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Abstract

The study concerns a mathematical modelling of a fractured rock mass and itsinvestigations
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency
(precision) of such investigations and determine the amount of investigations necessary to
obtain reliable estimations of the structural-geological parameters of the studied rock mass.
The study is not about estimating suitable sample sizes to be used in site investigations, The
purpose of the study is to analyse the amount of information necessary for deriving estimates
of the geologica parameters studied, within defined confidence intervals and confidence levels.
In other words, how the confidence in models of the rock mass (considering a selected number
of parameters) will change with amount of information collected form boreholes and surfaces.

The study is limited to a selected number of geometrical structural-geological parameters:
e Fracture orientation: mean direction and dispersion (Fisher Kappa and SR1).

« Different measures of fracture density (P10, P21 and P32).

»  Fracture trace-length and strike distributions as seen on horizontal windows.

A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock
mass. The DFN-model was primarily based on the properties of an actual fracture network
investigated at the Aspd Hard Rock Laboratory. The rock mass studied (DFN-model) contained
three different fracture sets with different orientations and fracture densities. The rock unit
studied was statistically homogeneous. The study includes alimited sensitivity analysis of the
properties of the DFN-model.

The study is atheoretical and computer-based comparison between samples of fracture
properties of atheoretical rock unit and the known true properties of the same unit. The samples
are derived from numerically generated boreholes and surfaces that intersect the DFN-network.
Two different boreholes are analysed; avertical borehole and a borehole that isinclined

45 degrees. Borehole lengths are varied between 20 and 1000 metres. Circular horizontal rock
surfaces are also analysed, the radii of these surfaces were varied between 4 and 150 metres.
The results of the study are based on both parametrical and non-parametrical statistical tests
(parametrical tests for Fisher spherical distributions).

The detailed results of the study are given as calculated borehol e lengths and radii of rock
surfaces (sample sizes), necessary for estimating structural-geological parameters of each
fracture set, for a given confidence interval and a given confidence level. The sensitivity
analysis, demonstrates and discuses how sample size varies with the properties of the DFN-
model (fracture density [P32] and fracture radius distribution.) In addition the results of the
study includes discussions of (i) the optimal orientation of a borehole, (ii) the exchangeability
of samples from several shorter boreholes and smaller surfaces contra samples from fewer but
larger boreholes and surfaces, and (iii) the applicability of parametrical testsin relation to
sampling bias.

Different methods for calculation of the structural-geological parameters from samples taken in
boreholes and on surfaces are discussed and analysed in the study, e.g. for fracture orientation
the eigenvalues and resultant vector methods (with inclusion of Terzaghi-correction). For the
trace-length and strike distributions, moments and shape of distributions have been analysed
(with inclusion of curve fitting procedures).



Sammanfattning

Denna studie & en matematisk modellstudie av en sprickig bergmassa och dess undersokning
med hjap av observationer i teoretiska borrhd och kartering av teoretiska bergytor (hallar),
med syftet att analysera sddana undersokningars effektivitet och precision, och bestdmma den
undersokningsmangd som & nodvandig for att erhdlla pdlitliga uppskattningar av bergmassans
strukturgeol ogiska egenskaper (parametrar). Det &r inte syftet med denna studie att uppskattaen
lamplig stickprovsstorlek att anvandas vid platsundersokningar. Studien syftar istéllet till att
analysera den informationsméangd som & nodvandig for att erhdlla uppskattningar av de
studerade geol ogiska parametrarna med bestamda konfidensinterval och konfidensnivaer.
Alltsd en analys av hur konfidensi modeller av bergmassan (for vissa utval da parameter)
forandras med méangden information som erhals fran borrhd och hdlar.

Studien & begransad till ett utvalt antal geometriska strukturgeol ogiska parametrar.
e Sprickorientering: medelriktning och dispersion (Fisher Kappa och SR1).

»  Olikamétt pa sprickdensitet (P10, P21 och P32)

»  Sprickspérlangd och spricksparriktning.

Den studerade bergmassan (sprickigt berg) representerades av numeriska DFN-modeller
(nétverk av diskreta sprickor). DFN-modellerna baserades huvudsakligen pa egenskaperna hos
ett verkligt spricksystem som har undersokt vid Aspo berglaboratorium (HRL). Den analyserade
bergmassan (DFN-modellen) innehdller tre olika sprickset, med olika orientering och vérden pa
sprickdensitet. Den studerade bergenheten var statistiskt homogen. Studien inkluderar en
begrénsad sensitivitetsanalys av DFN-modellens egenskaper.

Studien & en teoretisk och datorbaserad jamforel se mellan egenskaper som uppvisas av
stickprov frén en bergenhet och bergenhetens kanda egenskaper. Stickprov erhdlls frén
numeriskt genererade borrhd och bergytor, som genomkorsar DFN-modellen. Tvaolika
borrhd analyserades; ett vertikalt borrhd och ett borrhdl som vinklades 45 grader. Borrhdlens
langd varierades mellan 20 m och 1000 m. Cirkul&ra horisontella bergytor analyserades ocksa,
radien pa dessa ytor varierades mellan 4 m och 150 m. Studiens resultat baserades pa bade
parametriska och icke-parametriska stati stiska tester (parametriska tester mot sfériska
Fisherférdelningar).

Studiens detaljerade resultat ar beraknade borrhalslangder och radier pa hélar
(stickprovsstorlek), nddvandiga for uppskattning av spricksetens strukturgeol ogiska parametrar,
vid givna konfidensinterval och konfidensnivaer. Sensitivitetsanalysen demonstrerar och
diskuterar hur stickprovsstorlek varierar med DFN-modellens egenskaper (sprickdensitet [P32]
och sprickradiusférdelning). Dessutom inkluderar studien en diskussion om (i) mest fordel aktig
orientering for ett borrhdl, och (ii) utbytbarheten av stickprov fran flera korta borrh@ och sma
hallar kontra stickprov fran f& men langa borrhd och stora hédllar, och (iii) parametriska testers
tillampbarhet i relation till systematiska avvikelser i stickprovsundersokningarna.

Olika metoder for att berakna stukturgeol ogiska parametrar fran stickprov tagnai borrhal

och héllar diskuteras och analyserasi studien; for sprickorientering egenvardesmetoden och
resultantvektorsmetoden (med Terzaghikorrektion); for spricksparsfordelningar analyserades
moment och form pa fordelningar (med bl.a. kurvpassnings mot lognormal fordelningar).
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Executive summary

Introduction

SKB will conduct site investigations for selecting a suitable place to locate the deep
repository for nuclear waste. Rock units are to be investigated by use of deep boreholes
and mapping of rock outcrops (other methods will also be used). Based on analysis of
observations collected from boreholes and rock outcrops (and other investigations),

site descriptive models of the rock mass are established. These models describe the
geological parameters of the rock mass. Many geological parameters are heterogeneous
and vary spatially (e.g. fracture density, hydraulic conductivity etc), therefore the
confidence in the established models depends on the number and size of boreholes

and rock outcrops used for investigating the rock mass and for establishing the site
descriptive models. However, due to practical and economical limitations the number
of possible boreholes etc is limited. Considering site investigations and the rock mass
analysed in this study (a selected rock unit with specific properties), the results of this
study will indicate lengths of boreholes and sizes of rock surfaces, necessary for
deriving estimates of the selected and analysed structural geological parameters,

within defined confidence intervals and confidence levels.

However, it isimportant to note that this study is not about estimating the necessary
sample sizesto be used in site investigations. The necessary amount of information
that needs to be collected at a site investigation is best calculated based on statistical
analysis at different stages of sampling (preliminary and confirmatory sampling) and
in combination with safety analysis calculations (i.e. sensitivity analyses of such
calculations). Theoretically, the necessary sample sizes and acceptable uncertainties in
estimation of the true properties (parameters) of arock mass depend on the properties of
the investigated site and the results of safety analyses calculations. Large uncertainties
could be accepted for parameters with little importance in the safety anaysis, or for
remote rock volumes that carries small importance in the safety analysis; while
parameters and rock volumes that the safety analysis calculations has identified as
being important for the performance of the investigated site, such parameters and
volumes needs to be investigated in more detail to produce reliable estimates with a
small amount of uncertainty.

Purpose

This study is a mathematical modelling of afractured rock mass and its investigations
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the
efficiency and precision of such investigations. The general purpose of this study isto
investigate how knowledge of selected geological parameters depend on information
collected from boreholes and rock surfaces and how this information varies with length
and inclination of boreholes, as well as on size of rock surfaces. In other words, how
the confidence in the models of the rock mass (considering a selected number of
parameters) will change with amount of information collected form boreholes and

rock surfaces.



This study is limited to a selected number of geometrical parameters of afracture
system. Considering the site investigation program, /Stréhle, 2001/ defines such
parameters. In this study the following geological parameters are investigated:

(1) Fracture orientation.
(i) Fracture density (frequency)
(iif)  Fracture trace length

In this study fracture orientation is analysed considering mean directions and
dispersions of the different fracture sets. Fracture density (frequency) is analysed
considering different density parameters (P10, P21 and P32). Fracture trace-length
and fracture strike distributions (based on direction of fracture traces) are analysed
considering distribution characteristics.

In general, the method of the study isto numerically generate a fracture network and
numerically analyse it, by use of theoretical boreholes and surfaces. A comparison
between the known true properties of the network (the parameters) and the derived
properties (the samples) will reveal the deviation between the true properties and the
derived properties, and the size of deviation will indicate how the knowledge will vary
with the amount of investigation.

Terminology

Some of the terms used in this study are explained in the next section.

Methodology — general

This study is atheoretical and computer-based comparison between (i) samples of
fracture properties of atheoretical rock mass (afracture network) as revealed by
observations in simulated boreholes and on simulated rock surfaces; and (ii) the known
true properties (parameters) of the theoretical rock mass. Discrete fracture networks
(DFN-models) represent the rock mass, and the computer program Eblafrac generated
the DFN-models. In this study the properties of the fracture network of the rock mass
are known, and these networks constitute the "reality” studied.

Thus, the numerically generated fracture network is the studied population. The
boreholes studied are theoretical lines that cut through the fracture network. The
fractures that intersects the borehole (the observed fractures) form a sample of the
fracture population. The rock surfaces studied are theoretical planes that cut through
the fracture network. The fractures that intersect the plane (the observed fracture traces)
form a sample of the fracture population. The properties of the samples are estimates of
the properties of the population.

Properties of the studied fracture network — DFN model
The studied fracture network represents the rock mass at the Prototype Repository at

the Aspo Hard Rock |aboratory. The fracture network model, used in this study, is the
DFN 2 model presented in /Hermanson et a, 1999/. The main objective of the DFN 2
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modelling was to establish a discrete fracture network model, representing the rock
mass at the Prototype Repository, which could be used for smulation of groundwater
flow. Hence, the model was not intended for rock mechanical purposes. The DFN 2
model underestimates the total number of fractures in the rock mass at the Prototype
Repository, as small fractures with minor or negligible hydraulic importance is not
included in the model. To what degree the DFN 2 model represents the actual properties
at the Prototype Repository are not analysed in this study.

The fracture network studied consists of three fracture sets. Set 1 and Set 2 have a
sub-vertical orientation and Set 3 is sub-horizontal. The largest dispersion in fracture
orientation (deviations about the mean direction) takes place within Set 1. For the other
two fracture sets, the dispersion is much less and about the same. On the average, the
largest fractures occur within Set 2, the smallest fractures are within Set 1. The fracture
density, given as fracture area per unit volume (P32), varies between the fracture sets;
Set 2 has the largest P32-value and Set 1 the smallest P32-value. A summary of the
properties of the fracture network is given in Table 2-1 through Table 2-3 (page 31).
The fractures are defined as circular planar discs with varying values of radii.

Properties of the studied boreholes and rock surfaces

We have studied two different boreholes, avertical and an inclined borehole; the
orientation of the inclined borehole is 45 degrees from vertical. For both boreholes,
the lengths (of the boreholes) were varied from 20 metres and up to 1000 metres.

We have also studied rock surfaces. The rock surfaces are analysed for fracture traces.
A studied rock surfaceis called awindow. All the analysed windows are horizontal;
they correspond to horizontal rock outcrops. The geometrical shape of the windows
studied is circular. The radius of the windows was varied from 4 metres and up to

150 metres.

For the boreholes and the windows, the number of realisations of the rock mass were
varied between 500 and 1000. Hence, for every borehole length and rock surface area
studied, alarge number of different realisations of the fracture network were analysed.
The large number of realisations is necessary to obtain reliable statistics.

Terzaghi correction

One-dimensional sampling is sampling along a straight line (a scanline). Such
sampling of fracture orientation in athree-dimensional fracture system will introduce
an orientation sampling bias. For compensation of this sampling bias /Terzaghi, 1965/
proposed the application of a geometrical correction factor, see Appendix B. In this
study all fracture orientation data, derived from sampling the boreholes, are corrected
for sampling bias by use of the Terzaghi correction. No Terzaghi correction was
included when fracture densities (P10, P21 and P32) were estimated. In this study
fracture data gathered from surfaces (e.g. distribution of trace lengths) have not been
corrected for orientation sampling bias.

11



Classification of observed fractures into fracture sets

In this study each fracture was marked with its proper set identity since thisis known at
the generation of the fracture. In areal situation, different methods and al gorithms for
identifying and delimiting sets will be necessary to ensure objective set identifications.
Different methods for identification of fracture sets will produce different results. The
reason why we have used the known true fracture set identity and not applied a fracture
set identification algorithm is because we do not want the efficiency of the fracture set
identification algorithm to influence the result of the study.

Aspects of the applied statistical tests

From a statistical point of view, the unknown properties of the rock mass are the
properties of a population studied; we will call these properties the true properties.
Samples will produce estimates of the true properties (estimates of the population);
these estimates are called the sample properties. In general the sample properties deviate
somewhat from the true properties. In reality when observing fractures in boreholes

and on outcrops, and when predicting properties of the rock mass based on these
observations, it isimpossible to exactly calculate how much the sample properties
deviate from those of the population, as the properties of the population are unknown.
Nevertheless, considering the purpose of areal investigation there are probably some
demands on accuracy, which correspond to an acceptable deviation in estimated
properties. Decisions and conclusions are founded on the sample properties, hence large
deviations between the sample properties and the true properties are not acceptable, but
small deviations are acceptable as such deviations are of no practical importance.

In this study, the properties of the rock mass are known, hence (in this study) it is
possible to cal culate the deviation between sample properties and the true properties.
Primarily this study concerns tests in which the calculated deviation between sample
properties and true propertiesis compared to different selected acceptable deviations of
the test variable studied (first category of tests). The acceptable deviations are called the
test criterions. However, this study also includes tests that do not directly correspond to
a selected acceptable deviation, but to a given level of confidence in estimating the true
properties (second category of tests). The difference between these two types of tests
should be noted. The purpose of the first category of testsisto determine when the size
of the sampleislarge enough to produce an acceptable estimate of the true properties
(e.g deviation <= 15 degrees), with a certain probability (e.g. >= 90%). The purpose of
the second category of testsis to demonstrate the probability for a given hypothesis of
the properties of the population, to be rejected or accepted, at a certain selected level of
confidence (e.g. 99%).

For thefirst category of tests, the selected acceptable deviation is constant for all sizes
of sample; in the second category of tests, the selected level of confidence is constant
for all sizes of sample. Thefirst category of tests are carried out as non-parametric tests,
hence we make no assumptions regarding the statistical distributions of the properties of
the studied fracture network or regarding systematic bias in the sampling procedure.
Thefirst category of tests could be considered as calculation of the sample size that is
necessary to reach a confidence level, considering a given confidence interval. The
confidence interval corresponds to the above-discussed acceptable deviation (test
criterions). The sample size corresponds to alength of borehole or size of area. The
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second category of tests are carried out as parametric tests, for which we assume that the
orientation of the fractures of the studied network are according to Fisher distributions
and that no sampling bias takes place.

When performing statistical tests, it is common that different sample sizes are sel ected
beforehand, and for such an analysis a point estimate of an unknown parameter refersto
different fixed sizes of sample. That is however not the case in this study. In this study
the number of observed fractures (i) along a studied borehole or (ii) on a studied
surface, gives the sample size. Hence, for unknown boreholes or areas, the actual
sample sizes are unknown, even if the lengths of the boreholes or sizes of areas are
known, and the sample sizes are revea ed when the samples are taken. The point
estimates of this study refer not directly to different fixed sizes of sample, but to
different fixed lengths of boreholes or sizes of area. On the average, the sample size
increases with length of borehole and size of area. However, as the sample size will
vary somewhat for a given borehole length or size of area, this variation will be a source
of uncertainty.

When studying the results of the testsit isimportant to remember that we are analysing
alarge number of samples that produce estimates of the true properties of the
population. Hence, the statistical tests are applied to distributions of estimates
corresponding to different lengths of borehole or areas of rock surfaces.

Applicability and limitations of the presented results

Results and conclusions given in this study are only directly applicable to the fracture
networks studied; however, rock masses with similar fracture networks will produce
similar results. Nevertheless, great care should be taken when generalising results and
conclusions given in this study. It isimportant to note the following:

» Considering the studied parameters of the rock mass, the results correspond to a
rock unit having statistically homogeneous properties. When analysing real data
from field investigations, the applicability of this assumption needs to be statistically
evaluated.

e Therock unit studied is of acertain size and is assigned statistically homogeneous
properties. Sample sizes have been calculated] sample sizes that are necessary to
reach a certain confidence level when predicting the properties of the rock unit.
When applying the results of this study to an actual rock unit it is not a prerequisite
that the actual rock unit must be of the same size and form as the unit used in this
study when the necessary sample sizes were calculated. However, the actual rock
unit needs to be larger than the cal culated necessary sample size, and it should carry
statistically properties that are close to homogeneous within the volume considered.
For example, it isaresult of this study that for a certain rock mass the mean
direction of acertain fracture set could be estimated (within a certain acceptable
deviation) using a vertical borehole with alength of 20 m. Such aresult is applicable
to arock unit that islarger than 20 m and carries statistically homogeneous
properties within that scale.
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The fracture network studied does not contain any spatial correlation of the
fractures. For afracture network that has such a correlation, the necessary length
of boreholes and size of rock outcrops, for producing an estimate with a certain
confidence, is larger than for the network of this study.

The effects of different methods for identification of fracture sets are not included in
this study.

The fracture orientations observed in boreholes were corrected for sampling bias
by use of Terzaghi correction; such a correction is essential and should aways be
included when analysing fracture orientation data from boreholes.

This study is atheoretical study, all dataform the boreholes and rock-surfaces are
numerically collected from a numerical fracture-network. No measurement errors
occur in this study and all datais collected with the same high precision and quality.

Below are afew important observations that should be considered when generalising
the results and conclusions given in this study (more details are given in the sensitivity
analysis presented in Chapter 9 [page 179])

The results depend on the properties of the fracture network, i.e. fracture orientation
and fracture density (intensity) and fracture size. Generally, for afracture network
with a higher fracture density than that of the network studied, the lengths of
boreholes and sizes of rock outcrops, necessary for deriving an estimate within a
certain confidence interval and at a certain confidence level, isless than for the
network studied. It follows that for arock mass with alower fracture density, the
necessary length of boreholes and size of rock outcropsis larger than for the
network of this study. Also the type of distribution of orientations within afracture
set (e.g. Fisher distribution) will influence the necessary lengths and areas.

The dispersion of the orientations of the fractures of afracture set will influence the
length of aborehole and the size of arock outcrop (window), necessary for deriving
an estimate with a certain confidence. In general, when analysing a fracture set with
alarge dispersion, the necessary length of borehole and size of rock outcrop is larger
than for afracture set with a smaller dispersion (everything else being equal).

When analysing a fracture set with a sampling structure, i.e. a borehole (a scan-line)
or arock-outcrop (awindow). The length or size of the sampling structure,
necessary for deriving an estimate with a certain confidence, depends on the
orientation of the sampling structure in relation to the mean orientation of the
fracture set studied. In general the most favourable orientation of a sampling
structure is an orientation parallel to the mean direction (defined by trend and
plunge) of the fracture set studied, i.e. on the average the fracture planes should be
at right angles to the structure. For boreholes, the use of Terzaghi-correction will
compensate for the systematic bias caused by sampling a three-dimensiona
fracture system with a one-dimensional scan-line. Therefore, aborehole that is
approximately at right angle to the mean direction (defined by trend and plunge) of
the fracture set (i.e. on the average the fracture planes are along the borehole) can
be used for sampling. The Terzaghi-correction is not perfect and for very small
confidence interval's (acceptable deviations), the remaining bias may come to
dominate the derived estimates.
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Consider estimations based on observationsin boreholes. Everything else being
equal, the necessary length of borehole for producing an estimate with a certain
confidence level (for agiven confidence interval) is linearly proportiona to the
fracture density of the population studied (P32, P21 or the P10-value).

For arock mass with a given fracture density, the mean and the variance of the
fracture radius distributions (fractures defined as circular planar discs), will not
influence the number of fractures that intersects a borehole. Hence, on the average
asmall number of large fractures will produce the same number of fracture
observations in a borehole as alarge number of small fractures, presuming that the
fracture density of the rock massis the same (P32 is constant). It follows that for
estimations based on observations in boreholes, the necessary length of borehole
for producing an estimate with a certain confidence level (for a given confidence
interval), is independent on mean and variance of the fracture radius distributions,
presuming that the fracture density of the rock massis the same (P32 is constant).

Consider estimations based on observations on surfaces. Everything else being
egual, the necessary size of rock-outcrop (window) for producing an estimate with
acertain confidence level is not linearly proportional to the fracture density of the
population studied (the P32-value or the P21-value). Estimation of the trace-length
distributions is difficult, the necessary size of window for producing an estimate
with a certain confidence level depends on (i) the orientations of window studied in
relation to that of the fracture set studied, (ii) the size of the window studied in
relation to the properties of the fracture-radius distribution that created the fracture
traces, aswell ason (iii) the fracture density (the P32-value) and the dispersion of
the fracture set studied. It follows that it is difficult to make any general conclusions
regarding the necessary window size for estimating the properties of atrace-length
distribution (with a certain confidence). For estimation of the mean of astrike
distribution (derived from the directions of fracture traces), the necessary window-
radius for deriving an estimate with a certain confidence level isrelated to the
fracture density (P32-value) in a non-linear way. However, for fracture networks
that are equal, except for the P32-value, this relationship can be analytically
estimated.

Summary of detailed results

Below we will present some detailed results; a more complete summary of resultsis
given last in the main report, Figure 9-1 (page 216) through Figure 9-4 (page 219).
The results given below correspond to a confidence level of 90 percent. The confidence
interval (acceptable deviation) considering fracture set mean direction is defined asa
deviation of plus/minus 15 degrees from the true value of the population (deviation as
an acute angle between two vectors, see Section 4.1 [page47]). The confidence interval
(acceptable deviation) for the values of: fracture set dispersion, fracture densities
(P10, P21 and P32) as well as the moments of trace-length distributions and strike
distributions (from direction of fracture traces), is defined as arange of plus/minus

15 percent of the true values of the population (centred on the true values). The length
of borehole or radius of studied window corresponds to a sample sizell thesizethat is
necessary to reach the confidence level. The results given below are only examples of
results that can be deduced from the figures of the main report.
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Considering the fracture network studied (Table 3-1 through Table 2-3 [page 31]) and
the results (summarised in Figure 9-1 [page 216] through Figure 9-4 [page 219], we
conclude the following.

For estimates of the mean directions of the fracture sets, the necessary borehole
lengths are as follows. Considering a vertical borehole: 140 m (Set 1), 50 m (Set 2)
and 20 m (Set 3). Considering an inclined borehole: 90 m (Set 1), 35 m (Set 2) and
35 m (Set 3).

» For estimates of the dispersion of the fracture orientations of the fracture sets, the
necessary borehole lengths could be large, e.g. 400-1100 m, if the dispersion isvery
large and the value of P32 (fracture density) is small, asfor Set 1. For fracture sets
2 and 3, the necessary borehole lengths are between 100 and 500 metres, dependent
on direction of borehole and dispersion parameter studied.

« For estimates of the P10 (fracture frequency) of the fracture sets, the necessary
borehole lengths are as follows: Considering a vertical borehole: 400 m (Set 1),
300 m (Set 2) and 150 m (Set 3). Considering an inclined borehole: 350 m (Set 1),
150 m (Set 2) and 210 m (Set 3).

» For estimates of the P21-values (trace length per area) of the different fracture sets,
the necessary radius of a horizontal circular window is asfollows: 24 m (Set 1),
22 m (Set 2) and 40 m (Set 3).

e For adirect estimate of the P32 (fracture density) of the fracture sets, from borehole
data, the necessary borehole lengths are very different depending on direction of the
different fracture sets and the P32-values of the fracture sets. Considering a vertical
borehole: 850 m (Set 1), 650 m (Set 2) and 150 m (Set 3). Considering an inclined
borehole: 480 m (Set 1), 320 m (Set 2) and 380 m (Set 3).

» For indirect estimates of the P32 of the fracture sets, from borehole and surface data
by use of the P10 or the P21 parameters, the values of borehole lengths or surface
radii are the same as for the estimations of the P10 or the P21 parameters. However,
the convergence criteria of the trial and error procedure, necessary for such an
estimation of P32, will reduce the confidence level of such estimations (although
that reduction could be small).

» For estimates of the moments of the trace-length distributions of the fracture sets,
the necessary radius of a horizontal circular window is as follows. Considering
mean of distribution: 32 m (Set 1), 45 m (Set 2) and 52 m (Set 3). Considering
standard deviation of distribution: 52 m (Set 1), 12 m (Set 2) and 70 m (Set 3).

» For estimates of the shapes of the trace-length distributions of the fracture sets (by
use of non-parametrical goodness-of-fit tests), the necessary radius of a horizontal
circular window isasfollows: 13 m (Set 1), 38 m (Set 2) and 32 m (Set 3).

» For estimates of the mean of the strike distributions of the fracture sets (cal culated
from direction of fracture traces), the necessary radius of a horizontal circular
window isasfollows: 35 m (Set 1), 18 m (Set 2) and 60 m (Set 3).

» For estimates of the shape of the strike distributions of the fracture sets (calculated
from direction of fracture traces) a non-parametrical goodness-of-fit test was used,
the necessary radius of a horizontal circular window isasfollows: 13 m (Set 1),
11 m (Set 2) and 24 m (Set 3).
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When comparing the results for the different fracture sets, it is demonstrated that Set 1
isthe fracture set most difficult to analyse, because this set has alarge dispersion and
the smallest value of P32 (fracture density) of the three sets studied.

When comparing the results of a specific fracture set considering different borehole
orientations, the variation in resultsisin line with the variation in number of fractures
observed in boreholes with different orientations.

Considering the orientation of the fractures of afracture set, it is more difficult to
estimate the dispersion of the fracture orientations than the mean of the fracture
orientations.

Considering fracture set 3 and horizontal windows, the large radius necessary for
good estimates of the parameters of Set 3 is caused by the sub-horizontal orientation
of Set 3, because the fractures of a sub-horizontal fracture set only rarely intersects a
sub-horizontal surface. A fracture set with such an orientation is not well analysed by
use of sub-horizontal surfaces, unless a correction for sasmpling biasis applied and in
this study such a correction was not used when the surface data were anal ysed.
(Correction for orientation sampling bias was only applied to borehole data.)

Estimation of the trace-length distributionsis difficult, as such estimations (among other
things) depend on the size of the window studied in relation to the properties of the
fracture radius distribution that created the fracture traces. Therefore the results for
different fracture sets could be very different, for the same size of window.

On parametric tests and calculated confidence intervals

Parametric statistical tests were carried out regarding mean direction and dispersion
of the three fracture sets of the population, considering observations of fracture
orientation in theoretical boreholes (see Sections 3.5 [page 57] and 4.4 [page 87]).
As the population (the fracture network) is created by use of Fisher distributions, the
tests were based on the assumption that samples were drawn from (represent) Fisher
distributions.

The tested hypothesis was that the mean direction and the dispersion of the population,
as estimated by the samples, are equal to the known true properties of the population.
We know that thisis a correct hypothesis; but due to sampling bias, remaining in the
samples after application of Terzaghi correction, the hypothesis will not necessarily be
confirmed by the samples.

The results of the tests demonstrate alarger amount of rejected samples, than the
amount prescribed by the confidence level of the tests. The following conclusion can be
made: If we assume that (i) samples are drawn from perfect Fisher distributions and that
(i1) the systematic sampling biasis fully corrected by use of Terzaghi correction; we
may derive confidence intervals, based on parametrical statistical analysis, that are to
small and which do not reflect the actual uncertainties. Thisis especialy the case if the
sample sizeislarge (a sample that contains alarge number of fracture observations) as
the confidence intervals, derived through parametric statistical analyses, are small for
such samples.
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On optimal orientation of a borehole

Based on observations in theoretical boreholes, we have estimated fracture set
orientation, mean direction and dispersion, as well as the fracture density parameters
P10 and P32. Two different boreholes have been used, a vertical and an inclined
borehole. By comparing the efficiency of the point estimates, as produced by the two
boreholes, we can make conclusions regarding the optimal orientation of a borehole.

Let usfirst consider the P10-parameter (fracture frequency in aborehole); itisa
direction-dependent parameter and as such it is calculated without Terzaghi correction.
The point estimate of the P10 parameter relates to borehole length and not to number
of fracturesin a sample. However, the efficiency of the point estimate increases with
number of fractures observed in a sample; hence for a given borehole length, the
borehole that intersects most fractures will produce the most efficient point estimate
as regards the P10-parameter. Considering the two borehol e directions studied, the
inclined borehole (45 deg.) produces on the average, when adding together all three
fracture sets, the largest samples (number of fractures per metre of borehole), and
consequently as regards P10 the point estimate is most effective for the inclined
borehole.

For al parameters anal ysed by use of boreholes, on the average the most efficient point
estimate takes place for the borehole direction for which most fractures are intersected.
Hence, in order to reach the largest efficiency when analysing a single fracture set, the
borehole should not necessarily be an inclined borehole, but directed so that the mean
direction (defined by trend and plunge) of the fracture set studied is parallél to the
borehole (i.e. on the average the fracture planes are at right angles to the borehole),
because on the average thisis the borehole direction that produces the largest samples
(for agiven borehole length). Consequently, different borehole directions are optimal
for different fracture sets.

The borehole length necessary for deriving acceptable estimates of all properties
studied of all fracture sets studied is determined by the length necessary for deriving an
acceptable estimate of the property and fracture set that is the most difficult to estimate.
The properties that are easier to estimate will be derived within the borehole length
necessary for the most difficult estimation. For example, if we want to estimate the
mean orientation and dispersion (Kappa) of the three fracture sets studied, by use of a
vertical borehole, the necessary length is 500 m (confidence level=90%; confidence
interval =+/-10 degrees (orientation) and +/—-15% (Kappa)). By use of an inclined
borehole, the necessary length is 500m as well. For the vertical borehole the most
difficult parameter to estimate is the dispersion of Set 1, consequently thisisthe
parameter that determines the borehole length for the vertical borehole. For the inclined
borehole the most difficult parameter to estimate is the dispersion of Set 3, and
consequently thisis the parameter that determines the borehole length for the

inclined borehole. For both boreholes the necessary borehole length is 500m.

Even if the necessary length of borehole was the same for the two borehole orientations,
as this length was determined by the most difficult estimation, the necessary lengths

for estimating the other parameters were not the same. As a measure of the average
efficiency of a borehole orientation we have calculated the average necessary length for
estimating certain parameters in the same borehol e (average necessary borehole length
is defined by equation 10-1 [page 211 ]).
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The results for the P10 and P32 parameters are given in Table 9-1 [page 212].
Considering fracture frequency P10 and a vertical borehole, the necessary lengths are
400 m (Set 1), 300 m (Set 2) and 150 m (Set 3), producing an average necessary length
of 283 m (confidence interval= +/-15% of true value and confidence level= 90%). For
an inclined borehole the average necessary length is 236 m. The average necessary
length of the inclined borehole is 84% of that of the vertical borehole. Considering
fracture density P32 (based on borehole data), the average necessary length of the
inclined borehole (393 m) is 71% of that of the vertical borehole (550 m). Hence, the
inclined borehole produces on the average the best estimates, especialy for the P32
parameter. On the other hand, if the acceptabl e deviation (confidence interval) is not set
as very small and the available borehole lengths are large, the direction of the borehole
is not very important, as acceptable estimates could be derived for any direction.

Estimates of fracture set orientation should, aslittle as possible, be dependent on the
orientation of the investigation borehole. Therefore all orientation data from boreholes
should be corrected by use of Terzaghi correction (see Appendix B). The Terzaghi
correction will compensate for most of the systematic sampling bias. After application
of Terzaghi correction, the sample sizes necessary for deriving an estimate with a
certain confidence, should only be weakly dependent on the orientation of the borehole,
however the necessary lengths will still be dependent on dispersion and fracture density;
and as the Terzaghi correction is not perfect and some systematic biaswill remain in the
samples, it follows that some borehole orientations are better than other orientations.
The number of fractures observed and the efficiency (completeness) of the Terzaghi
correction depends on the acute angle between the borehole and the mean orientation of
the fracture set studied. When considering the efficiency (completeness) of the Terzaghi
correction, different directions of borehole are optimal for different fracture sets (as they
occur in arock unit). The remaining bias will have the least influence if the biasis
distributed in a symmetric way around the predicted mean orientation, which is
achieved for boreholes that are at right angles or parallel to the mean direction of the
fracture set.

Hence, for best efficiency of the Terzaghi correction, the borehole should be directed in
away that the mean direction (trend and plunge) of the fracture set studied is parallel to
the borehole (i.e. fracture planes at right angles to the borehole), as most fractures are
intersected for this direction, and because the remaining bias will be symmetric for such
adirection. A borehole direction that is at right angle to the mean direction (trend

and plunge) of afracture set (i.e. borehole direction along fracture planes) could
(theoretically) be an efficient investigation borehole, assuming that it is has alarge
length. Because for very large lengths of such a borehole direction, the derived estimate
will be close to the true value, as the remaining biasis symmetrically distributed for
such a borehol e direction.

For aborehole that is not parallel and not at right angles to the mean direction of the
fracture set studied, and if the acceptable deviation (confidence interval) is set asvery
small, for such a situation the necessary borehole lengths could be infinite (especialy
for large values of the confidence level). Because the estimates might converge not
towards the true value but towards avalue that is slightly off the true value, due to the
remaining sampling bias (see Figure 2-7 and Appendix B). (If the acceptable deviation
(confidence interval) is set as very small, the estimate may converge towards avalue
outside of the confidence interval.)
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The necessary average lengths, considering mean direction of fracture sets, are given in
Table 9-2 [page 213]. The average necessary length of the inclined borehole (53 m) is
76% of that of the vertical borehole (70 m), for an acceptable deviation (confidence
interval) of 15 degrees and a confidence level of 90%. For an acceptable deviation of

10 degrees, the average necessary length of the inclined borehole (113 m) is 85% of that
of the vertical borehole (133 m). And finally, for an acceptable deviation of 5 degrees,
the average necessary length of the inclined borehole is undefined. Because by use of

an inclined (45 deg) boreholeit is not possible to estimate the mean direction of Set 1 at
such a small acceptable deviation (confidence interval) together with a confidence level
of 90%. Hence, the inclined borehole is better than the vertical borehole, except if the
confidence interval (acceptable deviation) and confidence level is set as very small, for
such a situation the direction of the borehole has to be optimised for each fracture set.
On the other hand, if the acceptable deviation (confidence interval) is not very small, the
direction of the borehole is not very important, as acceptable estimates could be derived
for any direction, and the difference in total lengths for different borehole directionsis
not very large.

The necessary average lengths, considering dispersion of afracture sets, are given in
Table 9-3 [page214]. Considering dispersion in fracture orientation, as represented by
the SR1 dispersion parameter, the average necessary length of the inclined borehole
(390 m) is 81% of that of the vertical borehole (483 m), for an acceptable deviation
(confidence interval) of +/—-15% of the true values and a confidence level of 90%. This
isin line with the results for the mean direction (above). It should however be noted
that the different necessary lengths for each individual fracture set, considering the
SR1 parameter (see Section 4.2, page 64), are very large (e.g. vertical borehole,

Set 1=1100 m, Set 2=250 m and Set 3=100 m). Considering dispersion in fracture
orientation, as represented by the Kappa dispersion parameter (see Section 4.3,

page 75), the average necessary length of the inclined borehole (427 m) is 114% of
that of the vertical borehole (373 m). Thisis different from the results regarding mean
direction, and it follows from the remaining sampling bias of the inclined borehole.

Thus, it is more difficult to predict dispersion than mean value (which is the way it
should be, as dispersion is a measure of variance), it follows that the borehole direction
IS more important when estimating dispersion than when estimating mean direction of a
fracture set.

The borehole direction is aso more important when estimating P32 than when
estimating P10. In general, the necessary lengths of boreholes are larger when
estimating P32 than for estimation of P10. However, if the borehole direction and mean
direction (trend and plunge) of the fracture set is parallel, the P10-value in the borehole
is equal to the P32-value of the fracture set; this conclusion underlines the importance
of borehole direction.

If the acceptable deviation (confidence interval) is not very small, and large borehole
lengths are available, any borehole direction will do, but if the acceptable deviation
(confidence interval) has to be very small and/or only short borehole lengths are
available, for such a situation the borehole direction isimportant and needs to be
optimised considering each fracture set. In generd it is better to have three somewhat
shorter boreholes, with different optimised directions, than one borehole with alarge
length.
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On number of investigation boreholes and rock surfaces

In this study the analysed fracture network is statistically homogeneous, it follows that
the results are only applicable to arock unit with statistically homogeneous properties.
Considering the use of boreholes for investigation of fracture sets orientation (mean
direction and dispersion) and the P10 fracture density parameter, the necessary size of
samples for the estimation of the parameter does not have to come from asingle
borehole. If the rock mass has statistically homogeneous properties, the analysed sample
can come from several different boreholes that together produce the necessary size of
sample. For example, three boreholes of length 50 metres can together form a sample
representing approximately the same size of sample as observations in a single borehole
of length 150 metres (presuming that they all are in the same rock unit with statistically
homogeneous properties). Hence, in practise when analysing areal rock mass, it is very
important to know which observations belong to which rock unit, especially if several
boreholes are used; that is however also a concern when analysing observations from a
single borehole with alarge length.

It is however a different situation when considering the mapping of fracture trace-length
distributions on rock surfaces. There are several biases that come from sampling a three
dimensional system with atwo-dimensional surface of agiven form (e.g. circular), this
isdiscussed in Section 6.2 [page 131]; but regarding the topic of this section, the most
important bias is the boundary truncation of the large fracture traces. Thisis stated in
Section 6.3.1 [pagel36] in the following way “ The efficiency of a point estimate
increases with sample size, however for the sampling of traces also the size of the
studied window is important. The observations are made on windows that have a
limited size, and the upper tail of the trace-length distribution (traces with alarge
length) can only be directly observed on windows of a size (radius) comparable to
length of the large traces. Hence, for small windows there will be a systematic biasin
the estimate of the trace-length distribution, due to boundary truncation, even if the
sample sizeislarge. (Small window sizes could be sufficient if it ispossible to fit a
mathematical distribution to the observed truncated trace-length distributions, even if
such a curve fitting procedure will introduce uncertainty regarding the ability of such a
distribution to represent the part of the true distribution that is unknown at small
window sizes.) ”

It follows from the statement above that regarding the trace-length distribution it is not
possible to replace observations on one large window with observations on several
smaller windows, even if al windows are from the same rock unit with statistically
homogeneous properties.

It isagain adifferent situation when considering observations of fracture strike
distributions, derived from directions of fracture traces, as observed on rock surfaces.
Asfor the trace-length distribution there are several biases that come from sampling a
three dimensional system with a two-dimensional surface of a given form (see Section
6.2 [page 131]). However, there is no systematic bias in the estimate of the strike
distribution, due to boundary truncation of large fracture traces. Hence, when estimating
the strike distribution it is possible to replace observations on one large window

with observations on several smaller windows and thereby gather one large sample,
presuming that al windows are from the same rock unit with statistically homogeneous
properties.
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Terminology

Below we will explain some of the terms used in this study. The terms are not given in
an alphabetic order, but based on connecting topics.

POPULATION The collection of all individual units possessing some characteristics of
interest. In this stydy the population is the fractures of the analysed fracture network.

PARAMETER A numerical characteristics of a population, which may be known or may
require estimation.

SAMPLE A part of the population (or a subset of the units of the population). The
sampleis provided by some process or selection; with the object of investigating
characteristics of the population. In this study samples are derived through observations
in boreholes or on rock surfaces, the sample consists of fracture data (orientations etc).

MODAL VECTOR A vector can represent the mean direction of afracture set. In this
study the mean directions of the fracture sets of the population of fractures are called the
modal vectors.

REPRESENTATIVE VECTOR In this study the orientation of asampleis calculated
based on two different methods, which both produces vectors with the same orientation,
but of different sizes: (i) the eigen values method and (ii) the resultant vector method
(see Appendix A). In this study, the vector that is derived from the eigenvalues method
is called "the representative vector”

RESULTANT VECTOR In this study the orientation of a sampleis calculated based on
two different methods, which both produces vectors with the same orientation, but of
different sizes: (i) the eigen values method and (ii) the resultant vector method (see
Appendix A). In this study, the vector that is derived from the resultant vector method is
called “the resultant vector”.

ACUTE ANGLE An acute angle is the smallest angle between two vectors. Generaly in
this study when we discuss an acute angle, we mean the smallest angle between the
modal vectors of afracture population and the representative vectors (or the resultant
vector) of a sample taken from the population. When we discuss borehole directions, the
acute angel is the smallest angle between the borehole and surrounding fractures.

KAPPA (FISHER KAPPA) DISPERSION PARAMETER The Fisher distribution /Fisher,
1953/ is characterised by amodal vector (mean direction) and a concentration parameter
called kappa, the distribution has a rotational symmetry about the modal vector. The
larger the value of kappa the more the distribution is concentrated towards the modal
vector. Kappais often called a dispersion parameter, but actually it is a concentration
parameter, since the larger the value of kappa the more the concentrated the distribution.

SR1 AND SR2 DISPERSION PARAMETERS The mean direction of a group of fractures
can be calculated based on the eigenvalues method, as proposed by /Mardia, 1972/; this
method is discussed in Appendix A. The method will provide us with arepresentative
vector. In addition the method will provide us with three eigenvalues (L1, L2 and L3),
these three values provide direct information about the distribution of the group of
fractures studied (the fracture cluster studied). Based on the eigenvalues, two different
dispersion parameters are calculated, as proposed by /Woodcock, 1977/, these two
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parameters are called, SR1 and SR2, they are defined as follows: SR1=LN(L1/L2) and
SR2= LN(L2/L3). Therelation between these parameters can be used to quantify the
shape of the cluster, e.g. concentric, girdle, etc.

