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Abstract

This report contains the research results concerning advanced ultrasound for the inspection
of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University
in years 2003/2004.

After a short introduction a review of beamforming fundamentals required for proper un-
derstanding phased array operation is included. The factors that determine lateral resolution
during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling
contact inspection of copper are presented.

In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced.
The proposed SAI technique is characterized by an enhanced lateral resolution compared with
the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhance-
ment of imaging performance is achieved due to more realistic assumption concerning the prob-
ability density function of scatterers in the region of interest. The proposed technique takes the
form of a two-step algorithm using the result obtained in the first step as a prior for the second
step.

Final chapter contains summary of our recent experimental and theoretical research on non-
linear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is
developed, and the experimental results from the copper specimens that mimic contact cracks
of different types are presented. Derivation of the theory and selected measurement results are
given in appendix.
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Introduction
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1.1 Outline of the Report

Reliable detecting and sizing natural defects in EB and friction stir welds that will be used for
sealing copper canisters for spent nuclear fuel requires applying advanced ultrasonic imaging
techniques. In this report we are presenting our recent results concerning inspection of copper
canisters for spent nuclear fuel by means of ultrasound.

Our research activity in this project in year 2003/2004 was split in four separate tasks:

• Resolution of phased arrays

• Synthetic aperture imaging

• Nonlinear ultrasonic NDE of copper welds, and

• NDE of grain size in copper

The first task, presented in Chapter 2 is an tutorial on ultrasonic phased arrays. After a short
review of beamforming fundamentals required for proper understanding phased array operation
we analyze factors that determine lateral resolution during ultrasonic imaging of flaws in solids.
We consider such parameters as, array geometry, its center frequency and bandwidth, and the
applied focusing laws. The analysis is performed using extensive simulations of imaging systems.
The study is concluded with a set of practical rules aimed as an aid for operators performing
imaging using phased arrays.

The second task, which is a continuation of our experimental and theoretical research con-
cerning synthetic aperture imaging and its NDE applications is reported in Chapter 3. We
propose an improved synthetic aperture imaging technique with increased lateral resolution
compared with ESAFT that was proposed in our previous report. ESAFT is based on the as-
sumption that probability density of the imaged targets (so called prior) is Gaussian, which is
the simplest case for the analysis. The increase of performance is obtained due to more realistic
assumption concerning the prior. The proposed technique results in a two-step algorithm using
the result obtained in the first step as a prior for the second step. The algorithm has been
developed using simulated data and verified on data acquired using our array system.

The third task, concerning nonlinear ultrasonic NDE of copper welds is reported in Chap-
ter 4. Theoretical and experimental results on nonlinear ultrasonics of unbounded interfaces
are presented. A theoretical model of rough interfaces is developed, and selected results of
the experiments conducted on copper specimens that mimic contact cracks of different types
are presented. Detailed derivation of the theory and selected measurement results are given in
appendix.

The final task, concerned with nondestructive characterization of copper material used for
canisters has not been completed and will be reported in our next report.
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Chapter 2

Array Resolution

by Tadeusz Stepinski
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2.1 Resolution of Phased Arrays

2.1.1 Introduction

Phased arrays are relatively new tool that has been introduced to NDE in the recent decennium.
Recent developments of the ultrasonic phased array hardware for NDE have enabled a wide
use of this technology in industrial applications. One of the most important advantages of
phased arrays is their ability to modify beam patterns in an electronic way, that is, the capacity
of electronic beam steering and focusing without moving the array or changing its physical
components. This feature creates a considerable flexibility that accelerates inspecting parts
with complex geometry and facilitates the use of UT in many practical applications.

Despite the unquestionable advantages, successful application of phased arrays requires more
insight in the mechanism of waves propagation than the conventional ultrasound. Most of the
references available in the field are concerned with medical applications of phased arrays, which
means that they apply to liquid medium only. NDE deals with the detection of hard scatterers
in solids and therefore it has different needs from those related to imaging soft scatterers in
water.

In this report we will analyze factors that determine the lateral and temporal resolution
during ultrasonic imaging of defects in solids using arrays. First, we preset a short review of
beamforming fundamentals required for proper understanding phased array operation. In the
second part, we explain the importance of different array parameters that determine spatial
resolution. We will consider such parameters as, array geometry, its center frequency and band-
width, and the applied focusing laws. The analysis will be performed using extensive simulations
of both artificial and real arrays. Finally, we will formulate a set of practical rules that should
help user to optimize imaging using phased arrays.

2.1.2 Beamforming

A beam is formed using an ultrasonic array by steering its beam pattern in a desired direc-
tion, thus enhancing this particular spatial direction and attenuating the other directions. An
ultrasonic image of the region of interest defined in terms of range (time) and bearing (direc-
tion) can be then composed from different beams. Beamforming that is normally applied both
in the transmission and reception modes, is the process of combining the outputs of a phased
array in such a way as to achieve spatial selectivity. Modern beamforming process is typically
implemented using digital processors and associated electronic hardware, resulting in low main-
tenance costs and high scan rates. Beamforming in the reception mode is a method of observing
signals from a desired direction while attenuating the response of the array to signals from other
directions. Beamforming can permit a multi-dimensional view of a medium using an appropriate
array of sensors, and thus has many applications, including medicine, astronomy and military
devices [1], [2], [3]. Below, we will present an introduction to time-domain beamforming using
a simple 2-dimensional case as an illustration.

Let us consider the reception mode where the reflections from the objects located at the
array’s far field are received. This means that the distance from the array to the objects is
large enough, so that the wave fronts reaching the targets are parallel to the array. Further,
we assume that the received waves take the form of a sinusoidal modulated signal with spatial
information inscribed by the reflections from the objects to be detected. The signal propagates
through the medium with speed c as a plane wave of angular frequency ω and the associated
wave number is k = ω/c. Denote position of the individual element m as rm and define the
orientation of the plane wave using the directional (column) vector u (see Figure 2.1). Then the
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Figure 2.1: Linear array consisting of M elements separated with a distance d along x-axis
receives plane waves incident with an angle ψ.

signal received at mth sensor is

xm(t) = ej(ωt+k·rm·u) = x(t) · e(jkrm) for m = 0, . . . , M-1 (2.1)

where x(t) = ejωt, and rm = rTmu =
∑M−1

i=0 ri · ui is the projection of rm on u, which defines
an additional relative distance that a wave coming from the direction u propagates to reach an
array element located at rm.

If the outputs of M sensors in the array are summed the array will act as a spatial filter that
enhances the direction normal to the array. In such case the array output y(t) will be described
by the beamforming equation (see for [2] details), that is

y(t) = a · X(t) = x(t) · a · ejkr (2.2)

where a denotes a window function, X(t) denotes all sensor outputs, and r denotes respective
phase delays of individual sensors, such that

a = [a0 . . . aM−1] X(t) = [x0(t) . . . xM−1(t)]T = x(t) · ejk·r r = [r0 . . . rM−1]T (2.3)

The window function a defines apodization, i.e., gains applied to individual elements of the array
in order to modify its beam pattern. The main function of the window function is suppressing
side lobes that appear on both sides of the main lobe. This can be observed in Figure 2.2 where
the beam patterns obtained for a rectangular window (no apodization) can be compared with
those obtained for the apodization using Hamming window. The beam patterns presented in
Figure 2.2 are calculated for the 16-, respective 32-element array with point-like elements spaced
with d = 1mm for a continuous wave (CW) with frequency 3MHz in copper (longitudinal wave
velocity 4660m/s, λ = 1.55mm). Those arrays, referred to, respectively as A32EL and A32EL
will be used below in examples illustrating the presented theory. From Figure 2.2 can be seen
that apodization reduces side lobe level at the price of decreased resolution (broader main lobe).

2.1.3 Beam steering

Steering or spatial filtering in a particular direction, u0, is achieved by coherent summation of
the array outputs, X(t), for this direction. This is achieved by introducing time delays varying
linearly with element number so that a planar wave is sent in the desired direction. This leads
to the general beamforming equation

y(t,u0) = x(t) · a · ejk(r−r0) = x(t) · b(ω,u0) (2.4)

where the beam pattern, b(ω,u0) is given by

b(ω,u0) = a · ejk(r−r0) (2.5)
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(a) 16 elements without apodization
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(b) 32 elements without apodization
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(c) 16 elements with apodization
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(d) 32 elements with apodization

Figure 2.2: Theoretical beam patterns in far field for ultrasonic arrays with respective, 16 and
32 elements in copper, respective with and without apodization
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For a linear array consisting of M elements the beamforming equation takes the form

b(ω, ψ0) = a · ejkd·m·sinψ0 (2.6)

where m = [0, 1, . . . ,M − 1]T , d is element spacing (pitch), and ψ0 denotes the desired bearing
(steering direction). Beam steering is illustrated by the beam patterns presented in Figures 2.3
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(a) Array without apodization
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(b) Array with Hamming apodization

Figure 2.3: Theoretical beam patterns in far field for the 32-element ultrasonic array steered
with 20◦ in copper, respective without and with apodization.
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(a) Array without apodization
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(b) Array with Hamming apodization

Figure 2.4: Theoretical beam patterns in far field for the 32-element ultrasonic array steered
with 40◦ in copper, respective without and with apodization.

and 2.4 obtained for a 32-element array, respectively, without apodization and with apodization
using Hamming window. The simulation was performed for CW with frequency 3MHz in copper
for the array A32EL. From Figures 2.3 and 2.4 can be seen that apodization is essential for
the steered beams since it substantially reduces the side lobe level. In Figure 2.4 an additional
lobe appears at the left hand side, which is often encountered for a larger steering angles due
to the discrete nature of phase arrays, this phenomenon will be discussed in more detail in
Section 2.1.5.
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2.1.4 Beam focusing

Focusing at a particular point at a distance f from the array is achieved by coherent summation
of sensor outputs, X(t), so that beams from all elements meet in phase at this point. This is
achieved by introducing time delays compensating the elements distance to this point so that
a cylindrical wave is sent in the desired direction. For focusing a linear array consisting of M
elements in far field the beamforming equation becomes

b(ω, ψ0) ≈ a · ejkd·pm where pm =
d

2f
[0, 1, . . . , (M − 1)2] (2.7)

Radiation emitted by the array A32EL focused at a distance of 60mm for 3MHz CW in copper is
shown in Figure 2.5. Radiation pattern is presented at Figure 2.5a while the beam cross-sections
are shown in Figures 2.5b and 2.5c. From Figure 2.5, it can be seen that the array’s beam has
a well pronounced maximum at the focal distance (60mm) in the direction 0◦.

Simultaneous beamforming and focusing consists in superposing both time delays as it is
illustrated in Fig. 2.6.

2.1.5 Spatial aliasing

Consider the un-steered beam with beam pattern defined by Eq. (2.5), it can be proven (see [4],
[5] for details) that the magnitude of the beam pattern is given by

|b(ω, ψ0)| =
∣∣∣∣sin(πδ ·M · sinψ)

sin(πδ · ψ)

∣∣∣∣ where δ =
df

c
(2.8)

For far field the angle ψ is small and we can use the approximation

|b(ω, ψ0)| ≈
∣∣∣∣sin(πδ ·M · ψ)

sin(πδ · ψ)

∣∣∣∣ (2.9)

Thus Eq. (2.9) attains a maximum when the denominator becomes zero, that is for

πδ · ψ = nπ for n = 0,±1,±2, . . . (2.10)

This means that the beam pattern is periodic, since it has its maximum not only for ψ = 0
but also repeating peaks at ψ = n/δ . The repeating peaks define so called grating lobes that
appear due to the discrete nature of the array. This undesirable effect is known as spatial
aliasing. Position of the grating lobes in space is defined by the relative separation δ, that is,
for a wave with frequency f propagating in a medium characterized by the sound velocity c the
array spacing d can be used to control position of the grating lobes.

Consider δ = 1/2, that is the array spacing equal to half wavelength, d = λ/2, then the first
grating lobes will appear at ±90◦ which is also the maximum steering angle possible. Thus, the
array separation d = λ/2 eliminates spatial aliasing and corresponds to the Nyquist frequency
in signal processing [5], [1]. Spatial aliasing should be taken into account during array design,
especially when the array is to be steered with larger angles (see Figure 2.7 illustrating aliasing
problem). From Figure 2.7, it can be seen that increasing array spacing above λ/2 results in a
grating lobe that appears at an undesired angle < 90◦. Note that amplitude of this lobe cannot
be attenuated by apodization.

2.1.6 Spatial resolution

Spatial resolution of an array is determined by the width of its main lobe given an accepted
level of its side lobes. Consider Eq. (2.9), for small values of ψ it can be approximated by

|b(ω, ψ0)| ≈
∣∣∣∣sin(πδ ·M · ψ)

πδ · ψ

∣∣∣∣ (2.11)
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Radiation for an array focused at 60 mm
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Figure 2.5: Radiation pattern, beam profile at focal distance, and beam intensity on axis for the
array A32EL focused at 60mm in copper
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Figure 2.6: Steering and focusing of a linear array.
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(a) 1mm pitch
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(b) 1.2mm pitch
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(c) 1mm pitch with apodization
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(d) 1.2mm pitch with apodization

Figure 2.7: Theoretical beam patterns in far field for the 32-element ultrasonic array in copper,
respective with pitch 1mm and 1.2mm. Upper row without apodization and lower row with
Hamming apodization.
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which is known as the sinc function of peak value M. Main lobe width is normally defined in
terms of an angle either to the first zero in the beam pattern or to the point where the beam
amplitude drops to a certain level. The 3dB beam width (half-power beam-width )defines an
angle Θ3dB that is used as a measure of spatial resolution.

Θ3dB = 0.89 · arcsin(Mδ)−1 = 0.89 · arcsin(
λ

Md
) (2.12)
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Figure 2.8: Theoretical beam patterns in far field for the 16- respective 32-element ultrasonic
arrays in copper, respective without and with apodization.

Thus, spatial resolution of an array is inverse proportional to the product of its relative
separation δ and the number of its elements (see Figure 2.8). Note that the definition Eq. 2.12
is valid for an array without apodization only. As it was mentioned above, apodization at-
tenuates the side lobes but decreases the resolution, which can be clearly seen in Figure 2.8.
Another drawback of apodization is that it decreases the overall energy emitted by an array
in transmission and decreases signal to noise ratio in reception (since outer array elements are
attenuated).

2.1.7 Finite sized array elements

Arrays A16EL and A32EL used in the above-presented simulations were artificial since they
consisted of point like, infinite small elements. Real arrays have finite sized elements able
to emit and receive a finite amount of energy. Element size is mainly limited by the array
pitch that determines location of grating lobes (see Section 2.1.5). Thus, each array design
results from a compromise between the amount of energy emitted/received by its individual
elements, and the desired spatial characteristics determining array’s spatial resolution as well
as the position of grating lobes. Finite sized elements introduce diffraction effects to the array’s
spatial characteristics that can be clearly observed in the near field.

