th (m): oth(m):	24 11 4 no
Samplir	ng inform	ation									
First set Last upt Fisherm Respon Purpose	tting: take: nen: sibility: e:	Engdah site in	2004-08-1 2004-08-1 I/Andersso Medin vestigation	5 7 n s s	Method: Benthic (Pelagic (Type of g Earlier s	gillnets: gillnets: gillnets: ampl:	S	tandaro 16 0 Nordio	Surf. tem Turbidity Colour: Secci de Trophic I	p. (°C): : stron pth: evel: meso	23,1 clear ngly col. 1,4 m otrophic
Miscella	aneous										
Weathe Wind co Other ot	r conditic inditions: oservatio	ns: <u>c</u> li ns: -	lear to clou ght to gentl	dy e bree	eze from	west			Air temp Chem.s	. (°C): ampl:	18 no
Water t	emperat	ure- an	d oxygene	profile)				_	- Temperat	ure (°C)
Depth (r 0,5 1 2 3 4 5 6 7 8 9 10	n) 1	empera	ature (°C) 23,1 22,2 16,5 13,4 10,2 8,3 7,2 6,6 6,2 5,9 5,8	Оху	gene (m 8,6 7,1 0,5 0,4 0,4 0,4 0,2 0,2 0,2 0,2	g/l)	0 2 4 6 8 10	0	10 		30
Results											
Species Perch Roach Bream Bleak Pike Ruffe Rudd Sum:	Numb. (pcs) 145 64 49 25 2 2 3 1 309	Numb. (%) 46,9 20,7 15,9 8,1 0,6 7,4 0,3 100,0	Catch/ net (pcs) 9,1 4,0 3,1 1,6 0,1 1,4 0,1 19,3	Std. dev. 15,2 8,1 5,8 4,6 0,3 2,7 0,3	Weight (g) 4739 1089 2206 444 1745 157 108 10488	Weight (%) 45,2 10,4 21,0 4,2 16,6 1,5 1,0 100,0	Catch/ net (g) 296 68 138 28 109 10 7 656	Std. dev. 689 135 254 81 321 22 27	Length in- terval (mm) 65-358 106-171 75-334 105-155 491-595 62-122 213-213	Length aver. (mm) 111 154 136 543 83 213	Weight aver. (g) 33 17 45 18 873 7 108
Laboratoriur uppfyller kra	mackrediteras aven i SS-EN I	s av Styrelse SO/IEC 1703	n för ackrediteri 25 (2000). Denn	ng och te a rapport	knisk kontro får endast å	ll (SWEDAC terges i sin h) enligt sve elhet, om in	nsk lag. De ite utfärdar	n ackrediterade verks Ide laboratorium i för	amheten vid laborat väg godkänt annat.	orierna
		-	. ,			-			-		

