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Abstract 

The study concerns a mathematical modelling of a fractured rock mass and its investigations  
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency 
(precision) of such investigations and determine the amount of investigations necessary to 
obtain reliable estimations of the structural-geological parameters of the studied rock mass.  
The study is not about estimating suitable sample sizes to be used in site investigations, The 
purpose of the study is to analyse the amount of information necessary for deriving estimates  
of the geological parameters studied, within defined confidence intervals and confidence levels. 
In other words, how the confidence in models of the rock mass (considering a selected number 
of parameters) will change with amount of information collected form boreholes and surfaces. 

The study is limited to a selected number of geometrical structural-geological parameters:  

• Fracture orientation: mean direction and dispersion (Fisher Kappa and SR1). 

• Different measures of fracture density (P10, P21 and P32). 

• Fracture trace-length and strike distributions as seen on horizontal windows. 

A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock 
mass. The DFN-model was primarily based on the properties of an actual fracture network 
investigated at the Äspö Hard Rock Laboratory. The rock mass studied (DFN-model) contained 
three different fracture sets with different orientations and fracture densities. The rock unit 
studied was statistically homogeneous. The study includes a limited sensitivity analysis of the 
properties of the DFN-model. 

The study is a theoretical and computer-based comparison between samples of fracture 
properties of a theoretical rock unit and the known true properties of the same unit. The samples 
are derived from numerically generated boreholes and surfaces that intersect the DFN-network. 
Two different boreholes are analysed; a vertical borehole and a borehole that is inclined 
45 degrees. Borehole lengths are varied between 20 and 1000 metres. Circular horizontal rock 
surfaces are also analysed, the radii of these surfaces were varied between 4 and 150 metres. 
The results of the study are based on both parametrical and non-parametrical statistical tests 
(parametrical tests for Fisher spherical distributions). 

The detailed results of the study are given as calculated borehole lengths and radii of rock 
surfaces (sample sizes), necessary for estimating structural-geological parameters of each 
fracture set, for a given confidence interval and a given confidence level. The sensitivity 
analysis, demonstrates and discuses how sample size varies with the properties of the DFN-
model (fracture density [P32] and fracture radius distribution.) In addition the results of the 
study includes discussions of (i) the optimal orientation of a borehole, (ii) the exchangeability  
of samples from several shorter boreholes and smaller surfaces contra samples from fewer but 
larger boreholes and surfaces, and (iii) the applicability of parametrical tests in relation to 
sampling bias. 

Different methods for calculation of the structural-geological parameters from samples taken in 
boreholes and on surfaces are discussed and analysed in the study, e.g. for fracture orientation 
the eigenvalues and resultant vector methods (with inclusion of Terzaghi-correction). For the 
trace-length and strike distributions, moments and shape of distributions have been analysed 
(with inclusion of curve fitting procedures). 
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Sammanfattning 

Denna studie är en matematisk modellstudie av en sprickig bergmassa och dess undersökning 
med hjälp av observationer i teoretiska borrhål och kartering av teoretiska bergytor (hällar),  
med syftet att analysera sådana undersökningars effektivitet och precision, och bestämma den 
undersökningsmängd som är nödvändig för att erhålla pålitliga uppskattningar av bergmassans 
strukturgeologiska egenskaper (parametrar). Det är inte syftet med denna studie att uppskatta en 
lämplig stickprovsstorlek att användas vid platsundersökningar. Studien syftar istället till att 
analysera den informationsmängd som är nödvändig för att erhålla uppskattningar av de 
studerade geologiska parametrarna med bestämda konfidensinterval och konfidensnivåer.  
Alltså en analys av hur konfidens i modeller av bergmassan (för vissa utvalda parameter) 
förändras med mängden information som erhålls från borrhål och hällar. 

Studien är begränsad till ett utvalt antal geometriska strukturgeologiska parametrar. 

• Sprickorientering: medelriktning och dispersion (Fisher Kappa och SR1). 

• Olika mått på sprickdensitet (P10, P21 och P32) 

• Sprickspårlängd och sprickspårriktning. 

Den studerade bergmassan (sprickigt berg) representerades av numeriska DFN-modeller 
(nätverk av diskreta sprickor). DFN-modellerna baserades huvudsakligen på egenskaperna hos 
ett verkligt spricksystem som har undersökt vid Äspö berglaboratorium (HRL). Den analyserade 
bergmassan (DFN-modellen) innehåller tre olika sprickset, med olika orientering och värden på 
sprickdensitet. Den studerade bergenheten var statistiskt homogen. Studien inkluderar en 
begränsad sensitivitetsanalys av DFN-modellens egenskaper. 

Studien är en teoretisk och datorbaserad jämförelse mellan egenskaper som uppvisas av 
stickprov från en bergenhet och bergenhetens kända egenskaper. Stickprov erhölls från 
numeriskt genererade borrhål och bergytor, som genomkorsar DFN-modellen. Två olika  
borrhål analyserades; ett vertikalt borrhål och ett borrhål som vinklades 45 grader. Borrhålens 
längd varierades mellan 20 m och 1000 m. Cirkulära horisontella bergytor analyserades också, 
radien på dessa ytor varierades mellan 4 m och 150 m. Studiens resultat baserades på både 
parametriska och icke-parametriska statistiska tester (parametriska tester mot sfäriska 
Fisherfördelningar). 

Studiens detaljerade resultat är beräknade borrhålslängder och radier på hällar 
(stickprovsstorlek), nödvändiga för uppskattning av spricksetens strukturgeologiska parametrar, 
vid givna konfidensinterval och konfidensnivåer. Sensitivitetsanalysen demonstrerar och 
diskuterar hur stickprovsstorlek varierar med DFN-modellens egenskaper (sprickdensitet [P32] 
och sprickradiusfördelning). Dessutom inkluderar studien en diskussion om (i) mest fördelaktig 
orientering för ett borrhål, och (ii) utbytbarheten av stickprov från flera korta borrhål och små 
hällar kontra stickprov från få men långa borrhål och stora hällar, och (iii) parametriska testers 
tillämpbarhet i relation till systematiska avvikelser i stickprovsundersökningarna. 

Olika metoder för att beräkna stukturgeologiska parametrar från stickprov tagna i borrhål  
och hällar diskuteras och analyseras i studien; för sprickorientering egenvärdesmetoden och 
resultantvektorsmetoden (med Terzaghikorrektion); för sprickspårsfördelningar analyserades 
moment och form på fördelningar (med bl.a. kurvpassnings mot lognormal fördelningar). 
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Executive summary 

Introduction 

SKB will conduct site investigations for selecting a suitable place to locate the deep 
repository for nuclear waste. Rock units are to be investigated by use of deep boreholes 
and mapping of rock outcrops (other methods will also be used). Based on analysis of 
observations collected from boreholes and rock outcrops (and other investigations),  
site descriptive models of the rock mass are established. These models describe the 
geological parameters of the rock mass. Many geological parameters are heterogeneous 
and vary spatially (e.g. fracture density, hydraulic conductivity etc), therefore the 
confidence in the established models depends on the number and size of boreholes  
and rock outcrops used for investigating the rock mass and for establishing the site 
descriptive models. However, due to practical and economical limitations the number  
of possible boreholes etc is limited. Considering site investigations and the rock mass 
analysed in this study (a selected rock unit with specific properties), the results of this 
study will indicate lengths of boreholes and sizes of rock surfaces, necessary for 
deriving estimates of the selected and analysed structural geological parameters,  
within defined confidence intervals and confidence levels. 

However, it is important to note that this study is not about estimating the necessary 
sample sizes to be used in site investigations. The necessary amount of information  
that needs to be collected at a site investigation is best calculated based on statistical 
analysis at different stages of sampling (preliminary and confirmatory sampling) and  
in combination with safety analysis calculations (i.e. sensitivity analyses of such 
calculations). Theoretically, the necessary sample sizes and acceptable uncertainties in 
estimation of the true properties (parameters) of a rock mass depend on the properties of 
the investigated site and the results of safety analyses calculations. Large uncertainties 
could be accepted for parameters with little importance in the safety analysis, or for 
remote rock volumes that carries small importance in the safety analysis; while 
parameters and rock volumes that the safety analysis calculations has identified as  
being important for the performance of the investigated site, such parameters and 
volumes needs to be investigated in more detail to produce reliable estimates with a 
small amount of uncertainty. 

Purpose 

This study is a mathematical modelling of a fractured rock mass and its investigations 
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the 
efficiency and precision of such investigations. The general purpose of this study is to 
investigate how knowledge of selected geological parameters depend on information 
collected from boreholes and rock surfaces and how this information varies with length 
and inclination of boreholes, as well as on size of rock surfaces. In other words, how  
the confidence in the models of the rock mass (considering a selected number of 
parameters) will change with amount of information collected form boreholes and  
rock surfaces. 
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This study is limited to a selected number of geometrical parameters of a fracture 
system. Considering the site investigation program, /Stråhle, 2001/ defines such 
parameters. In this study the following geological parameters are investigated: 

(i) Fracture orientation. 

(ii) Fracture density (frequency) 

(iii) Fracture trace length  

In this study fracture orientation is analysed considering mean directions and 
dispersions of the different fracture sets. Fracture density (frequency) is analysed 
considering different density parameters (P10, P21 and P32). Fracture trace-length  
and fracture strike distributions (based on direction of fracture traces) are analysed 
considering distribution characteristics. 

In general, the method of the study is to numerically generate a fracture network and 
numerically analyse it, by use of theoretical boreholes and surfaces. A comparison 
between the known true properties of the network (the parameters) and the derived 
properties (the samples) will reveal the deviation between the true properties and the 
derived properties, and the size of deviation will indicate how the knowledge will vary 
with the amount of investigation. 

Terminology 

Some of the terms used in this study are explained in the next section. 

Methodology – general 

This study is a theoretical and computer-based comparison between (i) samples of 
fracture properties of a theoretical rock mass (a fracture network) as revealed by 
observations in simulated boreholes and on simulated rock surfaces; and (ii) the known 
true properties (parameters) of the theoretical rock mass. Discrete fracture networks 
(DFN-models) represent the rock mass, and the computer program Eblafrac generated 
the DFN-models. In this study the properties of the fracture network of the rock mass 
are known, and these networks constitute the ”reality” studied. 

Thus, the numerically generated fracture network is the studied population. The 
boreholes studied are theoretical lines that cut through the fracture network. The 
fractures that intersects the borehole (the observed fractures) form a sample of the 
fracture population. The rock surfaces studied are theoretical planes that cut through  
the fracture network. The fractures that intersect the plane (the observed fracture traces) 
form a sample of the fracture population. The properties of the samples are estimates of 
the properties of the population. 

Properties of the studied fracture network – DFN model 

The studied fracture network represents the rock mass at the Prototype Repository at  
the Äspö Hard Rock laboratory. The fracture network model, used in this study, is the 
DFN 2 model presented in /Hermanson et al, 1999/. The main objective of the DFN 2 
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modelling was to establish a discrete fracture network model, representing the rock 
mass at the Prototype Repository, which could be used for simulation of groundwater 
flow. Hence, the model was not intended for rock mechanical purposes. The DFN 2 
model underestimates the total number of fractures in the rock mass at the Prototype 
Repository, as small fractures with minor or negligible hydraulic importance is not 
included in the model. To what degree the DFN 2 model represents the actual properties 
at the Prototype Repository are not analysed in this study. 

The fracture network studied consists of three fracture sets. Set 1 and Set 2 have a  
sub-vertical orientation and Set 3 is sub-horizontal. The largest dispersion in fracture 
orientation (deviations about the mean direction) takes place within Set 1. For the other 
two fracture sets, the dispersion is much less and about the same. On the average, the 
largest fractures occur within Set 2, the smallest fractures are within Set 1. The fracture 
density, given as fracture area per unit volume (P32), varies between the fracture sets; 
Set 2 has the largest P32-value and Set 1 the smallest P32-value. A summary of the 
properties of the fracture network is given in Table 2-1 through Table 2-3 (page 31). 
The fractures are defined as circular planar discs with varying values of radii. 

Properties of the studied boreholes and rock surfaces 

We have studied two different boreholes, a vertical and an inclined borehole; the 
orientation of the inclined borehole is 45 degrees from vertical. For both boreholes,  
the lengths (of the boreholes) were varied from 20 metres and up to 1000 metres. 

We have also studied rock surfaces. The rock surfaces are analysed for fracture traces. 
A studied rock surface is called a window. All the analysed windows are horizontal; 
they correspond to horizontal rock outcrops. The geometrical shape of the windows 
studied is circular. The radius of the windows was varied from 4 metres and up to 
150 metres. 

For the boreholes and the windows, the number of realisations of the rock mass were 
varied between 500 and 1000. Hence, for every borehole length and rock surface area 
studied, a large number of different realisations of the fracture network were analysed. 
The large number of realisations is necessary to obtain reliable statistics. 

Terzaghi correction 

One-dimensional sampling is sampling along a straight line (a scanline). Such  
sampling of fracture orientation in a three-dimensional fracture system will introduce  
an orientation sampling bias. For compensation of this sampling bias /Terzaghi, 1965/ 
proposed the application of a geometrical correction factor, see Appendix B. In this 
study all fracture orientation data, derived from sampling the boreholes, are corrected 
for sampling bias by use of the Terzaghi correction. No Terzaghi correction was 
included when fracture densities (P10, P21 and P32) were estimated. In this study 
fracture data gathered from surfaces (e.g. distribution of trace lengths) have not been 
corrected for orientation sampling bias. 
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Classification of observed fractures into fracture sets 

In this study each fracture was marked with its proper set identity since this is known at 
the generation of the fracture. In a real situation, different methods and algorithms for 
identifying and delimiting sets will be necessary to ensure objective set identifications. 
Different methods for identification of fracture sets will produce different results. The 
reason why we have used the known true fracture set identity and not applied a fracture 
set identification algorithm is because we do not want the efficiency of the fracture set 
identification algorithm to influence the result of the study. 

Aspects of the applied statistical tests 

From a statistical point of view, the unknown properties of the rock mass are the 
properties of a population studied; we will call these properties the true properties. 
Samples will produce estimates of the true properties (estimates of the population); 
these estimates are called the sample properties. In general the sample properties deviate 
somewhat from the true properties. In reality when observing fractures in boreholes  
and on outcrops, and when predicting properties of the rock mass based on these 
observations, it is impossible to exactly calculate how much the sample properties 
deviate from those of the population, as the properties of the population are unknown. 
Nevertheless, considering the purpose of a real investigation there are probably some 
demands on accuracy, which correspond to an acceptable deviation in estimated 
properties. Decisions and conclusions are founded on the sample properties, hence large 
deviations between the sample properties and the true properties are not acceptable, but 
small deviations are acceptable as such deviations are of no practical importance.  

In this study, the properties of the rock mass are known, hence (in this study) it is 
possible to calculate the deviation between sample properties and the true properties. 
Primarily this study concerns tests in which the calculated deviation between sample 
properties and true properties is compared to different selected acceptable deviations of 
the test variable studied (first category of tests). The acceptable deviations are called the 
test criterions. However, this study also includes tests that do not directly correspond to 
a selected acceptable deviation, but to a given level of confidence in estimating the true 
properties (second category of tests). The difference between these two types of tests 
should be noted. The purpose of the first category of tests is to determine when the size 
of the sample is large enough to produce an acceptable estimate of the true properties 
(e.g deviation <= 15 degrees), with a certain probability (e.g. >= 90%). The purpose of 
the second category of tests is to demonstrate the probability for a given hypothesis of 
the properties of the population, to be rejected or accepted, at a certain selected level of 
confidence (e.g. 99%).  

For the first category of tests, the selected acceptable deviation is constant for all sizes 
of sample; in the second category of tests, the selected level of confidence is constant 
for all sizes of sample. The first category of tests are carried out as non-parametric tests, 
hence we make no assumptions regarding the statistical distributions of the properties of 
the studied fracture network or regarding systematic bias in the sampling procedure. 
The first category of tests could be considered as calculation of the sample size that is 
necessary to reach a confidence level, considering a given confidence interval. The 
confidence interval corresponds to the above-discussed acceptable deviation (test 
criterions). The sample size corresponds to a length of borehole or size of area. The 
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second category of tests are carried out as parametric tests, for which we assume that the 
orientation of the fractures of the studied network are according to Fisher distributions 
and that no sampling bias takes place. 

When performing statistical tests, it is common that different sample sizes are selected 
beforehand, and for such an analysis a point estimate of an unknown parameter refers to 
different fixed sizes of sample. That is however not the case in this study. In this study 
the number of observed fractures (i) along a studied borehole or (ii) on a studied 
surface, gives the sample size. Hence, for unknown boreholes or areas, the actual 
sample sizes are unknown, even if the lengths of the boreholes or sizes of areas are 
known, and the sample sizes are revealed when the samples are taken. The point 
estimates of this study refer not directly to different fixed sizes of sample, but to 
different fixed lengths of boreholes or sizes of area. On the average, the sample size 
increases with length of borehole and size of area. However, as the sample size will 
vary somewhat for a given borehole length or size of area, this variation will be a source 
of uncertainty. 

When studying the results of the tests it is important to remember that we are analysing 
a large number of samples that produce estimates of the true properties of the 
population. Hence, the statistical tests are applied to distributions of estimates 
corresponding to different lengths of borehole or areas of rock surfaces. 

Applicability and limitations of the presented results 

Results and conclusions given in this study are only directly applicable to the fracture 
networks studied; however, rock masses with similar fracture networks will produce 
similar results. Nevertheless, great care should be taken when generalising results and 
conclusions given in this study. It is important to note the following: 

• Considering the studied parameters of the rock mass, the results correspond to a 
rock unit having statistically homogeneous properties. When analysing real data 
from field investigations, the applicability of this assumption needs to be statistically 
evaluated.  

• The rock unit studied is of a certain size and is assigned statistically homogeneous 
properties. Sample sizes have been calculated sample sizes that are necessary to 
reach a certain confidence level when predicting the properties of the rock unit. 
When applying the results of this study to an actual rock unit it is not a prerequisite 
that the actual rock unit must be of the same size and form as the unit used in this 
study when the necessary sample sizes were calculated. However, the actual rock 
unit needs to be larger than the calculated necessary sample size, and it should carry 
statistically properties that are close to homogeneous within the volume considered. 
For example, it is a result of this study that for a certain rock mass the mean 
direction of a certain fracture set could be estimated (within a certain acceptable 
deviation) using a vertical borehole with a length of 20 m. Such a result is applicable 
to a rock unit that is larger than 20 m and carries statistically homogeneous 
properties within that scale. 
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• The fracture network studied does not contain any spatial correlation of the 
fractures. For a fracture network that has such a correlation, the necessary length  
of boreholes and size of rock outcrops, for producing an estimate with a certain 
confidence, is larger than for the network of this study. 

• The effects of different methods for identification of fracture sets are not included in 
this study. 

• The fracture orientations observed in boreholes were corrected for sampling bias  
by use of Terzaghi correction; such a correction is essential and should always be 
included when analysing fracture orientation data from boreholes. 

• This study is a theoretical study, all data form the boreholes and rock-surfaces are 
numerically collected from a numerical fracture-network. No measurement errors 
occur in this study and all data is collected with the same high precision and quality. 

Below are a few important observations that should be considered when generalising 
the results and conclusions given in this study (more details are given in the sensitivity 
analysis presented in Chapter 9 [page 179])  

• The results depend on the properties of the fracture network, i.e. fracture orientation 
and fracture density (intensity) and fracture size. Generally, for a fracture network 
with a higher fracture density than that of the network studied, the lengths of 
boreholes and sizes of rock outcrops, necessary for deriving an estimate within a 
certain confidence interval and at a certain confidence level, is less than for the 
network studied. It follows that for a rock mass with a lower fracture density, the 
necessary length of boreholes and size of rock outcrops is larger than for the 
network of this study. Also the type of distribution of orientations within a fracture 
set (e.g. Fisher distribution) will influence the necessary lengths and areas. 

• The dispersion of the orientations of the fractures of a fracture set will influence the 
length of a borehole and the size of a rock outcrop (window), necessary for deriving 
an estimate with a certain confidence. In general, when analysing a fracture set with 
a large dispersion, the necessary length of borehole and size of rock outcrop is larger 
than for a fracture set with a smaller dispersion (everything else being equal). 

• When analysing a fracture set with a sampling structure, i.e. a borehole (a scan-line) 
or a rock-outcrop (a window). The length or size of the sampling structure, 
necessary for deriving an estimate with a certain confidence, depends on the 
orientation of the sampling structure in relation to the mean orientation of the 
fracture set studied. In general the most favourable orientation of a sampling 
structure is an orientation parallel to the mean direction (defined by trend and 
plunge) of the fracture set studied, i.e. on the average the fracture planes should be 
at right angles to the structure. For boreholes, the use of Terzaghi-correction will 
compensate for the systematic bias caused by sampling a three-dimensional  
fracture system with a one-dimensional scan-line. Therefore, a borehole that is 
approximately at right angle to the mean direction (defined by trend and plunge) of 
the fracture set (i.e. on the average the fracture planes are along the borehole) can  
be used for sampling. The Terzaghi-correction is not perfect and for very small 
confidence intervals (acceptable deviations), the remaining bias may come to 
dominate the derived estimates.  
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• Consider estimations based on observations in boreholes. Everything else being 
equal, the necessary length of borehole for producing an estimate with a certain 
confidence level (for a given confidence interval) is linearly proportional to the 
fracture density of the population studied (P32, P21 or the P10-value). 

• For a rock mass with a given fracture density, the mean and the variance of the 
fracture radius distributions (fractures defined as circular planar discs), will not 
influence the number of fractures that intersects a borehole. Hence, on the average  
a small number of large fractures will produce the same number of fracture 
observations in a borehole as a large number of small fractures, presuming that the 
fracture density of the rock mass is the same (P32 is constant). It follows that for 
estimations based on observations in boreholes, the necessary length of borehole  
for producing an estimate with a certain confidence level (for a given confidence 
interval), is independent on mean and variance of the fracture radius distributions, 
presuming that the fracture density of the rock mass is the same (P32 is constant). 

• Consider estimations based on observations on surfaces. Everything else being 
equal, the necessary size of rock-outcrop (window) for producing an estimate with  
a certain confidence level is not linearly proportional to the fracture density of the 
population studied (the P32-value or the P21-value). Estimation of the trace-length 
distributions is difficult, the necessary size of window for producing an estimate 
with a certain confidence level depends on (i) the orientations of window studied in 
relation to that of the fracture set studied, (ii) the size of the window studied in 
relation to the properties of the fracture-radius distribution that created the fracture 
traces, as well as on (iii) the fracture density (the P32-value) and the dispersion of 
the fracture set studied. It follows that it is difficult to make any general conclusions 
regarding the necessary window size for estimating the properties of a trace-length 
distribution (with a certain confidence). For estimation of the mean of a strike 
distribution (derived from the directions of fracture traces), the necessary window-
radius for deriving an estimate with a certain confidence level is related to the 
fracture density (P32-value) in a non-linear way. However, for fracture networks 
that are equal, except for the P32-value, this relationship can be analytically 
estimated. 

Summary of detailed results 

Below we will present some detailed results; a more complete summary of results is 
given last in the main report, Figure 9-1 (page 216) through Figure 9-4 (page 219).  
The results given below correspond to a confidence level of 90 percent. The confidence 
interval (acceptable deviation) considering fracture set mean direction is defined as a 
deviation of plus/minus 15 degrees from the true value of the population (deviation as 
an acute angle between two vectors, see Section 4.1 [page47]). The confidence interval 
(acceptable deviation) for the values of: fracture set dispersion, fracture densities  
(P10, P21 and P32) as well as the moments of trace-length distributions and strike 
distributions (from direction of fracture traces), is defined as a range of plus/minus 
15 percent of the true values of the population (centred on the true values). The length 
of borehole or radius of studied window corresponds to a sample size the size that is 
necessary to reach the confidence level. The results given below are only examples of 
results that can be deduced from the figures of the main report. 
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Considering the fracture network studied (Table 3-1 through Table 2-3 [page 31]) and 
the results (summarised in Figure 9-1 [page 216] through Figure 9-4 [page 219], we 
conclude the following.  

• For estimates of the mean directions of the fracture sets, the necessary borehole 
lengths are as follows: Considering a vertical borehole: 140 m (Set 1), 50 m (Set 2) 
and 20 m (Set 3). Considering an inclined borehole: 90 m (Set 1), 35 m (Set 2) and 
35 m (Set 3). 

• For estimates of the dispersion of the fracture orientations of the fracture sets, the 
necessary borehole lengths could be large, e.g. 400–1100 m, if the dispersion is very 
large and the value of P32 (fracture density) is small, as for Set 1. For fracture sets  
2 and 3, the necessary borehole lengths are between 100 and 500 metres, dependent 
on direction of borehole and dispersion parameter studied. 

• For estimates of the P10 (fracture frequency) of the fracture sets, the necessary 
borehole lengths are as follows: Considering a vertical borehole: 400 m (Set 1), 
300 m (Set 2) and 150 m (Set 3). Considering an inclined borehole: 350 m (Set 1), 
150 m (Set 2) and 210 m (Set 3). 

• For estimates of the P21-values (trace length per area) of the different fracture sets, 
the necessary radius of a horizontal circular window is as follows: 24 m (Set 1), 
22 m (Set 2) and 40 m (Set 3). 

• For a direct estimate of the P32 (fracture density) of the fracture sets, from borehole 
data, the necessary borehole lengths are very different depending on direction of the 
different fracture sets and the P32-values of the fracture sets. Considering a vertical 
borehole: 850 m (Set 1), 650 m (Set 2) and 150 m (Set 3). Considering an inclined 
borehole: 480 m (Set 1), 320 m (Set 2) and 380 m (Set 3). 

• For indirect estimates of the P32 of the fracture sets, from borehole and surface data 
by use of the P10 or the P21 parameters, the values of borehole lengths or surface 
radii are the same as for the estimations of the P10 or the P21 parameters. However, 
the convergence criteria of the trial and error procedure, necessary for such an 
estimation of P32, will reduce the confidence level of such estimations (although 
that reduction could be small). 

• For estimates of the moments of the trace-length distributions of the fracture sets, 
the necessary radius of a horizontal circular window is as follows: Considering 
mean of distribution: 32 m (Set 1), 45 m (Set 2) and 52 m (Set 3). Considering 
standard deviation of distribution: 52 m (Set 1), 12 m (Set 2) and 70 m (Set 3).  

• For estimates of the shapes of the trace-length distributions of the fracture sets (by 
use of non-parametrical goodness-of-fit tests), the necessary radius of a horizontal 
circular window is as follows: 13 m (Set 1), 38 m (Set 2) and 32 m (Set 3).  

• For estimates of the mean of the strike distributions of the fracture sets (calculated 
from direction of fracture traces), the necessary radius of a horizontal circular 
window is as follows: 35 m (Set 1), 18 m (Set 2) and 60 m (Set 3).  

• For estimates of the shape of the strike distributions of the fracture sets (calculated 
from direction of fracture traces) a non-parametrical goodness-of-fit test was used, 
the necessary radius of a horizontal circular window is as follows: 13 m (Set 1), 
11 m (Set 2) and 24 m (Set 3).  
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When comparing the results for the different fracture sets, it is demonstrated that Set 1 
is the fracture set most difficult to analyse, because this set has a large dispersion and 
the smallest value of P32 (fracture density) of the three sets studied. 

When comparing the results of a specific fracture set considering different borehole 
orientations, the variation in results is in line with the variation in number of fractures 
observed in boreholes with different orientations. 

Considering the orientation of the fractures of a fracture set, it is more difficult to 
estimate the dispersion of the fracture orientations than the mean of the fracture 
orientations. 

Considering fracture set 3 and horizontal windows, the large radius necessary for  
good estimates of the parameters of Set 3 is caused by the sub-horizontal orientation  
of Set 3, because the fractures of a sub-horizontal fracture set only rarely intersects a 
sub-horizontal surface. A fracture set with such an orientation is not well analysed by 
use of sub-horizontal surfaces, unless a correction for sampling bias is applied and in 
this study such a correction was not used when the surface data were analysed. 
(Correction for orientation sampling bias was only applied to borehole data.) 

Estimation of the trace-length distributions is difficult, as such estimations (among other 
things) depend on the size of the window studied in relation to the properties of the 
fracture radius distribution that created the fracture traces. Therefore the results for 
different fracture sets could be very different, for the same size of window. 

On parametric tests and calculated confidence intervals 

Parametric statistical tests were carried out regarding mean direction and dispersion  
of the three fracture sets of the population, considering observations of fracture 
orientation in theoretical boreholes (see Sections 3.5 [page 57] and 4.4 [page 87]).  
As the population (the fracture network) is created by use of Fisher distributions, the 
tests were based on the assumption that samples were drawn from (represent) Fisher 
distributions. 

The tested hypothesis was that the mean direction and the dispersion of the population, 
as estimated by the samples, are equal to the known true properties of the population. 
We know that this is a correct hypothesis; but due to sampling bias, remaining in the 
samples after application of Terzaghi correction, the hypothesis will not necessarily be 
confirmed by the samples.  

The results of the tests demonstrate a larger amount of rejected samples, than the 
amount prescribed by the confidence level of the tests. The following conclusion can be 
made: If we assume that (i) samples are drawn from perfect Fisher distributions and that 
(ii) the systematic sampling bias is fully corrected by use of Terzaghi correction; we 
may derive confidence intervals, based on parametrical statistical analysis, that are to 
small and which do not reflect the actual uncertainties. This is especially the case if the 
sample size is large (a sample that contains a large number of fracture observations) as 
the confidence intervals, derived through parametric statistical analyses, are small for 
such samples. 
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On optimal orientation of a borehole 

Based on observations in theoretical boreholes, we have estimated fracture set 
orientation, mean direction and dispersion, as well as the fracture density parameters 
P10 and P32. Two different boreholes have been used, a vertical and an inclined 
borehole. By comparing the efficiency of the point estimates, as produced by the two 
boreholes, we can make conclusions regarding the optimal orientation of a borehole. 

Let us first consider the P10-parameter (fracture frequency in a borehole); it is a 
direction-dependent parameter and as such it is calculated without Terzaghi correction. 
The point estimate of the P10 parameter relates to borehole length and not to number  
of fractures in a sample. However, the efficiency of the point estimate increases with 
number of fractures observed in a sample; hence for a given borehole length, the 
borehole that intersects most fractures will produce the most efficient point estimate  
as regards the P10-parameter. Considering the two borehole directions studied, the 
inclined borehole (45 deg.) produces on the average, when adding together all three 
fracture sets, the largest samples (number of fractures per metre of borehole), and 
consequently as regards P10 the point estimate is most effective for the inclined 
borehole.  

For all parameters analysed by use of boreholes, on the average the most efficient point 
estimate takes place for the borehole direction for which most fractures are intersected. 
Hence, in order to reach the largest efficiency when analysing a single fracture set, the 
borehole should not necessarily be an inclined borehole, but directed so that the mean 
direction (defined by trend and plunge) of the fracture set studied is parallel to the 
borehole (i.e. on the average the fracture planes are at right angles to the borehole), 
because on the average this is the borehole direction that produces the largest samples 
(for a given borehole length). Consequently, different borehole directions are optimal 
for different fracture sets. 

The borehole length necessary for deriving acceptable estimates of all properties  
studied of all fracture sets studied is determined by the length necessary for deriving an 
acceptable estimate of the property and fracture set that is the most difficult to estimate. 
The properties that are easier to estimate will be derived within the borehole length 
necessary for the most difficult estimation. For example, if we want to estimate the 
mean orientation and dispersion (Kappa) of the three fracture sets studied, by use of a 
vertical borehole, the necessary length is 500 m (confidence level=90%; confidence 
interval =+/–10 degrees (orientation) and +/–15% (Kappa)). By use of an inclined 
borehole, the necessary length is 500m as well. For the vertical borehole the most 
difficult parameter to estimate is the dispersion of Set 1, consequently this is the 
parameter that determines the borehole length for the vertical borehole. For the inclined 
borehole the most difficult parameter to estimate is the dispersion of Set 3, and 
consequently this is the parameter that determines the borehole length for the  
inclined borehole. For both boreholes the necessary borehole length is 500m. 

Even if the necessary length of borehole was the same for the two borehole orientations, 
as this length was determined by the most difficult estimation, the necessary lengths  
for estimating the other parameters were not the same. As a measure of the average 
efficiency of a borehole orientation we have calculated the average necessary length for 
estimating certain parameters in the same borehole (average necessary borehole length 
is defined by equation 10-1 [page 211 ]). 



 19

The results for the P10 and P32 parameters are given in Table 9-1 [page 212]. 
Considering fracture frequency P10 and a vertical borehole, the necessary lengths are 
400 m (Set 1), 300 m (Set 2) and 150 m (Set 3), producing an average necessary length 
of 283 m (confidence interval= +/–15% of true value and confidence level= 90%). For 
an inclined borehole the average necessary length is 236 m. The average necessary 
length of the inclined borehole is 84% of that of the vertical borehole. Considering 
fracture density P32 (based on borehole data), the average necessary length of the 
inclined borehole (393 m) is 71% of that of the vertical borehole (550 m). Hence, the 
inclined borehole produces on the average the best estimates, especially for the P32 
parameter. On the other hand, if the acceptable deviation (confidence interval) is not set 
as very small and the available borehole lengths are large, the direction of the borehole 
is not very important, as acceptable estimates could be derived for any direction. 

Estimates of fracture set orientation should, as little as possible, be dependent on the 
orientation of the investigation borehole. Therefore all orientation data from boreholes 
should be corrected by use of Terzaghi correction (see Appendix B). The Terzaghi 
correction will compensate for most of the systematic sampling bias. After application 
of Terzaghi correction, the sample sizes necessary for deriving an estimate with a 
certain confidence, should only be weakly dependent on the orientation of the borehole, 
however the necessary lengths will still be dependent on dispersion and fracture density; 
and as the Terzaghi correction is not perfect and some systematic bias will remain in the 
samples, it follows that some borehole orientations are better than other orientations. 
The number of fractures observed and the efficiency (completeness) of the Terzaghi 
correction depends on the acute angle between the borehole and the mean orientation of 
the fracture set studied. When considering the efficiency (completeness) of the Terzaghi 
correction, different directions of borehole are optimal for different fracture sets (as they 
occur in a rock unit). The remaining bias will have the least influence if the bias is 
distributed in a symmetric way around the predicted mean orientation, which is 
achieved for boreholes that are at right angles or parallel to the mean direction of the 
fracture set.  

Hence, for best efficiency of the Terzaghi correction, the borehole should be directed in 
a way that the mean direction (trend and plunge) of the fracture set studied is parallel to 
the borehole (i.e. fracture planes at right angles to the borehole), as most fractures are 
intersected for this direction, and because the remaining bias will be symmetric for such 
a direction. A borehole direction that is at right angle to the mean direction (trend  
and plunge) of a fracture set (i.e. borehole direction along fracture planes) could 
(theoretically) be an efficient investigation borehole, assuming that it is has a large 
length. Because for very large lengths of such a borehole direction, the derived estimate 
will be close to the true value, as the remaining bias is symmetrically distributed for 
such a borehole direction.  

For a borehole that is not parallel and not at right angles to the mean direction of the 
fracture set studied, and if the acceptable deviation (confidence interval) is set as very 
small, for such a situation the necessary borehole lengths could be infinite (especially 
for large values of the confidence level). Because the estimates might converge not 
towards the true value but towards a value that is slightly off the true value, due to the 
remaining sampling bias (see Figure 2-7 and Appendix B). (If the acceptable deviation 
(confidence interval) is set as very small, the estimate may converge towards a value 
outside of the confidence interval.) 
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The necessary average lengths, considering mean direction of fracture sets, are given in 
Table 9-2 [page 213]. The average necessary length of the inclined borehole (53 m) is 
76% of that of the vertical borehole (70 m), for an acceptable deviation (confidence 
interval) of 15 degrees and a confidence level of 90%. For an acceptable deviation of  
10 degrees, the average necessary length of the inclined borehole (113 m) is 85% of that 
of the vertical borehole (133 m). And finally, for an acceptable deviation of 5 degrees, 
the average necessary length of the inclined borehole is undefined. Because by use of  
an inclined (45 deg) borehole it is not possible to estimate the mean direction of Set 1 at 
such a small acceptable deviation (confidence interval) together with a confidence level 
of 90%. Hence, the inclined borehole is better than the vertical borehole, except if the 
confidence interval (acceptable deviation) and confidence level is set as very small, for 
such a situation the direction of the borehole has to be optimised for each fracture set. 
On the other hand, if the acceptable deviation (confidence interval) is not very small, the 
direction of the borehole is not very important, as acceptable estimates could be derived 
for any direction, and the difference in total lengths for different borehole directions is 
not very large. 

The necessary average lengths, considering dispersion of a fracture sets, are given in 
Table 9-3 [page214]. Considering dispersion in fracture orientation, as represented by 
the SR1 dispersion parameter, the average necessary length of the inclined borehole 
(390 m) is 81% of that of the vertical borehole (483 m), for an acceptable deviation 
(confidence interval) of +/–15% of the true values and a confidence level of 90%. This 
is in line with the results for the mean direction (above). It should however be noted  
that the different necessary lengths for each individual fracture set, considering the  
SR1 parameter (see Section 4.2, page 64), are very large (e.g. vertical borehole, 
Set 1=1100 m, Set 2=250 m and Set 3=100 m). Considering dispersion in fracture 
orientation, as represented by the Kappa dispersion parameter (see Section 4.3,  
page 75), the average necessary length of the inclined borehole (427 m) is 114% of  
that of the vertical borehole (373 m). This is different from the results regarding mean 
direction, and it follows from the remaining sampling bias of the inclined borehole. 

Thus, it is more difficult to predict dispersion than mean value (which is the way it 
should be, as dispersion is a measure of variance), it follows that the borehole direction 
is more important when estimating dispersion than when estimating mean direction of a 
fracture set.  

The borehole direction is also more important when estimating P32 than when 
estimating P10. In general, the necessary lengths of boreholes are larger when 
estimating P32 than for estimation of P10. However, if the borehole direction and mean 
direction (trend and plunge) of the fracture set is parallel, the P10-value in the borehole 
is equal to the P32-value of the fracture set; this conclusion underlines the importance 
of borehole direction. 

If the acceptable deviation (confidence interval) is not very small, and large borehole 
lengths are available, any borehole direction will do, but if the acceptable deviation 
(confidence interval) has to be very small and/or only short borehole lengths are 
available, for such a situation the borehole direction is important and needs to be 
optimised considering each fracture set. In general it is better to have three somewhat 
shorter boreholes, with different optimised directions, than one borehole with a large 
length. 
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On number of investigation boreholes and rock surfaces 

In this study the analysed fracture network is statistically homogeneous, it follows that 
the results are only applicable to a rock unit with statistically homogeneous properties. 
Considering the use of boreholes for investigation of fracture sets orientation (mean 
direction and dispersion) and the P10 fracture density parameter, the necessary size of 
samples for the estimation of the parameter does not have to come from a single 
borehole. If the rock mass has statistically homogeneous properties, the analysed sample 
can come from several different boreholes that together produce the necessary size of 
sample. For example, three boreholes of length 50 metres can together form a sample 
representing approximately the same size of sample as observations in a single borehole 
of length 150 metres (presuming that they all are in the same rock unit with statistically 
homogeneous properties). Hence, in practise when analysing a real rock mass, it is very 
important to know which observations belong to which rock unit, especially if several 
boreholes are used; that is however also a concern when analysing observations from a 
single borehole with a large length. 

It is however a different situation when considering the mapping of fracture trace-length 
distributions on rock surfaces. There are several biases that come from sampling a three 
dimensional system with a two-dimensional surface of a given form (e.g. circular), this 
is discussed in Section 6.2 [page 131]; but regarding the topic of this section, the most 
important bias is the boundary truncation of the large fracture traces. This is stated in 
Section 6.3.1 [page136] in the following way “ The efficiency of a point estimate 
increases with sample size, however for the sampling of traces also the size of the 
studied window is important. The observations are made on windows that have a 
limited size, and the upper tail of the trace-length distribution (traces with a large 
length) can only be directly observed on windows of a size (radius) comparable to 
length of the large traces. Hence, for small windows there will be a systematic bias in 
the estimate of the trace-length distribution, due to boundary truncation, even if the 
sample size is large. (Small window sizes could be sufficient if it is possible to fit a 
mathematical distribution to the observed truncated trace-length distributions, even if 
such a curve fitting procedure will introduce uncertainty regarding the ability of such a 
distribution to represent the part of the true distribution that is unknown at small 
window sizes.) ” 

It follows from the statement above that regarding the trace-length distribution it is not 
possible to replace observations on one large window with observations on several 
smaller windows, even if all windows are from the same rock unit with statistically 
homogeneous properties.  

It is again a different situation when considering observations of fracture strike 
distributions, derived from directions of fracture traces, as observed on rock surfaces. 
As for the trace-length distribution there are several biases that come from sampling a 
three dimensional system with a two-dimensional surface of a given form (see Section 
6.2 [page 131]). However, there is no systematic bias in the estimate of the strike 
distribution, due to boundary truncation of large fracture traces. Hence, when estimating 
the strike distribution it is possible to replace observations on one large window  
with observations on several smaller windows and thereby gather one large sample, 
presuming that all windows are from the same rock unit with statistically homogeneous 
properties. 
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Terminology 

Below we will explain some of the terms used in this study. The terms are not given in 
an alphabetic order, but based on connecting topics. 

POPULATION  The collection of all individual units possessing some characteristics of 
interest. In this stydy the population is the fractures of the analysed fracture network. 

PARAMETER  A numerical characteristics of a population, which may be known or may 
require estimation. 

SAMPLE  A part of the population (or a subset of the units of the population). The 
sample is provided by some process or selection; with the object of investigating 
characteristics of the population. In this study samples are derived through observations 
in boreholes or on rock surfaces, the sample consists of fracture data (orientations etc). 

MODAL VECTOR  A vector can represent the mean direction of a fracture set. In this 
study the mean directions of the fracture sets of the population of fractures are called the 
modal vectors. 

REPRESENTATIVE VECTOR  In this study the orientation of a sample is calculated 
based on two different methods, which both produces vectors with the same orientation, 
but of different sizes: (i) the eigen values method and (ii) the resultant vector method 
(see Appendix A). In this study, the vector that is derived from the eigenvalues method 
is called ”the representative vector”  

RESULTANT VECTOR  In this study the orientation of a sample is calculated based on 
two different methods, which both produces vectors with the same orientation, but of 
different sizes: (i) the eigen values method and (ii) the resultant vector method (see 
Appendix A). In this study, the vector that is derived from the resultant vector method is 
called “the resultant vector”. 

ACUTE ANGLE  An acute angle is the smallest angle between two vectors. Generally in 
this study when we discuss an acute angle, we mean the smallest angle between the 
modal vectors of a fracture population and the representative vectors (or the resultant 
vector) of a sample taken from the population. When we discuss borehole directions, the 
acute angel is the smallest angle between the borehole and surrounding fractures. 

KAPPA (FISHER KAPPA) DISPERSION PARAMETER  The Fisher distribution /Fisher, 
1953/ is characterised by a modal vector (mean direction) and a concentration parameter 
called kappa, the distribution has a rotational symmetry about the modal vector. The 
larger the value of kappa the more the distribution is concentrated towards the modal 
vector. Kappa is often called a dispersion parameter, but actually it is a concentration 
parameter, since the larger the value of kappa the more the concentrated the distribution. 

SR1 AND SR2 DISPERSION PARAMETERS  The mean direction of a group of fractures 
can be calculated based on the eigenvalues method, as proposed by /Mardia, 1972/; this 
method is discussed in Appendix A. The method will provide us with a representative 
vector. In addition the method will provide us with three eigenvalues (L1, L2 and L3), 
these three values provide direct information about the distribution of the group of 
fractures studied (the fracture cluster studied). Based on the eigenvalues, two different 
dispersion parameters are calculated, as proposed by /Woodcock, 1977/, these two 
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parameters are called, SR1 and SR2, they are defined as follows: SR1= LN(L1/L2) and 
SR2= LN(L2/L3). The relation between these parameters can be used to quantify the 
shape of the cluster, e.g. concentric, girdle, etc. 