Diffraction effects result from the fact that by virtue of Huygens’ principle, a finite sized
acoustic transducer emits an infinite number of spherical waves originating at all points at its
surface. The field observed at each point of the surrounding space is a result of interference
of those waves. The reverse is observed during reception, the electrical signal observed at the
transducer output is produced as an integral of the acoustical field incident at all points of the
transducer’s surface. The result of the interference is well pronounced close to the transducer (in
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Figure 2.9: Beam intensity on axis of 32-element ultrasonic array A32FEL in copper, respective
unfocused and focused (note different scales on z-axes).
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(c) Distance 60mm

Figure 2.10: Beam cross section for the array A32FEL focused at 60mm in copper, at a distance
respective 40, 100 and 60mm.
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(b) Distance 600mm
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Figure 2.11: Beam cross section for the unfocused array A32FEL in copper, at a distance,
respective 60, 250 and 600mm (note different scales on x-axes).
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(a) Without apodization
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Figure 2.12: Beam cross section at a distance 60mm for the for the array A32FEL focused
at 60mm in copper, respective without and with apodization (note slightly different scales on
y-axes).
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Figure 2.13: Beam cross section at a distance 60mm for the for the array A32FEL focused at
60mm and steered with 10◦ in copper, respective without and with apodization (note slightly
different scales on y-axes).
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(a) Without apodization
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(b) With apodization

Figure 2.14: Beam cross section at a distance 60mm for the for the array A32FEL focused at
70mm and steered with 20◦ in copper, respective without and with apodization (note slightly
different scales on y-axes).

near field) where the difference in waves’ times of flight results in considerable phase differences.
In far field the phase differences become less significant and the spatial characteristics tend to
those for point like elements.

Below we present a number of simulations illustrating the diffraction effects introduced by
finite sized array elements. The simulations were performed using the Simulation Tool DREAM
[6] for a realistic version of array A32EL. The array referred to as A32FEL had 32 elements
with width 0.95mm, array pitch was 1mm. The simulations were made for longitudinal waves in
copper for a single continuous frequency 3MHz. Note that the simulations show beam patterns
obtained by applying respective focusing laws in transmission only, the effects of the focusing
laws in reception are not included.

Beam intensity on z-axis for an unfocused A32FEL and the same array focused at 60mm
can be compared in Figure 2.9; it can be clearly seen that the focal law used in transmission
shifts the beam maximum from approx. 210mm to 55mm. The reason that the real the focal
depth is somewhat lower than the nominal 60mm used in the focusing law is the finite element
size, for point sources the same focusing law results in the correct focal depth (cf. Figure 2.5).
The respective cross beam sections for the focused and unfocused A32FEL are presented at
Figure 2.10 and Figure 2.11, respectively.

The effects of apodization are illustrated by Figure 2.12 showing beam profile of the focused
A32FEL. The same effect can be observed in Figures 2.13 and 2.14 for the steered and focused
A32FEL.

Summarizing the comparison of the above-presented simulations, we can see differences be-
tween the arrays with point and finite sized elements in the near field where the finite size
contributes to diffraction, while in the far field the respective beam patterns are the same.

2.1.8 Transducer bandwidth

The above presented results were calculated for transducers excited with continuous wave with
single frequency, which is a standard way of presenting beam patterns used in literature. Real
transducers, however, have certain frequency response (bandwidth) that depends on their elec-
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Figure 2.15: Pulses used for the illustration of the influence of pulse bandwidth on array beam
pattern.

tromechanical characteristics. Transducer bandwidth is an important factor that influences its
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(a) Excitation with pulse 1
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(b) Excitation with pulse 2
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(c) Excitation with pulse 3

Figure 2.16: Beam cross section at a distance 60mm for the array A32FEL focused at 60mm in
copper excited using pulses, respective 1, 2 and 3.

beam pattern. A wide band excitation reduces the interference effects that are well pronounced
especially in the transducer’s near field.

Generally, the wider bandwidth the smoother are the beam patterns — the side lobes become
less pronounced and the oscillations on the axis in the near field are smoothed. This can be
observed in Figures 2.16 and 2.17 where the beam patterns are presented for three different
exciting pulses shown in Figure 2.15. The pulses are artificially generated 3MHz sine wave with
envelopes of different lengths and bandwidths. The beam cross sections at focal distance 60mm
obtained for the A32FEL excited with the respective pulses are presented at Figure 2.16. It is
apparent that the shortest pulse (Pulse 3, which has the largest bandwidth) results in a very
smooth beam cross section. Similar effect can be observed in Figure 2.17 showing the respective
beam profile on the axis.

2.1.9 Beamformers

Beamforming in transmission is rather simple for practical realization, array elements are ex-
cited by the pulses that are generated in different time instances to form a desired wavefront.
Modern digital electronics running with high clock frequency rates enables achieving sufficient
time resolution in the range of nanoseconds. However, beamforming in the reception is far more
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(b) Excitation with pulse 2
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Figure 2.17: Beam profile on axis for the array A32FEL focused at 60mm in copper excited
using pulses, respective 1, 2 and 3.

Figure 2.18: A time domain delay-and-sum beamformer.
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complicated since the signals received by the array elements have to be delayed to enable co-
herent summation according to the scheme shown in Figure 2.18. The delay elements denoted
by τ1, . . . , τN delay the received signals, their amplitude is then modified by the apodization
coefficients a1, . . . , aN and a coherent sum is produced in the end. Modern beamformers employ
A/D converters for converting signals received by the array elements into a digital form. The
A/D converters have to be characterized both by a high sampling frequency (tenths of MHz)
and by high resolution (10 bits at least). In many applications low power consumption can also
be an important requirement. However, the most difficult issue is providing sufficient resolution
for the discrete time delay elements (denoted by τ1, . . . , τN in Figure 2.18). Suppose that the
sampling frequency fs is 10 times higher that the transducer’s center frequency, fs = 10f0.
Typical transducer may have 100% bandwidth, which means it would receive signals with the
highest frequency 1.5f0, which according to Nyquist theorem would require sampling frequency
3f0. Thus, from the signal processing point of view the signal would be over-sampled, however,
the resolution in delay measured in degrees would be only 360◦/10 = 36◦. Increasing sampling
frequency is expensive and unjustified since the signal bandwidth is limited by the transducer
(array).

One solution to this problem consists in using some type of interpolation filter, that is, an
artificial technique that involves increasing the effective sampling frequency by an integer factor.
This can be relatively easily done for the band-limited signals received by the array elements.

Another solution, often used in medical instruments employs quadrature demodulation, con-
sisting in shifting the signal of interest to a lower frequency band, before sampling. The signifi-
cant decrease in frequency obtained in this way releases sampling constraints and enables using
relatively high sampling rates.

2.1.10 Conclusions

The main limitations of all beamforming systems are the restrictions imposed by the medium,
which means that the wavelength and frequency feasible for a given medium will dictate the
array size and technology. Transmitted and received waveforms are spread by the medium and
volume scatterers, introducing unexpected errors and noise. Generally, higher frequency results
in higher resolution but also imposes harder limitations on array geometry (pitch).

A detailed study of spatial aliasing indicates that it can be completely avoided by setting the
array pitch equal to or less than half the wavelength. If however, such an inter-element spacing
is not possible, the steering angle at which spatial aliasing occurs can be calculated.

The spatial resolution of a beamformer can be determined by measuring the difference be-
tween the -3dB power levels in the main lobe. Our study revealed that the spatial resolution
is directly proportional to the product of number of elements and their spacing (cf. Eq. 2.12).
Using the calculated beam widths, it is possible to determine the number of beams required to
cover a two-dimensional input space (cf. Eq. 2.10).

Side lobe level is also an important factor that limits the resolution. Side lobe level can be
reduced by using apodization (windowing function). The DFT (discrete Fourier transform) can
be used to examine the characteristics of various window functions and the effects they have on
the beam power plots. However, a narrow window function increases the main lobe width and
thus decreases the resolution.

Finally, note that the above presented beamforming formulae yield correct results only in far
field. In the near field the use of numerical simulations taking into account diffraction effects is
recommended.
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Chapter 3

Iterative Approach to ESAFT

by Erik Wennerström
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3.1 Introduction

Extended synthetic aperture focusing technique (ESAFT) that was proposed in the previous
phase of this project [1] will be further developed and verified in this chapter. Recently, it
has been shown that this technique is superior both to conventional SAFT and phased array
techniques concerning lateral resolution [2, 3]. Now, we propose an improved synthetic aperture
imaging technique that will be characterized by the increased lateral resolution compared with
ESAFT. ESAFT is based on the assumption that probability density of the imaged targets (so
called prior) is Gaussian, which is the simplest case for the analysis. The increase of performance
is expected due to the efficient use of the prior information available in the ultrasonic imaging
system. A more realistic assumption concerning prior probability density will be investigated,
resulting in an iterative algorithm using the result obtained in the first step as a prior for the
second step. The algorithm will be developed using simulated data and verified on data acquired
using our array system.

The second section of this chapter, Section 3.3, reports an implementation of the ESAFT
method to 3D ultrasonic data. It verifies the ESAFT method on real data and shows how the
ESAFT can be used to improve resolution of ultrasonic images collected with a real measurement
system.

3.2 Iterative approach to the ESAFT algorithm

The model-based statistical approach to ultrasonic synthetic aperture imaging presented in our
recent report [1] uses a discrete linear model of the imaging system expressed with matrix
notation. Diffraction effects introduced by ultrasonic array and noise present in the acquired
data are included in the linear model and a reconstruction filter is designed producing the
best linear estimate of the original image. Covariance matrices of the measurement noise and
the reconstructed image are parameters in our filter. The assumptions made are usually quite
conservative, assuming that little is known about the image. Below, in the first section of
this chapter, Section 3.2, an extension to this method is proposed. In the proposed method,
the initial parameter values are refined, step by step, based on the results from the previous
iterations. It is shown that this approach offers some improvement over the standard ESAFT
algorithm.

3.2.1 Discrete linear model of the imaging system

The ESAFT algorithm is based on a linear convolution model of the imaging system (see [2] for
details). The model includes spatial and electrical impulse responses of the aperture and targets
in the image. The targets can be described in a discrete form with an object function o(x, z). It
is defined as being zero where there is no target and equal to the target’s reflectivity at points
r(x, z) where a target is located

o(x, z) �
{
se for x, z ∈ T
0 otherwise.

(3.1)

where T is the set of points in the xz-plane where the targets are located. The object
function o(x, z) corresponding to certain region of interest (ROI) can be discretized by taking
its values at the sampling points, to form a matrix O.

An A-scan measurement from a single point target is a convolution of three components: The
double path spatial impulse response (SIR) from the source to the target, the electrical impulse
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response, and the excitation signal. A complete A-scan model takes the form of a sum of such
convolutions over all targets in the image. Thus, a discrete version of an A-scan measurement
vector can be expressed as

yn =
n+L∑

ñ=n−L
hsir(ñ, n)oñ + en (3.2)

where en is the measurement noise, vector oñ denotes column ñ in O, and vector hsir(ñ, n)
contains the sampled SIR at a distance d(ñ, n) = |xñ − xn| (which is the horizontal distance
between the observation point and the source).

Consider measurements consisting of M A-scans, each of length N . Let us form the mea-
surement vector y by concatenating all A-scans into a single M ∗N elements vector. The image
vector o is formed similarly by vectorizing O. A B-scan model can then be expressed in compact
matrix notation as

y = Po + e (3.3)

where e is the noise and P is a MN ×MN block diagonal transformation matrix, including
spatial and electrical impulse responses introduced by the measurement system. See [4, 5] for
more information on the impulse responses and details of this model.

3.2.2 The inverse filter, minimization problem

The approach proposed in [2] consist in finding ô from y using a reconstruction filter K that
minimizes the mean square error I = E{‖o − Ky‖2}, i.e., the filter is found by minimizing

arg min I
K

(3.4)

As shown in previous works, [1, 4] the linear reconstruction filter that minimizes I can be
expressed in an analytical form

K = (Coo
−1 + PTCee

−1P)−1PTCee
−1 (3.5)

where Coo is the covariance matrix of the image vector o and Cee is the covariance matrix of
the noise e. Under the assumptions that o and e are Gaussian the resulting estimate ô = Ky is
equal to the maximum a postiori estimate of o, in other words the most probable o, given the
measurements y. Assuming that e and o are also Gaussian, the estimate becomes

arg max
o

p(o|y) = arg min
o

{1
2
(y − Po)TCee

−1(y − Po) +
1
2
oTCoo

−1o} = arg min
o

J (3.6)

In solving Eqs 3.5 and 3.6, the covariance matrix Coo can be viewed as containing our prior
knowledge of o. It must be set to a numerical value before solving the equation. A common as-
sumption on Coo is that it is diagonal, with all elements on the diagonal equal. This assumption
means that all elements in the image o are uncorrelated from each other, and the probability of
a value deviating from zero is equally large for all image elements.

Here, we propose a way of extending the minimization problem by taking into account the
second unknown parameter, a vector containing all the diagonal elements in Coo. More details
on this approach can be found in [6]. Let

Coo =

⎛
⎜⎜⎜⎜⎝

δ1 0 . . . 0

0
. . .

...
0 δM

⎞
⎟⎟⎟⎟⎠ (3.7)
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Now, consider the minimization of Eq. 3.6 with respect to both o and Coo. It has to be
done in several steps, first find

ô1 = arg max
o

J |Coo=λoI (3.8)

using Eq. 3.6 above. The covariance matrix Coo is in this step is set to the usual prior, i.e. the
unit matrix multipled by a constant.

Secondly, minimize J again with respect to Coo

Coo1 = arg max
Coo

J |o=ô1 (3.9)

that is, when o = ô, find the Coo that minimizes J . The resulting estimate of Coo is then used
to find a new estimate of o, and so forth. This process is repeated as long as J converges.

The algorithm can be summarized in steps:

1. Initialize i := 1 and Coo0 = λoI

2. Find the i:th estimate of the image, using the i-1:st estimate of the covariance matrix,
Eq. 3.10.

3. Find the i:th estimate of the covariance matrix, using the estimate of the image from the
last step, Eq. 3.11.

4. Set i:=i+1

5. Repeat step 2, 3 and 4 as long as the error J decreases sufficiently fast.

ôi = arg max
o

J |Coo=Cooi−1
(3.10)

Cooi = arg max
Coo

J |o=ôi (3.11)

To eliminate trivial solutions to Eqs 3.10 and 3.11 we have to impose constraints on Coo.
Without such constraints, various diagonal elements δi in Coo could quickly grow out of pro-
portion or quickly diminish.

The first constraint results from the condition that the total energy in the image should
not change. Initial assessments of the measurement noise and the image energy are made when
solving Eq. 3.10 and those should hold in each step of the iterated minimization.

The second constraint takes the form of a lower limit for δi = 0, indeed if δi tended to 0 it
would be equivalent to assuming that there is nothing in the corresponding area in the image.
This would not be a sensible assumption as the method should be open to the possibility of a
target anywhere in the image.