	Sörå	imag	asinet			ICF PE	D 1 T E	utfärda REPOR	ad av ackredi Tissued by an	iterat labora Accredited L	atoriun .aborato
Vater ar	ea infor	mation									
akai		Cär	åm og og in	a t	Main an	tab area		70/70	Laka ara	a (ha);	
ake.	atos -	501	amagasin	ei	Topogr	mon:		66.50	Lake area	a (na).	
	ales. –		Kalm	- ar	Altitude	(m).		00.30		th(m):	-
Junicinal	lity –)ekareham	<u>n</u>	Catchm	(iii). (km²):			Limina	un(ini).	
numeipa			Skarsman		Catchin	. (KIII).			Linning.		
Sampling	g inform	ation									
- irst setti	ng:		2004-08-1	7	Method:		s	tandard	Surf. tem	p. (°C):	:
ast upta	ike:		2004-08-1	8	Benthic	gillnets:		8	- Turbidity:		turb
- isherme	en: –	Engdah	I/Andersso	n	Pelagic	gillnets:		0	Colour:		colour
Respons	ibility:	J • •	Medir	is	Type of	aillnets:		Nordic	Secci der	oth:	2.0
Purpose:	-	site in	vestigation	is	Earliers	sampl:		-	Trophic le	evel: mes	sotroph
Aiscellar	neous										
Neather	conditio	ns' n	artlycloud	v					Air temp	(°C) [.]	
Wind con	ditione	ιια. <u>ρ</u> Ιι	aht hreeze	from	west				_ Chem ex	(0). ampl:	
Other obs	servation	ns: -	gin bieeze	nom	west				-	umpi	
		_									
Vater te	mperat	ure- and	l oxygene	profile	Ð					— Tempera	ture (°
										— Oxygene	(mg/l)
)onth (m	· -	Tompor	atura (°C)	014	mono (m	a/l)	()	10	20	
)	rempera	aure(C)	UX	ygene (n o a	ig/i)	0 -		1	1	
0,5			23,0		0,4						
1			22,0		0,1				+	7	
2			20,9		3,4						
•			407		~ ~						
3			16,7		0,3		1 -				
3 4			16,7 14,6		0,3 0,2		1 -				
3 4			16,7 14,6		0,3 0,2		1 -	/			
3 4			16,7 14,6		0,3 0,2		1 - 2 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 - 3 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 - 3 -				
3 4			16,7 14,6		0,3 0,2		1 - 2 - 3 -				
34			16,7 14,6		0,3 0,2		1 - 2 - 3 - 4 -				
3 4 Results			16,7 14,6		0,3 0,2		1 - 2 - 3 - 4 - D	epth (m)		
3 4 Results	Numb	Numb	16,7 14,6		0,3 0,2	Waiaht	1 - 2 - 3 - 4 - D	epth (m)		
3 4 Results	Numb.	Numb.	16,7 14,6 Catch/	Std.	0,3 0,2 Weight	Weight	1 - 2 - 3 - 4 - D Catch/ net(c)	epth (m) Length in- terval (mm)	Length	Weig
3 4 Results Species	Numb. (pcs) 192	Numb. (%) 54 1	16,7 14,6 Catch/ net (pcs) 24.0	Std. dev. 15.6	0,3 0,2 Weight (g) 7145	Weight (%) 416	1 - 2 - 3 - D Catch/ net (g) 893	epth (m Std. dev.) Length in- terval (mm) 70.425	Length aver. (mm)	Weig aver.
3 4 Results Species Perch Roach	Numb. (pcs) 192 92	Numb. (%) 54,1 25.9	16,7 14,6 Catch/ net (pcs) 24,0 11 5	Std. dev. 15,6 6 0	0,3 0,2 Weight (g) 7145 3837	Weight (%) 41,6 22,3	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480	epth (m Std. dev. 1005,8 235,8) Length in- terval (mm) 70-425 135-277	Length aver. (mm) 117 161	Weig aver.
3 4 Results Species Perch Roach Bream	Numb. (pcs) 192 92 52	Numb. (%) 54,1 25,9 14 6	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6 5	Std. dev. 15,6 6,0 7,3	0,3 0,2 Weight (g) 7145 3837 4815	Weight (%) 41,6 22,3 28 0	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602	epth (m Std. dev. 1005,8 235,8 884 7) Length in- terval (mm) 70-425 135-277 94-408	Length aver. (mm) 117 161 181	Weig aver.
3 4 Results Species Perch Roach Bream Rudd	Numb. (pcs) 192 92 52 7	Numb. (%) 54,1 25,9 14,6 20	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9	Std. dev. 15,6 6,0 7,3 11	0,3 0,2 Weight (g) 7145 3837 4815 117	Weight (%) 41,6 22,3 28,0 0 7	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15	epth (m Std. dev. 1005,8 235,8 884,7 17,9) Length in- terval (mm) 70-425 135-277 94-408 97-152	Length aver. (mm) 117 161 181 116	Weig aver.