EIGENVALUES METHOD  A method for calculation of the mean direction of a sample of 
fractures, see Appendix A. 

RESULTANT VECTOR METHOD  A method for calculation of the mean direction of a 
sample of fractures, see Appendix A. 

TERZAGHI CORRECTION  When performing one-dimensional sampling along a line 
(e.g. a borehole) of a three-dimensional fracture system, there will be a systematic 
sampling bias. The correction of this sampling bias is called the Terzaghi correction 
/after Terzaghi, 1965/. See also Section 2.5 and Appendix B. 

POINT ESTIMATE  An estimate, based on observed data (samples), of the properties of 
the population (parameters) is called a point estimate. As the observed data varies from 
sample to sample, also the point estimate will vary.  

POINT ESTIMATE, EFFICIENCY  A point estimate is based on samples. As the observed 
data varies from sample to sample, also the point estimate will vary. However, as size of 
sample is increased, for an efficient point estimate: (i) the mean of different estimates 
should converge towards the parameter value; and (ii) the variance of different estimates 
should decrease. The efficiency of a point estimate is the progress, with size of sample, 
towards the parameter. 

HYPOTHESIS TESTING  Hypothesis testing can be carried out in many different ways, a 
classical approach is as follows. Hypothesis testing is a procedure in which we test if 
samples confirm certain assumed properties of the population. The first step is to 
establish a theory of the population; this theory is the NULL HYPOTHESIS. The next step 
is the test of samples, if a sample confirms the theory the sample is accepted, and 
otherwise the sample is rejected. The amount of accepted and rejected samples will 
provide us with information regarding the correctness and soundness of the null 
hypothesis 

NULL HYPOTHESIS  A selected hypothesis regarding the properties of samples and 
population. 

PARAMETRIC TEST  Statistical test which assumes that the analysed population is 
distributed according to a known probability distribution, e.g. the Fisher distribution. 

NON-PARAMETRIC TEST  Statistical test for which no assumptions are made regarding 
the probability distribution of the studied population. 

CONFIDENCE INTERVAL  Suppose θ is a parameter to be estimated. A confidence 
interval for θ is an interval of values computed from a sample, which includes the 
unknown value of θ with some specified probability. Some authors prefer the following 
definition: the confidence interval for a hypothesis test consists precisely of all those 
values for which the null hypothesis is not rejected at some specified degree of 
probability. 

CONFIDENCE LEVEL  The probability (e.g. 95% or 99%) that a confidence interval will 
cover the unknown parameter value. 
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1 Introduction and purpose 

1.1 Introduction 

SKB will conduct site investigations for selecting a suitable place to locate the deep 
repository for nuclear waste. Rock units are to be investigated by use of deep boreholes 
and mapping of rock outcrops (other methods will also be used). Based on analysis of 
observations collected from boreholes and rock outcrops (and other investigations),  
site descriptive models of the rock mass are established. These models describe the 
geological parameters of the rock mass. Many geological parameters are heterogeneous 
and vary spatially (e.g. fracture density, hydraulic conductivity etc), therefore the 
confidence in the established models depends on the number and size of boreholes  
and rock outcrops used for investigating the rock mass and for establishing the site 
descriptive models. However, due to practical and economical limitations the number  
of possible boreholes etc is limited. Considering site investigations and the rock mass 
analysed in this study (a selected rock unit with specific properties), the results of  
this study will indicate lengths of boreholes and sizes of rock surfaces, necessary for 
deriving estimates of the selected and analysed structural geological parameters, within 
defined confidence intervals and confidence levels. 

However, it is important to note that this study is not about estimating the necessary 
sample sizes to be used in site investigations. The necessary amount of information  
that needs to be collected at a site investigation is best calculated based on statistical 
analysis at different stages of sampling (preliminary and confirmatory sampling)  
and in combination with safety analysis calculations (i.e. sensitivity analyses of such 
calculations). Theoretically, the necessary sample sizes and acceptable uncertainties in 
estimation of the true properties (parameters) of a rock mass depend on the properties of 
the investigated site and the results of safety analyses calculations. Large uncertainties 
could be accepted for parameters with little importance in the safety analysis, or for 
remote rock volumes that carries small importance in the safety analysis; while 
parameters and rock volumes that the safety analysis calculations has identified as  
being important for the performance of the investigated site, such parameters and 
volumes needs to be investigated in more detail to produce reliable estimates with a 
small amount of uncertainty. 

1.2 Purpose 

This study is a mathematical modelling of a fractured rock mass and its investigations 
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the 
efficiency and precision of such investigations. The general purpose of this study is to 
investigate how knowledge of selected geological parameters depend on information 
collected from boreholes and rock surfaces and how this information varies with length 
and inclination of boreholes, as well as on size of rock surfaces. In other words, how  
the confidence in the models of the rock mass (considering a selected number of 
parameters) will change with amount of information collected form boreholes and  
rock surfaces. 
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This study is limited to a selected number of geometrical parameters of a fracture 
system. Considering the site investigation program, /Stråhle, 2001/ defines such 
parameters. In this study the following geological parameters are investigated: 

1. Fracture orientation. 

2. Fracture density (frequency) 

3. Fracture trace length. 

In this study fracture orientation is analysed with respect to mean directions and 
dispersions of the different fracture sets. Fracture density (frequency) is analysed with 
respect to different parameters (P10, P21 and P32). Fracture trace-length and fracture 
strike distributions (based on fracture traces) are analysed with respect to distribution 
characteristics. 

In general, the method of the study is to numerically generate a fracture network and 
numerically analyse it, by use of theoretical boreholes and surfaces. A comparison 
between the known true properties of the network (the parameters) and the derived 
properties (the samples) will reveal the deviation between the true properties and the 
derived properties, and the size of deviation will indicate how the knowledge will vary 
with the amount of investigation. 
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2 Methodology 

2.1 General 

This study is a theoretical and computer-based comparison between (i) samples of 
fracture properties of a theoretical rock mass (a fracture network) as revealed by 
observations in simulated boreholes and on simulated rock surfaces; and (ii) the known 
true properties (parameters) of the theoretical rock mass. Discrete fracture networks 
(DFN-models) represent the rock mass; the computer program Eblafrac generated the 
DFN-models, an example of a numerically generated fracture network is given in Figure 
2-1. In this study the properties of the fracture network of the rock mass are known, and 
these networks constitute the ”reality” studied. 

Thus, the population studied is numerically generated fracture networks, networks that 
represent fractures of a rock unit. The boreholes studied are theoretical lines that cut 
through the fracture network. The fractures that intersects the borehole (the observed 
fractures) form a sample of the fracture population. The rock surfaces studied are 
theoretical planes that cut through the fracture network. The fractures that intersect the 
plane (the observed fracture traces) form a sample of the fracture population. The 
properties of the samples are estimates of the properties of the population. 
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Figure 2-1. Example of a numerically generated fracture network, the fractures have 
the shape of planar circular discs. 
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2.2 Spherical data, co-ordinate system and projection 

2.2.1 General 

The fracture networks studied are numerically generated, and it follows that some 
simplifications have been introduced as regards the shape of the fractures of the 
networks, in comparison to the fracture network of an actual rock unit. In this study 
planar circular discs represent fractures, and when analysing the orientation of a 
fracture, a normal to the planar disc represents the fracture (a normal to a fracture-
plane). The studied normal is a straight line in space with a certain orientation. 

By spherical data we mean the orientation of a straight line in space. Hence, the data 
that we shall be dealing with are spherical data that represent fracture planes. (In 
addition, we will also analyse direction and length of the traces that the fracture-planes 
studied will create as they intersect a planar surface. Such lines on a planar surface are 
called fracture traces.) 

Normals to fracture planes are lines in space, they have an orientation in space, but 
points in two directions; the lines are not vectors, but undirected lines called axes. There 
are many different ways of representing a three-dimensional unit vector or axis, because 
different methods have been developed by different scientific disciplines (e.g. Geology, 
Astronomy and Mathematics), but also for the purpose serving different needs within a 
discipline, e.g. Polar co-ordinates, Geographical co-ordinates, Geological co-ordinates 
(see below). The methods used in this study are briefly presented below. 

2.2.2 Geological co-ordinates 

The data that we shall be dealing with are lines that represent fracture planes. For  
the definition of the lines that represents the fracture planed we will use geological  
co-ordinates. Study a planar feature e.g. a fracture plane or a bedding plane: 

In modern structural geology, the orientation of a planar feature is defined by its 
direction of dip and its angle of dip. The dip direction is the bearing of the line of 
maximum slope on the plane, in the direction of downward slope. Its value can vary 
between 0 and 360 degrees. The dip angle is the angle between the line of maximum 
slope and the horizontal. For some purposes, it is convenient to define a third parameter, 
called the strike of the plane, although dip direction and dip angle alone define the 
orientation of a plane unambiguously. The strike is the direction of a horizontal line on 
the planar feature and is thus, by definition, normal to the dip direction. The strike has 
two possible direction values, differing by 180 degrees. This ambiguity is generally 
treated by applying what has become known as the "right hand rule", i.e. the strike 
direction is the one towards which one faces when the plane slopes downwards towards 
one's right. 

The orientation of a planar feature may also be given by a normal (or pole) to the plane 
studied. The normal has its base on the fracture plane and at the origin of a unit sphere. 
The pole is at the intersection of the normal with the lower or upper hemisphere of the 
unit sphere; in geology the lower hemisphere is normally preferred. By the concept of a 
normal and a pole, it is possible to define two orientation variables, called trend and 
plunge (or pole trend and pole plunge). The trend is the angle between North and the 
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vertical projection of the normal onto a horizontal plane, in the direction of plunge. The 
plunge is the angle between the normal and the horizontal surface. 

2.2.3 Spherical projection 

A projection of spherical data is a representation of spherical data in the plane. As for 
the spherical co-ordinate systems, there are several different commonly used spherical 
projections based on different requirements. Geologist that analyses structural 
geological data commonly use an equal area projection, called Lambert or Schmidt 
projection and a equal angle projection called Stereographic projection, (or Wulff 
projection). In this study we have used the Stereographic projection (equal angle). For 
such a projection great and small circles projects as circular areas. Hence, a contour plot 
of a unimodal data set, which exhibits circular contours when projected onto a 
Stereographic net, indicates that the data are isotropic about their mean direction. 

2.3 Properties of the studied fracture network – DFN model 

The studied fracture network represents the rock mass at the Prototype Repository at the 
Äspö Hard Rock laboratory. The fracture network model, used in this study, is the 
DFN 2 model presented in /Hermanson et al, 1999/. The main objective of the DFN 2 
modelling was to establish a discrete fracture network model, representing the rock 
mass at the Prototype Repository, which could be used for simulation of groundwater 
flow. Hence, the model was not intended for rock mechanical purposes. The DFN 2 
model underestimates the total number of fractures in the rock mass at the Prototype 
Repository, as small fractures with minor or negligible hydraulic importance is not 
included in the model. To what degree the DFN 2 model represents the actual properties 
at the Prototype Repository are not analysed in this study.  

The fracture network studied consists of three fracture sets. Set 1 and Set 2 have a  
sub-vertical orientation and Set 3 is sub-horizontal. The largest dispersion in fracture 
orientation (deviations about the mean direction) takes place within Set 1. For the other 
two fracture sets, the dispersion is much less and about the same. On the average, the 
largest fractures occur within Set 2, the smallest fractures are within Set 1. The fracture 
density, given as fracture area per unit volume (P32), varies between the fracture sets; 
Set 2 has the largest P32 value and Set 1 the smallest P32 value. The tables below give a 
summary of the properties of the fracture network (Table 2-1, Table 2-2 and Table 2-3). 
It is important to note the difference between the P32-value of a fracture set and the 
number of fractures of a certain set than on the average takes place in a volume of a 
given size. Considering the DFN-network studied, a modelled domain of cylindrical 
shape with height 1000 metres and radius 150 metres, will contain approximately  
3.5 millions of fractures. Set 1 contains 25% of the fracture area and 70% of the number 
of fractures. Set 2 contains 47% of the fracture area and 15% of the number of fractures. 
Set 3 contains 28% of the fracture area and 15% of the number of fractures. 

As previously stated, this study is a theoretical comparison between (i) the sample 
properties of a fracture network, and (ii) the true properties (parameters) of the fracture 
network. It is important that the DFN-models created by the Eblafrac computer code 
honour the theoretical properties that we have assigned to the DFN-models. To ensure 
this, the size of the modelled fracture networks is large (modelled domain), so that 
boundary effects will only have a minimal influence on the properties of the network.  
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For the analysis of the vertical and inclined boreholes, the modelled domain is of a 
cylindrical shape, the main axis (height) of the cylinder has a length of 1000 metres and 
the radius of the cylinder is about 200 metres (base case). The borehole is located at the 
centre of the cylinder, along the main axis of the cylinder. For the analysis of horizontal 
rock surfaces, the modelled domain is also of a cylindrical shape, the height of the 
cylinder is about 450 metres and the radius of the cylinder is of about 400 metres.  
The plane studied is horizontal and located at the centre of the cylinder. 

The fracture network inside the cylinders contains several millions of fractures. For 
deriving reliable statistics, the fracture network inside the cylinder was generated 
between 500 and 1000 times, thereby creating the same number of independent 
realisations of the fracture networks surrounding the borehole or the rock surface.  
It follows that each studied scenario of this study (e.g. vertical borehole, inclined 
borehole, sensitivity-cases etc) involves the generation and analyses of billions of 
fractures.  

Considering the models used for analyses of boreholes, the models were analysed for 
50 different lengths of borehole between 20 and 1000 metres. Considering the models 
used for analyses of rock surfaces, the models were analysed for 34 different circular 
horizontal surfaces with radii between 2 and 150 metres. 

The properties of the fracture networks studied were supervised during the generation of 
the networks; thereby we checked that the networks honoured the theoretical properties 
assigned to the networks. As the modelled domain is large and contains a large number 
of fractures, the properties of the fracture networks is expected to be close to the 
theoretical properties assigned to the networks. Analyses of the generated fracture 
networks (inside the cylinders studied) demonstrated the following. The Fisher kappa 
values (a measure of dispersion in fracture orientation see Section 2.8) of the fracture 
networks were very close to the theoretical values assigned to the networks. The 
deviations between the theoretical values of kappa and the kappa values of the modelled 
fracture networks were always less then 0.2 percent of the theoretical values. The 
deviations in mean orientation of the different fracture sets were less than 0.1 degrees. 
Similar very small deviations were observed for the other properties studied. Hence, the 
fracture networks studied have properties in accordance to the theoretical properties 
assigned to them. Examples of the orientation of the fractures of the studied population 
are demonstrated in Figure 2-2 below (stereographic projection is discussed in Section 
2.2.3). An example of the fracture traces that the fracture network creates on a circular 
horizontal rock surface is given in Figure 2-5. 

As previously stated, the DFN-model used in this study (as the base case) is the DFN 2 
model presented in /Hermanson et al, 1999/. The DFN 2 model underestimates the total 
number of fractures in the rock mass at the Prototype Repository, as small fractures with 
minor or negligible hydraulic importance is not included in the model. We have 
therefore established an alternative DFN-model, which includes a larger number of 
small fractures, but has the same value of fracture density (P32-value) as the DFN 2 
model. For this alternative DFN-model, the results considering the necessary sample 
sizes for reliable estimation of parameters studied are presented in Chapter 8 (Limited 
Sensitivity Analysis). 
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Table 2-1. Size of fractures. 
 Set No. 1 2 3 
 Fracture shape Planar discs Planar discs Planar discs 
 Distribution TLogNormal (1) TLogNormal (1) TLogNormal (1)
 Mean radius [m]          (2) 2 8 5 
 Mean of LN(radius)     (3) 0.346574 2.049129 1.36209 
 Stdv radius [m]            (4) 2 2 4 
 Stdv of LN(radius) [m] (5) 0.832555 0.246221 0.703346 
 Termination %             (6) 0 0 0 
 Lower bound [m]         (7) 0.0025 0.0025 0.0025 
 Upper bound [m]         (7) 10000 10000 10000 
 
(1) A Log-Normal distribution that is truncated at lower and upper bounds. 
(2) Mean of distribution. 
(3) Mean of the natural logarithms of the values of radius 
(4) Standard deviation of distribution. 
(5) Standard deviation of the natural logarithms of the values of radius 
(6) Amount of fractures that terminate at other fractures. 
(7) Upper and lower boundaries for the truncated Log-Normal distribution 

 

Table 2-2. Orientation of fractures. 
 Set No. 1 2 3 
 
Distribution 

Fisher     (1) Fisher     (1) Fisher     (1)

 Dispersion (κ) 4.84 8.35 8.33 

 Pole trend (degrees) 129.0 37.0 290.6 
 Pole plunge (degrees) 6.3 5.8 84 
 (1) Spherical distributions, like the Fisher distribution, are discussed in Section 2.8 

 

Table 2-3. Fracture density (P32). 
 Set No. 1 2 3 
 P32 = Fracture area per 
unit volume 

0.85 1.59 0.97 
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FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3 ALLFRACTURE SETS

 
 
Figure 2-2. Lower hemisphere equal angle stereoplots of fracture pole orientation  
and distribution. The plotted fracture poles represents one realisation of the fracture 
population studied (the fracture network). The figures are based on a stereographic 
projection, see Section 2.2.3. Each of the four figures includes 1000 fracture poles. 
Considering the figure that contains all fracture sets (lower right) the number of 
fracture poles per set corresponds to the P32 values of the different sets and the 
fracture size distribution. On the average: 
Set 1 contains 25% of the fracture area and 70% of the number of fractures. 
Set 2 contains 47% of the fracture area and 15% of the number of fractures. 
Set 2 contains 28% of the fracture area and 15% of the number of fractures. 

 

The orientations of the fractures, as observed in a vertical and an inclined borehole,  
are demonstrated below in Figure 2-3 and Figure 2-4, respectively. Note that as the 
figures gives the fractures observed in boreholes, the distribution of fractures with an 
orientation close to parallel to the boreholes are not well represented, as such fractures 
rarely intersects the boreholes. This is an example of a systematic bias that will take 
place when sampling a three-dimensional fracture system, with a one-dimensional 
boreholes. In this study, previously to analysing the data, the bias is corrected by use of 
Terzaghi correction, see Section 2.5 and Appendix B. (It should be pointed out that the 
Terzaghi correction is not a perfect correction that will remove all the sampling bias, but 
it is an efficient method for minimising the above discussed sampling bias). 
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When comparing Figure 2-2, Figure 2-3 and Figure 2-4, one should note that they are 
based on different realisations of the fracture network. 

When studying the fracture poles given in the figures above and below, it is perhaps of 
interest to know how many fractures that on the average are observed in the analysed 
boreholes (the efficiency of the point estimates of the parameters studied depend on  
the number of observed fractures). The number of fractures per metre in a borehole is 
called the P10 value, see Section 5.1. The efficiency of the estimation of P10 values  
is analysed in this study. The P10 values depend on orientation of borehole. Two 
boreholes with different orientation are used in this study, a vertical and an inclined 
borehole. 

The average P10 values for the different boreholes are given below, considering 
boreholes of 1000 m length. No correction for sampling bias (Terzaghi correction)  
is applied when calculating the P10 values. 

Vertical borehole: Set 1: Mean= 0.292 
fractures per metre. 

 Set 2: Mean= 0.434 
fractures per metre. 

 Set 3: Mean= 0.848 
fractures per metre. 

Inclined borehole: 
(Trend=90deg, Plunge=45deg) 

Set 1: Mean= 0.456 
fractures per metre. 

 Set 2: Mean= 0.732 
fractures per metre. 

 Set 3: Mean= 0.551 
fractures per metre 

 

On a two-dimensional structure (a surface), the fractures of the DFN-model will create 
two-dimensional lines, such lines are called fracture traces. An example of fracture 
traces (created by the DFN-model) as seen on a circular horizontal rock surface is  
given in Figure 2-5. 

The orientations of the fractures, as observed on a circular horizontal surface, are 
demonstrated below in  

Figure 2-6. Note that as the figure gives the orientation of fractures observed on a 
horizontal surface, the distribution of fractures with an orientation close to parallel to 
the surface (sub-horizontal fractures) are not well represented, as such fractures only 
rarely intersects the surface. 
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FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3 ALL FRACTURE SETS

 
 
Figure 2-3. Lower hemisphere equal angle stereoplots of fracture pole orientation and 
distribution, as seen in a vertical borehole. The plotted fracture poles represents one 
realisation of the fracture population studied (the fracture network). The figures are 
based on a stereographic projection, see Section 2.2.3. Each of the four figures includes 
1000 fracture poles. 
Considering the figure that contains all fracture sets (lower right) the number of 
fracture poles per set corresponds to the P10 values of the different sets. On the 
average, as seen in the borehole: 
Set 1 contains 18% of the number of fractures. 
Set 2 contains 28% of the number of fractures. 
Set 3 contains 54% of the number of fractures. 
Note that this data is not corrected for sampling bias (Terzaghi correction is not 
included in this figure). 
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FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3 ALL FRACTURE SETS

 
 
Figure 2-4. Lower hemisphere equal angle stereoplots of fracture pole orientation and 
distribution, as seen in an inclined borehole (Trend= 90 deg. Plunge= 45 deg.). The 
plotted fracture poles represents one realisation of the fracture population studied  
(the fracture network). The figures are based on a stereographic projection, see  
Section 2.2.3. Each of the four figures includes 1000 fracture poles. 
Considering the figure that contains all fracture sets (lower right) the number of 
fracture poles per set corresponds to the P10 values of the different sets. On the 
average, as seen in the borehole: 
Set 1 contains 26% of the number of fractures. 
Set 2 contains 42% of the number of fractures. 
Set 3 contains 32% of the number of fractures. 
Note that this data is not corrected for sampling bias (Terzaghi correction is not 
included in this figure). 
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Figure 2-5. Fracture traces on a circular horizontal surface with radius 10m. The 
plotted fracture traces represents one realisation of the fracture population studied  
(the fracture network). The traces were numerically generated. Each of the four figures 
includes a different number of traces, dependent on the orientation and density of the 
fracture set studied. The length of the traces divided by the surface area is the P21 
parameter. For very large horizontal surfaces, the P21 values are as follows: Set1 
P21= 0.77, Set 2 P21= 1.51, Set 3 P21= 0.41; hence 29% of the trace-lengths belongs 
to Set 1, and 56% belongs to Set 2, and 15% belongs to Set 3. Considering the number 
of traces on a very large horizontal surface, on the average 45% belongs to Set1, 43% 
belongs to Set 2 and 12% belongs to Set 3. 



 37

FRACTURE SET 1. FRACTURE SET 2

 
FRACTURE SET 3 ALL FRACTURE SETS

 
 
Figure 2-6. Lower hemisphere equal angle stereoplots of fracture pole orientation  
and distribution, as seen on a circular horizontal surface. The plotted fracture poles 
represents one realisation of the fracture population studied (the fracture network).  
The figures are based on a stereographic projection, see Section 2.2.3 Each of the  
four figures includes 1000 fracture poles. 
Considering the figure that contains all fracture sets (lower right) the number of 
fracture poles per set corresponds to the average number of fracture traces on a 
circular area with radius 150 metres. On the average, as seen on the surface: 
Set 1 contains 35% of the number of fractures. 
Set 2 contains 51% of the number of fractures. 
Set 3 contains 14% of the number of fractures  
Note that this data is not corrected for sampling bias (Terzaghi correction is not 
included in this figure). 
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2.4 Properties of the studied boreholes and rock surfaces 

The purpose of this study is to simulate the sampling of fractures, or fracture traces, as 
observed in a borehole or on a rock surface. We have studied two different boreholes, as 
regards orientation of boreholes. The first borehole is a vertical borehole. The second 
borehole is an inclined borehole. Using the same method of orientation as used for the 
normals to the fracture-planes (see Section 2.2.2); the orientation of the inclined 
borehole is trend=90 degrees and plunge=45 degrees (hence, the borehole is inclined  
45 degrees from horizontal). For both boreholes, the lengths of the boreholes were 
varied from 20 metres and up to 1000 metres. 

We have also studied rock surfaces. The rock surfaces are analysed for fracture traces. 
A studied rock surface is called a window. All the analysed windows are horizontal; 
they correspond to horizontal rock outcrops. The geometrical shape of the windows 
studied is circular. The radii of the windows were varied from 4 metres and up to 
150 metres. For the boreholes and the windows, the number of realisations of the rock 
mass were varied between 500 and 1000. Hence, for every borehole length and rock 
surface area studied, a large number of different realisations of the fracture network 
were analysed. 

2.5 Correction for sampling bias – the Terzaghi correction 

One-dimensional sampling is sampling along a straight line (a scanline). Such sampling 
of fracture orientation in a three-dimensional fracture system will introduce an 
orientation sampling bias. The bias follows from the fact that the probability for 
intersecting a fracture depends on the angle between the sampling line and the fracture, 
as well as on the area of the fracture. For compensation of this sampling bias /Terzaghi, 
1965/ proposed the application of a geometrical correction factor based on the observed 
angle between the sampling line and the normal to a particular fracture. In this study, 
such a correction is called “Terzaghi correction”. The highest probability for 
intersection (between fracture and sampling line) occurs when the fracture-plane is  
at right angle to the sampling line (borehole), if the fracture-plane is parallel to the 
sampling line (borehole), the probability for intersection is zero (except if the sampling 
line is at the fracture). Any direction of sampling line will therefore produce a sample 
that is biased to contain a lower amount of fractures than the actual amount. The 
reduced sample size can be compensated for by assigning a weighting factor to those 
fractures that are sampled. For a large sample size this weighting will serve to balance 
the orientation sampling bias introduced by linear sampling. The Terzaghi correction  
is not a perfect correction that will remove all the sampling bias, but it is an efficient 
method for minimising the systematic sampling bias that follows from sampling a three-
dimensional fracture system by use of a one-dimensional sampling line. For a more 
thorough discussion of this we refer to /Terzaghi, 1965/ or /Priest, 1993/. A presentation 
of the methodology of the discussed correction and theoretical examples are given in 
Appendix B. 

In this study all the fracture orientation data, derived from sampling the boreholes,  
are corrected for sampling bias by use of the Terzaghi correction. Hence, the analyses 
presented in Sections 3 and 4, are based on orientation data that has been corrected  
by use of Terzaghi correction, as presented in Appendix B. However, no Terzaghi 
correction was included in the analysis of the data gathered form horizontal rock 
surfaces. 
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2.6 Classification of observed fractures into fracture sets 

A fracture set contains a number of fractures that are grouped together, as they 
demonstrate some tendency to have similar properties, e.g. orientation. In this study the 
fractures are grouped into three sets, dependent on fracture orientation. The orientations 
of the fractures of a fracture set may follow some stochastic distribution, in which some 
orientations are more likely than other orientations. An example of such a distribution is 
the Fisher spherical distribution. In this study the distribution of the fracture orientation 
within a fracture set follows a Fisher spherical distribution (see Section 2.8). 

Since the fracture orientations are steered by a statistical distribution (Fisher), a 
simulated fracture may have any orientation though some orientations are more likely 
than other orientations. When several sets are superimposed, it is difficult to know the 
set to which a particular fracture belongs. There are several methods to group fractures 
in a heterogeneous sample or population into homogeneous sets. In this study such 
algorithms were not used. Instead each fracture was marked with its proper set identity 
since this is known at the generation of the fracture. In a real situation, different 
methods and algorithms for identifying and delimiting sets will be necessary to ensure 
objective set identifications. Different methods for identification of fracture sets will 
produce different results. The reason why we have used the known true fracture set 
identity and not applied a fracture set identification algorithm is because we do not want 
the efficiency of the fracture set identification algorithm to influence the result of the 
study. The efficiency of different methods for identification of fracture sets is an 
interesting topic, but it is not included in this study. 

2.7 Aspects of the applied statistical tests –  
accepted deviations 

The purpose of sampling the discontinuities (fractures) of the rock mass by use  
of boreholes and by mapping of rock surfaces (rock outcrops) is to estimate some 
unknown properties of the rock mass. From a statistical point of view, the unknown 
properties of the rock mass are the properties of a population studied; we will call these 
properties the parameters or the true properties. The samples will produce estimates of 
the population; these estimates are called the sample properties. Generally the sample 
properties deviate somewhat from the true properties, dependent (among other things) 
on size of samples etc. This study is about calculating these deviations for different 
sizes of sample and to analyse them statistically. By sample size we mean the number of 
observations that a sample is based upon. For example, a short borehole may produce a 
sample based on the observations of 50 fractures, while a long borehole may produce a 
sample based on the observations of 500 fractures; the sample size is larger for the long 
borehole. 

In reality when observing fractures in boreholes and on outcrops, and when predicting 
properties of the rock mass based on these observations, it is impossible to exactly 
calculate how much the sample properties deviate from those of the population, as the 
properties of the population are unknown. Nevertheless, considering the purpose of a 
real investigation there are probably some demands on accuracy, which correspond to 
an acceptable deviation in estimated properties. Decisions and conclusions are founded 
on the sample properties, hence large deviations between the sample properties and the 
true properties are often not acceptable, but small deviations are acceptable as such 
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deviations are of no practical importance. (For the average mean direction of a fracture 
set, such an acceptable deviation between the true properties and sample properties is 
perhaps 5 to 15 degrees or even larger, dependent on the purpose of the investigation.)  

This study is not about calculating the necessary sample sizes or acceptable deviations 
to be used in site investigations for a nuclear repository. Actually in practise, the 
concept of acceptable deviations is not very useful, because it assumes the knowledge  
of the parameters of the population (the unknown true properties), which is normally 
not known. The necessary amount of information that needs to be gathered at a site 
investigation, is best calculated based on statistical analysis at different stages of 
sampling (preliminary and confirmatory sampling) in combination with safety analysis 
calculations (sensitivity analyses of such calculations). Theoretically, the necessary 
sample sizes and acceptable uncertainties (and acceptable deviations) in estimation  
of the true properties (parameters) of the rock mass depend on the properties of the 
investigated site and the results of safety analyses calculations. Large uncertainties 
could be accepted for parameters with little importance in the safety analysis, or for 
remote rock volumes that carries small importance in the safety analysis. While 
parameters and rock volumes that the safety analysis calculations has identified as being 
important for the performance of the investigated site, such parameters and volumes 
needs to be investigated in more detail to produce reliable estimates with a small 
amount of uncertainty. 

In this study, the properties of the rock mass are known, hence it is possible to calculate 
the deviation between sample properties and the true properties. The analysis of the 
sample properties is carried out as a statistical hypothesis testing. The hypothesis testing 
is based on a calculated test variable of the samples and the corresponding properties of 
the population. The statistical tests are based on a large number of different realisations 
of the fracture networks (500–1000). The large numbers of realisations (samples) are 
necessary to obtain reliable results (statistics). 

Primarily this study concerns tests in which the calculated deviation between sample 
properties and true properties is compared to different selected acceptable deviations of 
the test variable studied (first category of tests). The acceptable deviations are called the 
test criterions. However, this study also includes tests that do not directly correspond to 
a selected acceptable deviation, but to a given level of confidence in estimating the true 
properties (second category of tests). The difference between these two types of test 
should be noted. The purpose of the first category of tests is to determine when the size 
of the sample is large enough to produce an acceptable estimate of the true properties 
(e.g deviation <= 15 degrees), with a certain probability (e.g. >= 90%). For the first 
category of tests, we select the acceptable deviation between sample and true properties 
and the acceptable deviation is the same regardless of size of sample (length of 
borehole). 

The purpose of the second category of tests is to demonstrate the probability for a given 
hypothesis of the properties of the population, to be rejected or accepted, at a certain 
selected level of confidence (e.g. 99%). In this study the true properties are known, and 
therefore the hypothesis concerning the properties of the population is equal to the 
known true properties of the population. We know that this is a correct hypothesis, but 
due to sampling bias etc, it will not necessarily be confirmed by the samples. The test 
will tell us the probability for rejection or acceptance of this hypothesis of the rock 
mass, at a certain selected level of confidence, and size of sample. 
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For the first category of tests, the selected acceptable deviation is constant for all sizes 
of sample; in the second category of tests the selected level of confidence is constant for 
all sizes of sample. The first category of tests are carried out as non-parametric tests, 
hence we make no assumptions regarding the statistical distributions of the properties  
of the studied fracture network or regarding systematic bias in the sampling procedure. 
The first category of tests could be considered as calculation of the sample size that is 
necessary to reach a confidence level, considering a given confidence interval. The 
confidence interval corresponds to the above-discussed acceptable deviation. The 
sample size corresponds to a length of borehole or size of area. The second category  
of tests are carried out as parametric tests, for which we assume that the orientation of 
the fractures of the studied network are according to Fisher distributions and that no 
sampling bias takes place; parametric tests are only applied in Sections 3.5 and 4.4. 

When performing statistical tests, it is common that different sample sizes are selected 
beforehand, and for such an analysis a point estimate of an unknown parameter refers to 
different fixed sizes of sample. That is however not the case in this study. In this study 
the number of observed fractures (i) along a studied borehole or (ii) on a studied area, 
gives the sample size. Hence, for unknown boreholes or areas, the actual sample sizes 
are unknown, even if the lengths of the boreholes or sizes of areas are known, and the 
sample sizes are revealed when the samples are taken. The point estimates of this study 
refer not directly to different fixed sizes of sample, but to different fixed lengths of 
boreholes or sizes of area. On the average, the sample size increases with length of 
borehole and size of area. However, as the sample size will vary somewhat for a given 
borehole length or size of area, this variation will be a source of uncertainty added to the 
analyses of this study (an uncertainty that is not included when performing a “classical” 
point estimate with fixed sample sizes). 

When studying the results of the tests it is important to remember that we are  
analysing a large number of samples that produce estimates of the true properties  
of the population. For each given borehole length or size of rock surface, the different 
estimates (500–1000 values for each borehole length or size of area) form different 
distributions of estimates. Hence, the statistical tests are applied to distributions of 
estimates corresponding to different lengths of borehole or areas of rock surfaces. It 
follows that the results of the tests depend on given test criterions, e.g. acceptable 
deviations, and of the properties of the analysed distributions. This is illustrated by 
Figure 2-7, the figure gives examples of theoretical distributions representing samples 
taken from different lengths of borehole (or rock surfaces), and how these distributions 
corresponds to given acceptable deviations.  

Figure 2-7, give theoretical examples only; we will use the figure to illustrate some 
aspects of the interaction between test criterions and different distributions of estimates 
based on samples of different sizes. In the following discussion we assume that the 
studied estimates (the figure below) represents the acute angle between the mean 
orientation of a fracture set as given by a sample, and the known true orientation of  
the set. For such an example the true property of the population is a value equal to 0. 
Samples from a short borehole produces distribution D1, both the mean deviation from 
the true property and the variance is ‘large’ (Moments of D1: mean=12 deg., standard 
dev.= 7 deg.). Distribution D2 is produced by samples from a long borehole, both the 
mean deviation from the true property and the variance is ‘small’ (Moments of 
D2: mean=1 deg., standard dev.= 2 deg.). Consider an acceptable deviation from the 
true properties equal to plus/minus 10 degrees; for such a condition and for distribution 
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D1, 38% of the samples are within the boundaries, and for distribution D2, 99.9% of  
the samples are within the boundaries. Consider an acceptable deviation from the true 
properties equal to plus/minus 5 degrees; for distribution D1, 15% of the samples are 
within the boundaries, and for distribution D2, 97% of the samples are within the 
boundaries. Hence for the applied conditions (tests) and analysed distributions, the 
amount of accepted samples increases when the borehole length is increased. 
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Figure 2-7. Theoretical example of different distributions of estimates of a true  
property of a population. The true property of the population is a value equal to  
zero. Distribution D1 represents estimates based on samples from a short borehole, 
distributions D2 and D3 represents estimates based on samples form long boreholes.  

 

However it is important to note that in the figure above the mean values of the 
distributions deviate from the true property of the population (such behaviour is 
normally a result of a sampling bias). It follows that if the applied condition is strict and 
only very small deviations are accepted, the amount of accepted samples may decrease 
when the borehole length is increased, distribution D3 demonstrates this. Distribution 
D3 is produced by samples from a long borehole, the mean deviation from the true 
property is smaller than for D1, but it is not insignificant; the variance is much smaller 
than for D1 (Moments of D3: mean=8 deg., standard dev.= 2 deg.). Consider an 
acceptable deviation from the true properties equal to plus/minus 10 degrees; for such a 
condition and for distribution D1, 38% of the samples are within the boundaries, and for 
distribution D3, 83% of the samples are within the boundaries. Consider an acceptable 
deviation from the true properties equal to plus/minus 5 degrees; for distribution D1, 
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15% of the samples are within the boundaries, and for distribution D3, 6% of the 
samples are within the boundaries. Hence for the first condition (samples are accepted 
within plus/minus 10 degrees), the amount of accepted samples increases when the 
borehole length is increased; but for the second condition (samples are accepted within 
plus/minus 5 degrees), the amount of accepted samples decreases when the borehole 
length is increased. Considering the second condition, the decreasing number of 
accepted samples follows form a sampling bias, the bias makes the point estimate 
converge towards a value that is not the true value of the parameter studied. 

2.8 Aspects of the Fisher spherical probability distribution 

There are several probability distributions available for modelling spherical data, for 
example the Fisher distribution, which is the basic model for directions distributed 
unimodally with rotational symmetry, or the Watson distribution which is the basic 
model for undirected lines, axes, distributed with rotational symmetry in either bipolar 
or girdle form, see /Fisher et al, 1987/. Theoretically the Watson distribution is best 
suited for modelling the studied spherical data, as the studied data are undirected lines 
(axes) i.e. normals to fracture planes. However, many statistical tests and procedures  
are available for the Fisher distribution and therefore it is commonly used also for 
undirected lines; the applicability of the Fisher distribution for undirected lines is 
discussed below. 

In this study we will use the Fisher probability distribution, both for generation of the 
fracture population studied and for parametric analysis of the fracture population. The 
Fisher distribution is an important distribution in the analysis of spherical data, as it is 
the basic model for directions distributed unimodally with rotational symmetry. The 
Fisher distribution is defined for the whole sphere, and it serves generally as an all-
purpose probability model for directions in space and for directional measurement 
errors, much as for the normal distribution for observations on the line. The Fisher 
distribution is given by (i) parameters defining the direction of a modal vector, the 
distribution is symmetric about this vector, and (ii) a shape parameter called kappa. The 
larger the value of kappa the more the distribution is concentrated towards the direction 
of the modal vector. Kappa is often called the dispersion parameter, but actually it is a 
concentration parameter, since the larger the value of kappa the more the concentrated 
the distribution. For the Fisher distribution, the density of probability is greatest in the 
direction of the modal vector and is least in the opposite direction. 

Cones are often used when describing the properties of a Fisher distribution. Such cones 
have their narrow ends at the origin of the unit sphere, and they are oriented about the 
modal vector. On the surface of the unit sphere the cones form circular intersections. 
The opening (θ ) of such a cone is normally given from centre to side of cone (from 
modal vector to side). For the Fisher distribution, considering angles relative to the 
modal vector, the probability density distribution and the cumulative probability are as 
follows /Priest, 1993/. For a detailed mathematical presentation of the distribution we 
refer to /Fisher et al, 1987; Fisher, 1953; Mardia, 1972/. 
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K=kappa (dispersion parameter) 
 

The equation for cumulative probability above can also be looked upon as the 
probability that a random spherical data, following a Fisher distribution, makes an angle 
of less than θ with the modal vector. Examples of the cumulative probability for three 
different Fisher distributions are given in Figure 2-8.  

 

Fisher distribution, cumulative probability
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Figure 2-8. Three examples of Fisher distributions. The figure gives the cumulative 
probability within cones of different openings, minimum cone opening is 0 degrees  
(no opening) and maximum opening is 180 degrees (whole sphere). 

 

When studying the equations and figure above one should note an important aspect  
of spherical distributions. The probability density function of a spherical distribution 
(given as a function of the cone opening) is not directly proportional to the 
concentration of data on the surface of a unit sphere. This is because the probability 
density function is given as a function of an angle θ (cone opening); but the 
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concentration of modelled data depends on both (i) the probability density function and 
(ii) the size of the surface area on the unit sphere within the cone opening studied. For 
example, a Fisher distribution has its greatest concentration at θ equal to zero, which 
corresponds to the centre of the distribution, and at θ equal to zero the probability 
density function is equal to zero (as the cone opening is zero). 

The applicability of the Fisher distribution for modelling undirected lines needs to be 
considered. Undirected lines occur as spherical data simultaneously in the lower and 
upper hemispheres, as the data is undirected. When using the Fisher distribution for 
modelling of spherical data of this type, it is important to note that the Fisher 
distribution is defined for directed lines and for the whole sphere. For values of  
kappa that are not to small (larger than ca. 5), nearly all of the spherical data of a Fisher 
distribution falls in one half-sphere about the mean direction of the distribution studied; 
and for such a situation the Fisher distribution is suitable for modelling undirected lines. 
The Fisher distribution can be used for representing undirected lines as long as only an 
insignificant amount of the distribution falls outside of a half-sphere centred about the 
mean direction (modal vector) of the distribution. 

For a Fisher distribution with a kappa value equal to 5, the amount between cone 
openings equal to 0 and 90 degrees is equal to 99.3 percent of the distribution, and  
0,7 percent of the distribution takes place between cone openings equal to 90 and 180. 
For kappa values smaller than three, the amount between cone openings equal to 90 and 
180 degrees is larger than 5 percent of the distribution. This means that for kappa values 
smaller than 5 (and especially for kappa values smaller than 3), a perhaps not negligible 
amount of the studied Fisher distribution will fall outside of a half-sphere located about 
the mean direction of the distribution studied. This must be considered when modelling, 
analysing and visualising Fisher distributions with kappa values smaller than 5. 
Especially when using a Fisher distribution for representation of spherical data of axes-
type, as such data are undirected and consequently occur simultaneously in both the 
upper and lower hemispheres. 
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3 Estimation of fracture-set mean direction 
from borehole data 

3.1 Fracture set orientation and the acute angle 

In this study, a fracture set contains a number of fractures that are grouped together  
as they demonstrate a tendency to have a similar orientation. Three vectors define the 
mean directions of the fracture sets of the population. These three vectors are called the 
modal vectors, and in this study these vectors are known. 

The average orientation of a sample of fractures can also be represented by a vector. 
The orientation of such a vector is not necessarily the same as the orientation of the 
modal vector of the corresponding fracture set. The orientation of a sample is calculated 
based on two different methods, which both produces vectors with orientations that are 
very close, but of different sizes: (i) the eigenvalues method /Mardia, 1972/ and (ii)  
the resultant vector method. Both methods are presented in Appendix A. To ensure a 
correct result when applying the resultant vector method it is important to transform the 
undirected spherical data (axes) into a consistent set of directed data (vectors). If this is 
not done, the resultant vector method may under certain conditions produce a resultant 
vector that does not reflect the overall orientation of the studied fracture group (see 
Figure A-2 in Appendix A). In this study, the vector that is derived from the eigenvalues 
method is called ”the representative vector” and the vector that is derived from the 
resultant vector method is called “the resultant vector”. For the tests presented below, 
the eigenvalues method was used for calculation of sample orientation. 

When comparing the two methods, the eigenvalues method is the best method for 
calculating the mean direction of a sample, as it is are more robust method than the 
resultant vector method. However, the resultant vector method should not be forgotten, 
because the length of the resultant vector (given by the resultant vector method) is often 
used when calculating the dispersion of the fracture sample. The best approach is to  
first apply the eigenvalues method to derive a good estimate of the mean direction, and 
based upon the direction of the representative vector, apply the resultant vector method 
for calculation of the resultant vector. If the resultant vector method is constrained by 
the results of the eigenvalues method, it will produce correct results. 