The above presented upper and lower constrains on δi, can be expressed in the following
form

C1(o,Coo) =
∑
m

δ2m −K1 = 0 (3.12)

C2(o,Coo) =
∑
m

1
δ2m

−K2 = 0 (3.13)

where K1 and K2 are constants. K1 can be set to λoN , and K2 can be seen as a user parameter.
If K2 is chosen large, all δi are allowed to vary with less restrictions.
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3.2.3 Minimization with constraints

To minimize the criterion 3.6 under the constraints 3.12 and 3.13, we minimize the Lagrangian
(see [7] for details)

L = J + λ1C1 + λ2C2 (3.14)

Derivation of Eq. 3.14 with respect to o, and setting Coo = λoI yields the same expression
for ô as the filter, Eq. 3.5:

ô = (Coo
−1 + PTCee

−1P)−1PTCee
−1y (3.15)

In the second optimization step we use the ô found in the previous step as an estimate of o.
Minimizing L in this step is not as trivial as before. Let us find

dL

dδ2m
|o=ô =

dL

dδ2m

[∑
m

ô2m
δ2m

+ λ1

(∑
m

δ2m −K1

)
+ λ2

(∑
m

1
δ2m

−K2

)]
(3.16)

=
1
2

(
− ô

2
m

δ4m

)
+ λ1(1) + λ2

(
− 1
δ4m

)
(3.17)

Solving Eq. 3.17 for δ2m yields

δ2m =

√
λ2 + 1

2 ô
2
m

λ1
(3.18)

and inserting in the constraints Eq. 3.12 and Eq. 3.13 results in

K1 =
∑
m

√
λ2 + 1

2 ô
2
m

λ1
(3.19)

K2 =
∑
m

√
λ1

λ2 + 1
2 ô

2
m

(3.20)

This is a system of two non-linear equations with two unknowns that are difficult to solve
analytically; the equations have to be solved numerically. When λ1,2 has been found, all δm
can readily be calculated from Eq. 3.18. These steps can now be iterated until L in Eq. 3.14
converges. Below, this algorithm will be referred to as iterated ESAFT.

Note that if λ2 is close to zero, which may occur when K2 is large, then Eq. 3.18 reduces to
δ2m ≈ αôm; the estimated variances for the next step will simply be the estimated image from
the recent step, scaled by some constant α.

3.2.4 Experimental setup

The objective of the measurements presented here was to evaluate performance of the proposed
method. The ability to resolve two closely spaced targets was used as the performance measure.
Ultrasonic data was collected using the ALLIN array system with a 3MHz, 64-element array.
Two 0.3 mm thick steel wires, separated by 2 mm and submersed in water were used as targets.
B-scans were gathered along a line perpendicular to the wires.
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D = 2 mm

Transducer array

Z=120 mm

d = 0.3 mm

Figure 3.1: Measurement setup. Two closely spaced wires in water.

The array consists of 64 rectangular elements spaced at 1mm. The elements that take the
form of 1mm strips can be easily bridged to form larger apertures. If all elements in an aperture
are fired simultaneously, they act like a rectangular unfocused source of variable size. The
number of 1mm wide array elements used in the experiments (and thus the transducer width in
mm) was, respectively, 1, 4, 8 and 16mm. The distance between targets and the aperture was
constant 120mm as shown in Figure 3.1. B-scans were acquired using scanner’s spatial sampling
0.5 mm.

3.2.5 Experimental results

In this section, the results obtained for the above listed transducer sizes (aperture widths) are
presented in Figures 3.2 to 3.5. B-scan images of raw data, the ESAFT results and the iterated
ESAFT are presented in the upper rows. In the lower rows B-scan profiles obtained from the
ESAFT and the iterated ESAFT are shown besides the plot of the optimizing criterion.
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Figure 3.2: Measured and processed data for 1 mm transducer.
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Figure 3.3: Measured and processed data for 4 mm transducer.
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Figure 3.4: Measured and processed data for 8 mm transducer.
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Figure 3.5: Measured and processed data for 16 mm transducer.
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Summary

To summarize the above presented results , we show results for the 8 mm (8x1mm) aperture in
Figures 3.6 and 3.7. Please recall that the larger aperture the more its spatial impulse response
(SIR) deviates from the ideal SIR of a point like transducer. In consequence, when the ultrasonic
measurement performed using a large aperture is processed using ordinary SAFT a satisfactory
spatial resolution is difficult to achieve [1]. In this context, 8 mm aperture of a 3MHz transducer
in water is fairly large for targets at a distance 120mm.

From the plots in Figure 3.6 can be seen that after the first iteration of the proposed algorithm
the two wires have not been separated, but after further steps they can clearly be distinguished.
In this example λ0 in step1 was set to 1e−4. When a different start value (λ0 = 1e−6) was used
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Figure 3.6: Profile plots obtained for 8 mm transducer. After one iteration the two wires cannot
be distinguished

the wires could be distinguished after the original single-step ESAFT approach, see Figure 3.7.
Please note however, the higher noise floor and less distinct peaks corresponding to the wires
comparing to the iterative SAFT result in Figure 3.6f. This illustrates the performance of the
the iterative approach.

3.2.6 Conclusions

Even though the improvement seen in the previous section for the iterative ESAFT was modest,
this approach has its practical advantages. Note that the original ESAFT method is essentially
one single iteration of the iterative version, based on more or less correct assumptions concerning
the covariances of the noise e and the image o. It is not expected (even though not fully
tested in this report) that a defect or another target that could not be detected at all with the
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Figure 3.7: Th result obtained for 8 mm transducer, without the iterative approach for λ0 =
1e−6.

original ESAFT would be found after several iterations. However, since the detected targets
are investigated more closely in several steps the result of defect classification should be more
accurate.

From a user perspective both methods are similar — they require input estimates (initial)
of variances for the noise e and the image o, or at least a ratio between them. The iterative
variant also requires an additional input — the ratio between K1 and K2. This might seem
as an increase in complexity, but it is actually the other way around. Performance of the
original ESAFT depends heavily on the initial estimates of variances Coo and Cee. The images
presented here were created after testing many reasonable values, looking at the results and
selecting the most suitable candidate. The iterative ESAFT repeats its steps until the error
criterion L converges, which makes it less dependent on the initial variances. Thus, it is much
more suited for the automated defect detection/classification than the original ESAFT.

3.3 Synthetic Aperture Imaging for 3-Dimensional Data

3.3.1 Introduction

Until now, the ESAFT algorithm, which represents the family of synthetic aperture imaging
(SAI) techniques has been applied to 2D ultrasonic data (B-scans). In this section we demon-
strate the improvement that can be achieved due to the application of ESAFT to 3D ultrasonic
data obtained from a phased array system. If a planar phased array is applied for a contact
inspection of a solid specimen electronic focusing can be performed in one dimension only (along
the array). In the other dimension the array is unfocused, which results in elliptical responses
to small scatterers in the acquired C-scans. If a 3D ultrasonic data is available it can be post-
processed using SAFT and the elliptical responses can, at least in theory, be converted to circular
ones, resulting in an improved overall resolution.

In this Section, we show potential of this technique using both simulated and real ultrasonic
data. In Section 3.3.4 we compare the performance of ESAFT to that of the classical SAFT
algorithm [8].

3.3.2 3D data and focusing

Ultrasonic data analyzed in this section was acquired using the array system from Technology
Design, UK, available at SKB’s Canister Lab in Oskarshamn. Simulations of the measurement
setup used in the SKB’s Canister Lab were also performed to evaluate the method for a wider
range of parameters than those available in the measured data.

The ultrasonic measurement system was used to acquire complete 3D ultrasonic data of the
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inspected copper specimen. Movement and focusing along one of the axes was done purely
electronically. More details of the system can be found in Section 3.3.3. The geometry of A-
and B-scans in the measurement is illustrated by Figure 3.8. In the sequel a 2D matrix of data
in the Y Z - plane will be referred to as a B-scan.

Transducer array

One A-scan

One B-scan

The full data cube

Mechanical motion,

no focusing along this axis

Electrical "motion" and

focusing along this axis

Y

Y

X

Z

Figure 3.8: Geometry of A- and B-scan.

The ESAFT algorithm can be applied to such 3D ultrasonic data in essentially three different
ways:

Normal 2D. Each B-scan is treated separately. Information found in one B-scan is not used
when focusing others. (See section 3.3.3 for more on this assumption and its validity.)
Focusing is achieved in one direction only.

2.5D focusing. An extension of the previous approach. Focusing is performed independently
in both directions, one after another. The same assumptions as above are made.

Full 3D focusing. All the data in the complete data-cube is treated at once, in one single
minimization problem. This includes very heavy computations and large amounts of RAM
memory are required.

In the experiments presented here, the first approach (Normal 2D) has been chosen. Focusing
along the X-axis was performed by the electronically by the instrument, so out task has been
concerned with focusing in the other direction. Recently, some preliminary work and simulations
have been done on the 3D approach, the results are promising, but they are not presented here.

3.3.3 Experiment

Measurement setup

The measurement system was equipped with a phased array consisting of 80 elements. A 32-
element aperture was used at a time, and focusing was performed along the X-axis (parallel to
the length of the array) both in transmission and using a standard delay-and-sum operations
in the receiving electronics. Electronic scanning was performed by shifting the aperture, one
element at a time. Along the Y -axis, the array was moved mechanically by stepper motors. No
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focusing was performed along this mechanical axis. Figure 3.9 shows details of the acquisition
system.

0.9 mm

12 mm

80 elements total

32 used at a time

y

x

Electric

movement

Mechanical

movement

(a) Array geometry.

Y

Z
Copper block

Array in contact

with specimen

Flat bottom drilled hole

Distance to

target: 

z=60 mm

Simulated:

z=40, 60 and 80mm

(b) Measurement setup.

Figure 3.9: Setup used in measurements and simulations.

Since focusing was only done in one direction, along the X-axis, the response of a point
source in a C-scan took the form of an ellipse, with its longer axis in the Y -direction. An
example of this can be seen in Figure 3.19.

Equal spatial sampling distance of 1mm was used in both Y - and X-direction for acquired
and simulated ultrasonic data and the array was focused at 60mm. The A-scans were digitized
using sampling frequency 50MHz. A block of copper with a small bottom drilled hole at a depth
of 60mm from the upper surface was used as a target.

Simulated data

Three sets of simulated data were generated, for point targets at z =40, 60 and 80mm, re-
spectively. The point targets can approximate the small hole used as scatterer in the case of
measured data. All three data sets were generated for the same focusing law (60mm), so two of
the simulated targets were out of focus. Sampling rate and spatial sampling grid were the same
as in the real case, described above. All simulations were done using the DREAM toolbox. (See
[9] and http://www.signal.uu.se/Toolbox/dream/ for more information on the DREAM toolbox).
For every set of simulated data, three levels of white additive Gaussian noise were added. The
noise had an energy that resulted in the SNR of 10, 20 and 30 dB, respectively.

ESAFT

Both simulated and measured data was focused along the Y -axis using ESAFT. In this approach,
every B-scan (a slice of the data cube in the Y Z plane) is treated separately. Information found
in nearby B-scans is not used for focusing. Every B-scan was treated as if it was independent
from the others, which is a rather rough approximation. In the region close to where the array is
focused it is valid, as most of the energy from a small scatterer will go into one B-scan only. At
other ranges, the image will be smeared, and the energy will leak into many adjacent B-scans.
So, outside the focal zone along the Z-axis, we can expect a somewhat reduced performance
from the ESAFT algorithm as well.
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3.3.4 Results

Simulations

Parameters of the simulated system are shown in Figure 3.9. The results from simulations are
presented in Figures 3.10 through 3.18. Every figure has three subfigures. The first subfigure
shows an unprocessed C-scan. It is composed of the maximum value of every A-scan, in an
depth interval close to the target. The second subfigure is a C-scan obtained from the ESAFT
processed image. The last subfigure shows profiles of the two C-scans along the Y -axis. Each
point of the profiles is constructed by taking the maximum values of an entire row of the C-scan.

Note loss of focus in the unprocessed C-scans outside the focal zone. Sidelobes in the X-
direction become apparent in the images from targets closer to the transducer than the focal
distance (figure 3.10). The targets beyond the focal distance become large and blurred (fig-
ure 3.16). As discussed in section 3.3.3, ESAFT is less sensitive to distance than the delay-and-
sum technique, but some loss of resolution is also expected.

The simulated results for all distances have a few things in common. Naturally, the resolution
is only improved in the Y -direction, as ESAFT has only been applied along this axis. The
improvement is well pronounced, even though it varies with the distance. For targets close to
the focal distance, the elliptic original C-scan is replaced by a much more point-like image.
Further from the focal distance, the improvement is not as dramatic, but evident.

Relatively high noise level that can be observed in the ESAFT C-scans is the price paid
for the improved resolution. ESAFT is a spatio-temporal filter that compensates (deconvolves)
transducer’s diffraction effects by amplifying higher frequencies and thus also a high frequency
noise.
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Figure 3.10: Simulated data. SNR 30dB, z=40 mm.

32



x [mm]

y 
[m

m
]

−5 0 5

−10

−5

0

5

10

(a) Original C-scan

x [mm]
y 

[m
m

]
−5 0 5

−10

−5

0

5

10

(b) ESAFT pro-
cessed C-scan

−10 −5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y [mm]

(c) Profile plots. Unprocessed (blue)
and ESAFT processed (red).

Figure 3.11: Simulated data. SNR 20dB, z=40 mm.
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Figure 3.12: Simulated data. SNR 10dB, z=40 mm.
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Figure 3.13: Simulated data. SNR 30dB, z=60 mm.
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Figure 3.14: Simulated data. SNR 20dB, z=60 mm.
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Figure 3.15: Simulated data. SNR 10dB, z=60 mm.
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Figure 3.16: Simulated data. SNR 30dB, z=80 mm.
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Figure 3.17: Simulated data. SNR 20dB, z=80 mm.
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Figure 3.18: Simulated data. SNR 10dB, z=80 mm.

Measured data

The results of ESAFT processing of measured data are shown in Figure 3.19. The respective
images presented in this figure were obtained in the same way as those in Section 3.3.4. It is
apparent that the original C-scan is shaped like an ellipse instead of a circle, as the array is
electrically focused in one direction only. After the ESAFT processing the target becomes much
smaller and circular, which agrees well with the simulations in Section 3.3.4 above. A substantial
improvement is also seen in the respective B-scans (Figure 3.19b and d). The improvement could
be even better pronounced if the scanner step in the Y -direction was smaller.
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Figure 3.19: Measured data. Single point-like target.

SAFT

As discussed in section 3.3.1 focusing with the SAFT algorithm is included for comparison.
To work properly, SAFT requires small aperture emitting approximately spherical/cylindrical
wavefront.

Measured data form the Section 3.3.4 was used here. The aperture used in the measurements
was fairly large (12 mm in the direction that is focused) so it emitted waves that were far from
spherical. Therefore, the SAFT method was expected to perform quite poorly and is included
here for comparison only. From Figure 3.3.4 can be seen that no real improvement can be
observed after processing with this method.
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Figure 3.20: Measured data. Single point-like target.

