P-05-273

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX07A, 2005

Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

December 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-05-273

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX07A, 2005

Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

December 2005

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

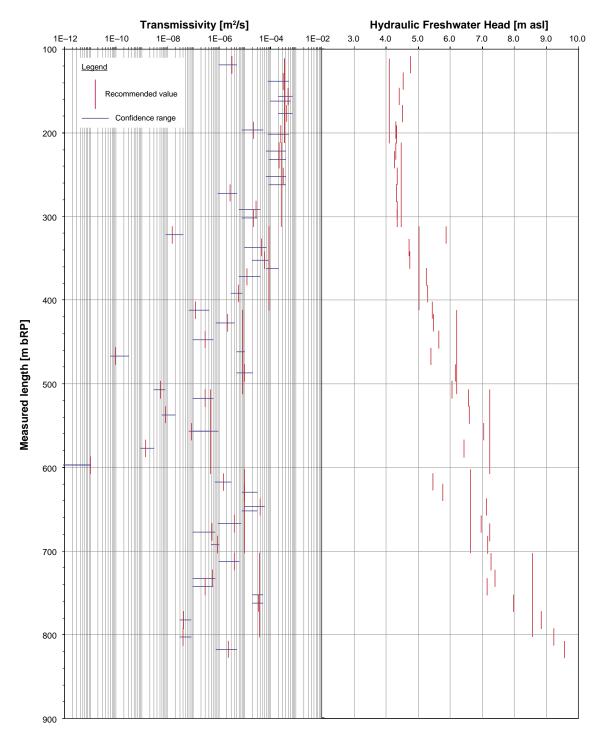
This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KLX07A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX07A performed between 20th of August and 1th of September 2005.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m and 20 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 108.50–827.56 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX07A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX07A. Testerna utfördes mellan den 20 augusti till den 1 september 2005.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m och 20 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 108,50–827,56 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (freshwater head).

Borehole KLX07A – Summary of results.

Contents

1	Introduction	7
2	Objective	9
3 3.1 3.2 3.3	Scope of work Borehole Injection tests Control of equipment	11 11 13 15
4 4.1 4.2 4.3	Equipment Description of equipment Sensors Data acquisition system	17 17 21 21
5 5.1 5.2 5.3	Execution Preparations Length correction Execution of tests/measurements 5.3.1 Test principle 5.3.2 Test procedure	23 23 23 23 23 23 24
5.4 5.5	 Data handling Analyses and interpretation 5.5.1 Analysis software 5.5.2 Analysis approach 5.5.3 Analysis methodology 5.5.4 Flow models used for analysis 5.5.5 Calculation of the static formation pressure and equivalent freshwater head 	25 25 25 26 26 26 26 27
	5.5.6 Derivation of the recommended transmissivity and the confidence range	27
6 6.1	Results 100 m single-hole injection tests 6.1.1 Section 111.80–211.80 m, test no 1, injection 6.1.2 Section 211.92–311.92 m, test no 1, injection 6.1.3 Section 312.00–412.00 m, test no 1, injection 6.1.4 Section 412.07–512.07 m, test no 1, injection 6.1.5 Section 507.16–607.16 m, test no 1, injection 6.1.6 Section 602.32–702.32 m, test no 1, injection	29 29 29 30 30 31 32 32
6.2	 6.1.7 Section 702.45–802.45 m, test no 1, injection 20 m single-hole injection tests 6.2.1 Section 108.50–128.50 m, test no 1, injection 6.2.2 Section 128.50–148.50 m, test no 1, injection 6.2.3 Section 146.50–166.50 m, test no 1, injection 6.2.4 Section 166.84–186.84 m, test no 1, injection 6.2.5 Section 186.88–206.88 m, test no 1, injection 6.2.6 Section 191.89–211.89 m, test no 1, injection 6.2.7 Section 211.92–231.92 m, test no 1, injection 6.2.8 Section 221.93–241.93 m, test no 1, injection 6.2.9 Section 241.93–261.93 m, test no 1, injection 	33 34 34 35 36 36 37 38 38 39 40

	6.2.10 Section 261.95–281.95 m, test no 1, injection	41
	6.2.11 Section 281.98–301.98 m, test no 1, injection	41
	6.2.12 Section 291.99–311.99 m, test no 1, injection	42 43
	6.2.13 Section 312.00–332.00 m, test no 2, injection 6.2.14 Section 326.99–346.99 m, test no 1, injection	43 43
	6.2.15 Section 341.99–361.99 m, test no 1, injection	44
	6.2.16 Section 362.07–382.07 m, test no 1, injection	45
	6.2.17 Section 382.08–402.08 m, test no 1, injection	46
	6.2.18 Section 402.06–422.06 m, test no 1, injection	46
	6.2.19 Section 417.07–437.07 m, test no 1, injection	47
	6.2.20 Section 437.08–457.08 m, test no 1, injection	48
	6.2.21 Section 457.08–477.08 m, test no 1, injection	49
	6.2.22 Section 477.12–497.12 m, test no 1, injection 6.2.23 Section 497.14–517.14 m, test no 1, injection	49 50
	6.2.24 Section 507.16–527.16 m, test no 1, injection	51
	6.2.25 Section 527.20–547.20 m, test no 1, injection	51
	6.2.26 Section 547.23–567.23 m, test no 1, injection	52
	6.2.27 Section 567.26–587.26 m, test no 1, injection	53
	6.2.28 Section 587.30–607.30 m, test no 1, injection	53
	6.2.29 Section 607.32–627.32 m, test no 1, injection	54
	6.2.30 Section 620.00–640.00 m, test no 1, injection 6.2.31 Section 637.36–657.36 m, test no 1, injection	55 55
	6.2.32 Section 657.41–677.41 m, test no 1, injection	55 56
	6.2.33 Section 667.42–687.42 m, test no 1, injection	57
	6.2.34 Section 682.43–702.43 m, test no 1, injection	58
	6.2.35 Section 702.45–727.45 m, test no 1, injection	58
	6.2.36 Section 722.46–742.46 m, test no 1, injection	59
	6.2.37 Section 732.48–752.48 m, test no 1, injection	60
	6.2.38 Section 752.51–772.51 m, test no 1, injection	60
	6.2.39 Section 772.53–792.53 m, test no 1, injection 6.2.40 Section 792.55–812.55 m, test no 1, injection	61 62
	6.2.40 Section 792.55–812.55 m, test no 1, injection 6.2.41 Section 807.56–827.56 m, test no 1, injection	63
-		
7 7.1	Synthesis Summary of results	65 66
7.1	Correlation analysis	73
1.2	7.2.1 Comparison of steady state and transient analysis results	73
	7.2.2 Comparison between the matched and theoretical wellbore	
	storage coefficient	74
8	Conclusions	75
8.1	Transmissivity	75
8.2	Equivalent freshwater head	75
8.3	Flow regimes encountered	75
9	References	77
Арр	endix 1 File description table (attached only on CD)	
	endix 2 Test analyses diagrams (attached only on CD)	
	endix 3 Test summary sheets (attached only on CD)	
	endix 4 Nomenclature (attached only on CD)	
	endix 5 SICADA data tables (attached only on CD)	
•• h h	entra e steriori data mores (attuened only on eD)	

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001a/, as well as a site-specific program for the investigations in the Oskarshamn area /SKB 2001b/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out in borehole KLX07A during 20th of August and 1th of September 2005 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-05-045 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX07A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX07A is situated in the Laxemar area approximately 2 km north-west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from November 2004 to May 2005 at 844.73 m length with an inner diameter of 76 mm and an inclination of –60.04°. The upper 11.80 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208 mm–323 mm.

The work was carried out in accordance with activity plan AP PS 400-05-045. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Activity plan	Number	Version
Test pumping and hydraulic injection tests in borehole KLX03.	AP PS 400-05-045	1.0
Method descriptions	Number	Version
Analysis of injection and single-hole pumping tests.	SKB MD 320.004e	1.0
Hydraulic injection tests.	SKB MD 323.001	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning.	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar i kärnborrhål.	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn.	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar.	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar.	SKB SDP-508	1.0

Table 1-1. Controlling documents for the performance of the activity.

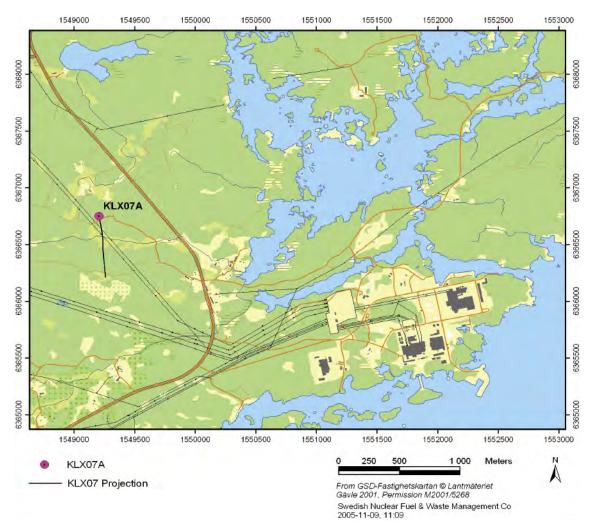


Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX07A.

2 Objective

The objective of the hydrotests in borehole KLX07A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m and 20 m sections. Transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

A further subactivity of pumping for interference tests is planned according to the activity plan AP PS 400-05-045. A separate report for this activity will be done.

3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m and 20 m test sections, analyses and reporting.

Preparation for testing was done according to the consultants Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 20th August and 1th September 2005.

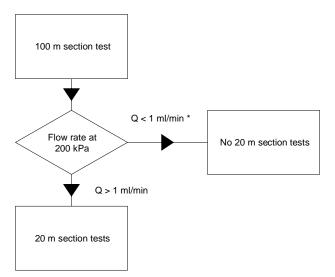
No of injection tests	Interval	Positions	Time/test	Total test time
7	100 m	111.80–802.45 m	125 min	14.6 hrs
41	20 m	108.50–827.56 m	90 min	61.5 hrs
Total				76.1 hrs

Table 3-1. Performed injection tests at borehole KLX07A.

3.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

Title	Value				
Old idcode name(s)	KLX07				
Comment	No commen	t exists			
Borehole length (m)	844.73				
Reference level	TOC				
Drilling period(s)	From date	To date	Secup (m)	Seclow (m)	Drilling type
	2004-11-23	2004-12-07	0.000	100.460	Percussion drilling
	2005-01-06	2005-05-04	100.460	844.730	Core drilling
Starting point coordinate	Lenath (m)	Northing (m)	Easting (m)	Elevation (masl)	Coord system
(centerpoint of TOC)	0.000	6366752.094	1549206.855	18.470	RT90-RHB70 Measured
Angles	Length (m)	Bearing	Inclination (- =	down)	
	0.000	174.179	-60.038		RT90-RHB70 Measured
Borehole diameter	Secup (m)	Seclow (m)	Hole diam (m)		
	0.000	8.900	0.343		
	8.900	11.800	0.252		
	11.800	100.300	0.198		
	100.300	100.400	0.165		
	100.400	100.460	0.165		
	100.460	101.980	0.086		
	101.980	844.730	0.076		
Core diameter	Secup (m)	Seclow (m)	Core diam (m)		
	100.460	204.670	0.050		
	204.670	210.020	0.045		
	210.020	212.060	0.050		
	212.060	217.650	0.045		
	217.650	226.850	0.050		
	226.850	232.450	0.045		
	232.450	238.570	0.050		
	238.570	241.090	0.045		
	241.090	407.060	0.050		
	407.060	413.150	0.045		
	413.150	416.050	0.050		
	416.050	426.850	0.045		
	426.850	431.060	0.050		
	431.060	432.550	0.045		
	432.550	447.700	0.050		
	447.700	468.370	0.045		
	468.370	486.040	0.050		
	469.040	552.630	0.045		
	552.630	844.730	0.050		
Casing diameter	Secup (m)	Seclow (m)	Case in (m)	Case out (m)	
	0.000	11.800	0.200	0.208	
	0.000	8.900	0.310	0.323	


Table 3-2. Information about KLX07A (from SICADA 2005-11-07 15:39:46).

Grove milling	Length (m)	Trace detectable
	110.000	YES
	150.000	YES
	200.000	YES
	250.000	YES
	300.000	YES
	349.000	YES
	400.000	YES
	450.000	YES
	500.000	YES
	550.000	YES
	600.000	YES
	650.000	YES
	700.000	YES
	750.000	YES
	800.000	YES

3.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-05-045 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 111.80–802.45 m below ToC and in 20 m test sections between 108.50–827.56 m below ToC (see Table 3-3). The initial criteria for performing injection tests in 20 m test sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m tests covering the smaller 20 m sections (see Figure 3-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX07A were conducted.

* eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Table 3-3.	Tests	performed.
------------	-------	------------

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, time	Test stop Date, time
KLX07A	111.80–211.80	3	1	050820 16:35	050820 18:59
KLX07A	211.92–311.92	3	1	050821 15:28	050821 17:22
KLX07A	312.00-412.00	3	1	050821 18:57	050821 20:52
KLX07A	412.07–512.07	3	1	050822 09:58	050822 11:58
KLX07A	507.16-607.16	3	1	050822 13:45	050822 15:37
KLX07A	602.32–702.32	3	1	050822 17:07	050822 20:46
KLX07A	702.45-802.45	3	1	050823 09:33	050822 11:31
KLX07A	108.50–128.50	3	1	050824 16:10	050824 17:37
KLX07A	128.50–148.50	3	1	050824 18:21	050824 20:21
KLX07A	146.50–166.50	3	1	050825 08:15	050825 10:27
KLX07A	166.84–186.84	3	1	050825 11:10	050825 12:33
KLX07A	186.88–206.88	3	1	050825 13:32	050825 14:48
KLX07A	191.89–211.89	3	1	050825 15:22	050825 16:56
KLX07A	211.92–231.92	3	1	050825 17:38	050825 19:06
KLX07A	221.93–241.93	3	1	050826 08:21	050826 09:49
KLX07A	241.93–261.93	3	1	050826 10:33	050826 12:15
KLX07A	261.95–281.95	3	1	050826 13:17	050826 14:46
KLX07A	281.98–301.98	3	1	050826 15:36	050826 16:54
KLX07A	291.99–311.99	3	1	050826 17:29	050826 20:01
KLX07A	312.00–332.00	3	2	050827 11:12	050827 13:17
KLX07A	326.99–346.99	3	1	050827 14:01	050827 15:30
KLX07A	341.99–361.99	3	1	050827 16:09	050827 17:49
KLX07A	362.07-382.07	3	1	050827 18:31	050827 20:04
KLX07A	382.08-402.08	3	1	050828 08:24	050828 11:08
KLX07A	402.06-422.06	3	1	050828 10:31	050828 11:57
KLX07A	417.07-437.07	3	1	050828 13:21	050828 14:43
KLX07A	437.08-457.08	3	1	050828 15:25	050828 16:32
KLX07A	457.08-477.08	3	1	050828 17:32	050829 00:57
KLX07A	477.12-497.12	3	1	050829 08:35	050829 10:03
KLX07A	497.14–517.14	3	1	050829 10:40	050829 12:56
KLX07A	507.16-527.16	3	1	050829 14:23	050829 15:53
KLX07A	527.20-547.20	3	1	050829 16:35	050829 18:09
KLX07A	547.23-567.23	3	1	050829 18:49	050829 20:18
KLX07A	567.26-587.26	3	1	050830 09:08	050830 10:50
KLX07A	587.30-607.30	3	1	050830 11:38	050830 12:37
KLX07A	607.32-627.32	3	1	050830 14:27	050830 15:54
KLX07A	620.00–640.00	3	1	050830 16:32	050830 17:56
KLX07A	637.36–657.36	3	1	050830 18:37	050830 20:53
KLX07A	657.41–677.41	3	1	050831 09:19	050831 10:51
KLX07A	667.42-687.42	3	1	050831 14:40	050831 16:00
KLX07A	682.43-702.43	3	1	050831 16:52	050831 18:20
KLX07A	702.45-722.45	3	1	050831 19:04	050831 20:24
KLX07A	722.46-742.46	3	1	050901 08:07	050901 09:29
KLX07A	732.48-752.48	3	1	050901 10:12	050901 11:37
	102.40	5	1	000001 10.12	00000111.07

Bh ID	Test section (m bToC)	Test type¹	Test no	Test start Date, time	Test stop Date, time
KLX07A	752.51–772.51	3	1	050901 12:30	050901 14:04
KLX07A	772.53–792.53	3	1	050901 15:01	050901 16:33
KLX07A	792.55–812.55	3	1	050901 17:21	050901 18:43
KLX07A	807.56-827.56	3	1	050901 19:41	050901 22:40

3: Injection test

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts. Additionally, a high-resolution memory gauge (SPARTEK) was used to provide a better data-quality. This memory gauge was placed on the same position as the (PSS's) own pressure transducer to produce comparable data sets.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.

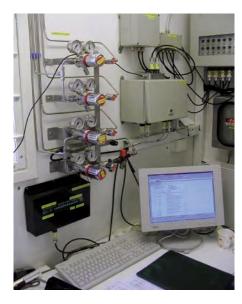

Figure 4-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-inhole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (±1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below and,
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa 50 L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (±1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 4-2.

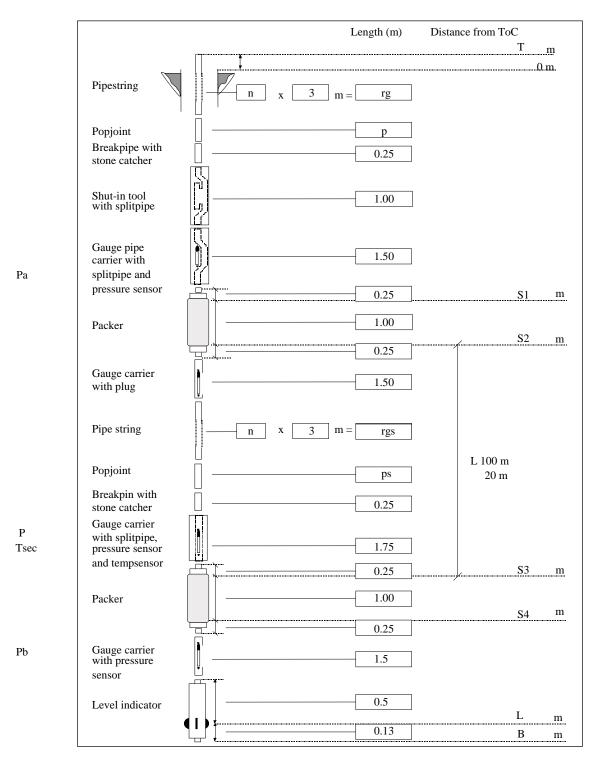


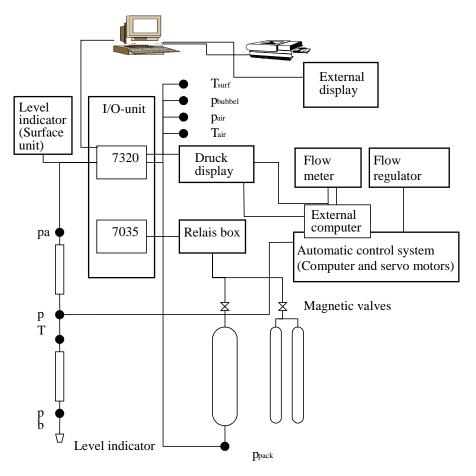
Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Value/Range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162-1464abs	9–30 4–20 0–13.5 ±0.1	VDC mA MPa % of FS	
P _{sec}	Pressure	Spartek SS2500 #3890	0–2.1 1,000,000 ±0.022	MPa Sample Points % of FS	High-resolution memory gauge
T _{sec,surf,air}	Temperature	BGI	18–24 4–20 0–32 ±0.1	VDC mA ℃ ℃	
Q _{big}	Flow	Micro motion Elite sensor	0–100 ±0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 ±0.1	kg/min %	Massflow
Pair	Pressure	Druck PTX 630	9–30 4–20 0–120 ±0.1	VDC mA KPa % of FS	
P _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 ±0.1	VDC mA MPa % of FS	
P _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5 ±0.15	VDC mA MPa % of FS	
L	Level Indicator				Length correctio

Table 4-1. Technical specifications of sensors.

Table 4-2. Sensor positions and wellbore storage (WBS) controlling factors.


Borehole information			Sensors		Equipment affecting WBS coefficient		
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KLX07A	111.80–211.80	1	pa	109.91	Test	Signal cable	9.1
			р Т	211.17 211.00	section	Pump string	33
			p₀ L	213.81 215.05		Packer line	6
KLX07A	108.50–128.50	1	\mathbf{p}_{a}	106.61	Test	Signal cable	9.1
		p 127.87 T 127.70	127.87 127.70	section	Pump string	33	
			p₀ L	130.51 131.75		Packer line	6

4.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the

stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

5 Execution

5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Clean tanks with chloride dioxide. Filling injection tank with water out of the borehole HLX10.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

5.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of this groves are given by SKB in the activity plan (see Table 3-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the testsections to avoid wrong placements and minimize elongation effects of the test string.

5.3 Execution of tests/measurements

5.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

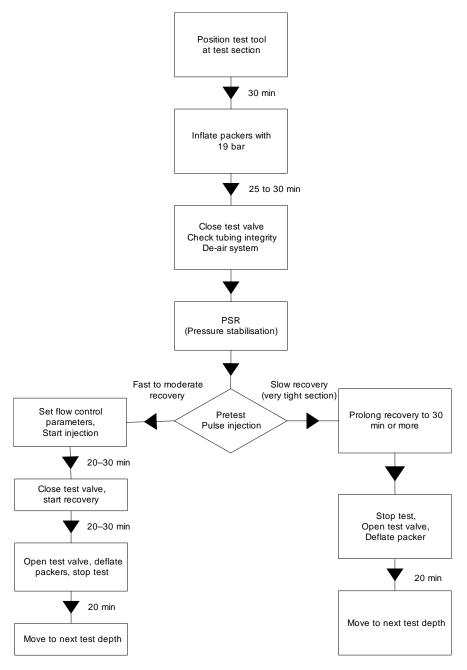


Figure 5-1. Flow chart for test performance.

5.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation. The injection tests in KLX07A has been carried out by applying a constant injection pressure of approx 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually. In those cases, the constant difference pressure was usually unequal

to 200 kPa. In other cases, where the pressure recovery of the pulse injection test took very long, the recovery was extended and the pulse test was taken for the analysis. No injection test was performed in those sections.

The duration for each phase is presented in Table 5-1.

Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX07A.

Position test tool to new test section (correct position using the borehole markers)	Approx 30 min
 Inflate packers with approx 1,900 kPa 	25 min
Close test valve	10 min
 Check tubing integrity with approx 800 kPa 	5 min
De-air system	2 min
Pretest, pulse injection	2–30 min
 Set automatic flow control parameters or setting for manual test 	5 min
Start injection	20 to 45 min
Close test valve, start recovery	20 min or more
Open test valve	10 min
Deflate packers	25 min
Move to next test depth	

5.4 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent test analysis.

After run out the tool (e.g. for rebuild to another section length), the data sample by the memory-gauge (SPARTEK) was read out and converted into a ASCII file. For every test section a single *.xls file was produced and used for the analysis of recovery phase (CHir). The synthesised *.xls files were delivered to SKB after the field campaign.

5.5 Analyses and interpretation

5.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

5.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

5.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Injection Tests.
 - Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
 - Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
 - Non-linear regression in semi-log coordinates /superposition HORNER plot; Horner 1951/. In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

• Pre-test for the Injection Tests.

A test cycle always started with a pulse injection test whose goal it was to derive a first estimation of the formation transmissivity. If the pressure recovery of this brief injection was very slow, it indicated a very tight section. It is then decided to extend the recovery time and measure the pressure recovery (PI). During the brief injection phase a small volume is injected (derived from the flowmeter measurements and/or replacement in injection vessel). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated.

No very tight sections were identified in the Borehole KLX07A and after a relatively short pulse recovery time (from 5 min up to 30 min) an injection test was conducted even if a small flow was expected.

5.5.4 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was

commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

5.5.5 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in metres above sea level) was calculated from the extrapolated static formation pressure (p^*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-2 shows the methodology schematically.

The freshwater head in metres above sea level is calculated as following:

$$head = \frac{(p^* - p_{atm})}{\rho \cdot g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \cdot g}$$

5.5.6 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

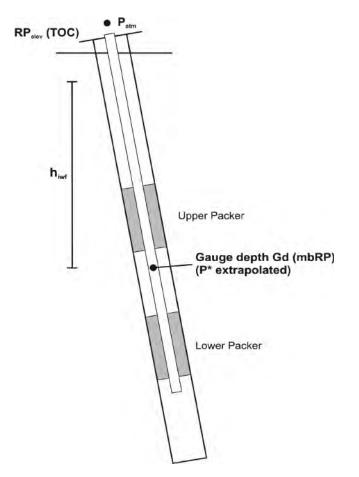


Figure 5-2. Schematic methodologies for calculation of the freshwater head.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmassivity with distance from the borehole (composite model) was diagnosted, the inner zone transmassivity (in borehole vicinity) was recommended. This is consistence with SKB's standards.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

6 Results

In the following, results of all tests are presented and analysed. Chapter 6.1 presents the 100 m tests and 6.2 the 20 m tests. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 7-1 and 7-2 of the Synthesis chapter.

6.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX07A are presented and analysed.

6.1.1 Section 111.80–211.80 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 21 kPa. A slight reaction between the test interval and the bottom zone was observed The injection rate decreased from 37.6 L/min at start of the CHi phase to 28.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is noisy in early times, due to the fact that it took a while to get stable pressure conditions. In middle and late times the derivative is flat and shows radial flow (flow dimension of 2). The response of the CHir phase is consistent to the response of the CHi phase. An infinite acting radial flow model was used for the analyses of both phases. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $3.6 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-4}$ to $6.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,594.0 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.2 Section 211.92-311.92 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 66 kPa. A slight reaction between the test interval and the zone above was observed (the pressure in the upper zone rose by 3 kPa). The injection rate decreased from 34.8 L/min at start of the CHi phase to 30.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a flat derivative at middle and late times, indicating a flow dimension of 2 (radial flow). The derivative of the CHir phase shows a horizontal stabilisation at early and middle times, followed by a downward trend and a second stabilisation at a lower level. This is indicative for a transition to a zone of higher transmissivity away from the borehole. A two shell radial composite flow model was chosen for the analysis of the CHir phase. The Chi phase was analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,342.3 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.1.3 Section 312.00-412.00 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 120 kPa. No connection between the test interval and the adjacent zones was observed The injection rate decreased from 21.2 L/min at start of the CHi phase to 14.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows horizontal stabilization at middle times, followed by a downward trend and a second stabilization at late times, which is indicative for a transition from a zone of lower transmissivity to a zone of higher transmissivity at some distance from the borehole. The response of the CHir phase is consistent to the response of the CHi phase. A two shell radial composite flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $8.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-5}$ to $2.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,053.9 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.4 Section 412.07–512.07 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed The injection rate decreased from 6.37 L/min at start of the CHi phase to 4.59 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is flat at middle and late times, indicating a flow dimension of 2 (radial flow). The response of the CHir phase shows a flat derivative at late times, too. The Chi phase was analysed using an infinite acting radial flow model. Due to the high skin value of the CHir phase, a two shell radial composite flow model was chosen for the analysis of this phase. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $8.3 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed

during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,772.6 kPa.

The derived transmissivities of the analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.5 Section 507.16–607.16 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a moderate to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 208 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.77 L/min at start of the CHi phase to 0.55 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows a slight indication of horizontal stabilization at early times and a downward trend at middle times, followed by a new stabilization at late times, which is indicative for a transition to a zone of higher transmissivity at some distance from the borehole. The derivative of the CHir phase shows a continuous downward trend at middle times. At the end it shows a noisy stabilisation. A radial two shell composite flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-5.

Selected representative parameters

The recommended transmissivity of $4.8 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $9.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,515.4 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.6 Section 602.32-702.32 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 100 kPa. No hydraulic connection to the adjacent zones was observed. The system needed more than one minute to get stable pressure conditions, so only the second part of the Chi phase is analysable. The injection rate decreased from 13.7 L/min at start of the CHi phase to 9.0 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Ignoring the first part of the Chi phase, both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat and horizontal at late times, which is indicative for a flow dimension of 2 (radial flow). The CHir phase derivative shows a flat derivative at middle times and an upward trend at late times. This upward trend is representing either a change in flow dimension or a transition to zone of lower transmissivity further away from the borehole. A two shell radial composite flow model was chosen for the analysis of the CHir phase. The Chi phase was analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $9.8 \cdot 10^{-6} \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5} \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,240.6 kPa.

The derived transmissivities of the analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.1.7 Section 702.45-802.45 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 111 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 27.3 L/min at start of the CHi phase to 20.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat and horizontal at middle and late times, which is indicative for a flow dimension of 2 (radial flow). The CHir phase derivative shows a flat derivative at middle times and an upward

trend at late times. This upward trend is representing either a change in flow dimension or a transition to zone of lower transmissivity further away from the borehole. A two shell radial composite flow model was chosen for the analysis of the CHir phase. The Chi phase was analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $3.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ to $5.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,022.8 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX07A are presented and analysed.