The smallest angle between (i) the modal vector of the population and (ii) a 
representative vector (or resultant vector) of a sample is called the acute angle. It is 
possible to calculate acute angles as the modal vectors of the population are known. The 
acute angle is directly proportional to the deviation in estimation of the mean direction 
of a fracture set of the population. For a sample with a representative vector that has 
exactly the same direction as the modal vector, the acute angle is zero. 
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3.2 Point estimates and the acute angle 

The fractures that intersect the borehole studied are samples of the fracture population. 
The properties of the sample are estimates of the properties of the population. The 
observed fractures are classified into three groups, one group for each theoretical 
fracture set. After the classification each fracture set is studied one by one, separate 
from the other sets. The test presented below is conducted for each fracture set 
separately. 

From a statistical point of view, the calculation of the average orientation of the 
fractures of the samples is a point estimate of the orientation of the population. In this 
study, the acute angle is the sample variable studied. The acute angle is a function of the 
properties of the samples (i.e. the distribution of the observed fractures) and the known 
modal vector of the population. The efficiency of the point estimate of the variable 
studied increases with size of sample (number of observed fractures), and size of sample 
increases with length of borehole. This is demonstrated in 4.1 and in Figure 3-2. 

Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such 
sampling of fracture orientation in a three-dimensional fracture system will introduce an 
orientation sampling bias. The bias follows from the fact that the probability for 
intersecting a fracture depends on the angle between the sampling line and the fracture, 
as well as on the area of the fracture. For compensation of this sampling bias we have 
applied a geometrical correction factor based on the observed angle between the 
sampling line and the normal to a particular fracture, such a correction is called 
Terzaghi correction (see Appendix B). In this study all the fracture orientation data, 
derived from sampling the boreholes, are corrected for sampling bias by use of the 
Terzaghi correction, the correction is not perfect and some bias will remain in the 
samples. 

Considering a vertical borehole of length 1000 m, the acute angels are: 

SET 1: Mean acute angel of samples = 3.14 degrees 
SET 2: Mean acute angel of samples = 1.63 degrees 
SET 3: Mean acute angel of samples = 0.99 degrees 

Considering an inclined borehole of length 1000 m, the acute angels are: 

SET 1: Mean acute angel of samples = 3.11 degrees 
SET 2: Mean acute angel of samples = 1.56 degrees 
SET 3: Mean acute angel of samples = 1.68 degrees 
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Vertical borehole.  Mean value of acute angle of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v)
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Vertical borehole.  Standard deviation of acute angle of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v).
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Figure 3-1. Vertical borehole. The efficiency of the point estimate of the acute angle, 
given as the mean (upper figure) and standard deviation (lower figure) of the acute 
angle of the samples at different lengths of borehole. The calculations are based on  
900 realisations of different boreholes, for each length studied 
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Inclined borehole (T=90deg  P=45deg).  Mean value of acute angle of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i)
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Inclined borehole (T=90deg  P=45deg).  Standard deviation of acute angle of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i).
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Figure 3-2. Inclined borehole. The efficiency of the point estimate of the acute angle, 
given as the mean (upper figure) and standard deviation (lower figure) of the acute 
angle of the samples at different lengths of borehole. The calculations are based on  
900 realisations of different boreholes, for each length studied. 
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3.3 Types of tests 

The analysis of the point estimate of the orientation is carried out as a statistical 
hypothesis testing. The hypothesis testing is based on the acute angle of the samples and 
given criterion of significance and confidence levels. Two different types of test have 
been performed: tests as regard acceptable deviations and tests as regard confidence 
levels (confidence intervals and confidence cones). Tests that correspond to selected 
constant values of acceptable deviations are presented in Section 3.4. Tests that 
correspond to selected confidence levels are presented in Section 3.5.  

3.4 Hypothesis testing considering acceptable deviations 

3.4.1 Purpose of test 

The purpose of the test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the studied parameter, with a certain probability.  
This can also be stated in the following way: the calculation of the sample size that is 
necessary to reach a confidence level, considering a given confidence interval. The 
confidence interval is the same thing as a test criterion (an acceptable deviation). The 
sample size corresponds to length of borehole. 

3.4.2 Null hypothesis, acceptable deviations and criterion  
of significance 

The analysis of the point estimate of the fracture set orientations is based on hypothesis 
testing. The hypothesis testing is based on the sample variable studied (the acute angle) 
and given criterions of significance. The null hypothesis (H0) is that the orientation 
derived from a sample is a good estimate of the true orientation of the population. For 
the tests presented in this section, the criterions of significance correspond to selected 
values of acceptable deviations. If the acute angle of a sample is larger than these 
acceptable deviations, the sample is rejected. 

We have studied three different criterions that correspond to three different levels of 
significance.  

First criterion:  H0 (A<=15 deg) is rejected if Acute angle >= 15 degrees. 

Second criterion: H0 (A<=10 deg) is rejected if Acute angle >= 10 degrees. 

Third criterion: H0 (A<= 5 deg) is rejected if Acute angle >= 5 degrees. 

The result of the analysis is presented as the percentage of accepted the samples, which 
is approximately the same thing as the probability for correct estimation, considering 
the different selected criterions. 
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3.4.3 Results for a vertical borehole 

Results for Set 1 

Examples of results for Set 1 are as follows (see Figure 3-3). At a borehole length larger 
than 140 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
10 percent, if the length of the borehole is larger than 140 meters. And finally, if the 
borehole has a length larger than 140 meters, the probability is larger than 90 percent 
that the deviation in estimated orientation is less than 15 degrees. 

 

Vertical borehole. Fracture Set 1 (sub-vert).
 Probability for correct estimation of mean direction. Terzaghi correction included. (E2C0-v).
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Figure 3-3. Vertical borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

Results for Set 2 

Examples of results for Set 2 are as follows (see Figure 3-4). At a borehole length  
larger than 50 metres, the probability is larger than 90 percent that a sample will not  
be rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
10 percent, if the length of the borehole is larger than 50 meters. And finally, if the 
borehole has a length larger than 50 meters, the probability is larger than 90 percent  
that the deviation in estimated orientation is less than 15 degrees. 
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Vertical borehole. Fracture Set 2 (sub-vert).
 Probability for correct estimation of mean direction. Terzaghi correction included. (E2C0-v).
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Figure 3-4. Vertical borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

 

Results for Set 3 

Examples of results for Set 3 are as follows (see Figure 3-5). At a borehole length  
larger than 20 metres, the probability is larger than 90 percent that a sample will not  
be rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
10 percent, if the length of the borehole is larger than 20 meters. And finally, if the 
borehole has a length larger than 20 meters, the probability is larger than 90 percent  
that the deviation in estimated orientation is less than 15 degrees. 
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Vertical borehole. Fracture Set 3 (sub-horizontal).
 Probability for correct estimation of mean direction. Terzaghi correction included. (E2C0-v).
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Figure 3-5. Vertical borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

3.4.4 Results for an inclined borehole 

Results for Set 1 

Examples of results for Set 1 are as follows (see Figure 3-6). At a borehole length  
larger than 90 metres, the probability is larger than 90 percent that a sample will not  
be rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
10 percent, if the length of the borehole is larger than 90 meters. And finally, if the 
borehole has a length larger than 90 meters, the probability is larger than 90 percent  
that the deviation in estimated orientation is less than 15 degrees.  
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Inclined borehole (T=90deg  P=45deg).  Fracture Set 1 (sub-vert).
Probability for correct estimation of orientation. Terzaghi correction included. (E2C9-i).
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Figure 3-6. Inclined borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

Results for Set 2 

Examples of results for Set 2 are as follows (see Figure 3-7). At a borehole length  
larger than 35 metres, the probability is larger than 90 percent that a sample will not  
be rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
15 percent, if the length of the borehole is larger than 35 meters. And finally, if the 
borehole has a length larger than 35 meters, the probability is larger than 90 percent  
that the deviation in estimated orientation is less than 15 degrees.  
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Inclined borehole (T=90deg  P=45deg).  Fracture Set 2 (sub-vert).
Probability for correct estimation of orientation. Terzaghi correction included. (E2C9-i).
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Figure 3-7. Inclined borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

Results for Set 3 

Examples of results for Set 3 are as follows (see Figure 3-8). At a borehole length  
larger than 35 metres, the probability is larger than 90 percent that a sample will not  
be rejected considering the first criterion (H0 (A <=15 deg)). Or with other words, the 
probability that a sample deviates significantly considering H0 (A <=15 deg) is less than  
10 percent, if the length of the borehole is larger than 35 meters. And finally, if the 
borehole has a length larger than 35 meters, the probability is larger than 90 percent  
that the deviation in estimated orientation is less than 15 degrees.  
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Inclined borehole (T=90deg  P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of mean direction. Terzaghi correction included. (E2C9-i).
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Figure 3-8. Inclined borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted orientation. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 

 

3.5 Parametrical hypothesis testing considering Fisher 
distributions and confidence cones 

3.5.1 Purpose 

A test that assumes that the analysed population is distributed according to a known 
probability distribution is called a parametrical test. We have conducted such tests, and 
for these tests we have assumed that the orientations of the fractures of the population  
is distributed according to Fisher distributions. This is a correct assumption as the 
population was generated according to Fisher distributions. The purpose of these tests  
is to demonstrate the remaining bias of the sampling procedure (sampling in boreholes), 
the bias that remains after application of Terzaghi correction. This will be demonstrated 
by analysing the probability for a selected hypothesis of the properties of the 
population, to be rejected or accepted, at a certain selected level of confidence. In this 
study the population is known, and the hypothesis of the properties of the population  
is set equal to the known true properties of the population. The test will tell us the 
probability for rejection or acceptance of this correct hypothesis of the rock mass, at a 
certain selected level of confidence. In this section confidence cones will be used as a 
part of the hypothesis testing. 
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3.5.2 Confidence cones 

A confidence interval for a parameter is an interval of values computed from a sample, 
which includes the unknown value of the parameter with some specified probability. 
The probability that a confidence interval will cover the unknown parameter value is the 
confidence level. A confidence cone is the same thing as a confidence interval, except 
that the region computed to cover the unknown parameter is not an interval, but of a 
conical or other specified shape. Hence, the concept of confidence cones corresponds to 
the concept of confidence intervals. Consider a Fisher distribution, a confidence cone 
for an unknown modal vector (of the Fisher dist.) is centred on the representative  
vector of the sample studied. The confidence cone has an opening governed by some 
confidence level and by both the size (number of fractures) and the dispersion (kappa) 
of the sample. In this study, the confidence cones are calculated based on the 
assumption that the dispersion of the population is unknown. 

Based on these assumptions, the openings of the confidence cones are calculated by use 
of methods given by /Fisher et al, 1987/, these methods are based on the work of the 
following authors: Initially /Fisher, 1953/ considered point estimate of mean direction 
and dispersion. /Watson, 1956/ and /Watson and Williams, 1956/ derived an exact 
procedure for calculation of a confidence cone for the mean direction and a procedure 
for calculation of an interval for kappa. /Stephens, 1962, 1967/ provided tables enabling 
the Watson and Williams procedure to be implemented, /Stephens, 1967/ also gives the 
theory and tables for exact interval estimation of kappa. General summaries of these 
procedures are given by /Mardia, 1972/. 

The sizes of cone openings are demonstrated in Figure 3-9 and Figure 3-10. The figures 
demonstrates that the opening (acceptable deviation) depend on both the calculated 
dispersion of the samples (kappa) as well as of the number of fractures in the sample, 
and, of course, by the given confidence level. It is also demonstrated by these two 
figures that in relation to the selected acceptable deviations, as discussed in Section 3.4 
(5–15 degrees), the cone openings are small, especially for samples containing more 
than approximately 100 fractures. The cone opening is reduced further as the number of 
fractures in the sample increases. For samples containing more than approximately 100 
fractures, the cone opening is small even if the confidence level is set as very large. This 
is correct, because a large (unbiased) sample is expected to produce a good estimate that 
is close to the true value of the population. 
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Confidence cone for the unknown direction of the modal vector of a Fisher distribution.
The cone is calculated assuming an unknown dispersion (kappa) of the population.
Specified confidence = 99 percent.
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Figure 3-9. Example of confidence cones for an unknown modal vector. Specified 
confidence = 99%. 

Confidence cone for the unknown direction of the modal vector of a Fisher distribution.
The cone is calculated assuming an unknown dispersion (kappa) of the population.
Specified confidence = 99.9 percent.
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Figure 3-10. Example of confidence cones for an unknown modal vector. Specified 
confidence = 99.9%. 

 

3.5.3 Null hypothesis and level of confidence 

The analysis of the point estimate of the orientations is carried out as a statistical 
hypothesis testing. The hypothesis testing is based on the sample variable studied  
(the acute angle) and given levels of confidence. The null hypothesis (H0) is that the  

the mean direction of the population, as estimated by the samples, are equal to the 
known true mean direction of the population. We know that this is a correct hypothesis, 
but due to sampling bias etc it will not necessarily be confirmed by the samples. For a 
studied sample, rejection of the hypothesis will take place if the modal vector of the 
population (as defined by the acute angle) is outside of a confidence cone centred on the 
representative vector of the sample (i.e. the opening of the confidence cone, centre to 
side, is smaller than the acute angle of the sample). 
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The confidence level should be selected in a way that the probability for rejection of the 
hypothesis is small if the hypothesis is true. We have studied three different levels of 
confidence, 95, 99 and 99.9 percent. The hypothesis tests are as follows: 

First confidence level 95% H0 (C=95% ): 

The hypothesis H0 (C=95% ) is rejected if the modal vector of the population does not fall 
inside a confidence cone calculated for a confidence level of 95% 

Second confidence level 99% H0 (C=99% ): 

The hypothesis H0 (C=99% ) is rejected if the modal vector of the population does not fall 
inside a confidence cone calculated for a confidence level of 99% 

Third confidence level 99.9% H0 (C=99.9% ): 

The hypothesis H0 (C=99.9% ) is rejected if the modal vector of the population does not fall 
inside a confidence cone calculated for a confidence level of 99.9% 

3.5.4 Results 

For these tests (Section 3.5), the acceptable deviation in estimation of the true value,  
as given by the confidence cones, decreases as the number of fractures in the samples 
increases. Furthermore, the acceptable deviation will also vary dependent on the 
calculated dispersion of the fractures of the sample. Hence, the acceptable deviation  
is not a constant value. For small samples, the acceptable deviation is large, and for 
large samples, the acceptable deviation is small. 

The test will tell us the probability for rejection or acceptance of the hypothesis of  
the rock mass properties, for different borehole lengths, and at selected levels of 
confidence. (As previously stated, the hypothesis is that the orientation of the 
population is equal to the known true orientation; we know that this is a correct 
hypothesis, but due to sampling bias etc it will not necessarily be confirmed by the 
samples.) The efficiency of the point estimate of the acute angle increases with size  
of sample, but the cone opening (acceptable deviation) decreases as the number of 
fractures in the sample increases. Therefore the percentage of accepted samples does  
not increase with borehole length, as for the previous tests (Section 3.4). Theoretically, 
if the samples were taken without sampling bias from perfect Fisher distributions, the 
probability for acceptance of the hypothesis should be equal to the confidence level, 
regardless of borehole length. The results for confidence levels 99% and 99.9% are 
given in Figure 3-11 and in Figure 3-12. For all fracture sets and especially for the 
inclined borehole, the results show a large amount of rejected samples. This is a 
consequence of a systematic bias in the point estimate of the acute angle. This bias 
comes from the fact that a borehole is a one-dimensional line that samples a three-
dimensional fracture network. The applied Terzaghi correction, which is supposed to 
remove this bias, is not perfect and some aspects of the bias remain in the samples. 
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Results for vertical borehole 

The results demonstrates that for Set 1 and 2, the probability for rejection of the correct 
hypothesis is larger than the prescribed level (100%-confidence level), at the confidence 
levels of 99 percent and 99.9 percent (this follows from the aforementioned systematic 
sampling-bias). However, for Set 3 which is not much influenced by sampling bias (as  
it is a sub-horizontal fracture set sampled by a vertical borehole), the probability for 
rejection of the correct hypothesis is close to the theoretically expected value. 

At a confidence level of 99 percent (Figure 3-11). 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 50 and 
60 percent regardless of borehole length. For Set 3 the probability for acceptance of the 
hypothesis is close to 96–97 percent regardless of borehole length. Theoretically, if the 
samples were taken without sampling bias, the probability for acceptance of the 
hypothesis should be equal to the confidence level, which is 99 percent. 

At a confidence level of 99.9 percent (Figure 3-11): 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 70 and 
75 percent regardless of borehole length. For Set 3 the probability for acceptance of the 
hypothesis is close to 99 percent regardless of borehole length. Theoretically, if the 
samples were taken without sampling bias, the probability for acceptance of the 
hypothesis should be equal to the confidence level, which is 99.9 percent. 

Results for inclined borehole 

These results demonstrates that for all three sets, the probability for rejection of the 
correct hypothesis is larger than the prescribed level (100%-confidence level), at the 
confidence levels of 99 percent and 99.9 percent. This follows from the aforementioned 
systematic sampling-bias. 

At a confidence level of 99 percent (Figure 3-12). 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 50 and 
60 percent, for boreholes of lengths larger than 300 m. For Set 3 the probability for 
acceptance of the hypothesis is close to 70 percent, for boreholes of lengths larger than 
300 m. Theoretically, if the samples were taken without sampling bias, the probability 
for acceptance of the hypothesis should be equal to the confidence level, which is  
99 percent. 

At a confidence level of 99.9 percent (Figure 3-12): 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 65 and 
75 percent, for boreholes of lengths larger than 300 m. For Set 3 the probability for 
acceptance of the hypothesis is close to 85 percent, for boreholes of lengths larger than 
300 m. Theoretically, if the samples were taken without sampling bias, the probability 
for acceptance of the hypothesis should be equal to the confidence level, which is  
99.9 percent. 



 62

Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution).  Assuming an unknown dispersion.
Confidence level 99%. Terzaghi correction included. (E2C0-v).
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Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution).  Assuming an unknown dispersion.
Confidence level 99.9%.  Terzaghi correction included. (E2C0-v).
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Figure 3-11. Vertical borehole. Hypothesis testing considering orientation of fracture 
sets by use of confidence cones. The figure gives the percentage of accepted samples 
(probability for an accepted sample). Tested hypothesis is: the orientation of the 
fracture set studied is equal to the true orientation of the population. Confidence levels 
are 99 percent (upper figure) and 99.9 percent (lower figure). 
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Inclined borehole (T=90deg  P=45deg). Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution).  Assuming an unknown dispersion.
Confidence level 99%. Terzaghi correction included. (E2C9-i).
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lnclined borehole (T=90deg  P=45deg).  Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution).  Assuming an unknown dispersion.
Confidence level 99.9%.  Terzaghi correction included. (E2C9-i).
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Figure 3-12. Inclined borehole. Hypothesis testing considering orientation of fracture 
sets by use of confidence cones. The figure gives the percentage of accepted samples 
(probability for an accepted sample). Tested hypothesis is: the orientation of the 
fracture set studied is equal to the true orientation of the population. Confidence levels 
are 99 percent (upper figure) and 99.9 percent (lower figure). 
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4 Estimation of fracture set dispersion from 
borehole data 

4.1 Fracture set and dispersion 

A fracture set is a number of fractures that are grouped together as they demonstrate 
some tendency to have a similar orientation. The orientations of the fractures of a 
fracture set may follow some stochastic distribution, in which some orientations are 
more likely than other orientations. An example of such a distribution is the Fisher 
distribution. The poles of the fractures of a fracture set have a tendency (weak or strong) 
to form some sort of cluster on a spherical projection. (It is also possible to group 
fractures into a fracture set based on the conclusion that the fractures have no tendency 
for a similar orientation). 

The dispersion of a fracture set is a measure of the concentration (or spread) of the 
fracture orientations about some mean direction. For the Fisher distribution the 
dispersion parameter is called “kappa”, and it is actually a concentration parameter, 
since the larger the value of kappa the more the distribution is concentrated towards a 
mean direction. The kappa parameter corresponds to a Fisher distribution, and for other 
distributions there are other measures of dispersion. Examples of general dispersion 
parameters are the SR1 and SR2 parameters (discussed below) In this study we have 
analysed three different dispersion parameters, the kappa parameter (Fisher 
distributions) and the SR1 and SR2 parameters. 

4.2 Estimated dispersion based on the SR1 parameter 

4.2.1 Methodology – eigenvalues parameters and dispersion 

The mean direction of a group of fractures can be calculated based on the eigenvalues 
method, as proposed by /Mardia, 1972/; this method is discussed in Appendix A. The 
method will provide us with a representative vector, and the direction of this vector is 
the mean direction of the group of fractures studied. In addition the method will provide 
us with three eigenvalues (L1, L2 and L3), these three values provide direct information 
about the distribution of the group of fractures studied. 

Based on the eigenvalues, two different dispersion parameters are calculated, as 
proposed by /Woodcock, 1977/, these two parameters are called, SR1 and SR2, they are 
calculated as follows. 

SR1 = LN(L1/L2)   and   SR2 = LN(L2/L3)  4-1 

If SR2 is small (approximately < 1) this is an indication that the poles of the fracture set 
studied forms a circular cluster on a spherical projection. Considering the population of 
fractures studied, the distribution of orientations of the fracture sets studied are Fischer 
distributions, which forms circular clusters on a spherical projection, it follows that the 
three different SR2-values corresponding to the three different fracture sets, are all 
equal to zero (for the population). This is confirmed by the results of our analysis of 
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large samples, which demonstrate small values of SR2. For samples (Terzaghi 
corrected) taken at a borehole length equal to 1000 m, the mean SR2 values are: 0.15 for 
Set 1, 0.12 for Set 2 and 0.09 for Set 3. Hence, the small values of SR2 indicate that the 
distributions of the fracture sets studied are circular on a unit sphere. 

For circular fracture sets, the SR1 parameter is a measure of the dispersion of the set. In 
analogy with the concentration parameter of a Fisher distribution (kappa), the larger the 
value of SR1 the more the distribution (the fractures) is concentrated towards a mean 
direction. Small values of SR1 indicates a large dispersion.  

We have derived a relationship between the kappa parameter of a Fisher distribution 
and the corresponding SR1 parameter (see Appendix _A). This relationship is 
applicable for Fisher distributions, it is not to be used on samples containing a  
limited number of fractures. 

( )
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


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



−
+−=
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11
ln1

2

K

K
SR  4-2 

K = Kappa of Fisher distribution 

By use of Eq. 5-2, above, we have calculated the following values of SR1, to 
demonstrate the relationship between kappa and SR1: 

Kappa = 5    corresponds to   SR1 = 1.45 

Kappa = 7    corresponds to   SR1 = 1.82 

Kappa = 9    corresponds to   SR1 = 2.09 

The SR1 value of the population is also calculated based on Eq. 5-2, the equation yields 
the following SR1 values: 

SET 1:  Fisher kappa of population = 4.84    →    SR1 of population = 1.411 

SET 2:  Fisher kappa of population = 8.35    →    SR1 of population = 2.013 

SET 3:  Fisher kappa of population = 8.33    →    SR1 of population = 2.010 

4.2.2 Point estimate and the SR1 parameter 

The fractures that intersect the borehole studied are samples of the fracture population. 
The properties of the sample are estimates of the properties of the population. The 
observed fractures are classified into three groups, one group for each theoretical 
fracture set. After the classification each fracture set is studied one by one, separate 
from the other sets. The test presented below is conducted for each fracture set 
separately. 

From a statistical point of view, the calculation of the SR1 variable, based on samples 
representing the population, is a point estimate of the dispersion parameter SR1 of the 
population. The SR1 variable is the sample variable studied. The efficiency of the point 
estimate of the variable studied increases with the size of the sample (number of 
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observed fractures) and the size of the sample increases with the length of the borehole. 
This is demonstrated in Figure 4-1 and Figure 4-2 (below). 

Vertical borehole. Mean of SR1 values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v).

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000
Borehole length (m)

M
ea

n 
of

 S
R

1 
va

lu
es

(-
)

Set 1.

Set 2.

Set 3.

 

Vertical borehole.  Standard deviation in SR1 values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v).
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Figure 4-1. Vertical borehole. The efficiency of the point estimate of the SR1 variable, 
given as the mean (upper figure) and standard deviation (lower figure) of the SR1 
variable of the samples at different lengths of borehole. The calculations are based on 
900 realisations of different boreholes, for each length studied.  
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lnclined borehole (T=90deg  P=45deg).  Mean of SR1 values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i).
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lnclined borehole (T=90deg  P=45deg).  Standard deviation in SR1 values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i).
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Figure 4-2. Inclined borehole. The efficiency of the point estimate of the SR1 variable, 
given as the mean (upper figure) and standard deviation (lower figure) of the SR1 
variable of the samples at different lengths of borehole. The calculations are based on 
900 realisations of different boreholes, for each length studied. 
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Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such 
sampling of fracture orientation in a three-dimensional fracture system will introduce  
an orientation sampling bias. The bias follows from the fact that the probability for 
intersecting a fracture depends on the angle between the sampling line and the fracture, 
as well as on the size of the fracture. For compensation of this sampling bias we have 
applied a geometrical correction factor based on the observed angle between the 
sampling line and the normal to a particular fracture, such a correction is called 
Terzaghi correction (see Appendix B). In this study all the fracture orientation data, 
derived from sampling the boreholes, are corrected for sampling bias by use of the 
Terzaghi correction. Terzaghi correction is not perfect and some bias will remain in  
the samples. 

Considering a vertical borehole of length 1000 m, the deviation between the mean SR1 
of the samples and the SR1 of the population is as follows: 
SET 1:  SR1 sample = 1.30 SR1 population = 1.41 Difference = 7.9% 
SET 2:  SR1 sample = 1.93 SR1 population = 2.01 Difference = 4.0% 
SET 3:  SR1 sample = 1.96 SR1 population = 2.01 Difference = 2.7% 

Considering an inclined borehole of length 1000 m, the deviation between the mean 
SR1 of the samples and the SR1 of the population is as follows: 
SET 1:  SR1 sample = 1.32 SR1 population = 1.41 Difference = 6.2% 
SET 2:  SR1 sample = 1.96 SR1 population = 2.01 Difference = 2.6% 
SET 3:  SR1 sample = 1.94 SR1 population = 2.01 Difference = 3.4% 
 
 

4.2.3 Hypothesis testing of SR1 parameter considering  
acceptable deviations 

Purpose of test 

The purpose of the test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the studied parameter, with a certain probability.  
This can also be stated in the following way: the calculation of the sample size that is 
necessary to reach a confidence level, considering a given confidence interval. The 
confidence interval is the same thing as a test criterion (an acceptable deviation). The 
sample size corresponds to length of borehole. 

Null hypothesis, acceptable deviations and criterion of significance 

The analysis of the point estimate of the fracture set dispersion is based on hypothesis 
testing. The hypothesis testing is based on the sample variable studied (the SR1 
variable) and given criterions of significance. The null hypothesis (H0) is that the 
dispersion parameter derived from a sample is a good estimate of the true parameter  
of the population. For the tests presented in this section, the criterions of significance 
correspond to selected values of acceptable deviations. If the deviation between a SR1 
value derived from a sample and the true SR1 value is larger than these acceptable 
deviations, the sample is rejected. We have studied three different criterions that 
correspond to three different levels of significance. 
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First criterion: H0 (SR1_deviation <=15%) is rejected if: 

ABS [ SR1 (sample) – SR1 (population) ] <= 0.15 * SR1 (population) 

Second criterion: H0 (SR1_ deviation <=10%) is rejected if: 

ABS [ SR1 (sample) – SR1 (population) ] <= 0.10 * SR1 (population) 

Third criterion: H0 (SR1_ deviation <=5%) is rejected if: 

ABS [ SR1 (sample) – SR1 (population) ] <= 0.5 * SR1 (population) 

The result of the analysis is presented as the percentage of accepted the samples, which 
is approximately the same thing as the probability for correct estimation, considering 
the different selected criterions 

4.2.4 Results for a vertical borehole 

Results for Set 1 

Examples of results for Set 1 are as follows (see Figure 4-3): At a borehole length larger 
than 1100 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (SR1_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 1100 meters. And finally,  
if the borehole has a length larger than 1100 meters, the probability is larger than 90 
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of  
the true SR1 value of the population. 
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Vertical borehole.  Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Figure 4-3. Vertical borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 

Results for Set 2 

Examples of results for Set 2 are as follows (see Figure 4-4). At a borehole length larger 
than 250 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (SR1_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 250 meters. And finally, if 
the borehole has a length larger than 250 meters, the probability is larger than 90 
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of  
the true SR1 value of the population. 
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Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Figure 4-4. Vertical borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 

Results for Set 3 

Examples of results for Set 3 are as follows (see Figure 4-5). At a borehole length larger 
than 100 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (SR1_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 100 meters. And finally, if 
the borehole has a length larger than 100 meters, the probability is larger than 90 
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the 
true SR1 value of the population. 
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Vertical borehole.  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Criterion: sample deviation within plus / minus 5 % of  SR1 population.
Criterion: sample deviation within plus / minus 10 % of  SR1 population.
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Figure 4-5. Vertical borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 

4.2.5 Results for an inclined borehole 

Results for Set 1 

Examples of results for Set 1 are as follows (see Figure 4-6): At a borehole length larger 
than 750 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (SR1_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 750 meters. And finally, if 
the borehole has a length larger than 750 meters, the probability is larger than 90 
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the 
true SR1 value of the population. 
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Inclined borehole (T=90deg  P=45deg).  Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C9-i).
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Figure 4-6. Inclined borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 

Results for Set 2 

Examples of results for Set 2 are as follows (see Figure 4-7): At a borehole length larger 
than 170 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (SR1_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 170 meters. And finally, if 
the borehole has a length larger than 170 meters, the probability is larger than 90 
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the 
true SR1 value of the population. 
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Inclined borehole (T=90deg  P=45deg).  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C9-i).
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Figure 4-7. Inclined borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 

Results for Set 3 

Examples of results for Set 3 are as follows. At a borehole length larger than 
250 metres, the probability is larger than 90 percent that a sample will not be rejected 
considering the first criterion (H0 (SR1_ deviation <=15%). Or with other words, the probability 
that a sample deviates significantly considering H0 (SR1_ deviation <=15%) is less than 10 
percent, if the length of the borehole is larger than 250 meters. And finally, if the 
borehole has a length larger than 250 meters, the probability is larger than 90 percent 
that the deviation in estimated SR1 value is within plus/minus 15 percent of the true 
SR1 value of the population. 
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Inclined borehole (T=90deg  P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-i).
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Figure 4-8. Inclined borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the SR1 parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 

 
 

4.3 Estimated dispersion based on the kappa parameter 

4.3.1 Methodology � resultant vectors and Fisher kappa parameter 

The samples analysed in this study demonstrate that the orientations of the fractures 
have a circular distribution on a spherical projection; this is demonstrated by the 
calculated SR2 values (see Section 4.2.1). These results are as expected, as the fracture 
sets were generated by use of Fisher distributions. However, even if we had not known 
that the fracture sets were generated by use of Fisher distributions, the circular shape of 
the fracture clusters as revealed by the SR2 parameter, indicates that parametric tests 
against Fisher distributions are appropriate. The Fisher distribution is characterised  
by a modal vector (mean direction) and a concentration parameter called kappa, the 
distribution has a rotational symmetry about the modal vector. The larger the value of 
kappa the more the distribution (the fractures) is concentrated towards the modal vector.  

The mean direction for a group of fractures can be calculated based on the resultant 
vector method, this method is discussed in Appendix A. The method will provide us 
with a resultant vector, and the direction of this vector is the mean direction of the  
group of fractures studied. In addition, the method will provide us with the length of  
the resultant vector (R); the length of the vector provides direct information about the 
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distribution of the group of fractures studied. In analogy with the concentration 
parameter of a Fisher distribution (kappa), the larger the value of R the more the 
distribution (the fractures) is concentrated towards a mean direction. 

The kappa values of the parent distribution -the population- can be estimated based  
on information provided by samples. /Fisher, 1953/ proposed a method for such an 
estimate based on a ML-estimation (maximum likelihood method). The method 
involves the length of the resultant vector and the number of fractures in the sample,  
as follows. 
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+
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− 1
 4-3 

k = Kappa of sample 

R = Length of resultant vector (of sample) 

M = Number of fractures in samplet 

For values of kappa larger than ca. 5 the variable e–k is negligible, and the equation 
above is reduced to  

RM

M
k

−
≈  4-4 

The first equation is difficult to analytically solve for kappa; however, it is not difficult 
to solve the equation by use of numerical methods. In this study a sample is first tested 
by use of the reduced equation (Eq. 5-4). If the obtained kappa value is less than 8 the 
complete equation (Eq. 5-3) is solved numerically by use of the secant method, and if 
the obtained kappa is larger than 8 the reduced equation (Eq. 5-4) is used for calculation 
of kappa. 

To ensure consistent results of the resultant vector method, it was constrained by the 
results of the eigenvalues method, as dicussed in Appendix A. 

4.3.2 Point estimate and the kappa parameter 

The fractures that intersect the borehole studied are samples of the fracture population. 
The properties of the sample are estimates of the properties of the population. The 
observed fractures are classified into three groups, one group for each theoretical 
fracture set. After the classification each fracture set is studied one by one, separate 
from the other sets. The test presented below is conducted for each fracture set 
separately. 

From a statistical point of view, the calculation of the kappa variable, based on  
samples representing the population, is a point estimate of the parameter kappa of the 
population. Kappa is the sample variable studied. The efficiency of the point estimate of 
the variable studied increases with the size of the sample (number of observed fractures) 
and the size of the sample increases with the length of the borehole. This is 
demonstrated in Figure 4-9 and Figure 4-10. 
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Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such 
sampling of fracture orientation in a three-dimensional fracture system will introduce  
an orientation sampling bias. The bias follows from the fact that the probability for 
intersecting a fracture depends on the angle between the sampling line and the fracture, 
as well as on the size of the fracture. For compensation of this sampling bias we have 
applied a geometrical correction factor based on the observed angle between the 
sampling line and the normal to a particular fracture, such a correction is called 
Terzaghi correction (see Appendix B). In this study all the fracture orientation data, 
derived from sampling the boreholes, are corrected for sampling bias by use of the 
Terzaghi correction. The Terzaghi correction is not perfect and some bias will remain  
in the samples. 

Considering a vertical borehole of length 1000 m, the final deviation between the mean 
kappa of the samples and the kappa of the population is as follows: 

SET 1:  Kappa sample = 4.80 Kappa population = 4.84 Difference = 0.8% 
SET 2:  Kappa sample = 8.19 Kappa population = 8.35 Difference = 1.9% 
SET 3:  Kappa sample = 8.29 Kappa population = 8.33 Difference = 0.5% 

Considering an inclined borehole of length 1000 m, the final deviation between the 
mean kappa of the samples and the kappa of the population is as follows: 

SET 1:  Kappa sample = 4.89 Kappa population = 4.84 Difference = 1.0% 
SET 2:  Kappa sample = 8.43 Kappa population = 8.35 Difference = 0.9% 
SET 3:  Kappa sample = 8.43 Kappa population = 8.33 Difference = 1.2% 
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Vertical borehole. Mean of Kappa values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v).
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Vertical borehole. Standard deviation in kappa values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C0-v).
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Figure 4-9. Vertical borehole. The efficiency of the point estimate of the kappa 
variable, given as the mean (upper figure) and standard deviation (lower figure) of the 
kappa variable of the samples at different lengths of borehole. The calculations are 
based on 900 realisations of different boreholes, for each length studied.  
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lnclined borehole (T=90deg  P=45deg).  Mean of Kappa values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i).
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Inclined borehole (T=90deg  P=45deg).  Standard deviation in kappa values of samples.
Fracture Set 1, 2 and 3.  Terzaghi correction included. (E2C9-i).
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Figure 4-10. Inclined borehole. The efficiency of the point estimate of the kappa 
variable, given as the mean (upper figure) and standard deviation (lower figure) of the 
kappa variable of the samples at different lengths of borehole. The calculations are 
based on 900 realisations of different boreholes, for each length studied. 
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4.3.3 Hypothesis testing of the kappa parameter considering 
acceptable deviations 

Purpose of test 

The purpose of the test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the studied parameter, with a certain probability.  
This can also be stated in the following way: the calculation of the sample size that is 
necessary to reach a confidence level, considering a given confidence interval. The 
confidence interval is the same thing as a test criterion (an acceptable deviation). The 
sample size corresponds to length of borehole. 

Null hypothesis, acceptable deviations and criterion of significance 

The analysis of the point estimate of the fracture set dispersion is based on hypothesis 
testing. The hypothesis testing is based on the sample variable studied (the kappa 
variable) and given criterions of significance. The null hypothesis (H0) is that the 
dispersion parameter derived from a sample is a good estimate of the true parameter  
of the population. For the tests presented in this section, the criterions of significance 
correspond to selected values of acceptable deviations. If the deviation between a kappa 
value derived from a sample and the true kappa value is larger than these acceptable 
deviations, the sample is rejected. 

The kappa values of the population are as follows:  

SET 1:  Fisher kappa of population = 4.84 

SET 2:  Fisher kappa of population = 8.35 

SET 3:  Fisher kappa of population = 8.33 

We have studied three different criterions of significance.  

First criterion: H0 (Kappa_deviation <=15%) is rejected if: 

ABS [ Kappa (sample) – Kappa (population) ] <= 0.15 * Kappa (population) 

This first level corresponds to intervals between:  

For SET 1:   4.11  to 5.57  which corresponds to an interval length of 1.45 

For SET 2:   7.10  to 9.60  which corresponds to an interval length of 2.50 

For SET 3:   7.08  to 9.58  which corresponds to an interval length of 2.50 

Second criterion: H0 (Kappa_ deviation <=10%) is rejected if: 

ABS [ Kappa (sample) – Kappa (population) ] <= 0.10 * Kappa (population) 

Third criterion: H0 (Kappa_ deviation <=5%) is rejected if: 

ABS [ Kappa (sample) – Kappa (population) ] <= 0.5 * Kappa (population) 
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The result of the analysis is presented as the percentage of accepted the samples, which 
is approximately the same thing as the probability for correct estimation, considering 
the different selected criterions 

4.3.4 Results for a vertical borehole 

Results for Set 1 

Examples of results for Set 1 are as follows (see Figure 4-11): At a borehole length 
larger than 500 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 500 meters. And finally,  
if the borehole has a length larger than 500 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of 
the true Kappa value of the population. 

 

Vertical borehole.  Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-11. Vertical borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same  
thing as the probability for correct estimation, for the different selected criterions. 
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Results for Set 2 

Examples of results for Set 2 are as follows (see Figure 4-12): At a borehole length 
larger than 420 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 420 meters. And finally,  
if the borehole has a length larger than 420 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent  
of the true Kappa value of the population. 

 

 

Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-12. Vertical borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 
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Results for Set 3 

Examples of results for Set 3 are as follows (see Figure 4-13): At a borehole length 
larger than 200 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 200 meters. And finally, if 
the borehole has a length larger than 200 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of 
the true Kappa value of the population. 

 

 

Vertical borehole.  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-13. Vertical borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 
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4.3.5 Results for an inclined borehole 

Results for Set 1 

Examples of results for Set 1 are as follows: At a borehole length larger than 
420 metres, the probability is larger than 90 percent that a sample will not be rejected 
considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 420 meters. And finally, if 
the borehole has a length larger than 420 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of 
the true Kappa value of the population. 

 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C9-i).
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Figure 4.14. Inclined borehole. Fracture set 1. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 
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Results for Set 2 

Examples of results for Set 2 are as follows: At a borehole length larger than 
360 metres, the probability is larger than 90 percent that a sample will not be rejected 
considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 360 meters. And finally, if 
the borehole has a length larger than 360 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of 
the true Kappa value of the population. 

 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C9-i).
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Figure 4-15. Inclined borehole. Fracture set 2. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 
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Results for Set 3 

Examples of results for Set 3 are as follows (see Figure 4-16): At a borehole length 
larger than 500 metres, the probability is larger than 90 percent that a sample will not be 
rejected considering the first criterion (H0 (Kappa_ deviation <=15%) ). Or with other words, the 
probability that a sample deviates significantly considering H0 (Kappa_ deviation <=15%) is less 
than 10 percent, if the length of the borehole is larger than 500 meters. And finally, if 
the borehole has a length larger than 500 meters, the probability is larger than 90 
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of 
the true Kappa value of the population. 

 

Inclined borehole (T=90deg  P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
Borehole length (m)

P
er

ce
nt

ag
e 

of
 a

cc
ep

te
d 

sa
m

pl
es

Criterion: sample deviation within plus / minus 5 % of  Kappa population.

Criterion: sample deviation within plus / minus 10 % of  Kappa
population.
Criterion: sample deviation within plus / minus 15 % of  Kappa

 
 

Figure 4-16. Inclined borehole. Fracture set 3. Hypothesis testing for selected 
acceptable deviations in predicted dispersion, as given by the kappa parameter. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, for the different selected criterions. 
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4.4 Parametric hypothesis testing considering a 
confidence interval for the kappa parameter 

4.4.1 Purpose 

A test that assumes that the analysed population is distributed according to a known 
probability distribution is called a parametrical test. We have conducted such tests, and 
for these tests we have assumed that the orientations of the fractures of the population  
is distributed according to Fisher distributions. This is a correct assumption as the 
population was generated according to Fisher distributions. The purpose of these tests  
is to demonstrate the remaining bias of the sampling procedure (sampling in boreholes), 
the bias that remains after application of Terzaghi correction. This will be demonstrated 
by analysing the probability for a selected hypothesis of the properties of the 
population, to be rejected or accepted, at a certain selected level of confidence.  
In this study the population is known, and the hypothesis of the properties of the 
population is set equal to the known true properties of the population. The test will tell 
us the probability for rejection or acceptance of this correct hypothesis of the rock mass, 
at a certain selected level of confidence. In this section confidence intervals will be used 
as a part of the hypothesis testing. 

4.4.2 Confidence interval 

A confidence interval for a parameter is an interval of values computed from a sample, 
which includes the unknown value of the parameter with some specified probability. 
The probability that a confidence interval will cover the unknown parameter value is  
the confidence level.  

Hence, for a sample studied the confidence interval for the kappa parameter is centred 
on the kappa value derived from the sample. The size of an interval is governed by 
(i) some specified confidence level, (ii) by the calculated kappa value of the samples 
and by (iii) the number of fractures in the sample. In this study, the confidence intervals 
for the kappa parameter are calculated based on the assumption that the direction of the 
modal vector is unknown (mean direction of population is unknown). 

Based on these assumptions, the sizes of the confidence intervals are calculated by use 
of methods given by /Fisher et al, 1987/, these methods are based on the work of the 
following authors: Initially /Fisher, 1953/ considered point estimate of mean direction 
and dispersion. /Watson, 1956/ and /Watson and Williams, 1956/ derived an exact 
procedure for calculation of a confidence cone for the mean direction and a procedure 
for calculation of an interval for kappa. /Stephens, 1962, 1967/ provided tables enabling 
the Watson and Williams procedure to be implemented, /Stephens, 1967/ also gives the 
theory and tables for exact interval estimation of kappa. General summaries of these 
procedures are given by /Mardia, 1972/. 

Example of sizes of confidence intervals are demonstrated in Figure 4-17 and Figure  
4-18. The figures demonstrates that the interval (acceptable deviation) depend on both 
the calculated kappa values of the samples as well as of the number of fractures in the 
sample, and of course by the given confidence level. 
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Selected acceptable deviations in kappa values were discussed in Section 4.3; for the 
first level, the acceptable deviation is plus/minus 15 percent of the kappa value of the 
population. Plus/minus 15 percent of kappa-population corresponds to the following 
interval lengths: 

Set 1 = 1.5  Set 2=: 2.5  Set 3= 2.5.  

A comparison between the intervals given above and the confidence intervals given in 
Figure 4-17 and Figure 4-18, reveals the following.  

• At a confidence level of 95% the confidence intervals are smaller than the 
previously discussed acceptable deviation, presuming that the number of fractures in 
the sample is larger than: (i) approximately. 150 fractures if kappa of sample is 4.8 
(Set 1) and (ii) approximately 160 fractures if kappa of sample is 8.3 (Set 2 and 3). 