3 4 Results Species Perch Roach Bream Rudd Pike	Numb. (pcs) 192 92 52 7 1	Numb. (%) 54,1 25,9 14,6 2,0 0,3	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0 1	Std. dev. 15,6 6,0 7,3 1,1 0,4	0,3 0,2 Weight (g) 7145 3837 4815 117 1116	Weight (%) 41,6 22,3 28,0 0,7 6 5	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15 140	epth (m Std. dev. 1005,8 235,8 884,7 17,9 394 6) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560	Length aver. (mm) 117 161 181 116 560	Weig aver.
3 4 Results Species Perch Roach Bream Rudd Pike Ruffe	Numb. (pcs) 192 92 52 7 1 11	Numb. (%) 54,1 25,9 14,6 2,0 0,3 3,1	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0,1 1,4	Std. dev. 15,6 6,0 7,3 1,1 0,4 2,0	0,3 0,2 Weight (g) 7145 3837 4815 117 1116 140	Weight (%) 41,6 22,3 28,0 0,7 6,5 0,8	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15 140 18	epth (m Std. dev. 1005,8 235,8 884,7 17,9 394,6 24,3) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560 79-137	Length aver. (mm) 117 161 181 116 560 102	Wei aver.
3 4 Results Results Perch Roach Bream Rudd Pike Ruffe Sum:	Numb. (pcs) 192 92 52 7 1 11 355	Numb. (%) 54,1 25,9 14,6 2,0 0,3 3,1 100,0	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0,1 1,4 44,4	Std. dev. 15,6 6,0 7,3 1,1 0,4 2,0	0,3 0,2 Weight (g) 7145 3837 4815 117 1116 140 17170	Weight (%) 41,6 22,3 28,0 0,7 6,5 0,8 100,0	1 - 2 - 3 - 3 - 0 Catch/ net (g) 893 480 602 15 140 18 2146	epth (m Std. dev. 1005,8 235,8 884,7 17,9 394,6 24,3) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560 79-137	Length aver. (mm) 117 161 181 116 560 102	Weig aver.
3 4 Results Species Perch Roach Bream Rudd Pike Ruffe Sum:	Numb. (pcs) 192 92 52 7 1 11 355	Numb. (%) 54,1 25,9 14,6 2,0 0,3 3,1 100,0	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0,1 1,4 44,4	Std. dev. 15,6 6,0 7,3 1,1 0,4 2,0	0,3 0,2 Weight (g) 7145 3837 4815 117 1116 140 17170	Weight (%) 41,6 22,3 28,0 0,7 6,5 0,8 100,0	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15 140 18 2146	epth (m Std. dev. 1005,8 235,8 884,7 17,9 394,6 24,3) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560 79-137	Length aver. (mm) 117 161 181 116 560 102	Wei aver.
3 4 Results Species Perch Roach Bream Rudd Pike Ruffe Sum:	Numb. (pcs) 192 92 52 7 1 11 355	Numb. (%) 54,1 25,9 14,6 2,0 0,3 3,1 100,0	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0,1 1,4 44,4	Std. dev. 15,6 6,0 7,3 1,1 0,4 2,0	0,3 0,2 Weight (g) 7145 3837 4815 117 1116 140 17170	Weight (%) 41,6 22,3 28,0 0,7 6,5 0,8 100,0	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15 140 18 2146	epth (m Std. dev. 1005,8 235,8 884,7 17,9 394,6 24,3) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560 79-137	Length aver. (mm) 117 161 181 116 560 102	Weig aver.
3 4 A A A A A A A A A A A A A A A A A A	Numb. (pcs) 192 92 52 7 1 11 355	Numb. (%) 54,1 25,9 14,6 2,0 0,3 3,1 100,0	16,7 14,6 Catch/ net (pcs) 24,0 11,5 6,5 0,9 0,1 1,4 44,4	Std. dev. 15,6 6,0 7,3 1,1 0,4 2,0	0,3 0,2 Weight (g) 7145 3837 4815 117 1116 140 17170	Weight (%) 41,6 22,3 28,0 0,7 6,5 0,8 100,0	1 - 2 - 3 - 4 - D Catch/ net (g) 893 480 602 15 140 18 2146	epth (m Std. <u>dev.</u> 1005,8 235,8 884,7 17,9 394,6 24,3) Length in- terval (mm) 70-425 135-277 94-408 97-152 560-560 79-137	Length aver. (mm) 117 161 181 116 560 102	Weig aver.

