P-06-123

Forsmark site investigation

Geophysical borehole logging in boreholes KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 and HFM32

Uffe Torben Nielsen, Jørgen Ringgaard, Jesper Fris Dahl RAMBØLL

April 2006

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-06-123

Forsmark site investigation

Geophysical borehole logging in boreholes KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 and HFM32

Uffe Torben Nielsen, Jørgen Ringgaard, Jesper Fris Dahl RAMBØLL

April 2006

Keywords: Geophysical borehole logging, Forsmark, AP PF 400-05-119.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Geophysical borehole logging has been performed in boreholes KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 and HFM32 all situated in Forsmark, Sweden.

The objective of the survey is to determine the physical properties of the rock mass around the borehole, e.g. to determine rock types and quantify the fracture frequency and localise deformation zones in the rock. Geophysical borehole logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes.

The logging in KFM01C was recorded from 12 m to 450 m. KFM09B was recorded from 12 m to 615 m. HFM07 was recorded from 12 m to 122 m. HFM24 was recorded from 18 m to 151 m. HFM26 was recorded from 12 m to 202 m. HFM29 was recorded from 12 m to 200 m and HFM32 was recorded from 6 m to 202 m.

The present report comprises a description of the applied equipment and the performed logging program, the fieldwork, data delivery and a presentation and discussion of the results.

Composite sheets of all the processed logs are included in Appendix 1 to Appendix 7.

Sammanfattning

Geofysisk borrhålsloggning har genomförts i borrhålen KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 och HFM32 i Forsmark.

Syftet med geofysisk borrhålsloggning är att bestämma bergets fysikaliska egenskaper för att bestämma bergartsfördelningen i det genomborrade bergpartiet samt att kvantifiera sprickfrekvensen och att lokalisera deformationszoner. Med geofysisk borrhålsloggning mäts bergets och borrhålsvattnets fysikaliska egenskaper i borrhålet och omgivande berg.

Den geofysiska borrhålsloggningen genomfördes i KFM01C från 12 m till 450 m. I KFM09B från 12 m till 615 m. I HFM07 från 12 m till 122 m. I HFM24 från 18 m till 151 m. I HFM26 från 12 m till 202 m. I HFM29 från 12 m till 200 m och i HFM32 från 6 m till 202 m.

Rapporten beskriver använd utrustning, genomfört loggningsprogram, fältarbete, leverans av data och en diskussion av resultatet.

Processerade loggar presenteras i Appendix 1 till 7.

Contents

1	Introduction	7
2	Objective and scope	17
3	Equipment	19
4 4.1 4.2	Execution General Nonconformities	21 21 21
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	ResultsPresentationOrientation, alignment and stretch of logs5.2.1Orientation of images5.2.2Overlapping data5.2.3Alignment of data5.2.4Stretch of logs5.2.5Removing of data5.2.6Repicking of sonic logCalculated log curves5.3.1Calculation of coordinatesBorehole KFM01CBorehole HFM24Borehole HFM25Borehole HFM26Borehole HFM29Borehole HFM32Borehole HFM07	23 23 24 24 24 24 24 24 24 24 24 24 25 26 26 26 26 27 27 27 28 28 28
6	Data delivery	29
Арро	endix 1 Borehole KFM01C, drawing no. 1.1, borehole logs	33
Арро	endix 2 Borehole KFM09B, drawing no. 2.1, borehole logs	41
Арро	endix 3 Borehole HFM24, drawing no. 3.1, borehole logs	49
Арро	endix 4 Borehole HFM26, drawing no. 4.1, borehole logs	53
Арро	endix 5 Borehole HFM29, drawing no. 5.1, borehole logs	57
Арро	endix 6 Borehole HFM32, drawing no. 6.1, borehole logs	61
Арро	endix 7 Borehole HFM07, drawing no. 7.1, borehole logs	65

1 Introduction

This document reports the results gained by the geophysical borehole logging in borehole KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 and HFM32, which is one of the activities performed within the site investigation at Forsmark. The work was carried out in accordance with activity plan AP PF 400-05-119 (SKB internal controlling document). In Table 1-1 controlling documents for performing this activity are listed.

All measurements were conducted by RAMBØLL during the period January 23 to February 2, 2006. The boreholes were recorded from Top Of Casing (TOC) to the bottom of the boreholes. The technical data from the boreholes are shown in Table 1-2. The location of the boreholes is shown in Figure 1-1 and the technical data for the boreholes are shown in Figures 1-2 to Figure 1-8. The borehole HFM07 is a reference borehole.

The delivered raw and processed data have been inserted in the database of SKB (SICADA) and data are traceable by the activity plan number.

Table 1-1. Controlling documents for the performance of the activity (SKB internal controlling documents).

Activity plan	Number	Version
Geofysisk borrhålsloggning i kärnborrhålen KFM01C och KFM09B samt hammarborrhålen HFM24, HFM26 och HFM29	AP PF 400-05-119	1.0
Method descriptions	Number	Version
Metodbeskrivning för geofysisk borrhålsloggning	SKB MD 221.002	2.0
Metodbeskrivning för krökningsmätning av hammar- och kärnborrhål	SKB MD 224.001	1.0

Table 1-2. Technical data for the boreholes.

Borehole Parameter	KFM01C	KFM09B	HFM24	HFM26	HFM29	HFM32	HFM07
Co-ordinates (RT90)	6699526.071 1631403.838	6700119.89 1630638.78	6698662.373 1631719.641	6698008.929 1633516.386	6698018.647 1632502.813	6699015.036 1632137.068	6699015.036 1632137.068
Elevation (RHB70)	2.927	4.30	3.683	2.734	4.467	0.974	0.974
Azimuth	165.03	140.83	47.29	112.42	29.95	116.15	116.15
Inclination (from hori- zontal)	-50.00	-55.08	-59.56	-53.75	-58.57	-86.06	-86.06
Length (m)	450.02	616.45	151.35	202.50	199.70	202.65	202.65
Casing (m)	11.96	9.12	18.03	12.03	9.03	6.03	6.03
Borehole dia- metre (mm)	75.8	77.3	140	140	138	131.8	131.8

Figure 1-1. General overview over the Forsmark area showing the location of the boreholes *KFM01C, KFM09B, HFM07, HFM24, HFM26, HFM29 and HFM32.*

Figure 1-2. Technical description of borehole KFM01C.

Figure 1-3. Technical description of borehole KFM09B.

Figure 1-4. Technical description of borehole HFM24.

Figure 1-5. Technical description of borehole HFM26.

Figure 1-6. Technical description of borehole HFM29.

Figure 1-7. Technical description of borehole HFM32.

Figure 1-8. Technical description of borehole HFM07.

2 Objective and scope

The objective of the survey is to both receive information of the borehole itself, and from the rock mass around the borehole. Geophysical borehole logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. Acoustic televiewer was used for determination of the deviation of the borehole (azimuth and inclination) as well as to determine the length marks in the core-drilled borehole, KFM01C and KFM09B.

This field report describes the equipment used as well as the measurement procedures. Geophysical borehole logging data is presented in Appendix 1(KFM01C), in Appendix 2 (KFM09B), in Appendix 3 (HFM24), in Appendix 4 (HFM26), in Appendix 5 (HFM29), in Appendix 6 (HFM32) and in Appendix 7 (HFM07).