EIGENVALUESMETHOD A method for calculation of the mean direction of a sample of
fractures, see Appendix A.

RESULTANT VECTOR METHOD A method for calculation of the mean direction of a
sample of fractures, see Appendix A.

TERZAGHI CORRECTION When performing one-dimensional sampling along aline
(e.g. aborehole) of athree-dimensional fracture system, there will be a systematic
sampling bias. The correction of this sampling bias is called the Terzaghi correction
/after Terzaghi, 1965/. See also Section 2.5 and Appendix B.

POINT ESTIMATE An estimate, based on observed data (samples), of the properties of
the population (parameters) is called a point estimate. As the observed data varies from
sample to sample, also the point estimate will vary.

POINT ESTIMATE, EFFICIENCY A point estimate is based on samples. As the observed
data varies from sample to sample, aso the point estimate will vary. However, as size of
sampleisincreased, for an efficient point estimate: (i) the mean of different estimates
should converge towards the parameter value; and (ii) the variance of different estimates
should decrease. The efficiency of a point estimate is the progress, with size of sample,
towards the parameter.

HYPOTHESISTESTING Hypothesistesting can be carried out in many different ways, a
classical approach is as follows. Hypothesis testing is a procedure in which we test if
samples confirm certain assumed properties of the population. Thefirst stepisto
establish atheory of the population; thistheory isthe NULL HYPOTHESIS. The next step
isthetest of samples, if a sample confirms the theory the sample is accepted, and
otherwise the sampleis rejected. The amount of accepted and rejected samples will
provide us with information regarding the correctness and soundness of the null
hypothesis

NULL HYPOTHESIS A selected hypothesis regarding the properties of samples and
popul ation.

PARAMETRIC TEST Statistical test which assumes that the anal ysed population is
distributed according to a known probability distribution, e.g. the Fisher distribution.

NON-PARAMETRIC TEST Statistical test for which no assumptions are made regarding
the probability distribution of the studied population.

CONFIDENCE INTERVAL Suppose 6 is a parameter to be estimated. A confidence
interval for 6 isaninterva of values computed from a sample, which includes the
unknown value of 8 with some specified probability. Some authors prefer the following
definition: the confidence interval for a hypothesis test consists precisely of all those
values for which the null hypothesisis not rejected at some specified degree of
probability.

CONFIDENCE LEVEL The probability (e.g. 95% or 99%) that a confidence interval will
cover the unknown parameter value.
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1 Introduction and purpose

1.1 Introduction

SKB will conduct site investigations for selecting a suitable place to locate the deep
repository for nuclear waste. Rock units are to be investigated by use of deep boreholes
and mapping of rock outcrops (other methods will also be used). Based on analysis of
observations collected from boreholes and rock outcrops (and other investigations),

site descriptive models of the rock mass are established. These models describe the
geological parameters of the rock mass. Many geological parameters are heterogeneous
and vary spatially (e.g. fracture density, hydraulic conductivity etc), therefore the
confidence in the established models depends on the number and size of boreholes

and rock outcrops used for investigating the rock mass and for establishing the site
descriptive models. However, due to practical and economical limitations the number
of possible boreholes etc is limited. Considering site investigations and the rock mass
analysed in this study (a selected rock unit with specific properties), the results of

this study will indicate lengths of boreholes and sizes of rock surfaces, necessary for
deriving estimates of the selected and anal ysed structural geological parameters, within
defined confidence intervals and confidence levels.

However, it isimportant to note that this study is not about estimating the necessary
sample sizesto be used in site investigations. The necessary amount of information
that needs to be collected at a site investigation is best calculated based on statistical
analysis at different stages of sampling (preliminary and confirmatory sampling)

and in combination with safety analysis calculations (i.e. sensitivity analyses of such
calculations). Theoretically, the necessary sample sizes and acceptable uncertainties in
estimation of the true properties (parameters) of arock mass depend on the properties of
the investigated site and the results of safety analyses calculations. Large uncertainties
could be accepted for parameters with little importance in the safety anaysis, or for
remote rock volumes that carries small importance in the safety analysis; while
parameters and rock volumes that the safety analysis calculations has identified as
being important for the performance of the investigated site, such parameters and
volumes needs to be investigated in more detail to produce reliable estimates with a
small amount of uncertainty.

1.2 Purpose

This study is a mathematical modelling of afractured rock mass and its investigations
by use of theoretical boreholes and rock surfaces, with the purpose of analysing the
efficiency and precision of such investigations. The general purpose of this study isto
investigate how knowledge of selected geological parameters depend on information
collected from boreholes and rock surfaces and how this information varies with length
and inclination of boreholes, as well as on size of rock surfaces. In other words, how
the confidence in the models of the rock mass (considering a selected number of
parameters) will change with amount of information collected form boreholes and

rock surfaces.
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This study is limited to a selected number of geometrical parameters of afracture
system. Considering the site investigation program, /Stréhle, 2001/ defines such
parameters. In this study the following geological parameters are investigated:

1. Fracture orientation.
2.  Fracture density (frequency)
3. Fracturetrace length.

In this study fracture orientation is analysed with respect to mean directions and
dispersions of the different fracture sets. Fracture density (frequency) is analysed with
respect to different parameters (P10, P21 and P32). Fracture trace-length and fracture
strike distributions (based on fracture traces) are analysed with respect to distribution
characteristics.

In general, the method of the study isto numerically generate a fracture network and
numerically analyse it, by use of theoretical boreholes and surfaces. A comparison
between the known true properties of the network (the parameters) and the derived
properties (the samples) will reveal the deviation between the true properties and the
derived properties, and the size of deviation will indicate how the knowledge will vary
with the amount of investigation.
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2 Methodology

2.1 General

This study is atheoretical and computer-based comparison between (i) samples of
fracture properties of atheoretical rock mass (afracture network) as reveaed by
observations in simulated boreholes and on simulated rock surfaces; and (ii) the known
true properties (parameters) of the theoretical rock mass. Discrete fracture networks
(DFN-models) represent the rock mass; the computer program Eblafrac generated the
DFN-models, an example of a numerically generated fracture network is given in Figure
2-1. In this study the properties of the fracture network of the rock mass are known, and
these networks constitute the "reality” studied.

Thus, the population studied is numerically generated fracture networks, networks that
represent fractures of arock unit. The boreholes studied are theoretical lines that cut
through the fracture network. The fractures that intersects the borehole (the observed
fractures) form a sample of the fracture population. The rock surfaces studied are
theoretical planes that cut through the fracture network. The fractures that intersect the
plane (the observed fracture traces) form a sample of the fracture population. The
properties of the samples are estimates of the properties of the population.

Figure 2-1. Example of a numerically generated fracture network, the fractures have
the shape of planar circular discs.
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2.2 Spherical data, co-ordinate system and projection

221 General

The fracture networks studied are numerically generated, and it follows that some
simplifications have been introduced as regards the shape of the fractures of the
networks, in comparison to the fracture network of an actual rock unit. In this study
planar circular discs represent fractures, and when analysing the orientation of a
fracture, anormal to the planar disc represents the fracture (anormal to afracture-
plane). The studied normal is a straight line in space with a certain orientation.

By spherical data we mean the orientation of a straight line in space. Hence, the data
that we shall be dealing with are spherical datathat represent fracture planes. (In
addition, we will also analyse direction and length of the traces that the fracture-planes
studied will create as they intersect a planar surface. Such lines on a planar surface are
called fracture traces.)

Normalsto fracture planes are lines in space, they have an orientation in space, but
points in two directions; the lines are not vectors, but undirected lines called axes. There
are many different ways of representing athree-dimensional unit vector or axis, because
different methods have been developed by different scientific disciplines (e.g. Geology,
Astronomy and Mathematics), but also for the purpose serving different needs within a
discipline, e.g. Polar co-ordinates, Geographical co-ordinates, Geological co-ordinates
(see below). The methods used in this study are briefly presented below.

2.2.2 Geological co-ordinates

The data that we shall be dealing with are lines that represent fracture planes. For
the definition of the lines that represents the fracture planed we will use geological
co-ordinates. Study a planar feature e.g. afracture plane or a bedding plane:

In modern structural geology, the orientation of a planar feature is defined by its
direction of dip and its angle of dip. The dip direction is the bearing of the line of
maximum slope on the plane, in the direction of downward slope. Its value can vary
between 0 and 360 degrees. The dip angle is the angle between the line of maximum
slope and the horizontal. For some purposes, it is convenient to define athird parameter,
called the strike of the plane, although dip direction and dip angle aone define the
orientation of a plane unambiguously. The strike is the direction of a horizontal line on
the planar feature and is thus, by definition, normal to the dip direction. The strike has
two possible direction values, differing by 180 degrees. This ambiguity is generally
treated by applying what has become known as the "right hand rul€e", i.e. the strike
direction is the one towards which one faces when the plane slopes downwards towards
one's right.

The orientation of a planar feature may also be given by anormal (or pole) to the plane
studied. The normal hasits base on the fracture plane and at the origin of a unit sphere.
The pole is at the intersection of the normal with the lower or upper hemisphere of the
unit sphere; in geology the lower hemisphere is normally preferred. By the concept of a
normal and apole, it is possible to define two orientation variables, called trend and
plunge (or pole trend and pole plunge). The trend is the angle between North and the
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vertical projection of the normal onto a horizontal plane, in the direction of plunge. The
plunge is the angle between the normal and the horizontal surface.

2.2.3 Spherical projection

A projection of spherical datais arepresentation of spherical datain the plane. Asfor
the spherical co-ordinate systems, there are several different commonly used spherical
projections based on different requirements. Geologist that analyses structural
geological datacommonly use an equal area projection, called Lambert or Schmidt
projection and a equal angle projection called Stereographic projection, (or Wulff
projection). In this study we have used the Stereographic projection (equal angle). For
such a projection great and small circles projects as circular areas. Hence, a contour plot
of aunimodal data set, which exhibits circular contours when projected onto a
Stereographic net, indicates that the data are isotropic about their mean direction.

2.3 Properties of the studied fracture network — DFN model

The studied fracture network represents the rock mass at the Prototype Repository at the
Asp6 Hard Rock laboratory. The fracture network model, used in this study, isthe

DFN 2 model presented in /Hermanson et al, 1999/. The main objective of the DFN 2
modelling was to establish a discrete fracture network model, representing the rock
mass at the Prototype Repository, which could be used for smulation of groundwater
flow. Hence, the model was not intended for rock mechanical purposes. The DFN 2
model underestimates the total number of fractures in the rock mass at the Prototype
Repository, as small fractures with minor or negligible hydraulic importance is not
included in the model. To what degree the DFN 2 model represents the actual properties
at the Prototype Repository are not analysed in this study.

The fracture network studied consists of three fracture sets. Set 1 and Set 2 have a
sub-vertical orientation and Set 3 is sub-horizontal. The largest dispersion in fracture
orientation (deviations about the mean direction) takes place within Set 1. For the other
two fracture sets, the dispersion is much less and about the same. On the average, the
largest fractures occur within Set 2, the smallest fractures are within Set 1. The fracture
density, given as fracture area per unit volume (P32), varies between the fracture sets;
Set 2 has the largest P32 value and Set 1 the smallest P32 value. The tables below give a
summary of the properties of the fracture network (Table 2-1, Table 2-2 and Table 2-3).
It isimportant to note the difference between the P32-value of afracture set and the
number of fractures of a certain set than on the average takes place in avolume of a
given size. Considering the DFN-network studied, a modelled domain of cylindrical
shape with height 1000 metres and radius 150 metres, will contain approximately

3.5 millions of fractures. Set 1 contains 25% of the fracture area and 70% of the number
of fractures. Set 2 contains 47% of the fracture area and 15% of the number of fractures.
Set 3 contains 28% of the fracture area and 15% of the number of fractures.

As previoudly stated, this study is atheoretical comparison between (i) the sample
properties of afracture network, and (ii) the true properties (parameters) of the fracture
network. It isimportant that the DFN-models created by the Eblafrac computer code
honour the theoretical properties that we have assigned to the DFN-models. To ensure
this, the size of the modelled fracture networks is large (modelled domain), so that
boundary effects will only have aminimal influence on the properties of the network.
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For the analysis of the vertical and inclined boreholes, the modelled domainis of a
cylindrical shape, the main axis (height) of the cylinder has alength of 1000 metres and
the radius of the cylinder is about 200 metres (base case). The borehole islocated at the
centre of the cylinder, along the main axis of the cylinder. For the analysis of horizontal
rock surfaces, the modelled domain is al'so of acylindrical shape, the height of the
cylinder is about 450 metres and the radius of the cylinder is of about 400 metres.

The plane studied is horizontal and located at the centre of the cylinder.

The fracture network inside the cylinders contains several millions of fractures. For
deriving reliable statistics, the fracture network inside the cylinder was generated
between 500 and 1000 times, thereby creating the same number of independent
realisations of the fracture networks surrounding the borehole or the rock surface.

It follows that each studied scenario of this study (e.g. vertical borehole, inclined
borehole, sensitivity-cases etc) involves the generation and analyses of billions of
fractures.

Considering the models used for analyses of boreholes, the models were analysed for
50 different lengths of borehole between 20 and 1000 metres. Considering the models
used for analyses of rock surfaces, the models were analysed for 34 different circular
horizontal surfaces with radii between 2 and 150 metres.

The properties of the fracture networks studied were supervised during the generation of
the networks; thereby we checked that the networks honoured the theoretical properties
assigned to the networks. As the modelled domain is large and contains alarge number
of fractures, the properties of the fracture networks is expected to be close to the
theoretical properties assigned to the networks. Analyses of the generated fracture
networks (inside the cylinders studied) demonstrated the following. The Fisher kappa
values (ameasure of dispersion in fracture orientation see Section 2.8) of the fracture
networks were very close to the theoretical values assigned to the networks. The
deviations between the theoretical values of kappa and the kappa values of the modelled
fracture networks were aways less then 0.2 percent of the theoretical values. The
deviations in mean orientation of the different fracture sets were less than 0.1 degrees.
Similar very small deviations were observed for the other properties studied. Hence, the
fracture networks studied have properties in accordance to the theoretical properties
assigned to them. Examples of the orientation of the fractures of the studied popul ation
are demonstrated in Figure 2-2 below (stereographic projection is discussed in Section
2.2.3). An example of the fracture traces that the fracture network creates on a circular
horizontal rock surfaceis givenin Figure 2-5.

As previoudly stated, the DFN-model used in this study (as the base case) isthe DFN 2
model presented in /Hermanson et al, 1999/. The DFN 2 model underestimates the total
number of fracturesin the rock mass at the Prototype Repository, as small fractures with
minor or negligible hydraulic importance is not included in the model. We have
therefore established an alternative DFN-model, which includes a larger number of
small fractures, but has the same value of fracture density (P32-value) asthe DFN 2
model. For this aternative DFN-model, the results considering the necessary sample
sizesfor reliable estimation of parameters studied are presented in Chapter 8 (Limited
Sensitivity Analysis).
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Table 2-1. Size of fractures.

Set No. 1 2 3
Fracture shape Planar discs Planar discs Planar discs
Distribution TLogNormal (1) TLogNormal (1) TLogNormal (1)
Mean radius [m] (2) 2 8 5

Mean of LN(radius) (3) 0.346574 2.049129 1.36209
Stdv radius [m] (4) 2 2 4

Stdv of LN(radius) [m] (5) 0.832555 0.246221 0.703346
Termination % (6) 0 0 0

Lower bound [m] (7) 0.0025 0.0025 0.0025
Upper bound [m] (7 10000 10000 10000

(1) A Log-Normal distribution that is truncated at lower and upper bounds.
(2) Mean of distribution.

(3) Mean of the natural logarithms of the values of radius

(4) Standard deviation of distribution.

(5) Standard deviation of the natural logarithms of the values of radius

(6) Amount of fractures that terminate at other fractures.

(7) Upper and lower boundaries for the truncated Log-Normal distribution

Table 2-2. Orientation of fractures.

Set No. 1 2 3
Fisher (1) Fisher (1) Fisher (1)
Distribution
Dispersion (K) 4.84 8.35 8.33
Pole trend (degrees) 129.0 37.0 290.6
Pole plunge (degrees) 6.3 5.8 84
(1) Spherical distributions, like the Fisher distribution, are discussed in Section 2.8

Table 2-3. Fracture density (P32).

Set No. 1 2 3
P32 = Fracture area per 0.85 1.59 0.97
unit volume
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FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3

Figure 2-2. Lower hemisphere equal angle stereoplots of fracture pole orientation
and distribution. The plotted fracture poles represents one realisation of the fracture
population studied (the fracture network). The figures are based on a stereographic
projection, see Section 2.2.3. Each of the four figures includes 1000 fracture poles.
Considering the figure that contains all fracture sets (lower right) the number of
fracture poles per set corresponds to the P32 values of the different sets and the
fracture size distribution. On the average:

Set 1 contains 25% of the fracture area and 70% of the number of fractures.

Set 2 contains 47% of the fracture area and 15% of the number of fractures.

Set 2 contains 28% of the fracture area and 15% of the number of fractures.

The orientations of the fractures, as observed in avertical and an inclined borehole,

are demonstrated below in Figure 2-3 and Figure 2-4, respectively. Note that as the
figures gives the fractures observed in boreholes, the distribution of fractures with an
orientation close to parallel to the boreholes are not well represented, as such fractures
rarely intersects the boreholes. Thisis an example of a systematic bias that will take
place when sampling a three-dimensional fracture system, with a one-dimensional
boreholes. In this study, previously to analysing the data, the bias is corrected by use of
Terzaghi correction, see Section 2.5 and Appendix B. (It should be pointed out that the
Terzaghi correction is not a perfect correction that will remove al the sampling bias, but
it is an efficient method for minimising the above discussed sampling bias).
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When comparing Figure 2-2, Figure 2-3 and Figure 2-4, one should note that they are
based on different realisations of the fracture network.

When studying the fracture poles given in the figures above and below, it is perhaps of
interest to know how many fractures that on the average are observed in the analysed
boreholes (the efficiency of the point estimates of the parameters studied depend on
the number of observed fractures). The number of fractures per metrein aboreholeis
called the P10 value, see Section 5.1. The efficiency of the estimation of P10 values
isanalysed in this study. The P10 values depend on orientation of borehole. Two
boreholes with different orientation are used in this study, a vertical and an inclined
borehole.

The average P10 values for the different boreholes are given below, considering
boreholes of 1000 m length. No correction for sampling bias (Terzaghi correction)
is applied when cal culating the P10 values.

Vertical borehole: Set 1: Mean= 0.292
fractures per metre.
Set 2: Mean= 0.434
fractures per metre.
Set 3: Mean= 0.848
fractures per metre.
Inclined borehole: Set 1: Mean= 0.456
(Trend=90deg, Plunge=45deg)  fractures per metre.
Set 2: Mean= 0.732
fractures per metre.
Set 3: Mean= 0.551
fractures per metre

On atwo-dimensional structure (a surface), the fractures of the DFN-model will create
two-dimensional lines, such lines are called fracture traces. An example of fracture
traces (created by the DFN-model) as seen on a circular horizontal rock surfaceis
givenin Figure 2-5.

The orientations of the fractures, as observed on a circular horizontal surface, are
demonstrated below in

Figure 2-6. Note that as the figure gives the orientation of fractures observed on a
horizontal surface, the distribution of fractures with an orientation close to parallel to
the surface (sub-horizontal fractures) are not well represented, as such fractures only
rarely intersects the surface.
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FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3 ALL FRACTURE SETS

Figure 2-3. Lower hemisphere equal angle stereoplots of fracture pole orientation and
distribution, as seen in a vertical borehole. The plotted fracture poles represents one
realisation of the fracture population studied (the fracture network). The figures are
based on a stereographic projection, see Section 2.2.3. Each of the four figuresincludes
1000 fracture poles.

Considering the figure that contains all fracture sets (lower right) the number of
fracture poles per set corresponds to the P10 values of the different sets. On the
average, as seen in the borehole:

Set 1 contains 18% of the number of fractures.

Set 2 contains 28% of the number of fractures.

Set 3 contains 54% of the number of fractures.

Note that this data is not corrected for sampling bias (Terzaghi correction is not
included in thisfigure).



FRACTURE SET 1 FRACTURE SET 2

FRACTURE SET 3

Figure 2-4. Lower hemisphere equal angle stereoplots of fracture pole orientation and
distribution, as seen in an inclined borehole (Trend= 90 deg. Plunge= 45 deg.). The
plotted fracture poles represents one realisation of the fracture population studied
(the fracture network). The figures are based on a stereographic projection, see
Section 2.2.3. Each of the four figures includes 1000 fracture poles.

Considering the figure that contains all fracture sets (lower right) the number of
fracture poles per set corresponds to the P10 values of the different sets. On the
average, as seen in the borehole:

Set 1 contains 26% of the number of fractures.

Set 2 contains 42% of the number of fractures.

Set 3 contains 32% of the number of fractures.

Note that this data is not corrected for sampling bias (Terzaghi correction is not
included in thisfigure).
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SET 1.
Fracture traces on a horizontal surface of radius 10m
(one realisation)

10.00

SET 2.
Fracture traces on a horizontal surface of radius 10m
(one realisation)
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Figure 2-5. Fracturetraces on a circular horizontal surface with radius 10m. The
plotted fracture traces represents one realisation of the fracture population studied
(the fracture network). The traces were numerically generated. Each of the four figures
includes a different number of traces, dependent on the orientation and density of the
fracture set studied. The length of the traces divided by the surface area isthe P21
parameter. For very large horizontal surfaces, the P21 values are as follows. Setl
P21= 0.77, Set 2 P21= 1.51, Set 3 P21= 0.41; hence 29% of the trace-lengths belongs
to Set 1, and 56% belongs to Set 2, and 15% belongs to Set 3. Considering the number
of traces on a very large horizontal surface, on the average 45% belongs to Setl, 43%
belongs to Set 2 and 12% belongs to Set 3.
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FRACTURE SET 1. FRACTURE SET 2

FRACTURE SET 3

Figure 2-6. Lower hemisphere equal angle stereoplots of fracture pole orientation
and distribution, as seen on a circular horizontal surface. The plotted fracture poles
represents one realisation of the fracture population studied (the fracture network).
The figures are based on a stereographic projection, see Section 2.2.3 Each of the
four figuresincludes 1000 fracture poles.

Considering the figure that contains all fracture sets (lower right) the number of
fracture poles per set corresponds to the average number of fracture traces on a
circular area with radius 150 metres. On the average, as seen on the surface:

Set 1 contains 35% of the number of fractures.

Set 2 contains 51% of the number of fractures.

Set 3 contains 14% of the number of fractures

Note that this data is not corrected for sampling bias (Terzaghi correction is not
included in thisfigure).
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2.4 Properties of the studied boreholes and rock surfaces

The purpose of this study isto simulate the sampling of fractures, or fracture traces, as
observed in a borehole or on arock surface. We have studied two different boreholes, as
regards orientation of boreholes. The first borehole is avertical borehole. The second
borehole is an inclined borehole. Using the same method of orientation as used for the
normals to the fracture-planes (see Section 2.2.2); the orientation of the inclined
borehole is trend=90 degrees and plunge=45 degrees (hence, the boreholeisinclined

45 degrees from horizontal). For both boreholes, the lengths of the boreholes were
varied from 20 metres and up to 1000 metres.

We have also studied rock surfaces. The rock surfaces are analysed for fracture traces.
A studied rock surfaceis called awindow. All the analysed windows are horizontal;
they correspond to horizontal rock outcrops. The geometrical shape of the windows
studied is circular. The radii of the windows were varied from 4 metres and up to

150 metres. For the boreholes and the windows, the number of realisations of the rock
mass were varied between 500 and 1000. Hence, for every borehole length and rock
surface area studied, alarge number of different realisations of the fracture network
were analysed.

2.5 Correction for sampling bias — the Terzaghi correction

One-dimensional sampling is sampling along a straight line (a scanline). Such sampling
of fracture orientation in athree-dimensional fracture system will introduce an
orientation sampling bias. The bias follows from the fact that the probability for
intersecting a fracture depends on the angle between the sampling line and the fracture,
aswell ason the area of the fracture. For compensation of this sampling bias /Terzaghi,
1965/ proposed the application of a geometrical correction factor based on the observed
angle between the sampling line and the normal to a particular fracture. In this study,
such acorrection is called “Terzaghi correction”. The highest probability for
intersection (between fracture and sampling line) occurs when the fracture-planeis

at right angle to the sampling line (borehole), if the fracture-planeis paralel to the
sampling line (borehole), the probability for intersection is zero (except if the sampling
lineisat the fracture). Any direction of sampling line will therefore produce a sample
that is biased to contain alower amount of fractures than the actual amount. The
reduced sample size can be compensated for by assigning a weighting factor to those
fractures that are sampled. For alarge sample size this weighting will serve to balance
the orientation sampling bias introduced by linear sampling. The Terzaghi correction

Is not a perfect correction that will remove all the sampling bias, but it is an efficient
method for minimising the systematic sampling bias that follows from sampling a three-
dimensional fracture system by use of a one-dimensional sampling line. For amore
thorough discussion of thiswe refer to /Terzaghi, 1965/ or /Priest, 1993/. A presentation
of the methodology of the discussed correction and theoretical examples are given in
Appendix B.

In this study all the fracture orientation data, derived from sampling the boreholes,
are corrected for sampling bias by use of the Terzaghi correction. Hence, the analyses
presented in Sections 3 and 4, are based on orientation data that has been corrected
by use of Terzaghi correction, as presented in Appendix B. However, no Terzaghi
correction was included in the analysis of the data gathered form horizontal rock
surfaces.
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2.6 Classification of observed fractures into fracture sets

A fracture set contains a number of fractures that are grouped together, as they
demonstrate some tendency to have similar properties, e.g. orientation. In this study the
fractures are grouped into three sets, dependent on fracture orientation. The orientations
of the fractures of afracture set may follow some stochastic distribution, in which some
orientations are more likely than other orientations. An example of such adistribution is
the Fisher spherical distribution. In this study the distribution of the fracture orientation
within afracture set follows a Fisher spherical distribution (see Section 2.8).

Since the fracture orientations are steered by a statistical distribution (Fisher), a
simulated fracture may have any orientation though some orientations are more likely
than other orientations. When several sets are superimposed, it is difficult to know the
set to which a particular fracture belongs. There are severa methods to group fractures
in a heterogeneous sample or population into homogeneous sets. In this study such
algorithms were not used. Instead each fracture was marked with its proper set identity
since thisis known at the generation of the fracture. In areal situation, different
methods and algorithms for identifying and delimiting sets will be necessary to ensure
objective set identifications. Different methods for identification of fracture sets will
produce different results. The reason why we have used the known true fracture set
identity and not applied afracture set identification algorithm is because we do not want
the efficiency of the fracture set identification algorithm to influence the result of the
study. The efficiency of different methods for identification of fracture setsisan
interesting topic, but it is not included in this study.

2.7 Aspects of the applied statistical tests —
accepted deviations

The purpose of sampling the discontinuities (fractures) of the rock mass by use

of boreholes and by mapping of rock surfaces (rock outcrops) is to estimate some
unknown properties of the rock mass. From a statistical point of view, the unknown
properties of the rock mass are the properties of a population studied; we will call these
properties the parameters or the true properties. The samples will produce estimates of
the population; these estimates are called the sample properties. Generally the sample
properties deviate somewhat from the true properties, dependent (among other things)
on size of samples etc. This study is about calculating these deviations for different
sizes of sample and to analyse them statistically. By sample size we mean the number of
observations that a sample is based upon. For example, a short borehole may produce a
sample based on the observations of 50 fractures, while along borehole may produce a
sample based on the observations of 500 fractures; the sample sizeislarger for thelong
borehole.

In reality when observing fractures in boreholes and on outcrops, and when predicting
properties of the rock mass based on these observations, it isimpossible to exactly
calculate how much the sample properties deviate from those of the population, as the
properties of the population are unknown. Nevertheless, considering the purpose of a
real investigation there are probably some demands on accuracy, which correspond to
an acceptable deviation in estimated properties. Decisions and conclusions are founded
on the sampl e properties, hence large deviations between the sample properties and the
true properties are often not acceptable, but small deviations are acceptable as such
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deviations are of no practical importance. (For the average mean direction of afracture
set, such an acceptable deviation between the true properties and sample propertiesis
perhaps 5 to 15 degrees or even larger, dependent on the purpose of the investigation.)

This study is not about calcul ating the necessary sample sizes or acceptable deviations
to be used in site investigations for a nuclear repository. Actually in practise, the
concept of acceptable deviationsis not very useful, because it assumes the knowledge
of the parameters of the population (the unknown true properties), which is normally
not known. The necessary amount of information that needs to be gathered at a site
investigation, is best calculated based on statistical analysis at different stages of
sampling (preliminary and confirmatory sampling) in combination with safety analysis
calculations (sensitivity analyses of such calculations). Theoretically, the necessary
sample sizes and acceptabl e uncertainties (and acceptable deviations) in estimation

of the true properties (parameters) of the rock mass depend on the properties of the
investigated site and the results of safety analyses calculations. Large uncertainties
could be accepted for parameters with little importance in the safety anaysis, or for
remote rock volumes that carries small importance in the safety analysis. While
parameters and rock volumes that the safety analysis calculations has identified as being
important for the performance of the investigated site, such parameters and volumes
needs to be investigated in more detail to produce reliable estimates with a small
amount of uncertainty.

In this study, the properties of the rock mass are known, hence it is possible to calculate
the deviation between sample properties and the true properties. The analysis of the
sample propertiesis carried out as a statistical hypothesis testing. The hypothesis testing
Is based on a calculated test variable of the samples and the corresponding properties of
the population. The statistical tests are based on alarge number of different realisations
of the fracture networks (500-1000). The large numbers of realisations (samples) are
necessary to obtain reliable results (statistics).

Primarily this study concerns tests in which the calculated deviation between sample
properties and true propertiesis compared to different selected acceptable deviations of
the test variable studied (first category of tests). The acceptable deviations are called the
test criterions. However, this study also includes tests that do not directly correspond to
a selected acceptable deviation, but to agiven level of confidence in estimating the true
properties (second category of tests). The difference between these two types of test
should be noted. The purpose of the first category of testsisto determine when the size
of the sample islarge enough to produce an acceptable estimate of the true properties
(e.g deviation <= 15 degrees), with a certain probability (e.g. >= 90%). For thefirst
category of tests, we select the acceptable deviation between sample and true properties
and the acceptable deviation is the same regardless of size of sample (length of
borehole).

The purpose of the second category of testsis to demonstrate the probability for agiven
hypothesis of the properties of the population, to be rejected or accepted, at a certain
selected level of confidence (e.g. 99%). In this study the true properties are known, and
therefore the hypothesis concerning the properties of the population is equal to the
known true properties of the population. We know that thisis a correct hypothesis, but
due to sampling bias etc, it will not necessarily be confirmed by the samples. The test
will tell usthe probability for rejection or acceptance of this hypothesis of the rock
mass, at a certain selected level of confidence, and size of sample.
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For thefirst category of tests, the selected acceptable deviation is constant for all sizes
of sample; in the second category of tests the selected level of confidence is constant for
all sizes of sample. Thefirst category of tests are carried out as non-parametric tests,
hence we make no assumptions regarding the statistical distributions of the properties
of the studied fracture network or regarding systematic bias in the sampling procedure.
Thefirst category of tests could be considered as calculation of the sample size that is
necessary to reach a confidence level, considering a given confidence interval. The
confidence interval corresponds to the above-discussed acceptable deviation. The
sample size corresponds to a length of borehole or size of area. The second category

of tests are carried out as parametric tests, for which we assume that the orientation of
the fractures of the studied network are according to Fisher distributions and that no
sampling bias takes place; parametric tests are only applied in Sections 3.5 and 4.4.

When performing statistical tests, it is common that different sample sizes are selected
beforehand, and for such an analysis a point estimate of an unknown parameter refersto
different fixed sizes of sample. That is however not the case in this study. In this study
the number of observed fractures (i) along a studied borehole or (ii) on astudied area,
gives the sample size. Hence, for unknown boreholes or areas, the actual sample sizes
are unknown, even if the lengths of the boreholes or sizes of areas are known, and the
sample sizes are revealed when the samples are taken. The point estimates of this study
refer not directly to different fixed sizes of sample, but to different fixed lengths of
boreholes or sizes of area. On the average, the sample size increases with length of
borehole and size of area. However, as the sample size will vary somewhat for a given
borehole length or size of area, this variation will be a source of uncertainty added to the
analyses of this study (an uncertainty that is not included when performing a* classical”
point estimate with fixed sample sizes).

When studying the results of the testsit isimportant to remember that we are
analysing alarge number of samples that produce estimates of the true properties

of the population. For each given borehole length or size of rock surface, the different
estimates (500—1000 values for each borehole length or size of area) form different
distributions of estimates. Hence, the statistical tests are applied to distributions of
estimates corresponding to different lengths of borehole or areas of rock surfaces. It
follows that the results of the tests depend on given test criterions, e.g. acceptable
deviations, and of the properties of the analysed distributions. Thisisillustrated by
Figure 2-7, the figure gives examples of theoretical distributions representing samples
taken from different lengths of borehole (or rock surfaces), and how these distributions
corresponds to given acceptable deviations.

Figure 2-7, give theoretical examples only; we will use the figure to illustrate some
aspects of the interaction between test criterions and different distributions of estimates
based on samples of different sizes. In the following discussion we assume that the
studied estimates (the figure below) represents the acute angle between the mean
orientation of afracture set as given by a sample, and the known true orientation of

the set. For such an example the true property of the population is a value equal to O.
Samples from a short borehole produces distribution D1, both the mean deviation from
the true property and the varianceis‘large’ (Moments of D1: mean=12 deg., standard
dev.= 7 deg.). Distribution D2 is produced by samples from along borehole, both the
mean deviation from the true property and the varianceis‘small’ (Moments of

D2: mean=1 deg., standard dev.= 2 deg.). Consider an acceptable deviation from the
true properties equal to plus/minus 10 degrees; for such a condition and for distribution
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D1, 38% of the samples are within the boundaries, and for distribution D2, 99.9% of
the samples are within the boundaries. Consider an acceptable deviation from the true
properties equal to plus/minus 5 degrees; for distribution D1, 15% of the samples are
within the boundaries, and for distribution D2, 97% of the samples are within the
boundaries. Hence for the applied conditions (tests) and analysed distributions, the
amount of accepted samples increases when the borehole length is increased.

D2
——Dl\
-15 -10 -5 0 5 10 15 20 25 30
Studied variable (X-values)
3
D1
-15 -10 -5 0 5 10 15 20 25 30

Studied variable (X-values)

Figure 2-7. Theoretical example of different distributions of estimates of a true
property of a population. The true property of the population is a value equal to
zero. Distribution D1 represents estimates based on samples from a short borehole,
distributions D2 and D3 represents estimates based on samples form long boreholes.

However it isimportant to note that in the figure above the mean values of the
distributions deviate from the true property of the population (such behaviour is
normally aresult of asampling bias). It follows that if the applied condition is strict and
only very small deviations are accepted, the amount of accepted samples may decrease
when the borehole length isincreased, distribution D3 demonstrates this. Distribution
D3 is produced by samples from along borehole, the mean deviation from the true
property is smaller than for D1, but it is not insignificant; the variance is much smaller
than for D1 (Moments of D3: mean=8 deg., standard dev.= 2 deg.). Consider an
acceptable deviation from the true properties equal to plus/minus 10 degrees; for such a
condition and for distribution D1, 38% of the samples are within the boundaries, and for
distribution D3, 83% of the samples are within the boundaries. Consider an acceptable
deviation from the true properties equal to plus/minus 5 degrees; for distribution D1,
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15% of the samples are within the boundaries, and for distribution D3, 6% of the
samples are within the boundaries. Hence for the first condition (samples are accepted
within plug/minus 10 degrees), the amount of accepted samplesincreases when the
borehole length isincreased; but for the second condition (samples are accepted within
plus/minus 5 degrees), the amount of accepted samples decreases when the borehole
length isincreased. Considering the second condition, the decreasing number of
accepted samples follows form a sampling bias, the bias makes the point estimate
converge towards a value that is not the true value of the parameter studied.

2.8 Aspects of the Fisher spherical probability distribution

There are severa probability distributions available for modelling spherical data, for
example the Fisher distribution, which is the basic model for directions distributed
unimodally with rotational symmetry, or the Watson distribution which is the basic
model for undirected lines, axes, distributed with rotational symmetry in either bipolar
or girdle form, see /Fisher et al, 1987/. Theoretically the Watson distribution is best
suited for modelling the studied spherical data, as the studied data are undirected lines
(axes) i.e. normals to fracture planes. However, many statistical tests and procedures
are available for the Fisher distribution and therefore it is commonly used also for
undirected lines; the applicability of the Fisher distribution for undirected linesis
discussed below.

In this study we will use the Fisher probability distribution, both for generation of the
fracture population studied and for parametric analysis of the fracture population. The
Fisher distribution is an important distribution in the analysis of spherical data, asitis
the basic model for directions distributed unimodally with rotational symmetry. The
Fisher distribution is defined for the whole sphere, and it serves generally as an all-
purpose probability model for directionsin space and for directional measurement
errors, much as for the normal distribution for observations on the line. The Fisher
distribution is given by (i) parameters defining the direction of amodal vector, the
distribution is symmetric about this vector, and (ii) a shape parameter called kappa. The
larger the value of kappa the more the distribution is concentrated towards the direction
of the modal vector. Kappa is often called the dispersion parameter, but actually itisa
concentration parameter, since the larger the value of kappa the more the concentrated
the distribution. For the Fisher distribution, the density of probability is greatest in the
direction of the modal vector and isleast in the opposite direction.

Cones are often used when describing the properties of a Fisher distribution. Such cones
have their narrow ends at the origin of the unit sphere, and they are oriented about the
modal vector. On the surface of the unit sphere the cones form circular intersections.
The opening (&) of such aconeisnormally given from centre to side of cone (from
modal vector to side). For the Fisher distribution, considering angles relative to the
modal vector, the probability density distribution and the cumulative probability are as
follows /Priest, 1993/. For a detailed mathematical presentation of the distribution we
refer to /Fisher et al, 1987; Fisher, 1953; Mardia, 1972/.
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Probability density distribution Cumulative probability

_Ksin(@) e*®<® _ N —efe® 2-1
£®= eX -eX P(<6)= CeK-eX

6=Angle from centre of distribution. Opening of cone studied (centre to side).
f(8)=The probability density distribution
P(< @=The cumul ative probability within a cone of opening equal to &

K=kappa (dispersion parameter)

The equation for cumulative probability above can also be looked upon as the
probability that a random spherical data, following a Fisher distribution, makes an angle
of lessthan &with the modal vector. Examples of the cumulative probability for three
different Fisher distributions are given in Figure 2-8.

Fisher distribution, cumulative probability
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Figure 2-8. Three examples of Fisher distributions. The figure gives the cumulative
probability within cones of different openings, minimum cone opening is O degrees
(no opening) and maximum opening is 180 degrees (whole sphere).

When studying the equations and figure above one should note an important aspect
of spherical distributions. The probability density function of a spherical distribution
(given as afunction of the cone opening) is not directly proportional to the
concentration of data on the surface of a unit sphere. Thisis because the probability
density function is given as a function of an angle &(cone opening); but the
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concentration of modelled data depends on both (i) the probability density function and
(i1) the size of the surface area on the unit sphere within the cone opening studied. For
example, a Fisher distribution has its greatest concentration at &equal to zero, which
corresponds to the centre of the distribution, and at &equal to zero the probability
density function is equal to zero (as the cone opening is zero).

The applicability of the Fisher distribution for modelling undirected lines needs to be
considered. Undirected lines occur as spherical data simultaneously in the lower and
upper hemispheres, asthe datais undirected. When using the Fisher distribution for
modelling of spherical data of thistype, it isimportant to note that the Fisher
distribution is defined for directed lines and for the whole sphere. For values of
kappathat are not to small (larger than ca. 5), nearly all of the spherical data of a Fisher
distribution falls in one half-sphere about the mean direction of the distribution studied;
and for such asituation the Fisher distribution is suitable for modelling undirected lines.
The Fisher distribution can be used for representing undirected lines aslong as only an
insignificant amount of the distribution falls outside of a half-sphere centred about the
mean direction (modal vector) of the distribution.

For a Fisher distribution with a kappa value equal to 5, the amount between cone
openings equal to 0 and 90 degreesis equal to 99.3 percent of the distribution, and

0,7 percent of the distribution takes place between cone openings equal to 90 and 180.
For kappa values smaller than three, the amount between cone openings equal to 90 and
180 degreesis larger than 5 percent of the distribution. This means that for kappa values
smaller than 5 (and especially for kappa values smaller than 3), a perhaps not negligible
amount of the studied Fisher distribution will fall outside of a half-sphere located about
the mean direction of the distribution studied. This must be considered when modelling,
analysing and visualising Fisher distributions with kappa values smaller than 5.
Especially when using a Fisher distribution for representation of spherical data of axes-
type, as such data are undirected and consequently occur simultaneously in both the
upper and lower hemispheres.
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3 Estimation of fracture-set mean direction
from borehole data

3.1 Fracture set orientation and the acute angle

In this study, afracture set contains a number of fractures that are grouped together

as they demonstrate a tendency to have a similar orientation. Three vectors define the
mean directions of the fracture sets of the population. These three vectors are called the
modal vectors, and in this study these vectors are known.

The average orientation of a sample of fractures can also be represented by a vector.
The orientation of such a vector is not necessarily the same as the orientation of the
modal vector of the corresponding fracture set. The orientation of a sampleis calculated
based on two different methods, which both produces vectors with orientations that are
very close, but of different sizes: (i) the eigenvalues method /Mardia, 1972/ and (ii)

the resultant vector method. Both methods are presented in Appendix A. To ensure a
correct result when applying the resultant vector method it isimportant to transform the
undirected spherical data (axes) into a consistent set of directed data (vectors). If thisis
not done, the resultant vector method may under certain conditions produce a resultant
vector that does not reflect the overall orientation of the studied fracture group (see
Figure A-2 in Appendix A). In this study, the vector that is derived from the eigenvalues
method is called "the representative vector” and the vector that is derived from the
resultant vector method is called “the resultant vector”. For the tests presented below,
the eigenvalues method was used for calculation of sample orientation.

When comparing the two methods, the eigenvalues method is the best method for
calculating the mean direction of asample, asit is are more robust method than the
resultant vector method. However, the resultant vector method should not be forgotten,
because the length of the resultant vector (given by the resultant vector method) is often
used when calculating the dispersion of the fracture sample. The best approach isto
first apply the eilgenvalues method to derive a good estimate of the mean direction, and
based upon the direction of the representative vector, apply the resultant vector method
for calculation of the resultant vector. If the resultant vector method is constrained by
the results of the eigenvalues method, it will produce correct results.