Lake	Fris	ksjör		REPORT utfärdad av ackrediterat labora REPORT issued by an Accredited L					atorium aboratory		
Water a	rea info	rmation									
Laka			Frieksi	¥		4		70/7/		- (b).	
Lake:	atos ·	636	Frisksj	200 47	Topogr	tch area		66.90	<u> </u>	a (na):	3.2
County	ales.	030	Kalm	+/ ar	Altitude	(m)		00.30	<u> </u>	th(m):	3,2
Municina	ality	(Oskarshan	n	Catchm	(km ²) [.]			- Limina	ui(iii).	
mannoipe		,	Jonaronan	<u></u>	outonin	. ().					110
Samplin	g inforn	nation									
First sett	ting:		2004-08-	18	Method	:	s	tandaro	d Surf. tem	p. (°C):	23,2
Lastupta	ake:		2004-08-	19	Benthic	gillnets:		8	3 Turbidity:	,	clear
Fisherm	en:	Engdah	I/Anderss	on	Pelagic	gillnets:		(Colour:	stro	ngly col.
Respons	sibility:		Medi	ns	Type of	gillnets:		Nordi	c Secci de	oth:	1,7 m
Purpose	: .	site ir	vestigatio	าร	Earlier	sampl:			- Trophic le	evel: mes	otrophic
Miscella	neous										
Weather	conditio	ons r	artly cloud	v					Air temp	(°C):	19
Wind cor	nditions	: li	aht breeze	from	west				Chem.s	ampl:	
Other ob	servatio	ns: -	9						_	p.i	
Depth (n 0,5 1 2 3	1)	Temper	ature (°C) 23,2 23,1 18,5 15,7	Ox	ygene (n 8,47 8,09 0,33 0,25	ng/l)	0 - 1 - 2 -				
							3 -			4	
<u> </u>							D	epth (m	1)		
Results											
Species	Numb.	Numb.	Catch/	Std.	Weight	Weight	Catch/	Std.	Length in-	Length	Weigh
	(pcs)	(%)	net (pcs)	dev.	(g)	(%)	net (g)	dev.	terval (mm)	aver. (mm)	aver. (g)
Perch	258	70,9	32,3	25,0	8273	58,4	1034	708,8	59-365	106	32
Roach	63	17,3	7,9	4,6	2498	17,7	312	208,0	117-268	154	40
Bream	26	7,1	3,3	1,6	2177	15,4	272	205,6	90-299	190	84
Rudd	8	2,2	1,0	1,1	252	1,8	32	33,0	118-155	137	32
Pike	2	0,5	0,3	0,5	892	6,3	112	206,9	435-439	437	446
Ruffe	7	1,9	0,9	1,1	65	0,5	1770	10,4	87-99	91	9
		100,0	40,0		1107	100,0					