• At a confidence level of 99% the confidence intervals are smaller than the 
previously discussed acceptable deviation if the number of fractures in the sample is 
larger than: (i) approximately. 270 fractures if kappa of sample is.4.8 (Set 1) and 
(ii) approximately 290 fractures if kappa of sample is 8.3 (Set 2 and 3). 

Hence, it is demonstrated by the two figures that in relation to the first level of selected 
acceptable deviations in kappa value, as discussed in Section 4.3, and for confidence 
levels less than 95% the confidence intervals are small for samples containing more 
than approximately 160 fractures. 

 

Upper and lower confidence limits for an unknown kappa value of a Fisher distribution.
The limits are calculated assuming an unknown direction of the modal vector of the population.
Specified confidence = 95 percent.
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Figure 4-17. Example of confidence interval for an unknown kappa value of a Fisher 
distribution. Specified confidence = 95%. 
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Upper and lower confidence limits for an unknown kappa value of a Fisher distribution.
The limits are calculated assuming an unknown direction of the modal vector of the population.
Specified confidence = 99 percent.
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Figure 4-18. Example of confidence interval for an unknown kappa value of a Fisher 
distribution. Specified confidence = 90%. 

 

4.4.3 Null hypothesis and level of confidence 

The analysis of the point estimate of the dispersion (kappa) of the fracture orientation  
is carried out as a statistical hypothesis testing. The hypothesis testing is based on the 
sample variable studied (kappa) and given levels of confidence. The null hypothesis 
(H0) is that the dispersion of the population, as estimated by the samples, are equal to 
the known true dispersion of the population. We know that this is a correct hypothesis, 
but due to sampling bias etc it will not necessarily be confirmed by the samples. For a 
studied sample, rejection of the hypothesis will take place if the known true kappa value 
of the population is outside of a confidence interval centred on the kappa value of the 
sample.  

An illustration of the principles of the test is given in Figure 4-19. This figure presents 
confidence intervals at different borehole lengths for samples studied and the kappa 
value of the population (the hypothesis tested). For the presented case and confidence 
level, rejection of the hypothesis will take place for samples containing more than 320 
fractures, because for samples of this size or larger, the upper limit of the confidence 
interval is less than the kappa value of the population (the hypothesis tested). 
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Upper and lower confidence limits for an unknown kappa value
Specified confidence = 90 percent.
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Figure 4-19. Example demonstrating upper and lower confidence limits, as given by 
samples, and the test-value of an analysed hypothesis. 

 

The confidence level should be selected in a way that the probability for rejection of the 
hypothesis is small if the hypothesis is true. We have studied three different levels of 
confidence: 99, 99.9 and 99.99 percent. The hypothesis tests are as follows: 

First confidence level 99% H0 (C=99% ): 

The hypothesis H0 (C=99% ) is rejected if the kappa value of the population does not fall 
inside a confidence interval calculated for a confidence level of 99%. 

Second confidence level 99.9% H0 (C=99.9% ): 

The hypothesis H0 (C=99.9% ) is rejected if the kappa value of the population does not fall 
inside a confidence interval calculated for a confidence level of 99.9%. 

Third confidence level 99.99% H0 (C=99.99% ): 

The hypothesis H0 (C=99.99% ) is rejected if the kappa value of the population does not fall 
inside a confidence interval calculated for a confidence level of 99.99%. 

For each confidence level, the result of the analysis is presented as the percentage of 
accepted samples at different borehole lengths. 

4.4.4 Results 

For these tests (Section 4.4), the acceptable deviation, as given by the confidence 
intervals, decreases as the number of fractures in a sample increases. Furthermore, the 
acceptable deviation (confidence interval) will also vary dependent on the calculated 
kappa value of the sample. Hence, the acceptable deviation is not a constant value. For 
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small samples, the acceptable deviation is large, and for large samples, the acceptable 
deviation is small. The test will tell us the probability for rejection or acceptance of the 
studied hypothesis, for different borehole lengths, and at selected levels of confidence. 
(As previously stated, the hypothesis is that the dispersion of the population is equal  
to the known true dispersion; we know that this is a correct hypothesis, but due to 
sampling bias etc it will not necessarily be confirmed by the samples.) The efficiency of 
the point estimate of the kappa value increases with size of sample, but the confidence 
interval (acceptable deviation) decreases as the number of fractures in the sample 
increases. Therefore the percentage of accepted samples does not increase with borehole 
length, as for the previous tests of Chapter 4. Theoretically, if the samples were taken 
without sampling bias from perfect Fisher distributions, the probability for acceptance 
of the hypothesis should be equal to the confidence level, regardless of borehole  
length. The results for the confidence levels studied are given in Figure 4-20 through 
Figure 4-23. 

The results show a large number of rejected samples. This is a consequence of a 
systematic bias in the point estimate of the kappa value. This bias follows from the fact 
that a borehole is a one-dimensional line that samples a three-dimensional fracture 
network. The applied Terzaghi correction, which removes most of this bias, is not 
perfect and some aspects of the bias remain in the samples.  

Results for vertical borehole 

The results demonstrate that for Set 1 and 2, the probability for rejection of the correct 
hypothesis is larger than the prescribed level (100%-confidence level), at the confidence 
levels of 99 percent and 99.9 percent. However for Set 3, which is not very much 
influenced by sampling bias (as it is a sub-horizontal fracture set sampled by a vertical 
borehole) the probability for rejection of the correct hypothesis is close to the 
theoretically expected value. 

At a confidence level of 99 percent (Figure 4-20): 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 70 and 
85 percent, regardless of borehole length. For Set 3 the probability for acceptance of the 
hypothesis is close to 96–97 percent regardless of borehole length. Theoretically, if the 
samples were taken without sampling bias, the probability for acceptance of the 
hypothesis should be equal to the confidence level, which is 99 percent. 

At a confidence level of 99.9 percent (Figure 4-21): 

For Set 1 and Set 2, the probability for acceptance of the hypothesis is between 80 and 
90 percent regardless of borehole length. For Set 3 the probability for acceptance of the 
hypothesis is close to 99 percent regardless of borehole length. Theoretically, if the 
samples were taken without sampling bias, the probability for acceptance of the 
hypothesis should be equal to the confidence level, which is 99.9 percent. 
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Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level= 99 %   Terzaghi correction included.  (E2C0-v).
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Figure 4-20. Vertical borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage 
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa 
value of the fracture set studied is equal to the true value of the population. Confidence 
level is 99 percent. 

Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level= 99.9 %   Terzaghi correction included.  (E2C0-v).
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Figure 4-21. Vertical borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage 
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa 
value of the fracture set studied is equal to the true value of the population. Confidence 
level is 99.9 percent 
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Results for inclined borehole 

The results demonstrate that for all three sets, the probability for rejection of the correct 
hypothesis is larger than the prescribed level (100%-confidence level), at the confidence 
levels of 99 percent and 99.9 percent. 

At a confidence level of 99 percent (Figure 4-22): 

For all sets, the probability for acceptance of the hypothesis is between 70 and 90 
percent, regardless of borehole length. Theoretically, if the samples were taken without 
sampling bias, the probability for acceptance of the hypothesis should be equal to the 
confidence level, which is 99 percent. 

At a confidence level of 99.9 percent (Figure 4-23): 

For all sets, the probability for acceptance of the hypothesis is between 90 and 95 
percent, regardless of borehole length. Theoretically, if the samples were taken without 
sampling bias, the probability for acceptance of the hypothesis should be equal to the 
confidence level, which is 99.9 percent. 

 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level= 99 %   Terzaghi correction included.  (E2C9-i).
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Figure 4-22. Inclined borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage 
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa 
value of the fracture set studied is equal to the true value of the population. Confidence 
level is 99 percent 
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Inclined borehole (T=90deg  P=45deg).  Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level= 99.9 %   Terzaghi correction included.  (E2C9-i).
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Figure 4-23. Inclined borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage 
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa 
value of the fracture set studied is equal to the true value of the population. Confidence 
level is 99.9% 
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5 Estimation of fracture density from 
boreholes and rock surfaces 

5.1 Measures of fracture density: P10, P21 and P32 

The number and sizes of the fractures in the rock mass are commonly described as the 
fracture density (or fracture intensity). Three different parameters are used to describe 
the fracture density: P10, P21 and P32.  

• The one-dimensional density is given by the P10 parameter; it is equal to number of 
fractures per unit length, taken along a straight line. 

• The two-dimensional density is given by the P21 parameter; it is equal to fracture 
trace-length per unit surface area, taken over a surface. 

• The three-dimensional density is given by the P32 parameter; it is equal to fracture 
surface area per unit rock volume, taken over a volume. 

The P10 value is often called the fracture frequency and given as fractures per metre. As 
such a measure the P10 value is included in estimations of rock mechanical properties. 
Both the P10 and P21 depend on the orientation of the line or plane considered for 
sampling of the fracture network (except in the case of an isotropic fracture network); 
therefore the most interesting parameter is the P32, which considers a volume and not a 
sampling line or a plane. Based on observations in boreholes and on rock surfaces (e.g. 
rock outcrops) it is possible to estimate the P10 and P21 parameters. It is however a 
more complicated to estimate the P32 parameter as normally no direct observations can 
be made of the complete extension of fracture surfaces inside a studied volume of rock. 
Consequently, when estimating the P32 parameter it has to be calculated based on other 
measurable properties. 

For fracture networks in which the fracture orientations are not uniformly random, there 
is no simple direct relationship between these three density parameters. This is because 
the different density parameters describe the fracture density in different number of 
dimensions, and for each new dimension added, additional information of the fracture 
system is needed for calculation of the corresponding density parameter. However, 
when modelling fracture networks, the quota between modelled properties (MODEL) and 
true properties (TRUE) are the same for all tree parameters, as given below. 

MODEL

TRUE

MODEL

TRUE

MODEL

TRUE

P

P

P

P

P

P

32
32

21
21

10
10 ==  5-1 

This relationship can be used when analysing fracture networks. In numerical models 
properties of the rock mass can be estimated by a trial and error procedure, based on the 
equation above.  

Another measure of fracture density that may look attractive is the number of fractures 
per unit surface area (P20), it is however not a very convenient measure as it is scale 
dependent. For a given fracture network, the number of fractures per unit surface area 
will decrease with size of the window studied. 
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5.2 Complete description of fracture network 

The distribution of fracture orientation (direction and dispersion) together with the P32 
value is not enough to obtain a unique description of the fracture network of the rock 
mass. We also need information of the fracture size distribution, because a large number 
of small fractures may give raise to the same P32 value as a small number of large 
fractures. (A complete model of the fracture network is also given by the distribution of 
fracture direction and dispersion together with the fracture size distribution and the 
number of fractures.) In addition to the above discussed, the fractures of the network 
may also be spatially correlated, if so the spatial correlation also needs to be analysed 
and quantified. In this study the fractures of the network has no spatial correlation and 
consequently no such analyses have been carried out. 

5.3 Point estimate and test considering P10 (fracture 
frequency) and boreholes 

5.3.1 Introduction 

The P10 parameter is estimated from sampling of fractures along a straight line, i.e. a 
scan line or sampling line. The sampling line can be applied along a borehole, but it can 
also be applied along the surface of a rock outcrop or along a rock walls etc. However, 
in this study we have only considered P10 values calculated from observations in 
boreholes. The P10 value is often called the fracture frequency and given as fractures 
per metre. As such a measure the P10 value is included in estimations of rock 
mechanical properties (e.g RQD, RMR, Q, etc). It should however be noted that the 
DFN-networks analysed in this study (the DFN 2 model of the Prototype Repository) 
were primarily aimed at representing the hydrogeological properties of the fractured 
rock mass and not necessarily the rock mechanical properties. 

5.3.2 Point estimate of the P10 value of the population 

The fractures that intersect the studied borehole are samples of the fracture population. 
The properties of the samples are estimates of the properties of the population. The 
observed fractures are classified into three groups, one group for each fracture set. After 
the classification each fracture set is studied one by one, separate from the other sets. 
The test presented below is conducted for each fracture set separately. 

The P10-parameter is conceptually different from the parameters defining the 
orientation and dispersion of the fracture sets studied. Orientation and dispersion are 
three-dimensional properties of the rock mass, whereas the P10-parameter is a one-
dimensional property. As the P10-parameter is a one-dimensional property it depends 
on the direction of the one-dimensional sampling line used for determining the 
parameter. Hence the variation of the P10-parameter with orientation of sampling  
line is a true property of the rock mass and not a systematic sampling error. 

The P10 value of a sample is calculated as follows: the number of fractures in the 
sample (observed in the borehole) divided by the length of the studied section (length  
of the borehole). From a statistical point of view, the analysis is a point estimate of the 
variable P10 and this variable is a function of the properties of the samples. The 
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efficiency of the point estimate increases with the size of the sample (number of 
observed fractures) and the size of the sample increases with the length of the borehole 
(studied section). This is demonstrated in Figure 5-1. 

Considering the vertical borehole, the point estimate produces the following results at a 
borehole length of 1000 metres: 

Set 1:  Mean P10 = 0.29  Standard deviation P10 = 5.5% of Mean P10 

Set 2:  Mean P10 = 0.43  Standard deviation P10 = 4.5% of Mean P10 

Set 3:  Mean P10 = 0.85  Standard deviation P10 = 3.4% of Mean P10 

All Sets Mean P10 = 1.57 

Considering the inclined borehole, the point estimate produces the following results at a 
borehole length of 1000 metres: 

Set 1:  Mean P10 = 0.46  Standard deviation P10 = 4.9% of Mean P10 

Set 2:  Mean P10 = 0.73  Standard deviation P10 = 3.8% of Mean P10 

Set 3:  Mean P10 = 0.55  Standard deviation P10 = 4.3% of Mean P10 

All Sets Mean P10 = 1.74 

The change in mean P10 values with increasing borehole length is small for boreholes 
longer than 100 metres. It is possible to express this change as the derivative of P10 
with respect to borehole length (L). The derivative is approximated by a first order 
backward finite difference and calculated as follows. 
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Considering the vertical borehole , the average derivative in mean P10 with respect to 
borehole length, for the last five borehole lengths, is as follows. 

 (i) Set 1:   1.5x10–6,    (ii) Set 2:  –7.3x10–6    and    (iii) –7.4x10–6  

Considering the inclined borehole , the average derivative in mean P10 with respect to 
borehole length, for the last five borehole lengths, is as follows 

 (i) Set 1:   –6.9x10–6,    (ii) Set 2:  –1.1x10–5    and    (iii) –1.4x10–5  

These results demonstrate that the mean P10 values at 1000 metre of borehole are  
very stable, and the change in P10 values that will come with longer boreholes are 
negligible. This is of interest, as we have no knowledge of the true P10 values of the 
population. In the test below we will set the true P10 values of the population as equal 
to the mean P10 values at 1000 metre of borehole. By doing this we assume that the 
point estimate converges towards the true P10 value of the population  



 98

Vertical borehole. Fracture Set 1, 2 and 3.
Mean and standard deviation of P10 values (E2C0-v).
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Figure 5-1. Efficiency of the point estimate of mean and standard deviation of P10 
values. The upper figure gives results for a vertical borehole; the lower figure gives 
results for an inclined borehole. 

 

5.3.3 Hypothesis testing considering P10 and acceptable deviations 

Purpose of test 

The purpose of this test is to determine when the size of a sample is large enough to 
produce an acceptable estimate of the P10 parameter of the population studied, with a 
certain probability. This can also be stated in the following way: the calculation of the 
sample size that is necessary to reach a confidence level, considering a given confidence 
interval. The confidence interval is the same thing as a test criterion (an acceptable 
deviation). The sample size corresponds to length of borehole. 
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Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing is 
based on the variable P10 and given criterions of significance. A difficulty is that we do 
not know the correct P10 value of the population studied. The established criterions of 
significance will therefore correspond to the mean P10 value derived from the largest 
samples, called the simulated true P10 value. This is an acceptable method as such 
mean values are very stable, as discussed above. It is however necessary to remember 
that when establishing criterions of significance in this way, we also assumes that the 
point estimate is not biased, and this is only the case if no sampling errors occur 

The null hypothesis (H0) is that a sample is a good representation of the true properties 
of the population. This hypothesis is accepted if not a significant deviation takes place 
in the P10 value of the sample. The following criterions are used. The three criterions 
represent three different levels of significance. 

First criterion: H0 (P10C_deviation <=15%) is true if: 

ABS[P10 (sample) – P10 (mean sample at 1000m)] <= 0.15* P10 (mean sample at 1000m) 

Second criterion: H0 (P10C_deviation <=10%) is true if: 

ABS[P10 (sample) – P10 (mean sample at 1000m)] <= 0.10* P10 (mean sample at 1000m) 

Third criterion: H0 (P10C_deviation <=5%) is true if: 

ABS[P10 (sample) – P10 (mean sample at 1000m)] <= 0.05* P10 (mean sample at 1000m) 

The results of the analysis are presented as the probability that a sample, at a certain 
borehole length, will fulfil the hypothesis considering three different criterions. 

5.3.4 Results 

Results considering a vertical borehole 

The results are given in the figures below, for the three fracture sets and for the three 
different levels of significance. 
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Vertical borehole.  Fracture Set 1 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre).
(E2C0-v).
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Figure 5-2. Vertical borehole. Set 1. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions. 

Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre).
(E2C0-v).
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Figure 5-3. Vertical borehole. Set 2. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions. 
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Vertical borehole.  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P10 (fractures per metre).
(E2C0-v).
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Figure 5-4. Vertical borehole. Set 3. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions. 

 

• Examples of results for Set 1 are as follows (see Figure 5-2): For a vertical borehole 
with a length larger than 400 metres, the probability is larger than 90 percent that a 
sample will fulfil the hypothesis considering the first criterion (H0 (P10_ deviation <=15%). 
If the borehole has a length larger than 400 meters, the probability is larger than 90 
percent that the deviation in estimated P10 value is within plus/minus 15 percent of 
the simulated true P10 value of the population. 

• Examples of results for Set 2 are as follows (see Figure 5-3): For a vertical borehole 
with a length larger than 300 metres, the probability is larger than 90 percent that a 
sample will fulfil the hypothesis considering the first criterion (H0 (P10_ deviation <=15%). 
If the borehole has a length larger than 300 meters, the probability is larger than 90 
percent that the deviation in estimated P10 value is within plus/minus 15 percent of 
the simulated true P10 value of the population.  

• Examples of results for Set 3 are as follows (see Figure 5-4): For a vertical borehole 
with a length larger than 150 metres, the probability is larger than 90 percent that a 
sample will fulfil the hypothesis considering the first criterion (H0 (P10_ deviation <=15%). 
If the borehole has a length larger than 150 meters, the probability is larger than 90 
percent that the deviation in estimated P10 value is within plus/minus 15 percent of 
the simulated true P10 value of the population. 
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Results considering an inclined borehole 

The results are given in the figures below, for the three fracture sets and for the three 
different levels of significance. 

 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 1 (sub-vertical).
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Figure 5-5. Inclined borehole. Set 1. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions. 
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lnclined borehole (T=90deg  P=45deg).  Fracture Set 2 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre)
(E2C9-i).
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Figure 5-6. Inclined borehole. Set 2. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions. 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P10 (fractures per metre)
(E2C9-i).
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Figure 5-7. Inclined borehole. Set 3. Hypothesis testing for selected acceptable 
deviations in predicted P10 value. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, for the 
different selected criterions 
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• Examples of results for Set 1 are as follows (see Figure 5-5): For an inclined 
borehole with a length larger than 350 metres, the probability is larger than 
90 percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P10_deviation <=15%). If the borehole has a length larger than 350 meters, the 
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population.  

• Examples of results for Set 2 are as follows (see Figure 5-6): For an inclined 
borehole with a length larger than 150 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P10_deviation <=15%). If the borehole has a length larger than 150 meters, the 
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population. 

• Examples of results for Set 3 are as follows (see Figure 5-7): For an inclined 
borehole with a length larger than 210 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P10_deviation <=15%). If the borehole has a length larger than 210 meters, the 
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population. 

5.4 Point estimate and test considering P21 and horizontal 
rock surfaces 

5.4.1 Introduction 

The number and length of the fracture traces on a rock surface, is linked to the fracture 
density of the fracture population of the rock mass behind the surface. The two-
dimensional fracture density is given by the P21 parameter and it is defined as the 
fracture trace-length per unit surface area, taken over a surface. Based on the number 
and length of observed fracture traces on a surface it is possible to estimate the P21 
parameter of the rock mass, with consideration of the properties of the studied surface. 

The DFN-model used in this study (as the base case) is the DFN 2 model presented in 
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish  
a discrete fracture network model, representing the rock mass at the Prototype 
Repository, which could be used for simulation of groundwater flow. The DFN 2  
model underestimates the total number of fractures in the rock mass at the Prototype 
Repository, as small fractures with minor or negligible hydraulic importance is not 
included in the model. We have therefore established an alternative DFN-model, which 
includes a larger number of small fractures, but has the same value of fracture density 
(P32-value). For this alternative DFN-model, the results considering the necessary 
sample sizes for reliable estimation of the P21 parameter is slightly different. The 
results of the alternative model are presented in Chapter 8 (Limited Sensitivity 
Analysis). 
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5.4.2 Methodology 

P21 is estimated from observations of fracture traces on rock surfaces (also called 
mapping of fracture traces on windows). In this study the analysed rock surface 
windows have been simulated based on the same DFN-network as was used for the 
analysis of the boreholes. The windows were analysed for total trace-length and 
distribution of trace-length. Examples of simulated fracture traces on circular  
horizontal windows are given in Figure 2-5. 

The P21 parameter is conceptually different from the parameters defining the 
orientation and dispersion of the fracture sets studied. Orientation and dispersion are 
three-dimensional properties of the rock mass, whereas the P21-parameter is a two-
dimensional property. As the P21-parameter is a two-dimensional property it depends 
on the orientation and shape of the two-dimensional sampling surface (the window) 
used for determining the parameter. Hence, the variation of the P21-parameter with 
orientation and shape of sampling surface is a true property of the rock mass and not a 
systematic sampling error.  

In this study, for eliminating the variation of the P21-parameter with shape of sampling 
surface, all the analysed trace-windows are of circular shape. The P21-parameter will 
however also vary with inclination (orientation) of the trace window; in this study all 
trace-windows are along the horizontal plane, e.g. corresponding to horizontal rock 
outcrops. 

The P21 estimate is calculated as follows: 

w

tot

A

L
P =21  5-2 

Ltot = Total length of all fracture traces on trace-window studied (Length). 

Aw = Area of trace-window studied (Length2) 

When analysing the length of fracture traces, a difficulty is how to handle fracture traces 
that continues outside of the studied window – traces with terminations that are not 
observable. In this study these fracture traces are included in the analysis and their 
observed length (censored length), within the window studied, gives their length. 
Fracture traces that terminate outside of the window studied are called boundary-
truncated traces and their proportion to the total number of traces is analysed in 
Sec 5.4.7. 

Another problem that may arise when mapping fracture traces is that fracture traces that 
are smaller than a certain size will not be observed correctly. Such traces are called size-
truncated traces. In this study the analysed fracture traces are numerically generated 
and the truncation limit, regarding small traces, is set as small. Traces smaller than 
0.025 metre are truncated and excluded from the analyses. 

Another cause for bias when in practice estimating a P21 values is that the localisation 
of the two-dimensional surface (the window studied) is not picked at random, but given 
by circumstances that will influence the observed fracture size distribution. For example 
it is likely that naturally occurring rock outcrops corresponds to rock masses with a 
higher resistance to weathering etc than the average rock mass, and it follows that it is 
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likely that such rock masses carries fewer fractures than the average rock mass. This  
is however not a cause for bias in this study, as all the windows studied are randomly 
generated and the properties observed are unbiased as regards the quality of rock mass. 

5.4.3 Number of fracture traces on a horizontal circular window 

The average number of fracture traces on a surface varies with properties of the fracture 
set studied, but also on the orientation, shape and size of the window studied. In 
addition to this the average number of traces on a surface does not vary in a linear way 
with radius (or side) of a window. This follows from the relationship between area and 
radius (or side), which is not a linear relationship. The number of traces on a surface is 
of interests as the point estimates depend on the sample size, and the number of traces 
observed on the windows studied give the sample size. Considering the windows 
studied, which are horizontal and circular, the average number of traces, as well as  
the 5th and 95th percentiles, are given in Figure 5-8, below. 

 

Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 2.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 3.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

Window Radius (m)

N
um

be
r 

of
 fr

ac
tu

re
 tr

ac
es

 (
-)

Number of Traces: 95th percentile

Number of Traces: Mean.

Number of Traces: 5th percentile

 
 SET 3 
 
Figure 5-8. Number of fracture traces on circular horizontal windows, considering the 
three fracture sets studied. 

 

5.4.4 Point estimate of the P21 value of the population 

The fracture traces that occur on the trace-windows studied are samples of the 
properties of the fracture population. The properties of the sample are estimates of the 
properties of the population.  

In this study each fracture was marked with its proper set identity since this is known at 
the generation of the fracture. In a real situation, different methods and algorithms for 
identifying and delimiting sets will be necessary to ensure objective set identifications. 
In the analysis presented below, the fracture traces are divided into three different sets, 
based on the known Set ID of each fracture that creates a trace. The results of the 
analysis are given for each fracture sets separately.  

From a statistical point of view, the analysis is a point estimate of the variable P21 and 
this variable is a function of the properties of the samples. The efficiency of the point 
estimate increases with the size of the sample and the size of the sample increases with 
the size of the trace-window. This is demonstrated in Figure 5-9, Figure 5-10 and Figure 
5-11. 
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Horizontal trace-windows (circular).
P21-values (fracture trace length / window area).
Fracture set 1.
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Figure 5-9. Fracture set 1. The efficiency of the point estimate of the P21 parameter by 
use of horizontal circular windows (rock outcrops). 

Horizontal trace-windows (circular).
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Figure 5-10. Fracture set 2. The efficiency of the point estimate of the P21 parameter 
by use of horizontal circular windows (rock outcrops) 
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Horizontal trace-windows (circular).
P21-values (fracture trace length / window area).
Fracture sets 3.
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Figure 5-11. Fracture set 3. The efficiency of the point estimate of the P21 parameter 
by use of horizontal circular windows (rock outcrops) 

 

 

Considering a horizontal circular trace-window of radius 150 m (area = 22500π m2 ), 
the point estimate produces the following results: 

P21 Set 1:  Arithmetic mean P21 = 0.77  Standard deviation P21 = 0.68% of Mean P21 

P21 Set 2:  Arithmetic mean P21 = 1.50  Standard deviation P21 = 0.81% of Mean P21 

P21 Set 3:  Arithmetic mean P21 = 0.41  Standard deviation P21 = 0.38% of Mean P21 

The change in mean P21 values with increasing window size is small for windows of 
radius larger than 20 m. It is possible to express this change as the derivative of P21 
with respect to window area (A) or window radius (R). The derivative is approximated 
by a first order backward finite difference and calculated as follows. 
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Considering the radius of horizontal circular windows, the average derivative in mean 
P21 with respect to window radius, for the last three analysed windows (R= 100m, 
125m and 150m) are as follows: 
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(i) Set 1:  –3.8x10–5 

(ii) Set 2:  –2.0x10–4 

(iii) Set 3:  –6.6x10–5  

These results demonstrate that the mean P21 values for a circular window of radius 
100 m or larger is very stable, and the change in P21 values that will come with larger 
windows are negligible. This is of interest, as we have no knowledge of the true P21 
value of the population. In the test below we will set the true P21 values of the 
population as equal to the mean P21 values for a circular window of radius 150 m,  
we will call this value the “simulated true P21 value. By doing this we assume that  
the point estimate converges towards the true P21 value of the population  

5.4.5 Hypothesis testing considering P21 and acceptable deviations 

Purpose of test 

The purpose of this test is to determine when the size of a sample is large enough to 
produce an acceptable estimate of the P21 parameter of the population studied, with a 
certain probability. This can also be stated in the following way: the calculation of the 
sample size that is necessary to reach a confidence level, considering a given confidence 
interval. The confidence interval is the same thing as a test criterion (an acceptable 
deviation). The sample size corresponds to area or radius of studied window. 

Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing is 
based on the variable P21 and given criterions of significance. A difficulty is that we do 
not know the correct P21 value of the population studied. The established criterions of 
significance will therefore correspond to the mean P21 value derived from a very large 
sample (the simulated true P21 value) This is an acceptable method as the mean values 
are very stable at such a large sample (this is discussed above). The null hypothesis (H0) 
is that a sample is a good representation of the true properties of the population. This 
hypothesis is rejected if a large (significant) deviation takes place in the P21 value of 
the sample compared to the simulated true P21 value of the population. The following 
criterions are used. The three criterions represent three different levels of significance. 

First criterion: H0 (P21_deviation <=15%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.15* P21 (simulated true) 

Second criterion: H0 (P21_deviation <=10%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.10* P21 (simulated true) 

Third criterion: H0 (P21_deviation <=5%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.05* P21 (simulated true) 
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The results of the analysis are presented as the probability that a sample, at a certain 
borehole length, will fulfil the hypothesis considering three different criterions.  

5.4.6 Results of hypothesis testing 

The fracture traces are divided into three different sets, based on the known Set ID of 
each fracture that creates a trace. The results are given for each fracture sets separately. 
The results are given in the figures below. 

 

 

Horizontal trace-windows.
Probability for correct estimation of P21
Fracture set 1.
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Figure 5-12. Set 1. Horizontal circular window. Hypothesis testing for selected 
acceptable deviations in predicted P21 value. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 
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Horizontal trace-windows.
Probability for correct estimation of P21
Fracture set 2.
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Figure 5-13. Set 2. Horizontal circular window. Hypothesis testing for selected 
acceptable deviations in predicted P21 value. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions 

Horizontal trace-windows.
Probability for correct estimation of P21
Fracture set 3.
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Figure 5-14. Set 3. Horizontal circular window. Hypothesis testing for selected 
acceptable deviations in predicted P21 value. The figure gives the percentage of 
accepted samples, which is approximately the same thing as the probability for correct 
estimation, for the different selected criterions. 
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• Examples of results for Set 1 are as follows (see Figure 5-12): For a horizontal 
surface of radius larger than 24 metres, the probability is larger than 90 percent that 
a sample will not be rejected considering the first criterion (H0 (P21_ deviation <=15%). If a 
horizontal surface has a radius larger than 24 metres, the probability is larger than 
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent 
of the simulated true P21 value of the population. 

• Examples of results for Set 2 are as follows (see Figure 5-13): For a horizontal 
surface of radius larger than 22 metres, the probability is larger than 90 percent that 
a sample will not be rejected considering the first criterion (H0 (P21_ deviation <=15%). If a 
horizontal surface has a radius larger than 22 metres, the probability is larger than 
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent 
of the simulated true P21 value of the population. 

• Examples of results for Set 3 are as follows (see Figure 5-14): For a horizontal 
surface of radius larger than 40 metres, the probability is larger than 90 percent that 
a sample will not be rejected considering the first criterion (H0 (P21_ deviation <=15%). If a 
horizontal surface has a radius larger than 40 metres, the probability is larger than 
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent 
of the simulated true P21 value of the population. 

5.4.7 Proportion of boundary-truncated fractures and  
estimation of P21 

Fracture traces that continue outside of the studied window are called boundary-
truncated traces, because the observed (censored) lengths of these traces are truncated at 
the boundary of the studied window. It follows that the length of a boundary-truncated 
trace is not the correct length, but an observed (or censored) length that is shorter than 
the true trace-length. There are two different types of boundary-truncated traces. 

(i) Traces for which only one end terminates at the boundary of the window, these 
traces are called boundary-truncated traces of the first type 

(ii) Traces for which both ends terminate at the boundary of the window, these 
traces are called boundary-truncated traces of the second type. 

In this study both types of boundary-truncated traces are counted and the number of 
such traces are compared to the total number of observed traces, the result is given in 
Figure 5-15 and Figure 5-16 below. 
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Horizontal trace-windows.
Boundary truncation of type 1 (truncation at one end of trace).
Fracture set 1.
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Horizontal trace-windows.
Boundary truncation of type 1 (truncation at one end of trace).
Fracture set 2.
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Horizontal trace-windows.
Boundary truncation of type 1 (truncation at one end of trace).
Fracture set 3.
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Figure 5-15. Horizontal circular window. Percentage of boundary-truncated fracture 
traces (type 1), as a function of radius of window studied, for the three fracture sets 
studied. The figure gives the percentage of traces with one termination at the window 
boundary (termination of first type) 

 



 115

Horizontal trace-windows.
Boundary truncation of type 2.
Fracture set 1. (truncation at both ends of trace).
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Horizontal trace-windows.
Boundary truncation of type 2.
Fracture set 3. (truncation at both ends of trace).
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SET 3 
 
Figure 5-16. Horizontal circular window. Percentage of boundary-truncated fracture 
traces (type 2), as a function of radius of window studied. The figure gives the 
percentage of traces with two termination at the window boundary (termination of 
second type). 

 

When studying a window of a certain size and when comparing the observed percentage 
of truncated fractures for different fracture sets, on the average the smaller the fractures 
of the sets, the smaller the percentage of truncated fractures. It follows that the smallest 
percentage of truncated fractures will on the average occur for Set 1, as this is the set 
with the smallest fractures. 

However, on the average, there will always be boundary-truncated traces of the first 
type, regardless of window size, because a window is of finite size and as the traces are 
assumed to be distributed randomly with respect to the window.  

For a window with a radius of 20 m, the mean amount of boundary-truncated traces of 
the first type is between 35 and 60 percent (dependent on set studied). For a window 
with a radius of 60 m, the mean amount of boundary-truncated traces of the first type is 
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between 15 and 30 percent (dependent on set studied). If the fracture set studied 
contains few small fractures, the amount of boundary-truncated traces of the first type 
may increase with size of window, at small window sizes. This is because for such a 
fracture set many fractures are truncated at both ends (boundary-truncation of the 
second type) at small window sizes and these fractures will, up to a certain window size, 
change into boundary-truncated traces of the first type as the size of window is 
increased. 

The results given in the figures above also demonstrate that for a circular window with 
radius larger than 22 m, the mean amount of boundary-truncated traces of the second 
type is less than five percent (for all three sets); and for windows with a radius larger 
than 40 m there are very few such traces, the mean amount for Set 1 is 0.5% and for Set 
2 the mean amount is 0.9% and finally for Set 3 the mean amount is 1.6% 

The efficiency of the point estimate of the P21 parameter depends on size of window, 
because the average number of observed traces and average number of boundary-
truncated traces depends on the window size. However, as the total length of all 
observed traces gives the P21 value (including the observed length of the boundary-
truncated traces), the P21 value is not strongly dependent on the amount of boundary-
truncated traces, except if the amount of boundary-truncated fractures are large. This is 
demonstrated by comparing (i) the hypothesis testing for selected acceptable deviations 
in predicted P21 value and (ii) the percentage of truncated fractures. An obvious 
example is Set2, the estimate of the P21 value is a good estimate for a window with a 
radius of 22 m, the expected deviation in estimation of P21 is less than 15%, although 
the amount of boundary-truncated traces is about 60 percent.  

When deriving a trace-length distribution, some methods uses the amount of boundary-
truncated traces for correction of the sample distribution, such corrections are not 
applied in this study, however they are briefly mentioned in Chapter 6. 

5.5 Point estimate and test considering P32 

5.5.1 Introduction 

The three-dimensional density is given by the P32 parameter; it is equal to fracture 
surface area per unit rock volume, taken over a volume. It is more complicated to 
estimate the P32 parameter than the P10 and P21 parameters, as normally no direct 
observations can be made of the complete extension of fracture surfaces inside a studied 
volume of rock. Consequently, when estimating the P32 parameter it has to be 
calculated based on other measurable properties. 

5.5.2 Methodology 

As previously discussed, for a complete model of the fracture network we need to have 
knowledge about: (i) the distribution of fracture orientation and dispersion, (ii) the P32 
value and (iii) the fracture size distribution. 

To estimate a P32 value, the common method is a trial and error procedure based on a 
calibration of an assumed complete model of the fracture network. This procedure can 
be carried out in different ways, for example in the following way. The first step is a 
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preliminary estimation of the distributions of fracture orientations, dispersion and 
density (e.g. based on borehole data) and a preliminary estimation of the fracture size 
distribution based on mapped fracture traces. The next step is to simulate a fracture 
network based on the established model. The fracture density of the network, the P32 
value, is varied until the established model simulates a P21 value and/or a P10 value, 
which is similar to derived (observed) values of P21 and P10. The P21 value as derived 
from mapped fracture traces and the P10 value as derived from observations in 
boreholes. This procedure is also illustrated by Eq. 6-1, which can be rewritten as 
follows. 

MODEL

TRUE
MODELTRUE P

P
PP

21

21
3232 =  5-3 

or 

MODEL

TRUE
MODELTRUE P

P
PP

10

10
3232 =  

It follows from the equations above that the deviation in estimation of the true P32 
value will be directly proportional to the deviation in estimation of the true P21 value 
and/or the true P10 value. The deviation in estimation will however also be proportional 
to the accepted divergence between the simulated values (model) and the estimated true 
values (the convergence criteria). Furthermore, it follows from Eq. 6-3, that if the 
purpose is to estimate a P32 value only, and not to establish a complete model of  
the fracture network, the fracture size distribution and the fracture orientation and 
dispersion do not need to be completely correct, as long as the estimated true P21 or 
P10 values are correct.  

Hence, with the addition of the trial and error procedure and the convergence criteria of 
that method, the results presented in Section 5.4 regarding the estimation of the P21 
value is also directly applicable for the estimation of the P32 value; and the same goes 
for the estimation of the P10 value, as presented in Section 5.3. 

However, the P32 value can also be directly estimated from samples of rock mass. 
Samples can be produced by analyses of the properties of excavated rock inside a tunnel 
(mapping of fracture traces on tunnel walls, roof and floor), but also based on observed 
fractures inside a borehole, this will be discussed in Section 5.5.5. 

5.5.3 Hypothesis testing and results considering P32, based on P21 

The P32 parameter was estimated with the method described above; this is estimation in 
parallel with the estimation of the P21 parameter. 

The null hypothesis (H0) is that the property of a sample is a good representation of the 
true properties of the population. This hypothesis is rejected a significant deviation 
takes place in the P21 value of the sample compared to the true P21 value (simulated) 
of the population. The following criterions are used; the three criterions represent three 
different levels of significance. 
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First criterion: H0 (P32_deviation <=15%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.15* P21 (simulated true) 

Second criterion: H0 (P32_deviation <=10%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.10* P21 (simulated true) 

Third criterion: H0 (P32_deviation <=5%) is rejected if: 

ABS[P21 (sample) – P21 (simulated true)] >= 0.05* P21 (simulated true) 

Considering the same values of window radius, the hypothesis testing considering the 
P32 parameter yields the same results as the hypothesis testing considering the P21 
parameter; and these results are given in Section 5.4.5. Examples of results are as 
follows. Note that the results below are given without consideration of the efficiency 
and convergence criteria of the trial an error procedure. 

• Considering Set 1 and a window with radius larger than 24 m, the probability is 
larger than 90 percent that a sample will fulfil the hypothesis considering the first 
criterion (H0 (P32_deviation <=15%). For a window with radius larger than 37 m, the 
probability is larger than 90 percent that a sample will fulfil the hypothesis at the 
second level of significance (H0 (P32_deviation <=10%). 

• Considering Set 2 and a window with radius larger than 22 m, the probability is 
larger than 90 percent that a sample will fulfil the hypothesis considering the first 
criterion (H0 (P32_deviation <=15%). For a window with radius larger than 32 m, the 
probability is larger than 90 percent that a sample will fulfil the hypothesis at the 
second level of significance (H0 (P32_deviation <=10%). 

• Considering Set 3 and a window with radius larger than 40 m, the probability is 
larger than 90 percent that a sample will fulfil the hypothesis considering the first 
criterion (H0 (P32_deviation <=15%). For a window with radius larger than 60 m, the 
probability is larger than 90 percent that a sample will fulfil the hypothesis at the 
second level of significance (H0 (P32_deviation <=10%). 

5.5.4 Hypothesis testing and results considering P32, based on P10 

The P32 parameter was estimated with the method described above; this is estimation in 
parallel with the estimation of the P10 parameter. 

The null hypothesis (H0) is that the property of a sample is a good representation of the 
true properties of the population. This hypothesis is rejected if a significant deviation 
takes place in the P10 value of the sample compared to the true P10 value (simulated) 
of the population. The following criterions are used; the three criterions represent three 
different levels of significance. 

First criterion: H0 (P32_deviation <=15%) is rejected if: 

ABS[P10 (sample) – P10 (mean sample at 1000m)] >= 0.15* P10 (mean sample at 1000m) 

Second criterion: H0 (P32_deviation <=10%) is rejected if: 
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ABS[P10 (sample) – P10 (mean sample at 1000m)] >= 0.10* P10 (mean sample at 1000m) 

Third criterion: H0 (P32_deviation <=5%) is rejected if: 

ABS[P10 (sample) – P10 (mean sample at 1000m)] >= 0.05* P10 (mean sample at 1000m) 

Considering the same borehole lengths, the hypothesis testing considering the P32 
parameter yields the same results as the hypothesis testing considering the P10 
parameter; and these results are given in Section 5.3.4. Examples of results are given 
below. Note that the results below are given without consideration of the efficiency and 
convergence criteria of the trial an error procedure. 

Vertical borehole (see Figure 5-2, Figure 5-3 and Figure 5-4 ) 

• Results for set 1: If the borehole has a length larger than 400 meters, the probability 
is larger than 90 percent that the deviation in estimated P10 value is within 
plus/minus 15 percent of the simulated true P10 value of the population. The same 
goes for the P32 value. 

• Results for Set 2 : If the borehole has a length larger than 300 meters, the  
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population.  
The same goes for the P32 value. 

• Results for Set 3 : If the borehole has a length larger than 150 meters, the  
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population.  
The same goes for the P32 value. 

Inclined borehole (see Figure 5-5, Figure 5-6, Figure 5-7 ) 

• Results for set 1: If the borehole has a length larger than 350 meters, the  
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population.  
The same goes for the P32 value. 

• Results for Set 2 : If the borehole has a length larger than 150 meters, the  
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population. 
The same goes for the P32 value. 

• Results for Set 3 : If the borehole has a length larger than 210 meters, the  
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the simulated true P10 value of the population.  
The same goes for the P32 value. 
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5.5.5 Direct estimation of P32 considering the rock mass  
inside a borehole 

Discussion of methodology 

The number of fractures observed in a borehole is linked to the fracture density of the 
fracture population of the rock mass that surrounds the borehole. It is possible to make 
an estimate of the P32 parameter of the rock mass, by studying the size of a borehole as 
well as the number and orientations of the fractures that intersect the borehole.  

The first step is the calculation of the P32 value of the rock mass inside the borehole.  
It is possible to calculate this value if we have knowledge of the acute angels between 
the borehole and the intersecting fractures, and if we assume that no fracture terminates 
in the borehole. To reach a good estimate of the P32 value inside the borehole, the 
necessary length of borehole might be considerable; as the estimation is based on a 
small volume that is very elongated in one dimension (the direction of the borehole). 

The next step is the assumption that the P32 value of the rock mass that surrounds the 
borehole is well estimated by the calculated P32 value of the rock mass inside the 
borehole. The applicability of this assumption varies with (i) the orientation of the 
borehole in relation to the mean orientation of the fracture planes of the rock mass that 
surrounds the borehole (the acute angles), as well as on (ii) the length of the borehole.  
If the studied fracture planes are at right angle to the borehole the assumption is 
applicable, even for short boreholes; but if the fracture planes of the rock mass that 
surrounds the borehole are along (parallel) to the borehole, the assumption is not 
correct. However, there is normally a certain spread of fracture orientations (dispersion) 
within a fracture set, it follows that fractures will intersect the borehole, even if the 
mean orientation of the fracture planes of the set is along the borehole, presuming that 
the borehole is long enough.  