3 Equipment

The geophysical borehole logging program were performed with 7 multi tool probes and resulted in a suite of 19 log types, listed in Table 5-1. The tools and recorded logs are listed in Table 3-1.

Tool	Recorded logs	Dimension	Source detector spacing and type	Tool position in borehole	Tool used in borehole
Century 8144 Normal resis- tivity	Normal resistivity (16 and 64 inch), single point resistance and natural gamma.	237×5.3 cm			Not used in HFM32
Century 8622 Magnetic susceptibility.	Magnetic susceptibility, natural gamma.	203×4.1 cm			All boreholes
Century 9042 Fluid tempe- ratur and fluid resistivity	Fluid temperatur, fluid resistivity and natural gamma.	137×4.1 cm			All boreholes
Century 9072 3 m focused guard.	3 m focused guard log resistivity and natural gamma.	310×6.4 cm			All boreholes
Century 9139 Compensated gamma density.	Compensated Gamma density, natural gamma, 140 cm focused guard log resistivity, 1-arm caliper.	380.3×5.6 cm	20.3 cm 125 m 200 mCi Cs137	Sidewall. Gamma sour- ce focused.	All boreholes
Century 9310 Sonic.	Full wave form travel- time providing P- and S-wave velocity picking, compensated P-wave travel-time and natural gamma.	300×6.0 cm	Near 91.4 cm Far 121.9 cm	Centralized.	All boreholes
RG 25 112 000 HiRAT. Acoustic televiewer.	Full waveform acoustic amplitude and travel- time, 360° orientated acoustic image, 360° very high resolution caliper, borehole azimuth and dip and natural gamma.	246×4 cm		Centralized.	All boreholes

Table 3-1. Logging tools and logs recorded.

4 Execution

4.1 General

In general the measurement procedures follow the SKB method description (MD 221.002, SKB internal controlling document). The logging program was executed in the period January 23 to February 2, 2006. All relevant logging events are described in the daily report sheets delivered to SICADA and are traceable by the activity number.

The fluid resistivity and temperature logs are recorded in downward direction, as the first log run. All other log types are recorded running the tool in upward direction in the borehole.

The applied logging equipment was calibrated and cleaned before arriving at the site according to SKB cleaning level 2 (SKB internal controlling document SKB MD 600.004). Furthermore, all equipment was wiped with alcohol before it was lowered into the borehole.

For control, each log run is normally recorded both in down and in upward direction using the down run as a repeat section. For logging tool 9139 recording a repeat section in upward direction controls the data. The depth of the probe in the borehole is shown on both the recording computer and the winch. On the winch the tension of the cable is also shown. The winch will automatically stop, if the tension changes rapidly. The tension was recorded on all log runs using Century equipment, except tool 9310.

All data was recorded with max.10 cm sample interval. The speed of the logging for the 9139 tool was 5 m/min, for the 8622 tool 20 m/min and for all other tools 10 m/min.

4.2 Nonconformities

Borehole KFM01C has been stabilised with PLEX-plates between 84.31 m to 86.29 m. It was not possible to pass this interval with the Density probe 9139. The Density log has therefore only been recorded to a depth of 85 m.

The deviation measurements (with the HiRAT probe) of the borehole KFM01C (azimuth and inclination) was not repeatable between the down- and up-measurements. The calculation of the co-ordinates are therefore not optimal, and are not used in SICADA.

The 8144 Normal log probe was not recorded in borehole HFM32.

5 Results

5.1 Presentation

All relevant logging events were described in the daily report sheets, which were delivered separately.

Logs presented in Appendix 1–7 (drawings no. 1.1–7.1) are presented in Table 5-1.

Log	Log name short	Unit	Tool
Fluid temperature	TEMP(FL)	Deg C	9042
Fluid resistivity	RES(FL)	Ohm-m	9042
Normal resistivity 16 inch	RES(16N)	Ohm-m	8144
Normal resistivity 64 inch	RES(64N)	Ohm-m	8144
Lateral resistivity	LATERAL	Ohm-m	8144
Single point resistance	SPR	Ohm	8144
Magnetic susceptibility	MAGSUSCEP	SI×10 ⁻⁵	8622
Caliper, 1-arm	CALIPER1	mm	9139
Gamma-gamma density	DENSITY	kg/m³	9139
Focused guard log resistivity, 127 cm	RES(SG)	Ohm-m	9139
Natural gamma	GAM(NAT)	µR/h	9072
Focused guard log resistivity, 300 cm	RES(DG)	Ohm-m	9072
P-wave velocity	P-VEL	m/s	9310
Full wave form, near receiver	AMP(N)	μs	9310
Full wave form, far receiver	AMP(F)	μs	9310
Caliper, high resolution. 360°	CALIPER 3D	mm	HiRAT
High resolution 1D Caliper	CALIPER MEAN	mm	HiRAT
Borehole azimuth magnetic north	AZIMUTH MN	Deg	HIRAT
Borehole inclination from horizontal	DIP	Deg	HiRAT
360° orientated acoustic travel time	TRAVEL TIME	100 ns	HiRAT
360° orientated acoustic travel time	AMPLITUDE	_	HiRAT

 Table 5-1. Logs presented in drawings no. 1.1, Appendix 1.

5.2 Orientation, alignment and stretch of logs

5.2.1 Orientation of images

The orientation of the results from the HiRAT Acoustic tool, are processed in the tool while recording, using the magnetometers and accelerometers in the tool.

5.2.2 Overlapping data

If the log data from one probe have been recorded in more than one file, the files are merged using events in both files. Overlapping in data is always used from the topmost-recorded file (overlapping data are never the mean value from two log runs).

5.2.3 Alignment of data

In order to obtain an exact depth calibration, the track marks made while drilling are used. In boreholes without track marks, gamma events in the top and the bottom of the borehole are used. The connection between the track marks and the logs is obtained from the HiRAT Acoustic tool. The depths from the track marks and from the HiRAT tool are used to make a new depth scale in WellCAD. All log files are shifted using the new depth scale.

5.2.4 Stretch of logs

There is a minor difference in the depth registration between up- and down runs for the used winch. The size of the defect is about 1.5 m/km. To compensate for this the logs are stretched using another new depth scale for each tool. The depth scale is made by using gamma events from the tool compared with the same gamma events from the HiRAT tool. The events in both files are matched, and the new depth scale is made and added to the log. The bottom of the borehole is considered in stretching the logs in case that no data will occur below the bottom of the borehole.

5.2.5 Removing of data

The processing of the data includes removing of spikes, negative and unrealistic values and data in the casing.

5.2.6 Repicking of sonic log

The sonic velocity is normally calculated using an automatic picking routine in the sonic tool, 9310. In inclined boreholes the routine is often picking the wrong arrivals, due to so-called "road noise". Therefore all sonic logs have been manually repicked in WellCAD using the full wave signal.

5.3 Calculated log curves

The different logs are calculated as described in Table 5-2.