All together, six species were caught, which is a high value considering that the lake is so small. The catch was dominated by perch in numbers, as well as in biomass. Total number of individuals was relatively high. Classification by the Swedish fish index (FIX) places Lake Frisksjön in class 1, which indicates that the result is expected.

Lake	Plitte	orps	göl		REPORT utfärdad av ackrediterat laboratori REPORT issued by an Accredited Labor					atorium .aboratory			
Water a	rea info	rmatior		a. ¥ I		atab ana		70	70			_	
Lake:	atos:	63	Plittorps	goi 57	Topog	atch are	a:	66.9	$\frac{73}{20}$	Lake a	irea (na)	:	3,3
County		03	Kaln	07 har	Altitud	n. map.		00.	15	Δver d	enth(m)	. ——	7,5
Municipa	ality		Oskarshai	mn	Catch	m. (km²)	:		-	Liming	g:		no
Samplin	g inform	nation											
First sett	tina:		2004-08-	-19	Metho	d:		invent	orv	Surf. te	emp. (°C):	22.1
Last upta	ake:		2004-08-	-20	Benthi	c gillnet	s:		4	Turbid	ity:	, <u> </u>	clear
Fisherm	en:	Engdal	hl/Anderss	on	Pelagi	c gillnet	s:		0	Colou		str	ongly col.
Respons	sibility:		Med	ins	Туре с	fgillnets	s:	Nor	dic	Secci o	depth:		1,6 m
Purpose	: -	site i	nvestigatio	ons	Earlie	r sampl:			-	Trophi	c level:	me	sotrophic
Miscella	neous												
Weather	conditio	ons: (clear							Air tem	ıp. (°C):		19
Wind cor	nditions	: 🥊	gentle bree	eze fro	om west					Chem	. sampl:		no
Other ob	servatio	ons: ·	-										
Depth (m 0,5 1 2 3 4 5 6 7 7 Results	n)	Temper	rature (°C) 22,1 21,7 18,8 13 9,5 7,4 5,9 5,3	0	xygene (7,8 7,2 0,2 0,1 0,1 0,1 0,1 0,1	'mg/l)	0 1 2 3 4 5 6 7	0	(m)	10		20	3
Species	Numb	Numb	Catch/	Std	Weight	Weight	Catch/	Std	Lon	ath in	lor	ath	Weigh
opecies	(pcs)	(%)	net (pcs)	dev.	(a)	(%)	net (a)	dev.	terval	(mm)	aver. (m	igui im)	aver. (a
Perch	24	52,2	6,0	8,0	1623	50,5	406	621,2	8	3-337		145	68
Roach	21	45,7	5,3	6,7	1057	32,9	264	308,5	14	0-230		171	50
Pike	1	2,2	0,3	0,5	534	16,6	134	267,0	48	0-480	4	480	534
Sum:	46	100,0	11,5		3214	100,0	804						

Catches within each gillnet

Lake Jämsen

Gillnet number: LSM		LSM000459		00460	LSM	000461	LSM00	0462
Depth zone:	0–3 m	ı	0–3 m		3–6 r	n	6–11 m	
Start co-ordinate:	63652	26/154054	636522	636522/154056		09/154042	636497	/154035
Stop co-ordinate:	63652	24/154052	636519	636519/154056		06/154042	636497	/154032
Direction:	NE-S	W	N–S		N–S		E–W	
Fishing depth:	1.8–1	.5 m	1.8–1.7	7 m	4.2–5	5.0 m	7.9–8.8	m
Species	numb	. weight	numb.	weight	num	b. weight	numb.	weight
Perch	35	368	20	203	0	0	0	0
Roach	22	352	25	427	0	0	0	0
Bream	20	823	10	539	0	0	0	0
Bleak	8	146	17	298	0	0	0	0
Pike	0	0	0	0	0	0	0	0
Ruffe	5	25	6	38	0	0	0	0
Rudd	0	0	1	108	0	0	0	0
Sum:	90	1,714	79	1,613	0	0	0	0

Gillnet number:	iber: LSM000463		LSM000464		LSM000465		LSM000466	
Depth zone:	6–11 m	1	3–6 r	n	0–3 m		3–6 m	
Start co-ordinate:	636485	5/154020	6364	93/154004	636505/154003		636506	/154023
Stop co-ordinate:	636488	3/154020	6364	95/154006	636507/154005		636504	/154021
Direction:	S–N		SW-NE		SW-NE		NE-SW	1
Fishing depth:	11.0–1	1.0 m	4.3–4	.5 m	2.7–2.4	m	5.2-4.5	m
Species	numb.	weight	numl	o. weight	numb.	weight	numb.	weight
Perch	0	0	0	0	11	115	0	0
Roach	0	0	0	0	4	74	1	15
Bream	0	0	0	0	7	404	0	0
Bleak	0	0	0	0	0	0	0	0
Pike	0	0	0	0	1	545	0	0
Ruffe	0	0	0	0	0	0	0	0
Rudd	0	0	0	0	0	0	0	0
Sum:	0	0 0		0	23	1,138	1	15