Consider a fracture that intersects a borehole. The fracture surface area inside the 
borehole depends on the acute angle between the borehole and the fracture plane. If the 
acute angel is small, the fracture area within the borehole will be large, and if the acute 
angel is large, the fracture area within the borehole will be small. It follows that if the 
mean orientation of the fracture planes is at right angel to the borehole, many fracture 
planes will intersect the borehole, but the fracture surface area inside the borehole is 
small for each intersection. On the other hand, if the mean orientation of the fracture 
planes is along (parallel) to the borehole, few fracture planes will intersect the borehole, 
but the fracture surface area inside the borehole is large for each intersection. In this 
way the fracture surface area inside the borehole will vary with direction of borehole, 
and consequently compensate for different directions of the borehole. 

Thus, the assumption that the P32 value of the rock mass is well estimated by the P32 
value of the rock mass inside a borehole is a correct assumption, presuming that (i)  
the borehole is long enough and (ii) the fracture set studied contains a certain spread in 
orientation (dispersion). However, the efficiency of the method (the necessary length of 
borehole) is proportional to the P10 value of the fracture set studied, the larger the P10 
value the more efficient the method and the shorter the necessary length of borehole. 
The P10 value will vary with direction of borehole; hence, the efficiency of the method 
depends on direction of borehole. 



 121

Standard Terzaghi correction should not be applied, as the above-discussed calculation 
of P32 is based on fracture area inside a volume, even if is a very elongated volume (the 
method is not based on a geometrical line with zero volume). For fracture networks that 
are not extremely anisotropic, the above-discussed method can be more efficient than 
one may first perceive. The efficiency of the method will increase if the studied rock 
volume is larger than that of a borehole, for example if the method is applied on the 
volumes inside a tunnel system. On the other hand, if the volume studied is large and 
has a less elongated shape than a borehole, termination of fractures inside the volume 
studied has to be considered and included in the calculations. 

Equations 

The estimation of the P32 parameter from borehole data is based on the following 
equation. The P10C is the P32 value of the rock mass inside the borehole. 

∑ =
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P10C = The P32 value of the rock mass inside a borehole 

L = Length of studied section (borehole). 

θ = Acute angle, the angle between the borehole and a normal to the fracture plane. 

n = Number of fractures along the section studied. 

The equation above can be derived in the following way. The fracture surface area 
inside a borehole is constrained by an ellipse (presuming that the fracture is a plane in 
space). The area (A) of an ellipse is given by the length of its semi-axis (a) and (b).  

baA π=  

The lengths of the semi-axis (inside the borehole) are given by the radius (r) of the 
borehole and the acute angle, as follows: 
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It follows that the fracture surface area inside the boreholes is: 
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Considering several fractures (n) intersecting the borehole, we will get the following 
expression. 

∑ =
= n

i
i

rA
1

2

)cos(
1
θ

π  



 122

The volume (V) of the borehole along a given section of length (L) is: 

LrV 2π=  

The total fracture area divided by the volume gives the P10C value. 
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Reducing the equation above for the constants (r) and (π) will produce Eq. 6-4, as given 
below. 
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/Chilès and de Marsily, 1993/ proposed an equation similar to Eq. 6-4, but with the 
acute angel defined as the acute angle between the borehole and the fracture plane (and 
not as the acute angel between the borehole and a normal to the fracture plane). 

Point estimate of the P10C and P32 values 

The fractures that intersect the borehole form samples of the fracture population. The 
properties of the sample are estimates of the properties of the population. The observed 
fractures are classified into three groups, one group for each theoretical fracture set. 
After the classification each fracture set is studied one by one, separate from the other 
sets. The test presented below is conducted for each fracture set separately. 

The first step is calculation of P10C values, based on samples from boreholes and by 
use of the equation above (Eq. 6-4). The next step is the assumption that the P32 value 
of the rock mass is well estimated by the calculated P10C values. Hence, we assume 
that for large samples (large lengths of borehole) the P10C value is an acceptable 
estimate of the P32 value of the rock mass. 

From a statistical point of view, the analysis is a point estimate of the variable P10C and 
this variable is a function of the properties of the samples. The efficiency of the point 
estimate increases with size of the sample (number of observed fractures) and the size  
of the sample increases with the length of the borehole. This is demonstrated in  

Vertical borehole, results of point estimate, borehole length =1000 metres. 

Set 1: True P32 = 0.85 

Set 1: P10C: Mean = 0.82 Standard dev. = 8.3% of Mean. 

Deviation in estimation = 3.0% 

Set 2: True P32 = 1.59 

Set 2: P10C: Mean = 1.53 Standard dev. = 6.8% of Mean. 

Deviation in estimation = 3.6% 
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Set 3: True P32 = 0.97 

Set 3: P10C: Mean = 0.97006 Standard dev. = 3.5% of Mean. 

Deviation in estimation = 0.006% 

Inclined borehole, results of point estimate, borehole length =1000 metres. 

Set 1: True P32 = 0.85 

Set 1: P10C: Mean = 0.84 Standard dev. = 6.4% of Mean. 

Deviation in estimation = 0.7% 

Set 2: True P32 = 1.59 

Set 2: P10C: Mean = 1.56 Standard dev. = 4.6% of Mean. 

Deviation in estimation = 1.7% 

Set 3: True P32 = 0.97 

Set 3: P10C: Mean = 0.966 Standard dev. = 5.0% of Mean. 

Deviation in estimation = 0.5% 

The change in mean P10C values with increasing borehole length is small, even for as 
short boreholes as 50 metres, but the variance in P10C is not insignificant for such short 
boreholes. It is possible to express the change in P10C, as the derivative of P10C with 
respect to borehole length (L). The derivative is approximated by a first order backward 
finite difference and calculated as follows. 
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For a vertical borehole, the average derivative in mean P10C with respect to borehole 
length, for the last five borehole lengths, is as follows 

(i) Set 1:  5.3x10–7  (ii) Set 2:  –3.2x10–5 
 (iii) Set 3:  –7.4x10–6  

For a vertical borehole, the average derivative in mean P10C with respect to borehole 
length, for the last five borehole lengths, as follows: 

(i) Set 1:  –4.3x10–6  (ii) Set 2:  –2.8x10–5 
 (iii) Set 3:  –2.4x10–5  

These results demonstrate that the mean P10C values at 1000 metre of borehole are very 
stable, and the change in P10C values that will come with longer boreholes are 
negligible.  

The efficiencies of the point estimates of the P10C values are given in Figure 5-17, 
below. 
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Vertical borehole. Fracture Set 1, 2 and 3.
Mean and standard deviation of P10C (P32).
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Inclined borehole. Fracture Set 1, 2 and 3.
Mean and standard deviation of P10C (P32).
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Figure 5-17. Efficiency of the point estimate of mean and standard deviation of P10C 
values (P32 inside borehole). The upper figure gives results for a vertical borehole; the 
lower figure gives results for an inclined borehole. 
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Hypothesis testing considering P10C (P32) and acceptable deviations 

Purpose of test 

The purpose of this test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the true properties with a certain probability. 

Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing is 
based on the variable P10C and given criterions of significance. The given criterions of 
significance relate to the true P32 value of the fracture population studied. 

The null hypothesis (H0) is that a sample is a good representation of the population. 
This hypothesis is rejected if a significant deviation takes place between the P10C value 
of the sample and the true P32 value of the fracture population studied. The following 
criterions of significance are used. The three criterions represent three different levels  
of significance. 

First criterion: H0 (P32_deviation <=15%) is rejected if: 

ABS[P10C (sample) – P32 (population)] >= 0.15* P32 (population) 

Second criterion: H0 (P32_deviation <=10%) is rejected if: 

ABS[P10C (sample) – P32 (population)] >= 0.10* P32 (population) 

Third criterion: H0 (P32_deviation <=5%) is rejected if: 

ABS[P10C (sample) – P32 (population)] >= 0.05* P32 (population) 

The results of the analysis are presented as the probability that a sample, at a certain 
borehole length, will fulfil the hypothesis considering three different criterions. 

Results considering a vertical borehole 

The results are given in the figures below, for the three fracture sets and for the three 
different levels of significance. 
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Vertical borehole.  Fracture Set 1 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
(E2C0-v).
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Figure 5-18. Vertical borehole. Set 1. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions. 

Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
(E2C0-v).
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Figure 5-19. Vertical borehole. Set 2. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions. 
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Vertical borehole.  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P32 based on P10C.
(E2C0-v).

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
Borehole length (m)

P
er

ce
nt

ag
e 

of
 a

cc
ep

te
d 

sa
m

pl
es

Criterion: sample within plus / minus 5 % of  P32 population

Criterion: sample within plus / minus 10 % of  P32 population

Criterion: sample within plus / minus 15 % of  P32 population

 
Figure 5-20. Vertical borehole. Set 3. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions. 

 

 

• Examples of results for Set 1 are as follows (see Figure 5-18): For a vertical 
borehole with a length larger than 850 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 850 meters, the 
probability is larger than 90 percent that the deviation in estimated P32 value is 
within plus/minus 15 percent of the true P32 value of the population. 

• Examples of results for Set 2 are as follows (see Figure 5-19): For a vertical 
borehole with a length larger than 650 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 650 meters, the 
probability is larger than 90 percent that the deviation in estimated P32 value is 
within plus/minus 15 percent of the true P32 value of the population.  

• Examples of results for Set 3 are as follows (see Figure 5-20): For a vertical 
borehole with a length larger than 150 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 150 meters, the 
probability is larger than 90 percent that the deviation in estimated P10 value is 
within plus/minus 15 percent of the true P32 value of the population. 
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Results considering an inclined borehole 

The results are given in the figures below, for the three fracture sets and for the three 
different levels of significance. 

 

 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 1 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
(E2C9-i).
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Figure 5-21. Inclined borehole. Set 1. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions. 



 129

lnclined borehole (T=90deg  P=45deg).  Fracture Set 2 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
(E2C9-i).
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Figure 5-22. Inclined borehole. Set 2. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions. 

lnclined borehole (T=90deg  P=45deg).  Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P32 based on P10C.
(E2C9-i).
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Figure 5-23. Inclined borehole. Set 3. Hypothesis testing for selected acceptable 
deviations in predicted P32 value (based on P10C values). The figure gives the 
percentage of accepted samples, which is approximately the same thing as the 
probability for correct estimation, for the different selected criterions 
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• Examples of results for Set 1 are as follows (see Figure 5-21): For an inclined 
borehole with a length larger than 480 metres, the probability is larger than 
90 percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 480 meters, the 
probability is larger than 90 percent that the deviation in estimated P32 value  
is within plus/minus 15 percent of the true P32 value of the population.  

• Examples of results for Set 2 are as follows (see Figure 5-22): For an inclined 
borehole with a length larger than 350 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 350 meters, the 
probability is larger than 90 percent that the deviation in estimated P32 value  
is within plus/minus 15 percent of the true P32 value of the population. 

• Examples of results for Set 3 are as follows (see Figure 5-23): For an inclined 
borehole with a length larger than 380 metres, the probability is larger than 90 
percent that a sample will fulfil the hypothesis considering the first criterion 
(H0 (P32_deviation <=15%). If the borehole has a length larger than 380 meters, the 
probability is larger than 90 percent that the deviation in estimated P32 value  
is within plus/minus 15 percent of the true P32 value of the population. 
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6 Estimation of trace-length distribution 
from rock surface data 

6.1 Introduction 

By measuring the lengths of fracture traces, as observed on surfaces, is possible to 
establish a trace-length distribution. In itself such a distribution is perhaps not very 
interesting, but the trace-length distribution is linked to the fracture size distribution  
and the fracture size distribution is a very important part of a description of a fracture 
network. The fracture size distribution is important because the distribution of fracture 
size largely determines the frequency of fracture intersections and hence the mechanical 
and hydraulic properties of the rock mass studied. However, as no direct observations 
can be made of the complete extension of fracture surfaces inside a studied volume of 
rock, the fracture size distribution is determined via the trace-length distribution, and 
that is why the trace-length distribution is important. 

The DFN-model used in this study (as the base case) is the DFN 2 model presented in 
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish  
a discrete fracture network model, representing the rock mass at the Prototype 
Repository, which could be used for simulation of groundwater flow. The DFN 2  
model underestimates the total number of fractures in the rock mass at the Prototype 
Repository, as small fractures with minor or negligible hydraulic importance is not 
included in the model. We have therefore established an alternative DFN-model, which 
includes a larger number of small fractures, but has the same value of fracture density 
(P32-value). For this alternative DFN-model, different results are obtained considering 
the necessary sample sizes for reliable estimation of the fracture trace-length 
distribution. The results of the alternative model are presented in Chapter 8 (Limited 
Sensitivity Analysis). 

6.2 Methodology 

No direct observations can be made of the complete extension of fracture surfaces 
inside a studied volume of rock. Consequently, it is in practise not possible to directly 
observe the fracture size distribution. A two-dimensional survey of rock surfaces 
provides a distribution of the fracture trace-lengths, which is linked with the fracture 
size distribution; but the trace-length distribution is affected by several biases that have 
to be considered. Primarily the bias occurs because the three-dimensional fracture 
network is sampled by use of two-dimensional planes having a limited extension. There 
are five main causes for bias: 

(i) Boundary-truncated fracture traces. Fracture traces that continues outside of  
the studied window -traces with terminations that are not observable- for such 
traces, the length observed (censored length) is shorter than the true length. In 
this study these fracture traces are included in the analysis and their observed 
(censored) length, within the window studied, gives their length. 
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(ii) Size-truncated fracture traces. In practise when performing mapping on a real 
rock surface, fracture traces that are smaller than a certain size will not be 
observed correctly. Both because these small traces are considered of secondary 
importance and are overlooked, or because it is difficult to discriminate between 
natural fracture traces and artificial fracture traces (e.g. caused by blasting). 
This bias will only have a minimal influence on the results of this study. In this 
study we have defined a size limit equal to 0.025 metre, only traces with a 
length smaller than this limit will be excluded from the analysis. 

(iii) Importance of fracture size. The probability of observing a fracture trace on a 
two-dimensional surface is proportional to the size of the fracture that creates 
the trace. Hence, for a studied fracture size distribution it is more likely to 
observe the traces of the large fractures than the traces of the small fractures.  
/La Pointe and Hudson, 1985/ showed that, for the assumption that fractures are 
circular planar discs, the probability of a fracture intersecting a plane is linearly 
proportional to the fracture radius. 

(iv) Importance of geometrical shape and orientation of window studied. The 
geometrical shape, size and orientation of the window studied will influence the 
observed trace-lengths. This bias will influence the trace-length distribution 
derived in this study. To minimise this bias we have in this study only used 
circular windows and in this study all windows studied are along the horizontal 
plane, e.g. corresponding to horizontal rock outcrops.  

(v) Importance of localisation of window studied. In most cases, the localisation of 
the analysed two-dimensional surface (the window studied) is not picked at 
random, but given by circumstances that will influence the observed fracture 
size distribution. For example it is likely that naturally occurring rock outcrops 
corresponds to rock masses with a higher resistance to weathering etc. than the 
average rock mass. It is also likely that such rock masses (with a high resistance 
to weathering) also carries fewer fractures than the average rock mass. This bias 
will not influence the results of this study, because in this study the analysed 
windows are numerically generated and numerically analysed; and the observed 
properties are unbiased as regards the average quality of rock mass. 

The above discussed causes for bias are well known, and different authors have 
proposed different methods, of varying efficiency and applicability, for deriving the  
true mean or underlying distribution /see Pahl 1981; Laslett, 1982/. In this study no 
correction of the observed distributions has been applied. 

If all traces are put into one group, regardless of strike and dip of the traces etc, it is 
likely that a trace-length distribution, obtained in such a way, will demonstrate a 
complex shape with a tendency for a bi-modal or a multi-modal shape. Such a multi-
modal tendency is the product of different fracture sets with different fracture diameter 
distributions together forming the common trace-length distribution, the different modes 
of the common trace-length distribution reflects the different mean-values of the 
fracture diameter distributions. For the studied rock mass such a distribution is given in, 
the distribution is derived from horizontal surfaces of radius 150 metres. 

When fracture traces are observed on rock surfaces, it is often possible to separate the 
fracture traces into different sets, based on the observed strike of the fracture traces; and 
based on the dip of the fracture traces (assuming that it is possible to observe a dip). It 



 133

follows that different trace-length distributions will be derived for different sets. In the 
analyses presented in this chapter, the fracture traces are divided into three different 
sets, based on the known Set identity of each fracture that creates a trace. The results of 
the analyses are given for each fracture sets separately. (In this study each fracture was 
marked with its proper set identity since this is known at the generation of the fracture. 
In a real situation, different methods and algorithms for identifying and delimiting sets 
will be necessary to ensure objective set identifications.) 

 

Trace length distribution and fracture diameter distribution.
All traces included (Set1 1, Set 2 and Set 3).
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Figure 6-1. Trace-length distribution and fracture diameter distribution, considering 
all traces observed on horizontal windows of radius 150 m. The somewhat complex 
shapes are the product of different fracture sets with different fracture diameter 
distributions, together forming the distributions. The different modes of the trace-length 
distribution reflects the different mean-values of the fracture diameter distributions. 

 

 

The characteristics of the trace-length distribution vary with the size of the window 
studied. For small windows, the lengths of the traces are limited by the size of the 
window; and in addition as the number of traces are small, the variation in distribution 
characteristics is large between different windows (different realisations). The larger  
the window the closer the characteristics of the sample distribution is to the unknown 
characteristics of the population studied, and the smaller the differences between 
different realisations. 

Examples of fracture diameter distributions of the fracture sets of the population studied 
and the corresponding trace-length distributions for very large circular and horizontal 
windows (radius 150 metres) are given in Figure 6-1 (all sets together) and Figure 6-2 
(set by set). The average trace-length distribution for windows of radius 150 metres is 
set as the true distribution, and it is called the simulated true distribution (this is further 
discussed below). 
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Set 1. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Set 2.  Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Set 3.  Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Figure 6-2. Comparison between: (i) the fracture diameter distributions and (ii) the 
corresponding trace-length distributions, considering the three fracture sets and a 
window of radius 150 m. The average trace-length distribution for windows of radius 
150 m is set as the true trace-length distribution, and it is called the simulated true 
distribution. 
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Among other things, Figure 6-2 demonstrates that the trace-length distributions will 
always include a tail of small traces even if the corresponding fracture diameter 
distribution demonstrates a small probability for small fractures (e.g. the results for 
Set 2 in Figure 6-2). The reason for this is that normally only a part of a fracture 
intersects a surface, it follows that on a surface there will be short traces that are created 
by large fractures. Hence, when comparing a trace-length distribution derived from a 
large window and the corresponding fracture diameter distribution, the probability for 
small traces is larger than the corresponding probability for fractures having the same 
diameter as the length of the small traces. 

Even if the trace-length distributions are known for each fracture set, this is not enough 
to determine the fracture size distributions of the fractures of the rock mass, unless 
assumptions are made regarding the shape of fractures, and other properties of the 
fracture network. The observed trace-length distribution is linked to the fracture size 
distribution of the fractures that created the traces, and these fractures are a sample of 
the fractures of the rock mass. This is stated by /La Pointe et al, 2000/ in the following 
way: “The solution to the problem of how the scaling properties of trace-lengths relate 
to the scaling properties of the parent fracture distribution requires decomposition of the 
problem into two stages. (i) The relation between the radius distribution of the parent 
fracture population and the radius distribution of the fracture population intersecting the 
trace plane; and (ii) the relation between the radius distribution of fractures intersecting 
a trace plane and the observed trace-length distribution.”. 

A common assumption is that the fractures can be considered as discs. Even for this 
simple assumption, the derivation of the fracture size distribution from the trace-length 
distribution is not self-evident (except if the properties of the fracture network are very 
simple). Therefore, in practice when deriving a fracture size distribution one assumes a 
fracture shape and a distribution of the fracture sizes. The next step is the establishment 
of an assumed complete model of the fracture network, including fracture orientation 
and density. By use of this model and via a trial and error procedure considering 
different fracture size distributions, the observed trace-lengths are matched with 
simulated lengths and thereby the fracture size distribution is derived. The log-normal, 
the exponential or the power law distributions are commonly used for representing the 
fracture size distribution because “even if the disc-diameter distribution of the fractures 
is not log-normal, the trace-length distribution tends to look log-normal” /Chilès and de 
Marsily, 1993/. As revealed by Figure 6-2, the simulated true trace-length distributions 
for Set 1 and Set 3 have tendencies towards log-normal or an exponential shape, while 
the simulated true trace-length distribution of Set 2 has a more complicated shape.  

We will in this study not derive a fracture size distribution, but only a trace-length 
distribution. We will analyse the derived trace-length distribution considering how its 
characteristic changes with size of window. If the trace-length distribution is well 
defined and stable, at a certain window size, theoretically also the fracture size 
distribution of the fractures that intersects the window should be well defined and  
stable at this size of window. Hence, at such a window size the fundamental data is 
available for a good estimation of the fracture size distribution. The actual calculation  
of the fracture size distribution based on a trace-length distribution includes 
assumptions regarding fracture shape etc, as discussed above, and is not a part  
of this study. 
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It should be noted that the three dimensional fracture density parameter, the P32 
parameter, is only a measure of the fracture density of the rock mass, it does not provide 
a description of the fracture sizes or the connectivity of the fracture network. For a 
given value of P32 there is a better fracture connectivity with a small number of large 
fractures than with a large number of small fractures. 

6.3 Point estimate of the moments of the  
trace-length distribution 

6.3.1 General 

The fracture traces that take place on a windows studied are samples of the properties of 
the fracture population. The properties of the sample can be looked upon as an estimate 
of the properties of the population. From a statistical point of view, the analysis of the 
trace-length distribution, as given by windows of different sizes, is a point estimate of 
the properties (moments) of an unknown trace-length distribution.  

In the analyses presented below, the fracture traces are divided into three different sets, 
based on the known Set identity of each fracture that creates a trace. The results of the 
analyses are given for each fracture sets separately. 

Examples of sample trace-length distributions are given below in Figure 6-3, Figure 6-4 
and Figure 6-5. The characteristics of the trace-length distribution vary with the size of 
the window studied. For small windows, the lengths of the traces are limited by the size 
of the window; and in addition as the number of traces are small, the variation in 
distribution characteristics is large between different windows (different realisations). 
The larger the window the closer the characteristics of the sample distribution is to the 
unknown characteristics of the population studied, and the smaller the differences 
between different realisations; the rate of this progress towards the true characteristics 
are called the efficiency of the point estimate. Figure 6-2 presents the average trace-
length distribution for a window of radius 150 metres. This distribution is set as the  
true distribution, and it is called the simulated true distribution. 

As regards a point estimate of a trace-length distribution based on samples taken from 
windows (rock surfaces) of different sizes, the following needs to be considered. The 
efficiency of a point estimate considering a set of traces will not be the same as the 
efficiency of a point estimate considering all traces put together in one group. The 
sample size (number of traces) will be larger if all traces are included in one group, 
compared to the sample size of different sets, but also the shape of the true trace-length 
distribution will be different. If all traces are put into one group, regardless of strike and 
dip of the traces etc, it is not unlikely that a trace-length distribution, obtained in this 
way, will demonstrate a tendency for a bi-modal shape. Such a bi-modal shape is the 
product of different fracture sets with different fracture diameter distributions, the 
different modes of the trace-length distribution reflects the different mean-values of  
the fracture diameter distributions. 
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Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a circular area of radius 6 m (one realisation).
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 SET 1: Window of radius 6 m (diameter 12 m), one realisation. 

Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 10 m (one realisation).
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Example of sample trace length distribution
for a circular area with radius 10m.
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 SET 1: Window of radius 10 m (diameter 20 m), one realisation. 

Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 20 m (one realisation).
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Example of sample trace length distribution
for a circular area with radius 20m.

Simulated true trace length distribution
(circular area, radius= 150m)

 
 SET 1: Window of radius 20 m (diameter 40 m), one realisation. 
 

Figure 6-3. SET 1: Comparison between the simulated true trace-length distribution 
and examples of sample trace-length distributions for windows of different radii. 



 138

Set 2. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a circular area of radius 6 m (one realisation).
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Example of sample trace length distribution
for a circular area with radius 6m.

Simulated true trace length distribution
(circular area, radius= 150m)

 
 SET 2: Window of radius 6 m (diameter 12 m), one realisation. 

Set 2. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 20 m (one realisation).
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Example of sample trace length distribution
for a circular area with radius 20m.

Simulated true trace length distribution
(circular area, radius= 150m)

 
 SET 2: Window of radius 20 m (diameter 40 m), one realisation. 

Set 2. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 52 m (one realisation).
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Example of sample trace length distribution
for a circular area with radius 52m.

Simulated true trace length distribution
(circular area, radius= 150m)

 
 SET 2: Window of radius 52 m (diameter 104 m), one realisation. 
 

Figure 6-4. SET 2: Comparison between the simulated true trace-length distribution 
and examples of sample trace-length distributions for windows of different radii. 
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Set 3. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a circular area of radius 6 m (one realisation).
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 SET 3: Window of radius 6 m (diameter 12 m), one realisation. 

Set 3. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 20 m (one realisation).
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for a circular area with radius 20m.

Simulated true trace length distribution
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 SET 3: Window of radius 20 m (diameter 40 m), one realisation. 

Set 3. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 52 m (one realisation).
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 SET 3: Window of radius 52 m (diameter 104 m), one realisation. 
 

Figure 6-5. SET 3: Comparison between the simulated true trace-length distribution 
and examples of sample trace-length distributions for windows of different radii. 
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The efficiency of a point estimate increases with sample size, however for the sampling 
of traces also the size of the studied window is important. The observations are made  
on windows that have a limited size, and the upper tail of the trace-length distribution 
(traces with a large length) can only be directly observed on windows of a size (radius) 
comparable to length of the large traces. Hence, for small windows there will be  
a systematic bias in the estimate of the trace-length distribution, due to boundary 
truncation, even if the sample size is large. (Small window sizes could be sufficient  
if it is possible to fit a mathematical distribution to the observed truncated trace-length 
distributions, even if such a curve fitting procedure will introduce uncertainty regarding 
the ability of such a distribution to represent the part of the true distribution that is 
unknown at small window sizes.) 

It is not a purpose of this study to derive the fracture diameter distributions of the 
different fracture sets. The purpose is to study the trace-length distributions of the  
three fracture sets, considering how the characteristic of these trace-length distributions 
changes with size of window, and to find at what window sizes the distributions studied 
are well defined and stable. 

We have divided the traces into different sets; therefore we will be able to compare the 
efficiency of the point estimates for the different sets. It is possible that a small window 
is sufficient for deriving a trace-length distribution of a set that mainly includes small 
fractures, but for sets that include large fractures, large window sizes are necessary. 
Considering different theoretical fracture sets, the necessary window sizes for deriving 
reliable trace-length distributions for such sets depend on (i) the properties of these 
fracture sets (orientation, fracture size, fracture density etc) and (ii) how the different 
observed fracture traces are classified into the different fracture sets. 

6.3.2 Point estimate of the moments of the observed distribution  

The efficiency of the point estimate of the mean and standard deviation of the trace-
length distribution is given in Figure 6-6 and Figure 6-7, below. Considering a circular 
window of radius 150 m, the point estimate produces the following results: 

Set 1 

Mean values of trace-length distribution, window radius = 150m. 

 Mean of mean values = 6.09 m 

 Standard deviation of mean values = 1.9% of mean of mean values. 

Standard deviation of trace-length distribution, window radius = 150m. 

 Mean of standard deviation values = 6.51 m 

 Standard deviation of standard deviation values = 0.3% of mean of stand.dev.values. 
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Set 2 

Mean values of trace-length distribution, window radius = 150m. 

 Mean of mean values = 12.39 m 

 Standard deviation of mean values = 0.2% of mean of mean values. 

Standard deviation of trace-length distribution, window radius = 150m. 

 Mean of standard deviation values = 5.56 m 

 Standard deviation of standard deviation values = 1.3% of mean of stand.dev.values. 
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Horizontal trace-windows.
Length of fracture traces:  Mean of trace lengths.
Fracture set 1.
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Horizontal trace-windows.
Length of fracture traces:  Mean of trace lengths.
Fracture set 2.
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Horizontal trace-windows.
Length of fracture traces:  Mean of trace lengths.
Fracture set 3.
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 SET 3 

 

Figure 6-6. Efficiency of the point estimate of the mean value of the observed trace-
length distribution, considering windows of different sizes. 
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of trace lengths.
Fracture set 1.
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of trace lengths.
Fracture set 1.
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of trace lengths.
Fracture set 3.
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Figure 6-7. Efficiency of the point estimate of the standard deviation of the observed 
trace-length distribution, considering windows of different sizes 
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Set 3 

Mean values of trace-length distribution, window radius = 150m. 

 Mean of mean values = 12.10 m 

 Standard deviation of mean values = 0.6% of mean of mean values. 

Standard deviation of trace-length distribution, window radius = 150m. 

 Mean of standard deviation values = 10.70 m 

 Standard deviation of standard deviation values = 0.2% of mean of stand.dev.values. 

Analysing the figures that presents the efficiency of the point estimate of the mean  
and standard deviation of the trace-length distribution (Figure 6-6 and Figure 6-7). It is 
concluded that the change in mean and standard deviation of the distribution is small for 
windows with a radius larger than 150 m. This is of interest, as we have no knowledge 
of the true characteristics of the distribution studied (as given by the population). The 
sample trace-length distribution for a window of radius 150 m is set as the true 
distribution, and it is called the simulated true distribution. 

6.3.3 Point estimate of the moments of a log normal distribution fitted 
to the observed distribution 

As previously discussed, for Set 1 and Set 3 the simulated true trace-length distribution 
has tendency towards a log-normal or an exponential shape. It follows that it is possible 
to fit log-normal curves (or exponential curves) to the observed trace-length 
distributions. An advantage that comes with fitting a mathematical probability 
distribution to the observed trace-length distributions, is that such distributions will 
include an upper tail of the trace-length distribution, which otherwise is truncated at 
small window sizes. (As previously discussed there are other methods available, of 
varying efficiency and applicability, for correcting the sample distributing as regards 
boundary-truncation etc). Another advantage that comes with fitting a mathematical 
function (probability distribution) to an observed trace-length distribution is that such  
a function can be mathematically analysed and developed; for example if one tries to 
derive an analytical relationship between trace-length and a fracture size distributions. 

An observed variable which has a distribution that resembles a log-normal distribution 
can have either (i) a normal curve fitted to a histogram of the logarithms of the values or 
(ii) a log-normal curve fitted to the actual values. Opinions differ as to which method  
of representation is more effective. In this study we have fitted a normal curve to the 
logarithms of the observed trace-lengths by use of a simple and robust approach; the 
mean and standard deviation of the logarithms of the observed trace-lengths were 
calculated, and these two moments were then used for definition of the log-normal 
distribution. Logarithms to any base can be employed to "correct" the skew of 
distributions that demonstrate a tendency to a log-normal distribution, and render a 
normal distribution, but logarithms to bas e (natural logarithms) are mathematically 
most convenient. 

The underlying data-the trace-length distributions-demonstrate non-symmetric (skewed) 
shapes, but they are not distributed as perfect log-normal distributions, therefore it is 
necessary to be careful when comparing log-normal distributions derived in different 
ways from the underlying data. In addition there is variance between different 
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realisations of the trace-length distributions. Even when studying the simulated  
true distribution (windows of radius 150 m) there is a variance between different 
realisations, but it is very small at a such a large window. It follows that, for a window 
of a given size, different distributions (modes) will be derived for the following two 
alternatives: (i) Fitting one log-normal distribution to all trace-lengths that are obtained 
from a large number of realisations and calculate the modes of this distribution. (ii) 
Fitting log-normal distributions to the trace-lengths of each realisations and calculate 
mean values of the obtained modes of the different distributions. However, for the large 
window (radius 150m) used for deriving the true trace-length distributions, the results 
obtained from the two methods are very similar; in this study we have used method (i) 
when deriving the log-normal distribution representing the simulated true trace-length 
distribution.  

Considering the simulated true trace-lengths (radius of windows = 150 m), the 
following moments were obtained by use of natural logarithms (eLog[trace_length]):  

Set 1:  Mean, µeLog = 1.38 m , Standard deviation, σeLog = 0.96 m. 

Set 3:  Mean, µeLog = 2.15 m , Standard deviation, σeLog = 0.90 m. 

The corresponding values for Set 2 are given below, but as stated above and 
demonstrated in Figure 6-10 (below), the trace-length distribution of Set 2 is not well 
represented by a log-normal distribution. Set2: Mean, µeLog = 2.35 m , Standard 
deviation, σeLog = 0.70 m. 

Based on the values above, the moments of the corresponding log-normal distribution 
can be calculated as follows, see /Dudewicz and Mishra, 1988; Williams, 1984/: 

)5.0( 2

, eLogeLogeMean σµµ +=   6-1 

( )1,
22 )2( −= + eLogeLogeLog eeSTD

σσµσ  

eLogeMedian µ=  

The log normal distributions, representing the simulated true trace-length distribution, 
will have the following moments: 

Set 1: Mean, µ = 6.32 m , Standard deviation (STD), σ = 7.75 m. 

Set 3: Mean, µ = 12.85 m , Standard deviation (STD), σ = 14.38 m. 

The resulting distributions are given in Figure 6-8(i),  

Figure 6-9(i) and Figure 6-10(i). Note that the trace-length distribution of Set 2 is not 
well represented by a log-normal distribution. Examples of a log-normal curve fitting  
is given below in Figure 6-8 and Figure 6-9. The log-normal curves were fitted to the 
sample trace-length distribution by use of the following method, the mean and standard 
deviation of the natural logarithms of the observed trace-lengths were calculated, and 
these two moments were then used for definition of the log-normal distribution. This is 
an efficient method, if the observed values are distributed according to a perfect log-
normal distribution, the method will produce the correct moments for such a distribution 
(by use of Eq. 7-1). 
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Set 1. Trace length distribution. Comparison between:
 (i) the simulated true distribution, and
 (ii) a Log Normal distribution fitted to the simulated true distribution.
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(i) SET 1. Simulated true trace-length distribution and fitted Log-Normal distribution 

Set 1. Trace length distribution.  Comparison between:
 (i) the Log Normal distribution fitted to the simulated true distribution, and
 (ii) a Log Normal distribution fitted to a sample distribution (window radius 6m)
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(ii) SET 1. Log-Normal distribution fitted to the true trace-length distribution and a log normal 
distribution fitted to a sample distribution taken from a window of radius 6m. 

Set 1. Trace length distribution.  Comparison between:
 (i) the Log Normal distribution fitted to the simulated true distribution, and
 (ii) a Log Normal distribution fitted to a sample distribution (window radius 20m)
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(iii) SET 1. Log-Normal distribution fitted to the true trace-length distribution and a log normal distribution fitted to 
a sample distribution taken from a window of radius 20m. 

Figure 6-8. SET 1: Comparison between the simulated true trace-length distribution 
and a log-normal distribution fitted to the simulated true distribution, and comparisons 
between fitted Log-Normal distributions at different window sizes. Note that the first 
part of the Log-Normal distributions (with increasing values) are inside the first class of 
trace-lengths. 
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Set 3. Trace length distribution. Comparison between:
 (i) the simulated true distribution, and
 (ii) a Log Normal distribution fitted to the simulated true distribution.
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(i) SET 3. Simulated true trace-length distribution and fitted Log-Normal distribution 

Set 3. Trace length distribution.  Comparison between:
 (i) the Log Normal distribution fitted to the simulated true distribution, and
 (ii) a Log Normal distribution fitted to a sample distrinution (window radius 6m)
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(ii) SET 3. Log-Normal distribution fitted to the true trace-length distribution and a log normal distribution fitted to a 
sample distribution taken from a window of radius 6m. 

Set 3. Trace length distribution.  Comparison between:
 (i) the Log Normal distribution fitted to the simulated true distribution, and
 (ii) a Log Normal distribution fitted to a sample distrinution (window radius 20m)
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(iii) SET 3. Log-Normal distribution fitted to the true trace-length distribution and a log normal distribution fitted to a 
sample distribution taken from a window of radius 20m. 

 

Figure 6-9. SET 3: Comparison between the simulated true trace-length distribution 
and a log-normal distribution fitted to the simulated true distribution, and comparisons 
between fitted Log-Normal distributions at different window sizes. 
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Set 2. Trace length distribution. Comparison between:
 (i) the simulated true distribution, and
 (ii) a Log Normal distribution fitted to the simulated true distribution.
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Figure 6-10. SET 2: Comparison between the simulated true trace-length distribution 
and a log-normal distribution fitted to the simulated true distribution. As seen in the 
figure, the trace-length distribution of Set 2 is not well represented by a log-normal 
distribution. 

 

When studying the figures above it is obvious that the trace-length distribution of Set 2 
is not well represented by a log-normal distribution; but also considering the trace-
length distributions of Set 1 and Set 3, the log-normal representation is not a very good 
representation. The log-normal distributions tend to overestimate the number of very 
small and very large traces, and underestimate the number of traces having a length 
close to the mean of the trace-length distributions.  

The efficiency of the point estimate of the mean and standard deviation of the log-
normal distributions representing the observed trace-length distributions are not the 
same as the efficiency of the point estimate of the observed distributions. The efficiency 
of the point estimate as regards the log-normal distributions are given in Figure 6-11 
and Figure 6-12. 
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Horizontal trace-windows.
Length of fracture traces:  Mean of log-normal distribution fitted to sample distribution.
Fracture set 1.
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 SET 1 

Horizontal trace-windows.
Length of fracture traces:  Mean of log-normal distribution fitted to sample distribution.
Fracture set 2.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Window Radius (m)

Le
ng

th
 (

m
)

Length of traces: 95th percentile of mean values of log-normal distributions.

Length of traces: Mean of mean values of log-normal distributions.

Length of traces: 5th percentile of mean values of log-normal distributions.

Length of traces: Standard dev. of mean values of log-normal distributions.

 
 SET 2 

Horizontal trace-windows.
Length of fracture traces:  Mean of log-normal distribution fitted to sample distribution.
Fracture set 3.
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 SET 3 

 

Figure 6-11. Efficiency of the point estimate of the mean value of the log-normal 
distributions fitted to the observed trace-length distribution, considering windows of 
different sizes. 
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of log-normal distribution fitted to sample distribution.
Fracture set 1.
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 SET 1 

Horizontal trace-windows.
Length of fracture traces: Standard deviation of log-normal distribution fitted to sample distribution.
Fracture set 1.
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 SET 2 

Horizontal trace-windows.
Length of fracture traces: Standard deviation of log-normal distribution fitted to sample distribution.
Fracture set 3.
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 SET 3 

 

Figure 6-12. Efficiency of the point estimate of the standard deviation of the log-normal 
distributions fitted to the observed trace-length distribution, considering windows of 
different sizes. 
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6.4 Hypothesis testing considering the moments of the 
trace-length distribution and acceptable deviations 

6.4.1 Purpose of tests 

The purpose of these tests are to determine when the size of the sample is large enough 
to produce acceptable estimates of the properties of the simulated true trace-length 
distributions, with a certain probability. The hypothesis testing of this section is based 
on the moments (mean and standard deviation) of the studied distributions of trace-
lengths. Considering the somewhat complex shape of the simulated true distribution, 
one may wonder why we are interested in the moments and not of the actual shape of 
the distribution. The answer is that we are interested in both – this section presents a test 
of the moments and the next section presents a test of the shape. The moments are of 
interest, because when the samples produce a good estimate of the true moments, with a 
large probability, this is an indication that the shape of the distribution is stable and we 
have found a sample size large enough for prediction of the true properties. 

6.4.2 Test for the sample distributions 

Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing  
of this section is based on the moments (mean and standard deviation) of the studied 
distributions of trace-lengths and given criterions of significance. A difficulty is that  
we do not know the true mean and standard deviation of the population studied. The 
established criterions of significance will therefore correspond to the mean values 
derived from a very large sample (the simulated true distribution). This is an acceptable 
method as the mean values are stable at such a large sample.  

The null hypothesis (H0) is that a sample is a good representation of the true properties 
of the population. This hypothesis is rejected if the deviation between the values of  
the sample and the true values of the population (simulated) is large. The following 
criterions of significance are used: three criterions for the mean of the distribution  
and three criterions for standard deviation of the distribution. The criterions represent 
different aspects of the distribution and different levels of significance. 

Criterions for mean of distribution: 

First criterion: H0 (Mean_deviation <=15%) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] >= 0.15* Mean(simulated true) 

Second criterion: H0 (Mean_deviation <=10%) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] >= 0.10* Mean(simulated true) 

Third criterion: H0 (Mean_deviation <=5%) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] >= 0.05* Mean(simulated true) 



 152

Criterions for standard deviation (STD) of distribution: 

First criterion: H0 (STD_deviation <=15%) is rejected if: 

 ABS[STD(sample) – STD(simulated true)] >= 0.15* STD(simulated true) 

Second criterion: H0 (STD_deviation <=10%) is rejected if: 

 ABS[STD(sample) – STD(simulated true)] >= 0.10* STD(simulated true) 

Third criterion: H0 (STD_deviation <=5%) is rejected if: 

 ABS[STD(sample) – STD(simulated true)] >= 0.05* STD(simulated true) 

These tests are carried out separately, considering the traces of each fracture set. The 
results of the analysis are presented as the probability that a sample, at a certain window 
size, will not be rejected, considering the criterions above. 

Results considering mean and standard deviation of trace-lengths 

Results are given for two different moments, mean and standard deviation. The results 
are given in Figure 6-13 (below). Generally the following is demonstrated. To estimate 
the mean of the trace-length distribution, with a small uncertainty, the radius of the 
window studied needs to be much larger (e.g. more than two times larger) than the  
mean of the fracture diameter distribution. If the standard deviation of the trace-length 
distribution is much smaller than the mean of the distribution, the standard deviation 
might be estimated (with a small uncertainty) using much smaller windows than the 
windows necessary for producing a good estimate of the mean of the distribution. We 
conclude the following results. 

 SET 1: 

If the radius of the window studied is larger than 32 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the simulated true value of the population. 

If the radius of the window studied is larger than 52 m, the probability is larger than 
90 percent that the deviation in estimated standard deviation value is within 
plus/minus 15 percent of the simulated true value of the population. 

 SET 2: 

If the radius of the window studied is larger than 45 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the simulated true mean value of the population 

If the radius of the window studied is larger than 12 m, the probability is larger than 
90 percent that the deviation in estimated standard deviation value is within 
plus/minus 15 percent of the simulated true value of the population 
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 SET 3: 

If the radius of the window studied is larger than 52 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the simulated true mean value of the population 

If the radius of the window studied is larger than 70 m, the probability is larger  
than 90 percent that the deviation in estimated standard deviation value is within 
plus/minus 15 percent of the simulated true value of the population 
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Probability for correct estimation of mean and standard deviation of trace lengths.
Fracture set 1.
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Probability for correct estimation of mean and standard deviation of trace lengths.
Fracture set 2.
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Probability for correct estimation of mean and standard deviation of trace lengths.
Fracture set 3.
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Figure 6-13. SET 1, SET 2 and SET 3: Hypothesis testing for selected acceptable 
deviations in predicted mean and standard deviation of trace-length distribution. The 
figure gives the percentage of accepted samples, which is approximately the same thing 
as the probability for correct estimation, considering the different selected criterions. 
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6.4.3 Test for the log-normal distributions fitted to the  
sample distributions 

Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing  
of this section is based on (i) the moments of the log-normal distributions fitted to  
the sample distributions, as discussed in Section 6.3.3; and (ii) given criterions of 
significance. The established criterions of significance will correspond to the log-
normal distribution fitted to the simulated true distribution (see Figure 6-8 and Figure  
6-9). The criterions refer to the mean and standard deviation of the distribution, in 
normal space, and not in log-space. The trace-length distribution of Set 2 will not be 
included in these tests, as this distribution is not well represented by a log-normal 
distribution. 

The null hypothesis (H0) is that a sample is a good representation of the true properties 
of the population. This hypothesis is rejected if the deviation is large between the values 
of the sample and the true values of the population (simulated). The following criterions 
of significance are used: three criterions for the mean of the distribution and three 
criterions for standard deviation of the distribution. The criterions represent different 
aspects of the distribution and different levels of significance. 