Log	Description of log calculation
Caliper, 1-arm	The Caliper was converted from [cm] to [mm] units by multiplying [cm] with 10.
Gamma-gamma density	The Gamma-gamma was converted from [g/cm ³] to [kg/m ³] units by multiplying with 1,000.
Focused guard log resistivity, 140 cm	-
Natural gamma	The natural gamma log was converted from CPS to μ R/h by multiplying the constant 0.077. This constant was computed from the logs previously performed in borehole KLX02 located in Oskarshamn.
Fluid temperature	-
Fluid resistivity	-
Normal resistivity 16 inch	-
Normal resistivity 64 inch	-
Lateral resistivity	-
Single point resistance	-
Self-potential	-
Focused guard log resistivity, 300 cm	-
P-wave velocity	The P-VEL velocity is calculated using the difference in distance between the far and near receiver divided by time difference between the first arrival from the far and near signal. (121.9 cm–91.4 cm)/ (Time(far)–Time(near)).
Full wave form, near receiver	-
Full wave form, far receiver	-
Magnetic susceptibility	The magnetic susceptibility was converted for CGS units to SI units by multiplying the CGS value by 4π .
Caliper, high resolution. 360°. CALIPER 3D	The Caliper 3D is calculated using the acoustic travel time and the velocity in the borehole fluid. The velocity in the fluid is calculated using the fluid temperature and fluid conductivity.
High resolution 1D Caliper CALIPER MEAN	The Caliper mean is calculated using the mean travel time from the acoustic televiewer, the fluid temperature, fluid velocity and the internal travel time in the acoustic televiewer.
Borehole azimuth magnetic north	See 5.3.1
Borehole Inclination from lateral	See 5.3.1
360° orientated acoustic travel time	-
360° orientated acoustic amplitude	-

Table 5-2. Calculated log curves.

5.3.1 Calculation of coordinates

To convert the measured azimuth and inclination to grid-coordinates, one needs to take into account the magnetic declination at the site at the time of data acquisition. The actual declination was found by means of the current International Geomagnetic Reference Field (IGRF). The actual values can be found below. Disturbances from solar storms etc. were not taken into account. By means of the "Radius Of Curvature" method implemented in WellCad, the azimuth and inclination were converted to northing, easting and TVD coordinates relative to the top of the borehole. In the same calculation, the magnetic declination was added. Finally, the relative coordinates were added to the given coordinate in RT90 for the top of the borehole. The coordinates were calculated from 5 m below the casing bottom.

5.4 Borehole KFM01C

In order to obtain an exact depth calibration in borehole KFM01C, the reference track marks made while drilling are used. The correlation between the track marks and the logs is obtained from the HiRAT Acoustic tool.

The reference track marks in the borehole and the recorded track marks from the HiRAT are observed in the following depths, Table 5-3.

To compensate for the difference between the reference track marks and the recorded track marks the logs are stretched. The result from the stretching is a new depth scale. The new depth scale is applied to the HiRAT file. In this way a perfect match between given depths of the reference marks and the recorded data is obtained. By means of alignment of the observed gamma events in KFM01C, between all log runs, the obtained reference mark correlation is transferred to the other logs.

The complete log suite for borehole KFM01C is presented as composite log sheets in drawing 1.1 in Appendix 1. The logs presented in drawing no. 1.1 are listed in Table 5-1.

Table 5-3.	The reference tr	ack marks in the	borehole and	d the recorded	track marks
from the H	liRAT in borehole	e KFM01C.			

Reference mark	HIRAT recorded
51.00	51.00
100.00	100.152
150.00	150.31
200.00	200.457
252.00	252.63
299.00	299.81
350.00	350.98
400.00	401.185

5.5 Borehole KFM09B

In order to obtain an exact depth calibration in borehole KFM09B, the reference track marks made while drilling are used. The correlation between the track marks and the logs is obtained from the HiRAT Acoustic tool.

The reference track marks in the borehole and the recorded track marks from the HiRAT are observed in the following depths, Table 5-4.

To compensate for the difference between the reference track marks and the recorded track marks the logs are stretched. The result from the stretching is a new depth scale. The new depth scale is applied to the HiRAT file. In this way a perfect match between given depths of the reference marks and the recorded data is obtained. By means of alignment of the observed gamma events in KFM09B, between all log runs, the obtained reference mark correlation is transferred to the other logs.

The complete log suite for borehole KFM09B is presented as composite log sheets in drawing 2.1 in Appendix 2. The logs presented in drawing no. 2.1 are listed in Table 5-1.

Reference mark	HIRAT recorded
50.00	47.15
100.00	97.267
150.00	147.435
200.00	197.587
250.00	247.75
300.00	297.84
350.00	348.01
400.00	398.166
450.00	448.295
500.00	498.41
550.00	548.579

Table 5-4. The reference track marks in the borehole and the recorded track marks from the HiRAT in borehole KFM09B.

5.6 Borehole HFM24

Using the natural gamma from the HiRAT as reference, the natural gamma logs from the other probes are aligned to the same depth. A new depth scale is added to each log and afterwards the logs are stretched using the events shown in Table 5-5.

The complete log suite for borehole HFM24 is presented as composite log sheet in drawing 3.1 in Appendix 3. The logs presented in drawing no. 3.1 are listed in Table 5-1.

Table 5-5. Gamma events in borehole HFM24.

Events	Depths
Top event	14.39
Bottom event	142.80

5.7 Borehole HFM26

Using the natural gamma from the HiRAT as reference, the natural gamma logs from the other probes are aligned to the same depth. A new depth scale is added to each log and afterwards the logs are stretched using the events shown in Table 5-6.

The complete log suite for borehole HFM26 is presented as composite log sheet in drawing 4.1 in Appendix 4. The logs presented in drawing no. 4.1 are listed in Table 5-1.

Table 5-6. Gamma events in borehole HFM26.

Events	Depths
Top event	13.84
Bottom event	185.35

5.8 Borehole HFM29

Using the natural gamma from the HiRAT as reference, the natural gamma logs from the other probes are aligned to the same depth. A new depth scale is added to each log and afterwards the logs are stretched using the events shown in Table 5-7.

The complete log suite for borehole HFM29 is presented as composite log sheet in drawing 5.1 in Appendix 5. The logs presented in drawing no. 5.1 are listed in Table 5-1.

Table 5-7. Gamma events in borehole HFM29.

Events	Depths
Top event	9.50
Bottom event	194.12

5.9 Borehole HFM32

Using the natural gamma from the HiRAT as reference, the natural gamma logs from the other probes are aligned to the same depth. A new depth scale is added to each log and afterwards the logs are stretched using the events shown in Table 5-8.

The complete log suite for borehole HFM32 is presented as composite log sheet in drawing 6.1 in Appendix 6. The logs presented in drawing no. 6.1 are listed in Table 5-1.

Table 5-8. Gamma events in borehole HFM32.

Events	Depths				
Top event	8.47				
Bottom event	166.56				

5.10 Borehole HFM07

Using the natural gamma from the HiRAT as reference, the natural gamma logs from the other probes are aligned to the same depth. A new depth scale is added to each log and afterwards the logs are stretched using the events shown in Table 5-9.

The complete log suite for borehole HFM07 is presented as composite log sheet in drawing 7.1 in Appendix 7. The logs presented in drawing no. 7.1 are listed in Table 5-1.

Table 5-9. Gamma events in borehole HFM07.