3.4 Conclusions

An iterative ESAFT algorithm presented in the first part of this section has been tested using
both simulated and real ultrasonic data. Application of this algorithm results in a slightely
improved lateral resolution comparing with the ordinary ESAFT. However, its main advantage
seems to be relative insensitivity to the initial parameters that have to be provided by the
operator.

A successive application of ESAFT to the 3D ultrasonic data obtained for a phased array
system has been demonstrated using both simulated and real data. Substantial resolution im-
provement was observed — elliptical responses to small scatterers produced by the array system
focused in one dimension only took the form of smaller circular responses after the ESAFT
processing.

Classical SAFT was applied to the real 3D data used for ESAFT demonstration, no improve-
ments in resolution were noticed as it had been expected.
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Chapter 4

Nonlinear Ultrasonic NDE of Welds
in Copper

by Ping Wu
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4.1 Introduction

Friction stir welding (FSW), a novel welding method invented and patented by TWI [1], has
been chosen as an alternative method for welding copper canister lids in parallel to electron
beam welding, and tested on a full scale in the Canister Laboratory in Oskarshamn [2, 3].

The FSW has shown a few distinctive advantages, e.g., the welds have no porosity, no fume,
no spatter, low shrinkage, low distortion even when the welds are long, and excellent mechanical
properties as proven by fatigue, tensile and bend tests [4]. However, defects of different kinds in
friction stir welds have also been observed [5]

• Lack of penetration;

• Wormholes;

• Kissing bonds;

• Faying surface defects;

• Root toe defects (defects at the toe or root of a weld)

Kissing bonds are a special type of lack-of-penetration defects in friction stir welds (FSWs)
that are characterized by crack-type with contacting faces that are weakly or incompletely
bonded. Since the welds are tightly closed by compressive residual stress [6], they are difficult to
detect by means of linear ultrasonic inspection. Finding some effective NDE methods to inspect
FSWs and to detect kissing bonds, thus, has become one of the goals in our research tasks since
2002. Our recent research on nonlinear ultrasonic has shown that nonlinear ultrasound can be
a potential means to detect kissing bonds.

In addition to kissing bonds in FSWs, cracks and fatigue damages in materials and debonds
in adhesive joints are similar defects with contacting faces. These defects often develop fast
under periodical loading, and thus they are among the most dangerous defects. To cope with
such defects, a variety of nonlinear ultrasonic techniques have been developed in the last decade.
One of the common features in all the techniques is the use of power ultrasound to excite the
defects so that the nonlinear behaviors of defects are present. These nonlinear behaviors have
been exploited to detect such defects. These techniques can be classified in terms of wave
generation and detection into two categories:

(1) propagation methods [7–20]

(2) modulation techniques [21–33]

In the propagation methods, a transmitter and a receiver are used separately. Usually, the
former is a narrow-band transducer with a low center frequency (e.g., 0.5 MHz), and the latter is
a broad-band transducer with a high center frequency (e.g., 1 MHz). A high power ultrasound
generated by the transmitter is sent into the inspected material, and as it propagates in the
material, it interacts with the defects in a nonlinear manner (e.g., in terms of clapping or kissing
mechanism [17]). Then the ultrasound carrying the information on the nonlinear interaction is
received by a high frequency transducer. The nonlinearity (the 2nd harmonic in many cases) is
extracted commonly from the spectrum of the received signal, and used to diagnose defects. In
the propagation methods, the ultrasound used can be either in through-transmission mode or in
reflection mode. Since the nonlinearity carried by the propagating wave contains both the defect
nonlinearity of our interest and the propagation nonlinearity (caused by imperfection of atomic
lattices and not being of our interest) as well, the defect nonlinearity will be disturbed and can
be too small to detect when the defects are small. Thus, the propagation methods are more
adequate for inspecting large unbounded interfaces. This could be seen from the experimental
results in the previous report and in this chapter.
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In our previous report [6], it has been shown that the inspection of the copper specimens with
the joints (bonded by hot isostatic pressing method) using the propagation method could not
give any clear indications of defects, whereas the linear ultrasonic inspection (using pulse-echo
method) indicated some defects in the joints. A possible reason for this is that the interface
nonlinearity from the defects is not significantly larger than the propagation nonlinearity because
the contacting areas of the defect’s faces are small. As will be seen below in the this chapter,
when the unbounded interfaces in the copper specimens are large, their ultrasonic nonlinearities
are pronounced and thus become easy to detect.

In the modulation techniques, two transmitters are used, one generating a pumping wave with
low frequency and high power, and the other producing a probing wave with high frequency and
low amplitude. The probing wave is modulated by the pumping wave at defects, resulting in a
modulated wave that is nonlinear, showing sidebands in the frequency spectrum. The modulated
wave is then detected by a high frequency transducer. Since the generation of pumping and
probing waves and the detection of modulated wave can be conducted using different setups,
various modulation techniques have been developed, and they are relatively easy to modify to be
adaptive to different circumstances. Since the high-frequency probing wave beam generated by
the transducer can be focused and narrow, the local interaction of ultrasound with defects may
become easier to capture using the narrow beam and, thus, the detection of defects could become
more effective. Thus, the modulation methods are suited for detecting both large interfaces and
local defects as well with appropriate setups. However, the methods are more complicated and
more expensive to implement because they demand more complex equipment.

The research conducted here includes experimental and theoretical study of nonlinear ultra-
sonics of unbounded interfaces (mimicking kissing bonds) based on the ultrasonic propagation
method, and an extensive literature investigation of nonlinear modulation techniques. Specifi-
cally, a few copper specimens that contain unbounded interfaces mimicking the kissing bonds
were manufactured, and inspected using an ultrasonic propagation method and a material test
system (INSTRON 8500). Theoretical study of the nonlinear responses of unbounded interfaces
to ultrasound have been conducted. The interface is modeled as one (called rough interface)
that consists of two rough surfaces. A theory is proposed for coping with ultrasonic response
of such an rough interface. Two new setups for ultrasonic modulation techniques are under
consideration that could be appropriate for detecting kissing bonds, and intended to use in the
future work.

In this chapter, the theoretical and experimental results of our research on nonlinear ultra-
sonics of unbounded interfaces are presented. The detailed derivation of the theory is given in
appendix 4.A. The simulations using the theory are presented in a intuitive manner in Sec-
tion 4.2, and the measurements made on copper specimens are discussed in Section 4.3.

4.2 Simulations of Ultrasonic Nonlinearity of Unbounded Inter-
faces

A kissing bond or a contacting crack is a defect characterized by an interface of two rough
surfaces that are unbounded but pressed into contact by some compressive stress. Detection of
such defects using ultrasound is the purpose of the research. In this section, the simulations
based on our theory (appendix 4.A) are presented in order to find out the characters of ultrasonic
response of such an interface and to utilize to interpret measurement results.

An interface is a boundary separating two media and consists of two surfaces of the media.
When the two surfaces are ’welded’ together, they always move together when they are insonified
by ultrasound. Such an interface is called perfect interface that possesses linear elasticity is not
of the interest.
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The interfaces of our interest are those that consist of two surfaces unbounded but in con-
tact. Surfaces found in nature are observed to be rough in the microscopic scale. However,
smooth surfaces can be good approximations of surfaces with small roughness under certain
circumstances (e.g., when ultrasonic wave length is much larger than the roughness). When an
interface is made up two smooth surfaces in contact (in an ideal case) (Fig. 4.1), it is called
unbounded smooth interface. When an interface consisting of two rough surfaces in contact (in
the real situation) (Fig. 4.2) it is referred to as unbounded rough interface. A smooth interface
can be treated as a special and ideal case of the rough interface with a zero roughness. The
unbounded interfaces of two surfaces in contact are also called imperfect interfaces, or contact
interfaces. These two types of interfaces will be dealt with here.

When the response of an interface to ultrasound is nonlinear, the nonlinear degree of the
response is referred to as ultrasonic nonlinearity. Such ultrasonic nonlinearity is also called
interface nonlinearity in this report, in order to distinguish from propagation nonlinearity that
arises from the nonlinear distortion of waves propagating in a medium.
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Figure 4.1: Geometry of a smooth interface.

An unbounded (contact) interface can not support tensile force. Thus, it manifests different
elasticities (asymmetric elasticity) for tension and compression, e.g., smaller elasticity for tension
and larger for compression. When such an interface is disturbed by an ultrasound (a dynamic
driving force), the dynamic response of the interface to the ultrasound shows nonlinearity due
to asymmetric elasticity.

The defects (e.g., kissing bonds or contacting cracks) that consist of rough surfaces in contact
are well characterized by such an unbounded rough interface. It is why the nonlinearity of
ultrasonic responses of defects has been tried to explore for the detection.

The interfaces (either smooth or rough) that we consider here are those that are planar and
separate two semi-infinite media that are identical isotropic materials with linear elasticity. The
problems of interest are the detection of nonlinearity of a planar interface to a normal incident
plane wave. Such interface problems, although simple, can be good approximations to real
situations, and the results can be used to qualitatively interpret some phenomena observed in
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reality.

Theoretical study of the ultrasonic nonlinearity of unbounded interfaces has been made since
several decades ago [34–37]. A theory was proposed by Richardson in 1979 [34] to deal with
an unbounded smooth interface. Driven by newly-developed nonlinear ultrasonic techniques for
detecting contacting cracks, theoretical research on the nonlinear interaction of ultrasound with
rough interfaces has attracted much attention of NDE researchers recently [36, 37].

Here we have proposed a theory to treat rough interfaces, which is the extension of Richard-
son’s theory. Our theory is more general and can be used to deal with rough interfaces and
smooth interfaces as well. Two papers recently published in 2003 (one by Pecorari [37] and
the other by Gusev et al [36]) concerned with the nonlinear ultrasonic interaction with rough
interfaces were helpful for developing the present theory. In the first paper, the simple perturba-
tion approach is used to solve the boundary value problem posed on the basis of the boundary
conditions of contacting rough surfaces. The theoretical expressions on reflection and transmis-
sion at the rough interface are derived and the numerical results are presented. However, the
theory is not suited for the calculation and analysis of waveforms as measured. In the second
paper, the hysteresis in response of contacting rough interface to ultrasound is investigated. The
theory derived seems to be complicated and difficult to implement numerically. Some qualitative
analysis of ultrasonic response of a rough interface is made. No numerical results are given. The
theory proposed here is easy to implement. It can be employed to calculate ultrasonic response
of rough interfaces and transmitted waves. The calculated results are the waveforms that can be
easily used to compare, analyze and interpret measurement results. The detailed derivation of
our theory is given in appendix 4.A. The results presented in this section are calculated based
on the theory.
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4.2.1 Nonlinearity of an unbounded interface: the smooth interface case

Why does an unbounded interface manifest nonlinear elastic behavior under ultrasound? To
answer the question, an example is first presented here in an intuitive way based on an unbounded
smooth interface. The problem should be looked at and thought about on a microscopic scale.
For example, a interface thickness is 1µm, and a wavelength in copper at a frequency of 0.5
MHz is 9.2 mm, which is 9200 times the interface thickness.

Consider a planar smooth interface under ultrasonic insonification ( Fig. 4.1). It is located
at x = 0 and separates two identical elastic media. Assume that the interface gap is Y (t) and
it is closed initially, i.e., Y (t ≤ 0) = 0, due to the pressing by an external static pressure P0.
Supposing that a plane ultrasonic wave with a particle displacement of sinusoid

f(x− ct) = −A sin(kx− ωt)
(where k is the wave number and ω is the angular frequency) impinges onto the interface, the
corresponding ultrasonic force (per unit area, in Pascal), a dynamic driving force, imposed on
the interface is (Eq. (4.22))

F (t) = −(λ+ 2µ)∂f(x− ct)/∂x|x=0 = B cos(ωt)
where B = ρcωA. The examples of f(x−ct) and F (t) are shown in Fig. 4.3, when the ultrasound
with A = 0.4 µm and ω = 2πF0 with F0 = 0.5MHz impinges on an interface in a copper
medium, and thus B = 51.8 MPa. Note that from convention F (t) is assumed to be positive
for compression and negative for tension, and it has a π/2 phase difference from f(x− ct).
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Figure 4.3: (a) Incident wave f(x − ct)|x=0 = A sin(ωt), and (b) the corresponding ultrasonic
force F (t) = B cos(ωt) on the interface at x = 0, where A = 0.4 µm, B = ρcωA = 51.8 MPa,
and ω = 2πF0 with F0 = 0.5 MHz.

At the interface, the incident wave f(x − ct) is reflected and transmitted. The resultant
displacement, thus, becomes

u(x, t) = f(x− ct) + g(x+ ct)
on the left hand side of the interface (x < 0), and

u(x, t) = h(x− ct)
on the right hand side (x > 0), where g(x + ct) and h(x − ct) the reflected and transmitted
waves, respectively. The interface gap Y (t) (referred to as interface opening displacement) in
this case can be expressed as

Y (t) = u(+0, t) − u(−0, t),
which changes with the relative motion of both sides of the interface, and the correspond-
ing dynamic interfacial force present on the interface due to ultrasonic displacement u(x, t) is
(Eq. (4.29))
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G(t) = −(λ+ 2µ)∂u(x, ct)/∂x|x=0,
which is, in general, nonlinearly dependent on Y , i.e., G = G(Y ) is a nonlinear function of Y .
The G(Y)-Y relation reflects the elastic characteristic of the interface. Note that the interfacial
force G(t) is different from the driving force F (t).

If the ultrasonic force amplitude B is less than the static pressure P0, i.e., B < P0, then
the interface keeps closed (Y (t) = 0) all the time. No nonlinear response of the interface will
happen. This is not of our interest. When B > P0, the interface can be open (Y > 0) and
closed (Y = 0) when F (t) changes alternately between tension and compression. When the
interface changes from the open state to the closed, or vise versa, the interfacial force G(Y )
varies. The dependence of G(Y ) on Y is shown in Fig. 4.4, which shows that when the gap is
closed (Y (t) = 0), G(Y ) may change in a range from P0 to Fmax = B, and when the gap is open
(Y (t) > 0), G(Y ) = −P0. This can be interpreted as follows. When the driving force is in the
compressive phase (F (t) > 0) or in the tensile phase (F (t) < 0) in which |F (t)| < P0, the gap
is closed (Y (t) = 0). In this case, u(+0, t) = u(−0, t) and no reflection happens at the interface
so that u(−0, t) = u(+0, t) = f(−ct) and G(Y ) = F (t). When the driving force is in the tensile
phase (F (t) < 0) but the relation |F (t)| > P0 is satisfied, the gap will be opened (Y (t) > 0).
In this case, the stress on the interface vanishes, i.e., σ(+0, t) = σ(−0, t) = −G(Y ) − P0 = 0
(Eq. (4.36)) so that G(Y ) = −P0. As F (t) changes periodically from compression to tension,
the interface will be closed open periodically. The differential equation governing the relative
motion of the interface gap Y (t) = u(+0, t)−u(−0, t) is of the form (Eq. (4.33) in appendix 4.A)

ρcẎ (t) = 2G(Y ) − 2F (t) (4.1)

The interface opening displacement Y (t) shows a nonlinear response to the ultrasonic force. In
the present case, F (t) = B cos(ωt), and G(Y ) nonlinearly depends on Y (t), as schematically
shown in Fig. 4.4. The above equation has a analytical solution.