The criterions below refer to properties of the log-normal distributions fitted to the  
data, and not directly to the properties of the sample data. It follows that the ranges of 
accepted samples, considering the log-normal distributions, are not the same as the 
ranges of accepted samples when considering the sample distribution  

Criterions for mean of fitted log-normal distribution: 

First criterion: H0 (Mean_deviation <=15%) is rejected if: 

ABS[Mean(sample log-normal) – Mean(simulated true log-normal)] >= 0.15* Mean(simulated true log-normal) 

Second criterion: H0 (Mean_deviation <=10%) is rejected if: 

ABS[Mean(sample log-normal) – Mean(simulated true log-normal)] >= 0.10* Mean(simulated true log-normal) 

Third criterion: H0 (Mean_deviation <=5%) is rejected if: 

ABS[Mean(sample log-normal) – Mean(simulated true log-normal)] >= 0.05* Mean(simulated true log-normal) 

Criterions for standard deviation (STD) of fitted log-normal distribution: 

First criterion: H0 (STD_deviation <=15%) is rejected if: 

ABS[STD(sample log-normal) – STD(simulated true log-normal)] >= 0.15* STD(simulated true log-normal) 

Second criterion: H0 (STD_deviation <=10%) is rejected if: 

ABS[STD(sample log-normal) – STD(simulated true log-normal)] >= 0.10* STD(simulated true log-normal) 

Third criterion: H0 (STD_deviation <=5%) is rejected if: 

ABS[STD(sample log-normal) – STD(simulated true log-normal)] >= 0.05* STD(simulated true log-normal) 



 156

These tests are carried out separately, considering the traces of each fracture set (Set 1 
and Set 3). The results of the analysis are presented as the probability that a sample, at a 
certain window size, will not be rejected, considering the criterions above. 

Results considering mean and standard dev of log-normal distributions 

Results are given for two different moments, mean and standard deviation, see  
Figure 6-14 below. (The trace-length distribution of Set 2 will not be included in  
these tests, as this distribution is not well represented by a log-normal distribution.) 

The efficiency of a point estimate refers to the rate with which the estimates converge 
towards the true values, considering sample size. When comparing two point estimates, 
the most efficient point estimate is the one that for the smallest samples produces the 
estimates closest to the true values. 

The efficiency of the point estimates considering the moments of the log-normal 
distributions is not the same as the efficiency of the point estimates considering the 
moments of the sample distributions. For Set 1 and Set 3, the point estimate considering 
the log-normal distributions is more efficient than the estimates concerning the sample 
distribution. This is because Set 1 and Set 3 are well represented by a log-normal 
distributions. 

We conclude the following the following results. 

 SET 1: 

If the radius of the window studied is larger than 25 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the simulated true mean value of the population 

If the radius of the window studied is larger than 42 m, the probability is larger than 
90 percent that the deviation in estimated standard deviation value is within 
plus/minus 15 percent of the simulated true value of the population 

 SET 3: 

If the radius of the window studied is larger than 45 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the simulated true mean value of the population 

If the radius of the window studied is larger than 65 m, the probability is larger than 
90 percent that the deviation in estimated standard deviation value is within 
plus/minus 15 percent of the simulated true value of the population 
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Probability for correct estimation of mean and standard deviation of log-normal distribution
fitted to sample distribution.   Fracture set 1.
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Probability for correct estimation of mean and standard deviation of log-normal distribution
fitted to sample distribution.   Fracture set 3.
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Figure 6-14. SET 1 and SET 3: Hypothesis testing for selected acceptable deviations in 
predicted mean and standard deviation of log-normal distributions fitted to the trace-
length distributions. The figure gives the percentage of accepted samples, which is 
approximately the same thing as the probability for correct estimation, considering the 
different selected criterions. 
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6.5 Hypothesis testing considering the shape of the trace-
length distribution and given confidence levels 

6.5.1 Purpose of tests 

The purpose of this test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the true properties of the trace-length distribution, at  
a certain given level of confidence. The hypothesis testing of this section are based on 
the shapes of the distributions studied (tests as regard the moments of the studied 
distributions are given in the previous section). Distribution shape is of interest as it 
characterises the distribution studied, and when samples produce a good estimate of the 
shape of the true distribution, with a large probability, the samples are large enough for 
prediction of the true properties. 

6.5.2 Methodology of the chi-square test 

Tests of the shape of the trace-length distributions were carried out as chi-square  
tests of “goodness-of-fit”. The observed trace-lengths are grouped into classes and the 
frequencies are compared with the expected frequencies, as given by the simulated true 
trace-length distributions. 

Null hypothesis and confidence levels 

The samples were analysed by use of statistical hypothesis testing. The hypothesis 
testing were based on the shape of the trace-length distributions and given confidence 
levels. Examples of trace-length distributions from samples are given in Figure 6-3, 
Figure 6-4 and Figure 6-5. The sample distributions are compared to the simulated true 
distribution, this distribution is presented in Figure 6-2. 

The null hypothesis (H0) is that a sample is a good representation of the simulated true 
distribution. The hypothesis is rejected if, when comparing the sample and the true 
distribution, it is found that the deviations between the two distributions are large. The 
confidence level gives the size of deviation that is acceptable, a deviation larger than 
this is considered as a significant deviation. 

The confidence level should be selected in a way that the probability for rejection of the 
hypothesis is small if the hypothesis is true. We have studied three different levels of 
confidence: 90, 95 and 99 percent. The hypothesis tests are as follows: 

• First confidence level 99%: The hypothesis, H0 (C=99% ) is rejected if the sample 
deviates significantly at this level of confidence.  

• Second confidence level 95%: The hypothesis, H0 (C=95% ) is rejected if the sample 
deviates significantly at this level of confidence.  

• Third confidence level 90%: The hypothesis, H0 (C=90% ) is rejected if the sample 
deviates significantly at this level of confidence.  
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The tests are carried out separately, considering the traces-length distribution of each 
fracture set. For each confidence level, the result of the analysis is presented as the 
percentage of accepted samples at different window sizes. 

Results – chi-square test of goodness-of-fit 

The results of the chi-square tests are given in Figure 6-15, below. The figure presents 
the results for three different confidence levels. In a goodness-of-fit test, the shape of 
the distributions are tested, and the deviations in mean and spread may balance each 
other in a way that the shape is accepted although the moments are not well predicted. 

We conclude the following results. 

 SET 1: 

For a window with radius larger than 13 m, the probability is larger than 90 percent that 
a sample will not be rejected at the first level of confidence (H0 (C=99% )). Or with other 
words. If the radius of the window studied is larger than 13 m, the probability is larger 
than 90 percent that the shape of the trace-length distribution derived from a sample  
is a good representation of the simulated true distribution, at a confidence level of 
99 percent. 

 SET 2: 

For a window with radius larger than 38 m, the probability is larger than 90 percent that 
a sample will not be rejected at the first level of confidence (H0 (C=99% )). Or with other 
words. If the radius of the window studied is larger than 38 m, the probability is larger 
than 90 percent that the shape of the trace-length distribution derived from a sample  
is a good representation of the simulated true distribution, at a confidence level of 
99 percent. 

 SET 3: 

For a window with radius larger than 30–33 m, the probability is larger than 90 percent 
that a sample will not be rejected at the first level of confidence (H0 (C=99% )). Or with 
other words. If the radius of the window studied is larger than 30–33 m, the probability 
is larger than 90 percent that the shape of the trace-length distribution derived from a 
sample is a good representation of the simulated true distribution, at a confidence level 
of 99 percent. 
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Probability for correct estimation of trace length distribution 
Fracture set 1.   Chi-square test of sample distributions of trace lengths.
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Probability for correct estimation of trace length distribution 
Fracture set 2.   Chi-square test of sample distributions of trace lengths.
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Probability for correct estimation of trace length distribution 
Fracture set 3.   Chi-square test of apparent distribution of trace lengths
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Figure 6-15. SET 1, SET 2 and SET 3:Hypothesis testing for shape of trace-length 
distribution. A chi-square goodness-of-fit comparison between sample distributions  
and the simulated true distribution, at different window sizes and for three different 
confidence levels. The figure gives the percentage of accepted samples, which is 
approximately the same thing as the probability for correct estimation, considering  
the different selected confidence levels. 
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7 Estimation of fracture – set orientation 
from fracture traces on rock surfaces 

7.1 Introduction 

Fracture traces, observed on a surface, have a direction; this direction is often given as 
the Strike; if it is possible to identify a trace it also possible to measure the strike of the 
trace. The strike is the bearing or direction of a horizontal line in the horizontal plane, 
and it is normally measured in an easterly sense from north. In the following chapter, 
we will present the efficiency of estimating the mean strike of the different fracture sets, 
based on fracture traces as seen on rock surfaces.  

In addition to strike also other properties of fracture orientation could be measured (e.g. 
fracture set dispersion), presuming that it is possible to measure (or calculate) the dip  
of the fracture that created the trace, because strike and dip can be recalculated to pole 
trend and pole plunge. It is however not always possible to measure or calculate the  
dip. In the following chapter we will also present fracture set orientation data (mean 
direction and dispersion), based on pole trend and pole plunge. For these calculations 
we have assumed that it is possible measure (or calculate) the trend and plunge of the 
fracture that created the observed fracture traces. 

7.2 Estimation of direction of fracture traces 

7.2.1 Methodology 

In classical geology, the orientation of a planar feature (e.g. a fracture trace) is defined 
by its strike and dip. The strike is the bearing or direction of a horizontal line in the 
plane. The dip is the angle of the inclination of the planar feature. The strike and the dip 
should be defined in a way that a consistent definition is obtained of the orientation in 
space of the planar feature studied (see Section 2.2.2). 

The definition of strike and dip corresponds to a planar feature, but a fracture trace is a 
linear feature. A fracture trace points in two different directions (a trace is not vector  
but an axis) therefore, unless we have information of the fracture dip, two different 
direction of strike are possible for every trace. It follows that for estimates of the mean 
strike, without knowledge of the dip, all strike values have to be transformed to a range 
within 180 degrees (for example as bearings between North and South). If the dip is 
known only one direction of strike is possible, for such a situation values of strike are 
often defined between 0 and 360 degrees. 

In this chapter, when estimating the mean strike, we have assumed that there is enough 
information available regarding the dip of the fracture traces observed, that for each 
fracture trace observed it is possible to select the appropriate main direction of strike 
(from the two directions that are possible for each trace). The problem with the 
unknown main direction of a fracture trace is not necessarily a large problem, except  
if the sample dispersion of strike values of the fracture traces is large. In this study the 
dispersion of Set 1 is large by definition. In addition we are in this chapter analysing 
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fracture traces on horizontal surfaces. It follows that a sample (as seen on a horizontal 
surface) of the strike values of the sub-horizontal fracture set 3 will demonstrate a very 
large dispersion, even if the true dispersion (in three-dimensions) of Set 3 is not very 
large. When plotting distributions of strike values, we have defined the strike as the 
bearing of a horizontal line in the plane measured in an easterly sense from north. It 
follows that the strike distribution contains values from zero degrees, which represents 
north, and up to 180 degrees, which represents south.  

As for the trace-length distribution, the observed strike distribution might be biased. 
Such bias occurs because the three-dimensional fracture network is sampled by use of 
two-dimensional planes having a limited extension. If the fractures are of different sizes 
and the orientation of a fracture is related to the fracture size, all the biases discussed in 
the previous chapter, except boundary truncation, will influence the strike distribution. 
We will not discuss the causes for bias in this section, for such a discussion we refer to 
Section 6.2. 

As stated above, the strikes are given as values between 0 and 180 degrees and 
correspond to different directions of the fracture planes studied. Together they form a 
strike distribution. In this chapter, when we refer to the concept of mean strike, we are 
actually discussing the dominating mode of such a strike distribution. It should be noted 
that to calculate the mean strike direction, which corresponds to the mode of the strike 
distribution, it is necessary to treat the strike values as vectors, or to analyse the shape 
of the distribution. It is not correct to calculate a mean value by using the strike values 
as scalars. In this study we have used vector algebra. No Tersaghi correction was 
included in the calculations presented in this chapter.  

One should note the following when comparing: 

(i) deviation in estimated mean strike of a fracture set (in degrees), and 

(ii) deviation in estimated mean direction of a fracture set (as an acute angel in degrees 
on the unit sphere). 

The estimate of mean strike of a fracture set, based on strike values only, could be a 
more uncertain estimate than estimates of the mean orientation (three-dimensional) of 
the same fracture set based on consistent values of strike and dip (or trend and plunge). 
Because at small sample sizes it is uncertain where the dominating mode of the strike-
distribution is located (especially if the dispersion of the fracture set is large). More 
information is available if both strike and dip (or trend and plunge) is used; therefore  
(at small sample sizes) it is possible that a less uncertain estimate can be derived of the 
mean direction of the fracture set than of the mean strike. 

The characteristics of the strike distributions vary with the size of the window studied. 
For small windows, the number of traces are small, and consequently the variation in 
distribution characteristics is large between different windows (different realisations). 
The larger the window the closer the characteristics of the sample distribution is to the 
unknown characteristics of the population studied, and the smaller the differences 
between different realisations. 
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The strike distributions of the fracture sets of the population studied, based on direction 
of fracture traces as seen on very large circular and horizontal windows (radius 
150 metres) are given in Figure 7-1, Figure 7-2, Figure 7-3 and Figure 7-4. The average 
strike distribution for windows of radius 150 metres is set as the true distribution, and it 
is called the simulated true distribution (this is further discussed below). 

The strike is correlated to the pole trend in the following way (in degrees): 

Strike = PoleTrend + 90  

Based on the given values of pole trend (see Table 2-2) we have calculated the true 
mean strike, which is: 

• Set 1.  Mean strike = 39.0 deg. 

• Set 2.  Mean strike = 127.0 deg. 

• Set 3.  Mean strike = 20.6 deg. 

If all strike values (derived from fracture traces), observed on a large number of 
horizontal windows of radius 150 metres, are put together in one group, the 
corresponding strike distribution is given in Figure 7-1. The demonstrated strike 
distribution has a bi-modal shape. The first mode corresponds to the mean strike of 
fracture set 1, and the second mode corresponds to the mean strike of fracture set 2. 
Fracture set 3 is sub-horizontal and on a horizontal surface it has no well-developed 
mean trend direction, at least not when covered by the large number of traces that 
corresponds to Set 1 and Set 2. (It is however possible to estimate the mean direction  
of Set 3, if the set-identities of the traces are known, this is discussed in more detail 
below.) Considering a circular window of radius 150 metres the average number of 
fractures per set is: Set 1= 35% , Set 2= 51% , Set 3= 14% 

 

 

Trace strike distribution.
All traces included (Set 1, Set 2 and Set 3).
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-1. Strike distribution of all traces (Set 1, Set 2 and Set 3) based on the 
directions of all fracture trace, as seen on horizontal windows of radius 150 m 
(simulated true distribution). 
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The first mode, which represents Set 1, is actually a very good estimate of the mean 
strike of Set 1, the difference is 0.2 degrees (true value= 39.0 deg., estimate= 39.2 deg.). 
The second mode, which represents Set 2, is a very good estimate of the mean strike of 
Set 2, the difference is 0.5 degrees (true value= 127.0 deg., estimate= 126.5 deg.). These 
results are not surprising, because the distribution studied is based on a huge number of 
fractures (about 1000 000 observed fractures). The purpose is to demonstrate that as the 
number of tracer increases, the strike distribution observed converges towards the true 
distribution of strike values; and for large sample sizes, the sample estimates are very 
close to the true values. 

However, in the remaining parts of this chapter we will study the strikes of each fracture 
set separately. When fracture traces are observed on rock surfaces, it is often possible  
to separate the fracture traces into different sets, based on the observed strike of the 
fracture traces; and based on the dip of the fracture traces (assuming that it is possible to 
observe a dip). It follows that different strike distributions will be derived for different 
sets. In the analyses presented below, the fracture traces are divided into three different 
sets, based on the known set-identity of each fracture that creates a trace. The results of 
the analyses are given for each fracture sets separately. (In this study each fracture was 
marked with its proper set identity since this is known at the generation of the fracture. 
In a real situation, different methods and algorithms for identifying and delimiting sets 
will be necessary to ensure objective set identifications.) 

Considering Set 1 and windows of radius 150 metres, the corresponding simulated true 
strike distribution (based on fracture traces) is given below (Figure 7-2). The mode of 
the distribution is at 39.03 degrees, which is a very good estimate of the true mean 
strike (39.00 deg). Again it should be noted that the distribution below is a simulated 
true distribution and it is based on a huge number of fractures (about 1000 000 observed 
fractures). 

 

 

Trace strike distribution.
Fracture traces of Set 1.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-2. Strikes distribution of Set 1,based on the directions of fracture traces of  
Set 1, as seen on horizontal windows of radius 150 m (simulated true distribution). 
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Considering Set 2 and windows of radius 150 metres, the corresponding strike 
distribution is given below (Figure 7-3). The mode of the distribution is at 
126.97 degrees, which is a very good estimate of the true mean strike (127.00 deg).  
And again it should be noted that the distribution below is a simulated true distribution 
and it is based on a huge number of fractures (c:a 1000 000 observed fractures). 

 

Trace strike distribution.
Fracture traces of Set 2.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-3. Strikes distribution of Set 2, based on the direction of the fracture traces of 
Set 2, as seen on horizontal windows of radius 150 m (simulated true distribution). 

 

Considering Set 3 and windows of radius 150 metres, the corresponding strike 
distribution is given below (Figure 7-4). Fracture set 3 is sub-horizontal and on a 
horizontal surface it has no well-developed mean trend direction. Nevertheless, if the 
window is large enough, the mode of the distribution is a very good estimate of the true 
mean strike. The mode of the distribution is at 20.61 degrees, which is a very good 
estimate of the true mean strike (20.60 deg). It should however be noted that the 
distribution below is a simulated true distribution and it is based on a huge number  
of fractures (about 1000 000 observed fractures). 

 

Trace strike distribution.
Fracture traces of Set 3.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-4. Strike distribution of Set 3, based on the direction of the fracture traces of 
Set 3, as seen on windows of radius 150 m (simulated true distribution). 
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7.2.2 Point estimate of strike distribution based on fracture traces 

General 

The directions of the fracture traces that are observed on a window studied are samples 
of the properties of the fracture population. The properties of the sample can be looked 
upon as an estimate of the properties of the population. From a statistical point of view, 
the analysis of the strike distribution, as given by fracture traces on windows of 
different sizes, is a point estimate of the properties of an unknown strike distribution. 

The characteristics of the strike distribution vary with the size of the window studied. 
For small windows, the number of traces are small and the variation in distribution 
characteristics is large between different windows (different realisations of the 
distribution). The larger the window the closer the characteristics of the sample 
distribution is to the unknown characteristics of the population studied, and the smaller 
the differences between different realisations; the rate of this progress towards the true 
characteristics are called the efficiency of the point estimate. 

The strike distributions of the fracture sets of the population studied, considering 
fracture traces on very large circular and horizontal windows (radius 150 metres) are 
given in Figure 7-2, Figure 7-3 and Figure 7-4.  

Examples of sample strike distributions, derived from fracture traces observed  
on horizontal windows with a radius smaller than 150 metres, are given below in  
Figure 7-5, Figure 7-6 and Figure 7-7. 

 

Trace strike distribution.
Fracture traces of Set 1. Comparison between the simulated true distribution and a sample distributionof a
circular area of radius 10 m.
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for a circular area with radius 10m.

Simulated true trace strike distribution
(circular area, radius= 150m)

 
Figure 7-5. SET 1. Comparison between the simulated true strike distribution and an 
example of a strike distribution based on fracture traces seen on a window of radius 
10 m. 
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Trace strike distribution.
Fracture traces of Set 2. Comparison between the simulated true distribution and a sample distribution of a 
circular area of radius 10 m.
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Example of sample trace strike distribution for
a circular area with radius 10m.

Simulated true trace strike distribution (circular
area, radius= 150m)

 
Figure 7-6. SET 2. Comparison between the simulated true strike distribution and an 
example of a strike distribution based on fracture traces seen on a window of radius 
10 m. 

Trace strike distribution
Comparison between the simulated true distribution and a sample distribution for a 
circular area of radius 20 m.
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Figure 7-7. SET 3. Comparison between the simulated true strike distribution and an 
example of a strike distribution based on fracture traces seen on a window of radius 
20 m. 

 

Point estimate of the moments of the observed distribution 

The efficiency of the point estimate of the mean and standard deviation of the strike 
distribution (from fracture traces as seen on horizontal windows) is given in Figure 7-8, 
below. Considering a circular window of radius 150 m, the point estimate produces the 
following results: 

Set 1 

Mean values of strike distribution, window radius = 150m. 

 Mean of mean values = 38.9 degrees (True value= 39.00 degrees) 

 Standard deviation of mean values = 0.2% of mean of mean values. 
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Set 2 

Mean values of strike distribution, window radius = 150m. 

 Mean of mean values = 126.7 degrees (True value= 127.00 degrees) 

 Standard deviation of mean values = 1.1% of mean of mean values. 

Set 3 

Mean values of strike distribution, window radius = 150m. 

 Mean of mean values = 20.6 degrees (True value= 20.6 degrees) 

 Standard deviation of mean values = 0.1% of mean of mean values. 

Analysing the figures that presents the efficiency of the point estimate of the mean  
of the strike distributions (Figure 7-8). It is concluded that the changes in mean and 
variance of the distributions are small for windows with a radius larger than 150 m. The 
sample strike distribution for a window of radius 150 m is set as the true distribution, 
and it is called the simulated true distribution.  
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Horizontal trace-windows. Strike of fracture traces:  Mean of trace strike.
Fracture set 1.
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 SET 1. 

Horizontal trace-windows. Strike of fracture traces:  Mean of trace strike.
Fracture set 2.
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Horizontal trace-windows. Strike of fracture traces:  Mean of trace strike.
Fracture set 3.
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 SET 3. 

 

Figure 7-8. Efficiency of the point estimate of the mean value of the observed strike 
distribution. The strike distributions are based on fracture traces observed on windows 
of different sizes. 



 170

7.2.3 Hypothesis testing considering mean of strike distribution and 
acceptable deviations 

Purpose of tests 

The purpose of this test is to determine when the size of sample of fracture traces 
(number of traces) is large enough to produce an acceptable estimate of the true 
properties of the strike distribution, with a certain probability. The hypothesis testing  
of this section is based on the mean values of the strike distribution. Considering the 
somewhat complex shape of the simulated strike distribution, one may wonder why we 
are interested in the moments and not of the actual shape of the distribution. The answer 
is that we are interested in both – this section presents a test of the mean values and the 
next section presents a test of the shape. The mean values are of interest, because when 
the samples produce a good estimate of the true mean values, with a large probability, 
this is an indication that the shape of the distribution is stable and we have found a 
sample size large enough for prediction of the true properties. 

Null hypothesis, acceptable deviations and criterion of significance 

The samples were analysed by a statistical hypothesis testing. The hypothesis testing of 
this section is based on the mean values of the studied distributions and given criterions 
of significance. The established criterions of significance correspond to the known true 
mean strikes of the fracture sets studied  

The null hypothesis (H0) is that a sample is not a good representation of the true 
properties of the population. This hypothesis is rejected if a small deviation takes place 
between the values of the sample and the true values of the population. The following 
criterions of significance are used: the sample is rejected if the deviation from the 
simulated true value is smaller than 15 degrees (first level) or 10 degrees (second level) 
or 5 degrees (third level). These criterions are applied to the mean value (or mode) of 
the distributions studied. The criterions represent different aspects of the distribution 
studied and different levels of significance. 

First criterion: H0 (deviation in mean value >=15 deg) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] <= 15 degrees 

Second criterion: H0 (deviation in mean value >=10 deg) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] <= 10 degrees 

Third criterion:  H0 (deviation in mean value >=5 deg) is rejected if: 

 ABS[Mean(sample) – Mean(simulated true)] <= 5 degrees 

The results of the analysis are presented as the probability that a sample, at a certain 
window size, will fulfil the hypothesis considering the criterions above. 
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Results considering mean values 

As previously stated, when comparing the efficiencies of the different point estimates 
for the different sets, it is important to note the following. In this study the number of 
observed fractures on a studied area (with a given radius), gives the sample size and 
these sample sizes are different for different sets. For example on a very large horizontal 
circular area and considering the different sets, on the average the amounts of fracture 
traces are: Set1=35%, Set2= 51% and Set3=14%. Considering a situation with two 
fracture sets with approximately the same dispersion, the different amounts of fractures 
observed for each set will influence the efficiency of the point estimates; on the average 
the large the number of observed fractures the less uncertain is the estimate. 

The results are given in below. We conclude the following results. 

 SET 1: 

If the radius of the window studied is larger than 35 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the true value of the population. 

 SET 2: 

If the radius of the window studied is larger than 18 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the true mean value of the population 

 SET 3: 

If the radius of the window studied is larger than 60 m, the probability is larger than 
90 percent that the deviation in estimated mean value is within plus/minus 15 percent 
of the true mean value of the population 
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Horizontal trace-windows. Strike of fracture traces.
Probability for correct estimation of mean trace-strike.
Fracture set 1.
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Horizontal trace-windows. Strike of fracture traces.
Probability for correct estimation of mean trace-strike.
Fracture set 2.
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Horizontal trace-windows. Strike of fracture traces.
Probability for correct estimation of mean trace-strike.
Fracture set 3.
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Figure 7-9. Hypothesis testing for selected acceptable deviations, considering mean of 
predicted strike distribution. The figure gives the percentage of accepted samples, 
which is approximately the same thing as the probability for correct estimation, 
considering the different selected criterions. 
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7.2.4 Hypothesis testing considering the shape of the strike 
distribution and given confidence levels 

Purpose of tests 

The purpose of this test is to determine when the size of the sample is large enough to 
produce an acceptable estimate of the true properties of the strike distributions, at a 
certain given level of confidence. The hypothesis testing of this section is based on  
the shapes of the distributions studied (tests as regard the moments of the studied 
distributions are given in the previous section). Distribution shape is of interest as it 
characterises the distribution studied, and when samples produce a good estimate of the 
shape of the true distribution with a large probability, the samples are large enough for 
prediction of the true properties. 

Methodology of the chi-square test 

Tests of the shape of the strike distribution were carried out as chi-square tests of 

“goodness-of-fit”. The observed strikes are grouped into classes and the frequencies  
are compared with the expected frequencies, as given by the simulated true strike 
distributions (see Figure 7-2, Figure 7-3 and Figure 7-4). 

Null hypothesis and confidence levels 

The samples were analysed by use of statistical hypothesis testing. The hypothesis 
testing were based on the shape of the strike distributions and given confidence levels. 
Examples of strike distributions from samples are given in Figure 7-5, Figure 7-6 and 
Figure 7-7. The sample distributions are compared to the simulated true distribution  
(see Figure 7-2, Figure 7-3 and Figure 7-4).  

The null hypothesis (H0) is that a sample is a good representation of the simulated true 
distribution. The hypothesis is rejected if, when comparing the sample and the true 
distribution, it is found that the deviations between the two distributions are large. The 
confidence level gives the size of deviation that is acceptable, a deviation larger than 
this is considered as a significant deviation. 

The confidence level should be selected in a way that the probability for rejection of the 
hypothesis is small if the hypothesis is true. We have studied three different levels of 
confidence: 90, 95 and 99 percent. The hypothesis tests are as follows: 

• First confidence level 99%: The hypothesis, H0 (C=99% ) is rejected if the sample 
deviates significantly at this level of confidence.  

• Second confidence level 95%: The hypothesis, H0 (C=95% ) is rejected if the sample 
deviates significantly at this level of confidence.  

• Third confidence level 90%: The hypothesis, H0 (C=90% ) is rejected if the sample 
deviates significantly at this level of confidence.  

For each confidence level, the result of the analysis is presented as the percentage of 
accepted samples at different window sizes.  
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Results – chi-square test of goodness-of-fit 

The results of the chi-square tests are given in Figure 7-10, below. The figure presents 
the results for three different confidence levels. In a goodness-of-fit test, the shape of 
the distributions are tested, and the deviations in mean and spread may balance each 
other in a way that the shape is accepted although the moments are not well predicted. 

We conclude the following results. 

 SET 1: 

If the radius of the window studied is larger than 13 m, the probability is larger than 
90 percent that the shape of the strike distribution derived from a sample is a good 
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of-fit test with a confidence level of 99 percent. 

 SET 2: 

If the radius of the window studied is larger than 11 m, the probability is larger than 
90 percent that the shape of the strike distribution derived from a sample is a good 
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of-fit test with a confidence level of 99 percent. 

 SET 3: 

If the radius of the window studied is larger than 24 m, the probability is larger than 
90 percent that the shape of the strike distribution derived from a sample is a good 
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of-fit test with a confidence level of 99 percent. 
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Horizontal trace-windows.
Probability for correct estimation of trace strike distribution.
Fracture set 1.  Chi-square test for distribution of strike values.
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Horizontal trace-windows.
Probability for correct estimation of trace strike distribution.
Fracture set 2.  Chi-square test for distribution of strike values.
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Horizontal trace-windows.
Probability for correct estimation of trace strike distribution.
Fracture set 3.  Chi-square test for distribution of strike values.
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Figure 7-10. SET 1, SET 2 and SET 3:Hypothesis testing for shape of strike 
distribution. A chi-square goodness-of-fit comparison between sample distributions  
and the simulated true distribution, at different window sizes and for three different 
confidence levels. The figure gives the percentage of accepted samples, which is 
approximately the same thing as the probability for correct estimation, considering the 
different selected confidence levels. 
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7.3 Estimation of fracture set mean direction, from fracture 
measurements on rock surfaces 

7.3.1 Introduction 

In addition to strike also other properties of fracture orientation could be estimated  
(e.g. fracture set dispersion), presuming that it is possible to measure (or calculate)  
both the strike and the dip of the fracture that created the trace. Because strike and dip 
can be recalculated to trend and plunge, and based on trend and plunge it is possible to 
calculate mean direction and dispersion of identified fracture sets. In addition to the 
direction (trend or strike) of a fracture trace, which is normally easily observed, it is also 
possible to measure or calculate the dip (or plunge) of the fracture that created the trace, 
if the necessary resources are made available. In the following chapter we have assumed 
that measurements (and/or calculations) are carried out of both trend and plunge of the 
fractures that created the observed fracture traces, and we also assume that all 
measurements are carried out without any measurement errors. 

7.3.2 Methodology 

If strike and dip of the fractures that creates the fracture traces are known, and 
recalculated to pole trend and pole plunge, it is possible to calculate the mean direction 
and dispersion of the fracture sets. Actually, all the tests and analyses described and 
presented in Chapter 3 and 4, regarding fracture set orientation, can equally well be 
performed with the data from a rock surface (presuming that trend and plunge values  
are known of the fractures that created the traces). In this Chapter we will not discuss 
details of tests or the methods, for such a discussion we refer to the previous chapters 
and applicable Appendices. We have, with use of data from rock surfaces, performed all 
the tests and calculations presented in Chapter 3 and 4. The results of those calculations 
are presented below, but the results are not presented to the same level of detail as in the 
previous chapters.  

A sampling bias will occur when a three-dimensional fracture system is sampled by use 
of two-dimensional surfaces. It is possible to use an areal correction for this sampling 
bias, a correction very similar to the correction used when analysing borehole data (the 
Terzaghi correction). However, no correction for sampling bias (Terzaghi correction) 
was included in the calculations and tests of this chapter. If we had included such a 
correction in the analyses, the necessary sample sizes would have been smaller. This 
especially the case for the sub-horizontal fracture set (Set 3), as this set is not well 
represented on horizontal surfaces. 

7.3.3 Fracture set orientation – acute angle – results 

Based on the methods discussed in Chapter 3, the mean direction of the fracture sets 
were calculated and compared to the known true direction (as discussed in the above-
mentioned chapter). The results are given in the Table 7-1 below. 

When comparing the results given below to the results given in the previous section 
regarding the strike, we note that the point estimate of mean direction of a fracture set, 
is more efficient than the point estimate of mean strike, this is also discussed in 
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Section 7.2.1. The high efficiency of the point estimate of mean direction of fracture  
set, assumes that it is possible to measure (without any errors) strike (trend) and dip 
(plunge) of all fractures that intersects the surface studied. 

Table 7-1. Estimated Mean direction of fracture sets based on data from 
horizontal circular surfaces. Presuming that trend and plunge is measured 
without any errors and that Set ID is known for all traces studied. 
Correction for sampling bias was not included. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
HORIZONTAL 

CIRCULAR 
SURFACE 

 
RADIUS OF 

SURFACE (1) 
(Sample size) 

 
Deviation 
< = 15 deg 

(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 6 m 
>= 4 m 

>= 11 m 

 
Deviation 
< = 10 deg 

(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 8 m 
>= 5 m 

>= 18 m 

 
ORIENTATION 

MEAN 
DIRECTION 

The deviation in 
degrees corresponds 

to the acute angle 
between the true 

mean direction and 
that of a sample. 

 
Deviation 
< = 5 deg 

(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 21 m 
>= 11 m 
>= 88 m 

(1) Results and conclusions given in this study are only directly applicable to the fracture 
network studied 
(2) Samples are within a range of plus or minus 5, 10 or 15 degrees from the True value, 
considering a range centred on the true value 

 

 

7.3.4 Fracture set orientation – dispersion – results 

Based on the methods discussed in Chapter 4, the dispersion of the fracture sets were 
calculated, both considering the Fisher-Kappa parameter and the SR1 parameter, and 
the values obtained from samples were compared to the known true values (as discussed 
in the above-mentioned chapter). The results are given in the table below,  
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Table 7-2. Fracture orientation from horizontal circular surfaces. 
Presuming that trend and plunge is measured without any errors and that 
Set ID is known for all traces studied. Correction for sampling bias was 
not included. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
HORIZONTAL 

CIRCULAR 
SURFACE 

 
RADIUS OF 

SURFACE (1) 
(Sample size) 

 
Deviation 

< = +/–15% 
of true value 

(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 15 m 
>= 8 m 

Not possible 

 
Deviation 

< = +/–10% 
of true value 

(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 24 m 
>= 14 m 

Not possible 

 
ORIENTATION 

Dispersion 
SR1 

 
Deviation 
< = +/–5% 

of true value 
(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 60 m 
>= 33 m 

Not possible 

 
Deviation 

< = +/–15% 
of true value 

(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 38 m 
>= 26 m 

Not possible 

 
Deviation 

< = +/–10% 
of true value 

(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Not possible 

>= 55 m 
Not possible 

 
ORIENTATION 

Dispersion 
KAPPA 

 
Deviation 
< = +/–5% 

of true value 
(2) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Not possible 
Not possible 
Not possible 

(1) Results and conclusions given in this study are only directly applicable to the fracture 
network studied 
(2) Samples are within a range of plus or minus 5, 10 or 15 percent of the True value, 
considering a range centred on the true value, i.e. within: 0.85*TV–1.15*TV (TV=TrueValue) 
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8 Limited sensitivity analysis 

8.1 Methodology 

Results and conclusions given in the previous chapters are only directly applicable to 
the fracture network studied (the DFN-model), which properties are defined in Section 
2.3 (see Table 2-1, Table 2-2 and Table 2-3). It is of course interesting to know how 
small changes in the properties of the DFN-model studied will influence the results 
given in previous chapters. To investigate this a limited sensitivity analysis have been 
carried out, which investigate how small changes in the properties of the DFN-model 
will change the results presented in previous chapters. 

In theory the number of possible sensitivity cases is infinite, it is therefore necessary  
to follow a selected strategy when performing a sensitivity analysis. The sensitivity 
analysis of this study is based on the fracture density of the rock mass, as defined by the 
P32-parameter and the fracture size distribution. The P32-parameter is defined as the 
fracture area per unit volume of rock mass. Presuming that the fractures are circular 
planar discs, the P32-value depends on number of fractures and radius of fractures. The 
principles of how the P32-value varies with fracture size and number of fractures in a 
volume of rock is demonstrated in Figure 8-1, below. 
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Figure 8-1. The principles of how P32 (fracture surface area per unit rock volume) 
varies with fracture size and number of fractures in a studied volume of rock. The figure 
also indicates the principles on which the sensitivity analysis is based. (i) P32 is 
constant and fracture radius is varied (movement along a P32 isoline). (ii) Number  
of fractures is constant and radius of fractures is varied (varying P32-values). 
(iii) Fracture radius is constant and number of fractures is varied (varying P32-values). 
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This study contains a limited sensitivity analysis; therefore only two sensitivity cases 
are included. 

Case 1. 

P32 is not changed but fracture radii is varied. This is movement along an isoline 
with constant P32. 

Case 2. 

P32 is defined as two times the values of the base-case. The fracture radius 
distributions are not changed. This is movement along an isoline representing 
constant fracture radius. 

The results of the sensitivity cases are compared the results of the DFN-model analysed 
in the previous chapters, this DFN-model is called the "base-case".  

Base-case 

This DFN-model is defined in Section 2.3 (see Table 2-1, Table 2-2 and Table 2-3) 

8.2 Case 1 – Same P32 value but different fracture radii 

8.2.1 Definition of Sensitivity Case 1 

The DFN-model used in this study (as the base-case) is the DFN 2 model presented in 
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish a 
discrete fracture network model, representing the rock mass at the Prototype Repository, 
which could be used for simulation of groundwater flow. The DFN 2 model 
underestimates the total number of fractures in the rock mass at the Prototype 
Repository, as small fractures with minor or negligible hydraulic importance is not 
included in the model. We have therefore established an alternative DFN-model 
(Case 1), that includes a larger number of small fractures, but has the same value of 
fracture density. 

Case 1 is identical to the base-case of this study (see Table 2-1, Table 2-2 and  
Table 2-3), except that the fracture radius distributions are defined as different to those 
of the base-case. The P32 value of Case 1 is identical to that of the base-case. It follows 
that, as the fracture radius distribution is different and the P32-value is the same, the 
number of fractures will be different in Case 1 compared to the base-case.  

The new fracture radius distribution (for Case 1) were defined as log-normal 
distributions as for the base-case, but with smaller values of mean and standard 
deviation than in the base-case. When analysing log-normal distributions it is often 
convenient to analyse the data in eLog-space, because in eLog-space the log-normal 
distribution becomes a normal-distribution (this is also discussed in Section 6.3.3). To 
establish the new distribution the following method was applied: 

• The mean values of the log-normal distributions in elog-space (Mean, µeLog ) was 
defined as:   Case 1 µeLog = 0.43 BaseCase µeLog  
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• The standard deviation values of the log-normal distributions in elog-space 
(Mean, σeLog ) was defined as: Case 1 σeLog = 0.66 BaseCase σeLog  

Hence, in eLog-space, the new mean is 43% of the value of the base-case, and the  
new standard deviation is 66% of the value of the base-case. It follows that the new 
distributions (Case 1) will consist of smaller fractures. In a DFN-model with a constant 
P32 value, reducing the radii of the fractures will be compensated by a larger number of 
fractures. Compared to the base-case, the DFN-network of Case 1 will contain smaller 
fractures, but more of them. 

The properties of the fracture radius distributions of Case 1 are given in Table 8-1 
(below).  

Fracture traces, created by the fractures of Case 1, as seen on circular horizontal 
windows are given in Figure 8-2 (compare Figure 8-2 and Figure 2-5). 

A comparison of the shape of the fracture diameter distributions of Case 1 and the 
corresponding trace-length distributions are given in Figure 8-3 (compare Figure 8-3 
and Figure 6-2). 
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Table 8-1. Size of fractures in Sensitivity Case 1. 

 Set No. 1 2 3 

 Fracture shape Planar discs Planar discs Planar discs 

 Distribution TlogNormal (1) TLogNormal (1) TlogNormal (1) 

 Mean radius [m]          (2) 1.64 2.47 2.01 

 Mean of LN(radius)     (3) 0.1505 0.8899 0.5915 

 Stdv radius [m]            (4) 1.64 0.40 0.98 

 Stdv of LN(radius) [m] (5) 0.5487 0.1623 0.4635 

 Termination %             (6) 0 0 0 

 Lower bound [m]         (7) 0.0025 0.0025 0.0025 

 Upper bound [m]         (7) 10000 10000 10000 
 

(1) A Log-Normal distribution which is truncated at lower and upper bounds. 

(2) Mean of distribution. 

(3) Mean of the natural logarithms of the values of radius 

(4) Standard deviation of distribution. 

(5) Standard deviation of the natural logarithms of the values of radius 

(6) Amount of fractures that terminate at other fractures. 

(7) Upper and lower boundaries for the truncated Log-Normal distribution 
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Figure 8-2. Sensitivity Case 1. Fracture traces on circular horizontal surfaces with 
radius 10m. The plotted fracture traces represents one realisation of the fracture 
population studied (the fracture network). Each of the four figures includes a different 
number of fractures, dependent on the orientation and density of the fracture set 
studied. The length of the traces divided by the surface area is the P21 parameter. For 
very large horizontal surfaces, the P21 values are as follows: Set1 P21= 0.77, Set 2 
P21= 1.51, Set 3 P21= 0.41; hence 29% of the trace-lengths belongs to Set 1, and 56% 
belongs to Set 2, and 15% belongs to Set 3. Considering the number of traces on a very 
large horizontal surface, on the average 35% belongs to Set1, 51% belongs to Set 2 and 
14% belongs to Set 3. 
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CASE 1. Set 1. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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CASE 1. Set 2.  Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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CASE 1. Set 3.  Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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 SET 3 

Figure 8-3. CASE 1: Comparison between: (i) the fracture diameter distributions and 
(ii) the corresponding trace-length distributions, considering the three fracture sets and 
a window of radius 150 m. The average trace-length distribution for windows of radius 
150 m is set as the simulated true trace-length distribution, of Case 1. 
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8.2.2 Results considering fracture orientation and density based on 
data from boreholes 

All the tests and analyses presented in previous chapters have also been carried out  
for the fractures of Case 1. Considering fracture data as seen in boreholes (fracture 
orientation and fracture density) the results of Case 1 are identical to the results of the 
base-case presented in previous chapters. (It should perhaps be noted that also the 
estimates of P32-values from borehole data in Case 1 are identical to the estimates  
of the base-case.) 

This can be explained in the following way. The fractures of Case 1 are smaller, hence 
the probability of seeing a specific fracture in a borehole is smaller than for a specific 
fracture of the base-case, on the other hand there is a larger number of fractures in 
Case 1 than in the base-case. In all, the number of fractures seen in the borehole is the 
same as in the base-case, and the P10 values are the same. Hence, everything else being 
equal, the fracture radius may vary, but as long as the P32 is constant, the number of 
fractures seen in a borehole will be the same, regardless of the mean and standard 
deviation of the fracture radius distributions. (Presuming that the rock volume studied  
is large enough for being statistically homogeneous). 

This is important, especially when establishing DFN-models of a fractured rock mass, 
because it tells us that for a given value of the P32 of the rock mass, the uncertainty  
in actual shape of the fracture radius distribution will not influence the estimates of 
fracture set orientation as seen in boreholes. Note that this conclusion assumes that the 
geometrical form of fractures are the same (e.g. circular), it is the size of the fractures 
that may vary. 

8.2.3 Results considering fracture orientation, density and trace-
lengths based on data from rock surfaces 

All the tests and analyses presented in previous chapters have also been carried out for 
the fractures of Case 1. Considering fracture data as seen on rock surfaces (fracture 
trace density, fracture trace-length distribution and fracture trace-strike distribution) the 
results of Case 1 are not identical to the results of the base-case presented in previous 
chapters. 

This can be explained in the following way. The fractures of Case 1 are smaller, hence 
the probability of seeing the trace of a specific fracture on a surface (window) is smaller 
than for a specific fracture of the base-case; on the other hand there is a larger number 
of fractures in Case 1 than in the base-case, hence the number of fracture traces seen on 
a surface will not be the same as in the base-case. On the average more fracture traces 
are seen on a surface in Case 1 than in the base-case (presuming that the two surfaces 
are of equal size), and these traces are on the average shorter than the traces of the  
base-case. 