Events	Depths
Top event	18.8
Bottom event	115.2

6 Data delivery

Geophysical logging data from the measurements, recorded in Century and Robertson format, were delivered directly after the termination of the field activities. The recorded data files used in the processing have also been delivered in WellCAD format, Table 6-1.

The delivered data have been inserted in the database (SICADA) of SKB and are traceable by the activity plan number.

The processed files shown on the drawings have been delivered in WellCAD, Table 6-2, and as excel files (one for each borehole) in SICADA format, Table 6-3.

Borehole	Probe	Log direction	WellCAD File	Description
KFM01C	8144	Down	KFM01C_02-02-06_07-12_8144C02_2.27_ 447.93_ORIG.log	Start Depth: 2.27 m. End Depth: 447.93 m
KFM01C	8622	Up	KFM01C_02-02-06_09-51_8622C1_0.90_ 448.10_ORIG.log	Start Depth: 448.1 m. End Depth: 0.9 m
KFM01C	9042	Down	kfm01c_02-01-06_18-00_9042C02_2.43_ 447.79_ORIG.log	Start Depth: 2.43 m. End Depth: 447.79 m
KFM01C	9072	Up	KFM01C_02-02-06_08-41_9072C02_1.30_ 447.31_ORIG.log	Start Depth: 447.31 m. End Depth: 1.3 m
KFM01C	9139	Up	KFM01C_02-02-06_13-43_9139A02_2.05_ 82.60_ORIG.log	Start Depth: 82.6 m. End Depth: 2.05 m
KFM01C	9310	Up	KFM01C_02-02-06_10-46_9310C210_1.00_ 447.10_ORIG.log	Start Depth: 447.1 m. End Depth: 1 m
KFM01C	HiRAT	Up	KFM01C_90pixels_up_run1.HED	Start Depth: 447 m. End Depth: 0 m
KFM09B	8144	Down	KFM09B_01-31-06_07-32_8144C10_3.10_ 617.10_ORIG.log	Start Depth: 3.1 m. End Depth: 617.1 m
KFM09B	8622	Up	KFM09B_01-31-06_09-26_8622C101.10_ 616.30_ORIG.log	Start Depth: 616.3 m. End Depth: -1.1 m
KFM09B	9042	Down	KFM09B_01-30-06_07-38_9042C02_0.22_ 615.69_ORIG.log	Start Depth: 0.22 m. End Depth: 615.69 m
KFM09B	9072	Up	KFM09B_01-30-06_09-41_9072C021.54_ 615.37_ORIG.log	Start Depth: 615.37 m. End Depth: -1.54 m
KFM09B	9139	Up	KFM09B_01-30-06_14-52_9139A022.14_ 614.51_ORIG.log	Start Depth: 614.51 m. End Depth: -2.14 m
KFM09B	9310	Up	KFM09B_01-30-06_18-43_9310C210_ 559.50_615.50_ORIG.log	Start Depth: 615.5 m. End Depth: 559.5 m
KFM09B	9310	Up	KFM09B_01-30-06_18-57_9310C210_ 478.40_562.30_PROC.log	Start Depth: 562.3 m. End Depth: 478.4 m
KFM09B	9310	Up	KFM09B_01-30-06_19-16_9310C210_ 306.60_481.60_ORIG.log	Start Depth: 306.6 m. End Depth: 481.6 m
KFM09B	9310	Up	KFM09B_01-30-06_19-43_9310C2101.60_ 337.30_ORIG.log	Start Depth: 337.3 m. End Depth: -1.6 m
KFM09B	HIRAT	Up	KFM09B_90pixels_up_run1.HED	Start Depth: 615 m. End Depth: 0 m
KFM09B	HIRAT	Up	KFM09B_90pixels_up_run1.HED	Start Depth: 615 m. End Depth: 0 m

 Table 6-1. Recorded log files in Century or Robertson format used for processing.

Borehole	Probe	Log direction	WellCAD File	Description
HFM24	8144	Down	HFM24_01-31-06_13-51_8144C02_0.28_ 153.30_ORIG.log	Start Depth: 0.28 m. End Depth: 153.3 m
HFM24	8622	Up	HFM24_01-31-06_16-36_8622C020.13_ 151.58_ORIG.log	Start Depth: 151.58 m. End Depth: -0.13 m
HFM24	9042	Down	HFM24_01-31-06_13-13_9042C02_0.22_ 152.16_ORIG.log	Start Depth: 0.22 m. End Depth: 152.16 m
HFM24	9072	Up	HFM24_01-31-06_14-27_9072C02_0.13_ 152.55_ORIG.log	Start Depth: 152.55 m. End Depth: 0.13 m
HFM24	9139	Up	HFM24_01-31-06_15-50_9139A020.11_ 151.72_ORIG.log	Start Depth: 151.72 m. End Depth: -0.11 m
HFM24	9310	Up	HFM24_01-31-06_14-59_9310C2100.10_ 151.20_ORIG.log	Start Depth: 151.2 m. End Depth: -0.1 m
HFM24	Hirat	Up	HFM24_90pixels_up_run1.HED	Start Depth: 151 m. End Depth: 0 m
HFM26	8144	Down	HFM26_02-01-06_08-21_8144C02_0.28_ 202.98_ORIG.log	Start Depth: 0.28 m. End Depth: 202.98 m
HFM26	8622	Up	HFM26_02-01-06_12-39_8622C020.34_ 202.58_ORIG.log	Start Depth: 202.58 m. End Depth: -0.34 m
HFM26	9042	Down	HFM26_02-01-06_07-39_9042C02_0.22_ 203.16_ORIG.log	Start Depth: 0.22 m. End Depth: 203.16 m
HFM26	9072	Up	HFM26_02-01-06_11-11_9072C020.36_ 202.54_ORIG.log	Start Depth: 202.54 m. End Depth: -0.36 m
HFM26	9139	Up	HFM26_02-01-06_10-15_9139A020.51_ 202.16_ORIG.log	Start Depth: 202.16 m. End Depth: -0.51 m
HFM26	9310	Up	HFM26_02-01-06_09-12_9310C2100.90_ 201.10_ORIG.log	Start Depth: 201.1 m. End Depth: -0.9 m
HFM26	Hirat	Up	HFM26_90pixels_up_run2.HED	Start Depth 210 m. End Depth: 0 m
HFM29	8144	Down	HFM29_01-31-06_19-27_8144C02_1.57_ 201.65_ORIG.log	Start Depth: 1.57 m. End Depth: 201.65 m
HFM29	8622	Up	HFM29_01-23-06_15-27_8622C100.20_ 199.80_ORIG.log	Start Depth: 199.8 m. End Depth: -0.2 m
HFM29	9042	Down	HFM29_01-23-06_14-00_9042C10_0.20_ 201.10_ORIG.log	Start Depth: 0.2 m. End Depth: 201.1 m
HFM29	9072	Up	HFM29_01-23-06_14-52_9072C10_0.30_ 200.00_ORIG.log	Start Depth: 200 m. End Depth: 0.3 m
HFM29	9139	Up	HFM29_01-31-06_18-37_9139A02_1.17_ 199.94_ORIG.log	Start Depth: 199.94 m. End Depth: 1.17 m
HFM29	9310	Up	HFM29_01-23-06_17-12_9310C210_0.60_ 199.00_ORIG.log	Start Depth: 199 m. End Depth: 0.6 m
HFM29	Hirat	Up	HFM29_HiRAT_90pixels_Up_run2.HED	Start Depth: 199 m. End Depth: 0 m
HFM32	8622	Up	HFM32_01-23-06_10-17_8622C10_0.30_ 201.90_ORIG.log	Start Depth: 201.9 m. End Depth: 0.3 m
HFM32	9042	Down	HFM32_01-23-06_08-44_9042C10_0.20_ 203.50_ORIG.log	Start Depth: 0.2 m. End Depth: 203.5 m
HFM32	9072	Up	HFM32_01-23-06_09-37_9072C10_0.30_ 202.50_ORIG.log	Start Depth: 202.5 m. End Depth: 0.3 m
HFM32	9139	Up	HFM32_01-23-06_10-58_9139C10_0.20_ 202.60_ORIG.log	Start Depth: 202.6 m. End Depth: 0.2 m
HFM32	9310	Up	HFM32_01-23-06_12-48_9310C210_3.30_ 201.60_ORIG.log	Start Depth: 201.6 m. End Depth: 3.3 m
HFM32	HIRAT	Up	HFM32_90pixels_Up_run2.HED	Start Depth: 201 m. End Depth: 0 m
HFM07	8144	Down	HFM07_02-01-06_13-48_8144C02_0.28_ 122.48_ORIG.log	Start Depth: 0.28 m. End Depth: 122.48 m