The smallest angle between (i) the modal vector of the population and (ii) a
representative vector (or resultant vector) of asampleis caled the acute angle. It is
possible to cal culate acute angles as the modal vectors of the population are known. The
acute angle is directly proportional to the deviation in estimation of the mean direction
of afracture set of the population. For a sample with a representative vector that has
exactly the same direction as the modal vector, the acute angleis zero.
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3.2 Point estimates and the acute angle

The fractures that intersect the borehole studied are samples of the fracture population.
The properties of the sample are estimates of the properties of the population. The
observed fractures are classified into three groups, one group for each theoretical
fracture set. After the classification each fracture set is studied one by one, separate
from the other sets. The test presented below is conducted for each fracture set

separately.

From a statistical point of view, the calculation of the average orientation of the
fractures of the samplesis a point estimate of the orientation of the population. In this
study, the acute angle is the sample variable studied. The acute angle is afunction of the
properties of the samples (i.e. the distribution of the observed fractures) and the known
modal vector of the population. The efficiency of the point estimate of the variable
studied increases with size of sample (number of observed fractures), and size of sample
increases with length of borehole. Thisis demonstrated in 4.1 and in Figure 3-2.

Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such
sampling of fracture orientation in a three-dimensional fracture system will introduce an
orientation sampling bias. The bias follows from the fact that the probability for
intersecting a fracture depends on the angle between the sampling line and the fracture,
aswell as on the area of the fracture. For compensation of this sampling bias we have
applied ageometrical correction factor based on the observed angle between the
sampling line and the normal to a particular fracture, such a correctioniscalled
Terzaghi correction (see Appendix B). In this study all the fracture orientation data,
derived from sampling the boreholes, are corrected for sampling bias by use of the
Terzaghi correction, the correction is not perfect and some bias will remain in the
samples.

Considering a vertical borehole of length 1000 m, the acute angels are:

SET 1: Mean acute angel of samples = 3.14 degrees
SET 2: Mean acute angel of samples = 1.63 degrees
SET 3: Mean acute angel of samples = 0.99 degrees

Considering an inclined borehole of length 1000 m, the acute angels are:

SET 1. Mean acute angel of samples = 3.11 degrees
SET 2: Mean acute angel of samples = 1.56 degrees
SET 3: Mean acute angel of samples = 1.68 degrees
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Vertical borehole. Mean value of acute angle of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C0-v)
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Vertical borehole. Standard deviation of acute angle of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2CO0-v).
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Figure 3-1. Vertical borehole. The efficiency of the point estimate of the acute angle,
given as the mean (upper figure) and standard deviation (lower figure) of the acute
angle of the samples at different lengths of borehole. The calculations are based on
900 realisations of different boreholes, for each length studied
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Inclined borehole (T=90deg P=45deg). Mean value of acute angle of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i)
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Inclined borehole (T=90deg P=45deg). Standard deviation of acute angle of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i).

10 4

L

8,

. —o—Set 1.
% —8—Set 2.

X \K ——Set 3.
5

Standard deviation in acute angle
(degrees)
N
| &

P—0—0——o—

e ]

1
0 100 200 300 400 500 600 700 800 900 1000
Borehole length (m)

Figure 3-2. Inclined borehole. The efficiency of the point estimate of the acute angle,
given as the mean (upper figure) and standard deviation (lower figure) of the acute
angle of the samples at different lengths of borehole. The calculations are based on
900 realisations of different boreholes, for each length studied.
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3.3 Types of tests

The analysis of the point estimate of the orientation is carried out as a statistical
hypothesis testing. The hypothesistesting is based on the acute angle of the samples and
given criterion of significance and confidence levels. Two different types of test have
been performed: tests as regard acceptable deviations and tests as regard confidence
levels (confidence intervals and confidence cones). Tests that correspond to selected
constant values of acceptable deviations are presented in Section 3.4. Tests that
correspond to selected confidence levels are presented in Section 3.5.

3.4 Hypothesis testing considering acceptable deviations

3.4.1 Purpose of test

The purpose of the test isto determine when the size of the sample islarge enough to
produce an acceptable estimate of the studied parameter, with a certain probability.
This can also be stated in the following way: the calculation of the sample size that is
necessary to reach a confidence level, considering a given confidence interval. The
confidence interval is the same thing as atest criterion (an acceptable deviation). The
sample size corresponds to length of borehole.

3.4.2 Null hypothesis, acceptable deviations and criterion
of significance

The analysis of the point estimate of the fracture set orientations is based on hypothesis
testing. The hypothesistesting is based on the sample variable studied (the acute angle)
and given criterions of significance. The null hypothesis (Ho) is that the orientation
derived from a sampleis agood estimate of the true orientation of the population. For
the tests presented in this section, the criterions of significance correspond to selected
values of acceptable deviations. If the acute angle of asampleislarger than these
acceptable deviations, the sampleis rejected.

We have studied three different criterions that correspond to three different levels of
significance.

First criterion: Ho (a<=15 deg) 1S rejected if Acute angle >= 15 degrees.
Second criterion: Ho (a<=10 deg) IS rejected if Acute angle >= 10 degrees.
Third criterion: Ho (a<= 5 deg) IS rgj€cted if Acute angle >=5 degrees.

The result of the analysisis presented as the percentage of accepted the samples, which
is approximately the same thing as the probability for correct estimation, considering
the different selected criterions.
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3423 Results for a vertical borehole

Results for Set 1

Examples of resultsfor Set 1 are as follows (see Figure 3-3). At a borehole length larger
than 140 metres, the probability islarger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (a <=15 deg)) - O With other words, the
probability that a sample deviates significantly considering Ho (a <=15 deg) IS l€SS than

10 percent, if the length of the borehole islarger than 140 meters. And finally, if the
borehole has a length larger than 140 meters, the probability is larger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.

Vertical borehole. Fracture Set 1 (sub-vert).
Probability for correct estimation of mean direction. Terzaghi correction included. (E2CO0-v).
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Figure 3-3. Vertical borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviationsin predicted orientation. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

Results for Set 2

Examples of resultsfor Set 2 are as follows (see Figure 3-4). At aborehole length
larger than 50 metres, the probability is larger than 90 percent that a sample will not
be rejected considering the first criterion (Ho (a <=15 deg))- Or With other words, the
probability that a sample deviates significantly considering Ho (a <=15 deg) IS |€SS than
10 percent, if the length of the borehole islarger than 50 meters. And finaly, if the
borehole has a length larger than 50 meters, the probability islarger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.
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Vertical borehole. Fracture Set 2 (sub-vert).
Probability for correct estimation of mean direction. Terzaghi correction included. (E2C0-v).
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Figure 3-4. Vertical borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted orientation. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

Results for Set 3

Examples of results for Set 3 are as follows (see Figure 3-5). At a borehole length
larger than 20 metres, the probability is larger than 90 percent that a sample will not
be rejected considering the first criterion (Ho (a <=15 deg)). Or with other words, the
probability that a sample deviates significantly considering Ho (a <=15 deg) 1S less than
10 percent, if the length of the borehole is larger than 20 meters. And finally, if the
borehole has a length larger than 20 meters, the probability is larger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.
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Vertical borehole. Fracture Set 3 (sub-horizontal).
Probability for correct estimation of mean direction. Terzaghi correction included. (E2CO0-v).
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Figure 3-5. Vertical borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviations in predicted orientation. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

3.44 Results for an inclined borehole

Results for Set 1

Examples of results for Set 1 are as follows (see Figure 3-6). At a borehole length
larger than 90 metres, the probability is larger than 90 percent that a sample will not
be rejected considering the first criterion (Ho (a <=15 deg)). Or with other words, the
probability that a sample deviates significantly considering Ho (A <=15 deg) 1S less than
10 percent, if the length of the borehole is larger than 90 meters. And finally, if the
borehole has a length larger than 90 meters, the probability is larger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.
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Inclined borehole (T=90deg P=45deg). Fracture Set 1 (sub-vert).
Probability for correct estimation of orientation. Terzaghi correction included. (E2C9-i).
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Figure 3-6. Inclined borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviationsin predicted orientation. The figure gives the per centage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

Results for Set 2

Examples of resultsfor Set 2 are as follows (see Figure 3-7). At aborehole length
larger than 35 metres, the probability is larger than 90 percent that a sample will not
be rejected considering the first criterion (Ho (a <=15 deg))- Or With other words, the
probability that a sample deviates significantly considering Ho (a <=15 deg) IS l€SS than
15 percent, if the length of the borehole islarger than 35 meters. And findly, if the
borehole has alength larger than 35 meters, the probability islarger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.
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Inclined borehole (T=90deg P=45deg). Fracture Set 2 (sub-vert).
Probability for correct estimation of orientation. Terzaghi correction included. (E2C9-i).
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Figure 3-7. Inclined borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted orientation. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

Results for Set 3

Examples of results for Set 3 are as follows (see Figure 3-8). At a borehole length
larger than 35 metres, the probability is larger than 90 percent that a sample will not
be rejected considering the first criterion (Ho (a <=15 deg)). Or with other words, the
probability that a sample deviates significantly considering Ho (A <=15 deg) 1S less than
10 percent, if the length of the borehole is larger than 35 meters. And finally, if the
borehole has a length larger than 35 meters, the probability is larger than 90 percent
that the deviation in estimated orientation is less than 15 degrees.
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Inclined borehole (T=90deg P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of mean direction. Terzaghi correction included. (E2C9-i).
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Figure 3-8. Inclined borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviations in predicted orientation. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.

3.5 Parametrical hypothesis testing considering Fisher
distributions and confidence cones

3.51 Purpose

A test that assumes that the analysed population is distributed according to a known
probability distribution is called a parametrical test. We have conducted such tests, and
for these tests we have assumed that the orientations of the fractures of the population
is distributed according to Fisher distributions. This is a correct assumption as the
population was generated according to Fisher distributions. The purpose of these tests

is to demonstrate the remaining bias of the sampling procedure (sampling in boreholes),
the bias that remains after application of Terzaghi correction. This will be demonstrated
by analysing the probability for a selected hypothesis of the properties of the
population, to be rejected or accepted, at a certain selected level of confidence. In this
study the population is known, and the hypothesis of the properties of the population

is set equal to the known true properties of the population. The test will tell us the
probability for rejection or acceptance of this correct hypothesis of the rock mass, at a
certain selected level of confidence. In this section confidence cones will be used as a
part of the hypothesis testing.
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352 Confidence cones

A confidenceinterval for a parameter is an interval of values computed from a sample,
which includes the unknown value of the parameter with some specified probability.
The probability that a confidence interval will cover the unknown parameter value isthe
confidence level. A confidence cone is the same thing as a confidence interval, except
that the region computed to cover the unknown parameter is not an interval, but of a
conical or other specified shape. Hence, the concept of confidence cones corresponds to
the concept of confidence intervals. Consider a Fisher distribution, a confidence cone
for an unknown modal vector (of the Fisher dist.) is centred on the representative
vector of the sample studied. The confidence cone has an opening governed by some
confidence level and by both the size (number of fractures) and the dispersion (kappa)
of the sample. In this study, the confidence cones are calculated based on the
assumption that the dispersion of the population is unknown.

Based on these assumptions, the openings of the confidence cones are calculated by use
of methods given by /Fisher et al, 1987/, these methods are based on the work of the
following authors: Initially /Fisher, 1953/ considered point estimate of mean direction
and dispersion. /Watson, 1956/ and /Watson and Williams, 1956/ derived an exact
procedure for calculation of a confidence cone for the mean direction and a procedure
for calculation of an interval for kappa. /Stephens, 1962, 1967/ provided tables enabling
the Watson and Williams procedure to be implemented, /Stephens, 1967/ also gives the
theory and tables for exact interval estimation of kappa. General summaries of these
procedures are given by /Mardia, 1972/.

The sizes of cone openings are demonstrated in Figure 3-9 and Figure 3-10. The figures
demonstrates that the opening (acceptable deviation) depend on both the cal culated
dispersion of the samples (kappa) as well as of the number of fracturesin the sample,
and, of course, by the given confidence level. It is also demonstrated by these two
figures that in relation to the selected acceptable deviations, as discussed in Section 3.4
(515 degrees), the cone openings are small, especially for samples containing more
than approximately 100 fractures. The cone opening is reduced further as the number of
fractures in the sample increases. For samples containing more than approximately 100
fractures, the cone opening is small even if the confidence level is set as very large. This
is correct, because alarge (unbiased) sample is expected to produce a good estimate that
is close to the true value of the population.
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Confidence cone for the unknown direction of the modal vector of a Fisher distribution.
The cone is calculated assuming an unknown dispersion (kappa) of the population.
Specified confidence = 99 percent.
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Figure 3-9. Example of confidence cones for an unknown modal vector. Specified
confidence = 99%.

Confidence cone for the unknown direction of the modal vector of a Fisher distribution.
The cone is calculated assuming an unknown dispersion (kappa) of the population.
Specified confidence = 99.9 percent.
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Figure 3-10. Example of confidence cones for an unknown modal vector. Specified
confidence = 99.9%.

3.5.3 Null hypothesis and level of confidence

The analysis of the point estimate of the orientationsis carried out as a statistical
hypothesis testing. The hypothesis testing is based on the sample variable studied
(the acute angle) and given levels of confidence. The null hypothesis (Ho) is that the

the mean direction of the population, as estimated by the samples, are equal to the
known true mean direction of the population. We know that thisis a correct hypothesis,
but due to sampling bias etc it will not necessarily be confirmed by the samples. For a
studied sample, rejection of the hypothesis will take place if the modal vector of the
population (as defined by the acute angle) is outside of a confidence cone centred on the
representative vector of the sample (i.e. the opening of the confidence cone, centre to
side, is smaller than the acute angle of the sample).
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The confidence level should be selected in a way that the probability for rejection of the
hypothesisis small if the hypothesisis true. We have studied three different levels of
confidence, 95, 99 and 99.9 percent. The hypothesis tests are as follows:

First confidence level 95% Ho (c=95%):
The hypothesisHo (c=05%) i rejected if the modal vector of the population does not fall
inside a confidence cone calculated for a confidence level of 95%

Second confidence level 99% Ho (c=99%):
The hypothesisHo (c=09%) i rejected if the modal vector of the population does not fall
inside a confidence cone calculated for a confidence level of 99%

Third confidence level 99.9% Ho (c=09.9%):

The hypothesisHo (c=99.9%) iS rejected if the modal vector of the population does not fall
inside a confidence cone calculated for a confidence level of 99.9%

354 Results

For these tests (Section 3.5), the acceptable deviation in estimation of the true value,
as given by the confidence cones, decreases as the number of fracturesin the samples
increases. Furthermore, the acceptable deviation will also vary dependent on the
calculated dispersion of the fractures of the sample. Hence, the acceptable deviation
is not a constant value. For small samples, the acceptable deviation islarge, and for
large samples, the acceptable deviation is small.

Thetest will tell us the probability for rejection or acceptance of the hypothesis of
the rock mass properties, for different borehole lengths, and at selected levels of
confidence. (As previously stated, the hypothesisis that the orientation of the
population is equal to the known true orientation; we know that thisis a correct
hypothesis, but due to sampling bias etc it will not necessarily be confirmed by the
samples.) The efficiency of the point estimate of the acute angle increases with size
of sample, but the cone opening (acceptable deviation) decreases as the number of
fractures in the sample increases. Therefore the percentage of accepted samples does
not increase with borehole length, as for the previous tests (Section 3.4). Theoreticaly,
if the samples were taken without sampling bias from perfect Fisher distributions, the
probability for acceptance of the hypothesis should be equal to the confidence level,
regardless of borehole length. The results for confidence levels 99% and 99.9% are
givenin Figure 3-11 and in Figure 3-12. For all fracture sets and especially for the
inclined borehole, the results show a large amount of rejected samples. Thisisa
consequence of asystematic biasin the point estimate of the acute angle. This bias
comes from the fact that a borehole is a one-dimensional line that samples a three-
dimensional fracture network. The applied Terzaghi correction, which is supposed to
remove this bias, is not perfect and some aspects of the bias remain in the samples.
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Results for vertical borehole

The results demonstrates that for Set 1 and 2, the probability for rejection of the correct
hypothesisis larger than the prescribed level (100%-confidence level), at the confidence
levels of 99 percent and 99.9 percent (this follows from the aforementioned systematic
sampling-bias). However, for Set 3 which is not much influenced by sampling bias (as
it isasub-horizontal fracture set sampled by avertical borehole), the probability for
rejection of the correct hypothesisis close to the theoretically expected value.

At aconfidence level of 99 percent (Fiqure 3-11).

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 50 and
60 percent regardless of borehole length. For Set 3 the probability for acceptance of the
hypothesisis close to 96-97 percent regardless of borehole length. Theoretically, if the
samples were taken without sampling bias, the probability for acceptance of the
hypothesis should be equal to the confidence level, which is 99 percent.

At aconfidence level of 99.9 percent (Figure 3-11):

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 70 and
75 percent regardless of borehole length. For Set 3 the probability for acceptance of the
hypothesisis close to 99 percent regardless of borehole length. Theoretically, if the
samples were taken without sampling bias, the probability for acceptance of the
hypothesis should be equal to the confidence level, which is 99.9 percent.

Results for inclined borehole

These results demonstrates that for all three sets, the probability for rejection of the
correct hypothesisis larger than the prescribed level (100%-confidence level), at the
confidence levels of 99 percent and 99.9 percent. This follows from the aforementioned
systematic sampling-bias.

At aconfidence level of 99 percent (Fiqure 3-12).

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 50 and
60 percent, for boreholes of lengths larger than 300 m. For Set 3 the probability for
acceptance of the hypothesisis closeto 70 percent, for boreholes of lengths larger than
300 m. Theoreticaly, if the samples were taken without sampling bias, the probability
for acceptance of the hypothesis should be equal to the confidence level, whichis

99 percent.

At aconfidence level of 99.9 percent (Figure 3-12):

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 65 and
75 percent, for boreholes of lengths larger than 300 m. For Set 3 the probability for
acceptance of the hypothesisis close to 85 percent, for boreholes of lengths larger than
300 m. Theoreticaly, if the samples were taken without sampling bias, the probability
for acceptance of the hypothesis should be equal to the confidence level, which is

99.9 percent.
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Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution). Assuming an unknown dispersion.
Confidence level 99%. Terzaghi correction included. (E2C0-v).
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Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution). Assuming an unknown dispersion.
Confidence level 99.9%. Terzaghi correction included. (E2CO0-v).
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Figure 3-11. Vertical borehole. Hypothesis testing considering orientation of fracture
sets by use of confidence cones. The figure gives the percentage of accepted samples
(probability for an accepted sample). Tested hypothesisis: the orientation of the
fracture set studied is equal to the true orientation of the population. Confidence levels
are 99 percent (upper figure) and 99.9 percent (lower figure).
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Inclined borehole (T=90deg P=45deg). Fracture Set 1, 2 and 3.
Test for a specified modal vector (Fisher distribution). Assuming an unknown dispersion.
Confidence level 99%. Terzaghi correction included. (E2C9-i).
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Figure 3-12. Inclined borehole. Hypothesis testing considering orientation of fracture
sets by use of confidence cones. The figure gives the percentage of accepted samples
(probability for an accepted sample). Tested hypothesisis: the orientation of the
fracture set studied is equal to the true orientation of the population. Confidence levels
are 99 percent (upper figure) and 99.9 percent (lower figure).
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4 Estimation of fracture set dispersion from
borehole data

4.1 Fracture set and dispersion

A fracture set isanumber of fractures that are grouped together as they demonstrate
some tendency to have a similar orientation. The orientations of the fractures of a
fracture set may follow some stochastic distribution, in which some orientations are
more likely than other orientations. An example of such adistribution is the Fisher
distribution. The poles of the fractures of afracture set have atendency (weak or strong)
to form some sort of cluster on a spherical projection. (It is also possible to group
fractures into a fracture set based on the conclusion that the fractures have no tendency
for asimilar orientation).

The dispersion of afracture set is a measure of the concentration (or spread) of the
fracture orientations about some mean direction. For the Fisher distribution the
dispersion parameter is called “kappa’, and it is actually a concentration parameter,
since the larger the value of kappa the more the distribution is concentrated towards a
mean direction. The kappa parameter corresponds to a Fisher distribution, and for other
distributions there are other measures of dispersion. Examples of general dispersion
parameters are the SR1 and SR2 parameters (discussed below) In this study we have
analysed three different dispersion parameters, the kappa parameter (Fisher
distributions) and the SR1 and SR2 parameters.

4.2 Estimated dispersion based on the SR1 parameter

4.2.1 Methodology —eigenvalues parameters and dispersion

The mean direction of a group of fractures can be calculated based on the eigenvalues
method, as proposed by /Mardia, 1972/; this method is discussed in Appendix A. The
method will provide us with arepresentative vector, and the direction of this vector is
the mean direction of the group of fractures studied. In addition the method will provide
us with three eigenvalues (L1, L2 and L 3), these three values provide direct information
about the distribution of the group of fractures studied.

Based on the elgenvalues, two different dispersion parameters are calculated, as
proposed by /Woodcock, 1977/, these two parameters are called, SR1 and SR2, they are
calculated as follows.

SR1=LN(LVL2) and SR2=LN(L2/L3) 4-1

If SR2 issmall (approximately < 1) thisisan indication that the poles of the fracture set
studied forms a circular cluster on a spherical projection. Considering the population of
fractures studied, the distribution of orientations of the fracture sets studied are Fischer
distributions, which forms circular clusters on a spherical projection, it follows that the
three different SR2-values corresponding to the three different fracture sets, are all
equal to zero (for the population). Thisis confirmed by the results of our analysis of
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large samples, which demonstrate small values of SR2. For samples (Terzaghi

corrected) taken at a borehole length equal to 1000 m, the mean SR2 values are: 0.15 for
Set 1, 0.12 for Set 2 and 0.09 for Set 3. Hence, the small values of SR2 indicate that the
distributions of the fracture sets studied are circular on a unit sphere.

For circular fracture sets, the SR1 parameter is a measure of the dispersion of the set. In
analogy with the concentration parameter of a Fisher distribution (kappa), the larger the
value of SR1 the more the distribution (the fractures) is concentrated towards a mean
direction. Small values of SR1 indicates a large dispersion.

We have derived a relationship between the kappa parameter of a Fisher distribution
and the corresponding SR1 parameter (see Appendix _A). Thisrelationship is
applicable for Fisher distributions, it is not to be used on samples containing a
limited number of fractures.

2

SRL= In(—(K 1) +1j 42
K-1

K = Kappa of Fisher distribution

By use of Eq. 5-2, above, we have calculated the following values of SR1, to
demonstrate the relationship between kappa and SR1:

Kappa=5 correspondsto SR1=1.45
Kappa=7 correspondsto SR1=1.82
Kappa=9 correspondsto SR1=2.09

The SR1 value of the population is also calculated based on Eg. 5-2, the equation yields
the following SR1 values:

SET 1. Fisher kappa of population=4.84 - SR1 of population =1.411
SET 2: Fisher kappa of population=8.35 - SR1 of population = 2.013
SET 3: Fisher kappa of population=8.33 - SR1 of population = 2.010

4.2.2 Point estimate and the SR1 parameter

The fractures that intersect the borehole studied are samples of the fracture population.
The properties of the sample are estimates of the properties of the population. The
observed fractures are classified into three groups, one group for each theoretical
fracture set. After the classification each fracture set is studied one by one, separate
from the other sets. The test presented below is conducted for each fracture set

separately.

From a statistical point of view, the calculation of the SR1 variable, based on samples
representing the population, is a point estimate of the dispersion parameter SR1 of the
population. The SR1 variable is the sample variable studied. The efficiency of the point
estimate of the variable studied increases with the size of the sample (number of
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observed fractures) and the size of the sample increases with the length of the borehole.
Thisis demonstrated in Figure 4-1 and Figure 4-2 (below).

Vertical borehole. Mean of SR1 values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C0-v).
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Vertical borehole. Standard deviation in SR1 values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C0-v).
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Figure 4-1. Vertical borehole. The efficiency of the point estimate of the SR1 variable,
given as the mean (upper figure) and standard deviation (lower figure) of the SR1
variable of the samples at different lengths of borehole. The calculations are based on
900 realisations of different boreholes, for each length studied.
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Inclined borehole (T=90deg P=45deg). Mean of SR1 values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i).
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Inclined borehole (T=90deg P=45deg). Standard deviation in SR1 values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i).
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Figure 4-2. Inclined borehole. The efficiency of the point estimate of the SR1 variable,

given as the mean (upper figure) and standard deviation (lower figure) of the SR1

variable of the samples at different lengths of borehole. The calculations are based on

900 realisations of different boreholes, for each length studied.
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Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such
sampling of fracture orientation in a three-dimensional fracture system will introduce
an orientation sampling bias. The bias follows from the fact that the probability for
intersecting a fracture depends on the angle between the sampling line and the fracture,
as well as on the size of the fracture. For compensation of this sampling bias we have
applied a geometrical correction factor based on the observed angle between the
sampling line and the normal to a particular fracture, such a correction is called
Terzaghi correction (see Appendix B). In this study all the fracture orientation data,
derived from sampling the boreholes, are corrected for sampling bias by use of the
Terzaghi correction. Terzaghi correction is not perfect and some bias will remain in
the samples.

Considering a vertical borehole of length 1000 m, the deviation between the mean SR1
of the samples and the SR1 of the population is as follows:

SET 1: SR1 sample =1.30 SR1 population = 1.41 Difference = 7.9%
SET 2: SR1 sample = 1.93 SR1 population =2.01 Difference = 4.0%
SET 3: SR1 sample = 1.96 SR1 population =2.01 Difference = 2.7%

Considering an inclined borehole of length 1000 m, the deviation between the mean
SR1 of the samples and the SR1 of the population is as follows:

SET 1: SRI sample =1.32 SR1 population = 1.41 Difference = 6.2%
SET 2: SR1 sample = 1.96 SR1 population =2.01 Difference = 2.6%
SET 3: SR1 sample = 1.94 SR1 population = 2.01 Difference = 3.4%

4.2.3 Hypothesis testing of SR1 parameter considering
acceptable deviations

Purpose of test

The purpose of the test is to determine when the size of the sample is large enough to
produce an acceptable estimate of the studied parameter, with a certain probability.
This can also be stated in the following way: the calculation of the sample size that is
necessary to reach a confidence level, considering a given confidence interval. The
confidence interval is the same thing as a test criterion (an acceptable deviation). The
sample size corresponds to length of borehole.

Null hypothesis, acceptable deviations and criterion of significance

The analysis of the point estimate of the fracture set dispersion is based on hypothesis
testing. The hypothesis testing is based on the sample variable studied (the SR1
variable) and given criterions of significance. The null hypothesis (Hp) is that the
dispersion parameter derived from a sample is a good estimate of the true parameter
of the population. For the tests presented in this section, the criterions of significance
correspond to selected values of acceptable deviations. If the deviation between a SR1
value derived from a sample and the true SR1 value is larger than these acceptable
deviations, the sample is rejected. We have studied three different criterions that
correspond to three different levels of significance.
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First criterion: Ho (sr1_deviation <=15%) IS rejected if:

ABS|[ SR1 (sampie) — SR1 (poputation) ] <= 0.15* SR1 (population)
Second criterion: Ho (sr1._deviation <=10%) 1S rejected if:
ABS [ SR1 (samplie) — SR1 (poputationy ] <= 0.10 * SR1 (population)
Third criterion: Ho (sr1_ deviation <=5%) IS rejected if:
ABS [ SR1 (sample) — SR1 (poputation) ] <= 0.5* SR1 (population)

The result of the analysisis presented as the percentage of accepted the samples, which
is approximately the same thing as the probability for correct estimation, considering
the different selected criterions

424 Results for a vertical borehole

Results for Set 1

Examples of resultsfor Set 1 are as follows (see Figure 4-3): At aborehole length larger
than 1100 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (sr1_ deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (sr1_deviation <=15%) 1S 1€SS
than 10 percent, if the length of the borehole islarger than 1100 meters. And finally,

if the borehole has alength larger than 1100 meters, the probability islarger than 90
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of

the true SR1 value of the population.
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Vertical borehole. Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Figure 4-3. Vertical borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the SRI parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

Results for Set 2

Examples of results for Set 2 are as follows (see Figure 4-4). At a borehole length larger
than 250 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (sri_ deviation <=15%) )- Or with other words, the
probability that a sample deviates significantly considering Ho (sr1  deviation <=15%) 15 less
than 10 percent, if the length of the borehole is larger than 250 meters. And finally, if
the borehole has a length larger than 250 meters, the probability is larger than 90
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of

the true SR1 value of the population.
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Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Figure 4-4. Vertical borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the SRI parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

Results for Set 3

Examples of results for Set 3 are as follows (see Figure 4-5). At a borehole length larger
than 100 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (sri_ deviation <=15%) )- Or with other words, the
probability that a sample deviates significantly considering Ho (sr1  deviation <=15%) 15 less
than 10 percent, if the length of the borehole is larger than 100 meters. And finally, if
the borehole has a length larger than 100 meters, the probability is larger than 90
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the
true SR1 value of the population.
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Vertical borehole. Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2CO0-v).
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Figure 4-5. Vertical borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviationsin predicted dispersion, as given by the SR1 parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

425 Results for an inclined borehole

Results for Set 1

Examples of resultsfor Set 1 are as follows (see Figure 4-6): At aborehole length larger
than 750 metres, the probability islarger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (sr1_ deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (sr1_deviation <=15%) 1S 1€SS
than 10 percent, if the length of the borehole is larger than 750 meters. And finaly, if
the borehole has alength larger than 750 meters, the probability islarger than 90
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the
true SR1 value of the population.
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Inclined borehole (T=90deg P=45deg). Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C9-i).
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Figure 4-6. Inclined borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviationsin predicted dispersion, as given by the SR1 parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

Results for Set 2

Examples of resultsfor Set 2 are as follows (see Figure 4-7): At aborehole length larger
than 170 metres, the probability islarger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (sr1_ deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (sr1_deviation <=15%) 1S 1€SS
than 10 percent, if the length of the borehole islarger than 170 meters. And finaly, if
the borehole has a length larger than 170 meters, the probability is larger than 90
percent that the deviation in estimated SR1 value is within plus/minus 15 percent of the
true SR1 value of the population.
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Inclined borehole (T=90deg P=45deg). Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C9-i).
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Figure 4-7. Inclined borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the SRI parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

Results for Set 3

Examples of results for Set 3 are as follows. At a borehole length larger than

250 metres, the probability is larger than 90 percent that a sample will not be rejected
considering the first criterion (Ho (sr1 deviation <=15%). Or with other words, the probability
that a sample deviates significantly considering Ho (sr1  deviation <=15%) 15 less than 10
percent, if the length of the borehole is larger than 250 meters. And finally, if the
borehole has a length larger than 250 meters, the probability is larger than 90 percent
that the deviation in estimated SR1 value is within plus/minus 15 percent of the true
SR1 value of the population.
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Inclined borehole (T=90deg P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2CO0-i).
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Figure 4-8. Inclined borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the SRI parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.

4.3 Estimated dispersion based on the kappa parameter

4.3.1 Methodology — resultant vectors and Fisher kappa parameter

The samples analysed in this study demonstrate that the orientations of the fractures
have a circular distribution on a spherical projection; this is demonstrated by the
calculated SR2 values (see Section 4.2.1). These results are as expected, as the fracture
sets were generated by use of Fisher distributions. However, even if we had not known
that the fracture sets were generated by use of Fisher distributions, the circular shape of
the fracture clusters as revealed by the SR2 parameter, indicates that parametric tests
against Fisher distributions are appropriate. The Fisher distribution is characterised

by a modal vector (mean direction) and a concentration parameter called kappa, the
distribution has a rotational symmetry about the modal vector. The larger the value of
kappa the more the distribution (the fractures) is concentrated towards the modal vector.

The mean direction for a group of fractures can be calculated based on the resultant
vector method, this method is discussed in Appendix A. The method will provide us
with a resultant vector, and the direction of this vector is the mean direction of the
group of fractures studied. In addition, the method will provide us with the length of
the resultant vector (R); the length of the vector provides direct information about the
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distribution of the group of fractures studied. In analogy with the concentration
parameter of a Fisher distribution (kappa), the larger the value of R the more the
distribution (the fractures) is concentrated towards a mean direction.

The kappa values of the parent distribution -the population- can be estimated based
on information provided by samples. /Fisher, 1953/ proposed a method for such an
estimate based on a ML-estimation (maximum likelihood method). The method
involves the length of the resultant vector and the number of fracturesin the sample,
asfollows.

e“+e* 1 R
e“-e* k M

k = Kappa of sample

R = Length of resultant vector (of sample)
M = Number of fracturesin samplet

For values of kappalarger than ca. 5 the variable e is negligible, and the equation
above isreduced to

M
M-R

The first equation is difficult to analytically solve for kappa; however, it is not difficult
to solve the equation by use of numerical methods. In this study a sampleisfirst tested
by use of the reduced equation (Eq. 5-4). If the obtained kappa vaueislessthan 8 the
complete equation (Eg. 5-3) is solved numerically by use of the secant method, and if
the obtained kappais larger than 8 the reduced equation (Eq. 5-4) is used for calculation
of kappa.

4-4

To ensure consistent results of the resultant vector method, it was constrained by the
results of the eigenvalues method, as dicussed in Appendix A.

4.3.2 Point estimate and the kappa parameter

The fractures that intersect the borehole studied are samples of the fracture population.
The properties of the sample are estimates of the properties of the population. The
observed fractures are classified into three groups, one group for each theoretical
fracture set. After the classification each fracture set is studied one by one, separate
from the other sets. The test presented below is conducted for each fracture set

separately.

From a statistical point of view, the calculation of the kappa variable, based on

samples representing the population, is a point estimate of the parameter kappa of the
population. Kappais the sample variable studied. The efficiency of the point estimate of
the variable studied increases with the size of the sample (number of observed fractures)
and the size of the sample increases with the length of the borehole. Thisis
demonstrated in Figure 4-9 and Figure 4-10.
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Sampling along a straight borehole (a scanline) is a one-dimensional sampling; such
sampling of fracture orientation in athree-dimensional fracture system will introduce
an orientation sampling bias. The bias follows from the fact that the probability for
intersecting a fracture depends on the angle between the sampling line and the fracture,
aswell ason the size of the fracture. For compensation of this sampling bias we have
applied ageometrical correction factor based on the observed angle between the
sampling line and the normal to a particular fracture, such a correction iscalled
Terzaghi correction (see Appendix B). In this study all the fracture orientation data,
derived from sampling the boreholes, are corrected for sampling bias by use of the
Terzaghi correction. The Terzaghi correction is not perfect and some bias will remain
in the samples.

Considering avertical borehole of length 1000 m, the final deviation between the mean
kappa of the samples and the kappa of the population is as follows:

SET 1. Kappasample=4.80 Kappa population = 4.84 Difference = 0.8%
SET 2: Kappasample=8.19 Kappa population = 8.35 Difference = 1.9%
SET 3. Kappasample =8.29 Kappa population = 8.33 Difference = 0.5%

Considering an inclined borehole of length 1000 m, the final deviation between the
mean kappa of the samples and the kappa of the population is as follows:

SET 1. Kappasample=4.89 Kappa population = 4.84 Difference = 1.0%
SET 2: Kappasample=8.43 Kappa population = 8.35 Difference = 0.9%
SET 3. Kappasample=8.43 Kappa population = 8.33 Difference = 1.2%
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Vertical borehole. Mean of Kappa values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C0-v).
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Vertical borehole. Standard deviation in kappa values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C0-v).
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Figure 4-9. Vertical borehole. The efficiency of the point estimate of the kappa
variable, given as the mean (upper figure) and standard deviation (lower figure) of the
kappa variable of the samples at different lengths of borehole. The calculations are
based on 900 realisations of different boreholes, for each length studied.
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Inclined borehole (T=90deg P=45deg). Mean of Kappa values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i).
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Inclined borehole (T=90deg P=45deg). Standard deviation in kappa values of samples.
Fracture Set 1, 2 and 3. Terzaghi correction included. (E2C9-i).
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Figure 4-10. Inclined borehole. The efficiency of the point estimate of the kappa
variable, given as the mean (upper figure) and standard deviation (lower figure) of the
kappa variable of the samples at different lengths of borehole. The calculations are
based on 900 realisations of different boreholes, for each length studied.
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4.3.3 Hypothesis testing of the kappa parameter considering
acceptable deviations

Purpose of test

The purpose of the test isto determine when the size of the sample islarge enough to
produce an acceptable estimate of the studied parameter, with a certain probability.
This can also be stated in the following way: the calculation of the sample size that is
necessary to reach a confidence level, considering a given confidence interval. The
confidence interval isthe same thing as atest criterion (an acceptable deviation). The
sample size corresponds to length of borehole.

Null hypothesis, acceptable deviations and criterion of significance

The analysis of the point estimate of the fracture set dispersion is based on hypothesis
testing. The hypothesistesting is based on the sample variable studied (the kappa
variable) and given criterions of significance. The null hypothesis (Ho) is that the
dispersion parameter derived from a sample is a good estimate of the true parameter

of the population. For the tests presented in this section, the criterions of significance
correspond to selected values of acceptable deviations. If the deviation between a kappa
value derived from a sample and the true kappa value is larger than these acceptable
deviations, the sampleis rejected.

The kappa values of the population are as follows:

SET 1: Fisher kappa of population = 4.84

SET 2: Fisher kappa of population = 8.35

SET 3: Fisher kappa of population = 8.33

We have studied three different criterions of significance.

First criterion: Ho appa_deviation <=15%) 1S rejected if:

ABS [ Kappa sampie) — Kappa population) ] <= 0.15* Kappa population)
Thisfirst level correspondsto intervals between:

For SET 1. 4.11 to 5.57 which correspondsto an interval length of 1.45
For SET 2: 7.10 t0 9.60 which corresponds to an interval length of 2.50
For SET 3. 7.08 t0 9.58 which corresponds to an interval length of 2.50
Second criterion: Ho (kappa_deviation <=10%) 1S rejected if:

ABS [ Kappa sample) — Kappa population) ] <= 0.10* Kappa population)

Third criterion: Ho (kappa_deviation <=5%) 1S rejected if:

ABS|[ Kappa sampie) — Kappa popuiation) ] <= 0.5* Kappa popuiation)
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The result of the analysisis presented as the percentage of accepted the samples, which
is approximately the same thing as the probability for correct estimation, considering
the different selected criterions

434 Results for a vertical borehole

Results for Set 1

Examples of resultsfor Set 1 are as follows (see Figure 4-11): At aborehole length
larger than 500 metres, the probability islarger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (kappa_deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) S 1€SS
than 10 percent, if the length of the borehole is larger than 500 meters. And finally,

if the borehole has alength larger than 500 meters, the probability is larger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of
the true Kappa value of the population.

Vertical borehole. Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-11. Vertical borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same
thing as the probability for correct estimation, for the different selected criterions.
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Results for Set 2

Examples of results for Set 2 are as follows (see Figure 4-12): At aborehole length
larger than 420 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho <appa_deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) iS 1€SS
than 10 percent, if the length of the borehole is larger than 420 meters. And finally,

if the borehole has alength larger than 420 meters, the probability islarger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent

of the true Kappa value of the population.

Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-12. Vertical borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.
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Results for Set 3

Examples of results for Set 3 are as follows (see Figure 4-13): At aborehole length
larger than 200 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (cappa_deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) iS 1€SS
than 10 percent, if the length of the borehole is larger than 200 meters. And finaly, if
the borehole has alength larger than 200 meters, the probability islarger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of
the true Kappa value of the population.

Vertical borehole. Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2CO0-v).
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Figure 4-13. Vertical borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.
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435 Results for an inclined borehole

Results for Set 1

Examples of resultsfor Set 1 are asfollows: At aborehole length larger than

420 metres, the probability islarger than 90 percent that a sample will not be rejected
considering the first criterion (Ho appa_deviation <=15%) ) Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) 1S 1€SS
than 10 percent, if the length of the borehole is larger than 420 meters. And finaly, if
the borehole has a length larger than 420 meters, the probability is larger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of
the true Kappa value of the population.

Inclined borehole (T=90deg P=45deg). Fracture Set 1 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C9-i).

100

—&— Criterion: sample deviation within plus / minus 10 % of Kappa population.

rrrﬂ/ﬁﬁrﬁ‘ﬂ/ﬁ R §

90 - ,/A*H—trfﬁ/‘(ﬁ\t

80 /«Hff {HMM
E . //a WMW
5 |
% (A/ /{B\B,a—(
[%2]
s 60 D_n} W\e
% //f /‘e/eae—(
§ 0 F'B/H wm
G r(-)—e—e/“’/<
% 40 A
< /
[}
S 30 ﬂ
&

20 f/j_/w-ed —o— Criterion: sample deviation within plus / minus 5 % of Kappa population. |

10 J —— Criterion: sample deviation within plus / minus 15 % of Kappa population.

| | | | | | |

0

0 lC;O 200 360 460 560 660 760 860 9(;0 1060
Borehole length (m)

Figure 4.14. Inclined borehole. Fracture set 1. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.



Results for Set 2

Examples of results for Set 2 are as follows: At a borehole length larger than

360 metres, the probability islarger than 90 percent that a sample will not be rejected
considering the first criterion (Ho cappa_deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) iS 1€SS
than 10 percent, if the length of the borehole is larger than 360 meters. And finaly, if
the borehole has alength larger than 360 meters, the probability islarger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of
the true Kappa value of the population.

Inclined borehole (T=90deg P=45deg). Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C9-i).
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Figure 4-15. Inclined borehole. Fracture set 2. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.
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Results for Set 3

Examples of results for Set 3 are as follows (see Figure 4-16): At aborehole length
larger than 500 metres, the probability is larger than 90 percent that a sample will not be
rejected considering the first criterion (Ho (<appa_deviation <=15%) ). Or with other words, the
probability that a sample deviates significantly considering Ho (kappa_deviation <=15%) iS 1€SS
than 10 percent, if the length of the borehole is larger than 500 meters. And finaly, if
the borehole has alength larger than 500 meters, the probability islarger than 90
percent that the deviation in estimated Kappa value is within plus/minus 15 percent of
the true Kappa value of the population.

Inclined borehole (T=90deg P=45deg). Fracture Set 3 (sub-horizontal).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure 4-16. Inclined borehole. Fracture set 3. Hypothesis testing for selected
acceptable deviations in predicted dispersion, as given by the kappa parameter. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, for the different selected criterions.
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4.4 Parametric hypothesis testing considering a
confidence interval for the kappa parameter

4.4.1 Purpose

A test that assumes that the analysed population is distributed according to a known
probability distribution is called a parametrical test. We have conducted such tests, and
for these tests we have assumed that the orientations of the fractures of the population
is distributed according to Fisher distributions. Thisis a correct assumption as the
population was generated according to Fisher distributions. The purpose of these tests
is to demonstrate the remaining bias of the sampling procedure (sampling in boreholes),
the bias that remains after application of Terzaghi correction. Thiswill be demonstrated
by analysing the probability for a selected hypothesis of the properties of the
population, to be rejected or accepted, at a certain selected level of confidence.