However, to what amount and in which way this will influence the point estimates  
will depend on the properties of the fracture sets studied and the size and shape of the 
windows studied. It is difficult to make any detailed or even general conclusions, except 
the following: A large number of small fractures will on the average produce a more 
efficient point estimate (considering a given increase in window radius) than a small 
number of large fractures (considering the same window radii). 
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Fracture trace density – P21 

The fracture density is the same in Case 1 as in the base-case, it follows that the true 
P21 value for very large windows (the P21 parameter) will be the same as in the base-
case. This follows from Eq. 6-1. But the point estimate of the P21-values in Case 1  
will not converge towards the P21 parameter in the same way as in the base-case. The 
larger number of smaller fractures in Case 1 will produce smaller differences between 
different windows (realisations) than in the base-case, which will give a more efficient 
point estimate than in the base-case. The number of boundary truncated fracture traces 
will be smaller in Case 1 than in the base-case, which will also influence the point 
estimate. A summary of the results for Case 1 and the base-case is given in Table 8-2 
(below). 

As can be seen in the table below, considering the estimation of the P21 parameter, for 
Set 1 and Set 3 the necessary sample sizes are smaller for Case 1 than for the base-case. 
The necessary radius of the window studied in Case 1 is half of the necessary radius of 
the base-case, for the two criterions studied (Deviation <= +/–15% of true value, and 
Deviation <= +/–10% of true value). 

Considering Set 2 and comparing the results of the two cases, as given in Table 8-2, the 
results are approximately the same for the two cases. That is however for the criterions 
(confidence intervals) given in Table 8-2, but for a criterion (confidence interval) of 
plus/minus 5% of the true value, the necessary window size is somewhat smaller for 
Case 1 than for the base-case.  

The different responses demonstrated by the different fracture sets illustrates the 
difficulty in making any general conclusions regarding the sensitivity of the point 
estimate of P21, to the properties of the fracture radius distribution. It should however 
be noted that for the two studied cases, both cases produce the same values of P21, if 
the window studied is large enough. 
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Table 8-2. P21, Case 1 and the base-case. Summary of results. 
 

PARAMETER 
 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
FRACTURE 

SET 

 
SIZE 

(Sample size) 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 24 m 
>= 22 m 
>= 40 m 

BASE-CASE 
P21 

[Trace-length per 
surface area] 

Analysis of circular 
horizontal surfaces 

 
 

Deviation 
< = +/–10% 
of true value 

(1)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 38 m 
>= 32 m 
>= 65 m 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 12 m 
>= 22 m 
>= 20 m 

CASE 1 
P21 

[Trace-length per 
surface area] 

Analysis of circular 
horizontal surfaces 

 
 

Deviation 
< = +/–10% 
of true value 

(1)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 19 m 
>= 32 m 
>= 32 m 

(1) Samples are within a range of plus or minus 5, 10 or 15 percent of the True value, considering a 
range centred on the true value, i.e. within: 0.85*TV–1.15*TV (TV=TrueValue) 

 

Fracture trace-length distribution 

The P32 parameter is the same in Case 1 as in the base-case, but the fracture radius 
distributions are different. Consequently the fracture trace-length distributions will be 
different and the efficiencies of the point estimates of the trace-length distributions will 
be different as well. 

The smaller fractures of Case 1 will produce smaller traces, consequently less boundary 
truncation will take place in Case 1 and a larger part of the trace-length distribution will 
be represented within a limited window. In addition, the larger number of smaller 
fractures in Case 1 will produce smaller differences between different windows than  
in the base-case, which will give a more efficient point estimates than in the base-case. 
A summary of the results for Case 1 and the base-case is given Table 8-3 (below). 

As can be seen in the table below, considering the estimation of the mean of the trace-
length distributions, the necessary sample sizes are much smaller for Case 1 than for the 
base-case. The necessary radius of the window studied in Case 1, could be half of the 
necessary radius for the base-case, or even less. Considering Sets 1, 2 and 3, and the 
mean values of the trace-length distributions, the necessary window radii of Case 1 are 
56% (Set 1), 44% (Set 2) and 42% (Set 3) of the corresponding radii of the base case, 
for the studied criterion (Deviation <= 15% of true value). 
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For the standard deviation of the trace-length distribution and for Set 1and Set 3, the 
necessary radii of the windows in Case 1 are smaller than those of the base-case. 
Considering Set 1 and Set 3, and the standard deviation of the trace-length distributions, 
the necessary window radii of Case 1 are 35% (Set 1) and 33% (Set 3) of the 
corresponding radii of the base case, for the studied criterion (Deviation <= 15%  
of true value). 

It is a different situation for Set 2. Considering Set 2 and the two cases (bas-case and 
Case 1) the results for the mean-values of Set 2 are in line with the results of Set 1  
and Set 3 (i.e., the necessary window sizes are reduced for Case 1). However, for the 
standard deviation of the trace-length distribution of Set 2 the opposite takes place,  
the necessary window sizes are larger for Case 1 than for the base-case. For Set 1 the 
necessary window radius of Case 1 is 208% of the radius of the base-case for the 
criterion tested (Deviation <= 15% of true value). The reason for the difficulty to 
estimate the standard deviation of the trace-lengths of Set 2 in Case 1, is caused by  
the shape of the fractures radius distribution of Set 2. It is a distribution with a small 
variance in comparison to its mean. Very few small fractures occur in the distribution. 
However, there will always be small fracture traces because only a part of a fracture 
may intersect a surface. This will create a fracture trace distribution that is not 
symmetric and in comparison to the mode of the distribution, the left part (lower tail)  
of the distribution contains more traces than the right part (upper tail). This will lead to 
an overestimation of the standard deviation of the trace-length distribution in Case 1, at 
small window sizes. The overestimation of the standard deviation will not take place in 
the same way in the base-case, partly because in the base-case the fractures and the 
traces are larger, which will make the boundary truncation to a dominant process at 
small window sizes and will reduce the length of the traces observed. Considering a 
window with a radius of 10 metre, in the base-case 72% of the traces are boundary-
truncated, while in Case 1 the amount of boundary truncated traces are 43% Hence, for 
the base-case and for Set 2, the boundary truncation may actually help to prevent an 
overestimation at small window sizes. 

Again, the different responses demonstrated by the different fracture sets illustrates the 
difficulty in making any general conclusions regarding point estimates of trace-length 
distributions and fracture radius distributions. 

The analyses of the shape of the distributions are carried out as a Chi-square test of 
“goodness-of-fit”. A comparison of the results of these tests (for Case 1 and the base-
case) demonstrates the following. Considering Set 2 and Set 3, and the amount of 
accepted samples, the necessary window radius of Case 1 are 60% (Set 2) and 67%  
(Set 3) of the radius of the base case, for the studied criterion (Confidence level of  
test= 99%). For Set 1the reduction in necessary size of window is much smaller than  
for the other fracture sets, for Set 1 the necessary window radius of Case 1 is 97% of  
the radius of the base-case for the criterion tested (Confidence level of test= 99%). 
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Table 8-3. Trace-length distributions, Case 1 and the base-case. Summary 
of results. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
TYPE & 

FRACTURE SET 

 
SIZE 

(Sample size) 

 
MEAN 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 32 m 
>= 45 m 
>= 52 m 

BASE-CASE 
MOMENTS 
OF SAMPLE 

DISTRIBUTION 
Analysis of circular 
horizontal surface. 

 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

STANDARD 
DEVIATION 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 52 m 
>= 12 m 
>= 70 m 

 
MEAN 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 18 m 
>= 20 m 
>= 22 m 

CASE 1 
MOMENTS 
OF SAMPLE 

DISTRIBUTION 
Analysis of circular 
horizontal surface. 

 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

STANDARD 
DEVIATION 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 18 m 
>= 25 m 
>= 23 m 

BASE-CASE 
SHAPE  

OF SAMPLE 
DISTRIBUTION 

Analysis of circular 
horizontal surface. 

 
Chi-square test 

“goodness-of-fit”
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 14 m 
>= 38 m 
>= 33 m 

CASE 1 
SHAPE 

OF SAMPLE 
DISTRIBUTION 

Analysis of circular 
horizontal surface. 

 
Chi-square test 

“goodness-of-fit”
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 13 m 
>= 23 m 
>= 22 m 

(1) Samples are within a range of plus or minus 15 percent of the true value, considering a range 
centred on the true value, i.e. within: 0.85*TV–1.15*TV (TV=TrueValue) 

(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which compares 
the shape of the sample distribution to the shape of the true distribution. The confidence level 
of the test was set to 99% 
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Fracture strike distribution 

The P32 parameter is the same in Case 1 as in the base-case, but the fractures are 
smaller in Case 1 than in the base-case, it follows that a larger number of fractures  
takes place in the rock mass of Case 1 than in the base-case, and consequently a  
larger number of traces are on the average seen on rock surfaces in Case 1. The traces 
observed in Case 1 are on the average shorter than the traces of the base-case, that is 
however of no importance when measuring the strike of a trace, presuming that the trace 
is large enough to make a measurement possible.  

The efficiency of the point estimate of the fracture trace strike distribution is 
proportional to the sample size, and as a larger number of traces are (on the average) 
seen on surfaces in Case 1 than in the base-case, the point estimate of Case 1 is more 
efficient than the that of the base-case. A summary of the results for Case 1 and the 
base-case is given (below). 

As can be seen in the table below, considering the estimation of the fracture trace strike 
distributions, the necessary sample sizes are much smaller for Case 1 than for the base-
case. The necessary radius of the windows studied in Case 1, could be half of the 
necessary radius of the base-case, or even less.  

For Set 1, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 1 are 63% (regarding mean) and 61% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution  
shape is tested by a Chi-square test with a confidence level of 99% 

For Set 2, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 1 are 22% (regarding mean) and 54% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution  
shape is tested by a Chi-square test with a confidence level of 99% 

For Set 3, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 1 are 57% (regarding mean) and 58% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution  
shape is tested by a Chi-square test with a confidence level of 99% 
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Table 8-4. Fracture trace strike distributions, Case 1 and the base-case. 
Summary of results. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level)

 
FRACTURE 

SET 

 
RADIUS OF 
SURFACE 
(Sample size) 

BASE-CASE
MEAN STRIKE

 

 
Deviation 
< = 15 deg 

(1)
 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 35 m 
>= 18 m 
>= 60 m 

CASE 1 
MEAN STRIKE

 

 
Deviation 
< = 15 deg 

(1)
 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 22 m 
>= 4 m 

>= 34 m 

BASE-CASE
STRIKE 

DISTRIBUTION
 

Chi-square test 
“goodness-of-fit” 
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 13 m 
>= 11 m 
>= 24 m 

CASE 1 
STRIKE 

DISTRIBUTION
 

Chi-square test 
“goodness-of-fit” 
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 8 m 
>= 6 m 

>= 14 m 

(1)Samples are within a range of plus or minus 15 degrees of the True value, considering a 
range centred on the true value. 
(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which 
compares the shape of the sample distribution to the shape of the true distribution. The 
confidence level of the test was set to 99% 
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8.3 Case 2 – Same fracture radii but different P32-value 

8.3.1 Definition of Sensitivity Case 2 

Case 2 is identical to the base-case of this study (see Section 2.3), except that the P32 
parameter of the fracture population is defined as two times that of the base-case. The 
fracture radius distributions of Case 2 are identical to those of the base-case. It follows 
that, as the fracture radius distribution is the same and the P32-value is two times larger, 
the number of fractures will be larger in Case 2 than in the base-case.  

The P32-values of the three fracture sets in Case 2 are defined as follows: 

P32CASE 2 = 2 x P32BASE CASE 

• Case 2.  P32SET 1  =   2 x 0.85 = 1.70 

• Case 2.  P32SET 2  =  2 x 1.59 = 3.18 

• Case 3.  P32SET 3  =  2 x 0.97 = 1.94 

8.3.2 Results considering fracture orientation and density based on 
data from boreholes 

All the tests and analyses presented in previous chapters have also been carried out  
for the fracture of Case 2. Considering fracture data as seen in boreholes (fracture 
orientation and fracture density) the results of Case 2 are not identical to the results  
of the base-case. 

This can be explained in the following way. As the fractures are of the same sizes in 
both Case 2 and in the base-case (same fracture radius distribution) and the P32-values 
of Case 2 are two times the values of the base-case, the number of fractures in the rock 
mass of Case 2 will be two times the number of fractures of the base case. It follows 
that more fractures will be seen in a borehole. On the average in Case 2, the P10-values 
(number of fracture per metre) in a borehole will be two times the values of the base-
case. 

Hence, the number of fractures in a sample, for a given length of borehole, is in Case 2 
(on the average) two times the number of fractures of the base-case. Consequently, the 
necessary length of borehole, to reach a certain sample size is on the average for Case 2 
half of the lengths necessary in the base-case. The variance in number of fracture traces 
observed is the same if the mean number of fracture traces is the same; this follows 
from the prerequisite that the only difference between the cases is the P32-values. 

Consequently, the necessary length of borehole, to reach a certain confidence level, is 
for Case 2 half of the lengths necessary in the base-case. (It should perhaps be noted this 
conclusion is also applicable to the estimate of P32 from borehole data.) 

Thus, considering two identical boreholes in two different fracture networks that are 
equal, except for the fracture density (P32-values), for such a situation the following 
equation is applicable:  
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LBH A = Necessary length of borehole, to reach a confidence level in Case A 

LBH B = Necessary length of borehole, to reach a confidence level in Case B 

In the equation above, the index A and B correspond to two different fracture networks. 

The equation above demonstrates that, everything else being equal except the fracture 
density, the necessary length of borehole to reach a confidence level is inversely 
proportional to the fracture density (P32-, P21- or P10- value) of the studied fracture 
network (fracture set). The conclusions above opens for a possibility to estimate  
the necessary borehole lengths to reach a certain confidence level (or to estimate a  
P32-value), based on fractures observed in boreholes or rock surfaces and a comparison 
to results obtained in a DFN-model.  

8.3.3 Results considering fracture orientation, density and trace-
lengths based on data from rock surfaces 

All the tests and analyses presented in previous chapters have also been carried out  
for the fractures of Case 2. Considering fracture data as seen on rock surfaces (fracture 
trace density, fracture trace-length distribution and fracture trace-strike orientation), the 
results of Case 2 are not identical to the results of the base-case. In addition, the results 
are not inversely proportional to the P32-value, as was the case for the borehole data. 
This can be explained in the following way. There are more fractures in the rock mass 
of Case 2 than in the base-case, hence in comparison with the base-case on the average 
more fracture traces are seen on a surface in Case 2 than in the base-case (presuming 
that the two surfaces are of equal size).  

Fracture trace density – P21 

The P32 parameter is not the same in Case 2 as in the base-case. Considering the 
different measures of fracture density, the following equation is applicable for fracture 
networks with different fracture densities: 
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In the equation above, the index A and B correspond to two different fracture networks. 
It follows from Eq. 9-2 that if the P32 values of the two networks are different, the P10 
and P21 values will be different as well. By use of the equation above it is possible to 
calculate the P10 and P21 values of Case 2, as the P32 value of Case 2 is known, as 
well as the P32, P21 and P10 values of the base case. According to the equation above 
the following values are obtained. 

SET 1. P21CASE 2 HORIZONTAL CIRCULAR SURFACE = 1.54 

SET 2. P21CASE 2 HORIZONTAL CIRCULAR SURFACE = 3.0 
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SET 3. P21CASE 2 HORIZONTAL CIRCULAR SURFACE = 0.82 

These values are also observed in the Case 2 DFN-model for large window radii. 

The point estimates of the P21-values in Case 2 will not be the same as in the base-case, 
as the P21-values are different and as the number of observed fractures are different. 
The larger number of fractures in Case 2 will produce smaller differences between 
different windows (realisations) than in the base-case, which will give a more efficient 
point estimate than in the base-case. Expressed as a percentage of all observed fracture 
traces, the number of boundary truncated fracture traces will be the same in Case 2 as in 
the base-case (because the fracture radius distribution is the same) A summary of the 
results for Case 1 and the base-case is given below in Table 8-5. 

Considering the estimation of the P21 parameter, and comparing Case 2 and the base-
case, Table 8-5 demonstrates the following: 

• For Set 1, the necessary sample sizes are smaller for Case 2 than for the base-case. 
The necessary radius of the windows studied in Case 2 are 75% , 71% and 60% of 
the necessary radius for the base-case, considering the three different criterions 
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation  
<= 5% of true value). 

• For Set 2, the necessary sample sizes are smaller for Case 2 than for the base-case. 
The necessary radius of the windows studied in Case 2 are 77% , 72% and 75% of 
the necessary radius for the base-case, considering the three different criterions 
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation  
<= 5% of true value). 

• For Set 3, the necessary sample sizes are smaller for Case 2 than for the base-case. 
The necessary radius of the windows studied in Case 2 are 75% , 72% and 72% of 
the necessary radius for the base-case, considering the three different criterions 
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation  
<= 5% of true value). 
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Table 8-5. P21, Case 2 and the base-case. Summary of results. 
 

PARAMETER 
 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
TYPE 

 
SIZE 

(Sample size) 

Deviation 
< = +/–15% 
of true value 

(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 24 m 
>= 22 m 
>= 40 m 

Deviation 
< = +/–10% 
of true value 

(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 38 m 
>= 32 m 
>= 65 m 

BASE-CASE 
P21 

[Trace-length per 
surface area] 

Analysis of circular 
horizontal surfaces 

 

Deviation 
< = +/–5% 

of true value 
(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 83 m 
>= 60 m 

>= 135 m 

Deviation 
< = +/–15% 
of true value 

(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 18 m 
>= 17 m 
>= 30 m 

Deviation 
< = +/–10% 
of true value 

(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 27 m 
>= 23 m 
>= 47 m 

CASE 2 
P21 

[Trace-length per 
surface area] 

Analysis of circular 
horizontal surfaces 

 

Deviation 
< = +/–5% 

of true value 
(1)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

Radius of surface
>= 50 m 
>= 45 m 
>= 97 m 

(1) Samples are within a range of plus or minus 5, 10 or 15 percent of the True value, 
considering a range centred on the true value, i.e. within: 0.85*TV–1.15*TV (TV=TrueValue) 

 

 

Fracture trace-length distribution 

The P32 parameter of Case 2 is two times that of the base-case, but the fracture radius 
distributions are the same. Consequently the fracture trace-length distributions will be 
the same, but the number of fracture traces observed on a surface will be larger in 
Case 2 than in the base case.  

Considering trace-length distributions and point estimates of the moments and shape  
of such distributions, the larger number of fractures in Case 2 will produce smaller 
differences between different windows (realisations) than in the base-case, which will 
theoretically produce more efficient point estimates of the trace-length distributions  
than in the base-case. However, when estimating the true moments and shape of a  
trace-length distribution, the most important factor is the size of the window studied in 
relation to the length of the traces observed (size of fracture radius distribution), and not 
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the number of traces observed. Hence, even if the number of traces observed is larger  
in Case 2, the efficiency of the point estimate can be close to the point estimate of the 
base-case, as the efficiency is strongly dependent on the size of the windows studied.  
A comparison of the point estimates of trace-length distribution of Case 2 and the base-
case is given below in Table 8-6. 

Considering Set 1, a comparison between Case 2 and the base-case demonstrates that 
the two point estimates are close, but not identical. Set 1 of Case 2 demonstrates a 
more efficient point estimate than the base case, because of (i) the large number of 
fractures in Case 2, and (ii) as the fractures of Set 1 are small, the relation between 
fracture size and window size is favourable (a small amount of boundary truncated 
fractures). For mean and standard deviation of the trace-length distribution of Set 1,  
the necessary radius of the windows studied in Case 2 are 91% (regarding mean) and 
83% (regarding standard dev.) of the necessary radius for the base-case, considering the 
criterion studied (sample within +/–15% of true value). 

Considering Set 2, a comparison between Case 2 and the base-case demonstrates that 
the two point estimates are nearly identical (Case 2 is somewhat more efficient). For 
mean and standard deviation of the trace-length distribution of Set 2, the necessary 
radius of the windows studied in Case 2 are 96% (regarding mean) and 92% (regarding 
standard dev.) of the necessary radius for the base-case, considering the criterion studied 
(sample within +/–15% of true value). 

Considering Set 3, a comparison between Case 2 and the base-case demonstrates that 
the two point estimates are close, but not identical. Set 3 of Case 2 demonstrates a 
more efficient point estimate than the base case, because of the larger number of 
fractures in Case 2 in comparison to the base-case. For mean and standard deviation  
of the trace-length distribution of Set 3, the necessary radius of the windows studied in 
Case 2 are 88% (regarding mean) and 83% (regarding standard dev.) of the necessary 
radius for the base-case, considering the criterion studied (sample within +/–15% of true 
value). 

The analyses of the shape of the distributions are carried out as a Chi-square test of 
“goodness-of-fit”. A comparison of the results of these tests (Case 2 and the base-case) 
demonstrates the following. Considering Set 1 and Set 3, and the amount of accepted 
samples; the necessary window radius of Case 2 are 71% (Set 2) and 75% (Set 3) of the 
radius of the base case, for the studied criterion (Confidence level of test= 99%). For 
Set 2 the reduction in necessary size of window is much smaller than for the other 
fracture sets, for Set 2 the necessary window radius of Case 2 is 97% of the radius  
of the base-case for the criterion tested (Confidence level of test= 99%). 
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Table 8-6. Trace-length distributions, Case 2 and the base-case. Summary 
of results. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
TYPE & 

FRACTURE SET 

 
SIZE 

(Sample size) 

 
MEAN 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 32 m 
>= 45 m 
>= 52 m 

BASE-CASE
MOMENTS 
OF SAMPLE 

DISTRIBUTION 
Analysis of 

circular horizontal 
surface. 

 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

STANDARD 
DEVIATION 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 52 m 
>= 12 m 
>= 70 m 

 
MEAN 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 29 m 
>= 43 m 
>= 46 m 

CASE 2 
MOMENTS 
OF SAMPLE 

DISTRIBUTION 
Analysis of 

circular horizontal 
surface. 

 

 
Deviation 

< = +/–15% 
of true value 

(1)

 
>= 90% 

STANDARD 
DEVIATION 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 43 m 
>= 11 m 
>= 58 m 

BASE-CASE
SHAPE  

OF SAMPLE 
DISTRIBUTION 

Analysis of 
circular horizontal 

surface. 

 
Chi-square test 

“goodness-of-fit”
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 14 m 
>= 38 m 
>= 33 m 

CASE 2 
SHAPE 

OF SAMPLE 
DISTRIBUTION 

Analysis of 
circular horizontal 

surface. 

 
Chi-square test 

“goodness-of-fit”
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 10 m 
>= 37 m 
>= 25 m 

(1) Samples are within a range of plus or minus 15 percent of the true value, considering a range 
centred on the true value, i.e. within: 0.85*TV–1.15*TV (TV=TrueValue) 

(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which 
compares the shape of the sample distribution to the shape of the true distribution. The 
confidence level of the test was set to 99% 
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Fracture strike distribution 

The P32 value of Case 2 is two times that of the base-case and the fracture radius 
distributions are the same as in the base-case, it follows that a larger number of fractures 
takes place in the rock mass of Case 2 than in the base-case, and consequently a larger 
number of traces are on the average seen on rock surfaces in Case 2. The traces 
observed in Case 2 are on the average of the same length as in the base-case, however 
the length of a trace is of no importance when measuring the strike of a trace, presuming 
that the trace is large enough to make a measurement possible. 

The efficiency of the point estimate of the fracture trace strike distribution is 
proportional to the sample size, and as a larger number of traces are (on the average) 
seen on surfaces in Case 2 than in the base-case, the point estimate of Case 2 is more 
efficient than the that of the base-case.  

As can be seen in the Table 8-7 below, considering the estimation of the fracture trace 
strike distributions, the necessary sample sizes are much smaller for Case 2 than for the 
base-case. The necessary radius of the windows studied in Case 2 are close to 66% of 
the necessary radius of the base-case. 

For Set 1, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 2 are 66% (regarding mean) and 69% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution shape 
is tested by a Chi-square test with a confidence level of 99% 

For Set 2, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 2 are 67% (regarding mean) and 64% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution shape 
is tested by a Chi-square test with a confidence level of 99% 

For Set 3, considering mean strike and shape of the strike distribution, the necessary 
radius of the windows studied in Case 2 are 67% (regarding mean) and 67% (regarding 
shape) of the necessary radius for the base-case. These results corresponds to the 
criterions studied, sample mean within +/–15 degrees of true value and distribution shape 
is tested by a Chi-square test with a confidence level of 99% 
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Table 8-7. Fracture trace strike distributions, Case 2 and the base-case. 
Summary of results. 

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level)

 
FRACTURE 

SET 

 
RADIUS OF 
SURFACE 
(Sample size) 

BASE-CASE
MEAN STRIKE

 

 
Deviation 
< = 15 deg 

(1)
 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 35 m 
>= 18 m 
>= 60 m 

CASE 2 
MEAN STRIKE

 

 
Deviation 
< = 15 deg 

(1)
 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 23 m 
>= 12 m 
>= 40 m 

BASE-CASE
STRIKE 

DISTRIBUTION
 

Chi-square test 
“goodness-of-fit” 
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 13 m 
>= 11 m 
>= 24 m 

CASE 2 
STRIKE 

DISTRIBUTION
 

Chi-square test 
“goodness-of-fit” 
Confidence level 

99% 
(2)

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
>= 9 m 
>= 7 m 

>= 16 m 

(1)Samples are within a range of plus or minus 15 degrees of the true value, considering a 
range centred on the true value. 
(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which 
compares the shape of the sample distribution to the shape of the true distribution. The 
confidence level of the test was set to 99% 

 

 

The number of fracture traces observed on a window (surface) depends on size of 
window studied. The number of fracture traces on a window is proportional to the three-
dimensional fracture density (the P32-parameter). It follows that if we have knowledge 
of the average number of fracture traces on a window, produced by a fracture network 
with a known value of P32; it is possible to analytically estimate the average number of 
fracture traces that will take place on a window of equal size, but for another fracture 
network that is equal to the first network except for its value of P32. The average 
number of fracture traces observed and the variance in the number of fracture traces 
observed will together produce the necessary size of window, for reaching a certain 
confidence level in an estimate. As it is possible to analytically estimate the average 
number of fracture traces on a window, for fracture networks that are equal except for 
the P32-values, it is also possible to analytically estimate the necessary sizes of 
windows for reaching a certain confidence level, for the same networks. 
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However, as the number of fracture traces (or fractures) per unit area is scale dependent, 
there is no simple relationship (such as Eq. 9-1), when comparing, (i) different fracture 
networks (e.g. Cases) with different P32-values and (ii) the necessary sizes of windows 
to reach a certain sample size or confidence level. 

Nevertheless, as the number of fracture traces on a window is proportional to the three-
dimensional fracture density (the P32-parameter), the following equation is applicable 
when comparing average numbers of fracture traces (for windows of a given size), 
produced by two different fracture networks that are equal except for the P32-values. 
(The only difference between Case A and B is the P32-values, everything else being 
equal). 

B

A

rB

rA

P

P

N

N

32
32

,

, =  8-3 

NA,r = Case A, Average number of fracture traces on a surface with radius, r. 

NB,r = Case B, Average number of fracture traces on a surface with radius, r. 

P32A = Case A, fracture area per unit volume. 

P32B = Case B, fracture area per unit volume. 

It follows that for fracture networks, which are equal to the base-case except for the 
P32-value, the average number of fractures on a surface with a given radius could be 
easily estimated by use of the following equation. 

0

,0
, 32

32

P

PN
N Cr

rC =  8-4 

N0,r = Base-Case, Average number of fracture traces on a surface with radius, r. 

NC,r = Case C, Average number of fracture traces on a surface with radius, r. 

P320 = Base-Case, fracture area per unit volume. 

P32C = Case C, fracture area per unit volume. 

Based on the equation above, we have estimated the average number of fracture traces 
on windows of different sizes, and for different cases that are equal to the base case, 
except for their P32-values. The results are given in Figure 8-4, below. 

The confidence in an estimate, based on the properties of fracture traces, depends on 
number of fracture traces observed and on the variance in number of fractures-traces 
observed. The variance in number of fracture traces observed is the same, if the mean 
number of fracture traces is the same; this follows from the prerequisite that the only 
difference between the cases is the P32-values. It follows that the confidence is the 
same, if the average number of fracture traces is the same; hence we can use Figure 8-4 
for estimation of the necessary size of windows for reaching a certain confidence level, 
for the different fracture-networks studied. The following results are obtained. 
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 1. Different values of P32.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 2. Different values of P32.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 3. Different values of P32.
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Figure 8-4. Number of fracture traces on circular windows of different sizes, for 
fracture networks that are equal except for their P32-values. Analytical estimate  
based on the base-case. 
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Set 1 
For prediction of mean strike, and for a confidence interval given by a deviation less 
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a 
window-radius of 35 m (less than or equal to this radius); this corresponds to an average 
of approximately 550 fracture traces. 

• For a fracture network with a P32 that is two times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 24 m. 
Hence, the necessary window-radius is 24 m. The case with a P32 that is two times 
the P32 of the base case, is the same case as the previously presented Case 2. For 
Case 2, the numerical analysis predicted a necessary window-radius of 23 m.  

• For a fracture network with a P32 that is three times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 19 m. 
Hence, the necessary window-radius is 19 m.  

Set 2 
For prediction of mean strike, and for a confidence interval given by a deviation less 
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a 
window-radius of 18 m (less than or equal to this radius); this corresponds to an average 
of approximately 190 fracture traces.  

• For a fracture network with a P32 that is two times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 12 m. 
Hence, the necessary window-radius is 12 m. The case with a P32 that is two times 
the P32 of the base case, is the same case as the previously presented Case 2. For 
Case 2, the numerical analysis predicted the same window-radius (12 m).  

• For a fracture network with a P32 that is three times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 9 m. 
Hence, the necessary window-radius is 9 m.  

Set 3 
For prediction of mean strike, and for a confidence interval given by a deviation less 
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a 
window-radius of 60 m (less than or equal to this radius); this corresponds to an average 
of approximately 425 fracture traces.  

• For a fracture network with a P32 that is two times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 40 m. 
Hence, the necessary window-radius is 40 m. The case with a P32 that is two times 
the P32 of the base case, is the same case as the previously presented Case 2. For 
Case 2, the numerical analysis predicted the same window-radius (40 m).  

• For a fracture network with a P32 that is three times the P32 of the base case, the 
same number of fractures is obtained for a window-radius of approximately 32 m. 
Hence, the necessary window-radius is 32 m.  
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9 Conclusions 

9.1.1 Applicability and limitations of the presented results 

Results and conclusions given in this study are only directly applicable to the fracture 
networks studied; however, rock masses having similar fracture networks will produce 
similar results. Nevertheless, great care should be taken when generalising results and 
conclusions given in this study. It is important to note the following: 

• Considering the studied parameters of the rock mass, the results correspond to a 
rock unit having statistically homogeneous properties. When analysing real data 
from field investigations, the applicability of this assumption needs to be statistically 
evaluated. 

• The rock unit studied is of a certain size and is assigned statistically homogeneous 
properties. Sample sizes have been calculated sample sizes that are necessary to 
reach a certain confidence level when predicting the properties of the rock unit. 
When applying the results of this study to an actual rock unit it is not a prerequisite 
that the actual rock unit must be of the same size and form as the unit used in this 
study when the necessary sample sizes were calculated. However, the actual rock 
unit needs to be larger than the calculated necessary sample size, and it should  
carry statistically properties that are close to homogeneous within the volume 
considered. For example, it is a result of this study that for a certain rock mass  
the mean direction of a certain fracture set could be estimated (within a certain 
acceptable deviation) using a vertical borehole with a length of 20 m. Such a result 
is applicable to a rock unit that is larger than 20 m and carries statistically 
homogeneous properties within that scale. 

• The fracture network studied does not contain any spatial correlation of the 
fractures. For a fracture network that has such a correlation, the necessary length  
of boreholes and size of rock outcrops, for producing an estimate with a certain 
confidence level, is larger than for the network of this study. 

• The effects of different methods for identification of fracture sets are not included in 
this study. 

• The fracture orientations observed in boreholes were corrected for sampling bias  
by use of Terzaghi correction; such a correction is essential and should always be 
included when analysing fracture orientations data from boreholes. 

• This study is a theoretical study, all data form the boreholes and rock-surfaces are 
numerically collected from a numerical fracture-network. No measurement errors 
occur in this study and all data is collected with the same high precision and quality. 
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Below are a few important observations that should be considered when generalising 
the results and conclusions given in this study (more details are given in the sensitivity 
analysis presented in Chapter 8). 

• The results depend on the properties of the fracture network, i.e. fracture orientation 
and fracture density (intensity) and fracture size. Generally, for a fracture network 
with a higher fracture density than that of the network studied, the lengths of 
boreholes and sizes of rock outcrops, necessary for deriving an estimate within a 
certain confidence interval and at a certain confidence level, is less than for the 
network studied. It follows that for a rock mass with a lower fracture density, the 
necessary length of boreholes and size of rock outcrops is larger than for the 
network of this study.  

• The dispersion of the orientations of the fractures of a fracture set will influence the 
length of a borehole and the size of a rock outcrop (window), necessary for deriving 
an estimate with a certain confidence. In general, when analysing a fracture set with 
a large dispersion, the necessary length of borehole and size of rock outcrop is larger 
than for a fracture set with a smaller dispersion (everything else being equal). Also 
the type of distribution of orientations within a fracture set (e.g. Fisher distribution) 
will influence the necessary lengths and areas. However, the efficiency of a point 
estimate, based on data gathered by boreholes and rock surfaces, will also depend  
on the orientation of boreholes and surfaces studied. In theory it is possible that for a 
fracture set with a very small dispersion, sampled with a borehole or a surface that is 
approximately at right angel to the mean direction (trend and plunge) of the fracture 
set, the necessary length of borehole or size of surfaces could be very large. (If the 
dispersion is zero (or negligible) and the sampling borehole or plane is at right 
angelto the fracture set, the necessary borehole length and window size could be 
infinite.) 

• When analysing a fracture set with a sampling structure, i.e. a borehole (a scan- 
line) or a rock-outcrop (a window). The length or size of the sampling structure, 
necessary for deriving an estimate with a certain confidence, depends on the 
orientation of the sampling structure in relation to the mean orientation of the 
fracture set studied. In general the most favourable orientation of a sampling 
structure is an orientation parallel to the mean direction (defined by trend and 
plunge) of the fracture set studied (i.e. on the average the fracture planes should be 
at right angles to the structure). For boreholes, the use of Terzaghi-correction will 
compensate for the systematic bias caused by sampling a three-dimensional fracture 
system with a one-dimensional scan-line. Therefore, also a borehole that is 
approximately at right angles to the to the mean direction (defined by trend and 
plunge) can be used for sampling (i.e. the borehole is along the fracture planes).  
The Terzaghi-correction is not perfect and for very small confidence intervals 
(acceptable deviations), the remaining bias may come to dominate the derived 
estimates.  

• Consider estimations based on observations in boreholes. Everything else being 
equal, the necessary length of borehole for producing an estimate with a certain 
confidence level is linearly proportional to the fracture density of the population 
studied (the P32-value or the P21-value or the P10-value). 
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• For a rock mass with a given fracture density, the mean and the variance of the 
fracture radius distributions (fractures defined as circular planar discs), will not 
influence the number of fractures that intersects a borehole. Hence, on the average  
a small number of large fractures will produce the same number of fracture 
observations in a borehole as a large number of small fractures, presuming that the 
fracture density of the rock mass is the same (P32 is constant). It follows that for 
estimations based on observations in boreholes, the necessary length of borehole for 
producing an estimate with a certain confidence level, is independent on mean and 
variance of the fracture radius distributions, presuming that the fracture density of 
the rock mass is the same (P32 is constant). 

• Consider estimations based on observations on surfaces. Everything else being 
equal, the necessary size of rock-outcrop (window) for producing an estimate with  
a certain confidence level is not linearly proportional to the fracture density of the 
population studied (the P32-value or the P21-value or the P10-value). Estimation of 
the trace-length distributions is difficult, the necessary size of window for producing 
an estimate with a certain confidence level depends on (i) the orientations of 
window studied in relation to that of the fracture set studied, (ii) the size of the 
window studied in relation to the properties of the fracture-radius distribution that 
created the fracture traces, as well as on (iii) the fracture density (the P32-value)  
and the dispersion of the fracture set studied. It follows that it is difficult to make 
any general conclusions regarding the necessary window size for estimating the 
properties of a trace-length distribution (with a certain confidence). For estimation 
of the mean of a strike distribution (derived from direction of fracture traces), the 
necessary window-radius for deriving an estimate with a certain confidence level, is 
related to the fracture density (P32-value) in a non-linear way. However, for fracture 
networks that are equal, except for the P32-value, this relationship can be 
analytically estimated. 

9.1.2 Summary of detailed results 

The analysed fracture network consists of three fracture sets (see Section 2.3). 

• Set 1 is sub-vertical, it has a very large dispersion and the smallest value of fracture 
density (P32), the fractures of Set 1 is on the average small. 

• Set 2 is sub-vertical, its dispersion is much less than that of Set 1, it has the largest 
value of fracture density (approximately two times that of Set 1) and on the average 
it contains the largest fractures. 

• Set 3 is sub-horizontal, it has the same dispersion as Set 2, its fracture density is 
smaller that that of Set 2, but somewhat larger than that of Set 1. On the average it 
contains smaller fractures than Set 2, but larger fractures than Set 1. 

Below we will present some detailed results; these results are also summarised in tables 
at the end of this chapter. Different aspects of the applied statistical tests are given in 
Section 2.7. The results given below can be interpreted as confidence levels and 
confidence intervals, even if they are not presented that way. The presented maximum 
acceptable deviation in estimation corresponds to a confidence interval. The probability 
for an estimate within the given maximum deviation corresponds to a confidence level. 
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The length of borehole or radius of studied window corresponds to a sample size – the 
size that is necessary to reach the confidence level. 

The results given below are only examples of results that can be deduced from the 
figures of the main report. 

Fracture orientation – mean direction 

The mean direction of the fracture sets studied, were calculated based on sampling of 
fracture orientations, in both the vertical and the inclined borehole. The acceptable 
deviation (confidence interval) in degrees, discussed below, corresponds to the acute 
angle between the true mean direction and that of a sample.  

Considering a vertical borehole. 

With a probability larger than 90 percent (confidence level), the deviation in estimation 
is less than 15 degrees, if the borehole length is larger than: 

For Set 1: 140 metres. For Set 2: 50 metres. For Set 3: 20 metres. 

Considering an inclined borehole (45 degrees form vertical). 

With a probability larger than 90 percent (confidence level), the deviation in estimation 
is less than 15 degrees, if the borehole length is larger than: 

For Set 1: 90 metres. For Set 2: 35 metres. For Set 3: 35 metres. 

Fracture orientation – dispersion 

The dispersion of a fracture set is a measure of the concentration (or spread) of the 
fracture orientations about some mean direction. In this study we have analysed two 
dispersion parameters, the Kappa parameter which corresponds to a Fisher distribution, 
and the SR1 parameter which is a general dispersion parameter. The dispersion of the 
fracture sets studied, were calculated based on sampling of fracture orientations, in both 
the vertical and the inclined borehole. 

Analysis of the Kappa parameter by use of a Vertical borehole. With a probability larger 
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true 
Kappa value, if the borehole length is larger than or equal to: 

For Set 1: 500 metres. For Set 2: 420 metres. For Set 3: 200 metres. 

Analysis of the Kappa parameter by use of an Inclined (45 deg.) borehole. With a 
probability larger than 90 percent, the deviation in estimation is less than plus/minus 
15% of the true Kappa value, if the borehole length is larger than or equal to: 

For Set 1: 420 metres. For Set 2: 360 metres. For Set 3: 500 metres. 

Analysis of the SR1 parameter by use of a Vertical borehole. With a probability larger 
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true SR1 
values if the borehole lengths are larger than or equal to: 

For Set 1: 1100 metres. For Set 2: 250 metres. For Set 3: 100 metres. 
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Analysis of the SR1 parameter by use of an Inclined (45 deg.) borehole. With a 
probability larger than 90 percent, the deviation in estimation is less than plus/minus  
15% of the true SR1 values, if the borehole lengths are larger than or equal to: 

For Set 1: 750 metres. For Set 2: 170 metres. For Set 3: 250 metres. 

Fracture density – the P10 parameter (fracture frequency) 

The one-dimensional fracture density is the P10 parameter; it is equal to number of 
fractures per unit length, taken along a straight line (a scan-line). The value of the P10 
parameter varies with direction of scan-line. The P10-parameter of the fracture sets 
studied, were calculated based on sampling of fractures, in both the vertical and the 
inclined borehole. 

Analysis of the P10 parameter by use of a Vertical borehole. With a probability larger 
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true P10 
values, if the borehole lengths are larger than or equal to: 

For Set 1: 400 metres. For Set 2: 300 metres. For Set 3: 150 metres. 

Analysis of the P10 parameter by use of An Inclined borehole (45 deg.). With a 
probability larger than 90 percent, the deviation in estimation is less than plus/minus 
15% of the true P10 values, if the borehole lengths are larger than or equal to: 

For Set 1: 350 metres. For Set 2: 150 metres. For Set 3: 210 metres. 

Fracture density – the P21 parameter 

The two-dimensional fracture density is the P21 parameter; it is equal to fracture trace-
length per unit surface area, taken over a two-dimensional plane. The P21-parameter  
of the fracture sets studied, were calculated based on sampling of fracture traces on 
circular horizontal windows (surfaces). With a probability larger than 90 percent, the 
deviation in estimation is less than plus/minus 15% of the true P21 value, if the circular 
window has a radius larger than or equal to: 

For Set 1: 24 metres. For Set 2: 22 metres. For Set 3: 40 metres. 

Fracture density – the P32 parameter 

The three-dimensional fracture density is the P32 parameter; it is equal to fracture 
surface area per unit rock volume, taken over a volume. It is possible to derive a P32-
value based on a P21-value and/or a P10-value, by use of a trial and error procedure in  
a DFN-model. Hence, the results for the P21 and P10 parameters are also applicable to 
the P32 parameter. However, also the uncertainty and errors stemming from the trial 
and error procedure, will influence the estimation of the P32-parameter. In addition the 
P32-parameter can be estimated based on the fracture-surface area as seen in a borehole 
and the corresponding borehole volume. The P32-parameter of a fracture set is well 
estimated by sampling in both the vertical and the inclined borehole, presuming that the 
borehole length is large. 

Analysis of the P32 parameter by use of a Vertical borehole. With a probability larger 
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true P32-
value, if the borehole length is larger than or equal to: 

For Set 1: 850 metres. For Set 2: 650 metres. For Set 3: 150 metres. 
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Analysis of the P32 parameter by use of an Inclined borehole (45 deg.). With a 
probability larger than 90 percent, the deviation in estimation is less than plus/minus 
15% of the true P32-value, if the borehole length is larger than or equal to: 

For Set 1: 480 metres. For Set 2: 320 metres. For Set 3: 380 metres. 

Fracture trace-length distribution 

Trace-length distributions were derived by analysing fracture traces on horizontal 
circular windows (surfaces). Sample trace-length distributions were derived for each 
fracture set separately, for different window-radii.  

Moments of sample distributions 

The results are given for two different moments, mean and standard deviation. We 
conclude the following results.  

Mean of trace-length distribution. With a probability larger than 90 percent, the 
deviation in estimation is less than plus/minus 15% of the true mean value, if the 
window radius is larger than or equal to: 

For Set 1: 32 metres. For Set 2: 45 metres. For Set 3: 52 metres. 

Standard deviation of trace-length distribution. With a probability larger than  
90 percent, the deviation in estimation is less than plus/minus 15% of the true  
standard deviation value, if the window radius is larger than or equal to: 

For Set 1: 52 metres. For Set 2: 12 metres. For Set 3: 70 metres. 

Moments of log-normal distributions fitted to an sample distributions 

The sample trace-length distributions were also analysed by fitting a log-normal 
distribution to the sample distribution. The moments of these log-normal distributions 
were compared to the moments of a log normal distribution fitted to the simulated true 
trace-length distribution (a distribution obtained from very large windows). 