Borehole	Probe	Log direction	WellCAD File	Description
HFM07	8622	Up	HFM07_02-01-06_16-31_8622C020.47_ 121.55_ORIG.log	Start Depth: 121.55 m. End Depth: -0.47 m
HFM07	9042	Down	HFM07_02-01-06_13-20_9042C02_0.20_ 122.14_ORIG.log	Start Depth: 0.2 m. End Depth: 122.14 m
HFM07	9072	Up	HFM07_02-01-06_15-42_9072C020.17_ 121.67_ORIG.log	Start Depth: 121.67 m. End Depth: -0.17 m
HFM07	9139	Up	HFM07_02-01-06_15-07_9139A020.27_ 121.33_ORIG.log	Start Depth: 121.33 m. End Depth: -0.27 m
HFM07	9310	Down	HFM07_02-01-06_14-25_9310C2100.30_ 121.20_ORIG.log	Start Depth: -0.3 m. End Depth: 121.2 m
HFM07	Hirat	Up	HFM07_90pixels_up_run1.HED	Start Depth: 121 m. End Depth: 0 m

Table 6-2. Drawing files in WellCad format.

Borehole	Drawing	WellCad file
KFM01C	1.1	KFM09A_Presentation.WCL
KFM09B	2.1	KFM07B_Presentation.WCL
HFM24	3.1	HFM24_Presentation.WCL
HFM26	4.1	HFM26_Presentation.WCL
HFM29	5.1	HFM29_Presentation.WCL
HFM32	6.1	HFM32_Presentation.WCL
HFM07	7.1	HFM07_Presentation.WCL

Table 6-3. Data files in SICADA format.

Sheet	Comment
"Borehole"_CALIPER1_GP040 – Caliper logging.xls	
"Borehole"_CALIPER MEAN_GP041 – 3-D caliper.xls	
"Borehole"_TEMP(FL)_RES(FL)_GP060 – Fluid temperature and resistivity logging.xls	
"Borehole"_DENSITY_GP090 – Density logging.xls	
"Borehole"_MAGSUSCEP_GP110 – Magnetic susceptibility logging.xls	
"Borehole"_GAM(NAT)_GP120 – Natural gamma logging.xls	
"Borehole"_SPR_GP150 – Single point resistance logging.xls	
"Borehole"_RES(64N)_GP160 – Resistivity, normal 1.6 m (64 in).xls	Except HFM32
"Borehole"_RES(MG)_GP161 – Resistivity, focused 140 cm.xls	
"Borehole"_RES(DG)_GP162 – Resistivity, focused 300 cm.xls	
"Borehole"_LATERAL_GP163 – Resistivity, lateral 1.6 –0.1 m.xls	Except HFM32
"Borehole"_RES(16N)_GP164 – Resistivity, normal 0.4 m (16 in).xls	Except HFM32
"Borehole"_P-VEL_GP175 – Fullwave sonic.xls	
"Borehole"_GP830 – Acoustic televiewer.xls	

Borehole KFM01C, drawing no. 1.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6699526.071m Easting: 1631403.838m Elevation: 2.927m, RHB70

Diameter:	75.8mm
Reaming Diameter:	
Outer Casing:	147mm
Inner Casing:	70mm
Borehole Length:	450.00m
Cone:	
Inclination at ground surface	e: -50°
Azimuth:	165.03° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Date 2006-02-21 Rev. Drawn by Control Approved RAMBOLL 0 JRI UTN UTN Rambøll. Bredevej 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00 **Scale** 1:500 **Job** 547310A SKB geophysical borehole logging Borehole KFM01C Filename: KFM01C_Presentation.wcl Presentation Drawing no .:

1.1

		1																							
	CALIPER MEAN	1															RES(16N))		LATERAL	TE	MP(FL)		
	70 mm 140	1														10	ohm-m	10000	100	ohm-m 100000	5 c	leg C	10		
	CALIPER1		GAM(NAT)	MA	AGSUSCE	P	DEI	NSITY	(P-VEL					RES(64N))		RES(DG)	R	ES(FL)		DIF	,
	70 mm 140	0	µR/h	150	0	SI*10-5 20	200 2	.400 kg	g/m³	3200	5000	m/s	9000	1		10	ohm-m	10000	100	ohm-m 100000	0 o	hm-m	12	-50 deg	J -45
Depth	CALIPER 3D	_		Trave	l Time	e				Ampl	itude				AMP(N)		SPR		1	RES(SG)		SP		AZIMUT	H MN
1m:500m	0°	0°	90°	18	0°	270°	0° 0	°	90°	18	0°	270°	0°	100	1000	10	ohm	10000	100	ohm-m 100000	-200	mV 4	100	160 dec	1 175

Borehole KFM09B, drawing no. 2.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6700119.89m Easting: 1630638.78m

Elevation: 4.30m, RHB70

i tortaningi or oo ricoloonii	Ecourig.	
Diameter:	77.3	3mm
Reaming Diameter:	139	.8mm
Outer Casing:	90n	nm
Inner Casing:	77.3	3mm
Borehole Length:	616	6,45m
Cone:		
Inclination at ground surfac	e: -55	.08°
Azimuth:	140	.83° GN
Comments:		

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Rev. Date 0 2006-02-14		Drawn by JRI	Drawn by Control Approved JRI UTN UTN		RAMBOLL
Job 547310A		Scale 1:500			Rambøll. Bredevej 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
SKE	3 geophys				
DUIE		190			Filename:
Presentation					KFM09B_Presentation.wcl
11030	mation				Drawing no.:

2.1

Depth	CALIPER 3D	Travel Time				Amplitude			1	AMP(N)	N) SPR			RES(SG)			SP	AZ	AZIMUTH MN					
1m:500m	0° CALIPER1	0°	90° GAM(NAT)	180°	270 MAGSL	° 0° ISCEP	0°	90° DENSITY	, 18 ,	0°	270° P-VEL	0°	100	50	0 10	ohm RES(64	10000 4N)	100	ohm-m 100000 RES(DG)	0 0	mV 600 RES(FL)	130) deg DIP	150 ,
	70 mm 110 CALIPER MEA) () N	µR/h	200 0	SI*1	0-5 6000	2500	kg/m³ (3300	4000	m/s	8000	l		10	ohm-i RES(16	m 10000 6N)	100	ohm-m 100000 LATERAL	0 Т	ohm-m 20 EMP(FL)	-60	deg	ı -40
	70 mm 110	1													10	ohm-ı	m 10000	100	ohm-m 100000	5	deg C 13	1		
						-	1	-			-													
- 10		\leq						2	2		2		1) /)					_		_
		\rightarrow						}	¥.	-		>	-									-		_
- 15 -		}	2		-	-		1			-2		140	· (Is i	Č.		555					+		
		$\left \right\rangle$	-		-			>					-		2		F.S				+	+		
- 20 -		{				100		2			-2		14	1944.24	2								1	
		{		2		-		3			2		tti											
- 25		{				-		5				>		I II.										
		5	-					5-	-		S.		11	Hinn			RE S							
- 30 -		5		•		-		-5		-	3		144				RP A							
25		}		>		-		2				2					R X							
_ 35		ξ						A A	-			2												
40		ł	-	2	-	-		-{	-		5													
		3	-	ξ	-	-		2			2			A Press										
- 45		5	-62	2	>	3.0	_	2>			<		10	1000										
		5		٤		1	_	3			5	`	1.64	QQQ 22	4									
- 50		\$	-	\geq	-	1		2						A Cheve			S S							
			300	3	2	-		-}			1													
- 55 -		$\left\{ \right\}$	1			-		5			Z						<u>{</u> {							
		\geq		2		-		5			4	>												
- 60 -		{		5				-{															4	
		-}	-			-		4			Ę	>					<u>} } }</u>							
- 65 -		$\left\{ \right\}$	-			1		\geq		-	-	2	12.2	1.1			\mathbb{K}							
		}				-		1		12	5						IIK K KI		┉╺┽╡╤╴╢║					
- 70 -		}	-			100		2		-	3		-44	. Hite			<u> { } </u>							
		$\left \right\rangle$		3		-		K			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						IIK K KI							
- 75 -					2	-		A		-	2			di cun								\vdash	\mid	
- ·		E		N V			-	3 -			4	5	-		3							\vdash		
80				-	-	-	-	5	-			-												

	100 A					111111111111111111111111111111111111111			
		5			5	2000 Contract of \$12 24 10 10			
		1	5				1		
- 85 -		5			3				
				3		- ARAPANA			
- 90 -		>		2					
				5					
- 95 -			5						
			2		5 - 5				
- 100 -				2	}	1.2.2.10 (0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1			
		}	5		2				
- 105 -			3	- {	- 2	2000 Stores			
			3	~ >					
110		\leq	M		S S				
110		\geq	2		5				$ $ $ $ $ $ $ $ $ $ $ $
[]		1	See 1	5	2		M		
- 115 -			5	3	3	<i>and the</i>			
F 1		2	5	5	2	THE REAL PROPERTY OF			
- 120 -		2							
- 1		3		3	2				
- 125 -		3		2	3				
	1201-24	5		1					
- 130 -		2	2	- {	5	Shund			
		5	E		2 3	10000000000000000000000000000000000000			
- 135 -		2	3						
		5		- {	}				
- 140 -		\geq	3	- 5	- 7				
		5	~	5	3		 4		
- 145 -		\langle	>	- >	5				
		3		2	5				
150					2	HUU			
130		>			2	11.1511111			
		5					<u> </u>		
155 -		2	- MA	5					
F 1			E	- 2					
- 160 -		$\mathbf{\Sigma}$	8	1					
		5	~		}				
- 165 -		}	E	3	5				
		}	E		2	5511515		<u> </u>	
- 170 -									-
	CONTRACTOR OF TAXABLE PARTY.				and the second s				

		>	X					
- 355 -		2						
[]		>	7					
- 360 -		7	3					
[]								
- 365 -			Ę					
[₂₇₀]	1		2					
570			3				\square	
- 375 -			Ę					
			2					
- 380 -								
			3					
- 385 -		}	2					
			-2	2 4		<u>{</u>	┥╋╤╝║	
- 390 -			3	2 - 5		- }		
			3			<u> </u>		
- 395 -								
			5	3 3				
- 400 -								
			5					
- 405 -								
+ -		3	~					
- 410 -		5	2	5 2				
		}	•	5				
- 415 -		}	7	5				
		2	2		<u> </u>			
- 420 -								
425			2					
- 430 -			2					
435 -]					
		5						
440 -		2		3 4				
		}	2					
		{	3					

Borehole HFM24, drawing no. 3.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6698662.373m Easting: 1631719.641m Elevation: 3.683m, RHB70

•	0
Diameter:	138-140mm
Reaming Diameter:	
Outer Casing:	168.3mm
Inner Casing:	160mm
Borehole Length:	151.35m
Cone:	
Inclination at ground surface:	-59.56°
Azimuth:	47.29° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Rev. 0	Date 2006-02-15	Drawn by JRI	Control UTN	Approved UTN	RAMBOLL
Job 547310A	Job Scale 547310A 1:500				Rambell. Bredevej 2, DK-2830 V/rum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
SKE	2 goophysid				
DINL			noie	logging	
Bore	hole HFM2	1 1		logging	Filename:

3.1

Depth	CALIPER 3D		Т	rave	l Time					Amp	litude				AMP(N)			SPR			R	ES(SG)		SP		AZIN	ЛОТН	MN
1m:500m	0° CALIPER1	0°	90° GAM(NAT)	18	0° MAG	270° 3SUSC	0° CEP	0° [90° DENSI	18 TY	80° 2 P	70° -VEL	0°	100	500) 10	I	ohm RES(64	10000 N)) 100	o RE	hm-m ES(DG	100000)	-10	0 mV RES(FL	100 _)	40	deg DIP	50
	130 mm 180 CALIPER MEAN	0	µR/h	80	0 S	SI*10-5	5 400	2500	kg/m	3 3300	4000	m/s	8000	I		10	I	ohm-r RES(16	n 10000 iN)	100	o LA	hm-m	100000 L	0 Т	ohm-m EMP(F	120 L)	-66	deg	-56
	130 mm 180															10		ohm-r	n 10000	100	0	hm-m	100000	5	deg C	9			
- 15	- Allel B									÷.			31 																
- 20				,	-			5	5			A STATE																	
- 25			3	1			-	2	× ·									7	A		£						}		
- 30		-	-}-						2				,																
- 35			{						}			<	}													}			+
- 40	-				U.				~			3															$\left \right\rangle$		$\frac{1}{1}$
- 45			{												ALL ST										$\left \right\rangle$]	Ŗ		
- 50			3-				-	~	5			2																	
- 55		-	2	-	- All				< -						Allenz			2						P					
- 60	-		5					({			"					1				<pre>{</pre>								
- 65	-		5						Ţ			5			HIE														
- 70	-		5 -	1					<pre>S</pre>						Arrite State							╞ <mark>╞</mark> ╋╢ ╞╴╢╢							
- 75		~	5	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-			$\sum_{i=1}^{n}$			5		T.	1997		}												
- 80	-		}	•	-		-		}		<	2-7		-14								> > }							