6.2.1 Section 108.50-128.50 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.2 L/min at start of the CHi phase to 3.1 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows a slight downward trend at middle times, followed by a stabilization at late times. The response of the CHir phase is consistent to the response of the CHi phase, although the first stabilization before the downward trend is not visible. A radial two shell composite flow model was chosen for the analyses of both phases. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $5.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 986.4 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.2 Section 128.50–148.50 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 171 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 11.9 L/min at start of the CHi phase to 11.6 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The system needed a few minutes to get stable pressure conditions, so that the results of the perturbation phase should be regarded carefully. The CHir phase shows very fast recovery, but it is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is very noisy in early time data. In middle and late times, the derivative shows a downward trend. The derivative of the CHir phase is noisy, too. In middle and late times it shows a horizontal stabilization. A radial two shell composite flow model was used for the analyses of both phases. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $3.1 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-5}$ to $5.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,133.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.3 Section 146.50-166.50 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 59 kPa. The pressure in the section below rose due to hydraulic connection to the interval by 13 kPa. The system needed more than one minute to get stable pressure conditions. The injection rate decreased from 26.2 L/min at start of the CHi phase to 25.8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Only the second part of the Chi phase is analysable. The recovery shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is noisy in early times. At late times the derivative is flat and shows radial flow (flow dimension of 2). The response of the CHir phase is consistent to the response of the CHi phase. An infinite acting radial flow model was used for the analyses of the CHir phase. The Chi phase was analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $4.7 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-4}$ to $7.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,265.8 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.4 Section 166.84–186.84 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 80 kPa. The pressure in each of the adjacent zones rose by 3 to 4 kPa due to hydraulic connection to the interval. The injection rate decreased from 33.7 L/min at start of the CHi phase to 32.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is noisy in early times. In middle and late times the derivative is flat and shows radial flow (flow dimension of 2). The response of the CHir phase is consistent to the response of the CHi phase. An infinite acting radial flow model was used for the analyses of the CHir phase and a radial two shell composite flow model was used for the Chi phase. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $4.3 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-4}$ to $7.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,416.3 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.5 Section 186.88–206.88 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 0.97 L/min at start of the CHi phase to 0.85 L/min at the end, indicating a moderate to high interval transmissivity (consistent with the pulse recovery). The data of the Chi phase are noisy an the CHir phase shows fast recovery, but both phases are still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy, but a horizontal arrangement of the data, which indicates radial flow, can be assumed. The derivative of the CHir phase shows a downward trend and at late times a horizontal stabilization. An infinite acting radial flow model was used for the analysis of the CHi phase and a radial two shell composite flow model was used to analyse the CHir data. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $5.0 \cdot 10^{-5}$ m²/s. The flow

dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,560.3 kPa.

The analyses of the CHi and CHir phases show some inconsistencies. This is mainly caused by the quality of the Chi data and the fast recovery of the CHir phase. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects. No further analysis is recommended.

6.2.6 Section 191.89–211.89 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 16.9 L/min at start of the CHi phase to 16.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy in early times. In middle times the derivative shows a downward trend followed by a horizontal stabilization at late times. This is indicative for the transition to a zone of higher transmissivity at some distance to the borehole. The derivative of the CHir phase shows a noisy but flat part during middle and late time. A radial two shell composite flow model was used for the analyses of both phases. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-5}$ to $5.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,596.6 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.7 Section 211.92-231.92 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test

indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. A very slight reaction between the test interval and the bottom zone was observed The injection rate decreased from 16.6 L/min at start of the CHi phase to 15.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is at middle and late times flat and horizontal. This is indicative for a flow dimension of 2 (radial flow). The response of the CHir phase shows a downward trend of the derivative at middle times and a horizontal stabilization at late times. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-14.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,745.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.8 Section 221.93–241.93 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A very slight reaction between the test interval and the bottom zone was observed The injection rate decreased from 16.1 L/min at start of the CHi phase to 15.4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat at late times, indicating radial flow (flow dimension of 2). The response of the CHir phase shows a

downward trend of the derivative at middle times and a horizontal stabilization at late times. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $2.1 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,820.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.9 Section 241.93-261.93 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 106 kPa. A slight reaction between the test interval and the zone above was observed The injection rate decreased from 32.2 L/min at start of the CHi phase to 30.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy, but shows a flat part at middle and late times. The response of the CHir phase is similar and shows a flat and horizontal part at late times, too. Both phases were analysed using an infinite acting homogenous flow model. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,971.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.10 Section 261.95-281.95 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 188 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.35 L/min at start of the CHi phase to 1.16 L/min at the end, indicating a relatively moderate to high interval transmissivity (consistent with the pulse recovery). The CHir phase shows fast recovery, but it is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is a little noisy but it shows at middle and late times a horizontal stabilization. The derivative of the CHir phase shows a downward trend at middle times and at late times a stabilization, indicating the transition to a zone of higher transmissivity at some distance to the borehole. The Chi phase was analysed using an infinite acting homogeneous flow model and the Chir phase was analysed with a radial two shell composite flow model. The analysis is presented in Appendix 2-17.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-7}$ to $5.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,120.2 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

6.2.11 Section 281.98-301.98 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 203 kPa. No hydraulic connection to the adjacent intervals was observed. The injection rate decreased from 2.68 L/min at start of the CHi phase to 2.20 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward trend followed by a flat part at late times. This is indicative for either a change in flow dimension or a transition to a zone of higher transmissivity at some distance to the borehole. The response of the CHir phase is similar. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-18.

Selected representative parameters

The recommended transmissivity of $2.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-6}$ to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,268.4 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies. No further analysis is recommended.

6.2.12 Section 291.99-311.99 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the zones above or below was observed. The injection rate decreased from 4.01 L/min at start of the CHi phase to 3.48 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilization at early times. At middle times, the derivative shows a downward trend, indicating a transition to a zone of higher transmissivity. The response of the CHir is very similar. At late times, the second stabilization is visible. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s. The flow

dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,341.4 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.13 Section 312.00-332.00 m, test no 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 219 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 234 mL/min at start of the CHi phase to 55 mL/min at the end, indicating a low to moderate interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows at middle times an upward trend followed by a stabilization, which is indicative for the change in flow dimension or transmissivity at some distance to the borehole. The response of the CHir phase is very similar. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-9}$ to $4.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,502.0 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.14 Section 326.99-346.99 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A very slight reaction between the test interval and the bottom zone was observed The injection rate decreased from 7.43 L/min at start of the CHi phase to 6.90 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows fast recovery, but it is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy, but it shows a horizontal stabilization at middle and late times, which is indicative for radial flow (flow dimension of 2). The derivative of the CHir phase is flat at late times, too. The Chi phase was analysed using an infinite acting homogeneous flow model. The analysis of the CHir phase was performed with a radial two shell composite flow model. The analysis is presented in Appendix 2-21.

Selected representative parameters

The recommended transmissivity of $4.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $7.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,598.5 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.15 Section 341.99-361.99 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 8.01 L/min at start of the CHi phase to 7.51 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The system needed more than one minute to get stable pressure conditions and the CHir phase shows fast recovery. Nevertheless, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy. A flow dimension of two was assumed. The response of the CHir phase shows a flat derivative at late times, indicating radial flow. The Chi phase was analysed using an infinite acting homogeneous flow model and a two shell composite flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-22.

Selected representative parameters

The recommended transmissivity of $5.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ to $8.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,705.3 kPa.

Considering the noisy data and the fast recovery, the analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.16 Section 362.07-382.07 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 6.73 L/min at start of the CHi phase to 5.95 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Although, the CHir phase shows fast recovery, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is at middle and late times horizontal, which is indicative for radial flow (flow dimension of 2). The CHir phase shows at middle times a downward trend and at late times a stabilization at a lower level. This is either an indication for a change in flow dimension or a change in transmissivity at some distance to the borehole. An infinite acting homogeneous flow model was used for the analysis of the Chi phase. The CHir phase was analysed using a two shell radial composite flow model. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-6}$ to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,851.3 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.2.17 Section 382.08-402.08 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 4.81 L/min at start of the CHi phase to 3.77 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is at middle and late times flat, which is indicative for radial flow (flow dimension of 2). The CHir phase isflat at late times as well. An infinite acting homogeneous flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-24.

Selected representative parameters

The recommended transmissivity of $5.9 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-6}$ to $8.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,989.3 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects. No further analysis is recommended.

6.2.18 Section 402.06-422.06 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively low recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 117 mL/min at start of the CHi phase to 97 mL/min at the end, indicating a relatively low to moderate interval transmissivity (consistent with the pulse recovery). The Chi phase shows no problems and is adequate for quantitative analysis. The CHir phase shows fast recovery and the results of the analysis should be regarded carefully.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is at middle and late times horizontal, which is indicative for radial flow (flow dimension of 2). The CHir phase shows a downward trend followed by a flat part. An radial infinite acting homogeneous flow model was used for the analysis of the Chi phase. The CHir phase was analysed using a two shell radial composite flow model. The analysis is presented in Appendix 2-25.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-8}$ to $4.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,127.1 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery of the CHir phase. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

6.2.19 Section 417.07-437.07 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 226 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 2.86 L/min at start of the CHi phase to 2.19 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Although the CHir phase shows fast recovery, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is at middle and late times horizontal, which is indicative for radial flow (flow dimension of 2). The CHir phase shows a horizontal stabilization at late times. An infinite acting homogeneous flow model was used for the analysis of the Chi phase. The CHir phase was analysed using a two shell radial composite flow model. The analysis is presented in Appendix 2-26.

Selected representative parameters

The recommended transmissivity of $2.21 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-7}$ to $4.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,231.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery of the CHir phase. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

6.2.20 Section 437.08-457.08 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 225 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 0.88 L/min at start of the CHi phase to 0.73 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is noisy, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is a bit noisy, but the cloud of data points was interpreted as flat. The CHir phase derivative shows a downward trend at middle times, followed by a kind of stabilization at late times. This was interpreted as a change in transmissivity at some distance from the borehole. An infinite acting homogeneous flow model was used for the analysis of the CHi phase. The CHir phase was analysed using a two shell radial composite flow model. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (inner zone). The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $6.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,370.9 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

6.2.21 Section 457.08-477.08 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from about 7 mL/min at start of the CHi phase to less than1 mL/min. After 12 minutes the perturbation phase was stopped and the recovery was started, because the flow was below the measurement limit. The recovery was measured for 6 hours over night. Although, the CHi phase is due to the low flow rate very noisy, both phases are adequate for quantitative analysis, while the CHir data are more reliable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of both phases does not allow for a specific determination of the flow dimension. A flow dimension of two was assumed. The derivative of the CHir phase shows at middle and late times an upward trend. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $9.6 \cdot 10^{-11}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-11}$ to $3.0 \cdot 10^{-10}$ m²/s. A flow dimension of 2 was assumed. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,508.2 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, due to the low interval transmissivity. No further analysis is recommended.

6.2.22 Section 477.12-497.12 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 2.16 L/min at start of the CHi phase to 1.96 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is noisy and the CHir phase shows fast recovery, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of both phases are noisy and the determination of the flow dimension is not unambiguous. A flow dimension of two was assumed. For the analyses of both phases a radial infinite acting homogeneous flow model was chosen. The analysis is presented in Appendix 2-29.

Selected representative parameters

The recommended transmissivity of $9.9 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-6}$ to $2.0 \cdot 10^{-5}$ m²/s. A flow dimension of two was used for the analyses. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,661.7 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.2.23 Section 497.14-517.14 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 18 mL/min at start of the CHi phase to 11 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal part at late times, indicating radial flow. The data of the CHir phase are dominated by wellbore effects. A flow dimension of 2 was assumed. Both phases were analysed using an infinite acting radial homogeneous flow model. The analysis is presented in Appendix 2-30.

Selected representative parameters

The recommended transmissivity of $5.4 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-9}$ to $8.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,810.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.24 Section 507.16-527.16 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 0.54 L/min at start of the CHi phase to 0.39 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Although, the CHir phase shows fast recovery, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows at middle times a downward trend followed by a flat part at late times. At late times, the derivative of the CHir phase is flat, too. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-31.

Selected representative parameters

The recommended transmissivity of $3.0 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (inner zone). The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $6.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,891.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.2.25 Section 527.20-547.20 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 219 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 24 mL/min at start of the CHi phase to 14 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows adownward trend at middle times, followed by a flat part at late times. This is indicative for a change in flow dimension or for a transition to a zone of higher transmissivity at some distance to the borehole. The CHir derivative shows a downward trend during middle and late time data. A flow dimension of 2 was assumed and this downward trend was interpreted as a change in transmissivity at some distance to the borehole. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-32.

Selected representative parameters

The recommended transmissivity of $8.1 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-9}$ to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,045.7 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.26 Section 547.23-567.23 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The injection rate decreased from 0.29 L/min at start of the CHi phase to 0.20 L/min at the end, indicating a low to moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of both phases show a downward trend at middle times and the beginning of stabilization at late times. This is indicative for transition from a zone of lower transmissivity to a zone of higher transmissivity at some distance to the borehole. Both phases were analysed using a two shell radial composite flow model. The analysis is presented in Appendix 2-33.

Selected representative parameters

The recommended transmissivity of $8.6 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-8}$ to $4.0 \cdot 10^{-7}$ m²/s. The flow

dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,205.0 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.27 Section 567.26-587.26 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the interval and the adjacent zones was observed. The pressure transducer for the bottom zone failed. After discussion with the Activity Leader, it was decided to continue with testing the last sections and to abandon the measurements of the bottom zone. The injection rate decreased from 4.5 mL/min at start of the CHi phase to 2.5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is very noisy, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of both phases do not clearly allow the specific determination of the flow dimension. The radial flow phase was not reached and the data were still influenced by wellbore effects like WBS and skin. A flow dimension of two was assumed. For the analyses of the Chi and the CHir phase, homogeneous infinite acting flow models were used. The analysis is presented in Appendix 2-34.

Selected representative parameters

The recommended transmissivity of $1.4 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-10}$ to $3.0 \cdot 10^{-9}$ m²/s. The flow dimension used for the analyses is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,353.9 kPa.