Mean of log-normal distribution (mean in normal-space). With a probability larger than 
90 percent, the deviation in estimation is less than plus/minus 15% of the true mean 
value, if the window radius is larger than or equal to: 

For Set 1: 25 metres. For Set 2: Not well represented. For Set 3: 45 metres. 

Standard deviation of log-normal distribution (values in normal-space). With a 
probability larger than 90 percent, the deviation in estimation is less than plus/minus 
15% of the true standard deviation value, if the window radius is larger than or equal to: 

For Set 1: 42 metres. For Set 2: Not well represented. For Set 3: 65 metres. 

Shape of sample distributions 

The sample trace-length distributions was also analysed by comparing the shape of the 
sample distribution to the shape of the simulated true distribution, by use of a chi-square 
"goodness-of-fit" test. With a probability larger than 90 percent, the shape of a trace-
length distribution derived from a sample is a good representation of the simulated true 
distribution (the confidence level of the test was set to 99 percent), if the window radius 
is larger than or equal to: 
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For Set 1: 13 metres. For Set 2: 38 metres. For Set 3: 32 metres. 

Fracture Trace strike distribution 

The trace strike distributions of the fracture sets studied were calculated based on 
sampling of the strike of fracture traces on horizontal circular windows (surfaces). 

Mean of sample distributions 

With a probability larger than 90 percent, the deviation in estimation is less than 
plus/minus 15 degrees of the true mean value, if the window radius is larger than or 
equal to: 

For Set 1: 35 metres. For Set 2: 18 metres. For Set 3: 60 metres. 

Shape of sample distributions 

The sample fracture trace strike distributions were also analysed by comparing the 
shape of the sample distributions to the shape of the simulated true distribution, by use 
of a chi-square "goodness-of-fit" test. With a probability larger than 90 percent, the 
shape of a trace strike distribution derived from a sample is a good representation of the 
simulated true distribution (the confidence level of the test was set to 99 percent), if the 
window radius is larger than or equal to: 

For Set 1: 13 metres. For Set 2: 11 metres. For Set 3: 24 metres. 

Concluding remarks 

When comparing the results for the different fracture sets, it is demonstrated that the 
most difficult fracture set to analyse is Set 1, because this set has a large dispersion and 
the smallest value of P32 (fracture density) of the three sets studied. 

When comparing the results of a specific fracture set considering different borehole 
directions, the variation in results is in line with the variation in number of fractures 
observed in boreholes with different orientations. 

Considering the orientation of the fractures of a fracture set, it is more difficult to 
estimate the dispersion of the fracture-orientations than the mean of the fracture-
orientations. 

Considering fracture set 3 and horizontal windows, the large radius necessary for good 
estimates of the parameters of Set 3 is caused by the sub-horizontal orientation of Set 3, 
because the fractures of a sub-horizontal fracture set only rarely intersects a sub-
horizontal surface. A fracture set with such an orientation is not well analysed by use  
of sub-horizontal surfaces, unless a correction for sampling bias is applied and in this 
study such a correction was not used when the surface data were analysed. (Correction 
for orientation sampling bias was only applied to borehole data.) 

Estimation of the trace-length distributions is difficult, as such estimations (among other 
things) depend on the size of the window studied in relation to the properties of the 
fracture-radius distribution that created the fracture traces. Therefore the results for 
different fracture sets could be very different, for the same size of window. 
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9.1.3 On parametric tests and calculated confidence intervals 

Parametric statistical tests were carried out regarding mean direction and dispersion of 
the three fracture sets of the population, considering observations of fracture orientation 
in theoretical boreholes (see Sections 3.5 and 4.4). As the population (the fracture 
network) is created by use of Fisher distributions, the tests were based on the 
assumption that samples were drawn from (represent) Fisher distributions. Even if we 
had not known that the fracture sets were generated that way, the circular shape of the 
fracture clusters as revealed by the SR2 parameter (see Section 4.2.1), indicates that 
parametric tests against Fisher distributions are appropriate. The tested hypothesis was 
that the mean direction and the dispersion of the population, as estimated by the 
samples, are equal to the known true properties of the population. We know that this is a 
correct hypothesis; but due to sampling bias, remaining in the samples after application 
of Terzaghi correction, the hypothesis will not necessarily be confirmed by the samples. 
The results of the tests demonstrate a larger amount of rejected samples, than the 
amount prescribed by the confidence level of the tests; for some of the fracture sets and 
especially when analysing the samples from the inclined borehole. This is a 
consequence of a systematic bias in the point estimates of the properties of the 
population. This bias follows from the fact that a borehole is a one-dimensional line that 
samples a three-dimensional fracture network. The applied Terzaghi correction, which 
removes most of this bias, is not perfect and some aspects of the bias remain in the 
samples. The following conclusion can be made: If we assume that (i) samples are 
drawn from perfect Fisher distributions and that (ii) the systematic sampling bias is fully 
corrected by use of Terzaghi correction; we may derive confidence intervals, based on 
parametrical statistical analysis, that are to small and which do not reflect the actual 
uncertainties. This is especially the case if the sample size is large (a sample that 
contains a large number of fracture observations) as the confidence intervals, derived 
through parametric statistical analyses, are small for such samples. 

9.1.4 On optimal orientation of a borehole 

Based on observations in theoretical boreholes, we have estimated fracture set 
orientation, mean direction and dispersion, as well as the fracture density parameters 
P10 and P32. Two different boreholes have been used, a vertical and an inclined 
borehole. By comparing the efficiency of the point estimates, as produced by the two 
boreholes, we can make conclusions regarding the optimal orientation of a borehole. 

Let us first consider the P10-parameter (fracture frequency in a borehole); it is a 
direction-dependent parameter and as such it is calculated without Terzaghi correction. 
The point estimate of the P10 parameter relates to borehole length and not to number of 
fractures in a sample. However, the efficiency of the point estimate increases with 
number of fractures observed in a sample; hence for a given borehole length, the 
borehole that intersects most fractures will produce the most efficient point estimate as 
regards the P10-parameter. Considering the two borehole directions studied, the 
inclined borehole (45 deg.) produces on the average, when adding together all three 
fracture sets, the largest samples (number of fractures per metre of borehole), and 
consequently as regards P10 the point estimate is most effective for the inclined 
borehole.  
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For all parameters analysed by use of boreholes, on the average the most efficient point 
estimate takes place for the borehole direction for which most fractures are intersected. 
Hence, in order to reach the largest efficiency when analysing a single fracture set, the 
borehole should not necessarily be an inclined borehole, but directed so that the mean 
direction (defined by trend and plunge) of the fracture set studied is parallel to the 
borehole (i.e. on the average the fracture planes are at right angles to the borehole), 
because on the average this is the borehole direction that produces the largest samples 
(for a given borehole length). Consequently, different borehole directions are optimal 
for different fracture sets. 

The borehole length necessary for deriving acceptable estimates of all properties studied 
of all fracture sets studied is determined by the length necessary for deriving an 
acceptable estimate of the property and fracture set that is the most difficult to estimate. 
The properties that are easier to estimate will be derived within the borehole length 
necessary for the most difficult estimation. For example, if we want to estimate the 
mean orientation and dispersion (Kappa) of the three fracture sets studied, by use of a 
vertical borehole, the necessary length is 500 m (confidence level=90%; confidence 
interval =+/– 10 degrees (orientation) and +/–15% (Kappa)). By use of an inclined 
borehole, the necessary length is 500m as well. For the vertical borehole the most 
difficult parameter to estimate is the dispersion of Set 1, consequently this is the 
parameter that determines the borehole length for the vertical borehole. For the inclined 
borehole the most difficult parameter to estimate is the dispersion of Set 3, and 
consequently this is the parameter that determines the borehole length for the inclined 
borehole. For both boreholes the necessary borehole length is 500m. 

Even if the necessary length of borehole was the same for the two borehole orientations, 
as this length was determined by the most difficult estimation, the necessary lengths for 
estimating the other parameters were not the same. As a measure of the average 
efficiency of a borehole orientation we have calculated the average necessary length for 
estimating certain parameters in the same borehole. 

n

L
A

n

i
i∑

== 1   9-1 

A = Average necessary length. 

Li = Necessary borehole length to derive an estimate of a parameter of a fracture set, within a given 
confidence interval and confidence level. 

n = Number of estimates studied. 

The results for the P10 and P32 parameters are given in Table 9-1 (below). 
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Table 9-1. Average necessary borehole lengths for deriving estimates of 
all three fracture sets, in boreholes of different directions, considering 
P10 and P32.  
Parameter Confidence interval  Confidence level  BH-type Average 
P10 Deviation<=+/–15%  90%  Vertical 283m 
P10 Deviation<=+/–15%  90%  Inclined(45deg) 236m 
P32 Deviation<=+/–15%  90%  Vertical 550m 
P32 Deviation<=+/–15%  90%  Inclined(45deg) 393m 

 

 

Considering fracture frequency P10 and a vertical borehole, the necessary lengths are 
400 m (Set 1), 300 m (Set 2) and 150 m (Set 3), producing an average necessary length 
of 283 m (confidence interval= +/–15% of true value and confidence level= 90%). For 
an inclined borehole the average necessary length is 236 m. The average necessary 
length of the inclined borehole is 84% of that of the vertical borehole. Considering 
fracture density P32 (based on borehole data), the average necessary length of the 
inclined borehole (393 m) is 71% of that of the vertical borehole (550 m). Hence, the 
inclined borehole produces on the average the best estimates, especially for the P32 
parameter. On the other hand, if the acceptable deviation (confidence interval) is not set 
as very small and the available borehole lengths are large, the direction of the borehole 
is not very important, as acceptable estimates could be derived for any direction. 

Estimates of fracture set orientation should, as little as possible, be dependent on the 
orientation of the investigation borehole. Therefore all orientation data from boreholes 
should be corrected by use of Terzaghi correction (see Appendix B). The Terzaghi 
correction will compensate for most of the systematic sampling bias. After application 
of Terzaghi correction, the sample sizes necessary for deriving an estimate with a 
certain confidence, should only be weakly dependent on the orientation of the borehole, 
however the necessary lengths will still be dependent on dispersion and fracture density; 
and as the Terzaghi correction is not perfect and some systematic bias will remain in the 
samples, it follows that some borehole orientations are better than other orientations. 
The number of fractures observed and the efficiency (completeness) of the Terzaghi 
correction depends on the acute angle between the borehole and the mean orientation of 
the fracture set studied. When considering the efficiency (completeness) of the Terzaghi 
correction, different directions of borehole are optimal for different fracture sets (as they 
occur in a rock unit). The remaining bias will have the least influence if the bias is 
distributed in a symmetric way around the predicted mean orientation, which is 
achieved for boreholes that are at right angles or parallel to the mean direction of  
the fracture set.  

Hence, for best efficiency of the Terzaghi correction, the borehole should be directed in 
a way that the mean direction (trend and plunge) of the fracture set studied is parallel to 
the borehole (i.e. fracture planes at right angles to the borehole), as most fractures are 
intersected for this direction, and because the remaining bias will be symmetric for  
such a direction. A borehole direction that is at right angle to the mean direction (trend 
and plunge) of a fracture set (i.e. borehole direction along fracture planes) could 
(theoretically) be an efficient investigation borehole, assuming that it is has a large 
length. Because for very large lengths of such a borehole direction, the derived estimate 
will be close to the true value, as the remaining bias is symmetrically distributed for 
such a borehole direction.  
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For a borehole that is not parallel and not at right angles to the mean direction of the 
fracture set studied, and if the acceptable deviation (confidence interval) is set as very 
small, for such a situation the necessary borehole lengths could be infinite (especially 
for large values of the confidence level). Because the estimates might converge not 
towards the true value but towards a value that is slightly off the true value, due to the 
remaining sampling bias (see Figure 2-7 and Appendix B). (If the acceptable deviation 
(confidence interval) is set as very small, the estimate may converge towards a value 
outside of the confidence interval.) 

The necessary average lengths, considering mean directions of a fracture set, are given 
in Table 9-2 (below). 

Table 9-2. Average necessary borehole lengths for deriving estimates of 
all three fracture sets, in boreholes of different directions, considering 
mean direction of fracture sets.  
Parameter Confidence interval Confidence level BH-type Average 
Mean direction Deviat.<=15deg 90% Vertical 70m 
Mean direction Deviat.<=15deg 90% Inclined(45deg) 53m 
Mean direction Deviat.<=10deg 90% Vertical 133m 
Mean direction Deviat.<=10deg 90% Inclined(45deg) 113m 
Mean direction Deviat.<= 5deg 90% Vertical 550m 
Mean direction Deviat.<= 5deg 90% Inclined(45deg) Not possible 

 

 

The average necessary length of the inclined borehole (53 m) is 76% of that of the 
vertical borehole (70 m), for an acceptable deviation (confidence interval) of 15 degrees 
and a confidence level of 90%. For an acceptable deviation of 10 degrees, the average 
necessary length of the inclined borehole (113 m) is 85% of that of the vertical borehole 
(133 m). And finally, for an acceptable deviation of 5 degrees, the average necessary 
length of the inclined borehole is undefined. Because by use of an inclined (45 deg) 
borehole it is not possible to estimate the mean direction of Set 1 at such a small 
acceptable deviation (confidence interval) together with a confidence level of 90%. 
Hence, the inclined borehole is better than the vertical borehole, except if the 
confidence interval (acceptable deviation) and confidence level is set as very small,  
for such a situation the direction of the borehole has to be optimised for each fracture 
set. On the other hand, if the acceptable deviation (confidence interval) is not very 
small, the direction of the borehole is not very important, as acceptable estimates could 
be derived for any direction, and the difference in total lengths for different borehole 
directions is not very large. 

The necessary total lengths, considering dispersion of a fracture set, are given in  
Table 9-3 (below). 



 214

Table 9-3. Average necessary borehole lengths for deriving estimates of 
all three fracture sets, in boreholes of different directions, considering 
dispersion of fracture sets.  
Parameter Confidence interval Confidence level BH-type Average 
SR1 Deviat.<=+/–15% 90% Vertical 483m 
SR1 Deviat.<=+/–15% 90% Inclined(45deg) 390m 
Kappa Deviat.<=+/–15% 90% Vertical 373m 
Kappa Deviat.<=+/–15% 90% Inclined(45deg) 427m 

 

 

Considering dispersion in fracture orientation, as represented by the SR1 dispersion 
parameter, the average necessary length of the inclined borehole (390 m) is 81% of that 
of the vertical borehole (483 m), for an acceptable deviation (confidence interval) of  
+/– 15% of the true values and a confidence level of 90%. This is in line with the results 
for the mean direction (above). It should however be noted that the different necessary 
lengths for each individual fracture set, considering the SR1 parameter (see Section 4.2, 
page 64), are very large (e.g. vertical borehole, Set 1=1100 m, Set 2=250 m and 
Set 3=100 m). Considering dispersion in fracture orientation, as represented by the 
Kappa dispersion parameter (see Section 4.3, page 75), the average necessary length of 
the inclined borehole (427 m) is 114% of that of the vertical borehole (373 m). This is 
different from the results regarding mean direction, and it follows from the remaining 
sampling bias of the inclined borehole. 

Thus, it is more difficult to predict dispersion than mean value (which is the way it 
should be, as dispersion is a measure of variance), it follows that the borehole direction 
is more important when estimating dispersion than when estimating mean direction of a 
fracture set.  

The borehole direction is also more important when estimating P32 than when 
estimating P10. In general, the necessary lengths of boreholes are larger when 
estimating P32 than for estimation of P10. However, if the borehole direction and mean 
direction (trend and plunge) of the fracture set is parallel, the P10-value in the borehole 
is equal to the P32-value of the fracture set; this conclusion underlines the importance 
of borehole direction. 

If the acceptable deviation (confidence interval) is not very small, and large borehole 
lengths are available, any borehole direction will do, but if the acceptable deviation 
(confidence interval) has to be very small and/or only short borehole lengths are 
available, for such a situation the borehole direction is important and needs to be 
optimised considering each fracture set. In general it is better to have three somewhat 
shorter boreholes, with different optimised directions, than one borehole with a large 
length 

9.1.5 On number of investigation boreholes and rock surfaces 

In this study the analysed fracture network is statistically homogeneous, it follows that 
the results are only applicable to a rock unit with statistically homogeneous properties. 
Considering the use of boreholes for investigation of fracture sets orientation (mean 
direction and dispersion) and the P10 fracture density parameter, the necessary size  
of samples for the estimation of the parameter does not have to come from a single 
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borehole. If the rock mass has statistically homogeneous properties, the analysed sample 
can come from several different boreholes that together produce the necessary size of 
sample. For example, three boreholes of length 50 metres can together form a sample 
representing approximately the same size of sample as observations in a single borehole 
of length 150 metres (presuming that they all are in the same rock unit with statistically 
homogeneous properties). Hence, in practise when analysing a real rock mass, it is very 
important to know which observations belong to which rock unit, especially if several 
boreholes are used; that is however also a concern when analysing observations from a 
single borehole with a large length. 

It is however a different situation when considering the mapping of fracture trace-length 
distributions on rock surfaces. There are several biases that come from sampling a three 
dimensional system with a two-dimensional surface of a given form (e.g. circular), this 
is discussed in Section 6.2; but regarding the topic of this section, the most important 
bias is the boundary truncation of the large fracture traces. This is stated in Section 6.3.1 
in the following way “The efficiency of a point estimate increases with sample size, 
however for the sampling of traces also the size of the studied window is important.  
The observations are made on windows that have a limited size, and the upper tail of the 
trace-length distribution (traces with a large length) can only be directly observed on 
windows of a size (radius) comparable to length of the large traces. Hence, for small 
windows there will be a systematic bias in the estimate of the trace-length distribution, 
due to boundary truncation, even if the sample size is large. (Small window sizes could 
be sufficient if it is possible to fit a mathematical distribution to the observed truncated 
trace-length distributions, even if such a curve fitting procedure will introduce 
uncertainty regarding the ability of such a distribution to represent the part of the true 
distribution that is unknown at small window sizes.) ” 

It follows from the statement above that regarding the trace-length distribution it is not 
possible to replace observations on one large window with observations on several 
smaller windows, even if all windows are from the same rock unit with statistically 
homogeneous properties. However, as stated above, by fitting a mathematical function 
to observations made on small windows, an approximate estimation can be derived  
of the upper tail of the trace-length distribution. We will in this study not discuss the 
best method for such a curve fitting; an example of curve fitting is however given in 
Chapter 6. The given example is the fitting of a Log-Normal distribution to the observed 
trace-length distribution. 

It is again a different situation when considering observations of fracture strike 
distributions, derived from directions of fracture traces, as observed on rock surfaces. 
As for the trace-length distribution there are several biases that come from sampling a 
three dimensional system with a two-dimensional surface of a given form (see Section 
6.2). However, there is no systematic bias in the estimate of the strike distribution,  
due to boundary truncation of large fracture traces. Hence, when estimating the strike 
distribution it is possible to replace observations on one large window with observations 
on several smaller windows and thereby gather one large sample, presuming that all 
windows are from the same rock unit with statistically homogeneous properties. 



 216

 
PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
SAMPLE TYPE 

FRACTURE SET 

 
BOREHOLE  

LENGTH  (1)
(Sample size) 

Vertical BH 
Set 1 
Set 2 
Set 3 

 
>= 140 m 
>= 50 m 
>= 20 m 

 
Deviation 
< = 15 deg 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

 
>= 90 m 
>= 35 m 
>= 35 m 

Vertical BH 
Set 1 
Set 2 
Set 3 

 
>= 270 m 
>= 90 m 
>= 40 m 

 
Deviation 
< = 10 deg 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

 
>= 200 m 
>= 70 m 
>= 70 m 

Vertical BH 
Set 1 
Set 2 
Set 3 

 
>= 1200 m 
>= 340 m 
>= 110 m 

 
ORIENTATION 

MEAN 
DIRECTION 

The deviation in 
degrees corresponds 

to the acute angle 
between the true 

mean direction and 
that of a sample. 

 
Deviation 
< = 5 deg 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

 
Not possible 

>= 260 m 
>= 280 m 

Vertical BH 
Set 1 
Set 2 
Set 3 

 
>= 1100 m 
>= 250 m 
>= 100 m 

 
ORIENTATION 

Dispersion 
SR1 

 
Deviation 

< = +/– 15% 
of true value 

(2) 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

 
>= 750 m 
>= 170 m 
>= 250 m 

Vertical BH 
Set 1 
Set 2 
Set 3 

 
>= 500 m 
>= 420 m 
>= 200 m 

 
ORIENTATION 

Dispersion 
Kappa 

 
Deviation 

< = +/– 15% 
of true value 

(2) 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

 
>= 420 m 
>= 360 m 
>= 500 m 

(1). Results and conclusions given in this study are only directly applicable to the fracture network 
studied, see Section 2.3. 
(2). Samples are accepted if the deviation from the true value is within a range of plus or minus 
15% of the True value, considering a range centred on the true value, i.e. within: 0.85*TV– 
1.15*TV (TV=TrueValue) 

Figure 9-1. CONCLUSIONS: FRACTURE ORIENTATION FROM BOREHOLES. 
(Presuming that trend and plunge is measured without any errors and that Set ID is 
known for all fractures studied.) 
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PARAMETER 

 

 
CRITERION 

(Confidence interval) 

 
PROBABILITY 
(Confidence level) 

 
SAMPLE TYPE 

FRACTURE SET 

 
SIZE   (1)

(Sample size) 

Vertical BH 
Set 1 
Set 2 
Set 3 

BH length 
>= 400 m 
>= 300 m 
>= 150 m 

 

P10 
Fracture frequency 

[fractures/metre] 
Analyses of 
boreholes 

 
Deviation 

< = +/–15% 
of true value 

(2)
 

 
>= 90% 

Inclined BH 
Set 1 
Set 2 
Set 3 

BH length 
>= 350 m 
>= 150 m 
>= 210 m 

 
Deviation 

< = +/–15% 
of true value 

(2)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 24 m 
>= 22 m 
>= 40 m 

 

P21 
[Trace-length per 

surface area] 
Analysis of circular 
horizontal surfaces 

 
 

Deviation 
< = +/–10% 
of true value 

(3)

 
>= 90% 

Horizontal circular 
Surface 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 37 m 
>= 32 m 
>= 60 m 

 
P32 

[fracture surface 
area per volume] 

INDIRECT 
Analysis of surfaces 

or boreholes 
 

 
By use of a trial and error procedure in a DFN-model, the P32 parameter can  
be Estimated based on the P10 or the P21 values. Therefore the results are the 
same as for the P10 and P21 parameters, with the addition of convergence 
deviations of the trial and error procedure. 
Deviation P32 = Deviation P21 

Deviation P32 = Deviation P10 
 

 
Vertical BH  

Set 1 
Set 2 
Set 3 

 
BH length 
>= 850 m 
>= 650 m 
>= 150 m 

 
P32 

[fracture surface 
area per volume] 

DIRECT 
From boreholes. 

Considering fracture 
area inside borehole 

and borehole 
volume. 

 

 
Deviation 

< = +/–15% 
of true value 

(2)
 

 
>= 90% 

 
Inclined BH  

Set 1 
Set 2 
Set 3 

 
BH length 
>= 480 m 
>= 320 m 
>= 380 m 

(1). Results and conclusions given in this study are only directly applicable to the fracture network 
studied, see Section 2.3. 
(2). Samples are accepted if the deviation from the true value is within a range of plus or minus 10% 
or 15% of the true value (TV), considering a range centred on the true value 

Figure 9-2. CONCLUSIONS: FRACTURE DENSITY. 
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PARAMETER 

 

 
CRITERION 

(Confidence interval) 

 
PROBABILITY 
(Confidence level) 

 
SAMPLE TYPE 

FRACTURE SET 

 
SIZE     (1)

(Sample size) 

 
MEAN 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 32 m 
>= 45 m 
>= 52 m 

 
MOMENTS OF 

SAMPLE 
DISTRIBUTION 

Analysis of circular 
horizontal surface. 

 

 
Deviation 

< = + /– 15% 
of true value 

(2) 
 

 
>= 90% 

STANDARD 
DEVIATION 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 52 m 
>= 12 m 
>= 70 m 

MEAN 
10Log(Trace L.) 

Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 25 m 
Not well represented 

>= 45 m 

 
MOMENTS OF 
LOG-NORMAL 

DIST. FITTED TO 
THE SAMPLE 

DISTRIBUTION 
Analysis of circular 
horizontal surface. 
All Sets together. 

 
Deviation 

< = + /– 15% 
of true value 

(2) 
 

 
>= 90% 

STANDARD 
DEVIATION 

10Log(Trace L.) 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 42 m 
Not well represented 

>= 65 m 

 
SHAPE OF 
SAMPLE 

DISTRIBUTION 
Analysis of circular 
horizontal surface. 
All Sets together. 

 
Chi-square test 

“goodness-of-fit” 
Confidence level 

99% 
(3) 

 
>= 90% 

 
Set 1 
Set 2 
Set 3 

 
Radius of surface

>= 13 m 
>= 38 m 
>= 32 m 

(1). Results and conclusions given in this study are only directly applicable to the fracture network 
studied, see Section 2.3. 
(2). Samples are accepted if the deviation from the true value is within a range of plus or minus 15% 
of the true value, considering a range centred on the true value, i.e. within: 0.85*TV– 1.15*TV 
(TV=TrueValue) 
(3). Samples are accepted based on the result of a Chi-square goodness-of-fit test, which compares the 
shape of the sample distribution to the shape of the true distribution. The confidence level of the test 
was set to 99%  

 

Figure 9-3. CONCLUSIONS: FRACTURE TRACE-LENGTH DISTRIBUTION. 
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PARAMETER 

 

 
CRITERION 
(Confidence 

interval) 

 
PROBABILITY 
(Confidence level) 

 
FRACTURE 

SET 

 
RADIUS OF 
SURFACE 
(Sample size) 

 
Deviation 
< = 15 deg 

(1)

 
>= 90% 

 

 
Set 1 
Set 2 
Set 3 

 

 
Radius of surface

>= 35 m 
>= 18 m 
>= 60 m 

 
MEAN OF 

SAMPLE STRIKE 
DISTRIBUTION 

Analysis of circular 
horizontal surface. 

  
Deviation 
< = 10 deg 

(1)

 
>= 90% 

 

 
Set 1 
Set 2 
Set 3 

 

 
Radius of surface

>= 50 m 
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Radius of surface
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(1)Samples are within a range of plus or minus 15 or 10 degrees of the true value, considering a 
range centred on the true value. 
(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which 
compares the shape of the sample distribution to the shape of the true distribution. The 
confidence level of the test was set to 99% 

 

Figure 9-4. CONCLUSIONS: FRACTURE TRACE STRIKE DISTRIBUTION. 
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Appendix 1 

The eigenvector and resultant vector methods for calculation of 
mean direction of a group of fractures 

1.1 Introduction 

The mean orientation of a sample of fractures (or a cluster of fracture poles) and the 
dispersion of this sample (cluster) can be evaluated with different methods. Two of these 
methods are presented below. They are the eigenvector method and the resultant vector 
method. 

1.2  Eigenvectors and eigenvalues, the eigenvalues method 

For a given sample of fractures, every fracture i can be characterised by its normal  

vector in . This vector is defined by three co-ordinates so that [ ]















=

iz

iy

ix

i

n

n

n

n . The length of 

the vector in  is set by definition to one. In the following, fracture poles, also referred to 
as normal vectors, will simply be called vectors. 

 

 

Figure A-1. Two-dimensional illustration of the projection of vector in  on vector u . 

The length of projection of the vector n on u is l. It is defined as a positive scalar. 
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Let θi be the acute angle between the direction of a exploration borehole and a normal to 
a fracture plane i hit by the exploration borehole. According to the Terzaghi correction 
theory /Terzaghi, 1965/, the fracture is assigned a weight equal to: 

wi = 1/cosθi         θ < 90 deg.  

When θ approaches 90 deg. w becomes very large, to the extent that a single data point 
could dominate the distribution of orientaion values, to avoid this a maximum weighting 
value is introduced, e.g. wmaximum = 7. 

This means that:  wi =min(1/cosθi,7). 

A matrix T is defined as follow: 

∑
=






 ×⋅=

N

i

T

iii nnwT
1

 

Note that T is a symmetric matrix. 

The length of projection of the vector in  on u  is li (see Figure A-1). It is defined as a 
positive scalar. Let us define a scalar called M as: 

∑
=

=
N

i
ilM

1

2  

For an arbitrary vector u  with co-ordinates [u], one has 

[ ] [ ] [ ]uTuM T=  

Since we are looking for an unknown representative vector that reflects the orientation of 
a sample of fractures (or a fracture pole cluster*,) the representative vector is the vector 
for which the following condition applies. The representative vector is the vector for 
which the sum of the projections of the fracture vectors is the largest. It is also true for 
the sum of the squared value of the projections of the poles. In other words, M should 
take its largest value (maximum value) for the representative vector. 

Linear algebra provides a solution to our problem, the maximum possible value of M is 

the largest eigenvalue λ1 of the symmetric matrix T. The associated eigen vector 1g  of T 

gives the orientation of the pole cluster. Hence: 

[ ] [ ] [ ]111 gTg T=λ  

Since the matrix T is symmetric, the eigen vectors define an orthogonal co-ordinate 

system. The eigen vectors 2g  and 3g are thus located on a representative (average) plane 

of the fracture cluster. The ratio between the eigen values provides information on the 
degree of clustering (or dispersion) of the sample studied, and also on the shape of the 
cluster studied.  

                                                 

* By cluster we mean a concentration of fracture poles on a spherical projection 
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The eigen values associated to eigen-vectors 2g  and 3g are λ2 and λ3. The clustering or 

dispersion of the fractures is given by the ratios LN(λ1/λ2) and LN(λ2/λ3), see 
/Woodcock, 1977/. 

1.3  Resultant vectors 

For a given sample of fractures, every fracture i can be characterised by its normal  

vector in . This vector is defined by three co-ordinates so that [ ]















=

iz

iy

ix

i

n

n

n

n . 

The length of the vector in  is set by definition to one. In the following, fracture poles, 
also referred to as normal-vectors, will simply be called vectors. 

Let θi be the acute angle between the direction of a exploration borehole and a normal to 
a fracture plane i hit by the exploration borehole. According to the Terzaghi correction 
theory, the fracture is assigned a weight equal to: 

wi = 1/cosθi         θ < 90 deg.  

When θ approaches 90 deg. w becomes very large, to the extent that a single data point 
could dominate the distribution of orientaion values, to avoid this a maximum weighting 
value is introduced, e.g. wmaximum = 7. 

This means that:  wi =min(1/cosθi,7). 

The resultant vector V  of a group of fractures (a sample) is defined as the average 
orientation-vector of the cluster, hence: 

∑
∑ =

=

=
N

i
iiN

i
i

nw
w

V
1

1

1 r
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Figure A-2. Aspects of the resultant vector method. When adding a fracture-normal to a 
resultant vector, two directions are possible; this is illustrated by the figure. Only one 
direction is correct. Hence, it is important to check that the selected direction is the 
correct one. 

 

This definition is not rigorous. In fact, the normal vector in  can point in two opposite 

directions since a fracture has two faces. When calculating the resultant vector V , one 

should be cautious and check that: all vectors ( in ) point towards the same general 
direction i.e. all directions are inside the same half sphere. Otherwise, the resultant 
vector will not reflect the overall orientation of the fracture group (see Figure A-2). The 
condition that all vectors should point towards the same half sphere can be achieved by 
different techniques as part of iterative numerical algorithms. However, the best 
approach is to first apply the eigenvalues method on the sample studied, for deriving a 
good estimate of the mean direction, i.e. deriving a representative vector. As a second 
step the resultant vector method is applied on the sample, when the resultant vector 
method is applied it is checked that all normal-vectors of the sample point towards a half 
sphere centred about the representative vector. If the resultant vector method is 
constrained by the results of the eigenvalues method, it will produce correct results. The 
condition that all normal-vectors should point in the same general direction (same half 
sphere) limits the theoretical dispersion of a studied sample. This limitation is however 
correct, because fracture-normals are axes and not true vectors, and a distribution of axes 
(fracture-normals) can only occur in one half sphere (this is discussed in Chap.2). 

The length the resultant vector V  reflects the dispersion of the sample (or group of 
fractures, or cluster of fracture poles). For a given number of fractures, the longer the 

resultant vector V , the smaller the dispersion of the cluster (and the larger the degree of 
clustering). The resultant vector method will not provide information on the circularity 
of a fracture cluster. Assuming that the cluster of concern is “circular” and that the 
orientation of the fractures follows a Fisher distribution /see Fisher, 1953/, it is possible 
to calculate the dispersion by use of the Fisher kappa parameter. /Fisher, 1953/ showed 
that an estimate k of the population kappa κ can be found from a sample of M unit 
vectors, for which the resultant vector is |rn|. 
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This estimate is expressed by: 

M

r

kee

ee n
kk

kk

=−
−
+

−

− 1
 

For sufficiently large values of k, approximately k > 5 , the variable e–k is negligible and 
the equation reduces to: 

nrM

M
k

−
≈  

With the introduction of weighting factors, this equation can be expressed as: 

Vw

w
k N

i
i

N

i
i

r
−

≈
∑

∑

=

=

1

1  

 

1.4 Relationship between SR1 and K for the  
Fisher distribution 

1.4.1 Generation of a Fisher distributed variable θθθθ 

/Priest, 1993/ suggests a Fisher distributed random deviation θ from a reference vector u  
can be generated by: 







 +−= 1

)1ln(
cos

κ
θκ

UR
Arc  

where RU is uniformly random distributed value. [ ]1;0∈UR  

For u  defined as the reference vector (see Figure A-1), 

( )∑

∑

=

=

=∴

=

N

i
i

N

i
i

M

lM

1

2
,

1

2

cos κθ
  

We saw that the maximum possible value of M is the largest eigen-value λ1 solution of 

our problem. The associated eigen-vector 1g  gives the orientation of the pole cluster. 



 228 

The Fisher distributed random deviation θ from vector 1g  gives: 

( ) 1)1ln(
12

)1ln(
11

1
)1ln(

)cos(

11

2

2
1

1

2

1

1

2
1 ,

+−+−=∴







 +−=∴

=

∑∑

∑

∑

==

=

=

N

i
U

N

i
U

N

i

U

N

i

R
N

R
NN

R

i

κκ
λ

κ
λ

θλ
κ

 

Let's define A and B such as: 
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Hence 

1
2

2
1 ++=

κκ
λ BA

N
  Equ A.4.1 

1.4.2  Calculus of SR1 as a function of K. 

Let's define the measure of the cluster dispersion SR1 as SR1= ln(λ1/λ2) /Woodcock, 
1977/. 

Assuming that the fracture orientations are Fisher distributed, i.e. the fracture cluster is 
circular. We have thus the relationship λ2=λ3. 

Linear algebra claims that for a sample of N fractures, the trace of the matrix 
T=λ1+λ2+λ3=λ1+2λ2=N 

Hence the definition of SR1: 
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 Equ. A.4.2 
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Replacing Equ A.4.1 in Eq A.4.2 gives 


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One has: 

1
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N
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A
 

Hence for a sufficiently large N, 

( ) [ ]+∞∈
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Note that this function is not defined for values of K<1. 

This function is illustrated in the figure below (Figure A-3. ). 
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Figure A-3. Relationship between the dispersion parameter K of a circular fracture 
cluster /Fisher, 1953/ and SR1 /Woodcock, 1977/. 
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1.4.3  Calculus of K as a function of SR1. 

The function SR1 above can be easily inverted and provide the dispersion parameter K 
as a function of SR1. This function is valid under the same assumptions as SR1=f(K), 
except the domain of validity. This inverse function is given by: 

[ ]+∞∈−++= );2ln(1;1
4

1
2

1 12
1 SR

e
eK

SR
SR  

It should be noted that the domain of validity represents eigen-values so that λ1≥2⋅λ2. 

SR1=ln(2) represents λ1=2⋅λ2. This gives a minimum value of K=2. 



 231  

Appendix 2 

Relationship between SR1 and kappa considering a  
Fisher distribution 

1.1 Terzaghi correction; methodology and examples 

One-dimensional sampling is sampling along a straight line (a scanline). Such sampling 
of fracture orientation in a three-dimensional fracture system will introduce an 
orientation sampling bias. The bias follows from the fact that the probability for 
intersecting a fracture depends on the angle between the sampling line and the fracture, 
as well as on the area of the fracture. For a more thorough discussion of this we refer to 
/Terzaghi, 1965/ or /Priest, 1993/. The discussion below is based on /Priest, 1993/. 

For compensation of this bias /Terzaghi, 1965/ proposed the application of a geometrical 
correction factor based on the observed angle between the sampling line and the normal 
to a particular fracture. In this study, such a correction is called “Terzaghi correction”. 

The acute angle between a normal to the fracture plane and the borehole is called “δ”. 
The highest probability for intersection occurs when δ = 0 deg. The lowest probability of 
intersection is zero; this occurs when δ = 90 deg. Any direction of sampling line will 
therefore produce a sample that is biased to contain a lower amount of fractures than the 
actual amount. The reduced sample size at the higher values of δ can be compensated for 
by assigning a higer weighting to those fractures that are sampled. A fracture sampled by 
a sampling line is assigned a weighting W given by: 

.deg90
cos

1 <= δ
δ

W  

For a large sample size this weighting will serve to balance the orientation sampling bias 
introduced by linear sampling. When δ approaches 90 deg. W becomes very large, to the 
extent that a single data point could dominate the distribution of orientaion values, to 
avoid this a maximum weighting value is introduced, e.g. Wmaximum = 7. 

Below we will present three theoretical examples demonstrating the way the Terzaghi 
correction works (Figures B-1, B-2 and B-3). These three examples are based two-
dimensional data, and demonstrate only the principle of the Terzaghi correction. For 
each example we will present: (i) the true distribution as it occurs in the rock mass, 
(ii) the apparent distribution as it occurs in a borehole and (iii) the corrected distribution 
as it will look after application of Terzaghi correction. 

These figures (Figures B-1, B-2 and B-3) demonstrate that even after application of 
Terzaghi correction, due to the maximum weighting value of the correction, the 
distributions carries a minor distortion. For a vertical borehole sampling sub-vertical and 
sub-horizontal fracture sets, the distortion of the distributions are symmetric around the 
mean value of the distribution. Considering an inclined borehole (e.g. 45 deg), used for 
sampling sub-vertical and sub-horizontal fracture sets, the distortion of the distributions 
are not symmetric around the mean value of the distributions. 
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THEORETICAL EXAMPLE: 
SUB-HORIZONTAL FRACTURE SET AND VERTICAL BOREHOLE. 

POPULATION fracture density, Normal distribution
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DIP: Normal distribution, Mean 6 deg. STD= 40 deg, Number of fractures: 100% 

SAM PLE  fracture density d istribution (as in bore hole, apparent d istribution)
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DIP: Mean 3.7 deg. STD= 31.6 deg, Number of fractures: 79.2% 

Terzaghi correction factor. Vertical borehole.
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Terzaghi correction, weight factor, max weight= 7.0 

C orrected  SAM PLE  frac tu re  dens ity  (Te rzagh i co rrec ted  d is tribu tion ).
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DIP: Mean 5.7 deg. STD= 38.9 deg, Number of fractures: 98.6% 

Figure B-1. Theoretical example: sub-horizontal fracture set and vertical borehole. 
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THEORETICAL EXAMPLE: 
SUB-VERTICAL FRACTURE SET AND VERTICAL BOREHOLE. 

POPULATION  fracture density, Normal distribution
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DIP: Normal distribution, Mean 84 deg. STD= 30 deg, Number of fractures: 100% 
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DIP: Mean 79.2 deg. STD= 39.8 deg, Number of fractures: 38.8% 

Terzaghi correction factor. Vertical borehole .
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Terzaghi correction, weight factor, max weight= 7.0 

Corrected SAMPLE fracture density  (Terzaghi corrected distribution).

0

0.5

1

1.5

2

2.5

3

-120 -90 -60 -30 0 30 60 90 120 150 180 210 240 270 300

Dip (degrees)

P
ro

b
ab

ili
ty

, F
re

q
u

en
cy

 
DIP: Mean 83.3 deg. STD= 31.6 deg, Number of fractures: 89.3% 

Figure B-2. Theoretical example: sub-vertical fracture set and vertical borehole. 
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THEORETICAL EXAMPLE: 
SUB-VERTICAL FRACTURE SET AND INCLINED BOREHOLE, 45 deg. 
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DIP: Normal distribution, Mean 84 deg. STD= 30 deg, Number of fractures: 100% 
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DIP: Mean 97.0 deg. STD= 27.5 deg, Number of fractures: 59.4% 
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DIP: Mean 85.9 deg. STD= 29.4 deg, Number of fractures: 95.3% 

Figure B-3. Theoretical example: sub-vertical fracture set and inclined borehole (45 
degrees). 
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Below we will, by use of three examples, demonstrate the consequences of not including 
the Terzaghi correction in the calculation of mean direction and dispersion of a fracture 
set. The calculations are based on samples of fracture orientation as seen in a vertical 
borehole. These examples are based on the same DFN-network as the one presented in 
Chapter 2. (Tables 2.1 through 2.3). The fracture set studied is Set 2. The only difference 
compared to the results presented in Chapters 3 and 4, is that the estimates presented in 
those chapters were calculated with the inclusion of Terzaghi correction (maximum 
correction factor equal to 30), while the estimates presented below are calculated without 
Terzaghi correction. 

Vertical borehole. Fracture Set 2 (sub-vert).
 Probability for correct estimation of orientation. Terzaghi correction included. (E2C0-v).
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 MEAN DIRECTION WITH TERZAGHI CORRECTION (AS IN CHAPTER 3). 

Vertical borehole. Fracture Set 2 (sub-vert).
 Probability for correct estimation of orientation. Terzaghi correction NOT included. (E2C0t0-v).

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
Borehole length (m)

P
er

ce
nt

ag
e 

of
 a

cc
ep

te
d 

sa
m

pl
es

Criterion:  Sample deviation < = 5 deg.

Criterion:  Sample deviation < = 10 deg.

Criterion:  Sample deviation < = 15 deg.

 MEAN DIRECTION WITHOUT TERZAGHI CORRECTION. 

Figure B-4. Probability for correct estimation of fracture set orientation. A comparison 
between estimates of mean direction of a fracture set, calculated with and without 
Terzaghi correction. The calculations represent a sub-vertical fracture set (Set 2), 
investigated by use of a vertical borehole. 
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Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Criterion: sample deviation within plus / minus 5 % of  SR1 population.

Criterion: sample deviation within plus / minus 10 % of  SR1 population.

Criterion: sample deviation within plus / minus 15 % of  SR1 population.

 SR1 DISPERSION PARAMETER WITH TERZAGHI CORRECTION. (AS IN CHAPTER 
4). 

Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction NOT included. (E2C0t0-v).
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Criterion: sample deviation within plus / minus 5 % of  SR1 population.

Criterion: sample deviation within plus / minus 10 % of  SR1 population.

Criterion: sample deviation within plus / minus 15 % of  SR1 population.

 SR1 DISPERSION PARAMETER WITHOUT TERZAGHI CORRECTION. 

Figure B-5. Probability for correct estimation of fracture set orientation. A comparison 
between estimates of the SR1 dispersion parameter of a fracture set, calculated with and 
without Terzaghi correction. The calculations represent a sub-vertical fracture set (Set 
2), investigated by use of a vertical borehole. 
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Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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 KAPPA DISPERSION PARAMETER WITH TERZAGHI CORRECTION (AS IN 
CHAPTER 4). 

Vertical borehole.  Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction NOT included. (E2C0t0-v).
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 KAPPA DISPERSION PARAMETER WITHOUT TERZAGHI CORRECTION. 

Figure B-6. Probability for correct estimation of fracture set orientation. A comparison 
between estimates of the KAPPA dispersion parameter of a fracture set, calculated with 
and without Terzaghi correction. The calculations represent a sub-vertical fracture set 
(Set 2), investigated by use of a vertical borehole. 
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