Y
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- P
0
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Figure 4.4: Dependence of dynamic interfacial force G(Y ) on interface opening displacement Y
for a smooth interface.

For a closed interface, the interface opening displacement Y (t) is

Y (t) = 0 (4.2)

For an open interface, the interface opening displacement becomes (Eq. (4.48))

Y (t) = −2A [ηωt+ sin(ωt)] + C (4.3)

where
η = P0/B (4.4)
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and the arbitrary constant C is determined from the ”initial” conditions at t = ti (Eq. (4.50)),

C(ti) = Y (ti) + 2A [ηωti + sin(ωti)] (4.5)

which needs to be calculated when the gap changes from the closed state to the open state.

An example of Y (t) is shown in Fig. 4.5 (a) in which the results are calculated when the
incident ultrasonic wave on the interface is one in Fig. 4.3 and the static pressure is P0 =
B/2=25.9 MPa. From Fig. 4.5 (a) it can be seen that the lower end of Y (t) is flattened as the
interface is closed. The transmitted wave (Eq. (4.40))

h(x− ct)|x=0 = f(x− ct) + (1/2)Y (t− x/c)|x=0

is shown in Fig. 4.5 (b), and it is the wave that is received by a receiving transducer. The
negative part of h(t) becomes spiky. The nonlinear phenomenon can be easily seen from their
spectra Fig. 4.5 (a’) and (b’), in which the strong harmonics are present and the second harmonic
level is −6.35 dB in Y (t) and −13.93 dB in h(t), respectively. When external static pressure P0

changes, the nonlinearity differs, and accordingly, the harmonics are different. This can be seen
in Fig. 4.6 that shows the variation of the second harmonic in Y (t) (normalized by the incident
wave amplitude A) with the ratio P0/F (t)max. The figure demonstrates that the efficiency of
second harmonic generation varies with the external pressure for a given ultrasonic amplitude
A.

In reality, however, the surfaces constituting an interface are rough. As it will be seen below,
the smooth interface theory gives overestimated nonlinearity.
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Figure 4.5: (a) Interface opening displacement Y (t) and (a’) its spectrum; (b) transmitted wave
and (b’) its spectrum. The second harmonic level is −6.35 dB in Y (t) and −13.93 dB in h(t).
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4.2.2 Characteristics of rough surfaces and contacting rough interfaces

Surfaces are rough in a microscopic scale. This results in the real area of contact of two surfaces
to be small compared to the nominal area. The real area of contact changes with external load.
The topographical characteristics of rough surfaces are relevant to their behavior when pressed
into contact. To establish the theory concerning the nonlinear response of an rough interface to
an ultrasound, the properties of rough surfaces and their contact (the interface) shall be first
understood.

Rough surfaces and their contacts are the subjects in solid mechanics [38, 39], tribology [40],
geophysics [41]. The relevant theories are given in details in appendix 4.A.2.

Mean height

z
Rough surface

�( )z

Figure 4.7: A rough surface.

A nominal flat rough surface contains a large number of asperities whose heights vary ran-
domly (Fig. 4.7), and thus, the surface is characterized in a statistical manner by a distribution of
heights of asperities, and a distribution of asperity radii, or equivalently, asperity curvatures. The
surface heights are commonly estimated by Gaussian or inverted chi-square distributions [41–43].
The inverted chi-square distribution (Eq. (4.18)) is simply a chi-square distribution (Eq. (4.19))
with a variable substitution such that it has a zero mean and is skewed toward positive heights.
The advantages of the inverted chi-distribution are (i) that it contains a parameter (n) control-
ling its skewness, and thus fits the topography data better than the symmetric Gaussian, and
(ii) that it becomes zero when the surface heights are larger than the maximum height, as does
a real surface [41].

A measure of average roughness is the root-mean-square (rms) or standard deviation σ of
the surface hight from the mean hight line. The larger the deviation the bigger the roughness.

An example of inverted chi-square distribution is illustrated in Fig. 4.8(a) in which the rms
roughness σ = 0.23 µm and the maximum height zmax = 0.575 µm are used in the probability
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Figure 4.8: Probability density functions (pdf) of inverted chi-square (χ2) distribution (a) and
chi-square (χ2) distribution (b) of asperity heights of a rough surface for different degrees of
freedom (skewness parameter). The rms roughness is σ = 0.23 µm and the maximum height is
0.575 µm.

density function (pdf) φ(z). The figure shows that φ(z) = 0 beyond the maximum height,
z > zmax, and it is skewed toward the positive z.

If a substitution of z′ = zmax − z is made in φ(z) (i.e, the z-axis is reversed and then the
origin is shifted to the right by zmax), the inverted chi-distribution φ(z) is converted to the chi-
distribution φ(z′). An example of the chi-square distribution is shown in Fig. 4.8(b) in which
the rms roughness is σ = 0.23 µm, and the pdf φ(z′) at the maximum height is zero.

When two rough surfaces are pressed into contact to form a contact rough interface , the real
area of contact of two surfaces is much smaller than the nominal area (Fig. 4.9 (a)), and the real
area and the interface gap between the two surfaces change with external load P . The interface
of two rough surfaces in Fig. 4.9 (a) can be converted into an equivalent interface between a
rigid smooth surface and a composite deformable rough surface as shown in Fig. 4.9 (b). If
the surface heights of the two rough surfaces in contact are characterized by inverted chi-square
distributions φ(z1) and φ(z2) with rms roughnesses σ1 and σ2, respectively, the distribution
of the composite surface heights is still described by an inverted chi-square distribution φ(zs)
(where zs = z1 + z2) with rms roughness σc =

√
σ2

1 + σ2
2. Similarly, if z′ is substituted for

zsmax − zs in φ(zs), then the inverted chi-distribution φ(zs) is converted to the chi-distribution
φ(z′) (Fig. 4.8(b)). The equivalent interface in Fig. 4.9 (b) has been used to build the models
for the contact of two rough surfaces [41–43].

4.2.3 Nonlinearity of contacting rough interfaces

To study the interaction of ultrasound with unbounded rough interfaces, the static model de-
veloped by Brown and Scholz [41] is first discussed. The model (Eq. (4.21)) describes the
dependence of applied normal pressure P on the relative approach (the interface gap decre-
ment) δ between two contacting surfaces. The contact of the surfaces in the model is assumed
to be elastic without friction and hysteresis. The model is established using an equivalent
rough interface that consists of a rigid smooth surface and a composite deformable rough sur-
face (Fig. 4.10). The composite surface has a rms roughness σc =

√
σ2

1 + σ2
2 in which σ1 and

σ2 are the rms roughnesses of the two rough surfaces in contact, and the surfaces heights are
statistically characterized by the chi-square distribution φ(z′) with use of the z′-axis in Fig. 4.10.

When an external pressure P is applied on the interface, the two surfaces approach to each
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other in amount of δ (relative approach) (Fig. 4.10). The relation between P and δ that is
determined by Brown and Scholz’s model (Eq. (4.21)) is shown in Fig. 4.11 in which the rms
roughness of the composite surface is σc = 0.23 µm and the degrees of freedom used in φ(z′) is
6.4. The figure shows that P increases with δ in a nonlinear manner. When δ increases until
the gap is just completely closed, the applied normal pressure P reaches Pc. After that, δ will
keep unchanged although P can further increase (Fig. 4.12). Since the curve shown in the figure
has a feature of P (δ) ∝ δα, a polynomial of the form P (δ) = (aδ)α − (bδ)β can be used for the
fitting of P (δ). This can simplify the numerical calculation of differential equation governing the
motion of interface gap (interface opening displacement) (Eq. (4.33)). In Fig. 4.11, the fitting
polynomial is P (δ) = (8.65δ)3.4 − (4.6δ)4.3.
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Figure 4.11: A rough interface deformation under external load. The relation between load and
relative approach.
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Figure 4.12: A rough interface under external load.

We now consider the response of a rough interface to ultrasound (refer to Fig. 4.2). Assume
that the rough interface of two rough surfaces in contact has a thickness of Y0+δ0 for hydrostatic
pressure P (δ) = 0 (Fig. 4.12). When the interface is pressed by a hydrostatic pressure P0 �= 0,
and the relative approach is δ0. In this case, the initial gap before ultrasonic disturbance
becomes Y (0) = Y0, and the dynamic interfacial force G(Y0) = 0 is zero (Fig. 4.13 in which
Fc = Pc−P0). When an ultrasound that generates a driving force F (t) strong enough to be able
to completely close and open the interface impinges onto the interface, the interface may have
three states: completely closed (Y (t) = 0) for F (t) > Fc, partially closed (0 < Y (t) ≤ Y0 + δ0)
for −P0 < F (t) < Fc, and completely open Y > Y0 + δ0 for F (t) < −P0. In the partially
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Figure 4.13: Dependence of dynamic interfacial force G(Y ) on interface opening displacement
Y for a rough interface with a nonlinear stiffness constant.

closed state (0 < Y (t) ≤ Y0 + δ0), G(Y ) is usually nonlinearly dependent on Y because a rough
interface has a nonlinear interfacial stiffness constant. The whole relation of G(Y ) with Y in
the presence of all three states is illustrated in Fig. 4.13. The G(Y ) − Y curve can be formed
by flipping from left to right the P (δ) − δ curve in Fig. 4.12, and then shifting down by P0. In
this case, Fc = Pc − P0 Fig. 4.13. Note that in the present sign convention G(Y ) is positive for
compression on the interface because G(Y ) = −σ(0, t) = −(λ + 2µ)∂u(0, ct)/∂x (Eq. (4.29)).
Thus, when G(Y ) increases in the positive direction (compressive phase), Y decreases.

The differential equation governing the relative motion of the interface gap Y (t) = u(+0, t)−
u(−0, t) (referred to interface opening displacement) is also of the form

ρcẎ (t) = 2G(Y ) − 2F (t) (4.6)

But the G(Y ) − Y curve in general looks like one in Fig. 4.13.

Here we consider a simple case in which the rough interface in the partially-closed state
(Y0 < Y ≤ Y0 + δ0) has a linear interfacial stiffness constant κ0 so that

G(Y ) = −κ0[Y (t) − Y0] (4.7)

which is illustrated in Fig. 4.14. In this case, Eq. (4.6) will have an analytical solution.

For the completely closed interface, one has

Y (t) = 0 (4.8)

When the interface is completely open (Y (t) > Y0+δ0), Y (t) can be determined as in the smooth
interface case, in the following manner

Y (t) = −2A [ηωt+ sin(ωt)] + Co (4.9)

where the arbitrary constant Co can be found from the ”initial” conditions at t = ti,

Co(ti) = Y (ti) + 2A [ηωti + sin(ωti)] (4.10)

For the partially-closed interface (0 < Y (t) < Y0 + δ0), we have

Y (t) = exp(−ξt)
{
−2ωA

exp(ξt)
ξ2 + ω2

[ξ cos(ωt) + ω sin(ωt)] + Cp

}
+ Y0 (4.11)

where
ξ =

2κ0

ρc
(4.12)
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and Cp is determined by the ”initial” conditions at t = tj ,

Cp(tj) = exp(ξtj)
{

[Y (tj) − Y0] +
2ωA

ξ2 + ω2
[ξ cos(ωtj) + ω sin(ωtj)]

}
(4.13)

which need be calculated when the interface gap changes either from the open state to the
partially-closed state or from the completely-closed state to the partially-closed state provided
the states are present.

Y
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Figure 4.14: Dependence of dynamic interfacial force G(Y ) on interface opening displacement
Y for a rough interface with a linear stiffness constant κ0.

The previous study has shown that the ultrasonic response of a smooth interface only has
two cases: either in the completely closed state (Y (t) = 0) when B < P0 or varying alternately
between the closed state and the open when B > P0. For a contact rough interface, its ultrasonic
response is different and more complicated, and may have the following cases:

• (i) always in the completely closed state, and no nonlinearity occurs;

• (ii) varying alternately between the completely-closed state and the partially-closed;

• (iii) varying only in the partially-closed state, and no nonlinearity occurs;

• (iv) varying alternately between the partially-closed state and the completely-open; and

• (v) varying alternately from the completely-closed state, to the partially-closed and then
to the completely-open, or vise versus.

P0 is an important factor that may change the response case of an interface, and thus changes
the efficiency of nonlinearity generation. For example, for a fixed ultrasonic force amplitude
B, when P0 > B is satisfied, the interface will be never completely opened, but it may have a
nonlinear response if the ultrasonic force can completely close the gap; when P0 < B is satisfied,
the interface may be completely open. In this case, the ultrasonic nonlinearity can become
stronger.

Let us now look at two examples showing how a rough interface responds to a sinusoidal
ultrasound f(x − ct) = A sin(ωt). The rough interface is assumed to have a linear stiffness
constant κ0 = 8.632 × 1013[N/m3], and the P (δ) − δ relation is shown in Fig. 4.15(a). The
interface gap of the two rough surfaces in contact is 0.6 µm for δ = 0.

In the first example, the incident wave is f(x−ct) = A sin(ωt) with A = 0.2 µm and ω = 2πF0

with F0 = 0.5 MHz and the ultrasonic force is F (t) = B cos(ωt) with B = ρcωA = 25.9 MPa.
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The external static pressure is assumed to be P0 = B/2 = 12.95 MPa so that the relative
approach is δ0 = 0.15 µm, and Y0 = 0.45 µm. The G(Y )− Y relation is illustrated in 4.15 (b).

Since B = 25.9 MPa < Fc = 38.92 MPa for which the interface just starts to be completely-
closed, the ultrasonic response of the interface in this example is the case (iv) in which the gap
varies alternately between the partially-closed state and the completely-open. The calculated
results for Y (t) and h(t) are shown in Fig. 4.16. The nonlinearity can be seen from the spectra in
Figs.Fig. 4.16(a’) and (b’) in which the second harmonic level is −17.65 dB in Y (t) and −17.73
dB in h(t). Comparing to the smooth interface case, the second harmonic level in Y (t) in this
example is much smaller (11.3 dB smaller), but the one in h(t) is 3.8 dB lower.
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Figure 4.15: (a) the relation between the static load and the relative approach for κ0 =
8.632× 1013[N/m3], and (b) dependence of dynamic interfacial force G(Y ) on interface opening
displacement Y for P0 = B/2 = 12.95 MPa, in which Y0 = 0.45 µm.

In the second example, the incident wave has an amplitude of A = 0.4 µm and a frequency
is still F0 = 0.5 MHz (Fig. 4.3 (a)) and the amplitude of the ultrasonic force becomes B =
51.8 MPa (Fig. 4.3 (b)). The external static pressure takes on P0 = B/2 = 25.9 MPa, which
results in a relative approach δ0 = 0.30 µm, and Y0 = 0.30 µm. The G(Y ) − Y relation is
illustrated in 4.17 (b).