In spite of the low transmissivity and the low flow rate, the analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.28 Section 587.30-607.30 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and

closing the test valve, the pressure kept rising by 54Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-35.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.29 Section 607.32-627.32 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 205 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 1.07 L/min at start of the CHi phase to 0.83 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is noisy, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows at middle times a downward trend and the beginning of a flat part at late times. This was interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. The response of the CHir phase is very similar. Both phase were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-36.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-7}$ to $3.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,653.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.30 Section 620.00-640.00 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 189 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 21.7 L/min at start of the CHi phase to 15.4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The regulation unit had problems during the first five minutes of the perturbation phase to get and to hold constant pressure conditions. Nevertheless, the second part of this phase is adequate for quantitative analysis. The CHir phase is of good quality and adequate for quantitative analysis, too.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is very noisy at the beginning. The second part of the derivative is flat, which is indicative for a flow dimension of 2 (radial flow). The CHir derivative is flat at late times. The CHi phase was analysed using a homogeneous flow model. A radial two shell composite flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-37.

Selected representative parameters

The recommended transmissivity of $1.0 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,754.0 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.31 Section 637.36-657.36 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. The pressure in the zone above rose by 4Pa, indicating a hydraulic connection between the interval and this zone. The transducer of the bottom zone failed. The injection rate decreased from 18.9 L/min at start of the CHi phase to 16.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows at middle and late times a downward trend, which is interpreted as transition to a zone of higher transmissivity. The derivative of the CHir phase shows a downward trend at middle times and a horizontal stabilization at late times, indicating a change in transmissivity at some distance to the borehole. Both phases were analysed with a radial two shell composite flow model. The analysis is presented in Appendix 2-38.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $6.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,900.8 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.32 Section 657.41-677.41 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 1.23 L/min at start of the CHi phase to 1.12 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is noisy, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase does not allow for a specific determination of the flow dimension due to the data quality. A flow dimension of 2 was assumed. The CHir phase shows a flat part at early middle time data, followed by a downward trend. At late times, the downward trend continues. This is indicative for a change either in flow dimension or in transmissivity. The Chi phase was analysed using a homogeneous infinite acting flow model and for the analysis of the CHir phase a radial two shell composite flow model was used. The analysis is presented in Appendix 2-39.

Selected representative parameters

The recommended transmissivity of $3.9 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-7}$ to $7.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,053.0 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.33 Section 667.42-687.42 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 178 mL/min at start of the CHi phase to 131 mL/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivatives of the CHi phase and of the CHir phase show at middle times a downward trend and following the beginning of a flat part at late times. This is interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-40.

Selected representative parameters

The recommended transmissivity of $5.2 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $7.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,132.4 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.34 Section 682.43-702.43 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 206 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 230 mL/min at start of the CHi phase to 200 mL/min at the end, indicating a moderate to low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the first part of the derivative of the CHi phase is very noisy. The second part is flat, indicating radial flow (flow dimension of 2). The CHir phase shows a downward trend at middle times and a horizontal stabilization at late times, which is indicative for a transition to a zone of higher transmissivity. The CHi phase was analysed using an infinite acting homogeneous flow model. A radial two shell composite flow model was used to analyse the CHir phase. The analysis is presented in Appendix 2-41.

Selected representative parameters

The recommended transmissivity of $8.9 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-7}$ to $1.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,246.7 kPa.

Considering the noisy Chi data, the analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.35 Section 702.45-727.45 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 1.27 L/min at start of the CHi phase to 1.11 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat at late times, indicating a flow dimension of 2. The response of the CHir phase is similar. Both phases were analysed using an infinite acting homogeneous flow model. The analysis is presented in Appendix 2-42.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,400.7 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.36 Section 722.46-742.46 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 214 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 0.54 L/min at start of the CHi phase to 0.42 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows at middle times a downward trend and the beginning of a flat part at late times. This was interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. The response of the CHir phase is very similar. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-43.

Selected representative parameters

The recommended transmissivity of $5.8 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $7.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,554.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.37 Section 732.48-752.48 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 196 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 0.55 L/min at start of the CHi phase to 0.35 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat at early times and shows at middle and late times a downward trend. This is interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. The response of the CHir phase is similar, although the flat part of the early part is missing. Both phases were analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-44.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ to $6.0 \cdot 10^{-6}$ m²/s. A flow dimension of 2 was assumed. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,628.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.38 Section 752.51-772.51 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 121 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 27.7 L/min at start of the CHi phase to 21.7 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery was prolonged to 30 minutes. Both phases are of good quality and as such adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is flat at middle and late times, indicating a flow dimension of two. The CHir phase is flat at late times, too. For the analysis of both tests an infinite acting radial homogeneous flow model was used. The analysis is presented in Appendix 2-45.

Selected representative parameters

The recommended transmissivity of $3.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ to $5.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,789.2 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.39 Section 772.53-792.53 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 119 mL/min at start of the CHi phase to 80 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward trend at middle times and the beginning of a flat part at late times. This is indicative for either a change in flow dimension or in transmissivity. It was interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. The response of the CHir phase is similar and was interpreted in the same way. For the analyses of both phases, a two shell composite flow model was chosen. The analysis is presented in Appendix 2-46.

Selected representative parameters

The recommended transmissivity of $4.1 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ to $8.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,950.0 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.40 Section 792.55-812.55 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 228 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 48 mL/min at start of the CHi phase to 34 mL/min at the end, indicating a low to moderate interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is flat at early times and shows at middle times a downward trend and the beginning of a flat part at late times. This is indicative for a change in transmissivity. The derivative of the CHir phase shows a downward trend at middle times. At late times, the derivative seems to start to stabilize. This phenomenon was interpreted as a transition from a zone of lower to a zone of higher transmissivity. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-47.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ to $8.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,105.9 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies. In case, further analysis is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects. No further analysis is recommended.

6.2.41 Section 807.56-827.56 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the interval and the zone above was observed. The transducer of the bottom zone failed. The injection rate decreased from 1.18 L/min at start of the CHi phase to 0.90 L/min at the end, indicating a moderate interval transmissivity (consistent with the pulse recovery). Although, the CHi phase is noisy, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward trend at middle times. This was interpreted as the transition to a zone of higher transmissivity at some distance to the borehole. The derivative of the CHir phase shows a downward trend at middle times, too. At late times, the derivative is flat, indicating a flow dimension of 2. For the analyses of both phases, a radial two shell composite flow model was used. The analysis is presented in Appendix 2-48.

Selected representative parameters

The recommended transmissivity of $2.3 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-7}$ to $5.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,223.0 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

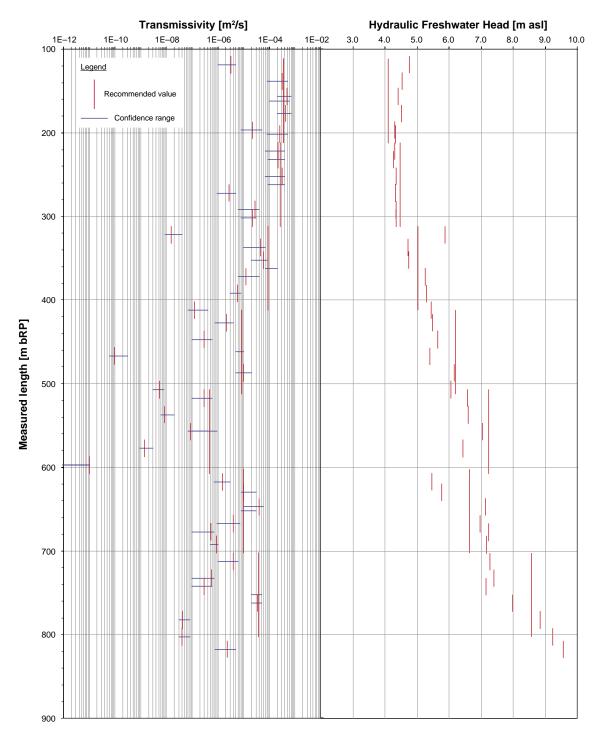
7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

of results
Summary
7.1

Table 7-1. General test data from constant head injection tests in KLX07A (for nomenclature see Appendix 4).


Borehole secup (m)	Borehole seclow (m)	Date and time for test, start YYYYMMDD hh:mm	Date and time for test, stop ҮҮҮҮММDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	t _p (s)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p₀ (kPa)	p⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
111.80	211.80	050820 16:35	050820 18:59	2.33E-04	5.02E-04	1,800	1,800	1,615	1,613	1,634	1,614	9.1	CHi/CHir
211.92	311.92	050821 15:28	050821 17:22	5.08E-04	5.23E-04	1,800	1,800	2,363	2,361	2,427	2,362	10.3	CHi/Chir
312.00	412.00	050821 18:57	050821 20:52	2.33E-04	2.45E04	1,800	1,800	3,070	3,073	3,193	3,071	11.4	CHi/Chir
412.07	512.07	050822 09:58	050822 11:58	7.62E-05	8.00E-05	1,800	1,800	3,785	3,791	3,991	3,792	12.4	CHi/Chir
507.16	607.16	050822 13:45	050822 15:37	9.00E-06	9.33E-06	1,800	1,800	4,530	4,538	4,746	4,539	13.5	CHi/Chir
602.32	702.32	050822 17:07	050822 20:46	1.50E-04	1.70E-04	1,800	7,200	5,274	5,267	5,367	5,264	14.7	CHi/Chir
702.45	802.45	050823 09:33	050822 11:31	3.42E04	3.67E-04	1,800	1,800	6,048	6,043	6,154	6,049	16.2	CHi/Chir
108.50	128.50	050824 16:10	050824 17:37	5.17E-05	5.50E-05	1,200	1,200	1,008	1,008	1,209	1,008	8.5	CHi/Chir
128.50	148.50	050824 18:21	050824 20:21	1.93E-04	1.95E-04	1,200	1,200	1,156	1,153	1,324	1,153	8.8	CHi/Chir
146.50	166.50	050825 08:15	050825 10:27	4.30E-04	4.35E-04	1,200	1,200	1,285	1,282	1,341	1,283	8.7	CHi/Chir
166.84	186.84	050825 11:10	050825 12:33	5.37E-04	5.47E-04	1,200	1,200	1,433	1,433	1,513	1,434	9.0	CHi/CHir
186.88	206.88	050825 13:32	050825 14:48	1.33E-05	1.45E–05	1,200	600	1,581	1,580	1,781	1,580	9.2	CHi/Chir
191.89	211.89	050825 15:22	050825 16:56	2.72E-04	2.75E-04	1,800	600	1,617	1,615	1,815	1,616	9.2	CHi/CHir
211.92	231.92	050825 17:38	050825 19:06	2.55E-04	2.57E-04	1,200	1,200	1,765	1,764	1,965	1,764	9.4	CHi/CHir
221.93	241.93	050826 08:21	050826 09:49	2.57E-04	2.58E-04	1,200	1,200	1,838	1,836	2,036	1,836	9.5	CHi/CHir
241.93	261.93	050826 10:33	050826 12:15	5.17E-04	5.23E-04	1,200	1,200	1,987	1,986	2,092	1,988	9.8	CHi/CHir
261.95	281.95	050826 13:17	050826 14:46	2.00E-05	2.00E-05	1,200	1,200	2,139	2,138	2,326	2,139	10.1	CHi/CHir
281.98	301.98	050826 15:36	050826 16:54	3.67E-05	3.83E-05	1,200	600	2,289	2,288	2,491	2,288	10.3	CHi/CHir
291.99	311.99	050826 17:29	050826 20:01	5.83E-05	6.00E-05	1,200	3,600	2,363	2,364	2,564	2,362	10.5	CHi/CHir
312.00	332.00	050827 11:12	050827 13:17	8.33E-07	1.33E-06	1,200	2,400	2,507	2,512	2,731	2,536	10.7	CHi/CHir
326.99	346.99	050827 14:01	050827 15:30	1.17E-04	1.18E–04	1,200	1,200	2,616	2,618	2,818	2,618	10.8	CHI/CHIr
341.99	361.99	050827 16:09	050827 17:49	1.25E-04	1.28E-04	1,200	1,200	2,724	2,726	2,926	2,726	11.0	CHI/CHIr
362.07	382.07	050827 18:31	050827 20:04	9.83E-05	1.02E-04	1,200	1,200	2,865	2,871	3,071	2,871	11.2	CHI/CHIr
382.08	402.08	050828 08:24	050828 11:08	6.33E-05	6.67E-05	1,200	006	2,999	3,006	3,207	3,006	11.4	CHi/CHir

Borehole secup (m)	Borehole seclow	Date and time for test, start YYYYMMDD hh·mm	Date and time for test, stop YYYYMMDD hh·mm	Q _p (m³/s)	Q _m (m³/s)	t _b (s)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p _p (kPa)	p⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked hold
402.06	422.06	050828 10:31	050828 11:57	1.50E-06	1.67E-06	1,200	1,200	3,138	3,145	3,346	3,145	11.6	CHi/CHir
417.07	437.07	050828 13:21	050828 14:43	3.67E-05	3.83E-05	1,200	600	3,243	3,251	3,477	3,251	11.7	CHi/CHir
437.08	457.08	050828 15:25	050828 16:32	1.23E-05	1.25E-05	1,200	1,200	3,384	3,391	3,616	3,390	11.9	CHi/CHir
457.08	477.08	050828 17:32	050829 00:57	1.67E-08	5.00E-08	720	21,600	3,526	3,555	3,759	3,544	12.1	CHi/CHir
477.12	497.12	050829 08:35	050829 10:03	3.33E-05	3.33E-05	1,200	1,200	3,671	3,680	3,880	3,680	12.2	CHi/CHir
497.14	517.14	050829 10:40	050829 12:56	1.67E-07	2.83E-07	1,200	2,400	3,823	3,845	4,049	3,857	12.5	CHi/CHir
507.16	527.16	050829 14:23	050829 15:53	6.67E-06	6.67E-06	1,200	1,200	3,904	3,914	4,114	3,914	12.5	CHi/CHir
527.20	547.20	050829 16:35	050829 18:09	2.33E-07	2.67E-07	1,200	1,200	4,063	4,073	4,292	4,074	12.8	CHi/CHir
547.23	567.23	050829 18:49	050829 20:18	3.33E-06	3.67E-06	1,200	1,200	4,220	4,230	4,425	4,230	13.1	CHi/CHir
567.26	587.26	050830 09:08	050830 10:50	5.00E-08	5.00E-08	1,200	1,200	4,371	4,389	4,589	4,403	13.2	CHi/CHir
587.30	607.30	050830 11:38	050830 12:37	0.00E+00	0.00E+00	0	0	4,531	NN#	NN#	NN#	13.5	#NV
607.32	627.32	050830 14:27	050830 15:54	1.40E-05	1.47E-05	1,200	1,200	4,690	4,681	4,886	4,681	13.7	CHi/CHir
620.00	640.00	050830 16:32	050830 17:56	2.57E-04	2.85E-04	1,200	1,200	4,790	4,781	4,970	4,794	13.5	CHi/CHir
637.36	657.36	050830 18:37	050830 20:53	2.75E-04	2.87E-04	1,200	3,600	4,927	4,926	5,126	4,925	14.1	CHi/CHir
657.41	677.41	050831 09:19	050831 10:51	1.83E-05	1.83E-05	1,200	1,200	5,075	5,073	5,274	5,074	14.4	CHi/CHir
667.42	687.42	050831 14:40	050831 16:00	2.17E-06	2.33E-06	1,200	1,200	5,161	5,158	5,359	5,158	14.5	CHi/CHir
682.43	702.43	050831 16:52	050831 18:20	3.33E-06	3.50E-06	1,200	1,200	5,278	5,272	5,478	5,272	14.7	CHi/CHir
702.45	722.45	050831 19:04	050831 20:24	1.83E-05	1.83E-05	1,200	1,200	5,433	5,426	5,625	5,426	15.0	CHi/CHir
722.46	742.46	050901 08:07	050901 09:29	6.67E-06	7.33E-06	1,200	1,200	5,582	5,580	5,794	5,579	15.2	CHi/CHir
732.48	752.48	050901 10:12	050901 11:37	5.83E-06	6.33E-06	1,200	1,200	5,664	5,660	5,856	5,661	15.3	CHi/CHir
752.51	772.51	050901 12:30	050901 14:04	3.65E-04	3.92E-04	1,200	1,800	5,821	5,814	5,935	5,819	15.7	CHi/CHir
772.53	792.53	050901 15:01	050901 16:33	1.33E-06	1.47E-06	1,200	1,200	5,983	5,980	6,179	5,978	16.1	CHi/CHir
792.55	812.55	050901 17:21	050901 18:43	5.00E-07	6.67E-07	1,200	1,200	6,136	6,133	6,361	6,132	16.3	CHI/CHIr
807.56	827.56	050901 19:41	050901 22:40	1.43E-05	1.63E-05	1,200	7,200	6,251	6,248	6,448	6,246	16.5	CHI/CHIr
NN#	not analysed												
CHi:	Constant Hea	Constant Head injection phase.											