In this study the population is known, and the hypothesis of the properties of the
population is set equal to the known true properties of the population. The test will tell
us the probability for rejection or acceptance of this correct hypothesis of the rock mass,
at acertain selected level of confidence. In this section confidence intervals will be used
as apart of the hypothesis testing.

442 Confidence interval

A confidenceinterval for a parameter is an interval of values computed from a sample,
which includes the unknown value of the parameter with some specified probability.
The probability that a confidence interval will cover the unknown parameter value is
the confidence level.

Hence, for a sample studied the confidence interval for the kappa parameter is centred
on the kappa value derived from the sample. The size of an interval is governed by

(i) some specified confidence level, (ii) by the calculated kappa value of the samples
and by (iii) the number of fracturesin the sample. In this study, the confidence intervals
for the kappa parameter are cal culated based on the assumption that the direction of the
modal vector is unknown (mean direction of population is unknown).

Based on these assumptions, the sizes of the confidence intervals are calculated by use
of methods given by /Fisher et al, 1987/, these methods are based on the work of the
following authors: Initially /Fisher, 1953/ considered point estimate of mean direction
and dispersion. /Watson, 1956/ and /Watson and Williams, 1956/ derived an exact
procedure for calculation of a confidence cone for the mean direction and a procedure
for calculation of an interval for kappa. /Stephens, 1962, 1967/ provided tables enabling
the Watson and Williams procedure to be implemented, /Stephens, 1967/ also gives the
theory and tables for exact interval estimation of kappa. General summaries of these
procedures are given by /Mardia, 1972/.

Example of sizes of confidence intervals are demonstrated in Figure 4-17 and Figure
4-18. The figures demonstrates that the interval (acceptable deviation) depend on both
the calculated kappa values of the samples as well as of the number of fracturesin the
sample, and of course by the given confidence level.
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Selected acceptable deviations in kappa values were discussed in Section 4.3; for the
first level, the acceptable deviation is plus/minus 15 percent of the kappa value of the
population. Plus/minus 15 percent of kappa-population corresponds to the following
interval lengths:

Setl1=15 Set 2=: 2.5 Set 3= 2.5.

A comparison between the intervals given above and the confidence intervals given in
Figure 4-17 and Figure 4-18, reveals the following.

» Ataconfidence level of 95% the confidence intervals are smaller than the
previously discussed acceptable deviation, presuming that the number of fracturesin
the sampleislarger than: (i) approximately. 150 fractures if kappa of sampleis4.8
(Set 1) and (ii) approximately 160 fractures if kappa of sampleis 8.3 (Set 2 and 3).

» Ataconfidence level of 99% the confidence intervals are smaller than the
previously discussed acceptable deviation if the number of fracturesin the sampleis
larger than: (i) approximately. 270 fractures if kappa of sampleis.4.8 (Set 1) and
(i) approximately 290 fracturesif kappa of sampleis 8.3 (Set 2 and 3).

Hence, it is demonstrated by the two figuresthat in relation to thefirst level of selected
acceptable deviations in kappa value, as discussed in Section 4.3, and for confidence
levels less than 95% the confidence intervals are small for samples containing more
than approximately 160 fractures.

Upper and lower confidence limits for an unknown kappa value of a Fisher distribution.
The limits are calculated assuming an unknown direction of the modal vector of the population.
Specified confidence = 95 percent.
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Figure 4-17. Example of confidence interval for an unknown kappa value of a Fisher
distribution. Specified confidence = 95%.
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Upper and lower confidence limits for an unknown kappa value of a Fisher distribution.
The limits are calculated assuming an unknown direction of the modal vector of the population.
Specified confidence = 99 percent.
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Figure 4-18. Example of confidence interval for an unknown kappa value of a Fisher
distribution. Specified confidence = 90%.

4.4.3 Null hypothesis and level of confidence

The analysis of the point estimate of the dispersion (kappa) of the fracture orientation

is carried out as a statistical hypothesis testing. The hypothesistesting is based on the
sample variable studied (kappa) and given levels of confidence. The null hypothesis
(Ho) isthat the dispersion of the population, as estimated by the samples, are equal to
the known true dispersion of the population. We know that thisis a correct hypothesis,
but due to sampling bias etc it will not necessarily be confirmed by the samples. For a
studied sample, rejection of the hypothesis will take place if the known true kappa value
of the population is outside of a confidence interval centred on the kappa value of the
sample.

Anillustration of the principles of thetest isgiven in Figure 4-19. This figure presents
confidence intervals at different borehole lengths for samples studied and the kappa
value of the population (the hypothesis tested). For the presented case and confidence
level, rejection of the hypothesis will take place for samples containing more than 320
fractures, because for samples of this size or larger, the upper limit of the confidence
interval isless than the kappa value of the population (the hypothesis tested).
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Upper and lower confidence limits for an unknown kappa value
Specified confidence = 90 percent.
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== Kappa of population = 8.3

Figure 4-19. Example demonstrating upper and lower confidence limits, as given by
samples, and the test-value of an analysed hypothesis.

The confidence level should be selected in a way that the probability for rejection of the
hypothesisis small if the hypothesisis true. We have studied three different levels of
confidence: 99, 99.9 and 99.99 percent. The hypothesis tests are as follows:

First confidence level 99% Ho (c=g99%):

The hypothesis Ho (c=90%) IS rejected if the kappa value of the population does not fall
inside a confidence interval calculated for a confidence level of 99%.

Second confidence level 99.9% Ho (c=00.9%)

The hypothesis Ho (c=90.9% ) iS rejected if the kappa value of the population does not fall
inside a confidence interval calculated for a confidence level of 99.9%.

Third confidence level 99.99% Ho (c=99.99%)

The hypothesis Ho (c=90.99%) iS rejected if the kappa value of the popul ation does not fall
inside a confidence interval calculated for a confidence level of 99.99%.

For each confidence level, the result of the analysisis presented as the percentage of
accepted samples at different borehole lengths.

4.4.4 Results

For these tests (Section 4.4), the acceptable deviation, as given by the confidence
intervals, decreases as the number of fracturesin a sample increases. Furthermore, the
acceptable deviation (confidence interval) will also vary dependent on the calculated
kappa value of the sample. Hence, the acceptable deviation is not a constant value. For
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small samples, the acceptable deviation islarge, and for large samples, the acceptable
deviation issmall. The test will tell us the probability for rejection or acceptance of the
studied hypothesis, for different borehole lengths, and at selected levels of confidence.
(As previoudly stated, the hypothesisis that the dispersion of the population is equal

to the known true dispersion; we know that thisis a correct hypothesis, but due to
sampling bias etc it will not necessarily be confirmed by the samples.) The efficiency of
the point estimate of the kappa value increases with size of sample, but the confidence
interval (acceptable deviation) decreases as the number of fracturesin the sample
increases. Therefore the percentage of accepted samples does not increase with borehole
length, as for the previous tests of Chapter 4. Theoretically, if the samples were taken
without sampling bias from perfect Fisher distributions, the probability for acceptance
of the hypothesis should be equal to the confidence level, regardless of borehole

length. The results for the confidence levels studied are given in Figure 4-20 through
Figure 4-23.

The results show alarge number of rejected samples. Thisis aconsequence of a
systematic bias in the point estimate of the kappa value. This bias follows from the fact
that a borehole is aone-dimensional line that samples a three-dimensional fracture
network. The applied Terzaghi correction, which removes most of thisbias, is not
perfect and some aspects of the bias remain in the samples.

Results for vertical borehole

The results demonstrate that for Set 1 and 2, the probability for rejection of the correct
hypothesisis larger than the prescribed level (100%-confidence level), at the confidence
levels of 99 percent and 99.9 percent. However for Set 3, which is not very much
influenced by sampling bias (asit is a sub-horizontal fracture set sampled by avertical
borehole) the probability for rejection of the correct hypothesisis close to the
theoretically expected value.

At aconfidence level of 99 percent (Fiqure 4-20):

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 70 and
85 percent, regardless of borehole length. For Set 3 the probability for acceptance of the
hypothesisis close to 96-97 percent regardless of borehole length. Theoretically, if the
samples were taken without sampling bias, the probability for acceptance of the
hypothesis should be equal to the confidence level, which is 99 percent.

At aconfidence level of 99.9 percent (Figure 4-21):

For Set 1 and Set 2, the probability for acceptance of the hypothesisis between 80 and
90 percent regardless of borehole length. For Set 3 the probability for acceptance of the
hypothesisis close to 99 percent regardless of borehole length. Theoretically, if the
samples were taken without sampling bias, the probability for acceptance of the
hypothesis should be equal to the confidence level, which is 99.9 percent.
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Percentage of accepted samples (not rejected)

Figure 4-20. Vertical borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa
value of the fracture set studied is equal to the true value of the population. Confidence

Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level=99 % Terzaghi correction included. (E2C0-v).
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Figure 4-21. Vertical borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa
value of the fracture set studied is equal to the true value of the population. Confidence

Vertical borehole. Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level=99.9 % Terzaghi correction included. (E2CO0-v).
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Results for inclined borehole

The results demonstrate that for all three sets, the probability for rejection of the correct
hypothesisis larger than the prescribed level (100%-confidence level), at the confidence
levels of 99 percent and 99.9 percent.

At aconfidence level of 99 percent (Figure 4-22):

For all sets, the probability for acceptance of the hypothesisis between 70 and 90
percent, regardless of borehole length. Theoretically, if the samples were taken without
sampling bias, the probability for acceptance of the hypothesis should be equal to the
confidence level, which is 99 percent.

At aconfidence level of 99.9 percent (Figure 4-23):

For all sets, the probability for acceptance of the hypothesisis between 90 and 95
percent, regardless of borehole length. Theoretically, if the samples were taken without
sampling bias, the probability for acceptance of the hypothesis should be equal to the
confidence level, which is 99.9 percent.

Inclined borehole (T=90deg P=45deg). Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level= 99 % Terzaghi correction included. (E2C9-i).
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Figure 4-22. Inclined borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa
value of the fracture set studied is equal to the true value of the population. Confidence
level is 99 percent
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Inclined borehole (T=90deg P=45deg). Fracture Set 1, 2 and 3.
Test for a specified dispersion (Fisher kappa). Assuming an uknown mean direction.
Confidence level=99.9 % Terzaghi correction included. (E2C9-i).
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Figure 4-23. Inclined borehole. Hypothesis testing considering dispersion (kappa-
values) of fracture sets, by use of confidence intervals. The figure gives the percentage
of accepted samples (probability for an accepted sample). Tested hypothesis: kappa
value of the fracture set studied is equal to the true value of the population. Confidence
level is99.9%
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5 Estimation of fracture density from
boreholes and rock surfaces

5.1 Measures of fracture density: P10, P21 and P32

The number and sizes of the fractures in the rock mass are commonly described as the
fracture density (or fracture intensity). Three different parameters are used to describe
the fracture density: P10, P21 and P32.

e Theone-dimensional density is given by the P10 parameter; it is equal to number of
fractures per unit length, taken along a straight line.

* Thetwo-dimensiona density is given by the P21 parameter; it is equal to fracture
trace-length per unit surface area, taken over a surface.

* Thethree-dimensional density is given by the P32 parameter; it is equal to fracture
surface area per unit rock volume, taken over a volume.

The P10 valueis often called the fracture frequency and given as fractures per metre. As
such ameasure the P10 value is included in estimations of rock mechanical properties.
Both the P10 and P21 depend on the orientation of the line or plane considered for
sampling of the fracture network (except in the case of an isotropic fracture network);
therefore the most interesting parameter is the P32, which considers a volume and not a
sampling line or a plane. Based on observations in boreholes and on rock surfaces (e.g.
rock outcrops) it is possible to estimate the P10 and P21 parameters. It is however a
more complicated to estimate the P32 parameter as normally no direct observations can
be made of the complete extension of fracture surfaces inside a studied volume of rock.
Consequently, when estimating the P32 parameter it has to be calculated based on other
measurabl e properties.

For fracture networks in which the fracture orientations are not uniformly random, there
isno simple direct relationship between these three density parameters. This is because
the different density parameters describe the fracture density in different number of
dimensions, and for each new dimension added, additional information of the fracture
system is needed for calculation of the corresponding density parameter. However,
when modelling fracture networks, the quota between modelled properties (mopet) and
true properties (TrRue) are the same for all tree parameters, as given below.

P10pe - P2Lrue - P32:nue
PlOvoper  P2lyoper  P32y0pm

5-1

This relationship can be used when analysing fracture networks. In numerical models
properties of the rock mass can be estimated by atrial and error procedure, based on the
equation above.

Another measure of fracture density that may look attractive is the number of fractures
per unit surface area (P20), it is however not a very convenient measure asit is scale
dependent. For a given fracture network, the number of fractures per unit surface area
will decrease with size of the window studied.
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5.2 Complete description of fracture network

The distribution of fracture orientation (direction and dispersion) together with the P32
value is not enough to obtain a unique description of the fracture network of the rock
mass. We also need information of the fracture size distribution, because alarge number
of small fractures may give raise to the same P32 value as a small number of large
fractures. (A complete model of the fracture network is also given by the distribution of
fracture direction and dispersion together with the fracture size distribution and the
number of fractures.) In addition to the above discussed, the fractures of the network
may also be spatially correlated, if so the spatial correlation also needs to be analysed
and quantified. In this study the fractures of the network has no spatial correlation and
consequently no such analyses have been carried out.

5.3 Point estimate and test considering P10 (fracture
frequency) and boreholes

531 Introduction

The P10 parameter is estimated from sampling of fractures along astraight line, i.e. a
scan line or sampling line. The sampling line can be applied along a borehole, but it can
also be applied along the surface of arock outcrop or along arock walls etc. However,
in this study we have only considered P10 values calculated from observationsin
boreholes. The P10 value is often called the fracture frequency and given as fractures
per metre. As such a measure the P10 value isincluded in estimations of rock
mechanical properties (e.g RQD, RMR, Q, etc). It should however be noted that the
DFN-networks analysed in this study (the DFN 2 model of the Prototype Repository)
were primarily aimed at representing the hydrogeological properties of the fractured
rock mass and not necessarily the rock mechanical properties.

5.3.2 Point estimate of the P10 value of the population

The fractures that intersect the studied borehole are samples of the fracture population.
The properties of the samples are estimates of the properties of the population. The
observed fractures are classified into three groups, one group for each fracture set. After
the classification each fracture set is studied one by one, separate from the other sets.
The test presented below is conducted for each fracture set separately.

The P10-parameter is conceptually different from the parameters defining the
orientation and dispersion of the fracture sets studied. Orientation and dispersion are
three-dimensional properties of the rock mass, whereas the P10-parameter is a one-
dimensional property. Asthe P10-parameter is a one-dimensional property it depends
on the direction of the one-dimensiona sampling line used for determining the
parameter. Hence the variation of the P10-parameter with orientation of sampling
lineisatrue property of the rock mass and not a systematic sampling error.

The P10 value of asampleis calculated as follows: the number of fracturesin the
sample (observed in the borehole) divided by the length of the studied section (Ilength
of the borehole). From a statistical point of view, the analysisis a point estimate of the
variable P10 and this variable is a function of the properties of the samples. The
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efficiency of the point estimate increases with the size of the sample (number of
observed fractures) and the size of the sample increases with the length of the borehole
(studied section). Thisis demonstrated in Figure 5-1.

Considering the vertical borehole, the point estimate produces the following results at a
borehole length of 1000 metres:

Set 1. Mean P10=0.29 Standard deviation P10 = 5.5% of Mean P10
Set 2: Mean P10 = 0.43 Standard deviation P10 = 4.5% of Mean P10
Set 3: Mean P10 =0.85 Standard deviation P10 = 3.4% of Mean P10
All SetsMean P10 = 1.57

Considering the inclined borehole, the point estimate produces the following results at a
borehole length of 1000 metres:

Set 1: Mean P10=0.46 Standard deviation P10 = 4.9% of Mean P10
Set 2: Mean P10 = 0.73 Standard deviation P10 = 3.8% of Mean P10
Set 3: Mean P10 =0.55 Standard deviation P10 = 4.3% of Mean P10
All SetsMean P10=1.74

The change in mean P10 values with increasing borehole length is small for boreholes
longer than 100 metres. It is possible to express this change as the derivative of P10
with respect to borehole length (L). The derivative is approximated by afirst order
backward finite difference and calculated as follows.

P10 _AP10 _ P10, = P10, _y,
oL AL AL

Considering the vertical borehole , the average derivative in mean P10 with respect to
borehole length, for the last five borehole lengths, is as follows.

(i) Set1: 1.5x10°° (i) Set2: —7.3x10° and (iii) —7.4x10™°

Considering the inclined borehole, the average derivative in mean P10 with respect to
borehole length, for the last five borehole lengths, is as follows

(i) Set1: —6.9x10°, (i) Set2: —1.1x10° and (i) —1.4x10°°

These results demonstrate that the mean P10 values at 1000 metre of borehole are
very stable, and the change in P10 values that will come with longer boreholes are
negligible. Thisis of interest, as we have no knowledge of the true P10 values of the
population. In the test below we will set the true P10 values of the population as equal
to the mean P10 values at 1000 metre of borehole. By doing this we assume that the
point estimate converges towards the true P10 value of the population
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Vertical borehole. Fracture Set 1, 2 and 3.
Mean and standard deviation of P10 values (E2C0-v).
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Figure 5-1. Efficiency of the point estimate of mean and standard deviation of P10
values. The upper figure gives results for a vertical borehole; the lower figure gives
results for an inclined borehole.

5.3.3 Hypothesis testing considering P10 and acceptable deviations

Purpose of test

The purpose of thistest isto determine when the size of a sample is large enough to
produce an acceptable estimate of the P10 parameter of the population studied, with a
certain probability. This can aso be stated in the following way: the calculation of the
sample size that is necessary to reach a confidence level, considering a given confidence
interval. The confidence interval is the same thing as atest criterion (an acceptable
deviation). The sample size corresponds to length of borehole.
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Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesistesting is
based on the variable P10 and given criterions of significance. A difficulty isthat we do
not know the correct P10 value of the population studied. The established criterions of
significance will therefore correspond to the mean P10 value derived from the largest
samples, called the ssimulated true P10 value. Thisis an acceptable method as such
mean values are very stable, as discussed above. It is however necessary to remember
that when establishing criterions of significance in this way, we also assumes that the
point estimate is not biased, and thisis only the case if no sampling errors occur

The null hypothesis (Ho) isthat a sampleis agood representation of the true properties
of the population. This hypothesisis accepted if not a significant deviation takes place
in the P10 value of the sample. The following criterions are used. The three criterions
represent three different levels of significance.

First criterion:  Ho (pioc_deviation <=15%) IS true if:

ABY[ P10 (sample) — P10 (mean sample at 1000m)] <= 0.15* P10 (mean sample at 1000m)
Second criterion: Ho pioc_deviation <=10%) 1S true if:

ABY[ P10 (sample) — P10 (mean sample at 1000m)] <= 0.10* P10 (mean sample at 1000m)
Third criterion:  Ho (p1oc_deviation <=5%) IS true if:

ABS[P10 (sampie) — P10 (mean sample at 1000m)] <= 0.05* P10 (mean sample at 1000m)

The results of the analysis are presented as the probability that a sample, at acertain
borehole length, will fulfil the hypothesis considering three different criterions.

534 Results
Results considering a vertical borehole

The results are given in the figures below, for the three fracture sets and for the three
different levels of significance.
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Vertical borehole. Fracture Set 1 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre).
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Figure 5-2. Vertical borehole. Set 1. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the

different selected criterions.

Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre).
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Figure 5-3. Vertical borehole. Set 2. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the

different selected criterions.
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Vertical borehole. Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P10 (fractures per metre).
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Figure 5-4. Vertical borehole. Set 3. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the
different selected criterions.

Examples of resultsfor Set 1 are as follows (see Figure 5-2): For avertical borehole
with alength larger than 400 metres, the probability islarger than 90 percent that a
sample will fulfil the hypothesis considering the first criterion (Ho (p10_deviation <=15%)-
If the borehole has a length larger than 400 meters, the probability is larger than 90
percent that the deviation in estimated P10 value is within plus/minus 15 percent of
the simulated true P10 value of the population.

Examples of results for Set 2 are as follows (see Figure 5-3): For avertical borehole
with alength larger than 300 metres, the probability islarger than 90 percent that a
sample will fulfil the hypothesis considering the first criterion (Ho (p10_deviation <=15%)-
If the borehole has a length larger than 300 meters, the probability is larger than 90
percent that the deviation in estimated P10 value is within plus/minus 15 percent of
the simulated true P10 value of the population.

Examples of results for Set 3 are as follows (see Figure 5-4): For avertical borehole
with alength larger than 150 metres, the probability islarger than 90 percent that a
sample will fulfil the hypothesis considering the first criterion (Ho (p10_deviation <=15%)-
If the borehole has a length larger than 150 meters, the probability is larger than 90
percent that the deviation in estimated P10 value is within plus/minus 15 percent of
the simulated true P10 value of the population.
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Results considering an inclined borehole

The results are given in the figures below, for the three fracture sets and for the three
different levels of significance.

Inclined borehole (T=90deg P=45deg). Fracture Set 1 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre)
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Figure 5-5. Inclined borehole. Set 1. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the
different selected criterions.
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Inclined borehole (T=90deg P=45deg). Fracture Set 2 (sub-vertical).
Probability for correct estimation of P10 (fractures per metre)
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Figure 5-6. Inclined borehole. Set 2. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the

different selected criterions.
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Figure 5-7. Inclined borehole. Set 3. Hypothesis testing for selected acceptable
deviationsin predicted P10 value. The figure gives the percentage of accepted samples,
which is approximately the same thing as the probability for correct estimation, for the

different selected criterions
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» Examplesof resultsfor Set 1 are as follows (see Figure 5-5): For an inclined
borehole with alength larger than 350 metres, the probability is larger than
90 percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P10_deviation <=15%)- I the borehole has alength larger than 350 meters, the
probability islarger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the simulated true P10 value of the population.

» Examples of resultsfor Set 2 are as follows (see Figure 5-6): For an inclined
borehole with alength larger than 150 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P10_deviation <=15%)- I the borehole has alength larger than 150 meters, the
probability islarger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the simulated true P10 value of the population.

e Examples of resultsfor Set 3 are as follows (see Figure 5-7): For an inclined
borehole with alength larger than 210 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P10_deviation <=15%)- I the borehole has alength larger than 210 meters, the
probability islarger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the simulated true P10 value of the population.

54 Point estimate and test considering P21 and horizontal
rock surfaces

54.1 Introduction

The number and length of the fracture traces on arock surface, is linked to the fracture
density of the fracture population of the rock mass behind the surface. The two-
dimensional fracture density is given by the P21 parameter and it is defined as the
fracture trace-length per unit surface area, taken over a surface. Based on the number
and length of observed fracture traces on a surface it is possible to estimate the P21
parameter of the rock mass, with consideration of the properties of the studied surface.

The DFN-model used in this study (as the base case) isthe DFN 2 model presented in
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish
adiscrete fracture network model, representing the rock mass at the Prototype
Repository, which could be used for simulation of groundwater flow. The DFN 2
model underestimates the total number of fractures in the rock mass at the Prototype
Repository, as small fractures with minor or negligible hydraulic importance is not
included in the model. We have therefore established an alternative DFN-model, which
includes alarger number of small fractures, but has the same value of fracture density
(P32-value). For this aternative DFN-model, the results considering the necessary
sample sizesfor reliable estimation of the P21 parameter is slightly different. The
results of the alternative model are presented in Chapter 8 (Limited Sensitivity
Anaysis).
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5.4.2 Methodology

P21 is estimated from observations of fracture traces on rock surfaces (also called
mapping of fracture traces on windows). In this study the analysed rock surface
windows have been simulated based on the same DFN-network as was used for the
analysis of the boreholes. The windows were analysed for total trace-length and
distribution of trace-length. Examples of simulated fracture traces on circular
horizontal windows are given in Figure 2-5.

The P21 parameter is conceptually different from the parameters defining the
orientation and dispersion of the fracture sets studied. Orientation and dispersion are
three-dimensional properties of the rock mass, whereas the P21-parameter is atwo-
dimensional property. Asthe P21-parameter is atwo-dimensional property it depends
on the orientation and shape of the two-dimensional sampling surface (the window)
used for determining the parameter. Hence, the variation of the P21-parameter with
orientation and shape of sampling surface is atrue property of the rock mass and not a
systematic sampling error.

In this study, for eliminating the variation of the P21-parameter with shape of sampling
surface, all the analysed trace-windows are of circular shape. The P21-parameter will
however also vary with inclination (orientation) of the trace window; in this study all
trace-windows are along the horizontal plane, e.g. corresponding to horizontal rock
outcrops.

The P21 estimate is calculated as follows:

P21= ﬁ 5-2
A,

Lt = Total length of all fracture traces on trace-window studied (Length).
A,, = Area of trace-window studied (Length?)

When analysing the length of fracture traces, a difficulty is how to handle fracture traces
that continues outside of the studied window — traces with terminations that are not
observable. In this study these fracture traces are included in the analysis and their
observed length (censored length), within the window studied, givestheir length.
Fracture traces that terminate outside of the window studied are called boundary-
truncated traces and their proportion to the total number of tracesis analysed in
Sec54.7.

Another problem that may arise when mapping fracture traces is that fracture traces that
are smaller than a certain size will not be observed correctly. Such traces are called size-
truncated traces. In this study the analysed fracture traces are numerically generated
and the truncation limit, regarding small traces, is set as small. Traces smaller than
0.025 metre are truncated and excluded from the analyses.

Another cause for bias when in practice estimating a P21 valuesis that the localisation
of the two-dimensional surface (the window studied) is not picked at random, but given
by circumstances that will influence the observed fracture size distribution. For example
itislikely that naturally occurring rock outcrops corresponds to rock masses with a
higher resistance to weathering etc than the average rock mass, and it followsthat it is
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likely that such rock masses carries fewer fractures than the average rock mass. This
is however not a cause for biasin this study, as all the windows studied are randomly
generated and the properties observed are unbiased as regards the quality of rock mass.

5423 Number of fracture traces on a horizontal circular window

The average number of fracture traces on a surface varies with properties of the fracture
set studied, but also on the orientation, shape and size of the window studied. In
addition to this the average number of traces on a surface does not vary in alinear way
with radius (or side) of awindow. Thisfollows from the relationship between area and
radius (or side), which is not alinear relationship. The number of traces on asurfaceis
of interests as the point estimates depend on the sample size, and the number of traces
observed on the windows studied give the sample size. Considering the windows
studied, which are horizontal and circular, the average number of traces, aswell as

the 5™ and 95™ percentiles, are given in Figure 5-8, below.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 3.
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Figure 5-8. Number of fracture traces on circular horizontal windows, considering the
three fracture sets studied.

54.4 Point estimate of the P21 value of the population

The fracture traces that occur on the trace-windows studied are samples of the
properties of the fracture population. The properties of the sample are estimates of the
properties of the population.

In this study each fracture was marked with its proper set identity since thisis known at
the generation of the fracture. In areal situation, different methods and al gorithms for
identifying and delimiting sets will be necessary to ensure objective set identifications.
In the analysis presented below, the fracture traces are divided into three different sets,
based on the known Set 1D of each fracture that creates atrace. The results of the
analysis are given for each fracture sets separately.

From a statistical point of view, the analysisis a point estimate of the variable P21 and
this variableis afunction of the properties of the samples. The efficiency of the point
estimate increases with the size of the sample and the size of the sample increases with
the size of the trace-window. Thisis demonstrated in Figure 5-9, Figure 5-10 and Figure
5-11.
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Figure 5-9. Fracture set 1. The efficiency of the point estimate of the P21 parameter by
use of horizontal circular windows (rock outcrops).
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Figure 5-10. Fracture set 2. The efficiency of the point estimate of the P21 parameter
by use of horizontal circular windows (rock outcrops)
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Horizontal trace-windows (circular).
P21-values (fracture trace length / window area).
Fracture sets 3.
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Figure 5-11. Fracture set 3. The efficiency of the point estimate of the P21 parameter
by use of horizontal circular windows (rock outcrops)

Considering a horizontal circular trace-window of radius 150 m (area = 22500 m? ),
the point estimate produces the following results:

P21 Set 1: Arithmetic mean P21 = 0.77 Standard deviation P21 = 0.68% of Mean P21
P21 Set 2: Arithmetic mean P21 = 1.50 Standard deviation P21 = 0.81% of Mean P21
P21 Set 3: Arithmetic mean P21 = 0.41 Standard deviation P21 = 0.38% of Mean P21

The change in mean P21 values with increasing window size is small for windows of
radius larger than 20 m. It is possible to express this change as the derivative of P21
with respect to window area (A) or window radius (R). The derivative is approximated
by afirst order backward finite difference and cal culated as follows.

0P21 _AP21_ P21, — P21,
dA  AA AA

0P21 _AP21_ P21, -P21,_,,
oL AL AL

Considering the radius of horizontal circular windows, the average derivative in mean
P21 with respect to window radius, for the last three analysed windows (R= 100m,
125m and 150m) are as follows:
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(i)  Set1l: -3.8x10™
(i)  Set2: —2.0x10™
(iii) Set3: —6.6x107

These results demonstrate that the mean P21 values for a circular window of radius
100 m or larger is very stable, and the change in P21 values that will come with larger
windows are negligible. Thisis of interest, as we have no knowledge of the true P21
value of the population. In the test below we will set the true P21 values of the
population as equal to the mean P21 values for a circular window of radius 150 m,
we will call this value the “simulated true P21 value. By doing this we assume that
the point estimate converges towards the true P21 value of the population

545 Hypothesis testing considering P21 and acceptable deviations

Purpose of test

The purpose of thistest isto determine when the size of a sample islarge enough to
produce an acceptable estimate of the P21 parameter of the population studied, with a
certain probability. This can aso be stated in the following way: the calculation of the
sample size that is necessary to reach a confidence level, considering a given confidence
interval. The confidence interval isthe same thing as atest criterion (an acceptable
deviation). The sample size corresponds to area or radius of studied window.

Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesistesting is
based on the variable P21 and given criterions of significance. A difficulty isthat we do
not know the correct P21 value of the population studied. The established criterions of
significance will therefore correspond to the mean P21 value derived from avery large
sample (the ssimulated true P21 value) Thisis an acceptable method as the mean values
are very stable at such alarge sample (thisis discussed above). The null hypothesis (Ho)
isthat a sampleisagood representation of the true properties of the population. This
hypothesisisregected if alarge (significant) deviation takes place in the P21 value of
the sample compared to the simulated true P21 value of the population. The following
criterions are used. The three criterions represent three different levels of significance.

First criterion:  Ho (p21_deviation <=15%) IS rejected if:
ABY P21 (sample) — P21 (simulated true)] >= 0.15* P21 (smulzted true)
Second criterion: Ho (p21_deviation <=10%) IS rejected if:
ABY P21 (sample) — P21 (simulated true)] >= 0.10* P21 (smulzted true)
Third criterion:  Ho (p21_deviation <=5%) 1S rejected if:

ABY P21 (sample) — P21 (simulated true)] >= 0.05* P21 (smulzted true)

110



The results of the analysis are presented as the probability that a sample, at acertain
borehole length, will fulfil the hypothesis considering three different criterions.

5.4.6 Results of hypothesis testing

The fracture traces are divided into three different sets, based on the known Set ID of
each fracture that creates atrace. The results are given for each fracture sets separately.
Theresults are given in the figures below.

Horizontal trace-windows.
Probability for correct estimation of P21
Fracture set 1.
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Figure5-12. Set 1. Horizontal circular window. Hypothesis testing for selected
acceptable deviationsin predicted P21 value. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.
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Horizontal trace-windows.
Probability for correct estimation of P21
Fracture set 2.
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Figure 5-13. Set 2. Horizontal circular window. Hypothesis testing for selected
acceptable deviationsin predicted P21 value. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions
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Figure 5-14. Set 3. Horizontal circular window. Hypothesis testing for selected
acceptable deviationsin predicted P21 value. The figure gives the percentage of
accepted samples, which is approximately the same thing as the probability for correct
estimation, for the different selected criterions.
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5.4.

Examples of resultsfor Set 1 are as follows (see Figure 5-12): For a horizontal
surface of radius larger than 24 metres, the probability is larger than 90 percent that
asample will not be rejected considering the first criterion (Ho (po1_ deviation <=15%)- If @
horizontal surface has aradius larger than 24 metres, the probability is larger than
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent
of the simulated true P21 value of the population.

Examples of resultsfor Set 2 are as follows (see Figure 5-13): For a horizontal
surface of radius larger than 22 metres, the probability is larger than 90 percent that
asample will not be rejected considering the first criterion (Ho (po1_ deviation <=15%)- If @
horizontal surface has aradius larger than 22 metres, the probability is larger than
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent
of the simulated true P21 value of the population.

Examples of results for Set 3 are as follows (see Figure 5-14): For a horizonta
surface of radius larger than 40 metres, the probability is larger than 90 percent that
asample will not be rejected considering the first criterion (Ho (p21_ deviation <=15%)- If @
horizontal surface has aradius larger than 40 metres, the probability is larger than
90 percent that the deviation in estimated P21 value is within plus/minus 15 percent
of the simulated true P21 value of the population.

7 Proportion of boundary-truncated fractures and
estimation of P21

Fracture traces that continue outside of the studied window are called boundary-
truncated traces, because the observed (censored) lengths of these traces are truncated at

the

boundary of the studied window. It follows that the length of a boundary-truncated

trace is not the correct length, but an observed (or censored) length that is shorter than
the true trace-length. There are two different types of boundary-truncated traces.

(i)

(i1)

Traces for which only one end terminates at the boundary of the window, these
traces are called boundary-truncated traces of the first type

Traces for which both ends terminate at the boundary of the window, these
traces are called boundary-truncated traces of the second type.

In this study both types of boundary-truncated traces are counted and the number of
such traces are compared to the total number of observed traces, the result isgivenin
Figure 5-15 and Figure 5-16 below.
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Figure 5-15. Horizontal circular window. Percentage of boundary-truncated fracture
traces (type 1), as a function of radius of window studied, for the three fracture sets
studied. The figure gives the percentage of traces with one termination at the window
boundary (termination of first type)
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Horizontal trace-windows. Horizontal trace-windows.
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Figure 5-16. Horizontal circular window. Percentage of boundary-truncated fracture
traces (type 2), as a function of radius of window studied. The figure gives the

per centage of traces with two termination at the window boundary (termination of
second type).

When studying awindow of a certain size and when comparing the observed percentage
of truncated fractures for different fracture sets, on the average the smaller the fractures
of the sets, the smaller the percentage of truncated fractures. It follows that the smallest
percentage of truncated fractures will on the average occur for Set 1, asthisisthe set
with the smallest fractures.

However, on the average, there will always be boundary-truncated traces of the first
type, regardless of window size, because awindow is of finite size and as the traces are
assumed to be distributed randomly with respect to the window.

For awindow with aradius of 20 m, the mean amount of boundary-truncated traces of
thefirst type is between 35 and 60 percent (dependent on set studied). For awindow
with aradius of 60 m, the mean amount of boundary-truncated traces of the first typeis
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between 15 and 30 percent (dependent on set studied). If the fracture set studied
contains few small fractures, the amount of boundary-truncated traces of the first type
may increase with size of window, at small window sizes. Thisis because for such a
fracture set many fractures are truncated at both ends (boundary-truncation of the
second type) at small window sizes and these fractures will, up to a certain window size,
change into boundary-truncated traces of the first type as the size of window is
increased.

The results given in the figures above also demonstrate that for a circular window with
radius larger than 22 m, the mean amount of boundary-truncated traces of the second
typeislessthan five percent (for all three sets); and for windows with aradius larger
than 40 m there are very few such traces, the mean amount for Set 1 is 0.5% and for Set
2 the mean amount is 0.9% and finally for Set 3 the mean amount is 1.6%

The efficiency of the point estimate of the P21 parameter depends on size of window,
because the average number of observed traces and average number of boundary-
truncated traces depends on the window size. However, as the total length of all
observed traces gives the P21 value (including the observed length of the boundary-
truncated traces), the P21 value is not strongly dependent on the amount of boundary-
truncated traces, except if the amount of boundary-truncated fractures are large. Thisis
demonstrated by comparing (i) the hypothesis testing for selected acceptable deviations
in predicted P21 value and (ii) the percentage of truncated fractures. An obvious
exampleis Set2, the estimate of the P21 value is a good estimate for awindow with a
radius of 22 m, the expected deviation in estimation of P21 isless than 15%, although
the amount of boundary-truncated traces is about 60 percent.

When deriving atrace-length distribution, some methods uses the amount of boundary-
truncated traces for correction of the sample distribution, such corrections are not
applied in this study, however they are briefly mentioned in Chapter 6.

5.5 Point estimate and test considering P32

55.1 Introduction

The three-dimensional density is given by the P32 parameter; it is equal to fracture
surface area per unit rock volume, taken over avolume. It is more complicated to
estimate the P32 parameter than the P10 and P21 parameters, as normally no direct
observations can be made of the complete extension of fracture surfaces inside a studied
volume of rock. Consequently, when estimating the P32 parameter it hasto be
calculated based on other measurable properties.

5.5.2 Methodology

As previously discussed, for acomplete model of the fracture network we need to have
knowledge about: (i) the distribution of fracture orientation and dispersion, (ii) the P32
value and (iii) the fracture size distribution.

To estimate a P32 value, the common method is atrial and error procedure based on a
calibration of an assumed complete model of the fracture network. This procedure can
be carried out in different ways, for example in the following way. Thefirst stepisa

116



preliminary estimation of the distributions of fracture orientations, dispersion and
density (e.g. based on borehole data) and a preliminary estimation of the fracture size
distribution based on mapped fracture traces. The next step is to smulate a fracture
network based on the established model. The fracture density of the network, the P32
value, isvaried until the established model simulates a P21 value and/or a P10 value,
which issimilar to derived (observed) values of P21 and P10. The P21 value as derived
from mapped fracture traces and the P10 value as derived from observationsin
boreholes. This procedureis also illustrated by Eq. 6-1, which can be rewritten as
follows.

P21
P32 = P32 —_TRUE 5-3
TRUE MODEL P21,
or
P10
P32 = P32 ——RE_
TRUE MODEL P10, 00

It follows from the equations above that the deviation in estimation of the true P32
value will be directly proportional to the deviation in estimation of the true P21 value
and/or the true P10 value. The deviation in estimation will however aso be proportional
to the accepted divergence between the simulated values (model) and the estimated true
values (the convergence criteria). Furthermore, it follows from Eq. 6-3, that if the
purpose isto estimate a P32 value only, and not to establish a complete model of

the fracture network, the fracture size distribution and the fracture orientation and
dispersion do not need to be completely correct, aslong as the estimated true P21 or
P10 values are correct.

Hence, with the addition of the trial and error procedure and the convergence criteria of
that method, the results presented in Section 5.4 regarding the estimation of the P21
valueis aso directly applicable for the estimation of the P32 value; and the same goes
for the estimation of the P10 value, as presented in Section 5.3.

However, the P32 value can also be directly estimated from samples of rock mass.
Samples can be produced by analyses of the properties of excavated rock inside a tunnel
(mapping of fracture traces on tunnel walls, roof and floor), but also based on observed
fracturesinside a borehole, thiswill be discussed in Section 5.5.5.

5.5.3 Hypothesis testing and results considering P32, based on P21

The P32 parameter was estimated with the method described above; thisis estimation in
parallel with the estimation of the P21 parameter.

The null hypothesis (Ho) is that the property of a sample is a good representation of the
true properties of the population. This hypothesisis rejected a significant deviation
takes place in the P21 value of the sample compared to the true P21 value (simul ated)
of the population. The following criterions are used; the three criterions represent three
different levels of significance.
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First criterion:  Ho (p32_deviation <=15%) 1S rejected if:
ABY P21 (sample) — P21 (simulated true)] >= 0.15* P21 (smuleted true)
Second criterion: Ho (p32 deviation <=10%) 1S rejected if:
ABS[P21 (sample) — P21 (smulated trug)] >= 0.10* P21 (smulated true)
Third criterion:  Ho (p32_deviation <=5%) 1S rejected if:
ABS[P21 (sample) — P21 (smulated trug)] >= 0.05* P21 (smulated true)

Considering the same values of window radius, the hypothesis testing considering the
P32 parameter yields the same results as the hypothesis testing considering the P21
parameter; and these results are given in Section 5.4.5. Examples of results are as
follows. Note that the results below are given without consideration of the efficiency
and convergence criteria of thetrial an error procedure.

* Considering Set 1 and awindow with radius larger than 24 m, the probability is
larger than 90 percent that a sample will fulfil the hypothesis considering the first
criterion (Ho (p32_deviation <=15%). FOr awindow with radius larger than 37 m, the
probability is larger than 90 percent that a sample will fulfil the hypothesis at the
second level of significance (Ho (ps2_deviation <=10%)-

* Considering Set 2 and awindow with radius larger than 22 m, the probability is
larger than 90 percent that a sample will fulfil the hypothesis considering the first
criterion (Ho (p32_deviation <=15%). For awindow with radius larger than 32 m, the
probability is larger than 90 percent that a sample will fulfil the hypothesis at the
second level of significance (Ho (ps2 deviation <=10%)-

* Considering Set 3 and awindow with radius larger than 40 m, the probability is
larger than 90 percent that a sample will fulfil the hypothesis considering the first
criterion (Ho (p32_deviation <=15%). FOr awindow with radius larger than 60 m, the
probability is larger than 90 percent that a sample will fulfil the hypothesis at the
second level of significance (Ho (P32_deviation <=1o%).

5.5.4 Hypothesis testing and results considering P32, based on P10

The P32 parameter was estimated with the method described above; thisis estimation in
parallel with the estimation of the P10 parameter.

The null hypothesis (Ho) is that the property of a sample is a good representation of the
true properties of the population. This hypothesisisrejected if asignificant deviation
takes place in the P10 value of the sample compared to the true P10 value (simulated)
of the population. The following criterions are used; the three criterions represent three
different levels of significance.

First criterion:  Ho (ps2_deviation <=15%) IS rejected if:
ABS[P10 (sampie) — P10 (mean sample at 1000m)] >= 015" P10 (mean sample at 1000m)

Second criterion: Hg (P32_deviation <=10%) isregected if:
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ABS[ P10 (sample) — P10 (mean sample at 1000m)] >=0.10* P10 (mean sample at 2000m)

Third criterion:  Ho (P32 deviation <=5%) 1S rejected if:

ABS[ P10 (sample) — P10 (mean sample at 1000m)] >=0.05* P10 (mean sample at 2000m)

Considering the same borehole lengths, the hypothesis testing considering the P32
parameter yields the same results as the hypothesis testing considering the P10
parameter; and these results are given in Section 5.3.4. Examples of results are given

below. Note that the results below are given without consideration of the efficiency and

convergence criteria of the trial an error procedure.