Since B = 51.8 MPa > Fc = 25.92 MPa in this example, the ultrasonic response of the
interface is the case (v) in which the gap varies alternately from the completely-closed state,
to the partially-closed and then to the completely-open. The calculations of Y (t) and h(t) are
shown in Fig. 4.18. From the figure it can be seen that the second harmonic level is −14.43 dB in
Y (t) and −15.46 dB in h(t), which are larger, respectively, than the those in the first example.
This indicates a more severe nonlinearity in this example. It should be specially mentioned
that the negative part of the waveform, h(t), in Fig. 4.18(b) becomes spikier and prolonged
in comparison with that in Fig. 4.16(b). Comparing to the smooth interface case, the second
harmonic level in Y (t) in this example is 8.08 dB smaller, and the one in h(t) is only 1.53 dB
lower.

Both examples have shown that the estimation of nonlinearity for Y (t) from the smooth
interface model is much higher than from the rough interface model. Since all the surfaces in real
situations are rough, the smooth interface model may overestimate the ultrasonic nonlinearity
of a rough surface.

4.2.4 Conclusions

The ultrasonic responses of smooth and rough interfaces to ultrasound have been investigated.
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Figure 4.16: (a) Interface opening displacement Y (t) and (a’) its spectrum; (b) transmitted
wave and (b’) its spectrum. The second harmonic level is −17.65 dB in Y (t) and −17.73 dB in
h(t).
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Figure 4.18: (a) Interface opening displacement Y (t) and (a’) its spectrum; (b) transmitted
wave and (b’) its spectrum. The second harmonic level is −14.43 dB in Y (t) and −15.46 dB in
h(t)
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The ultrasonic response of a smooth interface only has two cases:

• (i) in the completely closed state (Y (t) = 0) when B < P0; and no nonlinearity occurs;

• (ii) varying alternately between the closed state and the open when B > P0.

The ultrasonic nonlinearity from a smooth interface may be produced only from the second case.
An example for a smooth interface has shown that

• When the interface changes alternately from the open state to the close, the waveform of
Y (t) becomes flattened in the lower end due to the gap closing, and thus, the higher har-
monics (normalized) result (Fig. 4.5(a) and (a’)). The waveform of h(t) becomes spiky in
the lower part, and the higher harmonics (normalized) are comparatively lower (Fig. 4.5(b)
and (b’)).

For a contact rough interface, its ultrasonic response is much more complicated and may
have the following cases:

• (i) always in the completely closed state (Y (t) = 0), and no nonlinearity happens;

• (ii) varying alternately between the completely-closed state and the partially-closed (0 ≤
Y (t) < Y0 + δ0);

• (iii) varying only in the partially-closed state (0 < Y (t) < Y0 + δ0), and no nonlinearity
occurs;

• (iv) varying alternately between the partially-closed state and the completely-open; and

• (v) varying alternately from the completely-closed state, to the partially-closed and then
to the completely-open, or vise versus. In this case, the nonlinearity can become largest.

The ultrasonic nonlinearity from a rough interface may be generated from three cases, i.e., cases
(ii), (iv) and (v), depending on the ratio P0/B. Two examples for a rough interface under
different static pressure P0 have shown that

• in the case that the interface varies alternately between the partially-closed state and the
completely-open; the waveform of Y (t) will not be flattened in the lower end because the
gap is not close, and the waveform of h(t) will be smooth in the lower part (Fig. 4.16);
and

• in the case that the interface varies alternately from the completely-closed state, to the
partially-closed and then to the completely-open, or vise versus; in this case, the waveform
of Y (t) will become flattened in the lower end due to the gap closing, and the waveform
of h(t) will become spiky in the lower part (Fig. 4.18).

• in the case that the interface varies alternately between the completely-closed state and
the partially-closed; the waveform of Y (t) may become flattened in the lower end due
to the gap closing, and the waveform of h(t) may become spiky in the lower part; if a
rough interface has a nonlinear interface stiffness (as shown in Fig. 4.13), the harmonic
generation might be smaller than a rough interface with a linear interface stiffness;

These features of the waveform of h(t) in the rough surface case can be seen in the measurement
results below.

Comparing the results for a smooth surface and a rough surface demonstrates that the
ultrasonic nonlinearity from a smooth surface is larger than that from a rough interface under
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the same ratio of static pressure to ultrasonic force amplitude P0/B = 2. This may indicate
that the theory with the smooth surface assumption yields overestimated nonlinearity. Since
surfaces observed in nature are rough, the rough interfaces give more accurate description of
real contact interfaces.
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4.3 Measurements of Ultrasonic Nonlinearity of Unbounded In-
terfaces

4.3.1 Experimental setups and copper specimens

The experimental setup for the measurements of ultrasonic nonlinearity of unbounded interfaces
is shown in Fig. 4.19. It is composed of two parts: ultrasonic inspecting system and static
pressure supplying system.
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Figure 4.19: INSTRON 8500.

The former system includes a 0.5-MHz narrow-band transmitter and a 1-MHz broad-band
receiver (both made by Valpey Fishers Co., USA), RITEC RAM-5000 Ultrasonic System, and a
digital oscilloscope (Inifiniium Oscilloscope 54810AR made by Agilent Technology). The RITEC
System and the 0.5-MHz transmitter provides a high-power ultrasound tone-burst, and the 1-
MHz receiver and the oscilloscope are used to receive and record the signals that propagate
through the inspected specimen.

The latter system consists of INSTRON 8500 material dynamic testing machine (Fig. 4.20)
and the alignment fixtures, and it supplies static pressure P0 on inspected copper specimens.

The inspected specimens (Fig. 4.21) are four copper cylinders (all with a diameter of 70 mm
or a cross-section area of Ac = 3848mm2) that are named CuCyl 0, CuCyl 1, CuCyl 2, and
CuCyl 3 from left to right in the photo. Specimen CuCyl 0 is a cylinder without interface, and
is used for measurement reference. The other three specimens are all consist of two pieces of
cylinders with polished surfaces, and thus each specimen contains an unbounded interface with
two surfaces pressed into contact by INSTRON. The geometry (H1/H2) of CuCyl 1 is 60/30
mm, CuCyl 2 is 40/50 mm and CuCyl 3 is 60/60 mm.

In the measurements, the RITEC outputs that excited the 0.5-MHz transmitter were 14-
cycle tone-bursts all with a 0.5-MHz frequency (F0 = 0.5MHz) but with various amplitudes
(E0) ranging from 60 to 2260 volts (peak to peak). Note that the amplitude of the RITEC
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Figure 4.20: INSTRON 8500.
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output is changeable in 101 different levels, i.e., from 0 to 100, which correspond to 60 to 2285
volts for the 0.5-MHz transmitter. The 11 amplitudes used in the measurements corresponded
to levels, 0, 10, 20, ..., and 99. The static pressure P0 from INSTRON were applied to the
inspected specimen in the force range from 1 to 100 kN, which correspond to a pressure range
from 2.6 to 26.0 MPa on the interface with an area of Ac = 3848mm2. For each specimen, a
series of measurements were made using different tone-burst amplitudes E0 and static pressure
P0. The waveforms were recorded with the digital oscilloscope. The spectra were calculated
using MATLAB, with Hamming window applied on the waveforms.

4.3.2 Results and discussions

The measurements were made on all the four copper specimens. But only the results of measure-
ments made on CuCyl 0 (without interface) and CuCyl 3 (with an interface at a 60-mm depth)
under different excitations (E0) from the RITEC and static pressure (P0) from the INSTRON
are selected and presented here.

To investigate the ultrasonic nonlinearity of the contact interface, let us first compare some
representative results from CuCyl 0 (Fig. 4.22) and CuCyl 3 (Fig. 4.23) for P0 = 30kN and
various values of E0. The results are presented in waveform-spectrum pair. The waveforms
(with Hamming window applied) are on the left column, and their spectra on the right. More
measurement results are available in appendix 4.B

From the figures, we may observe that

• at the lowest RITEC output amplitude E0 = 60vpp, no obvious harmonics can be seen in
the spectra from both specimens (Figs. 4.22(a’) and 4.23(a’));

• when the output amplitude increases to E0 = 206vpp, a pronounced second harmonic and
a small third harmonic for the interfaced specimen CuCyl 3 can be seen (Fig 4.23(b’)),
but for CuCyl 0 only a third harmonic is visible (Fig. 4.22(b’));

• when E0 increases to 934 and 2260 vpp, the second harmonic for CuCyl 3 (Figs. 4.23(e’)
and (k’)) increases faster and is larger than for CuCyl 0 (Figs. 4.22(e’) and (k’)), but the
third harmonics for CuCyl 3 are smaller;

• an interesting difference between the two specimens’ results can be seen in the waveforms.
The waveforms for CuCyl 3 become asymmetric for E0=934 and 2260 vpp, with the lower
part becomes spikier and prolonged, which is the feature that can be observed from the
theoretical calculation of transmitted wave h(t) in Fig. 4.18 (b) in which the interface gap
is much squashed by a large static pressure P0 and the ultrasonic force was so strong as to
be able to completely close the gap in compressive periods; while the waveform for CuCyl
0 becomes asymmetric for 2260 vpp, with the lower part becoming round and shortened,
which is a typical feature of wave propagation nonlinearity.

To study how the static pressure P0 affects the ultrasonic nonlinearity of the interface, we
now compare with the measurement results under static pressure P0 = 100kN .

From the spectra in Figs. 4.24 (CuCyl 0) and 4.25 (CuCyl 3), we can observe that the second
and third harmonics for CuCyl 3 grow in a similar way to those for CuCyl 0, and that the second
harmonics for CuCyl 3 are much smaller compared with those when F0 = 30kN in Fig. 4.23.
This may be interpreted qualitatively from the preceding theory. For large P0 = 100kN , the
ultrasonic force is not strong enough to open the interface so that the interface nonlinearity
is becomes small, and the waveforms for both specimens show similar asymmetry: round and
shortened negative part.

61



After having observed and compared the results from two specific cases, we shall now get a
broader view on the effects of P0 and E0 on the ultrasonic response of an unbounded interface.
The second and third harmonics normalized by the corresponding fundamentals are presented
as E0 varies for fixed P0 (Figs. 4.26 and 4.28) or as P0 varies for fixed E0 (Figs. 4.27 and 4.29).
Please be noted the difference of the scales in the figures, when comparing the results.

Comparing the results in Fig. 4.26 (for CuCyl 0) and in Fig. 4.28 (for CuCyl 3), one can see
that

• the second harmonic for CuCyl 0 in all the cases increases monotonically as E0 increases,
while the one for CuCyl 3 first increases and then decreases as E0 increases so that a
maximum is present and its position depends on P0;

• when P0 increases up to 50 kN, there appeases a valley (minimum), which might be caused
by propagation nonlinearity that becomes significantly large for largeE0 and cancels part of
the interface nonlinearity (due to the different asymmetries of two types of nonlinearities)

• for large static pressure, e.g., P0 = 80, 100kN , the second harmonic for CuCyl 3 change
with E0 in quite a similar manner to that for CuCyl 0, which may reveals that the interface
nonlinearity decreases rapidly as P0 becomes large;

• the second harmonics for CuCyl 3 are dramatically larger when P0 = 30 and 40 kN.

Comparing the results in Figs. 4.36 (for CuCyl 0) and 4.38) (for CuCyl 3), we can see that

• the second harmonics for CuCyl 0 do not vary so much with P0 when E0 ≤ 934vp−p,
while the ones for CuCyl 3 all have a maximum at about P0 = 7.8 MPa (equivalent to
30 kN because P0 is normalized by Ac = 3848mm2, the cross-section area of the copper
cylinder). This may possibly be explained in the way that for the 30 KN pressure the
initial interface opening displacement (initial interface gap) Y (0) = Y 0 could be at such a
’middle’ point in the G(Y ) − Y curve (see Fig. 4.14 or Fig. 4.13) that the rough interface
may change alternately from the completely-closed state, to the partially-closed and then
to the completely-open, or vise versus so that the nonlinearity occurs most efficiently (i.e.,
Y (t) distorts in both ends of the G(Y ) − Y curve).

• for large E0 = 2284 vp−p, the second harmonics for CuCyl 0 increases quickly with P0 in
the beginning and stays at a high amplitude level in the range of P0 = 18 to 26 MPa)
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(b) 30 KN (90 mm/00 mm) for 206 v−pp excitation
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(e) 30 KN (90 mm/00 mm) for 934 v−pp excitation
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(k) 30 KN (90 mm/00 mm) for 2260 v−pp excitation
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Figure 4.22: Measurements on Specimen CUCYL 0 for the tone-burst excitations with different
amplitudes V when the external force is P0=30 KN. (a) to (k) Waveforms, and (a) to (k) their
spectra.
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(a) Cylind 3 (60 mm/60 mm) for 30 KN & 60 Vp−p
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(b) Cylind 3 (60 mm/60 mm) for 30 KN & 206 Vp−p
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(e) Cylind 3 (60 mm/60 mm) for 30 KN & 934 Vp−p
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(k) Cylind 3 (60 mm/60 mm) for 30 KN & 2260 Vp−p
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Figure 4.23: Measurements on Specimen CUCYL 3 for the tone-burst excitations with different
amplitudes V when the external force is P0=30 KN. (a) to (k) Waveforms, and (a) to (k) their
spectra.
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(a) 100 KN (90 mm/00 mm) for 60 v−pp excitation
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(b) 100 KN (90 mm/00 mm) for 206 v−pp excitation
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(e) 100 KN (90 mm/00 mm) for 934 v−pp excitation
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(k) 100 KN (90 mm/00 mm) for 2260 v−pp excitation
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Figure 4.24: Measurements on Specimen CUCYL 0 for the tone-burst excitations with different
amplitudes V when the external force is P0=100 KN. (a) to (k) Waveforms, and (a) to (k) their
spectra.
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(a) Cylind 3 (60 mm/60 mm) for 100 KN & 60 Vp−p
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(b) Cylind 3 (60 mm/60 mm) for 100 KN & 206 Vp−p
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(e) Cylind 3 (60 mm/60 mm) for 100 KN & 934 Vp−p
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(k) Cylind 3 (60 mm/60 mm) for 100 KN & 2260 Vp−p
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Figure 4.25: Measurements on Specimen CUCYL 3 for the tone-burst excitations with different
amplitudes V when the external force is P0=100 KN. (a) to (k) Waveforms, and (a) to (k) their
spectra.
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(f) Harmonics for 40 KN (Cu 90 mm/00 mm)
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(g) Harmonics for 50 KN (Cu 90 mm/00 mm)
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(j) Harmonics for 80 KN (Cu 90 mm/00 mm)
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Figure 4.26: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with tone-burst excitation for external static pressures: (c) 10 KN, (e) 30 KN, (f) 40 KN, (g)
50 KN, (j) 80 KN, and (l) 100 KN.
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Figure 4.27: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with external static pressure for different tone-burst excitations. (a) 60 Vp-p, (b) 206 Vp-p, (e)
934 Vp-p, and (k) 2284 Vp-p.
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(e) Harmonics for 30 KN (Cu 60 mm/60 mm)
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(f) Harmonics for 40 KN (Cu 60 mm/60 mm)
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(g) Harmonics for 50 KN (Cu 60 mm/60 mm)

2nd/1st
3rd/1st

0 500 1000 1500 2000 2500
0

0.05

0.1

Excitation Voltage [volts]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(j) Harmonics for 80 KN (Cu 60 mm/60 mm)
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(l) Harmonics for 100 KN (Cu 60 mm/60 mm)
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Figure 4.28: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with tone-burst excitation for external static pressures: (c) 10 KN, (e) 30 KN, (f) 40 KN, (g)
50 KN, (j) 80 KN, and (l) 100 KN.
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Figure 4.29: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with external static pressure for different tone-burst excitations. (a) 60 Vp-p, (b) 206 Vp-p, (e)
934 Vp-p, and (k) 2284 Vp-p.
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4.4 Discussions and Conclusions

Ultrasonic nonlinearity of interfaces of two surfaces in contact have been investigated theoreti-
cally and experimentally. A theory has been proposed that can be used to deal with ultrasonic
nonlinearity of rough interfaces and smooth surfaces as well. It is the extension of Richardson’s
theory for unbounded smooth interfaces. The calculations of ultrasonic interface nonlinearity
have been made for both smooth and rough interfaces. The results show that the smooth inter-
face assumption yields overestimated nonlinearity than the rough interface assumption (mainly
based on the comparison of second harmonics). Since surfaces observed in nature are rough,
the rough interface (consisting of two rough surfaces in contact) is a more accurate model for
unbounded interfaces, kissing bonds in FSWs and joints, contact cracks in materials. For a
contact rough interface, its ultrasonic response may have five different cases:

• (i) always in the completely closed state, and no nonlinearity occurs;

• (ii) varying alternately between the completely-closed state and the partially-closed;

• (iii) varying only in the partially-closed state, and no nonlinearity occurs;

• (iv) varying alternately between the partially-closed state and the completely-open; and

• (v) varying alternately from the completely-closed state, to the partially-closed and then
to the completely-open. In this case, the generation of interface nonlinearity might be
most efficient.