CHi: Constant Head injection phase. CHir: Recovery phase following the constant head injection phase. Table 7-2. Results from analysis of constant head tests in KLX07A (for nomenclature see Appendix 4).

Interval	Interval position	Stationary flow	low	Transien	Transient analysis													
		parameters		Flow regime	ime	Formation	ı parameters	ş									Static conditions	tions
up m btoc	low m btoc	Q/s m²/s	T _м m²/s	Perturb Phase	Recovery Phase	T _{ti} m²/s	T _{t2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T _T m²/s	T _{™™} m²/s	T _{™MAX} m²/s	C m³/Pa	ΨI	dt, min	dt₂ min	p* h _{wi} kPa mas	h _{wi} masl
111.80	211.80	2.20E-04	2.86E-04	2	WBS2	3.6E04	NN#	3.3E-04	NN#	3.6E-04	1.0E-04	6.0E-04	2.0E-07	-0.2	5.2	25.4	1,594.0 4.1	11
211.92	311.92	7.56E-05	9.84E-05	2	WBS22	2.0E04	NN#	1.4E-04	2.7E-04	2.7E-04	9.0E-05	4.0E-04	2.7E-08	1.8	3.8	25.3	2,342.3 4.4	4.48
312.00	412.00	1.91E-05	2.48E-05	22	WBS22	3.2E-05	5.4E-05	8.9E-05	1.8E-04	8.9E-05	7.0E-05	2.0E-04	8.1E-09	18.5	1.0	6.9	3,053.9 5.02	22
412.07	512.07	3.74E-06	4.87E-06	2	WBS22	8.3E-06	NN#	1.7E-05	3.0E-05	8.3E-06	5.0E-06	1.0E-05	1.7E-09	5.2	1.0	25.4	3,772.6 6.20	20
507.16	607.16	4.24E-07	5.53E-07	22	WBS22	4.3E-07	8.3E-07	4.8E-07	4.1E-06	4.8E-07	1.0E-07	9.0E-07	9.7E-10	1.1	NN#	NN#	4,515.4 7.24	24
602.32	702.32	1.47E-05	1.92E-05	2	WBS22	1.1E-05	NN#	9.8E-06	7.1E-06	9.8E-06	8.0E-06	3.0E-05	3.9E-08	-4.7	3.3	28.9	5,240.6 6.64	34
702.45	802.45	3.02E-05	3.93E-05	2	WBS22	4.0E-05	NN#	3.8E-05	2.7E-05	3.8E-05	2.0E-05	5.0E-05	6.5E-08	-2.1	1.2	3.4	6,022.8 8.59	20
108.50	128.50	2.52E-06	2.64E-06	22	WBS22	3.2E-06	3.8E-06	6.4E-06	1.3E-05	3.2E-06	1.0E-06	5.0E-06	1.0E-09	0.4	0.0	1.5	986.4 4.76	26
128.50	148.50	1.11E-05	1.16E-05	22	WBS22	2.7E-05	2.7E–04	7.0E-05	3.1E-04	3.1E-04	8.0E-05	5.0E-04	1.9E-09	30.7	1.4	15.8	1,133.7 4.53	23
146.50	166.50	7.15E-05	7.48E-05	2	WBS2	9.4E-05	4.7E04	4.7E-04	NN#	4.7E-04	2.0E-04	7.0E-04	4.2E-08	29.2	2.1	21.0	1,265.8 4.41	41
166.84	186.84	6.58E-05	6.88E-05	2	WBS2	8.1E-05	3.4E04	4.3E-04	NN#	4.3E-04	2.0E-04	7.0E-04	1.8E-08	29.6	0.8	18.3	1,416.3 4.51	51
186.88	206.88	6.51E-07	6.81E-07	2	WBS22	1.3E-06	NN#	4.5E-06	2.2E-05	2.2E-05	8.0E-06	5.0E-05	1.1E-10	32.2	2.1	7.1	1,560.3 4.32	32
191.89	211.89	1.33E-05	1.39E-05	22	WBS22	2.4E-05	1.1E-04	1.3E-05	2.5E-04	2.5E-04	8.0E-05	5.0E-04	2.4E-09	-0.5	1.1	10.0	1,596.6 4.34	34
211.92	231.92	1.24E–05	1.30E-05	22	WBS22	2.4E-05	8.0E-05	7.7E-05	2.2E-04	2.2E-04	7.0E-05	4.0E04	3.2E-09	30.5	5.1	16.6	1,745.2 4.31	31
221.93	241.93	1.26E–05	1.32E-05	22	WBS22	1.3E-05	1.3E–04	8.0E-05	2.1E-04	2.1E-04	9.0E-05	4.0E04	4.5E-09	30.3	4.2	19.2	1,820.1 4.27	27
241.93	261.93	4.79E–05	5.01E-05	2	WBS2	1.5E-04	NN#	3.2E-04	NN#	3.2E-04	7.0E-05	4.0E-04	2.1E-08	29.5	1.5	17.0	1,971.2 4.34	34
261.95	281.95	1.04E-06	1.09E-06	2	WBS22	2.7E-06	NN#	6.5E-06	3.5E-05	2.7E-06	9.0E-07	5.0E-06	3.7E-10	8.9	0.7	15.7	2,120.2 4.33	33
281.98	301.98	1.77E–06	1.85E-06	22	WBS22	2.3E-06	6.4E-06	8.1E-06	2.8E-05	2.8E-05	6.0E-06	4.0E-05	7.4E–10	19.7	4.4	9.3	2,268.4 4.36	36
291.99	311.99	2.86E-06	2.99E–06	22	WBS22	2.7E-06	9.4E-06	2.3E-06	2.2E-05	2.2E-05	8.0E-06	3.0E-05	3.3E-09	-1.8	13.1	54.6	2,341.4 4.34	34
312.00	332.00	3.73E-08	3.90E-08	22	WBS22	2.4E–08	1.3E-08	6.4E-08	1.5E-08	1.5E-08	9.0E-09	4.0E-08	6.9E-12	-2.8	29.4	38.8	2,502.0 5.87	37
326.99	346.99	5.72E-06	5.99E-06	2	WBS22	1.5E-05	NN#	3.7E-05	4.5E-05	4.5E-05	1.0E-05	7.0E-05	1.5E-09	30.8	1.2	16.6	2,598.5 4.73	73
341.99	361.99	6.13E-06	6.41E-06	2	WBS22	2.0E-05	NN#	3.9E-05	5.9E-05	5.9E-05	2.0E-05	8.0E-05	1.4E-09	30.9	1.1	16.4	2,705.3 4.74	74
362.07	382.07	4.82E-06	5.05E-06	2	WBS22	1.2E-05	NN#	3.1E-05	9.6E-05	1.2E-05	6.0E-06	4.0E-05	1.6E-09	7.0	1.2	17.2	2,851.3 5.27	27
382.08	402.08	3.09E-06	3.23E-06	2	WBS22	5.9E-06	NN#	2.0E-05	3.3E-05	5.9E-06	3.0E-06	8.0E-06	1.8E-09	3.8	0.8	17.5	2,989.3 5.31	31
402.06	422.06	7.32E-08	7.66E–08	2	WBS22	1.2E-07	NN#	4.8E-07	8.9E-07	1.2E-07	7.0E-08	4.0E-07	5.2E-11	3.3	1.9	8.3	3,127.1 5.45	45
417.07	437.07	1.59E–06	1.66E–06	2	WBS22	2.2E-06	NN#	1.0E-05	1.4E-05	2.2E-06	8.0E-07	4.0E-06	4.4E-10	1.1	0.4	14.2	3,231.4 5.49	49
437.08	457.08	5.38E-07	5.63E-07	7	WBS22	5.6E-07	NN#	2.9E-07	6.5E-06	2.9E-07	1.0E-07	6.0E-07	2.6E-10	-1.7	0.3	0.5	3,370.9 5.66	36

Interval	position	Interval position Stationary flow	flow	Transien	Fransient analysis													
		parameters	S	Flow regime	ime	Formation	parameters	ŝ								0)	Static conditions	litions
up m btoc	low m btoc	Q/s m²/s	T _w m²/s	Perturb Phase	Recovery Phase	T _r m²/s	T _{t2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T _T m²/s	T _{™IN} m²/s	T _{™≜X} m²/s	С m³/Ра	~ I	dt, min c	dt₂ min k	р* kPa п	h _{wi} masl
457.08	477.08	8.01E-10	8.38E-10	22	WBS22	1.3E-09	1.3E-10	9.6E-11	6.9E-11	9.6E-11	6.0E-11	3.0E-10	5.1E-11	-3.2	# /N#	NN#	3,508.2 5	5.41
477.12	497.12	1.62E-06	1.69E-06	2	WBS2	2.7E-06	NN#	9.9E-06	NN#	9.9E06	5.0E-06	2.0E-05	4.6E-10	31.4	3.6	19.6	3,661.7 6	6.17
497.14	517.14	8.01E-09	8.38E-09	2	WBS2	3.9E-09	NN#	5.4E-09	NN#	5.4E-09	3.0E-09	8.0E-09	5.4E-09	2.5	# NN#	NN#	3,810.1 6	6.06
507.16	527.16	3.18E-07	3.33E-07	22	WBS22	3.9E-07	1.0E-06	3.0E-07	3.9E-06	3.0E-07	1.0E-07	6.0E-07	4.1E-10	1.6	# NN#	NN#	3,891.4 6	6.57
527.20	547.20	1.05E-08	1.09E-08	22	WBS22	8.1E-09	1.6E-08	1.8E-08	6.0E-08	8.1E-09	6.0E-09	2.0E-08	5.8E-11	0.4	0.2	1.0	4,045.7 6	6.59
547.23	567.23	1.68E-07	1.75E-07	22	WBS22	9.0E-08	2.4E-07	8.6E-08	5.0E-07	8.6E-08	7.0E-08	4.0E-07	9.9E11	-2.3	0.2	1.5	4,205.0 7	7.05
567.26	587.26	2.45E-09	2.57E-09	2	WBS2	1.2E-09	NN#	1.4E-09	NN#	1.4E-09	9.0E-10	3.0E-09	3.6E-11	0.0	# NN#	NN#	4,353.9 6	6.44
587.30	607.30	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E–11	1.0E-13	1.0E–11	NN#	NN#	[#] ∧N#	NN#	# /N#	NN#
607.32	627.32	6.70E-07	7.01E-07	22	WBS22	3.7E-07	1.1E-06	2.6E-07	1.5E-06	1.5E-06	7.0E-07	3.0E-06	2.1E-09	-3.3	16.8 1	19.2	4,653.3 5	5.46
620.00	640.00	1.33E-05	1.39E-05	2	WBS22	1.1E-05	NN#	6.9E06	1.0E-05	1.0E-05	8.0E-06	3.0E-05	7.7E-08	-4.9	10.1	20.0	4,754.0 5	5.78
637.36	657.36	1.35E-05	1.41E-05	22	WBS22	1.8E-05	3.8E-05	1.7E-05	4.0E-05	4.0E-05	1.0E-05	6.0E-05	1.2E-08	-0.1	9.1	57.2	4,900.8 7	7.14
657.41	677.41	8.95E-07	9.36E-07	2	WBS22	1.9E-06	NN#	3.9E-06	6.6E-06	3.9E-06	9.0E-07	7.0E-06	4.9E-10	19.9	0.9	2.9	5,053.0 6	6.96
667.42	687.42	1.06E-07	1.11E-07	22	WBS22	1.16E-07	2.1E-07	1.1E-07	5.2E-07	5.2E-07	1.0E-07	7.0E-07	8.3E-11	1.2	8.3	17.0	5,132.4 7	7.23
682.43	702.43	1.59E–07	1.66E–07	2	WBS22	4.28E-07	NN#	2.0E-07	8.9E-07	8.9E-07	5.0E-07	1.0E-06	1.0E-10	2.3	4.8	19.2	5,246.7 7	7.17
702.45	722.45	9.04E-07	9.45E-07	2	WBS2	1.43–6	NN#	4.0E-06	NN#	4.0E-06	1.0E-06	6.0E-06	6.9E-10	19.7	2.4	20.3	5,400.7 7	7.28
722.46	742.46	3.06E-07	3.20E-07	22	WBS22	2.4E-07	1.1E-06	1.2E-07	5.8E-07	5.8E-07	1.0E-07	7.0E-07	3.8E-10	-3.0	12.6 1	17.4	5,554.6 7	7.40
732.48	752.48	2.92E-07	3.05E-07	22	WBS22	2.2E-07	4.9E-07	1.2E-07	2.9E-07	2.9E-07	1.0E-07	6.0E-07	5.2E-10	-3.2	13.2 2	20.0	5,628.6 7	7.15
752.51	772.51	2.96E-05	3.10E-05	2	WBS2	3.9E-05	NN#	3.5E-05	NN#	3.5E-05	2.0E-05	5.0E-05	5.7E-08	-2.1	4.5	27.6	5,789.2 7	7.98
772.53	792.53	6.57E-08	6.88E-08	22	WBS22	6.1E-08	1.0E-07	4.1E-08	2.4E-07	4.1E-08	3.0E-08	8.0E-08	8.6E-11	-1.1	0.3	1.8	5,950.0 8	8.85
792.55	812.55	2.15E-08	2.25E-08	22	WBS22	2.5E-08	5.5E-08	4.0E-08	1.3E-07	4.0E-08	3.0E-08	8.0E-08	6.0E-11	4.8	[#] ∧N#	NN#	6,105.9 9	9.24
807.56	827.56	7.03E-07	7.35E-07	22	WBS22	6.0E-07	1.3E-06	2.8E-07	2.3E-06	2.3E-06	8.0E-07	5.0E-06	1.3E-09	-3.6	17.0 7	72.0	6,223.0 9	9.58
Notes																		
1 T1 an is ren	nd T2 refe	ir to the tran:	1 T1 and T2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow mo is reported in case a two cones composite model was recommended both T1 and T2 are given TT denotes the recommended transmissivity	derived f	rom the and		using the r	ecommenc	le using the recommended flow model. In case a homogeneous flow model was recommended only one T value A both T1 and T2 are diven TT denotes the recommended transmissivity.	idel. In case	e a homoge	eneous flov	v model wa	s recom	mendec	d only o	one T value	Ð
2 The p	arameter	p* denoted	The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHIR phase using straight line or type-curve	rmation p	ressure (me	sasured at t	ransducer	depth) and	was derive	d from the	HORNER	plot of the (CHIR phase	e using e	straight	line or	type-curve	
extrap	extrapolation.	•											:					

Figure 7-1. Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injectiontests, freshwater head extrapolated.