Vertical borehole (see Figure 5-2, Figure 5-3 and Figure 5-4)

Results for set 1: If the borehole has alength larger than 400 meters, the probability

is larger than 90 percent that the deviation in estimated P10 valueis within

plus/minus 15 percent of the smulated true P10 value of the population. The same

goes for the P32 value.

Resultsfor Set 2 : If the borehole has alength larger than 300 meters, the
probability is larger than 90 percent that the deviation in estimated P10 value is
within plus/minus 15 percent of the smulated true P10 value of the population.
The same goes for the P32 value.

Resultsfor Set 3 : If the borehole has alength larger than 150 meters, the
probability is larger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the smulated true P10 value of the population.
The same goes for the P32 value.

Inclined borehol e (see Figure 5-5, Figure 5-6, Fiqure 5-7)

Results for set 1: If the borehole has a length larger than 350 meters, the
probability is larger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the smulated true P10 value of the population.
The same goes for the P32 value.

Resultsfor Set 2 : If the borehole has alength larger than 150 meters, the
probability is larger than 90 percent that the deviation in estimated P10 value is
within plus/minus 15 percent of the smulated true P10 value of the population.
The same goes for the P32 value.

Resultsfor Set 3 : If the borehole has alength larger than 210 meters, the
probability is larger than 90 percent that the deviation in estimated P10 value is
within plus/minus 15 percent of the smulated true P10 value of the population.
The same goes for the P32 value.
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5.5.5 Direct estimation of P32 considering the rock mass
inside a borehole

Discussion of methodology

The number of fractures observed in aboreholeis linked to the fracture density of the
fracture population of the rock mass that surrounds the borehole. It is possible to make
an estimate of the P32 parameter of the rock mass, by studying the size of aborehole as
well as the number and orientations of the fractures that intersect the borehole.

Thefirst step is the calculation of the P32 value of the rock mass inside the borehole.

It is possible to calculate this value if we have knowledge of the acute angels between
the borehole and the intersecting fractures, and if we assume that no fracture terminates
in the borehole. To reach a good estimate of the P32 value inside the borehole, the
necessary length of borehole might be considerable; as the estimation is based on a
small volume that is very elongated in one dimension (the direction of the borehole).

The next step is the assumption that the P32 value of the rock mass that surrounds the
boreholeis well estimated by the calculated P32 value of the rock mass inside the
borehole. The applicability of this assumption varies with (i) the orientation of the
borehole in relation to the mean orientation of the fracture planes of the rock mass that
surrounds the borehol e (the acute angles), as well as on (ii) the length of the borehole.
If the studied fracture planes are at right angle to the borehole the assumption is
applicable, even for short boreholes; but if the fracture planes of the rock mass that
surrounds the borehole are along (parallel) to the borehole, the assumption is not
correct. However, thereis normally a certain spread of fracture orientations (dispersion)
within afracture set, it follows that fractures will intersect the borehole, even if the
mean orientation of the fracture planes of the set is along the borehole, presuming that
the borehole islong enough.

Consider afracture that intersects a borehole. The fracture surface areainside the
borehole depends on the acute angl e between the borehole and the fracture plane. If the
acute angel issmall, the fracture area within the borehole will be large, and if the acute
angel islarge, the fracture area within the borehole will be small. It follows that if the
mean orientation of the fracture planesis at right angel to the borehole, many fracture
planes will intersect the borehole, but the fracture surface area inside the boreholeis
small for each intersection. On the other hand, if the mean orientation of the fracture
planesisaong (parallel) to the borehole, few fracture planes will intersect the borehole,
but the fracture surface areainside the borehole is large for each intersection. In this
way the fracture surface areainside the borehole will vary with direction of borehole,
and conseguently compensate for different directions of the borehole.

Thus, the assumption that the P32 value of the rock massis well estimated by the P32
value of the rock mass inside a borehole is a correct assumption, presuming that (i)

the borehole islong enough and (ii) the fracture set studied contains a certain spread in
orientation (dispersion). However, the efficiency of the method (the necessary length of
borehole) is proportional to the P10 value of the fracture set studied, the larger the P10
value the more efficient the method and the shorter the necessary length of borehole.
The P10 value will vary with direction of borehole; hence, the efficiency of the method
depends on direction of borehole.
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Standard Terzaghi correction should not be applied, as the above-discussed calculation
of P32 isbased on fracture areainside avolume, even if isavery elongated volume (the
method is not based on a geometrical line with zero volume). For fracture networks that
are not extremely anisotropic, the above-discussed method can be more efficient than
one may first perceive. The efficiency of the method will increase if the studied rock
volume s larger than that of aborehole, for example if the method is applied on the
volumes inside atunnel system. On the other hand, if the volume studied islarge and
has aless elongated shape than a borehole, termination of fractures inside the volume
studied has to be considered and included in the calcul ations.

Equations

The estimation of the P32 parameter from borehole data is based on the following
equation. The P10C is the P32 value of the rock mass inside the borehole.

1 on 1
ploc==Y" 5-4
L ZI:I COS(Hi )

P10C = The P32 value of the rock mass inside a borehole

L = Length of studied section (borehole).

6= Acute angle, the angle between the borehole and a normal to the fracture plane.
n = Number of fractures along the section studied.

The equation above can be derived in the following way. The fracture surface area
inside aboreholeis constrained by an elipse (presuming that the fractureisaplanein
space). The area (A) of an elipseis given by the length of its semi-axis (a) and (b).

A=7nab

The lengths of the semi-axis (inside the borehole) are given by the radius (r) of the
borehole and the acute angle, as follows:

1
cos(6)

r and b=r

It follows that the fracture surface areainside the boreholesis;

1

A=7T r
cos(6])

Considering several fractures (n) intersecting the borehole, we will get the following
expression.

_ .1
A_”r22‘=1cos(3)
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The volume (V) of the borehole along a given section of length (L) is:
V=mr?L

Thetotal fracture area divided by the volume gives the P10C value.

.1
2y

i=1
P10C = cos(6)

TriL

Reducing the equation above for the constants (r) and (73 will produce EqQ. 6-4, as given
below.

1 on 1
P10C =— )
L Z|:l COS(HI )

/Chiles and de Marsily, 1993/ proposed an equation similar to Eq. 6-4, but with the
acute angel defined as the acute angle between the borehole and the fracture plane (and
not as the acute angel between the borehole and a normal to the fracture plane).

Point estimate of the P10C and P32 values

The fractures that intersect the borehole form samples of the fracture population. The
properties of the sample are estimates of the properties of the population. The observed
fractures are classified into three groups, one group for each theoretical fracture set.
After the classification each fracture set is studied one by one, separate from the other
sets. The test presented below is conducted for each fracture set separately.

Thefirst step is calculation of P10C values, based on samples from boreholes and by
use of the equation above (Eg. 6-4). The next step is the assumption that the P32 value
of the rock massiswell estimated by the calculated P10C values. Hence, we assume
that for large samples (large lengths of borehole) the P10C value is an acceptable
estimate of the P32 value of the rock mass.

From a statistical point of view, the analysisis a point estimate of the variable P10C and
this variableis afunction of the properties of the samples. The efficiency of the point
estimate increases with size of the sample (number of observed fractures) and the size
of the sample increases with the length of the borehole. Thisis demonstrated in

Vertical borehole, results of point estimate, borehole length =1000 metres.

Set 1: True P32 = 0.85

Set 1: P10C: Mean = 0.82 Standard dev. = 8.3% of Mean.
Deviation in estimation = 3.0%

Set 2: True P32 =1.59

Set 2: P10C: Mean = 1.53 Standard dev. = 6.8% of Mean.

Deviation in estimation = 3.6%
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Set 3: True P32 =0.97
Set 3: P10C: Mean = 0.97006 Standard dev. = 3.5% of Mean.
Deviation in estimation = 0.006%

Inclined borehole, results of point estimate, borehole length =1000 metres.

Set 1: True P32 = 0.85

Set 1: P10C: Mean = 0.84 Standard dev. = 6.4% of Mean.
Deviation in estimation = 0.7%

Set 2: True P32 =1.59

Set 2: P10C: Mean = 1.56 Standard dev. = 4.6% of Mean.
Deviation in estimation = 1.7%

Set 3: True P32 = 0.97

Set 3: P10C: Mean = 0.966 Standard dev. = 5.0% of Mean.
Deviation in estimation = 0.5%

The change in mean P10C values with increasing borehole length is small, even for as
short boreholes as 50 metres, but the variance in P10C is not insignificant for such short
boreholes. It is possible to express the change in P10C, as the derivative of P10C with
respect to borehole length (L). The derivative is approximated by afirst order backward
finite difference and calculated as follows.

0 P10C _ AP10C _ P10C, - P10C, _,,,
oL AL AL

For avertical borehole, the average derivative in mean P10C with respect to borehole
length, for the last five borehole lengths, is as follows

(i) Set 1. 5.3x10°" (i) Set 2: —3.2x10°°
(iii) Set 3: —7.4x10°°

For avertical borehole, the average derivative in mean P10C with respect to borehole
length, for the last five borehole lengths, as follows:

(i) Set 1: —4.3x107° (i) Set 2: —2.8x10™
(iii) Set 3: —2.4x107°

These results demonstrate that the mean P10C values at 1000 metre of borehole are very
stable, and the change in P10C values that will come with longer boreholes are
negligible.

The efficiencies of the point estimates of the P10C values are given in Figure 5-17,
below.
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Vertical borehole. Fracture Set 1, 2 and 3.
Mean and standard deviation of P10C (P32).
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Figure 5-17. Efficiency of the point estimate of mean and standard deviation of P10C
values (P32 inside borehole). The upper figure gives results for a vertical borehole; the
lower figure gives results for an inclined borehole.
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Hypothesis testing considering P10C (P32) and acceptable deviations

Purpose of test

The purpose of thistest isto determine when the size of the sampleislarge enough to
produce an acceptable estimate of the true properties with a certain probability.

Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesis testing is
based on the variable P10C and given criterions of significance. The given criterions of
significance relate to the true P32 value of the fracture population studied.

The null hypothesis (Ho) isthat a sampleisagood representation of the population.
This hypothesisisrgected if asignificant deviation takes place between the P10C value
of the sample and the true P32 value of the fracture population studied. The following
criterions of significance are used. The three criterions represent three different levels

of significance.

First criterion:  Ho (pa2_deviation <=15%) IS rejected if:
ABYP10C (sample) — P32 (popuiation)] >= 0.15* P32 (popuiation)
Second criterion: Ho (ps2 deviation <=10%) 1S rejected if:
ABYP10C (sample) — P32 (poputation)] >= 0.10* P32 (population)
Third criterion:  Ho (p32_deviation <=5%) 1S rejected if:
ABS[P10C (sampie) — P32 (popuiation)] >= 0.05% P32 popuiation)

The results of the analysis are presented as the probability that a sample, at acertain
borehole length, will fulfil the hypothesis considering three different criterions.

Results considering a vertical borehole

The results are given in the figures below, for the three fracture sets and for the three
different levels of significance.
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Percentage of accepted samples

Vertical borehole. Fracture Set 1 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
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Figure 5-18. Vertical borehole. Set 1. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
percentage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions.

Percentage of accepted samples

Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
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Figure 5-19. Vertical borehole. Set 2. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
percentage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions.
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Vertical borehole. Fracture Set 3 (sub-horizontal).
Probability for correct estimation of P32 based on P10C.
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Figure 5-20. Vertical borehole. Set 3. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
per centage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions.

Examples of resultsfor Set 1 are as follows (see Figure 5-18): For a vertical
borehole with alength larger than 850 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%)- I the borehole has alength larger than 850 meters, the
probability islarger than 90 percent that the deviation in estimated P32 valueis
within plus/minus 15 percent of the true P32 value of the population.

Examples of results for Set 2 are as follows (see Figure 5-19): For a vertical
borehole with alength larger than 650 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%)- I the borehole has alength larger than 650 meters, the
probability islarger than 90 percent that the deviation in estimated P32 valueis
within plus/minus 15 percent of the true P32 value of the population.

Examples of results for Set 3 are as follows (see Figure 5-20): For avertical
borehole with alength larger than 150 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%)- I the borehole has alength larger than 150 meters, the
probability is larger than 90 percent that the deviation in estimated P10 valueis
within plus/minus 15 percent of the true P32 value of the population.
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Results considering an inclined borehole

The results are given in the figures below, for the three fracture sets and for the three
different levels of significance.

Inclined borehole (T=90deg P=45deg). Fracture Set 1 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
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Figure 5-21. Inclined borehole. Set 1. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
per centage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions.
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Percentage of accepted samples

Inclined borehole (T=90deg P=45deg). Fracture Set 2 (sub-vertical).
Probability for correct estimation of P32 based on P10C.
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Figure 5-22. Inclined borehole. Sat 2. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
percentage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions.

Percentage of accepted samples

Inclined borehole (T=90deg P=45deg). Fracture Set 3 (sub-horizontal).

Probability for correct estimation of P32 based on P10C.
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Figure 5-23. Inclined borehole. Set 3. Hypothesis testing for selected acceptable
deviationsin predicted P32 value (based on P10C values). The figure gives the
per centage of accepted samples, which is approximately the same thing as the
probability for correct estimation, for the different selected criterions
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Examples of resultsfor Set 1 are as follows (see Figure 5-21): For an inclined
borehole with alength larger than 480 metres, the probability is larger than

90 percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%) I the borehole has alength larger than 480 meters, the
probability is larger than 90 percent that the deviation in estimated P32 value
iIswithin plus/minus 15 percent of the true P32 value of the population.

Examples of resultsfor Set 2 are as follows (see Figure 5-22): For an inclined
borehole with alength larger than 350 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%) I the borehole has alength larger than 350 meters, the
probability is larger than 90 percent that the deviation in estimated P32 value
iIswithin plus/minus 15 percent of the true P32 value of the population.

Examples of resultsfor Set 3 are as follows (see Figure 5-23): For an inclined
borehole with alength larger than 380 metres, the probability is larger than 90
percent that a sample will fulfil the hypothesis considering the first criterion
(Ho (P32_deviation <=15%) I the borehole has alength larger than 380 meters, the
probability is larger than 90 percent that the deviation in estimated P32 value
iswithin plus/minus 15 percent of the true P32 value of the population.
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6 Estimation of trace-length distribution
from rock surface data

6.1 Introduction

By measuring the lengths of fracture traces, as observed on surfaces, is possible to
establish atrace-length distribution. Initself such a distribution is perhaps not very
interesting, but the trace-length distribution is linked to the fracture size distribution
and the fracture size distribution is a very important part of a description of afracture
network. The fracture size distribution is important because the distribution of fracture
size largely determines the frequency of fracture intersections and hence the mechanical
and hydraulic properties of the rock mass studied. However, as no direct observations
can be made of the complete extension of fracture surfaces inside a studied volume of
rock, the fracture size distribution is determined via the trace-length distribution, and
that is why the trace-length distribution isimportant.

The DFN-model used in this study (as the base case) isthe DFN 2 model presented in
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish
adiscrete fracture network model, representing the rock mass at the Prototype
Repository, which could be used for simulation of groundwater flow. The DFN 2
model underestimates the total number of fractures in the rock mass at the Prototype
Repository, as small fractures with minor or negligible hydraulic importance is not
included in the model. We have therefore established an aternative DFN-model, which
includes alarger number of small fractures, but has the same value of fracture density
(P32-value). For this aternative DFN-model, different results are obtained considering
the necessary sample sizes for reliable estimation of the fracture trace-length
distribution. The results of the alternative model are presented in Chapter 8 (Limited
Sensitivity Analysis).

6.2 Methodology

No direct observations can be made of the complete extension of fracture surfaces
inside a studied volume of rock. Consequently, it isin practise not possible to directly
observe the fracture size distribution. A two-dimensional survey of rock surfaces
provides a distribution of the fracture trace-lengths, which is linked with the fracture
size distribution; but the trace-length distribution is affected by severa biases that have
to be considered. Primarily the bias occurs because the three-dimensional fracture
network is sampled by use of two-dimensional planes having alimited extension. There
are five main causes for bias:

() Boundary-truncated fracture traces. Fracture traces that continues outside of
the studied window -traces with terminations that are not observable- for such
traces, the length observed (censored length) is shorter than the true length. In
this study these fracture traces are included in the analysis and their observed
(censored) length, within the window studied, gives their length.
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(i)

(iii)

(iv)

(v)

Sze-truncated fracture traces. In practise when performing mapping on areal
rock surface, fracture traces that are smaller than a certain size will not be
observed correctly. Both because these small traces are considered of secondary
importance and are overlooked, or because it is difficult to discriminate between
natural fracture traces and artificial fracture traces (e.g. caused by blasting).
This biaswill only have aminimal influence on the results of this study. In this
study we have defined a size limit equal to 0.025 metre, only traces with a
length smaller than this limit will be excluded from the analysis.

Importance of fracture size. The probability of observing afracture trace on a
two-dimensional surfaceis proportional to the size of the fracture that creates
the trace. Hence, for a studied fracture size distribution it is more likely to
observe the traces of the large fractures than the traces of the small fractures.
/La Pointe and Hudson, 1985/ showed that, for the assumption that fractures are
circular planar discs, the probability of afracture intersecting aplaneislinearly
proportional to the fracture radius.

I mportance of geometrical shape and orientation of window studied. The
geometrical shape, size and orientation of the window studied will influence the
observed trace-lengths. This bias will influence the trace-length distribution
derived in this study. To minimise this bias we have in this study only used
circular windows and in this study al windows studied are along the horizontal
plane, e.g. corresponding to horizontal rock outcrops.

Importance of localisation of window studied. In most cases, the localisation of
the analysed two-dimensional surface (the window studied) is not picked at
random, but given by circumstances that will influence the observed fracture
size distribution. For exampleit islikely that naturally occurring rock outcrops
corresponds to rock masses with a higher resistance to weathering etc. than the
average rock mass. It isalso likely that such rock masses (with ahigh resistance
to weathering) also carries fewer fractures than the average rock mass. This bias
will not influence the results of this study, because in this study the analysed
windows are numerically generated and numerically analysed; and the observed
properties are unbiased as regards the average quality of rock mass.

The above discussed causes for bias are well known, and different authors have
proposed different methods, of varying efficiency and applicability, for deriving the
true mean or underlying distribution /see Pahl 1981; Ladlett, 1982/. In this study no
correction of the observed distributions has been applied.

If al traces are put into one group, regardless of strike and dip of the traces etc, it is
likely that atrace-length distribution, obtained in such away, will demonstrate a
complex shape with atendency for a bi-modal or a multi-modal shape. Such a multi-
modal tendency is the product of different fracture sets with different fracture diameter
distributions together forming the common trace-length distribution, the different modes
of the common trace-length distribution reflects the different mean-values of the
fracture diameter distributions. For the studied rock mass such adistribution isgiven in,
the distribution is derived from horizontal surfaces of radius 150 metres.

When fracture traces are observed on rock surfaces, it is often possible to separate the
fracture traces into different sets, based on the observed strike of the fracture traces; and
based on the dip of the fracture traces (assuming that it is possible to observe adip). It
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follows that different trace-length distributions will be derived for different sets. In the
analyses presented in this chapter, the fracture traces are divided into three different
sets, based on the known Set identity of each fracture that creates atrace. The results of
the analyses are given for each fracture sets separately. (In this study each fracture was
marked with its proper set identity since thisis known at the generation of the fracture.
In areal situation, different methods and algorithms for identifying and delimiting sets
will be necessary to ensure objective set identifications.)

Trace length distribution and fracture diameter distribution.
All traces included (Setl 1, Set 2 and Set 3).
The simulated true trace length distribution, as given by a circular areas of radius 150 m.

N
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I Simulated true trace length distribution (all three sets,|
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Figure 6-1. Trace-length distribution and fracture diameter distribution, considering
all traces observed on horizontal windows of radius 150 m. The somewhat complex
shapes are the product of different fracture sets with different fracture diameter
distributions, together forming the distributions. The different modes of the trace-length
distribution reflects the different mean-values of the fracture diameter distributions.
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The characteristics of the trace-length distribution vary with the size of the window
studied. For small windows, the lengths of the traces are limited by the size of the
window; and in addition as the number of traces are small, the variation in distribution
characteristics is large between different windows (different realisations). The larger
the window the closer the characteristics of the sample distribution is to the unknown
characteristics of the population studied, and the smaller the differences between
different realisations.

Examples of fracture diameter distributions of the fracture sets of the popul ation studied
and the corresponding trace-length distributions for very large circular and horizontal
windows (radius 150 metres) are given in Figure 6-1 (all setstogether) and Figure 6-2
(set by set). The average trace-length distribution for windows of radius 150 metresis
set asthe true distribution, and it is called the simulated true distribution (thisis further
discussed below).
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Set 1. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Set 2. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Set 3. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Figure 6-2. Comparison between: (i) the fracture diameter distributions and (ii) the
corresponding trace-length distributions, considering the three fracture sets and a
window of radius 150 m. The average trace-length distribution for windows of radius
150 mis set asthe true trace-length distribution, and it is called the simulated true
distribution.
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Among other things, Figure 6-2 demonstrates that the trace-length distributions will
awaysinclude atail of small traces even if the corresponding fracture diameter
distribution demonstrates a small probability for small fractures (e.g. the results for

Set 2 in Figure 6-2). The reason for thisisthat normally only a part of afracture
intersects a surface, it follows that on a surface there will be short traces that are created
by large fractures. Hence, when comparing a trace-length distribution derived from a
large window and the corresponding fracture diameter distribution, the probability for
small tracesis larger than the corresponding probability for fractures having the same
diameter as the length of the small traces.

Evenif the trace-length distributions are known for each fracture set, thisis not enough
to determine the fracture size distributions of the fractures of the rock mass, unless
assumptions are made regarding the shape of fractures, and other properties of the
fracture network. The observed trace-length distribution is linked to the fracture size
distribution of the fractures that created the traces, and these fractures are a sample of
the fractures of the rock mass. Thisis stated by /La Pointe et al, 2000/ in the following
way: “The solution to the problem of how the scaling properties of trace-lengths relate
to the scaling properties of the parent fracture distribution requires decomposition of the
problem into two stages. (i) The relation between the radius distribution of the parent
fracture population and the radius distribution of the fracture population intersecting the
trace plane; and (ii) the relation between the radius distribution of fractures intersecting
atrace plane and the observed trace-length distribution.”.

A common assumption is that the fractures can be considered as discs. Even for this
simple assumption, the derivation of the fracture size distribution from the trace-length
distribution is not self-evident (except if the properties of the fracture network are very
simple). Therefore, in practice when deriving a fracture size distribution one assumes a
fracture shape and a distribution of the fracture sizes. The next step is the establishment
of an assumed complete model of the fracture network, including fracture orientation
and density. By use of this model and viaatrial and error procedure considering
different fracture size distributions, the observed trace-lengths are matched with
simulated lengths and thereby the fracture size distribution is derived. The log-normal,
the exponential or the power law distributions are commonly used for representing the
fracture size distribution because “even if the disc-diameter distribution of the fractures
is not log-normal, the trace-length distribution tends to look log-normal” /Chilés and de
Marsily, 1993/. Asrevealed by Figure 6-2, the ssimulated true trace-length distributions
for Set 1 and Set 3 have tendencies towards log-normal or an exponential shape, while
the simulated true trace-length distribution of Set 2 has a more complicated shape.

We will in this study not derive a fracture size distribution, but only atrace-length
distribution. We will analyse the derived trace-length distribution considering how its
characteristic changes with size of window. If the trace-length distribution is well
defined and stable, at a certain window size, theoretically also the fracture size
distribution of the fractures that intersects the window should be well defined and
stable at this size of window. Hence, at such a window size the fundamental datais
available for agood estimation of the fracture size distribution. The actual calculation
of the fracture size distribution based on a trace-length distribution includes
assumptions regarding fracture shape etc, as discussed above, and is not a part

of this study.
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It should be noted that the three dimensional fracture density parameter, the P32
parameter, isonly a measure of the fracture density of the rock mass, it does not provide
adescription of the fracture sizes or the connectivity of the fracture network. For a
given value of P32 there is a better fracture connectivity with a small number of large
fractures than with alarge number of small fractures.

6.3 Point estimate of the moments of the
trace-length distribution

6.3.1 General

The fracture traces that take place on a windows studied are samples of the properties of
the fracture population. The properties of the sample can be looked upon as an estimate
of the properties of the population. From a statistical point of view, the analysis of the
trace-length distribution, as given by windows of different sizes, is a point estimate of
the properties (moments) of an unknown trace-length distribution.

In the analyses presented below, the fracture traces are divided into three different sets,
based on the known Set identity of each fracture that creates atrace. The results of the
analyses are given for each fracture sets separately.

Examples of sample trace-length distributions are given below in Figure 6-3, Figure 6-4
and Figure 6-5. The characteristics of the trace-length distribution vary with the size of
the window studied. For small windows, the lengths of the traces are limited by the size
of the window; and in addition as the number of traces are small, the variation in
distribution characteristics is large between different windows (different realisations).
The larger the window the closer the characteristics of the sample distribution isto the
unknown characteristics of the population studied, and the smaller the differences
between different realisations; the rate of this progress towards the true characteristics
are called the efficiency of the point estimate. Figure 6-2 presents the average trace-
length distribution for a window of radius 150 metres. This distribution is set as the
true distribution, and it is called the smulated true distribution.

As regards a point estimate of atrace-length distribution based on samples taken from
windows (rock surfaces) of different sizes, the following needs to be considered. The
efficiency of a point estimate considering a set of traces will not be the same as the
efficiency of a point estimate considering all traces put together in one group. The
sample size (number of traces) will be larger if all traces are included in one group,
compared to the sample size of different sets, but also the shape of the true trace-length
distribution will be different. If al traces are put into one group, regardless of strike and
dip of the traces etc, it is not unlikely that a trace-length distribution, obtained in this
way, will demonstrate atendency for a bi-modal shape. Such a bi-modal shapeisthe
product of different fracture sets with different fracture diameter distributions, the
different modes of the trace-length distribution reflects the different mean-values of
the fracture diameter distributions.
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Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a circular area of radius 6 m (one realisation).
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SET 1: Window of radius 6 m (diameter 12 m), one realisation.

Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 10 m (one realisation).
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SET 1: Window of radius 10 m (diameter 20 m), one realisation.

Set 1. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 20 m (one realisation).
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SET 1: Window of radius 20 m (diameter 40 m), one realisation.

Figure 6-3. SET 1. Comparison between the simulated true trace-length distribution
and examples of sampl e trace-length distributions for windows of different radii.
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Figure 6-4. SET 2: Comparison between the simulated true trace-length distribution
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Set 2. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 52 m (one realisation).
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Set 3. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a circular area of radius 6 m (one realisation).
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SET 3: Window of radius 6 m (diameter 12 m), one realisation.

Set 3. Trace length distribution
Comparison between the simulated true distribution and a sample distribution
for a cirkular area of radius 20 m (one realisation).
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Comparison between the simulated true distribution and a sample distribution
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Figure 6-5. SET 3: Comparison between the simulated true trace-length distribution
and exampl es of sample trace-length distributions for windows of different radii.
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The efficiency of a point estimate increases with sample size, however for the sampling
of traces also the size of the studied window isimportant. The observations are made
on windows that have alimited size, and the upper tail of the trace-length distribution
(traces with alarge length) can only be directly observed on windows of a size (radius)
comparable to length of the large traces. Hence, for small windows there will be
asystematic bias in the estimate of the trace-length distribution, due to boundary
truncation, even if the sample sizeislarge. (Small window sizes could be sufficient

if it ispossible to fit amathematical distribution to the observed truncated trace-length
distributions, even if such a curve fitting procedure will introduce uncertainty regarding
the ability of such adistribution to represent the part of the true distribution that is
unknown at small window sizes.)

It isnot a purpose of this study to derive the fracture diameter distributions of the
different fracture sets. The purpose is to study the trace-length distributions of the

three fracture sets, considering how the characteristic of these trace-length distributions
changes with size of window, and to find at what window sizes the distributions studied
are well defined and stable.

We have divided the traces into different sets; therefore we will be able to compare the
efficiency of the point estimates for the different sets. It is possible that a small window
is sufficient for deriving a trace-length distribution of a set that mainly includes small
fractures, but for sets that include large fractures, large window sizes are necessary.
Considering different theoretical fracture sets, the necessary window sizes for deriving
reliable trace-length distributions for such sets depend on (i) the properties of these
fracture sets (orientation, fracture size, fracture density etc) and (ii) how the different
observed fracture traces are classified into the different fracture sets.

6.3.2 Point estimate of the moments of the observed distribution

The efficiency of the point estimate of the mean and standard deviation of the trace-
length distribution is given in Figure 6-6 and Figure 6-7, below. Considering a circular
window of radius 150 m, the point estimate produces the following results:

Setl

Mean values of trace-length distribution, window radius = 150m.
Mean of mean values = 6.09 m
Standard deviation of mean values = 1.9% of mean of mean values.

Standard deviation of trace-length distribution, window radius = 150m.
Mean of standard deviation values = 6.51 m

Standard deviation of standard deviation values = 0.3% of mean of stand.dev.values.
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Set2
Mean values of trace-length distribution, window radius = 150m.

Mean of mean values = 12.39 m

Standard deviation of mean values = 0.2% of mean of mean values.
Standard deviation of trace-length distribution, window radius = 150m.

Mean of standard deviation values=5.56 m

Standard deviation of standard deviation values = 1.3% of mean of stand.dev.values.
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Horizontal trace-windows.
Length of fracture traces: Mean of trace lengths.
Fracture set 1.
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Figure 6-6. Efficiency of the point estimate of the mean value of the observed trace-
length distribution, considering windows of different sizes.
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of trace lengths.
Fracture set 1.
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Figure 6-7. Efficiency of the point estimate of the standard deviation of the observed
trace-length distribution, considering windows of different sizes
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Set 3

Mean values of trace-length distribution, window radius = 150m.
Mean of mean values=12.10 m
Standard deviation of mean values = 0.6% of mean of mean values.

Standard deviation of trace-length distribution, window radius = 150m.
Mean of standard deviation values = 10.70 m
Standard deviation of standard deviation values = 0.2% of mean of stand.dev.values.

Analysing the figures that presents the efficiency of the point estimate of the mean

and standard deviation of the trace-length distribution (Figure 6-6 and Figure 6-7). It is
concluded that the change in mean and standard deviation of the distribution is small for
windows with aradius larger than 150 m. Thisis of interest, as we have no knowledge
of the true characteristics of the distribution studied (as given by the population). The
sample trace-length distribution for awindow of radius 150 mis set as the true
distribution, and it is called the simulated true distribution.

6.3.3 Point estimate of the moments of a log normal distribution fitted
to the observed distribution

As previously discussed, for Set 1 and Set 3 the simulated true trace-length distribution
has tendency towards alog-normal or an exponential shape. It followsthat it is possible
to fit log-normal curves (or exponential curves) to the observed trace-length
distributions. An advantage that comes with fitting a mathematical probability
distribution to the observed trace-length distributions, is that such distributions will
include an upper tail of the trace-length distribution, which otherwiseis truncated at
small window sizes. (As previously discussed there are other methods available, of
varying efficiency and applicability, for correcting the sample distributing as regards
boundary-truncation etc). Another advantage that comes with fitting a mathematical
function (probability distribution) to an observed trace-length distribution is that such
afunction can be mathematically analysed and developed; for exampleif onetriesto
derive an analytical relationship between trace-length and a fracture size distributions.

An observed variable which has a distribution that resembles alog-normal distribution
can have either (i) anormal curve fitted to a histogram of the logarithms of the values or
(if) alog-normal curve fitted to the actual values. Opinions differ as to which method
of representation is more effective. In this study we have fitted a normal curve to the
logarithms of the observed trace-lengths by use of a simple and robust approach; the
mean and standard deviation of the logarithms of the observed trace-lengths were
calculated, and these two moments were then used for definition of the log-normal
distribution. Logarithms to any base can be employed to "correct” the skew of
distributions that demonstrate a tendency to alog-normal distribution, and render a
normal distribution, but logarithms to bas e (natural logarithms) are mathematically
most convenient.

The underlying data-the trace-length distributions-demonstrate non-symmetric (skewed)
shapes, but they are not distributed as perfect log-normal distributions, thereforeit is
necessary to be careful when comparing log-normal distributions derived in different
ways from the underlying data. In addition there is variance between different
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realisations of the trace-length distributions. Even when studying the simulated

true distribution (windows of radius 150 m) there is a variance between different
realisations, but it isvery small at a such alarge window. It follows that, for a window
of agiven size, different distributions (modes) will be derived for the following two
alternatives: (i) Fitting one log-normal distribution to all trace-lengths that are obtained
from alarge number of realisations and cal culate the modes of this distribution. (ii)
Fitting log-normal distributions to the trace-lengths of each realisations and calculate
mean values of the obtained modes of the different distributions. However, for the large
window (radius 150m) used for deriving the true trace-length distributions, the results
obtained from the two methods are very similar; in this study we have used method (i)
when deriving the log-normal distribution representing the simulated true trace-length
distribution.

Considering the simulated true trace-lengths (radius of windows = 150 m), the
following moments were obtained by use of natural logarithms (eLog[trace length]):

Set 1. Mean, fhiog = 1.38 m, Standard deviation, de og = 0.96 m.
Set 3: Mean, fhiog = 2.15 m, Standard deviation, de og = 0.90 m.

The corresponding values for Set 2 are given below, but as stated above and
demonstrated in Figure 6-10 (below), the trace-length distribution of Set 2 is not well
represented by alog-normal distribution. Set2: Mean, & og = 2.35 m, Standard
deviation, Je og = 0.70 m.

Based on the values above, the moments of the corresponding log-normal distribution
can be calculated as follows, see /Dudewicz and Mishra, 1988; Williams, 1984/

Mean, 4 = g *05%a) 6-1

S-I-D o :\/e(ztueLog +UeZLog) (eJeZLOQ _1)

Median = e/

The log normal distributions, representing the simulated true trace-length distribution,
will have the following moments:

Set 1: Mean, 4=6.32 m, Standard deviation (STD), o=7.75m.
Set 3: Mean, = 12.85 m, Standard deviation (STD), o= 14.38 m.
The resulting distributions are given in Figure 6-8(i),

Figure 6-9(i) and Figure 6-10(i). Note that the trace-length distribution of Set 2 is not
well represented by alog-normal distribution. Examples of alog-normal curve fitting
isgiven below in Figure 6-8 and Figure 6-9. The log-normal curves were fitted to the
sample trace-length distribution by use of the following method, the mean and standard
deviation of the natural logarithms of the observed trace-lengths were cal culated, and
these two moments were then used for definition of the log-normal distribution. Thisis
an efficient method, if the observed values are distributed according to a perfect log-
normal distribution, the method will produce the correct moments for such a distribution
(by use of Eq. 7-1).
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Set 1. Trace length distribution. Comparison between:

(i) the simulated true distribution, and

(i) a Log Normal distribution fitted to the simulated true distribution.

50
I Simulated true trace length distribution
45 (circular area, radius= 150m)
40 ——og Normal distribution fitted to the
35 simulated true trace length distribution.
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(i) SET 1. Smulated true trace-length distribution and fitted Log-Normal distribution

Set 1. Trace length distribution. Comparison between:

(i) the Log Normal distribution fitted to the simulated true distribution, and

(i) a Log Normal distribution fitted to a sample distribution (window radius 6m)

DO

N\

Example of Log Normal distribution fitted to a sample
trace length distribution for a circular area of radius 6m.

——og Normal distribution fitted to the simulated true trace
length distribution.

Percentage within class
N
(42}
i
.

AN

=

i

o
N
»
EN
I
(<)

/=

B

Length of traces (m)

(if) SET 1. Log-Normal distribution fitted to the true trace-length distribution and a log normal
distribution fitted to a sample distribution taken from a window of radius 6m.
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length distribution for a circular area of radius 20m.
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(iii) SET 1. Log-Normal distribution fitted to the true trace-length distribution and a log normal distribution fitted to
a sample distribution taken from a window of radius 20m.

6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30

Figure 6-8. SET 1: Comparison between the simulated true trace-length distribution
and a log-normal distribution fitted to the simulated true distribution, and comparisons
between fitted Log-Normal distributions at different window sizes. Note that the first
part of the Log-Normal distributions (with increasing values) are inside the first class of

trace-lengths.
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Set 3. Trace length distribution. Comparison between:
(i) the simulated true distribution, and
(i) a Log Normal distribution fitted to the simulated true distribution.

25 1
I Simulated true trace length distribution
(circular area, radius= 150m)
é 207 —8— Log Normal distribution fitted to the
© simulated true trace length distribution.
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(i) SET 3. Simulated true trace-length distribution and fitted Log-Normal distribution

Set 3. Trace length distribution. Comparison between:
(i) the Log Normal distribution fitted to the simulated true distribution, and
(ii) a Log Normal distribution fitted to a sample distrinution (window radius 6m)
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(ii) SET 3. Log-Normal distribution fitted to the true trace-length distribution and alog normal distribution fitted to a
sampl e distribution taken from a window of radius 6m.
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Set 3. Trace length distribution. Comparison between:
(i) the Log Normal distribution fitted to the simulated true distribution, and
(i) a Log Normal distribution fitted to a sample distrinution (window radius 20m)
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(iii) SET 3. Log-Normal distribution fitted to the true trace-length distribution and alog normal distribution fitted to a
sampl e distribution taken from a window of radius 20m.

Figure 6-9. SET 3: Comparison between the simulated true trace-length distribution
and a log-normal distribution fitted to the simulated true distribution, and comparisons
between fitted Log-Normal distributions at different window sizes.
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Set 2. Trace length distribution. Comparison between:
(i) the simulated true distribution, and
(i) a Log Normal distribution fitted to the simulated true distribution.

16 + B Simulated true trace length distribution
(circular area, radius= 150m)

= og Normal distribution fitted to the
simulated true trace length distribution.
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Figure 6-10. SET 2: Comparison between the simulated true trace-length distribution
and a log-normal distribution fitted to the ssmulated true distribution. As seen in the
figure, the trace-length distribution of Set 2 is not well represented by a log-normal
distribution.

Percentage within class

When studying the figures above it is obvious that the trace-length distribution of Set 2
is not well represented by alog-normal distribution; but also considering the trace-
length distributions of Set 1 and Set 3, the log-normal representation is not a very good
representation. The log-normal distributions tend to overestimate the number of very
small and very large traces, and underestimate the number of traces having alength
close to the mean of the trace-length distributions.

The efficiency of the point estimate of the mean and standard deviation of the log-
normal distributions representing the observed trace-length distributions are not the
same as the efficiency of the point estimate of the observed distributions. The efficiency
of the point estimate as regards the log-normal distributions are given in Figure 6-11
and Figure 6-12.
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Horizontal trace-windows.
Length of fracture traces: Mean of log-normal distribution fitted to sample distribution.
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] Wﬁ% A};E;;&A & s 4% —
wzaaeﬁaam
o~

3 jjg —>— Length of traces: 95th percentile of mean values of log-normal distributions. | —
CSe¢

h 4
(2
»

Length (m)

—&—Length of traces: Mean of mean values of log-normal distributions.

—&— Length of traces: 5th percentile of mean values of log-normal distributions. [

=8—Length of traces: Standard dev. of mean values of log-normal distributions.

0 e
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Window Radius (m)
SET 1

Horizontal trace-windows.

Length of fracture traces: Mean of log-normal distribution fitted to sample distribution.

Fracture set 2.
16 -
14

ll\
i

3326067

12 X“X
10 -

——Length of traces: 95th percentile of mean values of log-normal distributions.

Length (m)
(2} [ee]
RN

(f —&—Length of traces: Mean of mean values of log-normal distributions. [
4 o —8— Length of traces: 5th percentile of mean values of log-normal distributions. |_|
=8—Length of traces: Standard dev. of mean values of log-normal distributions.
2
PN
0 T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Window Radius (m)
SET 2
Horizontal trace-windows.
Length of fracture traces: Mean of log-normal distribution fitted to sample distribution.
Fracture set 3.
16
14

OO 3

< P4

12 +-0-0-9-0-0-0
w PE—__?__,
° e M |
8 —— Length of traces: 95th percentile of mean values of log-normal distributions.| |

—&—Length of traces: Mean of mean values of log-normal distributions.

i
N

Length (m)

SRl

—&— Length of traces: 5th percentile of mean values of log-normal distributions. [ |

=6—Length of traces: Standard dev. of mean values of log-normal distributions. | |

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Window Radius (m)

SET 3

Figure 6-11. Efficiency of the point estimate of the mean value of the log-normal
distributions fitted to the observed trace-length distribution, considering windows of
different sizes.
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Horizontal trace-windows.
Length of fracture traces: Standard deviation of log-normal distribution fitted to sample distribution.
Fracture set 1.
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Figure 6-12. Efficiency of the point estimate of the standard deviation of the log-normal

distributions fitted to the observed trace-length distribution, considering windows of
different sizes.
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6.4 Hypothesis testing considering the moments of the
trace-length distribution and acceptable deviations

6.4.1 Purpose of tests

The purpose of these tests are to determine when the size of the sample is large enough
to produce acceptabl e estimates of the properties of the ssmulated true trace-length
distributions, with a certain probability. The hypothesis testing of this section is based
on the moments (mean and standard deviation) of the studied distributions of trace-
lengths. Considering the somewhat complex shape of the simulated true distribution,
one may wonder why we are interested in the moments and not of the actual shape of
the distribution. The answer isthat we are interested in both — this section presents a test
of the moments and the next section presents atest of the shape. The moments are of
interest, because when the samples produce a good estimate of the true moments, with a
large probability, thisis an indication that the shape of the distribution is stable and we
have found a sample size large enough for prediction of the true properties.

6.4.2 Test for the sample distributions

Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesis testing

of this section is based on the moments (mean and standard deviation) of the studied
distributions of trace-lengths and given criterions of significance. A difficulty is that
we do not know the true mean and standard deviation of the population studied. The
established criterions of significance will therefore correspond to the mean values
derived from avery large sample (the simulated true distribution). Thisis an acceptable
method as the mean values are stable at such alarge sample.

The null hypothesis (Ho) isthat a sampleis agood representation of the true properties
of the population. This hypothesisis rejected if the deviation between the values of

the sample and the true values of the population (simulated) islarge. The following
criterions of significance are used: three criterions for the mean of the distribution

and three criterions for standard deviation of the distribution. The criterions represent
different aspects of the distribution and different levels of significance.