These cases have shown to be useful in the interpretation of the measurement results.

Experimental investigation of nonlinear ultrasonics of interfaces have been conducted based
on ultrasonic propagation technique. The measurements were made on four copper specimens
(one without interface, and the others all with an interface) under different external static
pressure P0 and ultrasonic driving amplitudes E0. Observation of the measurement results have
revealed that

• large nonlinearity from contact interfaces are present under a modest static pressure P0

(e.g., 7 to 9 MPa).

• the static pressure P0 has a large impact on the nonlinear behavior of a contact interface.
Under a modest P0 (e.g., 6 to 12 MPa), the interface shows strong nonlinear behavior,
which is demonstrated by the presence of a strong second harmonic in the spectrum. Under
a large P0, the interface nonlinearity becomes small because the interface is constrained in
the case of varying from the completely-closed state to the partially-closed. There seems
to exist a value of P0 on which the second harmonic (nonlinearity) becomes largest. On
this value the ultrasonic response of the rough interface may mostly occur in the case (v)
in which the interface varies alternately from the completely-closed state, to the partially-
closed and then to the completely-open.

• the interface nonlinearity (from a contact interface) and the wave propagation nonlinearity
results in different asymmetries in waveforms: namely, the asymmetry due to interface
nonlinearity results in the spiky and prolonged negative part of waveforms, which coincides
with our theoretical prediction; the asymmetry because of the propagation nonlinearity
leads to the round and shortened negative part.

The present research has shown that the propagation technique seems to work well to detect
the nonlinearity of contact interfaces. However, the kissing bonds usually have contact rough
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interfaces with a small area. In this case, this propagation technique may not work so well. Our
previous report [6] had shown that nonlinear behavior of small contacts in the copper specimens
(bonded with hot isostatic pressing technique) could not be detected using this technique.

An extensive literature study of modulation techniques that has been conducted by us has
shown that nonlinear ultrasonic modulation technique can be more appropriate for detecting
kissing bonds since the probing wave beam can be focused, and thus the local interaction of
ultrasound with defects is easier to capture and detect.

In the future work, the first intention is to develop a nonlinear ultrasonic modulation tech-
nique suitable for detecting kissing bonds and contact cracks with small local interfaces, and
the second is to extend the proposed theory (for contact interfaces) to treat kissing bonds, con-
tact cracks and fatigue damages that are local interfaces and find more features on interface
nonlinearity to characterize the defects.
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4.A Theory on ultrasonic nonlinearity of contact interfaces

In this appendix a detailed derivation of the theory is given that describes the nonlinearity
of an unbounded rough interface under ultrasonic plane wave disturbance. The interface under
consideration is planar and consists of two contacting rough surfaces of identical elastic materials.
The theory is the extension of Richardson’s theory [34] that is only valid for the smooth interface
case, and it can be used for both rough and smooth interfaces.

4.A.1 General Consideration

Since the problem of interest is concerned with the response of a rough interface to an ultrasonic
plane wave, it can be formulated in terms of a one-dimensional wave motion. In this case the
equation of motion in terms of particle displacement u = u(x, t) in an isotropic elastic medium
with Lamé constants λ and µ can be written as

ρ
∂2u

∂t2
=
∂σ

∂x
(4.14)

where ρ is the density, and σ = σ(x, t) is the stress. When an external hydrostatic compressive
pressure P0 (that is uniform and nonnegative) is present in the medium, the stress-strain relation
may be assumed to be of the form

σ = (λ+ 2µ)ε− P0 = κ
∂u

∂x
− P0 (4.15)

where ε = ∂u/∂x is the strain, and κ = λ+2µ is the elastic constant. In Eq. (4.15), the reference
state of zero strain (and also zero displacement) is one of equilibrium with P0 (i.e., σ = −P0 for
ε=0) and with the interface closed at the origin. In convention, a stress is related to a strain in
the form σ = (λ+ 2µ)ε = κ∂u/∂x. In this case the reference state of zero strain corresponds to
zero stress. In the present case the stress-strain relation in Eq. (4.15) is used because the stress
is directly associated to the dynamic interfacial force due to ultrasonic disturbance.

Inserting σ in Eq. (4.15) into Eq. (4.14) leads to the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(4.16)

where c is the propagation speed of a longitudinal wave in an unbounded space, given by

c =
√
κ

ρ
=

√
λ+ 2µ
ρ

(4.17)

Note that the static pressure P0 disappears in Eq. (4.16), which means that P0 does not influence
the dynamic process resulting from acoustic disturbance.

4.A.2 Characterization of rough surfaces and their contacts

An interface of two rough surfaces in contact manifests nonlinear mechanical behavior because
the interface elasticity varies for compressive and tensile stresses. Such a contact rough in-
terface is a good model for some defects in materials like kissing bonds in friction stir welds
and in adhesive joints. Such defects can be detected by exploiting their nonlinear responses to
ultrasound.

The ultrasonic response of a rough interface is determined by the surface properties (profiles
and friction) of the two surfaces in contact. Assume that an unbounded rough interface is the
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frictionless, elastic contact of two flat rough surfaces. The contact stresses depend only upon
the relative profile of the two surfaces, i.e., upon the shape of the gap between the surfaces
before loading. A nominal flat rough surface contains a large number of asperities whose heights
vary randomly (Fig. 4.7). The heights of asperities are often characterized using Gaussian
distribution [41, 42] or inverted chi-square (χ2) distribution [41–43]. The inverted chi-square
distribution is of the form

φ(z) =
1

2n/2Γ(n/2)

(
zmax − z

σ/
√

2n

)(n−2)/2

exp
(
−zmax − z

2σ/
√

2n

)
(4.18)

where σ is the root-mean-square (rms) roughness, and zmax is the maximum height of asperities.
Eq. (4.18) shows that the distribution requires two parameters to define its form: the standard
deviation σ and a parameter controlling its skewness, the number of degrees of freedom n. The
inverted chi-square distribution is simply a chi-square distribution with a variable substitution
such that it has a zero mean and is skewed toward positive heights. It is of the form

φ(z) =
1

2n/2Γ(n/2)

(
z

σ/
√

2n

)(n−2)/2

exp
(
− z

2σ/
√

2n

)
(4.19)

which can be obtained by substituting zmax − z with z in Eq. (4.18).

The previous research [41] has shown that the inverted chi-distribution is better than Gaus-
sian distribution because it fits the topography data better than the symmetric Gaussian due
to the skewness parameter n, and it becomes zero when the surface heights are larger than the
maximum height, as does a real surface.

When two flat rough surfaces with rms roughnesses, σ1 and σ2, are pressed into contact so
as to form a rough interface (Fig. 4.9 (a)), the interface can be converted into an equivalent
interface between a rigid smooth surface and a composite deformable rough surface (Fig. 4.9
(b)). The distribution of the composite surface heights is still characterized by the inverted
chi-square distribution,

φ(z) =
1

2n/2Γ(n/2)

(
z

σc/
√

2n

)(n−2)/2

exp
(
− z

2σc/
√

2n

)
(4.20)

where σc is the composite surface rms roughness (σc =
√
σ2

1 + σ2
2). The effects of the surface

properties on the interfacial mechanics can be seen below.

4.A.3 Static responses of rough interfaces - Brown-Scholz’s model

When a rough interface is pressed by a hydrostatic pressure, the interface gap decreases (in other
words, the relative approach increases). The relation between the external normal pressure P
and the relative approach δ (Fig. 4.10) between the two contacting surfaces can be determined
by Brown-Scholz’s model [43]

P (δ) =
4
3
Mψ

∫ δ

0
(δ − z)3/2φ(z)dz (4.21)

where δ is the relative approach between the mean planes of the two rough surfaces, M =
η〈E〉〈β1/2〉, η is the summit density of the composite surface, 〈E〉 is the average reduced elastic
modulus of contacting asperities, and 〈β1/2〉 is the average of the square root of the radius of
a composite peak, ψ is the factor due to the effect of misalignment. In the present case, it is
assumed that ψ = 1.
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The surfaces of a rough interface are partly in contact, and the interface gap (or the relative
approach δ) is determined by external pressure P (i.e., the larger the P , the smaller the gap or
the larger the δ). The interfacial force due to the contact is in equilibrium with the external
pressure. P = P (δ) usually is a nonlinear function of δ (Fig. 4.11).

4.A.4 Ultrasonic (dynamic) responses of rough interfaces - ultrasonic non-
linearity

Consider a rough interface that is pressed by an external static pressure P0 and the initial
relative approach is δ0. When an ultrasound (a dynamic force) impinges onto the interface,
the gap changes. Assuming that the dynamic change of the relative approach caused by the
ultrasound is ∆δ, the contact force becomes P (δ0 + ∆δ).

u(-0, t) u(+0, t)

x
0

f(x - ct) h(x - ct)

u(x, t)=h(x - ct)

G

P
0

P
0

G

Y(t)=u(+0,t) - u(-0,t)

Rough
Interface

Dynamic
force

Dynamic
force

Static
pressure

Static
pressure

u(x, t)=f(x - ct)+g(x + ct)

g(x + ct)

Figure 4.30: Geometry of a rough interface.

Assume that a rough interface is planar and separates two identical elastic media with Lamé
elastic constants λ and µ and density ρ, and located at x = 0 ( Fig. 4.30). When a plane wave
with a particle displacement f(x− ct) is incident on the interface, the corresponding ultrasonic
force (the driving force per unit area) imposed on the interface may be expressed as

F (t− x/c) = −(λ+ 2µ)
∂f(x− ct)

∂x
(4.22)

At the interface x = 0, the incident wave f(x − ct) is partly reflected and partly transmitted.
The displacement u(x, t) can, thus, be expressed as

u(x, t) = f(x− ct) + g(x+ ct), x < 0, t > 0
= h(x− ct), x > 0, t > 0

(4.23)

where g(x+ ct) and h(x− ct) are the reflected and transmitted waves, respectively. The stress
σ can be written as

σ(x, t) = κ
∂u(x, t)
∂x

− P0 = κ[f ′(x− ct) + g′(x+ ct)] − P0, x < 0

= κh′(x− ct) − P0, x > 0
(4.24)
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At the interface the particle displacement becomes

u(+0, t) = f(−ct) + g(+ct), x < 0, t > 0
u(−0, t) = h(−ct), x > 0, t > 0

(4.25)

the particle velocity is

u̇(+0, t) = −cf ′(−ct) + cg′(ct), x < 0, t > 0
u̇(−0, t) = −ch′(−ct), x > 0, t > 0

(4.26)

and the stress is

σ(+0, t) = κ[f ′(−ct) + g′(+ct)] − P0, x < 0
σ(−0, t) = κh′(−ct) − P0, x > 0

(4.27)

The relative motions of interface boundaries

Y (t) = u(+0, t) − u(−0, t) (4.28)

is defined as the interface opening displacement. The dynamic interfacial force (per unit area)
on the contacting surfaces due to the ultrasonic displacement u(0, t) is defined as

G = −κ∂u(0, t)
∂x

(4.29)

which is a function of Y .

When the interfacial gap is thin compared to the wavelength, the whole gap under ultrasonic
disturbance may be assumed to have the same dynamic behavior, and thus can be modelled by a
lumped system, which is a combination of distributed spring and mass [35]. This is the so-called
quasi-static approximation (QSA). According to the QSA, an interfacial imperfection causes a
discontinuity in the displacement that is proportional to the stress at the interface, while for
interfaces between the contacting surfaces, the components of the stress fields are assumed to
be continuous everywhere [43], namely,

σ(+0, t) = σ(−0, t) (4.30)

From the above condition and Eq. (4.27), it follows that

κ[f ′(−ct) + g′(+ct)] − P0 = κh′(−ct) − P0 (4.31)

which leads to the following relation (with consideration of the definition in Eq. (4.29))

G(Y ) = −κ[f ′(−ct) + g′(ct)]
G(Y ) = −κh′(−ct)

(4.32)

From Eq. (4.26), and noting that Y (t) = u(+0, t)− u(−0, t) and c/κ = 1/(ρc) (since c2 = κ/ρ),
Eq. (4.32) can be expressed as

ρcẎ (t) = 2G(Y ) − 2F (t) (4.33)

which is the equation that governs the motion of interface opening displacement Y (t) under
ultrasonic insonification. The solution of the equation provides us the (nonlinear) response of
the interface to the ultrasound. Note that Y (t) ≥ 0 is always true, and G(Y ) is usually a
nonlinear function of Y (t).

For the initial relative approach δ0 due to the hydrostatic pressure P0, the initial interface gap
(interface opening displacement) is assumed to be Y (0) = Y0. When the interface is disturbed
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by an ultrasound, it may have three states (Fig. 4.13): completely closed (Y (t) = 0), partially
closed (0 < Y (t) ≤ Y0 + δ0), and completely open (Y (t) > Y0 + δ0).