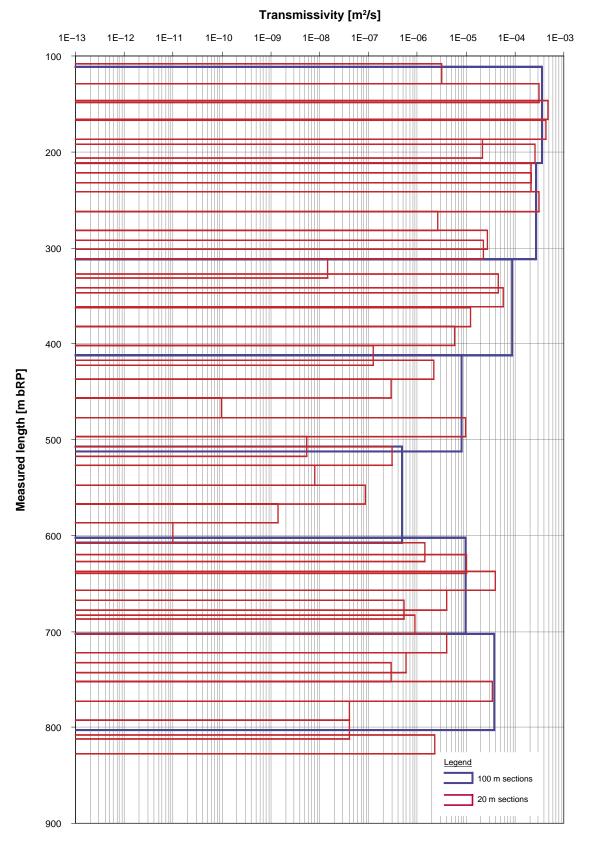


Figure 7-2. Results summary – profile of transmissivity.

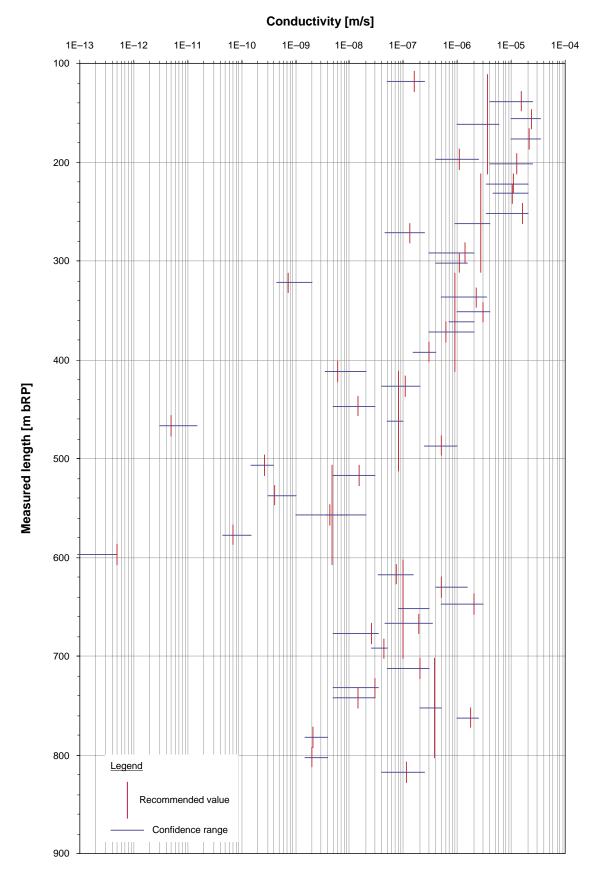


Figure 7-3. Results summary – profile of hydraulic conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that most of the steady state derived transmissivities differ by less than one order of magnitude from the transmissivities derived from the transient analysis. For five sections the transmissivity derived using the steady state method is more than one order of magnitude lower than the transmissivity derived from the analysis. In general, the values of the steady state analysis are in the most cases slightly lower than the recommended values. For transmissivities lower than $1.0 \cdot 10^{-8}$ m/s², the steady state values are a bit higher than the values from the analysis..

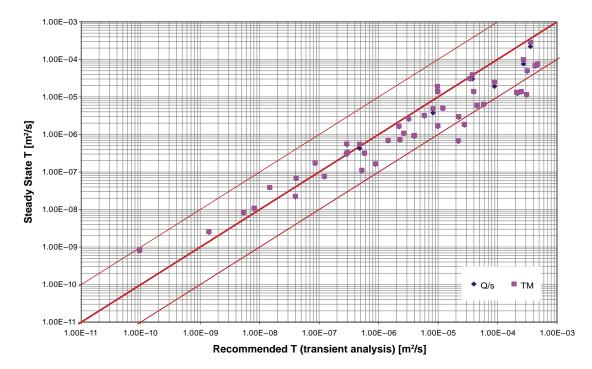


Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx $5 \cdot 10^{-10}$ 1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility of $7 \cdot 10^{-10}$ 1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to two orders of magnitude larger than the theoretical values for the 100 m Tests and up to three orders of magnitude larger for the 20 m tests. This phenomenon was already observed at the previous boreholes. A two or three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by three orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a series of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

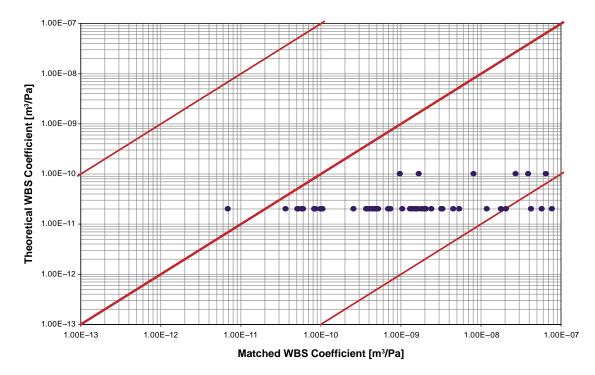


Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.5.6.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

In nearly all cases, injection tests were performed due to the fact that the preliminary pulses show a recovery indicating a transmissivity which is high enough for a sufficient flow. Just in one case (test section 457.08–477.08 m) the injection was cancelled after 12 min, because the flow dropped below the measurement limit One test section (587.30–607.30 m) was skipped due to the very low transmissivity.

The transmissivity profiles in Figures 7-1 and 7-2 show transmissivities that ranges between $4.8 \cdot 10^{-7}$ m²/s and $3.6 \cdot 10^{-4}$ m²/s for the 100 m test sections. From 112 m to 607 m the transmissivities of the 100 m test sections show a slight decrease with an increase of depth. For the last two sections an increase of transmissivity can be observed. For the 20 m sections, the transmissivities range from $9.6 \cdot 10^{-11}$ m²/s to $4.7 \cdot 10^{-4}$ m²/s (excluding the skipped test).

Five 20 m sections show larger transmissivities than the appropriate longer interval. The differences are relatively small and are covered by the confidence range. This can be explained with crossflow and connections to the adjacant zones.

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in metres above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.5.5.

The head profile shows a freshwater head increasing with depth. The freshwater head ranges from 4.1 m to 9.6 m. This increase can be explained by higher salinity of the water down in the borehole.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

8.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as 1.10⁻⁸ m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed. Those analyses are presented in Appendix 2.

9 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. – Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp 293–302.

Gringarten A C, 1986. Computer-aided well-test analysis. – SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. – Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. – Third World Pet. Congress, E.J. Brill, Leiden II, pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. – Transactions, American Geophysical Union, Volume 33, No 4, pp 559–569.

SKB, **2001a.** Site investigations: Investigation methods and general execution programme. SKB TR-01-29, Svensk Kärnbränslehantering AB.

SKB, **2001b.** Geoveteskapligt program för platsundersökning vid Simpevarp. SKB R-01-44, Svensk Kärnbränslehantering AB.

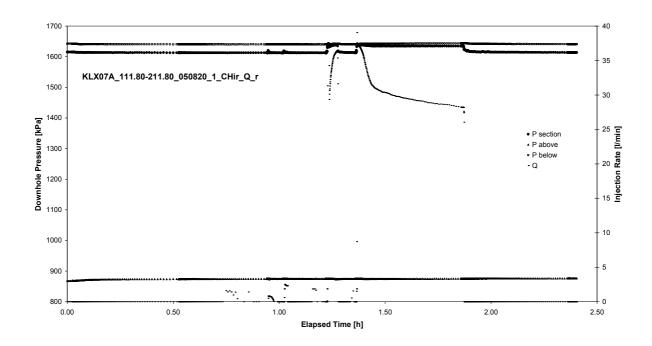
SKB, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering.

Borehole: KLX07A

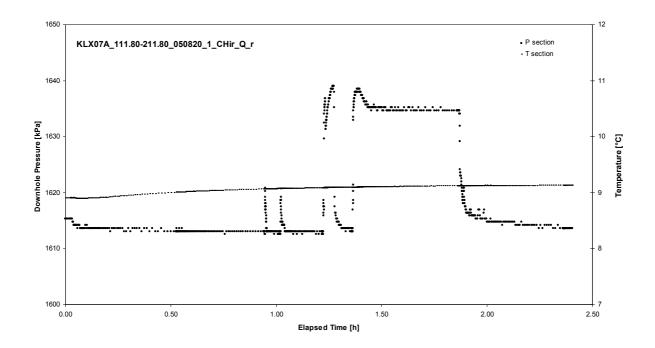
APPENDIX 1

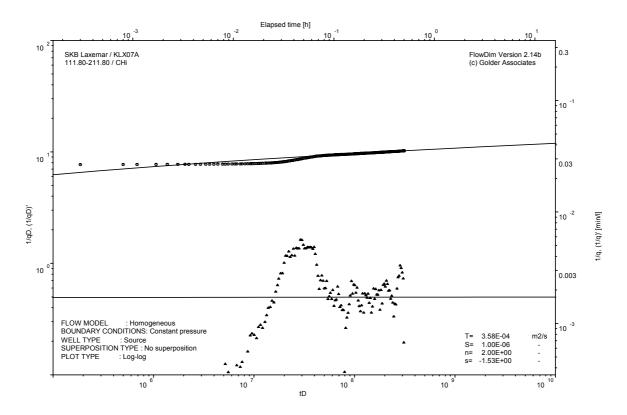
File Description Table

HYDROTESTING WITH PSS				PSS	DRILLHOLE IDENTIFICATION NO.: KLX07A						
TEST- AND FILEPROTOCOL					Testorder dated : 2005-08-20						
Teststart Interval boundaries		es	Name of Datafiles T		Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2005-08-20	16:34	111.80	211.80	KLX07A_0111.80_200508201634.ht2	KLX07A_111.80-211.80_050820_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-21			
2005-08-21	15:28	211.92	311.92	KLX07A_0211.92_200508211528.ht2	KLX07A_211.92-311.92_050821_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-21			
2005-08-21	18:57	312.00	412.00	KLX07A_0312.00_200508211857.ht2	KLX07A_312.00-412.00_050821_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-22			
2005-08-22	09:58	412.07	512.07	KLX07A_0412.07_200508220958.ht2	KLX07A 412.07-512.07 050822 1 CHir Q r.csv	Chir	2005-09-02	2005-08-22			
2005-08-22	13:45	507.16	607.16	KLX07A_0507.16_200508221345.ht2	KLX07A_507.16-607.16_050822_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-22			
2005-08-22	17:07	602.32	702.32	KLX07A_0602.32_200508221707.ht2	KLX07A_602.32-702.32_050822_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-23			
2005-08-23	09:33	702.45	802.45	KLX07A_0702.45_200508230933.ht2	KLX07A_702.45-802.45_050823_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-24			
2005-08-24	16:10	108.50	128.50	KLX07A_0108.50_200508241610.ht2	KLX07A_108.50-128.50_050824_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-24			
2005-08-24	18:21	128.50	148.50	KLX07A_0128.50_200508241821.ht2	KLX07A_128.50-148.50_050824_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-25			
2005-08-25	08:15	146.50	166.50	KLX07A_0146.50_200508250815.ht2	KLX07A_146.50-166.50_050825_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-25			
2005-08-25	11:10	166.84	186.84	KLX07A_0166.84_200508251110.ht2	KLX07A_166.84-186.84_050825_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-25			
2005-08-25	13:32	186.88	206.88	KLX07A_0186.88_200508251332.ht2	KLX07A_186.88-206.88_050825_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-25			
2005-08-25	15:22	191.89	211.89	KLX07A_0191.89_200508251522.ht2	KLX07A_191.89-211.89_050825_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-25			
2005-08-25	17:38	211.92	231.92	KLX07A_0211.92_200508251738.ht2	KLX07A_211.92-231.92_050825_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-26			
2005-08-26	08:21	221.93	241.93	KLX07A_0221.93_200508260821.ht2	KLX07A_221.93-241.93_050826_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-26			
2005-08-26	10:33	241.93	261.93	KLX07A 0241.93 200508261033.ht2	KLX07A_241.93-261.93_050826_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-26			