Criterions for mean of distribution:

First criterion: Ho (viean_deviation <=15%) IS rejected if:
ABS[Meansample) — MeaNsmulated trug] >= 0.15* MeaNsmuiated true)
Second criterion: Ho (viean_deviation <=10%) 1S rejected if:
ABS[Meansample) — MeaNsmulated trug] >= 0.10* Meansmuiated true)
Third criterion:  Ho (Mean_deviation <=5%) 1S rejected if:

A BS[ M ean(sample) -M ean(si mulated true)] >=0.05* M ean(si mulated true)
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Criterions for standard deviation (STD) of distribution:

First criterion:  Ho(stp_deviation <=15%) 1S rejected if:

ABY[STD (sample) — STD (simutated trug)] >= 0.15* STD(simulated true)
Second criterion: Ho (sto_deviation <=10%) IS rejected if:

ABY[STD (sample) — STD (simuitated trug)] >= 0.10* STD(simulated true)
Third criterion:  Ho (stp_deviation <=5%) iS rejected if:

ABS[STDsample) — STD(simulated trug)] >= 0.05* STD(simulated true)

These tests are carried out separately, considering the traces of each fracture set. The
results of the analysis are presented as the probability that a sample, at a certain window
size, will not be rgjected, considering the criterions above.

Results considering mean and standard deviation of trace-lengths

Results are given for two different moments, mean and standard deviation. The results
are given in Figure 6-13 (below). Generally the following is demonstrated. To estimate
the mean of the trace-length distribution, with a small uncertainty, the radius of the
window studied needs to be much larger (e.g. more than two times larger) than the
mean of the fracture diameter distribution. If the standard deviation of the trace-length
distribution is much smaller than the mean of the distribution, the standard deviation
might be estimated (with a small uncertainty) using much smaller windows than the
windows necessary for producing a good estimate of the mean of the distribution. We
conclude the following results.

SET 1

If the radius of the window studied islarger than 32 m, the probability is larger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the ssimulated true value of the population.

If the radius of the window studied islarger than 52 m, the probability is larger than
90 percent that the deviation in estimated standard deviation value is within
plus/minus 15 percent of the simulated true value of the population.

SET 2:

If the radius of the window studied is larger than 45 m, the probability islarger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the smulated true mean value of the population

If the radius of the window studied is larger than 12 m, the probability islarger than
90 percent that the deviation in estimated standard deviation value is within
plus/minus 15 percent of the simulated true value of the population
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SET 3:

If the radius of the window studied islarger than 52 m, the probability is larger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the ssmulated true mean value of the population

If the radius of the window studied islarger than 70 m, the probability is larger
than 90 percent that the deviation in estimated standard deviation value is within
plus/minus 15 percent of the simulated true value of the population
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Probability for correct estimation of mean and standard deviation of trace lengths.
Fracture set 1.
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Figure6-13. SET 1, SET 2 and SET 3: Hypothesis testing for selected acceptable
deviationsin predicted mean and standard deviation of trace-length distribution. The
figure gives the percentage of accepted samples, which is approximately the same thing
as the probability for correct estimation, considering the different selected criterions.



6.4.3 Test for the log-normal distributions fitted to the
sample distributions

Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesis testing
of this section is based on (i) the moments of the log-normal distributions fitted to
the sample distributions, as discussed in Section 6.3.3; and (ii) given criterions of
significance. The established criterions of significance will correspond to the log-
normal distribution fitted to the simulated true distribution (see Figure 6-8 and Figure
6-9). The criterions refer to the mean and standard deviation of the distribution, in
normal space, and not in log-space. The trace-length distribution of Set 2 will not be
included in these tests, as this distribution is not well represented by alog-normal
distribution.

The null hypothesis (Ho) is that a sampleisagood representation of the true properties
of the population. This hypothesisis rejected if the deviation is large between the values
of the sample and the true values of the population (simulated). The following criterions
of significance are used: three criterions for the mean of the distribution and three
criterions for standard deviation of the distribution. The criterions represent different
aspects of the distribution and different levels of significance.

The criterions below refer to properties of the log-normal distributions fitted to the
data, and not directly to the properties of the sample data. It follows that the ranges of
accepted samples, considering the log-normal distributions, are not the same as the
ranges of accepted samples when considering the sample distribution

Criterions for mean of fitted log-normal distribution:

First criterion:  Ho (Mean_deviation <=15%) IS rejected if:

A BS[ M €aN(sample log-normal) — M €aN(simulated true Iog-normal)] >=0.15* M €aN(simulated true log-normal)
Second criterion: Ho (mean_deviation <=10%) 1S rejected if:

ABY M ean(sample log-normal) — M €8N (simulated true log-normaly] >= 0.10* M €aN(simulated true log-normal)
Third criterion:  Ho (viean_deviation <=5%) 1S rejected if:

ABY M ean(sample log-normal) — M €8N (smulated true log-normaly] >= 0.05* M €aN(simulated true log-normal)

Criterions for standard deviation (STD) of fitted log-normal distribution:

First criterion:  Ho(stp_deviation <=15%) 1S rejected if:

ABY[STD (sample log-normal) — ST D (simulated true log-normal)] >= 0.15* ST D(simulated true log-normal)
Second criterion: Ho (sto_deviation <=10%) IS rejected if:

ABY[STD (sample log-normal) — ST D(simulated true log-normal)] >= 0.10* ST D(simulated true log-normal)
Third criterion:  Ho (stp_deviation <=5%) 1S rejected if:

ABS[STD(samplelog-normal) -ST D(simulated truelog-normal)] >=0.05* ST D(simulated true log-normal)
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Thesetests are carried out separately, considering the traces of each fracture set (Set 1
and Set 3). Theresults of the analysis are presented as the probability that a sample, at a
certain window size, will not be rejected, considering the criterions above.

Results considering mean and standard dev of log-normal distributions

Results are given for two different moments, mean and standard deviation, see
Figure 6-14 below. (The trace-length distribution of Set 2 will not be included in
these tests, as this distribution is not well represented by alog-normal distribution.)

The efficiency of a point estimate refers to the rate with which the estimates converge
towards the true values, considering sample size. When comparing two point estimates,
the most efficient point estimate is the one that for the smallest samples produces the
estimates closest to the true values.

The efficiency of the point estimates considering the moments of the log-normal
distributions is not the same as the efficiency of the point estimates considering the
moments of the sample distributions. For Set 1 and Set 3, the point estimate considering
the log-normal distributions is more efficient than the estimates concerning the sample
distribution. Thisis because Set 1 and Set 3 are well represented by alog-normal
distributions.

We conclude the following the following results.
SET 1:

If the radius of the window studied is larger than 25 m, the probability islarger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the smulated true mean value of the population

If the radius of the window studied is larger than 42 m, the probability islarger than
90 percent that the deviation in estimated standard deviation value is within
plus/minus 15 percent of the simulated true value of the population

SET 3:

If the radius of the window studied islarger than 45 m, the probability is larger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the ssmulated true mean value of the population

If the radius of the window studied islarger than 65 m, the probability is larger than
90 percent that the deviation in estimated standard deviation value is within
plus/minus 15 percent of the simulated true value of the population
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Probability for correct estimation of mean and standard deviation of log-normal distribution
fitted to sample distribution. Fracture set 1.
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Figure6-14. SET 1 and SET 3: Hypothesis testing for selected acceptable deviations in
predicted mean and standard deviation of log-normal distributions fitted to the trace-
length distributions. The figure gives the percentage of accepted samples, whichis
approximately the same thing as the probability for correct estimation, considering the
different selected criterions.
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6.5 Hypothesis testing considering the shape of the trace-
length distribution and given confidence levels

6.5.1 Purpose of tests

The purpose of thistest isto determine when the size of the sample islarge enough to
produce an acceptable estimate of the true properties of the trace-length distribution, at
acertain given level of confidence. The hypothesis testing of this section are based on
the shapes of the distributions studied (tests as regard the moments of the studied
distributions are given in the previous section). Distribution shape is of interest as it
characterises the distribution studied, and when samples produce a good estimate of the
shape of the true distribution, with alarge probability, the samples are large enough for
prediction of the true properties.

6.5.2 Methodology of the chi-square test

Tests of the shape of the trace-length distributions were carried out as chi-square

tests of “goodness-of-fit”. The observed trace-lengths are grouped into classes and the
frequencies are compared with the expected frequencies, as given by the simulated true
trace-length distributions.

Null hypothesis and confidence levels

The samples were analysed by use of statistical hypothesis testing. The hypothesis
testing were based on the shape of the trace-length distributions and given confidence
levels. Examples of trace-length distributions from samples are given in Figure 6-3,
Figure 6-4 and Figure 6-5. The sample distributions are compared to the simulated true
distribution, this distribution is presented in Figure 6-2.

The null hypothesis (Ho) isthat a sampleisagood representation of the simulated true
distribution. The hypothesisis rejected if, when comparing the sample and the true
distribution, it is found that the deviations between the two distributions are large. The
confidence level givesthe size of deviation that is acceptable, adeviation larger than
thisis considered as a significant deviation.

The confidence level should be selected in away that the probability for rejection of the
hypothesisis small if the hypothesisis true. We have studied three different levels of
confidence: 90, 95 and 99 percent. The hypothesis tests are as follows:

»  First confidence level 99%. The hypothesis, Ho (c=999) IS rejected if the sample
deviates significantly at thislevel of confidence.

»  Second confidence level 95%. The hypothesis, Ho (c=95%) IS rejected if the sample
deviates significantly at thislevel of confidence.

*  Third confidence level 90%. The hypothesis, Ho (c=90%) IS rejected if the sample
deviates significantly at this level of confidence.
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Thetests are carried out separately, considering the traces-length distribution of each
fracture set. For each confidence level, the result of the analysisis presented as the
percentage of accepted samples at different window sizes.

Results — chi-square test of goodness-of-fit

The results of the chi-square tests are given in Figure 6-15, below. The figure presents
the results for three different confidence levels. In a goodness-of-fit test, the shape of
the distributions are tested, and the deviations in mean and spread may balance each
other in away that the shape is accepted athough the moments are not well predicted.

We conclude the following results.
SET 1:

For awindow with radius larger than 13 m, the probability is larger than 90 percent that
asample will not be rejected at the first level of confidence (Ho (c=o9)). Or with other
words. If the radius of the window studied is larger than 13 m, the probability is larger
than 90 percent that the shape of the trace-length distribution derived from a sample
iIsagood representation of the simulated true distribution, at a confidence level of

99 percent.

SET 2:

For awindow with radius larger than 38 m, the probability is larger than 90 percent that
asample will not be rejected at the first level of confidence (Ho (c=o9%)). Or with other
words. If the radius of the window studied is larger than 38 m, the probability is larger
than 90 percent that the shape of the trace-length distribution derived from a sample
iIsagood representation of the simulated true distribution, at a confidence level of

99 percent.

SET 3:

For awindow with radius larger than 30—33 m, the probability is larger than 90 percent
that a sample will not be rejected at the first level of confidence (Ho (c=99%)). Or with
other words. If the radius of the window studied is larger than 30—33 m, the probability
is larger than 90 percent that the shape of the trace-length distribution derived from a
sampleisagood representation of the simulated true distribution, at a confidence level
of 99 percent.
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Probability for correct estimation of trace length distribution
Fracture set 1. Chi-square test of sample distributions of trace lengths.
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approximately the same thing as the probability for correct estimation, considering
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7 Estimation of fracture — set orientation
from fracture traces on rock surfaces

7.1 Introduction

Fracture traces, observed on a surface, have a direction; this direction is often given as
the Strike; if it is possible to identify atrace it also possible to measure the strike of the
trace. The strike is the bearing or direction of a horizontal line in the horizontal plane,
and it is normally measured in an easterly sense from north. In the following chapter,
we will present the efficiency of estimating the mean strike of the different fracture sets,
based on fracture traces as seen on rock surfaces.

In addition to strike also other properties of fracture orientation could be measured (e.g.
fracture set dispersion), presuming that it is possible to measure (or calculate) the dip
of the fracture that created the trace, because strike and dip can be recalculated to pole
trend and pole plunge. It is however not always possible to measure or calculate the
dip. In the following chapter we will also present fracture set orientation data (mean
direction and dispersion), based on pole trend and pole plunge. For these calculations
we have assumed that it is possible measure (or calculate) the trend and plunge of the
fracture that created the observed fracture traces.

7.2 Estimation of direction of fracture traces

7.2.1 Methodology

In classical geology, the orientation of a planar feature (e.g. afracture trace) is defined
by its strike and dip. The strike is the bearing or direction of ahorizontal linein the
plane. The dip isthe angle of the inclination of the planar feature. The strike and the dip
should be defined in away that a consistent definition is obtained of the orientation in
space of the planar feature studied (see Section 2.2.2).

The definition of strike and dip corresponds to a planar feature, but afracture traceisa
linear feature. A fracture trace pointsin two different directions (atrace is not vector
but an axis) therefore, unless we have information of the fracture dip, two different
direction of strike are possible for every trace. It follows that for estimates of the mean
strike, without knowledge of the dip, al strike values have to be transformed to arange
within 180 degrees (for example as bearings between North and South). If thedipis
known only one direction of strike is possible, for such a situation values of strike are
often defined between 0 and 360 degrees.

In this chapter, when estimating the mean strike, we have assumed that there is enough
information available regarding the dip of the fracture traces observed, that for each
fracture trace observed it is possible to select the appropriate main direction of strike
(from the two directions that are possible for each trace). The problem with the
unknown main direction of afracture trace is not necessarily alarge problem, except

if the sample dispersion of strike values of the fracture tracesis large. In this study the
dispersion of Set 1 islarge by definition. In addition we are in this chapter analysing
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fracture traces on horizontal surfaces. It follows that a sample (as seen on a horizontal
surface) of the strike values of the sub-horizontal fracture set 3 will demonstrate a very
large dispersion, even if the true dispersion (in three-dimensions) of Set 3 is not very
large. When plotting distributions of strike values, we have defined the strike as the
bearing of a horizontal line in the plane measured in an easterly sense from north. It
follows that the strike distribution contains values from zero degrees, which represents
north, and up to 180 degrees, which represents south.

Asfor the trace-length distribution, the observed strike distribution might be biased.
Such bias occurs because the three-dimensional fracture network is sampled by use of
two-dimensional planes having alimited extension. If the fractures are of different sizes
and the orientation of afractureisrelated to the fracture size, all the biases discussed in
the previous chapter, except boundary truncation, will influence the strike distribution.
We will not discuss the causes for biasin this section, for such a discussion we refer to
Section 6.2.

As stated above, the strikes are given as values between 0 and 180 degrees and
correspond to different directions of the fracture planes studied. Together they form a
strike distribution. In this chapter, when we refer to the concept of mean strike, we are
actually discussing the dominating mode of such a strike distribution. It should be noted
that to calculate the mean strike direction, which corresponds to the mode of the strike
distribution, it is necessary to treat the strike values as vectors, or to analyse the shape
of the distribution. It is not correct to calculate a mean value by using the strike values
as scalars. In this study we have used vector algebra. No Tersaghi correction was
included in the calculations presented in this chapter.

One should note the following when comparing:
(i) deviation in estimated mean strike of afracture set (in degrees), and

(if) deviation in estimated mean direction of afracture set (as an acute angel in degrees
on the unit sphere).

The estimate of mean strike of afracture set, based on strike values only, could be a
more uncertain estimate than estimates of the mean orientation (three-dimensional) of
the same fracture set based on consistent values of strike and dip (or trend and plunge).
Because at small sample sizesit is uncertain where the dominating mode of the strike-
distribution islocated (especially if the dispersion of the fracture set islarge). More
information is available if both strike and dip (or trend and plunge) is used; therefore
(at small sample sizes) it is possible that aless uncertain estimate can be derived of the
mean direction of the fracture set than of the mean strike.

The characteristics of the strike distributions vary with the size of the window studied.
For small windows, the number of traces are small, and consequently the variation in
distribution characteristics is large between different windows (different realisations).
The larger the window the closer the characteristics of the sample distribution isto the
unknown characteristics of the population studied, and the smaller the differences
between different realisations.
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The strike distributions of the fracture sets of the population studied, based on direction
of fracture traces as seen on very large circular and horizontal windows (radius

150 metres) are given in Figure 7-1, Figure 7-2, Figure 7-3 and Figure 7-4. The average
strike distribution for windows of radius 150 metresis set as the true distribution, and it
is called the simulated true distribution (thisis further discussed below).

The strike is correlated to the pole trend in the following way (in degrees):
Strike = PoleTrend + 90

Based on the given values of pole trend (see Table 2-2) we have calculated the true
mean strike, which is:

e Setl. Mean strike = 39.0 deg.
e Set2. Mean strike =127.0 deg.
e Set 3. Mean strike = 20.6 deg.

If al strike values (derived from fracture traces), observed on alarge number of
horizontal windows of radius 150 metres, are put together in one group, the
corresponding strike distribution is given in Figure 7-1. The demonstrated strike
distribution has a bi-modal shape. The first mode corresponds to the mean strike of
fracture set 1, and the second mode corresponds to the mean strike of fracture set 2.
Fracture set 3 is sub-horizontal and on a horizontal surface it has no well-devel oped
mean trend direction, at least not when covered by the large number of traces that
corresponds to Set 1 and Set 2. (It is however possible to estimate the mean direction
of Set 3, if the set-identities of the traces are known, thisis discussed in more detail
below.) Considering a circular window of radius 150 metres the average number of
fractures per set is: Set 1= 35% , Set 2= 51%, Set 3= 14%

Trace strike distribution.
All traces included (Set 1, Set 2 and Set 3).
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-1. Strike distribution of all traces (Set 1, Set 2 and Set 3) based on the
directions of all fracture trace, as seen on horizontal windows of radius 150 m
(simulated true distribution).
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The first mode, which represents Set 1, is actually a very good estimate of the mean
strike of Set 1, the difference is 0.2 degrees (true value= 39.0 deg., estimate= 39.2 deg.).
The second mode, which represents Set 2, is avery good estimate of the mean strike of
Set 2, the difference is 0.5 degrees (true value= 127.0 deg., estimate= 126.5 deg.). These
results are not surprising, because the distribution studied is based on a huge number of
fractures (about 1000 000 observed fractures). The purpose is to demonstrate that as the
number of tracer increases, the strike distribution observed converges towards the true
distribution of strike values; and for large sample sizes, the sample estimates are very
close to the true values.

However, in the remaining parts of this chapter we will study the strikes of each fracture
set separately. When fracture traces are observed on rock surfaces, it is often possible

to separate the fracture traces into different sets, based on the observed strike of the
fracture traces; and based on the dip of the fracture traces (assuming that it is possible to
observe adip). It follows that different strike distributions will be derived for different
sets. In the analyses presented below, the fracture traces are divided into three different
sets, based on the known set-identity of each fracture that creates atrace. The results of
the analyses are given for each fracture sets separately. (In this study each fracture was
marked with its proper set identity since thisis known at the generation of the fracture.
In areal situation, different methods and algorithms for identifying and delimiting sets
will be necessary to ensure objective set identifications.)

Considering Set 1 and windows of radius 150 metres, the corresponding simulated true
strike distribution (based on fracture traces) is given below (Figure 7-2). The mode of
the distribution is at 39.03 degrees, which is avery good estimate of the true mean
strike (39.00 deg). Again it should be noted that the distribution below is a simulated
true distribution and it is based on a huge number of fractures (about 1000 000 observed
fractures).

Trace strike distribution.
Fracture traces of Set 1.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-2. Srikes distribution of Set 1,based on the directions of fracture traces of
Set 1, as seen on horizontal windows of radius 150 m (simulated true distribution).
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Considering Set 2 and windows of radius 150 metres, the corresponding strike
distribution is given below (Figure 7-3). The mode of the distribution is at

126.97 degrees, which is avery good estimate of the true mean strike (127.00 deg).
And again it should be noted that the distribution below is a simulated true distribution
and it is based on a huge number of fractures (c:a 1000 000 observed fractures).

Trace strike distribution.
Fracture traces of Set 2.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.

Percentage within class
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Figure 7-3. Strikes distribution of Set 2, based on the direction of the fracture traces of
Set 2, as seen on horizontal windows of radius 150 m (simulated true distribution).

Considering Set 3 and windows of radius 150 metres, the corresponding strike
distribution is given below (Figure 7-4). Fracture set 3 is sub-horizontal and on a
horizontal surface it has no well-devel oped mean trend direction. Nevertheless, if the
window is large enough, the mode of the distribution is a very good estimate of the true
mean strike. The mode of the distribution is at 20.61 degrees, which is a very good
estimate of the true mean strike (20.60 deg). It should however be noted that the
distribution below is asimulated true distribution and it is based on a huge number

of fractures (about 1000 000 observed fractures).

Trace strike distribution.
Fracture traces of Set 3.
The simulated true trace strike distribution, as given by a circular area of radius= 150m.
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Figure 7-4. Srike distribution of Set 3, based on the direction of the fracture traces of
Set 3, as seen on windows of radius 150 m (simulated true distribution).
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7.2.2 Point estimate of strike distribution based on fracture traces

General

The directions of the fracture traces that are observed on awindow studied are samples
of the properties of the fracture population. The properties of the sample can be looked
upon as an estimate of the properties of the population. From a statistical point of view,
the analysis of the strike distribution, as given by fracture traces on windows of
different sizes, is a point estimate of the properties of an unknown strike distribution.

The characteristics of the strike distribution vary with the size of the window studied.
For small windows, the number of traces are small and the variation in distribution
characteristicsis large between different windows (different realisations of the
distribution). The larger the window the closer the characteristics of the sample
distribution is to the unknown characteristics of the population studied, and the smaller
the differences between different realisations; the rate of this progress towards the true
characteristics are called the efficiency of the point estimate.

The strike distributions of the fracture sets of the population studied, considering
fracture traces on very large circular and horizontal windows (radius 150 metres) are
givenin Figure 7-2, Figure 7-3 and Figure 7-4.

Examples of sample strike distributions, derived from fracture traces observed
on horizontal windows with aradius smaller than 150 metres, are given below in
Figure 7-5, Figure 7-6 and Figure 7-7.

Trace strike distribution.
Fracture traces of Set 1. Comparison between the simulated true distribution and a sample distributionof a
circular area of radius 10 m.
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Figure 7-5. SET 1. Comparison between the simulated true strike distribution and an
example of a strike distribution based on fracture traces seen on a window of radius
10m.
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Trace strike distribution.
Fracture traces of Set 2. Comparison between the simulated true distribution and a sample distribution of a
circular area of radius 10 m.
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Figure 7-6. SET 2. Comparison between the simulated true strike distribution and an
example of a strike distribution based on fracture traces seen on a window of radius
10 m.

Trace strike distribution
Comparison between the simulated true distribution and a sample distribution for a
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Figure 7-7. SET 3. Comparison between the simulated true strike distribution and an
example of a strike distribution based on fracture traces seen on a window of radius
20m.

Point estimate of the moments of the observed distribution

The efficiency of the point estimate of the mean and standard deviation of the strike
distribution (from fracture traces as seen on horizontal windows) isgiven in Figure 7-8,
below. Considering a circular window of radius 150 m, the point estimate produces the
following results:

Setl
Mean values of strike distribution, window radius = 150m.
Mean of mean values = 38.9 degrees(True value= 39.00 degrees)

Standard deviation of mean values = 0.2% of mean of mean values.
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Set2
Mean values of strike distribution, window radius = 150m.
Mean of mean values = 126.7 degrees(True value= 127.00 degrees)
Standard deviation of mean values = 1.1% of mean of mean values.
Set 3
Mean values of strike distribution, window radius = 150m.
Mean of mean values = 20.6 degrees(True value= 20.6 degrees)

Standard deviation of mean values = 0.1% of mean of mean values.

Analysing the figures that presents the efficiency of the point estimate of the mean

of the strike distributions (Figure 7-8). It is concluded that the changes in mean and
variance of the distributions are small for windows with aradius larger than 150 m. The
sample strike distribution for awindow of radius 150 mis set as the true distribution,
and it is called the simulated true distribution.
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Figure 7-8. Efficiency of the point estimate of the mean value of the observed strike
distribution. The strike distributions are based on fracture traces observed on windows
of different sizes.
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7.2.3 Hypothesis testing considering mean of strike distribution and
acceptable deviations

Purpose of tests

The purpose of thistest isto determine when the size of sample of fracture traces
(number of traces) islarge enough to produce an acceptabl e estimate of the true
properties of the strike distribution, with a certain probability. The hypothesis testing

of this section is based on the mean values of the strike distribution. Considering the
somewhat complex shape of the simulated strike distribution, one may wonder why we
are interested in the moments and not of the actual shape of the distribution. The answer
isthat we are interested in both — this section presents atest of the mean values and the
next section presents atest of the shape. The mean values are of interest, because when
the samples produce a good estimate of the true mean values, with alarge probability,
thisis an indication that the shape of the distribution is stable and we have found a
sample size large enough for prediction of the true properties.

Null hypothesis, acceptable deviations and criterion of significance

The samples were analysed by a statistical hypothesis testing. The hypothesis testing of
this section is based on the mean values of the studied distributions and given criterions
of significance. The established criterions of significance correspond to the known true
mean strikes of the fracture sets studied

The null hypothesis (Ho) isthat asampleisnot agood representation of the true
properties of the population. This hypothesisisrejected if asmall deviation takes place
between the values of the sample and the true values of the population. The following
criterions of significance are used: the sampleisrejected if the deviation from the
simulated true value is smaller than 15 degrees (first level) or 10 degrees (second level)
or 5 degrees (third level). These criterions are applied to the mean value (or mode) of
the distributions studied. The criterions represent different aspects of the distribution
studied and different levels of significance.

First criterion:  Ho (deviation in mean value >=15 deg) IS r€j €cted if:
ABS[Meansample) — M €aN(simulated trug] <= 15 degrees
Second criterion: Ho (deviation in mesn value >=10 deg) IS rejected if:
ABS[M ean(sampie) — M€aN(simuated trug] <= 10 degrees
Third criterion:  Ho (deviation in mean value >=5 deg) 1S rej ected if:

ABY M eansample) — M€aN(simulated trug] <= 5 degrees

The results of the analysis are presented as the probability that a sample, at acertain
window size, will fulfil the hypothesis considering the criterions above.
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Results considering mean values

As previoudly stated, when comparing the efficiencies of the different point estimates
for the different sets, it isimportant to note the following. In this study the number of
observed fractures on a studied area (with a given radius), gives the sample size and
these sample sizes are different for different sets. For example on avery large horizonta
circular area and considering the different sets, on the average the amounts of fracture
traces are: Set1=35%, Set2= 51% and Set3=14%. Considering a situation with two
fracture sets with approximately the same dispersion, the different amounts of fractures
observed for each set will influence the efficiency of the point estimates; on the average
the large the number of observed fractures the less uncertain is the estimate.

Theresults are given in below. We conclude the following results.
SET 1:

If the radius of the window studied islarger than 35 m, the probability is larger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the true value of the population.

SET 2:

If the radius of the window studied islarger than 18 m, the probability is larger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the true mean value of the population

SET 3:

If the radius of the window studied is larger than 60 m, the probability islarger than
90 percent that the deviation in estimated mean value is within plus/minus 15 percent
of the true mean value of the population
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Figure 7-9. Hypothesis testing for selected acceptable deviations, considering mean of
predicted strike distribution. The figure gives the percentage of accepted samples,

which is approximately the same thing as the probability for correct estimation,

considering the different selected criterions.
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7.2.4 Hypothesis testing considering the shape of the strike
distribution and given confidence levels

Purpose of tests

The purpose of thistest isto determine when the size of the sampleislarge enough to
produce an acceptable estimate of the true properties of the strike distributions, at a
certain given level of confidence. The hypothesis testing of this section isbased on

the shapes of the distributions studied (tests as regard the moments of the studied
distributions are given in the previous section). Distribution shape is of interest as it
characterises the distribution studied, and when samples produce a good estimate of the
shape of the true distribution with alarge probability, the samples are large enough for
prediction of the true properties.

Methodology of the chi-square test

Tests of the shape of the strike distribution were carried out as chi-square tests of
“goodness-of -fit”. The observed strikes are grouped into classes and the frequencies
are compared with the expected frequencies, as given by the ssmulated true strike
distributions (see Figure 7-2, Figure 7-3 and Figure 7-4).

Null hypothesis and confidence levels

The samples were analysed by use of statistical hypothesis testing. The hypothesis
testing were based on the shape of the strike distributions and given confidence levels.
Examples of strike distributions from samples are given in Figure 7-5, Figure 7-6 and
Figure 7-7. The sampl e distributions are compared to the simulated true distribution
(see Figure 7-2, Figure 7-3 and Figure 7-4).

The null hypothesis (Ho) isthat a sampleisagood representation of the simulated true
distribution. The hypothesisis rejected if, when comparing the sample and the true
distribution, it is found that the deviations between the two distributions are large. The
confidence level givesthe size of deviation that is acceptable, adeviation larger than
thisis considered as a significant deviation.

The confidence level should be selected in away that the probability for rejection of the
hypothesisis small if the hypothesisis true. We have studied three different levels of
confidence: 90, 95 and 99 percent. The hypothesis tests are as follows:

» First confidence level 99%. The hypothesis, Ho (c=90%) iS rejected if the sample
deviates significantly at this level of confidence.

» Second confidence level 95%. The hypothesis, Ho (c=0s%) IS rejected if the sample
deviates significantly at thislevel of confidence.

» Third confidence level 90%. The hypothesis, Ho (c=90%) IS rejected if the sample
deviates significantly at thislevel of confidence.

For each confidence level, the result of the analysis is presented as the percentage of
accepted samples at different window sizes.
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Results — chi-square test of goodness-of-fit

The results of the chi-square tests are given in Figure 7-10, below. The figure presents
the results for three different confidence levels. In a goodness-of-fit test, the shape of
the distributions are tested, and the deviations in mean and spread may balance each
other in away that the shape is accepted athough the moments are not well predicted.

We conclude the following results.
SET 1:

If the radius of the window studied is larger than 13 m, the probability islarger than
90 percent that the shape of the strike distribution derived from a sample is a good
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of -fit test with a confidence level of 99 percent.

SET 2:

If the radius of the window studied islarger than 11 m, the probability is larger than
90 percent that the shape of the strike distribution derived from a sample is agood
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of-fit test with a confidence level of 99 percent.

SET 3:

If the radius of the window studied islarger than 24 m, the probability is larger than
90 percent that the shape of the strike distribution derived from a sample is agood
representation of the simulated true distribution. This conclusion is based on a chi-
square goodness-of-fit test with a confidence level of 99 percent.
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Figure 7-10. SET 1, SET 2 and SET 3:Hypothesis testing for shape of strike
distribution. A chi-square goodness-of-fit comparison between sample distributions
and the simulated true distribution, at different window sizes and for three different
confidence levels. The figure gives the percentage of accepted samples, whichis
approximately the same thing as the probability for correct estimation, considering the

different selected confidence levels.
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7.3 Estimation of fracture set mean direction, from fracture
measurements on rock surfaces

7.3.1 Introduction

In addition to strike also other properties of fracture orientation could be estimated

(e.g. fracture set dispersion), presuming that it is possible to measure (or calculate)

both the strike and the dip of the fracture that created the trace. Because strike and dip
can be recal culated to trend and plunge, and based on trend and plunge it is possible to
calculate mean direction and dispersion of identified fracture sets. In addition to the
direction (trend or strike) of afracture trace, which isnormally easily observed, it isalso
possible to measure or calculate the dip (or plunge) of the fracture that created the trace,
if the necessary resources are made available. In the following chapter we have assumed
that measurements (and/or calculations) are carried out of both trend and plunge of the
fractures that created the observed fracture traces, and we a so assume that all
measurements are carried out without any measurement errors.

7.3.2 Methodology

If strike and dip of the fractures that creates the fracture traces are known, and

recal culated to pole trend and pole plunge, it is possible to calculate the mean direction
and dispersion of the fracture sets. Actually, all the tests and anal yses described and
presented in Chapter 3 and 4, regarding fracture set orientation, can equally well be
performed with the data from arock surface (presuming that trend and plunge values
are known of the fractures that created the traces). In this Chapter we will not discuss
details of tests or the methods, for such a discussion we refer to the previous chapters
and applicable Appendices. We have, with use of datafrom rock surfaces, performed all
the tests and cal cul ations presented in Chapter 3 and 4. The results of those calculations
are presented below, but the results are not presented to the same level of detail asin the
previous chapters.

A sampling bias will occur when athree-dimensiona fracture system is sampled by use
of two-dimensional surfaces. It is possible to use an areal correction for this sampling
bias, a correction very similar to the correction used when analysing borehole data (the
Terzaghi correction). However, no correction for sampling bias (Terzaghi correction)
was included in the calculations and tests of this chapter. If we had included such a
correction in the analyses, the necessary sample sizes would have been smaller. This
especially the case for the sub-horizontal fracture set (Set 3), as this set is not well
represented on horizontal surfaces.

7.3.3 Fracture set orientation — acute angle — results

Based on the methods discussed in Chapter 3, the mean direction of the fracture sets
were calculated and compared to the known true direction (as discussed in the above-
mentioned chapter). The results are given in the Table 7-1 below.

When comparing the results given below to the results given in the previous section
regarding the strike, we note that the point estimate of mean direction of afracture set,
is more efficient than the point estimate of mean strike, thisis also discussed in
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Section 7.2.1. The high efficiency of the point estimate of mean direction of fracture
set, assumes that it is possible to measure (without any errors) strike (trend) and dip
(plunge) of all fractures that intersects the surface studied.

Table 7-1. Estimated Mean direction of fracture sets based on data from
horizontal circular surfaces. Presuming that trend and plunge is measured
without any errors and that Set ID is known for all traces studied.
Correction for sampling bias was not included.

PARAMETER CRITERION | PROBABILITY | HORIZONTAL | RADIUSOF
(Confidence (Confidencelevel) | CIRCULAR | SURFACE (1)
interval) SURFACE (Sample size)
ORIENTATION Deviation >= 90% Setl >=6m
MEAN <=15deg Set 2 >=4m
DIRECTION (2 Set 3 >=11m
Thedeviationin
degrees corresponds
to the acute angle Deviation >= 90% Set 1 >=8m
between the true < =10 deg Set 2 >=5m
mean direction and 2 Set 3 >=18m
that of asample.
Deviation >=90% Setl >=21m
<=5deg Set 2 >=11m
(2 Set 3 >=88m
(1) Results and conclusions given in this study are only directly applicable to the fracture
network studied
(2) Samples are within arange of plus or minus5, 10 or 15 degrees from the True value,
considering a range centred on the true value

7.3.4 Fracture set orientation — dispersion — results

Based on the methods discussed in Chapter 4, the dispersion of the fracture sets were
calculated, both considering the Fisher-Kappa parameter and the SR1 parameter, and
the values obtained from samples were compared to the known true values (as discussed
in the above-mentioned chapter). The results are given in the table below,
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Table 7-2. Fracture orientation from horizontal circular surfaces.
Presuming that trend and plunge is measured without any errors and that
Set ID is known for all traces studied. Correction for sampling bias was

not included.
PARAMETER CRITERION | PROBABILITY | HORIZONTAL RADIUS OF
(Confidence (Confidence level) CIRCULAR SURFACE (1)
interval) SURFACE (Sample size)
ORIENTATION Deviation >= 90% Setl >=15m
Dispersion <=+/-15% Set 2 >=8m
SR1 of true value Set 3 Not possible
2
Deviation >= 90% Setl >=24m
<=+/-10% Set 2 >=14m
of true value Set 3 Not possible
2
Deviation >= 90% Setl >=60 m
<=+-5% Set 2 >=33m
of true value Set 3 Not possible
2
ORIENTATION Deviation >= 90% Set1 >=38m
Dispersion < =+/-15% Set 2 >=26m
KAPPA of true value Set 3 Not possible
2
Deviation >= 90% Setl Not possible
< =+/-10% Set 2 >=55m
of true value Set 3 Not possible
2
Deviation >= 90% Setl Not possible
<=+/-5% Set 2 Not possible
of true value Set 3 Not possible

)

(1) Results and conclusions given in this study are only directly applicable to the fracture

network studied

(2) Samples are within arange of plus or minus 5, 10 or 15 percent of the True value,
considering a range centred on the true value, i.e. within: 0.85* TV-1.15*TV (TV=TrueValue)
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8 Limited sensitivity analysis

8.1 Methodology

Results and conclusions given in the previous chapters are only directly applicable to
the fracture network studied (the DFN-model), which properties are defined in Section
2.3 (see Table 2-1, Table 2-2 and Table 2-3). It is of course interesting to know how
small changesin the properties of the DFN-model studied will influence the results
given in previous chapters. To investigate this alimited sensitivity analysis have been
carried out, which investigate how small changes in the properties of the DFN-model
will change the results presented in previous chapters.

In theory the number of possible sensitivity casesisinfinite, it istherefore necessary

to follow a selected strategy when performing a sensitivity analysis. The sensitivity
analysis of this study is based on the fracture density of the rock mass, as defined by the
P32-parameter and the fracture size distribution. The P32-parameter is defined as the
fracture area per unit volume of rock mass. Presuming that the fractures are circular
planar discs, the P32-val ue depends on number of fractures and radius of fractures. The
principles of how the P32-value varies with fracture size and number of fracturesin a
volume of rock is demonstrated in Figure 8-1, below.
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g | &ggy\a\d\ I\argke \
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Figure 8-1. The principles of how P32 (fracture surface area per unit rock volume)
varies with fracture size and number of fracturesin a studied volume of rock. The figure
also indicates the principles on which the sensitivity analysisis based. (i) P32 is
constant and fracture radiusis varied (movement along a P32 isoline). (ii) Number

of fracturesis constant and radius of fracturesisvaried (varying P32-values).

(iii) Fracture radiusis constant and number of fracturesisvaried (varying P32-values).
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This study contains alimited sensitivity analysis; therefore only two sensitivity cases
areincluded.

Case 1.

P32 is not changed but fracture radii is varied. Thisis movement along an isoline
with constant P32.

Case 2.

P32 is defined as two times the values of the base-case. The fracture radius
distributions are not changed. Thisis movement along an isoline representing
constant fracture radius.

The results of the sensitivity cases are compared the results of the DFN-model analysed
in the previous chapters, this DFN-model is called the "base-case'”.

Base-case

This DFN-model is defined in Section 2.3 (see Table 2-1, Table 2-2 and Table 2-3)

8.2 Case 1 - Same P32 value but different fracture radii

8.2.1 Definition of Sensitivity Case 1

The DFN-model used in this study (as the base-case) isthe DFN 2 model presented in
/Hermanson et al, 1999/. The main objective of the DFN 2 modelling was to establish a
discrete fracture network model, representing the rock mass at the Prototype Repository,
which could be used for simulation of groundwater flow. The DFN 2 model
underestimates the total number of fracturesin the rock mass at the Prototype
Repository, as small fractures with minor or negligible hydraulic importance is not
included in the model. We have therefore established an aternative DFN-model

(Case 1), that includes alarger number of small fractures, but has the same value of
fracture density.

Case lisidentical to the base-case of this study (see Table 2-1, Table 2-2 and

Table 2-3), except that the fracture radius distributions are defined as different to those
of the base-case. The P32 value of Case 1 isidentical to that of the base-case. It follows
that, as the fracture radius distribution is different and the P32-value is the same, the
number of fractures will be different in Case 1 compared to the base-case.

The new fracture radius distribution (for Case 1) were defined aslog-normal
distributions as for the base-case, but with smaller values of mean and standard
deviation than in the base-case. When analysing log-normal distributionsit is often
convenient to analyse the data in eLog-space, because in el.og-space the |og-normal
distribution becomes a normal-distribution (thisis also discussed in Section 6.3.3). To
establish the new distribution the following method was applied:

*  The mean values of thelog-normal distributions in elog-space (Mean, L og ) Was
defined as: Case 1 e og = 0.43 BaseCase Lo og
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e The standard deviation values of the log-normal distributions in elog-space
(Mean, Jeog ) Wasdefined as:  Case 1 Ty og = 0.66 BaseCase T og

Hence, in eL og-space, the new mean is 43% of the value of the base-case, and the

new standard deviation is 66% of the value of the base-case. It follows that the new
distributions (Case 1) will consist of smaller fractures. In a DFN-model with a constant
P32 value, reducing the radii of the fractures will be compensated by alarger number of
fractures. Compared to the base-case, the DFN-network of Case 1 will contain smaller
fractures, but more of them.

The properties of the fracture radius distributions of Case 1 are given in Table 8-1
(below).

Fracture traces, created by the fractures of Case 1, as seen on circular horizontal
windows are given in Figure 8-2 (compare Figure 8-2 and Figure 2-5).

A comparison of the shape of the fracture diameter distributions of Case 1 and the
corresponding trace-length distributions are given in Figure 8-3 (compare Figure 8-3
and Figure 6-2).
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Table 8-1. Size of fractures in Sensitivity Case 1.

Set No. 1 2 3
Fracture shape Planar discs Planar discs Planar discs
Distribution TlogNormal (1) TLogNormal (1) TlogNormal (1)
Mean radius [m] (2) 1.64 2.47 2.01

Mean of LN(radius) (3) 0.1505 0.8899 0.5915

Stdv radius [m] (4) 1.64 0.40 0.98

Stdv of LN(radius) [m] (5) 0.5487 0.1623 0.4635
Termination % (6) 0 0 0

Lower bound [m] (7) 0.0025 0.0025 0.0025
Upper bound [m] (7) 10000 10000 10000

(2) Mean of distribution.

(3) Mean of the natural logarithms of the values of radius

(4) Standard deviation of distribution.

(5) Standard deviation of the natural logarithms of the values of radius
(6) Amount of fractures that terminate at other fractures.

(7) Upper and lower boundaries for the truncated Log-Normal distribution

(1) A Log-Normal distribution which is truncated at lower and upper bounds.
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SET 1.

Fracture traces on a horizontal surface of radius 10m SET 2. ) )
(one realisation). Fracture traces on a horizontal surface of radius 10m

(one realisation)
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SET 3. ALL FRACTURE SETS
Fracture traces on a horizontal surface of radius 10m Fracture traces on a horizontal surface of radius 10m
(one realisation). (one realisation).
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Figure 8-2. Sensitivity Case 1. Fracture traces on circular horizontal surfaces with
radius 10m. The plotted fracture traces represents one realisation of the fracture
popul ation studied (the fracture network). Each of the four figuresincludes a different
number of fractures, dependent on the orientation and density of the fracture set
studied. The length of the traces divided by the surface area is the P21 parameter. For
very large horizontal surfaces, the P21 values are as follows: Setl P21= 0.77, Set 2
P21= 1.51, Set 3 P21= 0.41; hence 29% of the trace-lengths belongsto Set 1, and 56%
belongs to Set 2, and 15% belongsto Set 3. Considering the number of traces on a very
large horizontal surface, on the average 35% belongs to Setl, 51% belongsto Set 2 and
14% belongsto Set 3.
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CASE 1. Set 1. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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CASE 1. Set 2. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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CASE 1. Set 3. Trace length distribution and fracture diameter distribution.
The simulated true trace length distribution, as given by a circular areas of radius 150 m.
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Figure 8-3. CASE 1: Comparison between: (i) the fracture diameter distributions and
(i1) the corresponding trace-length distributions, considering the three fracture sets and
awindow of radius 150 m. The average trace-length distribution for windows of radius
150 mis set as the smulated true trace-length distribution, of Case 1.
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8.2.2 Results considering fracture orientation and density based on
data from boreholes

All the tests and anal yses presented in previous chapters have also been carried out
for the fractures of Case 1. Considering fracture data as seen in boreholes (fracture
orientation and fracture density) the results of Case 1 are identical to the results of the
base-case presented in previous chapters. (It should perhaps be noted that also the
estimates of P32-values from borehole datain Case 1 are identical to the estimates

of the base-case.)