Borehole HFM26, drawing no. 4.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6698008.929m Easting: 1633516.386m Elevation: 2.734m, RHB70

0	0
Diameter:	140mm
Reaming Diameter:	180mm
Outer Casing:	168.3mm
Inner Casing:	160mm
Borehole Length:	202.7m
Cone:	
Inclination at ground surface:	-53.75°
Azimuth:	112.42° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	Hirat	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Rev. Date 0 2006-02-15		Drawn by JRI	Control UTN	Approved UTN	RAMBOLL
Job 547310A		Scale 1:500			Rambøll. Bredevej 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
SKE Bore	geophysi hole HFM2	ical bore 8	hole	logging	Filename:
Prese	Presentation				HFM26_Presentation.wcl
					4.1

Depth	CALIPER 3D	Т	ravel Time			Ampli	itude		AMP(N)		SPR		RES(SG)	SP	AZ	IMUT	'H MN
1m:500m	0° CALIPER MEAN	0° 90° GAM(NAT)	180° 2 MAGS	70° 0° SUSCEP	0° 90° DENSIT	18('Y	0° 270°	0°	100 500	10	ohm 10000 RES(64N)	100	ohm-m 100000 RES(DG)	-150 mV 50 RES(FL)	11	5 de Dil	g 126 P
	130 mm 200 CALIPER1	0 μR/h	100 0 SI	10-5 1500	2500 kg/m3	3300				10	ohm-m 10000 RES(16N)	100	ohm-m 100000 LATERAL	0 ohm-m 20 TEMP(FL)	-52	2 de	g -41
	130 mm 200									10	ohm-m 10000	100	ohm-m 100000	5 deg C 8			
- 10 -					3	-											
- 15 -		7-			~				01.000								
- 20 -		>	2	-	- {												
- 25 -		->=			4										Ş		
- 30 -		5			3												
- 35 -			-														+++++
- 40 -		}			3				<u>and the second </u>								
- 45 -									- CONNECCE								
					}											K	
	-								<u> </u>		·····						
- 55 -		}	5	-													
- 60 -		2 -	- 5		2	>			<u>n</u>								
- 65 -				-	5												
- 70 -				-	- {												
- 75 -																	
- 80 -		\$			Z.	22			ilitit (

Borehole HFM29, drawing no. 5.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6698018.647m Easting: 1632502.813m Elevation: 4.467m, RHB70

0	0
Diameter:	138.1mm
Reaming Diameter:	
Outer Casing:	168.3mm
Inner Casing:	160mm
Borehole Length:	199.7m
Cone:	
Inclination at ground surface:	-58.57°
Azimuth:	29.95° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Drawn by JRI	Control UTN	Approved UTN	RAMBOLL
Scale 1:500			Ramball. Bredeve) 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
ysical bore M29	hole	logging	Filename:
	ysical bore	prawn by Control JRI UTN Scale 1:500 ysical borehole M29	Drawn by Control Approved JRI UTN UTN UTN Scale 1:500 Ysical borehole logging M29

Drawing no .: 5.1

Depth	CALIPER 3D	Т	ravel Time			Amplitude				AMP(N)		SPR		RES(SG)	SP	AZI	MUTH	I MN
1m:500m	0° CALIPER1	0° 90° GAM(NAT)	180°) MA	270° 0° AGSUSCEP	0° 90° DENSITY	180°	270° P-VEL	0°	100	50	0 10	ohm 10000 RES(64N)) 100	ohm-m 100000 RES(DG)	0 mV 100 RES(FL)	30	deg DIP	80
	130 mm 170 CALIPER MEAN) 0 µR/h N	100 0	SI*10-5 2000	2500 kg/m3	3200 4000	m/s	8000			10	ohm-m 10000 RES(16N)) 100	ohm-m 100000 LATERAL	0 ohm-m 20 TEMP(FL)	-80	deg	-55
	130 mm 170								-		10	ohm-m 10000	100	ohm-m 100000	5 deg C 9			
			1.78 2.54															-
- 10			5		3			5		1220					2			
			5	*	{			5	1.5									
- 15			7		5			5		1000								
20					5			E		ARE								
_ 20			Ç		2			5		1111	5							
- 25		2		-	2			5		11155	<u> </u>							
		5	2		3			Ş										
- 30			3		5			2										\perp
		}	3		1			5										_
- 35					- 5			ξ_	93	10000								4
		5	- 3-					3	100									+
- 40		{			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			3		- ULE		+++++ ++ +++++++++++++++++++++++++++++						+
		2			- ?			3			1							+
- 45		\geq	F		3			5		utt						+++		+
		3	3		3			5		MALL								+
- 50		5	5		2			5		11155	8							
			2		5			5							<u> </u>			\square
- 55		3	1		3			5										
60		-{	2	-	- {		2	5										
		2	\leq		5			3		1.199								
- 65			2	-	4			5		4455								
		{	3		- 2			5										
- 70		5	- C	_	3													
- ·		2	Ę		5			2				- <u> / - / /</u> -						_
- 75		}	- 3		3			2			¥,	<u> </u>						_
		\sum	-		5			5			A							_
- 80		$\langle -$				>		5	1.20									

0.5		1	
- 85 -			
		3	
90			
95		2	
F 4			
- 100 -			
F 1		\mathbf{S}	
- 105 -		- E	
		2	
- 110 -		\leq	
- 115 -			
120			
120			
- 125 -			
F 1	5		
- 130 -		\leq	
- 135 -			
- 140 -			
145			
			╎╢║┫╶┼╢╢╋╢╢╼╧╧┛ ╗╫╌╌┼ ┤╢╢║╢┤╶┼╲┼┼┞┼╴┨╴┼╴┨╿┼┼╶┼╌
- 150 -			╎╢╢╸┼╢╏║╴Ҭ╪╪╫═┽╎╢║╿╴╴Ҁ╷╴╴╸╴╴╴╴╴
Γ 1			
- 155 -			┼┼╢╢╸┼╏╢╢╗╴┼┼╢╢╗═╪╗╢╢╢╎╴┼╶┟╵┝╵╸┥╶┝╸┝╶┝
- 160 -			
+ -1			
105	4		
- 601		5 5	
}	1000		
170			
170			

Borehole HFM32, drawing no. 6.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6699015.036m Easting: 1632137.068m Elevation: 0.974m, RHB70

Diameter:	135-141mm
Reaming Diameter:	175mm
Outer Casing:	168.3mm
Inner Casing:	160.3mm
Borehole Length:	202.65m
Cone:	
Inclination at ground surface:	-86.06°
Azimuth:	116.15° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

Rev. 0	Date 2006-02-17	Drawn by JRI	Control UTN	Approved UTN	RAMBOLL
Job 547310A		Scale 1:500			Rambell. Bredevel 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
SKE Bore	3 geophys hole HFM3	ical bore 32	hole	logging	Filename:
Prese	ntation				