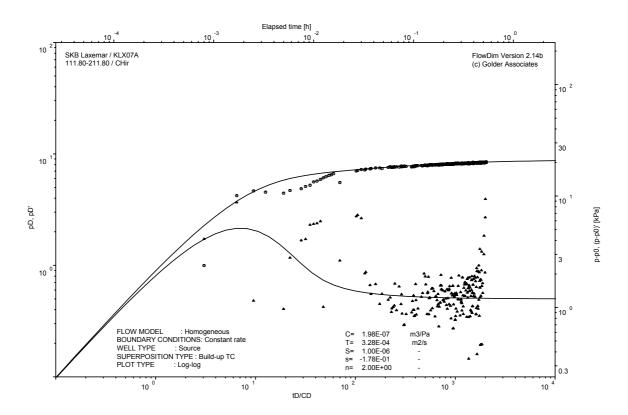

HYDROTESTING WITH PSS			WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX07A						
TEST- AND FILEPROTOCOL				OCOL	Testorder dated : 2005-08-20						
Teststart boundaries				of Datafiles	Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2005-08-26	13:17	261.95	281.95	KLX07A_0261.95_200508261317.ht2	KLX07A_261.95-281.95_050826_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-26			
2005-08-26	15:36	281.98	301.98	KLX07A_0281.98_200508261536.ht2	KLX07A_281.98-301.98_050826_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-26			
2005-08-26	17:29	291.99	311.99	KLX07A_0291.99_200508261729.ht2	KLX07A_291.99-311.99_050826_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-27			
2005-08-27	09:24	312.00	332.00	KLX07A_0312.00_200508270924.ht2	KLX07A_312.00-332.00_050827_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-27			
2005-08-27	11:12	312.00	332.00	_KLX07A_0312.00_200508271112.ht2	KLX07A_312.00-332.00_050827_2_CHir_Q_r.csv	Chir	2005-09-02	2005-08-27			
2005-08-27	14:01	326.99	346.99	KLX07A_0326.99_200508271401.ht2	KLX07A_326.99-346.99_050827_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-27			
2005-08-27	16:09	341.99	361.99	_KLX07A_0341.99_200508271609.ht2	KLX07A_341.99-361.99_050827_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-27			
2005-08-27	18:31	362.07	382.07	KLX07A_0362.07_200508271831.ht2	KLX07A_362.07-382.07_050827_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-28			
2005-08-28	08:24	382.08	402.08	KLX07A_0382.08_200508280824.ht2	KLX07A_382.08-402.08_050828_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-28			
2005-08-28	10:31	402.06	422.06	_KLX07A_0402.06_200508281031.ht2	KLX07A_402.06-422.06_050828_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-28			
2005-08-28	13:21	417.07	437.07	KLX07A_0417.07_200508281321.ht2	KLX07A_417.07-437.07_050828_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-28			
2005-08-28	15:25	437.08	457.08	KLX07A_0437.08_200508281525.ht2	KLX07A_437.08-457.08_050828_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-28			
2005-08-28	17:32	457.08	477.08	KLX07A_0457.08_200508281732.ht2	KLX07A_457.08-477.08_050828_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-29			
2005-08-29	08:35	477.12	497.12	_KLX07A_0477.12_200508290835.ht2	KLX07A 477.12-497.12 050829 1 CHir Q r.csv	Chir	2005-09-02	2005-08-29			
2005-08-29	10:40	497.14	517.14	KLX07A_0497.14_200508291040.ht2	KLX07A_497.14-517.14_050829_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-29			
2005-08-29	14:23	507.16	527.16	KLX07A_0507.16_200508291423.ht2	KLX07A_507.16-527.16_050829_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-29			

HYDROTESTING WITH PSS			WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX07A						
TEST- AND FILEPROTOCOL				OCOL	Testorder dated : 2005-08-20						
Teststart Interval boundaries		es	Name of Datafiles T		Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2005-08-29	16:35	527.20	547.20	KLX07A_0527.20_200508291635.ht2	KLX07A_527.20-547.20_050829_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-29			
2005-08-29	18:49	547.23	567.23	KLX07A_0547.23_200508291849.ht2	KLX07A_547.23-567.23_050829_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-30			
2005-08-30	09:08	567.26	587.26	KLX07A_0567.26_200508300908.ht2	KLX07A_567.26-587.26_050830_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-30			
2005-08-30	11:38	587.30	607.30	KLX07A_0587.30_200508301138.ht2	KLX07A_587.30-607.30_050830_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-30			
2005-08-30	14:27	607.32	627.32	KLX07A_0607.32_200508301427.ht2	KLX07A_607.32-627.32_050830_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-30			
2005-08-30	16:32	620.00	640.00	KLX07A_0620.00_200508301632.ht2	KLX07A_620.00-640.00_050830_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-30			
2005-08-30	18:37	637.36	657.36	KLX07A_0637.36_200508301837.ht2	KLX07A_637.36-657.36_050830_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-31			
2005-08-31	09:19	657.41	677.41	KLX07A_0657.41_200508310919.ht2	KLX07A_657.41-677.51_050831_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-31			
2005-08-31	14:40	667.42	687.42	KLX07A_0667.42_200508311440.ht2	KLX07A_667.42-687.42_050831_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-31			
2005-08-31	16:52	682.43	702.43	KLX07A_0682.43_200508311652.ht2	KLX07A_682.43-702.43_050831_1_CHir_Q_r.csv	Chir	2005-09-02	2005-08-31			
2005-08-31	19:04	702.45	722.45	KLX07A_0702.45_200508311904.ht2	KLX07A_702.45-722.45_050831_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			
2005-09-01	08:07	722.46	742.46	KLX07A_0722.46_200509010807.ht2	KLX07A_722.46-742.46_050901_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			
2005-09-01	10:12	732.48	752.48	KLX07A_0732.48_200509011012.ht2	KLX07A_732.48-752.48_050901_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			
2005-09-01	12:30	752.51	772.51	KLX07A_0752.51_200509011230.ht2	KLX07A_752.51-772.51_050901_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			
2005-09-01	15:01	772.53	792.53	KLX07A_0772.53_200509011501.ht2	KLX07A_772.53-792.53_050901_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			

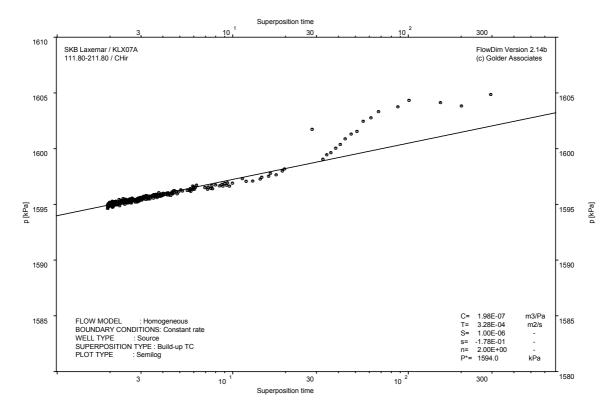

Borehole: KLX07A	Page 1/4


				PSS	DRILLHOLE IDENTIFICATION NO.: KLX07A Testorder dated : 2005-08-20						
)COL							
Teststart Interval boundaries		ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2005-09-01	17:21	792.55	812.55	KLX07A_0792.55_200509011721.ht2	KLX07A_792.55-812.55_050901_1_CHir_Q_r.csv	Chir	2005-09-02	2005-09-01			

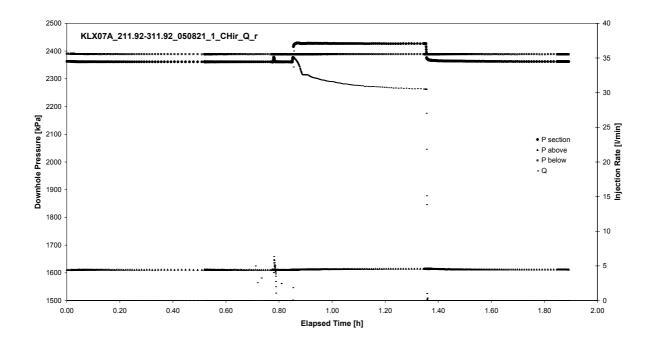
Test 111.80-211.80 m



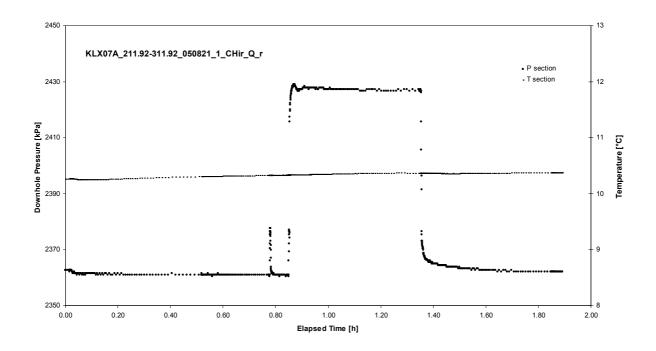
Pressure and flow rate vs. time; cartesian plot