This can be explained in the following way. The fractures of Case 1 are smaller, hence
the probability of seeing a specific fracture in aborehole is smaller than for a specific
fracture of the base-case, on the other hand there is alarger number of fracturesin

Case 1 than in the base-case. In dl, the number of fractures seen in the borehole isthe
same as in the base-case, and the P10 values are the same. Hence, everything else being
equal, the fracture radius may vary, but as long as the P32 is constant, the number of
fractures seen in a borehole will be the same, regardless of the mean and standard
deviation of the fracture radius distributions. (Presuming that the rock volume studied
is large enough for being statistically homogeneous).

Thisisimportant, especially when establishing DFN-models of afractured rock mass,
because it tells us that for a given value of the P32 of the rock mass, the uncertainty

in actual shape of the fracture radius distribution will not influence the estimates of
fracture set orientation as seen in boreholes. Note that this conclusion assumes that the
geometrical form of fractures are the same (e.g. circular), it is the size of the fractures
that may vary.

8.2.3 Results considering fracture orientation, density and trace-
lengths based on data from rock surfaces

All the tests and analyses presented in previous chapters have also been carried out for
the fractures of Case 1. Considering fracture data as seen on rock surfaces (fracture
trace density, fracture trace-length distribution and fracture trace-strike distribution) the
results of Case 1 are not identical to the results of the base-case presented in previous
chapters.

This can be explained in the following way. The fractures of Case 1 are smaller, hence
the probability of seeing the trace of a specific fracture on a surface (window) is smaller
than for a specific fracture of the base-case; on the other hand thereis alarger number
of fracturesin Case 1 than in the base-case, hence the number of fracture traces seen on
asurface will not be the same as in the base-case. On the average more fracture traces
are seen on asurface in Case 1 than in the base-case (presuming that the two surfaces
are of equal size), and these traces are on the average shorter than the traces of the
base-case.

However, to what amount and in which way this will influence the point estimates

will depend on the properties of the fracture sets studied and the size and shape of the
windows studied. It is difficult to make any detailed or even general conclusions, except
the following: A large number of small fractures will on the average produce a more
efficient point estimate (considering a given increase in window radius) than a small
number of large fractures (considering the same window radii).
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Fracture trace density — P21

The fracture density is the samein Case 1 asin the base-casg, it follows that the true
P21 vaue for very large windows (the P21 parameter) will be the same as in the base-
case. Thisfollows from Eq. 6-1. But the point estimate of the P21-valuesin Case 1
will not converge towards the P21 parameter in the same way asin the base-case. The
larger number of smaller fracturesin Case 1 will produce smaller differences between
different windows (realisations) than in the base-case, which will give amore efficient
point estimate than in the base-case. The number of boundary truncated fracture traces
will be smaller in Case 1 than in the base-case, which will also influence the point
estimate. A summary of the results for Case 1 and the base-case is given in Table 8-2
(below).

As can be seen in the table below, considering the estimation of the P21 parameter, for
Set 1 and Set 3 the necessary sample sizes are smaller for Case 1 than for the base-case.
The necessary radius of the window studied in Case 1 is half of the necessary radius of
the base-case, for the two criterions studied (Deviation <= +/-15% of true value, and
Deviation <= +/-10% of true value).

Considering Set 2 and comparing the results of the two cases, as given in Table 8-2, the
results are approximately the same for the two cases. That is however for the criterions
(confidence intervals) given in Table 8-2, but for a criterion (confidence interval) of
plus/minus 5% of the true value, the necessary window size is somewhat smaller for
Case 1 than for the base-case.

The different responses demonstrated by the different fracture setsillustrates the
difficulty in making any general conclusions regarding the sensitivity of the point
estimate of P21, to the properties of the fracture radius distribution. It should however
be noted that for the two studied cases, both cases produce the same values of P21, if
the window studied is large enough.
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Table 8-2. P21, Case 1 and the base-case. Summary of results.

PARAMETER CRITERION | PROBABILITY FRACTURE SIZE
(Confidence (Confidence level) SET (Sample size)
interval)
BASE-CASE Horizontal circular
P21 Deviation >= 90% Surface Radius of surface
[ Trace-length per < = +/-15% Setl >=24m
of true value Set 2 >=22m
surface ared] (1) Set 3 >=40m
Analysis of circular
horizontal surfaces Horizontal circular
Deviation >= 90% Surface Radius of surface
<=+/-10% Set 1 >=38m
of true value Set 2 >=32m
Q) Set 3 >=65m
CASE 1 Horizontal circular
P21 Deviation >= 90% Surface Radius of surface
[Trace-length per < = +/-15% Setl >=12m
of true value Set 2 >=22m
surface area] (1) Set 3 >=20m
Analysisof circular
horizontal surfaces Horizontal circular
Deviation >= 90% Surface Radius of surface
<=+/-10% Set 1 >=19m
of true value Set 2 >=32m
D Set 3 >=32m

(1) Samples are within arange of plusor minus5, 10 or 15 percent of the True value, considering a

range centred on the true value, i.e. within: 0.85* TV-1.15*TV (TV=TrueVaue)

Fracture trace-length distribution

The P32 parameter is the samein Case 1 asin the base-case, but the fracture radius
distributions are different. Consequently the fracture trace-length distributions will be
different and the efficiencies of the point estimates of the trace-length distributions will
be different aswell.

The smaller fractures of Case 1 will produce smaller traces, consequently less boundary
truncation will take place in Case 1 and alarger part of the trace-length distribution will
be represented within alimited window. In addition, the larger number of smaller
fracturesin Case 1 will produce smaller differences between different windows than

in the base-case, which will give amore efficient point estimates than in the base-case.
A summary of the results for Case 1 and the base-case is given Table 8-3 (below).

As can be seen in the table below, considering the estimation of the mean of the trace-
length distributions, the necessary sample sizes are much smaller for Case 1 than for the
base-case. The necessary radius of the window studied in Case 1, could be half of the
necessary radius for the base-case, or even less. Considering Sets 1, 2 and 3, and the
mean values of the trace-length distributions, the necessary window radii of Case 1 are
56% (Set 1), 44% (Set 2) and 42% (Set 3) of the corresponding radii of the base case,
for the studied criterion (Deviation <= 15% of true value).
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For the standard deviation of the trace-length distribution and for Set 1and Set 3, the
necessary radii of the windowsin Case 1 are smaller than those of the base-case.
Considering Set 1 and Set 3, and the standard deviation of the trace-length distributions,
the necessary window radii of Case 1 are 35% (Set 1) and 33% (Set 3) of the
corresponding radii of the base case, for the studied criterion (Deviation <= 15%

of true value).

It isadifferent situation for Set 2. Considering Set 2 and the two cases (bas-case and
Case 1) the results for the mean-values of Set 2 arein line with the results of Set 1

and Set 3 (i.e., the necessary window sizes are reduced for Case 1). However, for the
standard deviation of the trace-length distribution of Set 2 the opposite takes place,

the necessary window sizes are larger for Case 1 than for the base-case. For Set 1 the
necessary window radius of Case 1 is 208% of the radius of the base-case for the
criterion tested (Deviation <= 15% of true value). The reason for the difficulty to
estimate the standard deviation of the trace-lengths of Set 2 in Case 1, is caused by

the shape of the fractures radius distribution of Set 2. It is adistribution with a small
variance in comparison to its mean. Very few small fractures occur in the distribution.
However, there will always be small fracture traces because only a part of afracture
may intersect a surface. Thiswill create a fracture trace distribution that is not
symmetric and in comparison to the mode of the distribution, the left part (lower tail)
of the distribution contains more traces than the right part (upper tail). Thiswill lead to
an overestimation of the standard deviation of the trace-length distribution in Case 1, at
small window sizes. The overestimation of the standard deviation will not take placein
the same way in the base-case, partly because in the base-case the fractures and the
traces are larger, which will make the boundary truncation to a dominant process at
small window sizes and will reduce the length of the traces observed. Considering a
window with aradius of 10 metre, in the base-case 72% of the traces are boundary-
truncated, whilein Case 1 the amount of boundary truncated traces are 43% Hence, for
the base-case and for Set 2, the boundary truncation may actually help to prevent an
overestimation at small window sizes.

Again, the different responses demonstrated by the different fracture setsillustrates the
difficulty in making any general conclusions regarding point estimates of trace-length
distributions and fracture radius distributions.

The analyses of the shape of the distributions are carried out as a Chi-square test of
“goodness-of -fit”. A comparison of the results of these tests (for Case 1 and the base-
case) demonstrates the following. Considering Set 2 and Set 3, and the amount of
accepted samples, the necessary window radius of Case 1 are 60% (Set 2) and 67%
(Set 3) of the radius of the base case, for the studied criterion (Confidence level of
test= 99%). For Set 1the reduction in necessary size of window is much smaller than
for the other fracture sets, for Set 1 the necessary window radius of Case 1 is 97% of
the radius of the base-case for the criterion tested (Confidence level of test= 99%).
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Table 8-3. Trace-length distributions, Case 1 and the base-case. Summary

of results.
PARAMETER CRITERION PROBABILITY TYPE & SIZE
(Confidence (Confidencelevel) | FRACTURE SET (Sample size)
interval)

BASE-CASE N |
MOMENTS Deviation >=90% MEAN Radius of surface
OF SAMPLE <= +/-15% Set 1 >=32m

DISTRIBUTION of true value Set 2 >=45m

Analysis of circular (1) Set 3 >=52m
horizontal surface. STANDARD
DEVIATION Radius of surface
Set 1 >=52m
Set 2 >=12m
Set 3 >=70m
CASE 1 B |
MOMENTS Deviation >= 90% MEAN Radius of surface
OF SAMPLE < = +/-15% Set 1 >=18m
DISTRIBUTION of true value Set 2 >=20m
Analysis of circular (1) Set 3 >=22'm
horizontal surface. STANDARD
DEVIATION Radius of surface
Set 1 >=18m
Set 2 >=25m
Set 3 >=23m
BASE-CASE _ _
SHAPE Chi-square test >= 90% Set 1 Radius of surface
OF SAMPLE “goodness-of -fit” Set 2 >=14m
DISTRIBUTION | Confidence level Set 3 >=38m
Analysis of circular 99% >=33m
horizontal surface. 2
CASE 1 _ .
SHAPE Chi-square test >=90% Set 1 Radius of surface
OF SAMPLE “goodness-of-fit” Set 2 >=13m
DISTRIBUTION | Confidence level Set 3 >=23m
99% >=22m

Analysis of circular
horizontal surface.

)

(1) Samplesare within arange of plus or minus 15 percent of the true value, considering a range
centred on the true value, i.e. within: 0.85* TV-1.15*TV (TV=TrueValue)

(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which compares
the shape of the sample distribution to the shape of the true distribution. The confidence level
of the test was set to 99%
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Fracture strike distribution

The P32 parameter is the samein Case 1 asin the base-case, but the fractures are
smaller in Case 1 than in the base-casg, it follows that alarger number of fractures

takes place in the rock mass of Case 1 than in the base-case, and consequently a

larger number of traces are on the average seen on rock surfacesin Case 1. The traces
observed in Case 1 are on the average shorter than the traces of the base-case, that is
however of no importance when measuring the strike of atrace, presuming that the trace
is large enough to make a measurement possible.

The efficiency of the point estimate of the fracture trace strike distribution is
proportional to the sample size, and as alarger number of traces are (on the average)
seen on surfaces in Case 1 than in the base-case, the point estimate of Case 1 is more
efficient than the that of the base-case. A summary of the results for Case 1 and the
base-case is given (below).

As can be seen in the table below, considering the estimation of the fracture trace strike
distributions, the necessary sample sizes are much smaller for Case 1 than for the base-
case. The necessary radius of the windows studied in Case 1, could be half of the
necessary radius of the base-case, or even less.

For Set 1, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 1 are 63% (regarding mean) and 61% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution
shape is tested by a Chi-square test with a confidence level of 99%

For Set 2, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 1 are 22% (regarding mean) and 54% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution
shape is tested by a Chi-square test with a confidence level of 99%

For Set 3, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 1 are 57% (regarding mean) and 58% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution
shape is tested by a Chi-square test with a confidence level of 99%
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Table 8-4. Fracture trace strike distributions, Case 1 and the base-case.
Summary of results.

)

PARAMETER CRITERION PROBABILITY | FRACTURE | RADIUSOF
(Confidence (Confidence level) SET SURFACE
interval) (Sample size)
BASE-CASE o
MEAN STRIKE Deviation >= 90% Set 1 >=35m
<=15deg Set 2 >=18m
1) Set 3 >=60m
CASE 1 o
MEAN STRIKE Deviation >= 90% Setl >=22m
<=15deg Set 2 >=4m
(1 Set 3 >=34m
BASE-CASE | Chi-squaretest
STRIKE “goodness-of -fit” >= 90% Set 1 >=13m
DISTRIBUTION | Confidencelevel Set 2 >=11m
99% Set 3 >=24m
(2
CASE 1 Chi-square test
STRIKE “goodness-of -fit” >= 90% Set 1 >=8m
DISTRIBUTION | Confidence level Set 2 >=6m
99% Set 3 >=14m

(1)Samples are within arange of plus or minus 15 degrees of the True value, considering a
range centred on the true value.
(2) Samples are accepted based on the result of a Chi-sguare goodness-of-fit test, which
compares the shape of the sample distribution to the shape of the true distribution. The

confidence level of the test was set to 99%
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8.3 Case 2 — Same fracture radii but different P32-value

8.3.1 Definition of Sensitivity Case 2

Case 2 isidentical to the base-case of this study (see Section 2.3), except that the P32
parameter of the fracture population is defined as two times that of the base-case. The
fracture radius distributions of Case 2 are identical to those of the base-case. It follows
that, as the fracture radius distribution is the same and the P32-value is two times larger,
the number of fractures will be larger in Case 2 than in the base-case.

The P32-values of the three fracture setsin Case 2 are defined as follows:
P32case 2=2X P32sase case

* Case2. P32s%711 = 2x0.85=1.70

e Case2 P32gr, = 2x1.59=3.18
e Case3d. P32s13 = 2x097=194
8.3.2 Results considering fracture orientation and density based on

data from boreholes

All the tests and anal yses presented in previous chapters have also been carried out
for the fracture of Case 2. Considering fracture data as seen in boreholes (fracture
orientation and fracture density) the results of Case 2 are not identical to the results
of the base-case.

This can be explained in the following way. As the fractures are of the same sizesin
both Case 2 and in the base-case (same fracture radius distribution) and the P32-values
of Case 2 are two times the values of the base-case, the number of fracturesin the rock
mass of Case 2 will be two times the number of fractures of the base case. It follows
that more fractures will be seen in aborehole. On the average in Case 2, the P10-values
(number of fracture per metre) in a borehole will be two times the values of the base-
case.

Hence, the number of fracturesin a sample, for a given length of borehole, isin Case 2
(on the average) two times the number of fractures of the base-case. Consequently, the
necessary length of borehole, to reach a certain sample size is on the average for Case 2
half of the lengths necessary in the base-case. The variance in number of fracture traces
observed is the same if the mean number of fracture tracesis the same; this follows
from the prerequisite that the only difference between the casesis the P32-values.

Consequently, the necessary length of borehole, to reach a certain confidence level, is
for Case 2 half of the lengths necessary in the base-case. (It should perhaps be noted this
conclusion is also applicable to the estimate of P32 from borehole data.)

Thus, considering two identical boreholes in two different fracture networks that are
equal, except for the fracture density (P32-values), for such a situation the following
equation is applicable:
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LBH, _ _ P21, _PI10, o1

LBH, P32, P21, P10,

LBH A = Necessary length of borehole, to reach a confidence level in Case A

LBH g = Necessary length of borehole, to reach a confidence level in Case B
In the equation above, the index A and B correspond to two different fracture networks.

The equation above demonstrates that, everything else being equal except the fracture
density, the necessary length of borehole to reach a confidence level isinversely
proportiona to the fracture density (P32-, P21- or P10- value) of the studied fracture
network (fracture set). The conclusions above opens for a possibility to estimate

the necessary borehole lengths to reach a certain confidence level (or to estimate a
P32-value), based on fractures observed in boreholes or rock surfaces and a comparison
to results obtained in a DFN-model.

8.3.3 Results considering fracture orientation, density and trace-
lengths based on data from rock surfaces

All the tests and anal yses presented in previous chapters have also been carried out

for the fractures of Case 2. Considering fracture data as seen on rock surfaces (fracture
trace density, fracture trace-length distribution and fracture trace-strike orientation), the
results of Case 2 are not identical to the results of the base-case. In addition, the results
are not inversely proportional to the P32-value, as was the case for the borehole data.
This can be explained in the following way. There are more fractures in the rock mass
of Case 2 than in the base-case, hence in comparison with the base-case on the average
more fracture traces are seen on a surface in Case 2 than in the base-case (presuming
that the two surfaces are of equal size).

Fracture trace density — P21

The P32 parameter is not the same in Case 2 asin the base-case. Considering the
different measures of fracture density, the following equation is applicable for fracture
networks with different fracture densities:

P10, P21, P32, -
P10, P21, P32,

In the equation above, the index A and B correspond to two different fracture networks.
It follows from Eq. 9-2 that if the P32 values of the two networks are different, the P10
and P21 values will be different as well. By use of the equation above it is possible to
calculate the P10 and P21 values of Case 2, asthe P32 value of Case 2 is known, as
well asthe P32, P21 and P10 values of the base case. According to the equation above
the following values are obtained.

SET 1. P21case 2 HoRIZONTAL CIRCULAR surRrace = 1.54

SET 2. I:)2:I-CASE2 HORIZONTAL CIRCULAR SURFACE — 3.0
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SET 3. P2:I-CASE2 HORIZONTAL CIRCULAR SURFACE — 0.82

These values are also observed in the Case 2 DFN-model for large window radii.

The point estimates of the P21-valuesin Case 2 will not be the same as in the base-case,
as the P21-values are different and as the number of observed fractures are different.
The larger number of fracturesin Case 2 will produce smaller differences between
different windows (realisations) than in the base-case, which will give amore efficient
point estimate than in the base-case. Expressed as a percentage of all observed fracture
traces, the number of boundary truncated fracture traces will be the samein Case 2 asin
the base-case (because the fracture radius distribution is the same) A summary of the
results for Case 1 and the base-case is given below in Table 8-5.

Considering the estimation of the P21 parameter, and comparing Case 2 and the base-
case, Table 8-5 demonstrates the following:

e For Set 1, the necessary sample sizes are smaller for Case 2 than for the base-case.
The necessary radius of the windows studied in Case 2 are 75% , 71% and 60% of
the necessary radius for the base-case, considering the three different criterions
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation
<= 5% of true value).

e For Set 2, the necessary sample sizes are smaller for Case 2 than for the base-case.
The necessary radius of the windows studied in Case 2 are 77% , 72% and 75% of
the necessary radius for the base-case, considering the three different criterions
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation
<= 5% of true value).

» For Set 3, the necessary sample sizes are smaller for Case 2 than for the base-case.
The necessary radius of the windows studied in Case 2 are 75% , 72% and 72% of
the necessary radius for the base-case, considering the three different criterions
(Deviation <= 15% of true value, Deviation <= 10% of true value and Deviation
<= 5% of true value).
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Table 8-5. P21, Case 2 and the base-case. Summary of results.

PARAMETER CRITERION PROBABILITY TYPE SIZE
(Confidence (Confidence level) (Sample size)
interval)
BASE-CASE Deviation Radius of surface
P21 <=+/-15% >= 90% Setl >=24m
[Trace-length per of true value Set 2 >=22m
surface area] (1) Set 3 >=40m
Analysis of circular Deviation Radius of surface
horizontal surfaces | <= +/-10% >=90% Set 1 >=38m
of true value Set 2 >=32m
(1) Set 3 >=65m
Deviation Radius of surface
<=+-5% >= 90% Setl >=83m
of true value Set 2 >=60m
Q) Set 3 >=135m
CASE 2 Deviation Radius of surface
P21 <=+/-15% >= 90% Setl >=18m
[Trace-length per of true value Set 2 >=17m
surface area] @) Set3 >=30m
Analysis of circular Deviation Radius of surface
horizontal surfaces <=+/-10% >=90% Set 1l >=27m
of true value Set 2 >=23m
Q) Set 3 >=47m
Deviation Radius of surface
<=+-5% >= 90% Set1 >=50m
of true value Set 2 >=45m
(1) Set 3 >=97m
(1) Samples are within arange of plus or minus 5, 10 or 15 percent of the True value,
considering a range centred on the true value, i.e. within: 0.85* TV-1.15*TV (TV=TrueVadue)

Fracture trace-length distribution

The P32 parameter of Case 2 is two times that of the base-case, but the fracture radius
distributions are the same. Consequently the fracture trace-length distributions will be
the same, but the number of fracture traces observed on a surface will be larger in
Case 2 than in the base case.

Considering trace-length distributions and point estimates of the moments and shape

of such distributions, the larger number of fracturesin Case 2 will produce smaller
differences between different windows (realisations) than in the base-case, which will
theoretically produce more efficient point estimates of the trace-length distributions
than in the base-case. However, when estimating the true moments and shape of a
trace-length distribution, the most important factor is the size of the window studied in
relation to the length of the traces observed (size of fracture radius distribution), and not
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the number of traces observed. Hence, even if the number of traces observed is larger
in Case 2, the efficiency of the point estimate can be close to the point estimate of the
base-case, as the efficiency is strongly dependent on the size of the windows studied.

A comparison of the point estimates of trace-length distribution of Case 2 and the base-
caseisgiven below in Table 8-6.

Considering Set 1, a comparison between Case 2 and the base-case demonstrates that
the two point estimates are close, but not identical. Set 1 of Case 2 demonstrates a
more efficient point estimate than the base case, because of (i) the large number of
fracturesin Case 2, and (ii) asthe fractures of Set 1 are small, the relation between
fracture size and window size is favourable (a small amount of boundary truncated
fractures). For mean and standard deviation of the trace-length distribution of Set 1,

the necessary radius of the windows studied in Case 2 are 91% (regarding mean) and
83% (regarding standard dev.) of the necessary radius for the base-case, considering the
criterion studied (sample within +/—15% of true value).

Considering Set 2, a comparison between Case 2 and the base-case demonstrates that
the two point estimates are nearly identical (Case 2 is somewhat more efficient). For
mean and standard deviation of the trace-length distribution of Set 2, the necessary
radius of the windows studied in Case 2 are 96% (regarding mean) and 92% (regarding
standard dev.) of the necessary radius for the base-case, considering the criterion studied
(sample within +/-15% of true value).

Considering Set 3, a comparison between Case 2 and the base-case demonstrates that
the two point estimates are close, but not identical. Set 3 of Case 2 demonstrates a
more efficient point estimate than the base case, because of the larger number of
fracturesin Case 2 in comparison to the base-case. For mean and standard deviation

of the trace-length distribution of Set 3, the necessary radius of the windows studied in
Case 2 are 88% (regarding mean) and 83% (regarding standard dev.) of the necessary
radius for the base-case, considering the criterion studied (sample within +/-15% of true
value).

The analyses of the shape of the distributions are carried out as a Chi-square test of
“goodness-of -fit”. A comparison of the results of these tests (Case 2 and the base-case)
demonstrates the following. Considering Set 1 and Set 3, and the amount of accepted
samples; the necessary window radius of Case 2 are 71% (Set 2) and 75% (Set 3) of the
radius of the base case, for the studied criterion (Confidence level of test= 99%). For
Set 2 the reduction in necessary size of window is much smaller than for the other
fracture sets, for Set 2 the necessary window radius of Case 2 is 97% of the radius

of the base-case for the criterion tested (Confidence level of test= 99%).
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Table 8-6. Trace-length distributions, Case 2 and the base-case. Summary

of results.
PARAMETER CRITERION PROBABILITY TYPE & SIZE
(Confidence (Confidencelevel) | FRACTURE SET (Sample size)
interval)
BASE-CASE
MOMENTS Deviation >= 90% MEAN Radius of surface
OF SAMPLE <=+/-15% Set 1 >=32m
DISTRIBUTION of true value Set 2 >=45m
Analysis of 1) Set 3 >=52m
circular horizonta STANDARD
surface. DEVIATION Radius of surface
Setl >=52m
Set 2 >=12m
Set 3 >=70m
CASE 2
MOMENTS Deviation >=90% MEAN Radius of surface
OF SAMPLE < =+/-15% Set 1 >=29m
DISTRIBUTION of true value Set 2 >=43m
Analysis of 1) Set 3 >=46'm
circular horizonta STANDARD
surface. DEVIATION Radius of surface
Setl >=43m
Set 2 >=11m
Set 3 >=58m
BASE-CASE
SHAPE Chi-square test >= 90% Set1 Radius of surface
OF SAMPLE | “goodness-of-fit’ Set 2 >=14m
DISTRIBUTION Confidence level Set 3 >=38m
Analysis of 99% >=33m
circular horizonta 2
surface.
CASE 2
SHAPE Chi-square test >=90% Setl Radius of surface
OF SAMPLE | “goodness-of-fit” Set 2 >=10m
DISTRIBUTION Confidence level Set 3 >=37m
Analysis of 99% >=25m
circular horizontal )
surface.

(1) Samplesare within arange of plus or minus 15 percent of the true value, considering arange
centred on the true value, i.e. within: 0.85* TV-1.15*TV (TV=TrueValue)

(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which
compares the shape of the sample distribution to the shape of the true distribution. The
confidence level of the test was set to 99%
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Fracture strike distribution

The P32 value of Case 2 istwo timesthat of the base-case and the fracture radius
distributions are the same as in the base-case, it follows that alarger number of fractures
takes place in the rock mass of Case 2 than in the base-case, and consequently alarger
number of traces are on the average seen on rock surfacesin Case 2. The traces
observed in Case 2 are on the average of the same length as in the base-case, however
the length of atraceis of no importance when measuring the strike of atrace, presuming
that the trace is large enough to make a measurement possible.

The efficiency of the point estimate of the fracture trace strike distribution is
proportional to the sample size, and as alarger number of traces are (on the average)
seen on surfaces in Case 2 than in the base-case, the point estimate of Case 2 is more
efficient than the that of the base-case.

As can be seen in the Table 8-7 below, considering the estimation of the fracture trace
strike distributions, the necessary sample sizes are much smaller for Case 2 than for the
base-case. The necessary radius of the windows studied in Case 2 are close to 66% of
the necessary radius of the base-case.

For Set 1, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 2 are 66% (regarding mean) and 69% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution shape
istested by a Chi-sgquare test with a confidence level of 99%

For Set 2, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 2 are 67% (regarding mean) and 64% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution shape
istested by a Chi-square test with a confidence level of 99%

For Set 3, considering mean strike and shape of the strike distribution, the necessary
radius of the windows studied in Case 2 are 67% (regarding mean) and 67% (regarding
shape) of the necessary radius for the base-case. These results corresponds to the
criterions studied, sample mean within +/-15 degrees of true value and distribution shape
istested by a Chi-square test with a confidence level of 99%
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Table 8-7. Fracture trace strike distributions, Case 2 and the base-case.
Summary of results.

PARAMETER CRITERION PROBABILITY FRACTURE RADIUS OF
(Confidence (Confidence level) SET SURFACE
interval) (Sample size)
BASE-CASE -
MEAN STRIKE Deviation >= 90% Set1 >=35m
<=15deg Set 2 >=18m
() Set 3 >= 60 m
CASE 2 -
MEAN STRIKE Deviation >= 90% Set 1 >=23m
<=15deg Set 2 >=12m
(@) Set 3 >=40m
BASE-CASE | Chi-square test
STRIKE “goodness-of -fit” >= 90% Set 1 >=13m
DISTRIBUTION | Confidence level Set 2 >=11m
99% Set 3 >=24m
(2
CASE 2 Chi-square test
STRIKE “goodness-of -fit” >= 90% Seat 1 >=9m
DISTRIBUTION | Confidence level Set 2 >=7m
99% Set 3 >=16m
(2

(2)Samples are within arange of plus or minus 15 degrees of the true value, considering a
range centred on the true value.
(2) Samples are accepted based on the result of a Chi-sguare goodness-of-fit test, which
compares the shape of the sample distribution to the shape of the true distribution. The

confidence level of the test was set to 99%

The number of fracture traces observed on awindow (surface) depends on size of

window studied. The number of fracture traces on awindow is proportional to the three-
dimensional fracture density (the P32-parameter). It follows that if we have knowledge
of the average number of fracture traces on a window, produced by afracture network
with aknown value of P32; it is possible to analytically estimate the average number of
fracture traces that will take place on awindow of equal size, but for another fracture
network that is equal to the first network except for its value of P32. The average
number of fracture traces observed and the variance in the number of fracture traces
observed will together produce the necessary size of window, for reaching a certain
confidence level in an estimate. Asit is possible to analytically estimate the average
number of fracture traces on awindow, for fracture networks that are equal except for
the P32-values, it is also possible to analytically estimate the necessary sizes of
windows for reaching a certain confidence level, for the same networks.
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However, as the number of fracture traces (or fractures) per unit areais scale dependent,
there is no ssimple relationship (such as Eg. 9-1), when comparing, (i) different fracture
networks (e.g. Cases) with different P32-values and (ii) the necessary sizes of windows
to reach a certain sample size or confidence level.

Nevertheless, as the number of fracture traces on awindow is proportional to the three-
dimensional fracture density (the P32-parameter), the following equation is applicable
when comparing average numbers of fracture traces (for windows of agiven size),
produced by two different fracture networks that are equal except for the P32-values.
(The only difference between Case A and B isthe P32-values, everything else being

equal).

N, _ P32,

= 8-3
Ng, P32

Nar = Case A, Average number of fracture traces on a surface with radius, r.
Ng, = Case B, Average number of fracture traces on a surface with radius, r.
P32, = Case A, fracture area per unit volume.
P32g = Case B, fracture area per unit volume.

It follows that for fracture networks, which are equal to the base-case except for the
P32-value, the average number of fractures on a surface with a given radius could be
easily estimated by use of the following equation.

_ Ny, P32,

r 8-4
' P32,

NC

No, = Base-Case, Average number of fracture traces on a surface with radius, r.
Nc, = Case C, Average number of fracture traces on a surface with radius, r.
P32, = Base-Case, fracture area per unit volume.

P32 = Case C, fracture area per unit volume.

Based on the equation above, we have estimated the average number of fracture traces
on windows of different sizes, and for different cases that are equal to the base case,
except for their P32-values. The results are given in Figure 8-4, below.

The confidence in an estimate, based on the properties of fracture traces, depends on
number of fracture traces observed and on the variance in number of fractures-traces
observed. The variance in number of fracture traces observed is the same, if the mean
number of fracture traces is the same; this follows from the prerequisite that the only
difference between the casesis the P32-values. It follows that the confidence is the
same, if the average number of fracture tracesis the same; hence we can use Figure 8-4
for estimation of the necessary size of windows for reaching a certain confidence level,
for the different fracture-networks studied. The following results are obtained.
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Horizontal trace-windows.
Number of fracture traces versus radius of circular window.
Fracture set 1. Different values of P32.
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Horizontal trace-windows.

Number of fracture traces versus radius of circular window.

Fracture set 2. Different values of P32.
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Horizontal trace-windows.

Number of fracture traces versus radius of circular window.

Fracture set 3. Different values of P32.
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Figure 8-4. Number of fracture traces on circular windows of different sizes, for
fracture networks that are equal except for their P32-values. Analytical estimate
based on the base-case.
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Setl

For prediction of mean strike, and for a confidence interval given by adeviation less
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a
window-radius of 35 m (less than or equal to this radius); this corresponds to an average
of approximately 550 fracture traces.

» For afracture network with a P32 that is two times the P32 of the base case, the
same number of fractures is obtained for a window-radius of approximately 24 m.
Hence, the necessary window-radiusis 24 m. The case with a P32 that is two times
the P32 of the base case, is the same case as the previously presented Case 2. For
Case 2, the numerical analysis predicted a necessary window-radius of 23 m.

» For afracture network with a P32 that is three times the P32 of the base case, the
same number of fractures is obtained for a window-radius of approximately 19 m.
Hence, the necessary window-radiusis 19 m.

Set 2

For prediction of mean strike, and for a confidence interval given by adeviation less
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a
window-radius of 18 m (less than or equal to this radius); this corresponds to an average
of approximately 190 fracture traces.

» For afracture network with a P32 that is two times the P32 of the base case, the
same number of fractures is obtained for a window-radius of approximately 12 m.
Hence, the necessary window-radiusis 12 m. The case with a P32 that is two times
the P32 of the base case, is the same case as the previously presented Case 2. For
Case 2, the numerical analysis predicted the same window-radius (12 m).

e For afracture network with a P32 that is three times the P32 of the base case, the
same number of fracturesis obtained for awindow-radius of approximately 9 m.
Hence, the necessary window-radiusis 9 m.

Set 3

For prediction of mean strike, and for a confidence interval given by adeviation less
than plus/minus 15 degrees, and for a confidence level of 90%, the base-case predicts a
window-radius of 60 m (less than or equal to this radius); this corresponds to an average
of approximately 425 fracture traces.

» For afracture network with a P32 that is two times the P32 of the base case, the
same number of fractures is obtained for a window-radius of approximately 40 m.
Hence, the necessary window-radius is 40 m. The case with a P32 that is two times
the P32 of the base case, is the same case as the previously presented Case 2. For
Case 2, the numerical analysis predicted the same window-radius (40 m).

» For afracture network with a P32 that is three times the P32 of the base case, the
same number of fractures is obtained for a window-radius of approximately 32 m.
Hence, the necessary window-radiusis 32 m.
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9 Conclusions

9.1.1 Applicability and limitations of the presented results

Results and conclusions given in this study are only directly applicable to the fracture
networks studied; however, rock masses having similar fracture networks will produce
similar results. Nevertheless, great care should be taken when generalising results and
conclusions given in this study. It isimportant to note the following:

e Considering the studied parameters of the rock mass, the results correspond to a
rock unit having statistically homogeneous properties. When analysing real data
from field investigations, the applicability of this assumption needs to be statistically
evaluated.

e Therock unit studied is of acertain size and is assigned statistically homogeneous
properties. Sample sizes have been cal culated] sample sizes that are necessary to
reach a certain confidence level when predicting the properties of the rock unit.
When applying the results of this study to an actual rock unit it is not a prerequisite
that the actual rock unit must be of the same size and form as the unit used in this
study when the necessary sample sizes were calculated. However, the actual rock
unit needs to be larger than the cal culated necessary sample size, and it should
carry statistically properties that are close to homogeneous within the volume
considered. For example, it isaresult of this study that for a certain rock mass
the mean direction of a certain fracture set could be estimated (within a certain
acceptable deviation) using a vertical borehole with alength of 20 m. Such aresult
isapplicable to arock unit that islarger than 20 m and carries statistically
homogeneous properties within that scale.

» Thefracture network studied does not contain any spatial correlation of the
fractures. For afracture network that has such a correlation, the necessary length
of boreholes and size of rock outcrops, for producing an estimate with a certain
confidence level, islarger than for the network of this study.

+ The effects of different methods for identification of fracture sets are not included in
this study.

« Thefracture orientations observed in boreholes were corrected for sampling bias
by use of Terzaghi correction; such a correction is essential and should always be
included when analysing fracture orientations data from boreholes.

This study is atheoretical study, all dataform the boreholes and rock-surfaces are
numerically collected from a numerical fracture-network. No measurement errors
occur in this study and all datais collected with the same high precision and quality.
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Below are afew important observations that should be considered when generalising
the results and conclusions given in this study (more details are given in the sensitivity
analysis presented in Chapter 8).

* Theresults depend on the properties of the fracture network, i.e. fracture orientation
and fracture density (intensity) and fracture size. Generally, for a fracture network
with ahigher fracture density than that of the network studied, the lengths of
boreholes and sizes of rock outcrops, necessary for deriving an estimate within a
certain confidence interval and at a certain confidence level, is less than for the
network studied. It follows that for arock mass with a lower fracture density, the
necessary length of boreholes and size of rock outcropsis larger than for the
network of this study.

* Thedispersion of the orientations of the fractures of afracture set will influence the
length of a borehole and the size of arock outcrop (window), necessary for deriving
an estimate with a certain confidence. In general, when analysing a fracture set with
alarge dispersion, the necessary length of borehole and size of rock outcrop is larger
than for afracture set with asmaller dispersion (everything else being equal). Also
the type of distribution of orientations within afracture set (e.g. Fisher distribution)
will influence the necessary lengths and areas. However, the efficiency of a point
estimate, based on data gathered by boreholes and rock surfaces, will aso depend
on the orientation of boreholes and surfaces studied. In theory it is possible that for a
fracture set with avery small dispersion, sampled with a borehole or a surface that is
approximately at right angel to the mean direction (trend and plunge) of the fracture
set, the necessary length of borehole or size of surfaces could be very large. (If the
dispersion is zero (or negligible) and the sampling borehole or planeis at right
angelto the fracture set, the necessary borehole length and window size could be
infinite.)

* When analysing afracture set with a sampling structure, i.e. a borehole (a scan-
line) or arock-outcrop (awindow). The length or size of the sampling structure,
necessary for deriving an estimate with a certain confidence, depends on the
orientation of the sampling structure in relation to the mean orientation of the
fracture set studied. In general the most favourable orientation of a sampling
structure is an orientation parallel to the mean direction (defined by trend and
plunge) of the fracture set studied (i.e. on the average the fracture planes should be
at right angles to the structure). For boreholes, the use of Terzaghi-correction will
compensate for the systematic bias caused by sampling a three-dimensional fracture
system with a one-dimensional scan-line. Therefore, also aborehole that is
approximately at right angles to the to the mean direction (defined by trend and
plunge) can be used for sampling (i.e. the borehole is along the fracture planes).
The Terzaghi-correction is not perfect and for very small confidence intervals
(acceptable deviations), the remaining bias may come to dominate the derived
estimates.

* Consider estimations based on observations in boreholes. Everything else being
egual, the necessary length of borehole for producing an estimate with a certain
confidence level islinearly proportional to the fracture density of the population
studied (the P32-value or the P21-value or the P10-value).
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For arock mass with a given fracture density, the mean and the variance of the
fracture radius distributions (fractures defined as circular planar discs), will not
influence the number of fractures that intersects a borehole. Hence, on the average
asmall number of large fractures will produce the same number of fracture
observations in a borehole as alarge number of small fractures, presuming that the
fracture density of the rock massis the same (P32 is constant). It follows that for
estimations based on observations in boreholes, the necessary length of borehole for
producing an estimate with a certain confidence level, is independent on mean and
variance of the fracture radius distributions, presuming that the fracture density of
the rock mass is the same (P32 is constant).

Consider estimations based on observations on surfaces. Everything else being
equal, the necessary size of rock-outcrop (window) for producing an estimate with
acertain confidence level is not linearly proportional to the fracture density of the
population studied (the P32-value or the P21-value or the P10-value). Estimation of
the trace-length distributions is difficult, the necessary size of window for producing
an estimate with a certain confidence level depends on (i) the orientations of
window studied in relation to that of the fracture set studied, (ii) the size of the
window studied in relation to the properties of the fracture-radius distribution that
created the fracture traces, as well as on (iii) the fracture density (the P32-value)

and the dispersion of the fracture set studied. It follows that it is difficult to make
any genera conclusions regarding the necessary window size for estimating the
properties of atrace-length distribution (with a certain confidence). For estimation
of the mean of a strike distribution (derived from direction of fracture traces), the
necessary window-radius for deriving an estimate with a certain confidence level, is
related to the fracture density (P32-value) in anon-linear way. However, for fracture
networks that are equal, except for the P32-value, this relationship can be
anaytically estimated.

9.1.2 Summary of detailed results

The analysed fracture network consists of three fracture sets (see Section 2.3).

Set 1 issub-vertical, it hasavery large dispersion and the smallest value of fracture
density (P32), the fractures of Set 1 ison the average small.

Set 2 is sub-vertical, its dispersion is much less than that of Set 1, it has the largest
value of fracture density (approximately two times that of Set 1) and on the average
it contains the largest fractures.

Set 3 is sub-horizontal, it has the same dispersion as Set 2, its fracture density is
smaller that that of Set 2, but somewhat larger than that of Set 1. On the average it
contains smaller fractures than Set 2, but larger fractures than Set 1.

Below we will present some detailed results; these results are also summarised in tables
at the end of this chapter. Different aspects of the applied statistical tests are given in
Section 2.7. The results given below can be interpreted as confidence levels and
confidence intervals, even if they are not presented that way. The presented maximum
acceptable deviation in estimation corresponds to a confidence interval. The probability
for an estimate within the given maximum deviation corresponds to a confidence level.
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The length of borehole or radius of studied window corresponds to a sample size —the
size that is necessary to reach the confidence level.

The results given below are only examples of results that can be deduced from the
figures of the main report.

Fracture orientation — mean direction

The mean direction of the fracture sets studied, were calculated based on sampling of
fracture orientations, in both the vertical and the inclined borehole. The acceptable
deviation (confidence interval) in degrees, discussed below, corresponds to the acute
angle between the true mean direction and that of a sample.

Considering a vertical borehole.

With a probability larger than 90 percent (confidence level), the deviation in estimation
islessthan 15 degrees, if the borehole length is larger than:

For Set 1: 140 metres. For Set 2: 50 metres. For Set 3: 20 metres.
Considering an inclined borehole (45 degrees form vertical).

With a probability larger than 90 percent (confidence level), the deviation in estimation
islessthan 15 degrees, if the borehole length is larger than:

For Set 1: 90 metres. For Set 2: 35 metres. For Set 3: 35 metres.

Fracture orientation — dispersion

The dispersion of afracture set is a measure of the concentration (or spread) of the
fracture orientations about some mean direction. In this study we have analysed two
dispersion parameters, the Kappa parameter which corresponds to a Fisher distribution,
and the SR1 parameter which is ageneral dispersion parameter. The dispersion of the
fracture sets studied, were calcul ated based on sampling of fracture orientations, in both
the vertical and the inclined borehole.

Analysis of the Kappa parameter by use of a Vertical borehole. With a probability larger
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true
Kappavalue, if the borehole length islarger than or equal to:

For Set 1: 500 metres. For Set 2: 420 metres. For Set 3: 200 metres.

Analysis of the Kappa parameter by use of an Inclined (45 deg.) borehole. With a
probability larger than 90 percent, the deviation in estimation is less than plus/minus
15% of the true Kappa value, if the borehole length is larger than or equal to:

For Set 1: 420 metres. For Set 2: 360 metres. For Set 3: 500 metres.