When the interface gap is completely closed, we have

Y (t) = 0; Ẏ (t) = 0 (4.34)

In this case, the interface vanishes, and Eq. (4.33) gives

G(Y ) = F (t) (4.35)

When the interface is completely open (Y (t) > Y0 + δ0), the stress on the interface surfaces
vanish, and then we have

σ(±0, t) = −G(Y ) − P0 = 0 (4.36)

which leads to
G(Y ) = −P0 (4.37)

In this case, Eq. (4.33) becomes

ρcẎ (t) = −2P0 − 2F (t) (4.38)

When the interface is partially closed (0 < Y (t) ≤ Y0 + δ0), Eq. (4.33) can be solved if G(Y ) is
known. If G(Y ) is a linear function of Y , then Eq. (4.33) may have analytical solution. However,
G(Y ) in practice is mostly a nonlinear function of Y , thus one has to resort to numerical solution.

For a smooth interface, the gap only has two states: closed and open. It is just a special case
of a rough interface without partially-closed state. Thus, Eq. (4.33) also applies to the smooth
interface.

After Y (t) and u(±0, t) are determined, and from Y (t) = u(+0, t)− u(−0, t) and Eq. (4.25),
the reflected wave g(x+ ct) and the transmitted wave h(x− ct) can be found as follows

g(x+ ct) = −1
2
Y
(
t+

x

c

)
(4.39)

and
h(x− ct) = f(x− ct) +

1
2
Y
(
t− x

c

)
(4.40)

The above two relations are useful because reflection or transmission is usually detected by a
receiving transducer.

A. Ultrasonic nonlinearity of an unbounded smooth interface

Consider an incident wave of a sinusoid

f(x− ct) = −A sin(kx− ωt) (4.41)

which at the interface x = 0 becomes

f(0 − ct) = A sin(ωt) (4.42)

The driving force on the interface is (Eq. (4.22))

F (t) = −κ∂f(x− ct)
∂x

|x=0 = κkA cos(−ωt) = ρcωA cos(−ωt) = B cos(ωt) (4.43)

where
B = ρcωA (4.44)
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A smooth interface may only have two states: closed (Y (t) = 0) and open (Y (t) > 0). For a
closed interface, the interface opening displacement is

Y (t) = 0 (4.45)

and the interfacial force is
G(Y ) = F (t) (4.46)

When the interface is open, one has G(Y ) = −P0 (Eq. (4.37)), and the governing equation of
interface opening displacement (Eq. (4.38)) becomes

ρcẎ (t) = −2P0 − 2B cos(ωt) (4.47)

The solution to the above differential equation is

Y (t) = − 2
ρc

∫
[P0 +B cos(ωt)]dt = − 2

ρc

[
P0t+

B

ω
sin(ωt)

]
+ C

= −2A [ηωt+ sin(ωt)] + C

(4.48)

where
η = P0/B (4.49)

and C is the arbitrary constant that can be determined from the ”initial” conditions at t = ti,

C(ti) = Y (ti) + 2A [ηωti + sin(ωti)] (4.50)

C(ti) needs to be calculated when the gap changes from the closed state to the open state,
because Eq. (4.48) is valid only for the open gap. The relation of G(Y ) with Y is nonlinear
provided that |F (t)| > P0 (see Fig. 4.4).

B. Ultrasonic nonlinearity of unbounded rough interfaces

An unbounded rough interface under ultrasonic disturbance may have three states (Fig. 4.13):
completely closed (Y (t) = 0), partially closed (0 < Y (t) ≤ Y0 + δ0), and completely open
(Y (t) > Y0 + δ0). The partially-closed state of a rough interface is the only difference from a
smooth surface. The solution of Eq (4.33) for the closed and open states in the rough interface
case are similar to those in the smooth interface case.

A rough interface in reality has a nonlinear stiffness (i.e., G(Y ) nonlinearly depends on Y
in the partially closed state, 0 < Y (t) ≤ Y0 + δ0) [41, 43]. Here, however, we consider a
rough interface with a linear stiffness, which can be seen as a simplified case of some real rough
interfaces. For such an interface, an analytical solution to Eq (4.33) is available. For the solution
to a rough interface with a nonlinear stiffness one can resort to numerical calculation.

Assume that the rough interface has a linear interfacial stiffness for 0 < Y (t) < Y (0) + δ0

G(Y ) = −κ0[Y (t) − Y0] (4.51)

where Y0 is the initial equilibrium thickness of the interface, and κ0 is the normal interfacial
stiffness constant.

When the interface is completely closed, then

Y (t) = 0; G(Y ) = F (t) (4.52)

When the interface is completely open (Y (t) > Y0 + δ0), Y (t) can be determined in the same
way as in the smooth interface case

Y (t) = −2A [ηωt+ sin(ωt)] + Co (4.53)
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where the arbitrary constant Co can be found from the ”initial” conditions at t = ti,

Co(ti) = Y (ti) + 2A [ηωti + sin(ωti)] (4.54)

Note that Co(ti) needs to be calculated when the gap changes from the partially-closed state to
the open state. The interfacial force for the open gap is

G(Y ) = −κ0δ0 = −P0 (4.55)

For the partially-closed interface (0 < Y (t) < Y0 + δ0), inserting Eq. (4.51) into Eq. (4.33) yields

ρc ˙Y (t) = −κ0[Y (t) − Y0] − 2F (t) (4.56)

Since the solution to equation ẏ+P (t)y = Q(t) is y(t) = e−
∫
P (t)dt

[∫
Q(t)eintP (t)dtdt+ C

]
, and

considering F (t) = ρcωA cos(ωt), the solution to Eq. (4.56) can be found to be

Y (t) − Y0 = exp(−ξt)
{
−2ωA

exp(ξt)
ξ2 + ω2

[ξ cos(ωt) + ω sin(ωt)] + Cp

}
(4.57)

where
ξ =

2κ0

ρc
(4.58)

and Cp is determined by the initial value of Y (tj) at t = tj ,

Cp(tj) = exp(ξtj)
{

[Y (tj) − Y0] +
2ωA

ξ2 + ω2
[ξ cos(ωtj) + ω sin(ωtj)]

}
(4.59)

Cp(tj) should be calculated when the interface gap changes either from the open state to the
partially-closed state or from the completely-closed state to the partially-closed state if the states
are present. For the initial condition Y (0) = Y0 at t = 0, one may have

Cp(0) =
2ωξA
ξ2 + ω2

(4.60)

The interface opening displacement in this case becomes

Y (t) =
−2ωA
ξ2 + ω2

[ξ cos(ωt) + ω sin(ωt)] + exp(−ξt) 2ωξA
ξ2 + ω2

+ Y0 (4.61)

and the interfacial force is

G(Y ) = −κ0

{
−2ωA
ξ2 + ω2

[ξ cos(ωt) + ω sin(ωt)] + exp(−ξt) 2ωξA
ξ2 + ω2

}
(4.62)

For a rough interface with nonlinear interfacial stiffness as shown in Fig. 4.13, one can resort
to the numerical computation. If an appropriate polynomial is applied to fit the nonlinear
relation between G(Y ) and Y , the differential equation (Eq. (4.33)) can be comparatively easy
to solve.

78



4.B Measurement results
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(a) 30 KN (90 mm/00 mm) for 60 v−pp excitation
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(b) 30 KN (90 mm/00 mm) for 206 v−pp excitation
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(c) 30 KN (90 mm/00 mm) for 431 v−pp excitation
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(e) 30 KN (90 mm/00 mm) for 934 v−pp excitation
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(g) 30 KN (90 mm/00 mm) for 1408 v−pp excitation
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(h) 30 KN (90 mm/00 mm) for 1653 v−pp excitation
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(i) 30 KN (90 mm/00 mm) for 1888 v−pp excitation
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(j) 30 KN (90 mm/00 mm) for 2101 v−pp excitation
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(k) 30 KN (90 mm/00 mm) for 2260 v−pp excitation

0 1 2 3 4 5
10

−6

10
−4

10
−2

10
0

(k´) Spectrum of the signal in (k)

Figure 4.31: Measurements on Specimen CUCYL 0 for different tone-burst excitations E0 and
fixed external force P0=30 KN. (a) to (k) Waveforms, and (a) to (k) their spectra.
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(a) 100 KN (90 mm/00 mm) for 60 v−pp excitation
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(b) 100 KN (90 mm/00 mm) for 206 v−pp excitation
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(c) 100 KN (90 mm/00 mm) for 431 v−pp excitation
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(d) 100 KN (90 mm/00 mm) for 675 v−pp excitation
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(e) 100 KN (90 mm/00 mm) for 934 v−pp excitation
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(f) 100 KN (90 mm/00 mm) for 1179 v−pp excitation
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(g) 100 KN (90 mm/00 mm) for 1408 v−pp excitation
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(h) 100 KN (90 mm/00 mm) for 1653 v−pp excitation
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(i) 100 KN (90 mm/00 mm) for 1888 v−pp excitation
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(j) 100 KN (90 mm/00 mm) for 2101 v−pp excitation
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(k) 100 KN (90 mm/00 mm) for 2260 v−pp excitation
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Figure 4.32: Measurements on Specimen CUCYL 0 for different tone-burst excitations E0 and
fixed external force P0=100 KN. (a) to (k) Waveforms, and (a) to (k) their spectra.
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(a) Cylind 3 (60 mm/60 mm) for 30 KN & 60 Vp−p
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(b) Cylind 3 (60 mm/60 mm) for 30 KN & 206 Vp−p
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(c) Cylind 3 (60 mm/60 mm) for 30 KN & 431 Vp−p
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(d) Cylind 3 (60 mm/60 mm) for 30 KN & 675 Vp−p
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(e) Cylind 3 (60 mm/60 mm) for 30 KN & 934 Vp−p
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(f) Cylind 3 (60 mm/60 mm) for 30 KN & 1179 Vp−p
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(g) Cylind 3 (60 mm/60 mm) for 30 KN & 1408 Vp−p
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(h) Cylind 3 (60 mm/60 mm) for 30 KN & 1653 Vp−p
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(i) Cylind 3 (60 mm/60 mm) for 30 KN & 1888 Vp−p
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(j) Cylind 3 (60 mm/60 mm) for 30 KN & 2101 Vp−p
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(k) Cylind 3 (60 mm/60 mm) for 30 KN & 2260 Vp−p
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Figure 4.33: Measurements on Specimen CUCYL 3 for different tone-burst excitations E0 and
fixed external force P0=30 KN. (a) to (k) Waveforms, and (a) to (k) their spectra.
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(a) Cylind 3 (60 mm/60 mm) for 100 KN & 60 Vp−p
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(b) Cylind 3 (60 mm/60 mm) for 100 KN & 206 Vp−p
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(c) Cylind 3 (60 mm/60 mm) for 100 KN & 431 Vp−p
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(d) Cylind 3 (60 mm/60 mm) for 100 KN & 675 Vp−p
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(e) Cylind 3 (60 mm/60 mm) for 100 KN & 934 Vp−p
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(f) Cylind 3 (60 mm/60 mm) for 100 KN & 1179 Vp−p
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(g) Cylind 3 (60 mm/60 mm) for 100 KN & 1408 Vp−p

0 1 2 3 4 5
10

−6

10
−4

10
−2

10
0

Frequency f [MHz]

(g´) Spectrum of the signal in (g)

20 30 40 50
−30

−20

−10

0

10

20

30

Time t [µs]

S
ig

na
l a

m
pl

itu
de

 [v
ol

ts
]

(h) Cylind 3 (60 mm/60 mm) for 100 KN & 1653 Vp−p
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(i) Cylind 3 (60 mm/60 mm) for 100 KN & 1888 Vp−p
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(j) Cylind 3 (60 mm/60 mm) for 100 KN & 2101 Vp−p
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(k) Cylind 3 (60 mm/60 mm) for 100 KN & 2260 Vp−p
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Figure 4.34: Measurements on Specimen CUCYL 3 for different tone-burst excitations E0 and
fixed external force P0=100 KN. (a) to (k) Waveforms, and (a) to (k) their spectra.
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(a) Harmonics for 0 KN (Cu 90 mm/00 mm)
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(c) Harmonics for 10 KN (Cu 90 mm/00 mm)
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(d) Harmonics for 20 KN (Cu 90 mm/00 mm)
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(e) Harmonics for 30 KN (Cu 90 mm/00 mm)
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(f) Harmonics for 40 KN (Cu 90 mm/00 mm)
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(g) Harmonics for 50 KN (Cu 90 mm/00 mm)
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(h) Harmonics for 60 KN (Cu 90 mm/00 mm)
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(i) Harmonics for 70 KN (Cu 90 mm/00 mm)
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(j) Harmonics for 80 KN (Cu 90 mm/00 mm)

2nd/1st
3rd/1st

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

Excitation Voltage [volts]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(k) Harmonics for 90 KN (Cu 90 mm/00 mm)
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(l) Harmonics for 100 KN (Cu 90 mm/00 mm)

2nd/1st
3rd/1st

Figure 4.35: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with tone-burst excitation for external static pressures: (a) 1 KN, (c) 10 KN, (d) 20 KN, (e) 30
KN, (f) 40 KN, (g) 50 KN, (h) 60 KN, (i) 70 KN, (j) 80 KN, (k) 90 KN, (l) 100 KN.
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Figure 4.36: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with external static pressure for different tone-burst excitations. (a) 60 Vp-p, (b) 206 Vp-p, (c)
431 Vp-p, (d) 675 Vp-p, (e) 934 Vp-p, (f) 1179 Vp-p, (g) 1408 Vp-p, (h) 1653 Vp-p, (i) 1888
Vp-p, (j) 2101 Vp-p, and (k) 2284 Vp-p.
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(a) Harmonics for 1 KN (Cu 60 mm/60 mm)
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(c) Harmonics for 10 KN (Cu 60 mm/60 mm)
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(d) Harmonics for 20 KN (Cu 60 mm/60 mm)
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(e) Harmonics for 30 KN (Cu 60 mm/60 mm)
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(f) Harmonics for 40 KN (Cu 60 mm/60 mm)
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(g) Harmonics for 50 KN (Cu 60 mm/60 mm)
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(h) Harmonics for 60 KN (Cu 60 mm/60 mm)

2nd/1st
3rd/1st

0 500 1000 1500 2000 2500
0

0.05

0.1

N
or

m
al

iz
ed

 A
m

pl
itu

de

(i) Harmonics for 70 KN (Cu 60 mm/60 mm)
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(j) Harmonics for 80 KN (Cu 60 mm/60 mm)
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(k) Harmonics for 90 KN (Cu 60 mm/60 mm)
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(l) Harmonics for 100 KN (Cu 60 mm/60 mm)
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Figure 4.37: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with tone-burst excitation for external static pressures: (a) 1 KN, (c) 10 KN, (d) 20 KN, (e) 30
KN, (f) 40 KN, (g) 50 KN, (h) 60 KN, (i) 70 KN, (j) 80 KN, (k) 90 KN, (l) 100 KN.
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Figure 4.38: Variation of second (−) and third (- -) harmonics (normalized by the fundamental)
with external static pressure for different tone-burst excitations. (a) 60 Vp-p, (b) 206 Vp-p, (c)
431 Vp-p, (d) 675 Vp-p, (e) 934 Vp-p, (f) 1179 Vp-p, (g) 1408 Vp-p, (h) 1653 Vp-p, (i) 1888
Vp-p, (j) 2101 Vp-p, and (k) 2284 Vp-p.
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