Lake Söråmagasinet

Gillnet number:	Ilnet number: LSM000475		LSM	000476	LSM000)477	LSM000478		
Depth zone:	3–6	m	3–6 ו	m	3–6 m		3–6 m		
Start co-ordinate:	6366	32/155137	6366	636625/155123		/155117	636615/15510		
Stop co-ordinate:	6366	30/155135	6366	25/155126	636619	/155117	636615	/155111	
Direction:	NE-	SW	W–E		N–S		W–E		
Fishing depth:	3.8–	3.7 m	3.4–3	3.8 m	3.5–3.8	m	3.5–3.6	m	
Species	num	b. weight	num	b. weight	numb.	weight	numb.	weight	
Perch	5	70	7	95	11	150	34	429	
Roach	7	279	9	382	22	910	18	690	
Bream	0	0	3	626	0	0	5	156	
Rudd	0	0	0	0	0	0	1	37	
Pike	0	0	0	0	0	0	0	0	
Ruffe	0	0	0	0	0	0	0	0	
Sum:	12	349	19	1,103	33	1,060	58	1,312	

Gillnet number:	t number: LSM000479		LSM000480		LSM000481		LSM000482	
Depth zone:	0–3 n	า	0–3 m		0–3 m		0–3 m	
Start co-ordinate:	6366 ⁻	13/155115	6366	13/155093	636598/155060		636602	2/155071
Stop co-ordinate:	6366 ⁻	15/155117	6366	11/155091	636600	/155058	636600	/155073
Direction:	SW-I	NE	NE-S	SW	SE-NW	1	NW-SE	E
Fishing depth:	2.5–2	.5 m	1.8–2	2.3 m	1.5–2.2	m	1.6–2.1	m
Species	numb	o. weight	numl	b. weight	numb.	weight	numb.	weight
Perch	27	2,157	28	1,143	29	438	51	2,663
Roach	7	286	15	527	8	541	6	222
Bream	1	42	8	540	19	800	16	2,651
Rudd	0	0	2	28	3	41	1	11
Pike	0	0	0	0	0	0	1	1116
Ruffe	5	52	0	0	3	43	3	45
Sum:	40	2,537	53	2,238	62	1,863	78	6,708

Lake Jämsen

Gillnet number:	LSM000467		LSM00	0468	LSM000	469	LSM000470	
Depth zone:	6–11 m		3–6 m		0–3 m		3–6 m	
Start co-ordinate:	636494	/154024	636471	/154028	636467/	154041	636470/	154014
Stop co-ordinate:	636492	/154022	636473	8/154030	636469/154039		636473/	154014
Direction:	NE-SW	1	SW-NE	Ξ	SE-NW		S–N	
Fishing depth:	7.0–9.8	m	3.5–4.1	m	1.5–2.1	m	4.2–4.1	m
Species	numb.	weight	numb.	weight	numb.	weight	numb.	weight
Perch	0	0	1	15	46	2,701	1	394
Roach	0	0	0	0	2	33	0	0
Bream	0	0	0	0	10	363	0	0
Bleak	0	0	0	0	0	0	0	0
Pike	0	0	0	0	0	0	0	0
Ruffe	0	0	0	0	4	12	0	0
Rudd	0	0	0	0	0	0	0	0
Sum:	0	0	1	15	62	3,109	1	394

Gillnet number: LSM0		-SM000471		000472	LSM00	0473	LSM000474	
Depth zone:	0–3 m		3–6 r	n	6–11 r	n	6–11 m	
Start co-ordinate:	636462	/154002	6364	636477/154021		1/154008	636500	/154028
Stop co-ordinate:	636465/154002		6364	636475/154023		1/154011	636498	/154026
Direction:	S-N		NW–	SE	W–E		NE-SW	1
Fishing depth:	2.1–2.3 m		5.2–4	4.9 m	7.2–9.	1 m	10.1–8.	9 m
Species	numb.	weight	num	b. weight	numb	. weight	numb.	weight
Perch	30	936	0	0	0	0	1	7
Roach	10	188	0	0	0	0	0	0
Bream	2	77	0	0	0	0	0	0
Bleak	0	0	0	0	0	0	0	0
Pike	1	1,200	0	0	0	0	0	0
Ruffe	8	82	0	0	0	0	0	0
Rudd	0	0	0	0	0	0	0	0
Sum:	51 2,483		0	0	0	0	1	7