Analysis of the SR1 parameter by use of a Vertical borehole. With a probability larger
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true SR1
valuesif the borehole lengths are larger than or equal to:

For Set 1: 1100 metres. For Set 2: 250 metres. For Set 3: 100 metres.
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Analysis of the SR1 parameter by use of an Inclined (45 deg.) borehole. With a
probability larger than 90 percent, the deviation in estimation is less than plus/minus
15% of the true SR1 values, if the borehole lengths are larger than or equal to:

For Set 1: 750 metres. For Set 2: 170 metres. For Set 3: 250 metres.

Fracture density — the P10 parameter (fracture frequency)

The one-dimensional fracture density isthe P10 parameter; it is equal to number of
fractures per unit length, taken along a straight line (a scan-line). The value of the P10
parameter varies with direction of scan-line. The P10-parameter of the fracture sets
studied, were calculated based on sampling of fractures, in both the vertical and the
inclined borehole.

Analysis of the P10 parameter by use of a Vertical borehole. With a probability larger
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true P10
values, if the borehole lengths are larger than or equal to:

For Set 1: 400 metres. For Set 2: 300 metres. For Set 3: 150 metres.

Analysis of the P10 parameter by use of An Inclined borehole (45 deg.). With a
probability larger than 90 percent, the deviation in estimation is less than plus/minus
15% of the true P10 values, if the borehole lengths are larger than or equal to:

For Set 1: 350 metres. For Set 2: 150 metres. For Set 3: 210 metres.

Fracture density — the P21 parameter

The two-dimensional fracture density isthe P21 parameter; it is equal to fracture trace-
length per unit surface area, taken over atwo-dimensional plane. The P21-parameter
of the fracture sets studied, were calculated based on sampling of fracture traces on
circular horizontal windows (surfaces). With a probability larger than 90 percent, the
deviation in estimation is less than plus/minus 15% of the true P21 value, if the circular
window has aradius larger than or equal to:

For Set 1: 24 metres. For Set 2: 22 metres. For Set 3: 40 metres.

Fracture density — the P32 parameter

The three-dimensional fracture density is the P32 parameter; it is equal to fracture
surface area per unit rock volume, taken over avolume. It is possible to derive a P32-
value based on a P21-value and/or a P10-value, by use of atrial and error procedurein
a DFN-model. Hence, the results for the P21 and P10 parameters are also applicable to
the P32 parameter. However, also the uncertainty and errors stemming from thetrial
and error procedure, will influence the estimation of the P32-parameter. In addition the
P32-parameter can be estimated based on the fracture-surface area as seen in aborehole
and the corresponding borehole volume. The P32-parameter of afracture set iswell
estimated by sampling in both the vertical and the inclined borehole, presuming that the
borehole length is large.

Analysis of the P32 parameter by use of a Vertical borehole. With a probability larger
than 90 percent, the deviation in estimation is less than plus/minus 15% of the true P32-
value, if the borehole length is larger than or equal to:

For Set 1: 850 metres. For Set 2: 650 metres. For Set 3: 150 metres.

207



Analysis of the P32 parameter by use of an Inclined borehole (45 deg.). With a
probability larger than 90 percent, the deviation in estimation is less than plus/minus
15% of the true P32-value, if the borehole length islarger than or equal to:

For Set 1: 480 metres. For Set 2: 320 metres. For Set 3: 380 metres.

Fracture trace-length distribution

Trace-length distributions were derived by analysing fracture traces on horizontal
circular windows (surfaces). Sample trace-length distributions were derived for each
fracture set separately, for different window-radii.

Moments of sample distributions

Theresults are given for two different moments, mean and standard deviation. We
conclude the following results.

Mean of trace-length distribution. With a probability larger than 90 percent, the
deviation in estimation is less than plus/minus 15% of the true mean value, if the
window radiusis larger than or equal to:

For Set 1: 32 metres. For Set 2: 45 metres. For Set 3: 52 metres.

Standard deviation of trace-length distribution. With a probability larger than
90 percent, the deviation in estimation is less than plus/minus 15% of the true
standard deviation value, if the window radiusislarger than or equal to:

For Set 1: 52 metres. For Set 2: 12 metres. For Set 3: 70 metres.

Moments of log-normal distributions fitted to an sample distributions

The sample trace-length distributions were also analysed by fitting alog-normal
distribution to the sample distribution. The moments of these log-normal distributions
were compared to the moments of alog normal distribution fitted to the smulated true
trace-length distribution (a distribution obtained from very large windows).

Mean of log-normal distribution (mean in normal-space). With a probability larger than
90 percent, the deviation in estimation is less than plus/minus 15% of the true mean
value, if the window radiusis larger than or equal to:

For Set 1: 25 metres. For Set 2: Not well represented. For Set 3: 45 metres.

Standard deviation of log-normal distribution (values in normal-space). With a
probability larger than 90 percent, the deviation in estimation is less than plus/minus
15% of the true standard deviation value, if the window radiusis larger than or equal to:

For Set 1: 42 metres. For Set 2: Not well represented. For Set 3: 65 metres.

Shape of sample distributions

The sample trace-length distributions was a so analysed by comparing the shape of the
sample distribution to the shape of the simulated true distribution, by use of a chi-square
"goodness-of-fit" test. With a probability larger than 90 percent, the shape of atrace-
length distribution derived from a sample is a good representation of the simulated true
distribution (the confidence level of the test was set to 99 percent), if the window radius
is larger than or equal to:
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For Set 1: 13 metres. For Set 2: 38 metres. For Set 3: 32 metres.

Fracture Trace strike distribution

The trace strike distributions of the fracture sets studied were calcul ated based on
sampling of the strike of fracture traces on horizontal circular windows (surfaces).

Mean of sample distributions

With a probability larger than 90 percent, the deviation in estimation is less than
plus/minus 15 degrees of the true mean value, if the window radiusis larger than or
equal to:

For Set 1: 35 metres. For Set 2: 18 metres. For Set 3: 60 metres.
Shape of sample distributions

The sample fracture trace strike distributions were al so analysed by comparing the
shape of the sample distributions to the shape of the simulated true distribution, by use
of a chi-sguare "goodness-of-fit" test. With a probability larger than 90 percent, the
shape of atrace strike distribution derived from a sampleis a good representation of the
simulated true distribution (the confidence level of the test was set to 99 percent), if the
window radiusislarger than or equal to:

For Set 1: 13 metres. For Set 2: 11 metres. For Set 3: 24 metres.

Concluding remarks

When comparing the results for the different fracture sets, it is demonstrated that the
most difficult fracture set to analyseis Set 1, because this set has alarge dispersion and
the smallest value of P32 (fracture density) of the three sets studied.

When comparing the results of a specific fracture set considering different borehole
directions, the variation in resultsisin line with the variation in number of fractures
observed in boreholes with different orientations.

Considering the orientation of the fractures of afracture set, it is more difficult to
estimate the dispersion of the fracture-orientations than the mean of the fracture-
orientations.

Considering fracture set 3 and horizontal windows, the large radius necessary for good
estimates of the parameters of Set 3 is caused by the sub-horizontal orientation of Set 3,
because the fractures of a sub-horizontal fracture set only rarely intersects a sub-
horizontal surface. A fracture set with such an orientation is not well analysed by use
of sub-horizontal surfaces, unless a correction for sampling biasis applied and in this
study such a correction was not used when the surface data were analysed. (Correction
for orientation sampling bias was only applied to borehole data.)

Estimation of the trace-length distributionsis difficult, as such estimations (among other
things) depend on the size of the window studied in relation to the properties of the
fracture-radius distribution that created the fracture traces. Therefore the results for
different fracture sets could be very different, for the same size of window.
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9.1.3 On parametric tests and calculated confidence intervals

Parametric statistical tests were carried out regarding mean direction and dispersion of
the three fracture sets of the population, considering observations of fracture orientation
in theoretical boreholes (see Sections 3.5 and 4.4). Asthe population (the fracture
network) is created by use of Fisher distributions, the tests were based on the
assumption that samples were drawn from (represent) Fisher distributions. Even if we
had not known that the fracture sets were generated that way, the circular shape of the
fracture clusters as reveaed by the SR2 parameter (see Section 4.2.1), indicates that
parametric tests against Fisher distributions are appropriate. The tested hypothesis was
that the mean direction and the dispersion of the population, as estimated by the
samples, are equal to the known true properties of the population. We know that thisis a
correct hypothesis; but due to sampling bias, remaining in the samples after application
of Terzaghi correction, the hypothesis will not necessarily be confirmed by the samples.
The results of the tests demonstrate alarger amount of rejected samples, than the
amount prescribed by the confidence level of the tests; for some of the fracture sets and
especially when analysing the samples from the inclined borehole. Thisisa
consequence of a systematic bias in the point estimates of the properties of the
population. This bias follows from the fact that a borehole is a one-dimensional line that
samples a three-dimensional fracture network. The applied Terzaghi correction, which
removes most of thisbias, is not perfect and some aspects of the bias remain in the
samples. The following conclusion can be made: If we assume that (i) samples are
drawn from perfect Fisher distributions and that (ii) the systematic sampling biasisfully
corrected by use of Terzaghi correction; we may derive confidence intervals, based on
parametrical statistical analysis, that are to small and which do not reflect the actual
uncertainties. Thisis especialy the case if the sample sizeislarge (a sample that
contains alarge number of fracture observations) as the confidence intervals, derived
through parametric statistical analyses, are small for such samples.

9.14 On optimal orientation of a borehole

Based on observations in theoretical boreholes, we have estimated fracture set
orientation, mean direction and dispersion, as well as the fracture density parameters
P10 and P32. Two different boreholes have been used, avertical and an inclined
borehole. By comparing the efficiency of the point estimates, as produced by the two
boreholes, we can make conclusions regarding the optimal orientation of a borehole.

Let usfirst consider the P10-parameter (fracture frequency in aborehole); itisa
direction-dependent parameter and as such it is calculated without Terzaghi correction.
The point estimate of the P10 parameter relates to borehole length and not to number of
fractures in a sample. However, the efficiency of the point estimate increases with
number of fractures observed in a sample; hence for a given borehole length, the
borehole that intersects most fractures will produce the most efficient point estimate as
regards the P10-parameter. Considering the two borehole directions studied, the
inclined borehole (45 deg.) produces on the average, when adding together all three
fracture sets, the largest samples (number of fractures per metre of borehole), and
consequently as regards P10 the point estimate is most effective for the inclined
borehole.

210



For all parameters anal ysed by use of boreholes, on the average the most efficient point
estimate takes place for the borehole direction for which most fractures are intersected.
Hence, in order to reach the largest efficiency when analysing a single fracture set, the
borehole should not necessarily be an inclined borehole, but directed so that the mean
direction (defined by trend and plunge) of the fracture set studied is parallél to the
borehole (i.e. on the average the fracture planes are at right angles to the borehole),
because on the average this is the borehole direction that produces the largest samples
(for a given borehole length). Consequently, different borehole directions are optimal
for different fracture sets.

The borehole length necessary for deriving acceptable estimates of all properties studied
of al fracture sets studied is determined by the length necessary for deriving an
acceptable estimate of the property and fracture set that is the most difficult to estimate.
The properties that are easier to estimate will be derived within the borehole length
necessary for the most difficult estimation. For example, if we want to estimate the
mean orientation and dispersion (Kappa) of the three fracture sets studied, by use of a
vertical borehole, the necessary length is 500 m (confidence level=90%; confidence
interval =+/— 10 degrees (orientation) and +/-15% (Kappa)). By use of an inclined
borehole, the necessary length is 500m as well. For the vertical borehole the most
difficult parameter to estimate is the dispersion of Set 1, consequently thisisthe
parameter that determines the borehole length for the vertical borehole. For the inclined
borehole the most difficult parameter to estimate is the dispersion of Set 3, and
consequently thisis the parameter that determines the borehole length for the inclined
borehole. For both boreholes the necessary borehole length is 500m.

Even if the necessary length of borehole was the same for the two borehole orientations,
as this length was determined by the most difficult estimation, the necessary lengths for
estimating the other parameters were not the same. As a measure of the average
efficiency of a borehole orientation we have cal culated the average necessary length for
estimating certain parameters in the same borehole.

n

>t
A=E 9-1
n

A = Average necessary length.

Li = Necessary borehole length to derive an estimate of a parameter of a fracture set, within a given
confidence interval and confidence level.

n = Number of estimates studied.

The results for the P10 and P32 parameters are given in Table 9-1 (below).
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Table 9-1. Average necessary borehole lengths for deriving estimates of
all three fracture sets, in boreholes of different directions, considering
P10 and P32.

Parameter  Confidence interval Confidence level BH-type Average
P10 Deviation<=+/-15% 90% Vertical 283m
P10 Deviation<=+/-15% 90% Inclined(45deg) 236m
P32 Deviation<=+/-15% 90% Vertical 550m
P32 Deviation<=+/—-15% 90% Inclined(45deg) 393m

Considering fracture frequency P10 and a vertical borehole, the necessary lengths are
400 m (Set 1), 300 m (Set 2) and 150 m (Set 3), producing an average necessary length
of 283 m (confidence interval= +/-15% of true value and confidence level= 90%). For
an inclined borehole the average necessary length is 236 m. The average necessary
length of the inclined borehole is 84% of that of the vertical borehole. Considering
fracture density P32 (based on borehole data), the average necessary length of the
inclined borehole (393 m) is 71% of that of the vertical borehole (550 m). Hence, the
inclined borehole produces on the average the best estimates, especially for the P32
parameter. On the other hand, if the acceptable deviation (confidence interval) is not set
as very small and the available borehole lengths are large, the direction of the borehole
is not very important, as acceptabl e estimates could be derived for any direction.

Estimates of fracture set orientation should, as little as possible, be dependent on the
orientation of the investigation borehole. Therefore all orientation data from boreholes
should be corrected by use of Terzaghi correction (see Appendix B). The Terzaghi
correction will compensate for most of the systematic sampling bias. After application
of Terzaghi correction, the sample sizes necessary for deriving an estimate with a
certain confidence, should only be weakly dependent on the orientation of the borehole,
however the necessary lengths will still be dependent on dispersion and fracture density;
and as the Terzaghi correction is not perfect and some systematic bias will remain in the
samples, it follows that some borehole orientations are better than other orientations.
The number of fractures observed and the efficiency (completeness) of the Terzaghi
correction depends on the acute angle between the borehole and the mean orientation of
the fracture set studied. When considering the efficiency (completeness) of the Terzaghi
correction, different directions of borehole are optimal for different fracture sets (as they
occur in arock unit). The remaining bias will have the least influence if the biasis
distributed in a symmetric way around the predicted mean orientation, which is
achieved for boreholes that are at right angles or parallel to the mean direction of

the fracture set.

Hence, for best efficiency of the Terzaghi correction, the borehole should be directed in
away that the mean direction (trend and plunge) of the fracture set studied is parallel to
the borehole (i.e. fracture planes at right angles to the borehole), as most fractures are
intersected for this direction, and because the remaining bias will be symmetric for

such adirection. A borehole direction that is at right angle to the mean direction (trend
and plunge) of afracture set (i.e. borehole direction along fracture planes) could
(theoretically) be an efficient investigation borehole, assuming that it is has alarge
length. Because for very large lengths of such a borehole direction, the derived estimate
will be close to the true value, as the remaining biasis symmetrically distributed for
such a borehole direction.
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For aborehole that is not parallel and not at right angles to the mean direction of the
fracture set studied, and if the acceptable deviation (confidence interval) is set asvery
small, for such a situation the necessary borehole lengths could be infinite (especialy
for large values of the confidence level). Because the estimates might converge not
towards the true value but towards avalue that is slightly off the true value, due to the
remaining sampling bias (see Figure 2-7 and Appendix B). (If the acceptable deviation
(confidence interval) is set as very small, the estimate may converge towards avalue
outside of the confidence interval.)

The necessary average lengths, considering mean directions of afracture set, are given
in Table 9-2 (below).

Table 9-2. Average necessary borehole lengths for deriving estimates of
all three fracture sets, in boreholes of different directions, considering
mean direction of fracture sets.

Parameter Confidenceinterval Confidencelevel BH-type Average
Mean direction Deviat.<=15deg 90% Vertical 70m

Mean direction Deviat.<=15deg 90% Inclined(45deg) 53m

Mean direction Deviat.<=10deg 90% Vertical 133m

Mean direction Deviat.<=10deg 90% Inclined(45deg) 113m

Mean direction Deviat.<= 5deg 90% Vertical 550m

Mean direction Deviat.<= 5deg 90% Inclined(45deg) Not possible

The average necessary length of the inclined borehole (53 m) is 76% of that of the
vertical borehole (70 m), for an acceptable deviation (confidence interval) of 15 degrees
and a confidence level of 90%. For an acceptable deviation of 10 degrees, the average
necessary length of the inclined borehole (113 m) is 85% of that of the vertical borehole
(133 m). And finally, for an acceptable deviation of 5 degrees, the average necessary
length of the inclined borehole is undefined. Because by use of an inclined (45 deg)
borehole it is not possible to estimate the mean direction of Set 1 at such asmall
acceptable deviation (confidence interval) together with a confidence level of 90%.
Hence, the inclined borehole is better than the vertical borehole, except if the
confidence interval (acceptable deviation) and confidence level is set as very small,

for such a situation the direction of the borehole has to be optimised for each fracture
set. On the other hand, if the acceptable deviation (confidence interval) is not very
small, the direction of the borehole is not very important, as acceptabl e estimates could
be derived for any direction, and the difference in total lengths for different borehole
directionsis not very large.

The necessary total lengths, considering dispersion of afracture set, are givenin
Table 9-3 (below).

213



Table 9-3. Average necessary borehole lengths for deriving estimates of
all three fracture sets, in boreholes of different directions, considering
dispersion of fracture sets.

Parameter Confidenceinterval Confidencelevel BH-type Average
SR1 Deviat.<=+/-15% 90% Vertical 483m
SR1 Deviat.<=+/-15% 90% Inclined(45deg) 390m
Kappa Deviat.<=+/-15% 90% Vertical 373m
Kappa Deviat.<=+/-15% 90% Inclined(45deg) 427m

Considering dispersion in fracture orientation, as represented by the SR1 dispersion
parameter, the average necessary length of the inclined borehole (390 m) is 81% of that
of the vertical borehole (483 m), for an acceptable deviation (confidence interval) of
+/- 15% of the true values and a confidence level of 90%. Thisisin line with the results
for the mean direction (above). It should however be noted that the different necessary
lengths for each individual fracture set, considering the SR1 parameter (see Section 4.2,
page 64), are very large (e.g. vertical borehole, Set 1=1100 m, Set 2=250 m and

Set 3=100 m). Considering dispersion in fracture orientation, as represented by the
Kappa dispersion parameter (see Section 4.3, page 75), the average necessary length of
the inclined borehole (427 m) is 114% of that of the vertical borehole (373 m). Thisis
different from the results regarding mean direction, and it follows from the remaining
sampling bias of the inclined borehole.

Thus, it is more difficult to predict dispersion than mean value (which isthe way it
should be, as dispersion is a measure of variance), it follows that the borehole direction
is more important when estimating dispersion than when estimating mean direction of a
fracture set.

The borehole direction is also more important when estimating P32 than when
estimating P10. In general, the necessary lengths of boreholes are larger when
estimating P32 than for estimation of P10. However, if the borehole direction and mean
direction (trend and plunge) of the fracture set is parallel, the P10-value in the borehole
isequal to the P32-value of the fracture set; this conclusion underlines the importance
of borehole direction.

If the acceptable deviation (confidence interval) is not very small, and large borehole
lengths are avail able, any borehole direction will do, but if the acceptable deviation
(confidence interval) has to be very small and/or only short borehole lengths are
available, for such a situation the borehole direction is important and needs to be
optimised considering each fracture set. In generd it is better to have three somewhat
shorter boreholes, with different optimised directions, than one borehole with alarge
length

9.1.5 On number of investigation boreholes and rock surfaces

In this study the analysed fracture network is statistically homogeneous, it follows that
the results are only applicable to arock unit with statistically homogeneous properties.
Considering the use of boreholes for investigation of fracture sets orientation (mean
direction and dispersion) and the P10 fracture density parameter, the necessary size

of samples for the estimation of the parameter does not have to come from asingle
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borehole. If the rock mass has statistically homogeneous properties, the analysed sample
can come from several different boreholes that together produce the necessary size of
sample. For example, three boreholes of length 50 metres can together form a sample
representing approximately the same size of sample as observations in a single borehole
of length 150 metres (presuming that they al are in the same rock unit with statistically
homogeneous properties). Hence, in practise when analysing areal rock mass, it isvery
important to know which observations belong to which rock unit, especially if several
boreholes are used; that is however also a concern when anaysing observations from a
single borehole with alarge length.

It is however a different situation when considering the mapping of fracture trace-length
distributions on rock surfaces. There are several biases that come from sampling a three
dimensional system with atwo-dimensional surface of agiven form (e.g. circular), this
isdiscussed in Section 6.2; but regarding the topic of this section, the most important
bias is the boundary truncation of the large fracture traces. Thisis stated in Section 6.3.1
in the following way “The efficiency of a point estimate increases with sample size,
however for the sampling of traces also the size of the studied window is important.

The observations are made on windows that have alimited size, and the upper tail of the
trace-length distribution (traces with alarge length) can only be directly observed on
windows of a size (radius) comparable to length of the large traces. Hence, for small
windows there will be a systematic bias in the estimate of the trace-length distribution,
due to boundary truncation, even if the sample sizeislarge. (Small window sizes could
be sufficient if it is possible to fit amathematical distribution to the observed truncated
trace-length distributions, even if such a curve fitting procedure will introduce
uncertainty regarding the ability of such adistribution to represent the part of the true
distribution that is unknown at small window sizes.) ”

It follows from the statement above that regarding the trace-length distribution it is not
possible to replace observations on one large window with observations on severa
smaller windows, even if al windows are from the same rock unit with statistically
homogeneous properties. However, as stated above, by fitting a mathematical function
to observations made on small windows, an approximate estimation can be derived

of the upper tail of the trace-length distribution. We will in this study not discuss the
best method for such a curve fitting; an example of curve fitting is however givenin
Chapter 6. The given exampleisthefitting of a Log-Normal distribution to the observed
trace-length distribution.

It isagain a different situation when considering observations of fracture strike
distributions, derived from directions of fracture traces, as observed on rock surfaces.
Asfor the trace-length distribution there are several biases that come from sampling a
three dimensional system with a two-dimensional surface of a given form (see Section
6.2). However, there is no systematic bias in the estimate of the strike distribution,

due to boundary truncation of large fracture traces. Hence, when estimating the strike
distribution it is possible to replace observations on one large window with observations
on severa smaller windows and thereby gather one large sample, presuming that all
windows are from the same rock unit with statistically homogeneous properties.
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PARAMETER CRITERION PROBABILITY | SAMPLETYPE BOREHOLE
(Confidence (Confidence level) | FRACTURE SET LENGTH (1)
interval) (Sample size)
Vertica BH
ORIENTATION Deviation >= 90% Set 1 >=140m
MEAN <=15deg Set 2 >=50m
DIRECTION Set 3 >=20m
Thedeviationin Inclined BH
degrees corresponds Setl >=90m
to the acute angle Set 2 >=35m
between the true Set 3 >=35m
mean direction and Vertica BH
that of asample. Deviation >= 90% Set 1 >=270m
<=10deg Set 2 >=90m
Set 3 >=40m
Inclined BH
Set 1 >=200m
Set 2 >=70m
Set 3 >=70m
Vertica BH
Deviation >= 90% Set 1 >=1200 m
<=5degg Set 2 >=340m
Set 3 >=110m
Inclined BH
Setl Not possible
Set 2 >=260m
Set 3 >=280m
Vertica BH
ORIENTATION Deviation >= 90% Set 1 >=1100 m
Dispersion <=+/-15% Set 2 >=250m
SR1 of true value Set 3 >=100m
()] Inclined BH
Setl >=750m
Set 2 >=170m
Set 3 >=250m
Vertica BH
ORIENTATION Deviation >= 90% Set 1 >=500m
Dispersion <=+/-15% Set 2 >=420m
Kappa of true value Set 3 >=200m
2 Inclined BH
Set 1 >=420m
Set 2 >=360m
Set 3 >=500m

(1). Results and conclusions given in this study are only directly applicable to the fracture network

studied, see Section 2.3.

(2). Samples are accepted if the deviation from the true value is within a range of plus or minus
15% of the True value, considering arange centred on the true value, i.e. within: 0.85* TV—
1.15*TV (TV=TrueVaue)

Figure 9-1. CONCLUSONS FRACTURE ORIENTATION FROM BOREHOLES.
(Presuming that trend and plunge is measured without any errors and that Set ID is
known for all fractures studied.)
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PARAMETER CRITERION PROBABILITY | SAMPLE TYPE SIZE (1)
(Confidenceinterval) | (Confidencelevel) | FRACTURE SET (Sample size)
Vertical BH BH length
P10 Deviation >=90% Set 1l >= 400 m
Fracturefrequency < = +/-15% Set 2 >=300m
[fractures/metre] of true value Set 3 >=150m
Analyses of ) Inclined BH BH length
boreholes Set 1 >=350m
Set 2 >=150m
Set 3 >=210m
Horizontal circular
P21 Deviation >=90% Surface Radius of surface
[ Trace-length per <=+/-15% Setl >=24m
surface area) of true value Set 2 >=22m
Analysis of circular ) Set 3 >=40m
horizontal surfaces Horizontal circular
Deviation >= 90% Surface Radius of surface
<=+/-10% Set 1 >=37m
of true value Set 2 >=32m
3 Set 3 >=60m
P32 By use of atrial and error procedure in a DFN-model, the P32 parameter can
[fracture surface | Pe Estimated based on the P10 or the P21 values. Therefore the results are the
area per volumeg] | Same asfor the P10 and P21 parameters, with the addition of convergence
INDIRECT deviations of thetrial and error procedure.
Analysis of surfaces | Devialion pg = Deviation g
or boreholes Deviation g3, = Deviation pig
P32 Deviation >=90% Vertical BH BH length
[fracture surface < =+/-15% Set 1 >=850m
area per volume] of true value Set 2 >=650m
DIRECT 2 Set 3 >=150m
From boreholes.
Considering fracture
areainside borehole Inclined BH BH length
and borehole Set 1l >=480 m
volume. Set 2 >=320m
Set 3 >=380m

(1). Results and conclusions given in this study are only directly applicable to the fracture network
studied, see Section 2.3.
(2). Samples are accepted if the deviation from the true value is within arange of plus or minus 10%
or 15% of the true value (TV), considering a range centred on the true value

Figure 9-2. CONCLUSONS: FRACTURE DENSITY.
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PARAMETER CRITERION PROBABILITY | SAMPLETYPE SIZE (1)
(Confidenceinterval) | (Confidencelevel) | FRACTURE SET (Sample size)
MOMENTS OF Deviation >= 90% MEAN Radius of surface
SAMPLE <=+/-15% Setl >=32m
DISTRIBUTION of true value Set 2 >=45m
Analysis of circular (2 Set 3 >=52m
horizontal surface. STANDARD
DEVIATION | Radiusof surface
Setl >=52m
Set 2 >=12m
Set 3 >=70m
MEAN
MOMENTS OF Deviation >=90% 10Log(TraceL.) | Radiusof surface
LOG-NORMAL <=+/-15% Set1 >=25m
DIST. FITTED TO of true value Set 2 Not well represented
THE SAMPLE (2) Set 3 >=45m
DISTRIBUTION
Analysis of circular STANDARD
horizontal surface. DEVIATION | Radiusof surface
All Setstogether. 10Log(TraceL.) >=42m
Set 1 Not well represented
Set 2 >=65m
Set 3
SHAPE OF Chi-sguare test >=90% Set 1 Radius of surface
SAMPLE “goodness-of-fit” Set 2 >=13m
DISTRIBUTION Confidence level Set 3 >=38m
Analysis of circular 99% >=32m

horizontal surface.
All Setstogether.

©)

(). Results and conclusions given in this study are only directly applicable to the fracture network
studied, see Section 2.3.
(2). Samples are accepted if the deviation from the true value is within arange of plus or minus 15%
of the true value, considering arange centred on the true value, i.e. within: 0.85* TV—1.15*TV

(TV=TrueValue)

(3). Samples are accepted based on the result of a Chi-square goodness-of-fit test, which compares the
shape of the sample distribution to the shape of the true distribution. The confidence level of the test

was set to 99%

Figure 9-3. CONCLUSONS: FRACTURE TRACE-LENGTH DISTRIBUTION.
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PARAMETER CRITERION PROBABILITY | FRACTURE RADIUS OF
(Confidence (Confidence level) SET SURFACE
interval) (Sample size)
MEAN OF Deviation >= 90% Setl Radius of surface
SAMPLE STRIKE <=15deg Set 2 >=35m
DISTRIBUTION Q) Set 3 >=18m
Analysisof circular >=60m
horizontal surface.
Deviation >= 90% Set 1 Radius of surface
<=10deg Set 2 >=50m
(D] Set 3 >=27m
>=68m
SHAPE OF Chi-square test >= 90% Setl Radius of surface
SAMPLE STRIKE | “goodness-of-fit” Set 2 >=13m
DISTRIBUTION | Confidence level Set 3 >=11m
Analysisof circular 99% >=24m
horizontal surface. 2

(1) Samples are within arange of plus or minus 15 or 10 degrees of the true value, considering a

range centred on the true value.

(2) Samples are accepted based on the result of a Chi-square goodness-of-fit test, which
compares the shape of the sample distribution to the shape of the true distribution. The

confidence level of the test was set to 99%

Figure 9-4. CONCLUSIONS FRACTURE TRACE STRIKE DISTRIBUTION.
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Appendix 1
The eigenvector and resultant vector methods for calculation of
mean direction of a group of fractures

1.1 Introduction

dispersion of this sample (cluster) can be evaluated with different methods. Two of these
method.

The mean orientation of a sample of fractures (or a cluster of fracture poles) and the
methods are presented below. They are the eigenvector method and the resultant vector

1.2

Eigenvectors and eigenvalues, the eigenvalues method

For a given sample of fractures, every fracture i can be characterised by its normal

My
vector ni. This vector is defined by three co-ordinates so that[n] = | n, |. Thelength of

1z

n
the vector n is set by definition to one. In the following, fracture poles, aso referred to
as normal vectors, will simply be called vectors.

Figure A-1. Two-dimensional illustration of the projection of vector ﬁ on vector U.
The length of projection of the vector non uisl. It is defined as a positive scalar.
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Let 6; be the acute angle between the direction of a exploration borehole and a normal to
afracture planei hit by the exploration borehole. According to the Terzaghi correction
theory /Terzaghi, 1965/, the fracture is assigned aweight equal to:

w; = 1/cos@ 6< 90 deg.

When 8 approaches 90 deg. w becomes very large, to the extent that a single data point
could dominate the distribution of orientaion values, to avoid this a maximum weighting
valueisintroduced, e.g. Wmasimum = 7-

This meansthat: w;, =min(1/cos8,7).

A matrix T is defined as follow:

N E—
T=>w nixni]

i=1
Note that T isasymmetric matrix.

The length of projection of the vector n onu isl; (see Figure A-1). It isdefined as a
positive scalar. Let us define ascalar caled M as.

For an arbitrary vector u with co-ordinates [u], one has

M =[u] "[T][

Since we are looking for an unknown representative vector that reflects the orientation of
asample of fractures (or afracture pole cluster’,) the representative vector is the vector
for which the following condition applies. The representative vector is the vector for
which the sum of the projections of the fracture vectorsisthe largest. It is also true for
the sum of the squared value of the projections of the poles. In other words, M should
take its largest value (maximum value) for the representative vector.

Linear algebra provides a solution to our problem, the maximum possible value of M is
the largest eigenvalue A, of the symmetric matrix T. The associated eigen vector g, of T
gives the orientation of the pole cluster. Hence:

A =[a.] ][ o]

Since the matrix T is symmetric, the eigen vectors define an orthogonal co-ordinate
system. The eigen vectors g, and g, are thuslocated on arepresentative (average) plane

of the fracture cluster. The ratio between the eigen values provides information on the
degree of clustering (or dispersion) of the sample studied, and also on the shape of the
cluster studied.

" By cluster we mean a concentration of fracture poles on a spherical projection
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The eigen values associated to eigen-vectors 62 and 63 are A, and As. The clustering or

dispersion of the fracturesis given by the ratios LN(A1/A2) and LN(A2/A3), see
/Woodcock, 1977/.

1.3 Resultant vectors

For a given sample of fractures, every fracture i can be characterised by its normal

Ny
vector ni. This vector is defined by three co-ordinates so that[n] = | n,, |.

n

1z

The length of the vector n isset by definition to one. In the following, fracture poles,
also referred to as normal-vectors, will ssmply be called vectors.

Let 6; be the acute angle between the direction of a exploration borehole and a normal to
afracture planei hit by the exploration borehole. According to the Terzaghi correction
theory, the fracture is assigned aweight equal to:

w; = 1/cos@ 6< 90 deg.

When @ approaches 90 deg. w becomes very large, to the extent that a single data point
could dominate the distribution of orientaion values, to avoid this a maximum weighting
value isintroduced, €.9. Wiaximum = 7-

This meansthat: w; =min(1/cos4,7).

The resultant vector V of a group of fractures (a sample) is defined as the average
orientation-vector of the cluster, hence:

— 1 &
V=2 wh
VVi i=1

=1
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Figure A-2. Aspects of the resultant vector method. When adding a fracture-normal to a
resultant vector, two directions are possible; thisisillustrated by the figure. Only one
direction is correct. Hence, it isimportant to check that the selected direction isthe
correct one.

This definition is not rigorous. In fact, the normal vector n can point in two opposite
directions since afracture has two faces. When calculating the resultant vector V , one

should be cautious and check that: all vectors (Fli ) point towar ds the same general
directioni.e. all directions are inside the same half sphere. Otherwise, the resultant
vector will not reflect the overall orientation of the fracture group (see Figure A-2). The
condition that all vectors should point towards the same half sphere can be achieved by
different techniques as part of iterative numerical algorithms. However, the best
approach isto first apply the elgenvalues method on the sample studied, for deriving a
good estimate of the mean direction, i.e. deriving a representative vector. As a second
step the resultant vector method is applied on the sample, when the resultant vector
method is applied it is checked that all normal-vectors of the sample point towards a half
sphere centred about the representative vector. If the resultant vector method is
constrained by the results of the eigenvalues method, it will produce correct results. The
condition that all normal-vectors should point in the same general direction (same half
sphere) limits the theoretical dispersion of astudied sample. Thislimitation is however
correct, because fracture-normals are axes and not true vectors, and a distribution of axes
(fracture-normals) can only occur in one half sphere (thisis discussed in Chap.2).

The length the resultant vector V reflectsthe dispersion of the sample (or group of
fractures, or cluster of fracture poles). For a given number of fractures, the longer the

resultant vector V , the smaller the dispersion of the cluster (and the larger the degree of
clustering). The resultant vector method will not provide information on the circularity
of afracture cluster. Assuming that the cluster of concernis*“circular” and that the
orientation of the fractures follows a Fisher distribution /see Fisher, 1953/, it is possible
to calculate the dispersion by use of the Fisher kappa parameter. /Fisher, 1953/ showed
that an estimate k of the popul ation kappa « can be found from a sample of M unit
vectors, for which the resultant vector is |r,|.
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This estimate is expressed by:

For sufficiently large values of k, approximately k > 5 , the variable e ¥ is negligible and
the equation reduces to:

M

k =
M =|r,|

With the introduction of weighting factors, this equation can be expressed as:

1.4 Relationship between SR1 and K for the
Fisher distribution
14.1 Generation of a Fisher distributed variable 6

/Priest, 1993/ suggests a Fisher distributed random deviation 8 from a reference vector u
can be generated by:

6, = Arccos(@ +1j

where Ry is uniformly random distributed value. R ;; O [O;]]

For u defined as the reference vector (see Figure A-1),

N
OM =Y (cosg, )

i=1

We saw that the maximum possible value of M is the largest eigen-value A, solution of
our problem. The associated eigen-vector g, gives the orientation of the pole cluster.
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The Fisher distributed random deviation 6 from vector 61 gives:
N

A=Y o8, )’
i=1 ‘

=3 (MR )

+52 41 EquA.4.1

1.4.2 Calculus of SR1 as a function of K.

Let's define the measure of the cluster dispersion SR1 as SR1= In(A1/A2) /Woodcock,
1977/.

Assuming that the fracture orientations are Fisher distributed, i.e. the fracture cluster is
circular. We have thus the relationship Ao=As.

Linear algebra claims that for asample of N fractures, the trace of the matrix
T=A1+A2+A3=A1+2A =N

Hence the definition of SR1:
FKi=In 2A
N-A
oM Equ. A.4.2

228



Replacing EqQu A.4.1in Eq A.4.2 gives

One has;
AD [ -2
BO[L -1

Hence for asufficiently large N,

SR1= |n(('<;1)2+1} K O [1;+00]

Note that this function is not defined for values of K<1.

Thisfunction isillustrated in the figure below (Figure A-3.).
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Figure A-3. Relationship between the dispersion parameter K of a circular fracture
cluster /Fisher, 1953/ and SR1 /Woodcock, 1977/.
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1.4.3 Calculus of K as a function of SR1.

The function SR1 above can be easily inverted and provide the dispersion parameter K
asafunction of SR1. Thisfunction isvalid under the same assumptions as SR1=f(K),
except the domain of validity. Thisinverse function is given by:

1 eZSRl
K = 5esRl +1+ T_l ; SR [In(2);+o]

It should be noted that the domain of validity represents eigen-values so that A1>2[A.

SR1=In(2) represents A1=2[X,. This gives aminimum value of K=2.

230



Appendix 2

Relationship between SR1 and kappa considering a
Fisher distribution

1.1 Terzaghi correction; methodology and examples

One-dimensional sampling is sampling along a straight line (a scanline). Such sampling
of fracture orientation in athree-dimensional fracture system will introduce an
orientation sampling bias. The bias follows from the fact that the probability for
intersecting a fracture depends on the angle between the sampling line and the fracture,
aswell ason the area of the fracture. For a more thorough discussion of thiswe refer to
/Terzaghi, 1965/ or /Priest, 1993/. The discussion below is based on /Priest, 1993/.

For compensation of this bias /Terzaghi, 1965/ proposed the application of a geometrical
correction factor based on the observed angle between the sampling line and the normal
to aparticular fracture. In this study, such a correction is called “ Terzaghi correction”.

The acute angle between anormal to the fracture plane and the boreholeiscalled “9".
The highest probability for intersection occurs when & = 0 deg. The lowest probability of
intersection is zero; this occurs when 6 = 90 deg. Any direction of sampling line will
therefore produce a sample that is biased to contain alower amount of fractures than the
actual amount. The reduced sample size at the higher values of & can be compensated for
by assigning a higer weighting to those fractures that are sampled. A fracture sampled by
asampling line is assigned a weighting W given by:

W =

0 <90 deg.
Ccos J %

For alarge sample size thisweighting will serve to balance the orientation sampling bias
introduced by linear sampling. When & approaches 90 deg. W becomes very large, to the
extent that a single data point could dominate the distribution of orientaion values, to
avoid this a maximum weighting value is introduced, €.9. Winaimum = 7.

Below we will present three theoretical examples demonstrating the way the Terzaghi
correction works (Figures B-1, B-2 and B-3). These three examples are based two-
dimensional data, and demonstrate only the principle of the Terzaghi correction. For
each example we will present: (i) the true distribution as it occurs in the rock mass,

(i1) the apparent distribution as it occursin aborehole and (iii) the corrected distribution
asit will look after application of Terzaghi correction.

These figures (Figures B-1, B-2 and B-3) demonstrate that even after application of
Terzaghi correction, due to the maximum weighting value of the correction, the
distributions carries aminor distortion. For a vertical borehole sampling sub-vertical and
sub-horizontal fracture sets, the distortion of the distributions are symmetric around the
mean value of the distribution. Considering an inclined borehole (e.g. 45 deg), used for
sampling sub-vertical and sub-horizontal fracture sets, the distortion of the distributions
are not symmetric around the mean value of the distributions.
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THEORETICAL EXAMPLE:
SUB-HORIZONTAL FRACTURE SET AND VERTICAL BOREHOLE.

POPULATION fracture density, Normal distribution

Dip (degrees)

DIP: Mean 5.7 deg. STD= 38.9 deg, Number of fractures: 98.6%
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Figure B-1. Theoretical example: sub-horizontal fracture set and vertical borehole.
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THEORETICAL EXAMPLE:

SUB-VERTICAL FRACTURE SET AND VERTICAL BOREHOLE.

LY

POPULATION fracture density, Normal distribution

3

Dip (degrees)
DIP: Mean 83.3 deg. STD= 31.6 deg, Number of fractures: 89.3%
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Figure B-2. Theoretical example: sub-vertical fracture set and vertical borehole.
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THEORETICAL EXAMPLE:
SUB-VERTICAL FRACTURE SET AND INCLINED BOREHOLE, 45 deg.

DIP: Mean 85.9 deg. STD= 29.4 deg, Number of fractures: 95.3%

Figure B-3. Theoretical example: sub-vertical fracture set and inclined borehole (45

degrees).
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POPULATION fracture density, Normal distribution
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Below we will, by use of three examples, demonstrate the consequences of not including
the Terzaghi correction in the calculation of mean direction and dispersion of afracture
set. The calculations are based on samples of fracture orientation as seen in a vertical

borehole. These examples are based on the same DFN-network as the one presented in

Chapter 2. (Tables 2.1 through 2.3). The fracture set studied is Set 2. The only difference

compared to the results presented in Chapters 3 and 4, is that the estimates presented in

those chapters were cal culated with the inclusion of Terzaghi correction (maximum
correction factor equal to 30), while the estimates presented below are cal culated without
Terzaghi correction.

Vertical borehole. Fracture Set 2 (sub-vert).

Probability for correct estimation of orientation. Terzaghi correction included. (E2CO0-v).
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Figure B-4. Probability for correct estimation of fracture set orientation. A comparison
between estimates of mean direction of a fracture set, calculated with and without
Terzaghi correction. The calculations represent a sub-vertical fracture set (Set 2),
investigated by use of a vertical borehole.
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Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering SR1
Terzaghi correction included. (E2C0-v).
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Figure B-5. Probability for correct estimation of fracture set orientation. A comparison
between estimates of the SR1 dispersion parameter of a fracture set, calculated with and
without Terzaghi correction. The calculations represent a sub-vertical fracture set (Set
2), investigated by use of a vertical borehole.
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Vertical borehole. Fracture Set 2 (sub-vertical).
Probability for correct estimation of dispersion, considering Kappa
Terzaghi correction included. (E2C0-v).
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Figure B-6. Probability for correct estimation of fracture set orientation. A comparison
between estimates of the KAPPA dispersion parameter of a fracture set, calculated with
and without Terzaghi correction. The calculations represent a sub-vertical fracture set
(Set 2), investigated by use of a vertical borehole.
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