Depth	CALIPER 3D	Trav	/el Time		Amplitude	9		AMP(N)		RES(SG)		RES(FL	_)	AZII	MUTH	H MN
1m:500m	0° CALIPER1	0° 90° f GAM(NAT)	180° 270° 0° MAGSUSCEP	0° 90° DENSIT	180° Ƴ	270° 0 P-VEL	° 100	500	50	ohm-m 500 RES(DG)	0 000	ohm-m TEMP(F	ι 1.5 ⁻ L)	120	deg DIP	180
	130 mm 180 CALIPER MEAN	0 μR/h 100	0 0 SI*10-5 2000	2500 kg/m3	3300 400	10 m/s 8001	0		50	ohm-m 500	000 7	.5 deg C	10	-90	deg	-72
	130 mm 180															
- 5 -					_						++++		+	\vdash	++-	++-
					5	North Strength	NAME OF						+	\vdash	++-	++-
- 10 -		F		5	2								\mathbf{n}			+
		-}		2				MOCHEN			++++		$\left + \right \right $	\mathbb{H}	++-	++-
- 15 -				5	-						+++		+++	r#++	++-	++-
					>								+	rtt		++-
- 20 -		3		5			1	(CANTER)	1				+	r#t	++-	++-
		- }	3	1		>			¥ I				+	dt.	++-	++-
- 25 -		5	1	E		<		Contraction of the local division of the loc	}					r H	++-	++-
				2		2			2		+++		+		++-	++-
- 30 -		{		8	20.2			HHHE	l l		+++		+++	r 🕇		++-
			3				1	111111	t t	╶╴╴				r H		++-
- 35 -		2	2	5			- 155	加热线	2					T \		++-
		2		3			11		1				\square			++-
- 40 -		{	2	F						LUΠ Σ						++-
			3	}				1 3355								++-
- 45 -				~				aguez							\parallel	++-
		(}_												++-
- 50 -		2-	5	5		7		aan			•					
		(-	2	3		5									tt	
- 55 -			3					THE OWNER AND A						1		
		{	3	1		2								i		
- 60 -		1	-	5		3		THE REAL PROPERTY OF								
		2		3			11	and the state of t								
- 65 -				3		1		MULTI		3						
70		1	3	~ ~		5	11	THE STATE								
- /0 -			2	<		1		9002								
75		~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>	1		ALC: NO DE CONTROL O								
- /5 -		{	3			5	11									

Borehole HFM07, drawing no. 7.1, borehole logs

Co-ordinates in RT90 2,5 gon V 0:-15

Northing: 6697416.25m Easting: 1634715.69m

Elevation: 5.78m, RHB70

Northing: 0007 110.2011	Easting. Too II It
Diameter:	140mm
Reaming Diameter:	
Outer Casing:	168mm
Inner Casing:	160mm
Borehole Length:	122.55m
Cone:	
Inclination at ground sur	face: -84.52°
Azimuth:	342.32° GN
Comments:	

Borehole logging programme

Name	Description	Tool	Unit
CALIPER1	Caliper, 1-arm	9030/9139	mm
DENSITY	Gamma-gamma density	9030/9139	kg/m³
RES(MG)	Focused guard log resistivity, 140cm	9030	ohm-m
GAM(NAT)	Natural gamma	9072	µR/h
TEMP(FL)	Fluid temperature	9042	deg C
RES(FL)	Fluid resistivity	9042	ohm-m
RES(DG)	Focused guard log resistivity, 300cm	9072	ohm-m
P-VEL	P-wave velocity	9310	m/s
AMP(N)	Full wave form, near receiver	9310	μs
AMP(F)	Full wave form, far receiver	9310	μs
MAGSUSCEP	Magnetic susceptibility	8622	SI*10-5
CALIPER 3D	Caliper, high resolution 360 degrees	HIRAT	mm
CALIPER MEAN	High resolution 1D caliper	HIRAT	mm
AZIMUTH MN	Borehole azimuth magnetic north	HIRAT	deg
DIP	Borehole inclination from horizontal	HIRAT	deg
TRAVEL TIME	360 degrees orientated acoustic travel time	HIRAT	100 ns
AMPLITUDE	360 degrees orientated acoustic amplitude	HIRAT	-
THORIUM	Spectral gamma, Thorium component	9080	PPM
URANIUM	Spectral gamma, Uranium component	9080	PPM
POTASSIUM	Spectral gamma, Potassium component	9080	percent
RES(16N)	Normal resistivity 16 inch	8144	ohm-m
RES(64N)	Normal resistivity 64 inch	8144	ohm-m
LATERAL	Lateral resistivity	8144	ohm-m
SPR	Single point resistivity	8144	ohm
SP	Self Potential	8144	mV
RES(SG)	Focused guard log resistivity, 128 cm	9139	ohm-m

0	Date 2006-02-15	Drawn by JRI	Control UTN	Approved UTN	RAMBOLL
Job 547310A		Scale 1:500			Rambell. Bredevej 2, DK-2830 Virum Phone + 45 45 98 60 00, Fax + 45 45 98 67 00
	acabya			le color o	
Bore	hole HFM0	ical bore	noie	logging	Filename:
Bore	hole HFM0	Ical bore	noie	logging	Filename: HFM07_Presentation.wcl

Depth	CALIPER 3D	T		Amp	AMP(N		RES(16N)				LATERAL				RES(FL)			AZIMUTH MN							
1m:500m	0° CALIPER1	0° 90° GAM(NAT)	180° 2 MAG	70° 0° SUSCEP	0° DEI	90° 18 NSITY	80° 2 P-	70° 0° ·VEL	100	500	10	F	ohm-r RES(64	n 10000 ·N)	100	ohn RES	n-m 1 (DG)	10000	04	ohi S	m-m 6 SP	.5 10	10 de D	eg 3 IP	350
	130 mm 180 CALIPER MEAN	0 μR/h I	40 0 S	*10-5 1000	2500 kg	g/m3 3200	4000 r	m/s 8000	I		10		ohm-r SPR	n 10000	100	ohn RES	n-m 1 (SG)	10000	0 -1	00 n TEM	nV 40 IP(FL)	10 -91	0 de	eg -	-65
	130 mm 180								1		10		ohm	10000	100	ohn	n-m 1	10000	0 6	de	gC8	.5			
																						_			_
- 10 ·						100 88																+		_	\vdash
- 15 -																						_		_	\square
- 20 -		2	5		{			\$								R						—	\square	_	F
- 25 -			M		S.	3		m		ili												+	$\left \right $	+	
- 30 -		- {-	2			}		<u>{</u>								R						+	F	+	#
- 35			3			2		}								<u>}</u>						+	Ħ	-	#
- 40		- 3	2		{			5										2				_		_	
- 45		- S			1			3														\pm			
- 50		5	2			\$	2	2		H												+			
		2	- Z	-				5		H												+	\vdash	_	$\left \right\rangle$
- 55 -		- C			3							\int_{Δ}						-5				1			
- 60				-				3								K							-		
- 65 -		3			1		2	3		44												-	$\left \right $	+	\vdash
- 70		->	M	-	3			5	-	H								$\overline{\mathbf{x}}$				=		+	F
- 75			5					N																_	+
-		5			3			5	120									\leq		$\left \right $		+	\vdash	—	+