Lake Frisksjön

Gillnet number:	net number: LSM000483		LSMO	00484	LSM00	0485	LSM000486		
Depth zone:	0–3 m	า	0–3 n	n	0–3 m		0–3 m		
Start co-ordinate:	63679	98/154921	6368	636807/154912		2/154902	636807/154894		
Stop co-ordinate:	63680	36800/154919		636804/154912		0/154900	63680	9/154892	
Direction:	SE-N	IW	N–S		NE-S	N	SE-N	W	
Fishing depth:	1.8–2	.2 m	2.7–2	2.3 m	3.0–3.	0 m	2.6–2.	.1 m	
Species	numt	o. weight	numl	b. weight	numb	weight	numb	. weight	
Perch	44	1,917	29	587	3	53	32	1,197	
Roach	6	237	11	661	6	146	5	206	
Bream	4	525	2	143	1	38	4	180	
Rudd	3	91	1	20	0	0	2	58	
Pike	0	0	0	0	1	421	0	0	
Ruffe	2	21	0	0	0	0	1	9	
Sum:	59	2,791	43	1,411	11	658	44	1,650	

Gillnet number:	LSM000487		LSM000488		LSM000)489	LSM000490		
Depth zone:	0–3 m		0–3 n	n	0–3 m		0–3 m		
Start co-ordinate:	636819	/154908	6368	14/154929	636818/154952		636824	/154942	
Stop co-ordinate:	636819	/154911	636817/154929		636818/154949		636822	/154940	
Direction:	W–E		S–N		E–W		NE-SW	/	
Fishing depth:	2.2–2.4	m	2.1–2	2.5 m	1.9–2.4	m	2.0–2.8	m	
Species	numb.	weight	numb	o. weight	numb.	weight	numb.	weight	
Perch	85	1,224	16	311	35	2,026	14	958	
Roach	6	255	18	616	4	116	7	261	
Bream	4	301	6	598	3	325	2	67	
Rudd	0	0	0	0	1	48	1	35	
Pike	0	0	0	0	1	471	0	0	
Ruffe	1	9	0	0	3	26	0	0	
Sum:	96	1,789	40	1,525	47	3,012	24	1,321	

Lake Plittorpsgöl

Gillnet number:	LSM00	0491	LSM00	0492	LSM000	493	LSM000	0494
Depth zone:	3–6 m		0–3 m		3–6 m		0–3 m	
Start co-ordinate:	636897	/154132	636906	6/154150	636898	/154153	636895	/154157
Stop co-ordinate:	636897	/154135	636904	4/154152	636900	/154155	636897	/154159
Direction:	W–E		NW-S	E	SW-NE		SW-NE	Ξ
Fishing depth:	5.0-6.0	m	2.1–2.5	5 m	3.9–4.9	m	2.3–1.9	m
Species	numb.	weight	numb.	weight	numb.	weight	numb.	weight
Perch	0	0	7	312	0	0	17	1,311
Roach	0	0	7	473	0	0	14	584
Pike	0	0	0	0	0	0	1	534
Sum:	0	0	14	785	0	0	32	2,429

Appendix 3

Deep-frozen fish

Lake Jämsen

Species	Running no	Length (mm)	Wet weight (g)	From gillnet no
Perch	1	124	20	LSM000459
Perch	2	123	20	LSM000459
Perch	3	114	18	LSM000459
Perch	4	112	14	LSM000459
Perch	5	116	14	LSM000459
Perch	6	133	27	LSM000460
Perch	7	127	23	LSM000465
Perch	8	284	294	LSM000469
Perch	9	267	236	LSM000469
Perch	10	210	113	LSM000469
Perch	11	221	166	LSM000471
Perch	12	214	115	LSM000471
Perch	13	178	65	LSM000471
Roach	1	129	22	LSM000459
Roach	2	134	21	LSM000459
Roach	3	135	23	LSM000459
Roach	4	130	20	LSM000459
Roach	5	126	18	LSM000459
Roach	6	126	19	LSM000460
Roach	7	171	41	LSM000460
Roach	8	137	25	LSM000460
Roach	9	137	24	LSM000460
Roach	10	129	21	LSM000460
Pike	1	491	545	LSM000465
Pike	2	595	1,200	LSM000471

Species	Running no	Length (mm)	Wet weight (g)	From gillnet no
Perch	1	118	16	LSM000475
Perch	2	117	16	LSM000475
Perch	3	121	17	LSM000475
Perch	4	140	28	LSM000477
Perch	5	134	23	LSM000478
Perch	6	141	27	LSM000478
Perch	7	150	38	LSM000479
Perch	8	182	63	LSM000480
Perch	9	154	39	LSM000480
Perch	10	184	71	LSM000481
Perch	11	179	66	LSM000482
Perch	12	181	58	LSM000482
Perch	13	158	42	LSM000482
Roach	1	175	46	LSM000475
Roach	2	149	33	LSM000475
Roach	3	158	37	LSM000475
Roach	4	162	39	LSM000475
Roach	5	166	42	LSM000475
Roach	6	170	39	LSM000475
Roach	7	173	43	LSM000475
Roach	8	181	61	LSM000476
Roach	9	172	46	LSM000476
Roach	10	153	33	LSM000476
Pike	1	560	1,116	LSM000482

Lake Söråmagasinet

Species	Running no	Length (mm)	Wet weight (g)	From gillnet no
Perch	1	188	68	LSM000483
Perch	2	179	67	LSM000483
Perch	3	172	54	LSM000483
Perch	4	155	47	LSM000486
Perch	5	189	73	LSM000487
Perch	6	209	119	LSM000488
Perch	7	263	249	LSM000489
Perch	8	235	162	LSM000489
Perch	9	150	38	LSM000489
Perch	10	248	217	LSM000490
Roach	1	194	75	LSM000483
Roach	2	161	43	LSM000483
Roach	3	173	46	LSM000483
Roach	4	177	47	LSM000484
Roach	5	168	49	LSM000484
Roach	6	175	54	LSM000484
Roach	7	178	48	LSM000484
Roach	8	178	54	LSM000484
Roach	9	167	44	LSM000484
Roach	10	166	41	LSM000484
Pike	1	439	421	LSM000485
Pike	2	435	471	LSM000489

Lake Frisksjön

Species	Running no	Length (mm)	Wet weight (g)	From gillnet no
Perch	1	221	117	LSM000492
Perch	2	209	95	LSM000492
Perch	3	158	40	LSM000492
Perch	4	116	16	LSM000492
Perch	5	120	19	LSM000492
Perch	6	317	329	LSM000494
Perch	7	268	201	LSM000494
Perch	8	209	107	LSM000494
Perch	9	130	24	LSM000494
Perch	10	125	24	LSM000494
Roach	1	198	69	LSM000492
Roach	2	187	66	LSM000492
Roach	3	180	50	LSM000492
Roach	4	175	48	LSM000492
Roach	5	155	32	LSM000492
Roach	6	199	79	LSM000494
Roach	7	202	85	LSM000494
Roach	8	174	47	LSM000494
Roach	9	164	37	LSM000494
Roach	10	155	32	LSM000494
Pike	1	480	534	LSM000494

Lake Plittorpsgöl

Appendix 4

Swedish	English	Latin
Abborre	Perch	Perca fluviatilis
Braxen	Bream	Abramis brama
Gers	Ruffe	Gymnocephalus cernuus
Gädda	Pike	Esox lucius
Löja	Bleak	Alburnus alburnus
Mört	Roach	Rutilus rutilus
Sarv	Rudd	Scardinius erythrophthalmus

Caught fish species name in swedish, english and latin