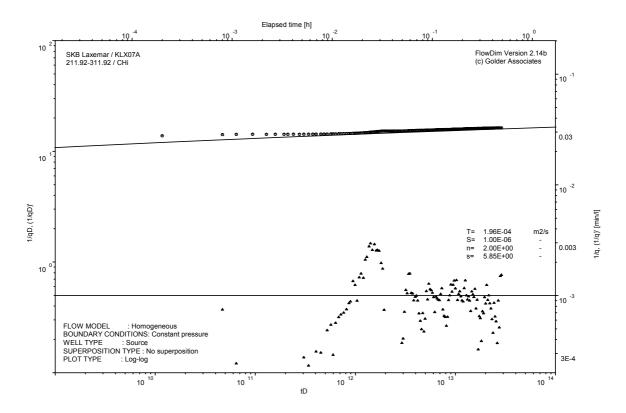
CHI phase; log-log match

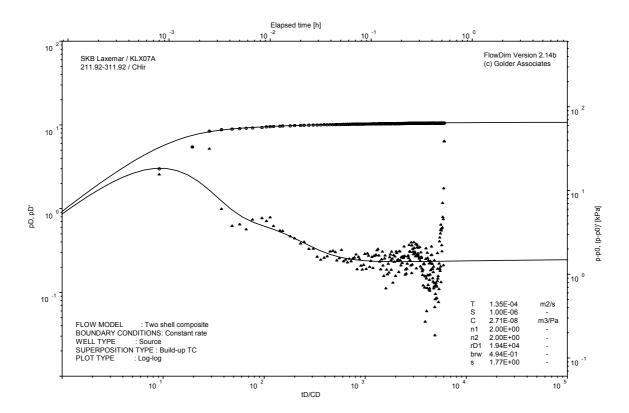


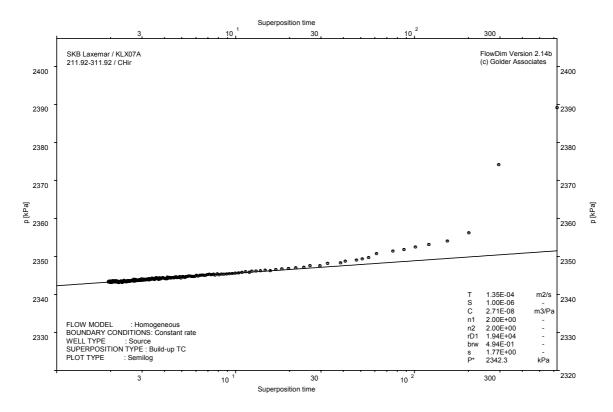
CHIR phase; log-log match



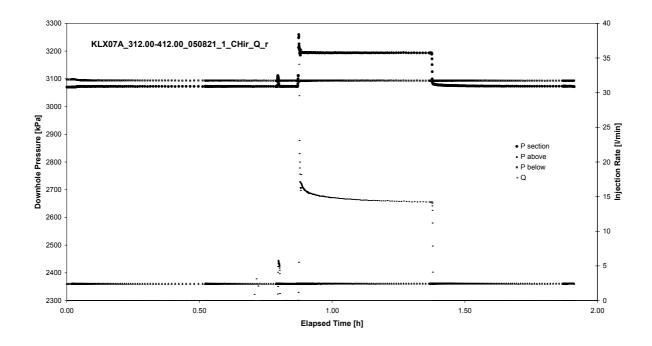
CHIR phase; HORNER match


Test 211.92-311.92 m

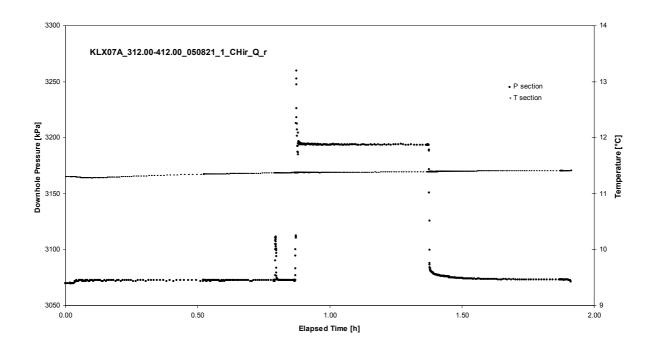

Pressure and flow rate vs. time; cartesian plot

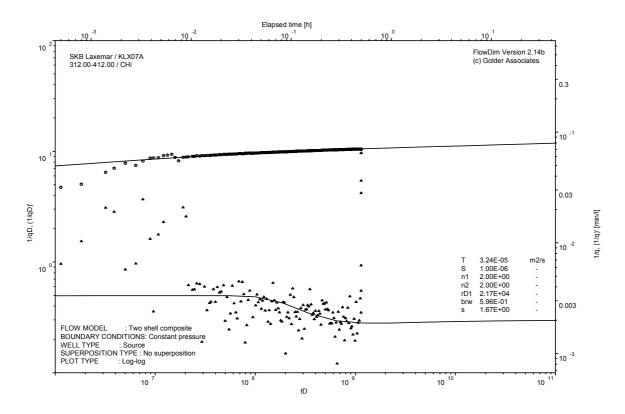

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

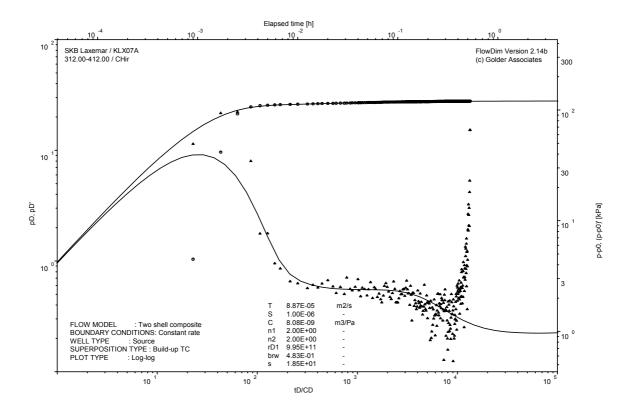


CHIR phase; log-log match

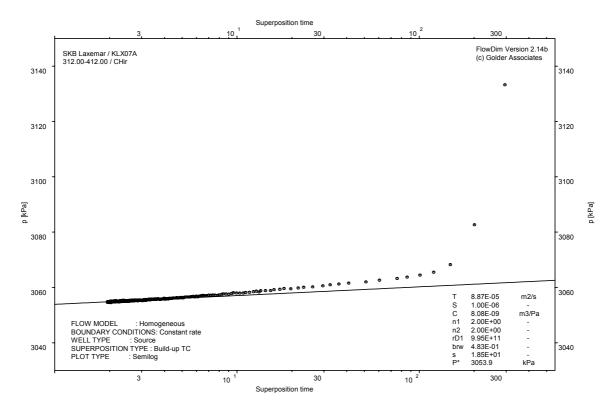



CHIR phase; HORNER match

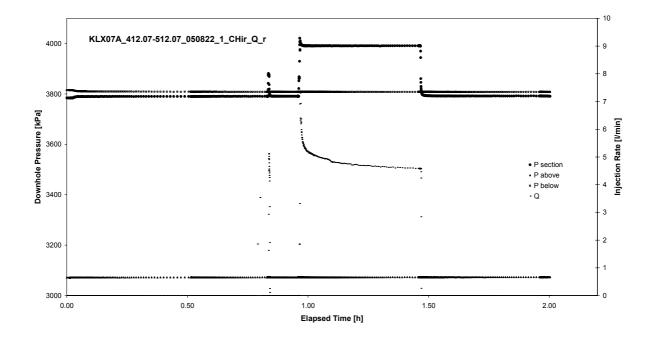
Test 312.00-412.00 m



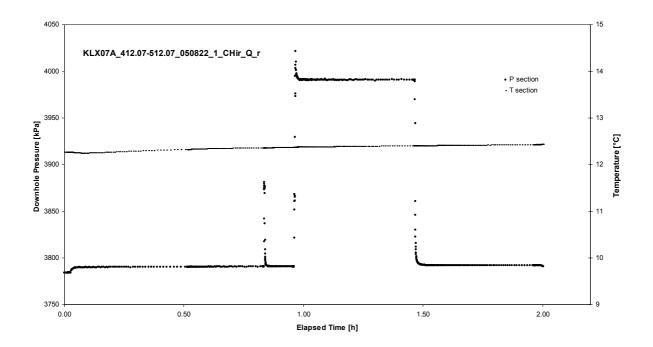
Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match

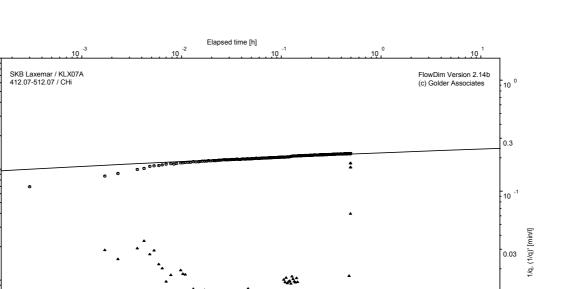


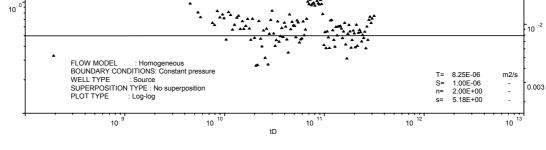
CHIR phase; log-log match



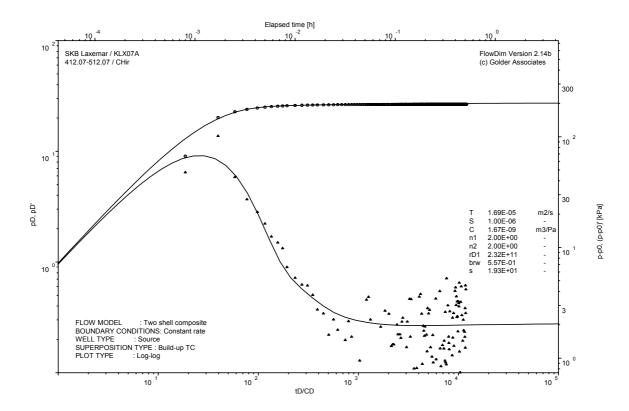
CHIR phase; HORNER match

Test 412.07-512.07 m

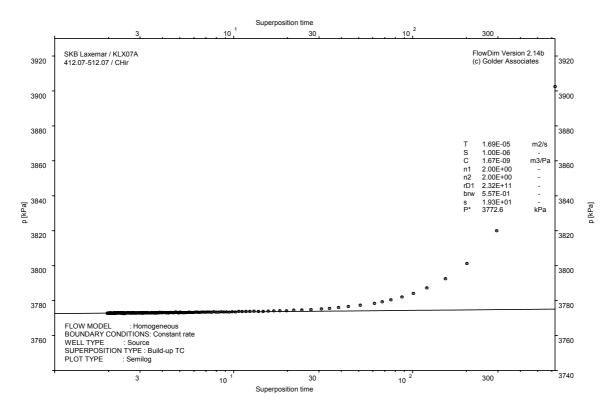

Pressure and flow rate vs. time; cartesian plot



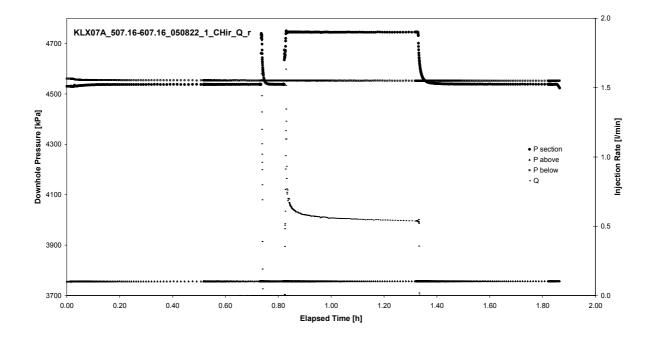
10


10

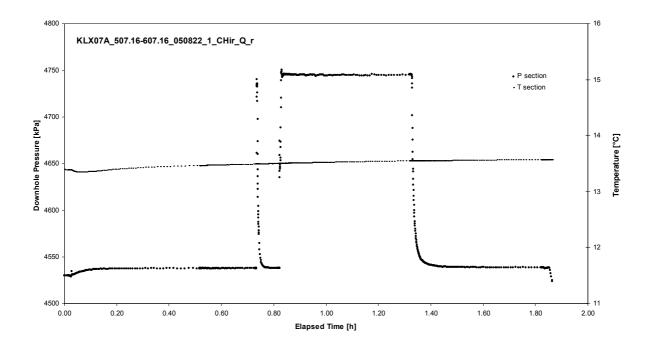
1/qD, (1/qD)'



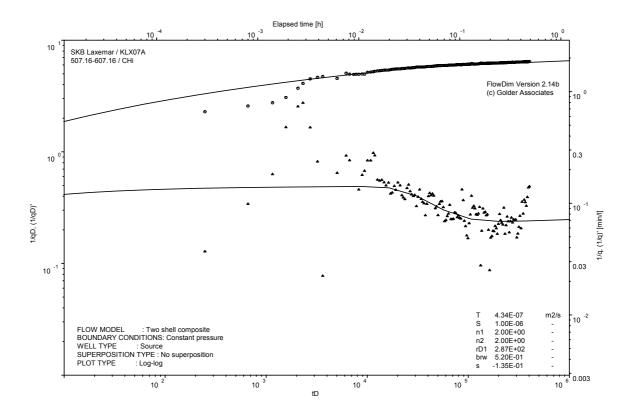
CHI phase; log-log match

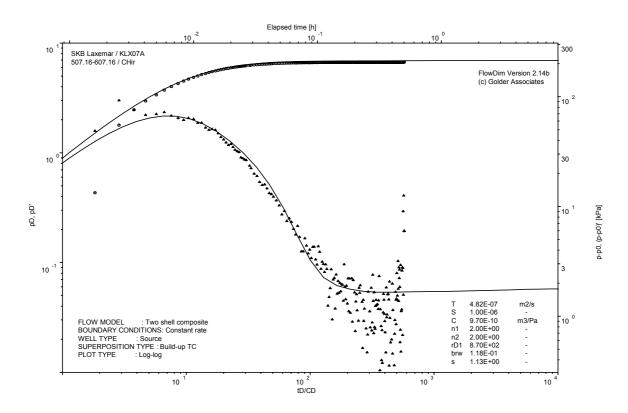


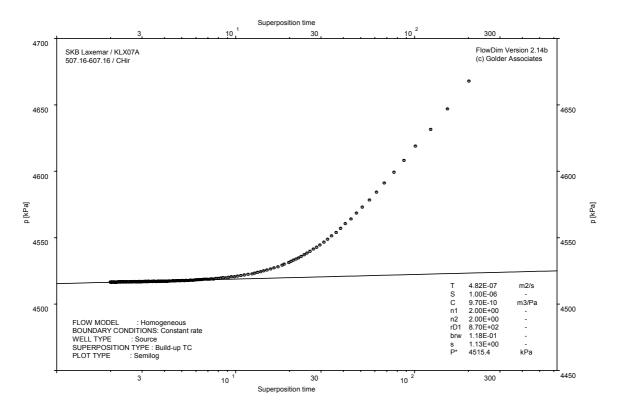
CHIR phase; log-log match



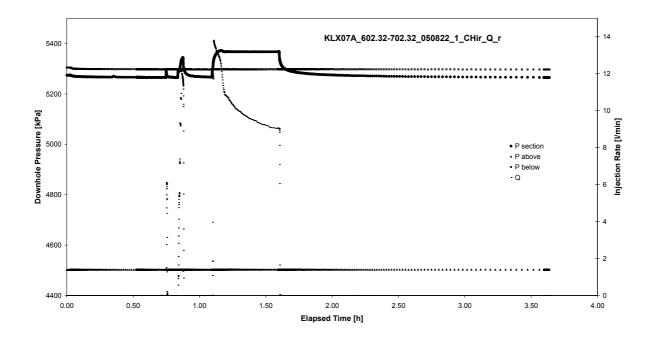
CHIR phase; HORNER match


Test 507.16-607.16 m

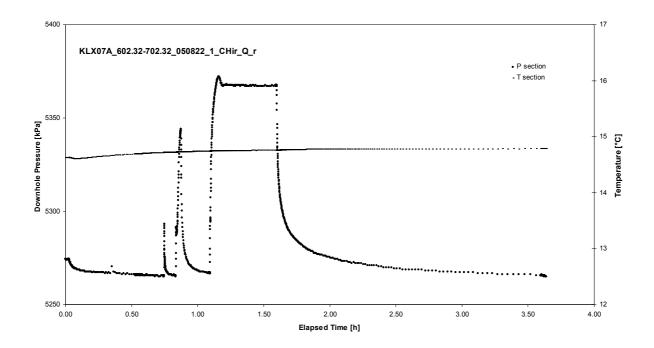

Pressure and flow rate vs. time; cartesian plot

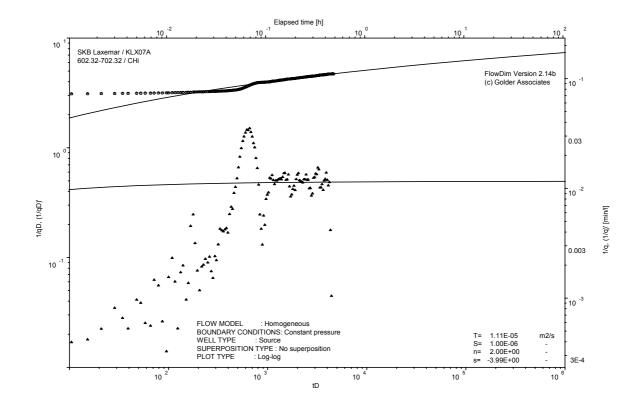

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

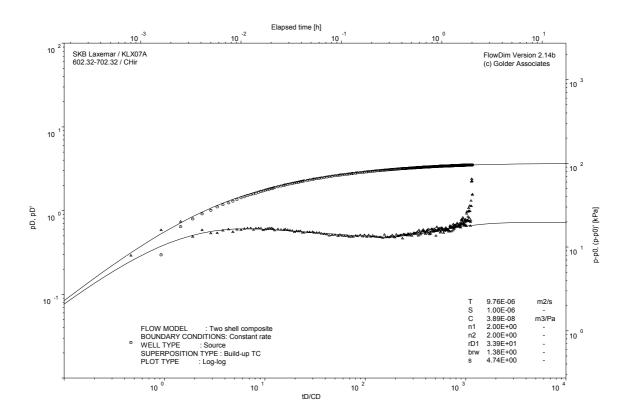


CHIR phase; log-log match

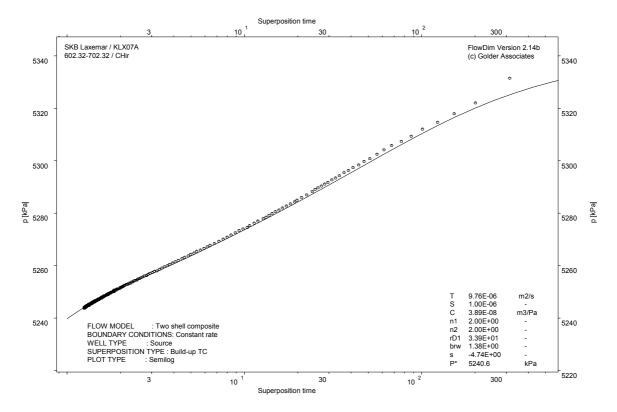



CHIR phase; HORNER match

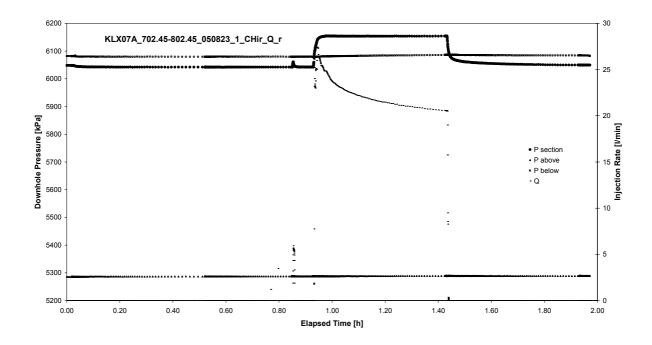
Test 602.32-702.32 m



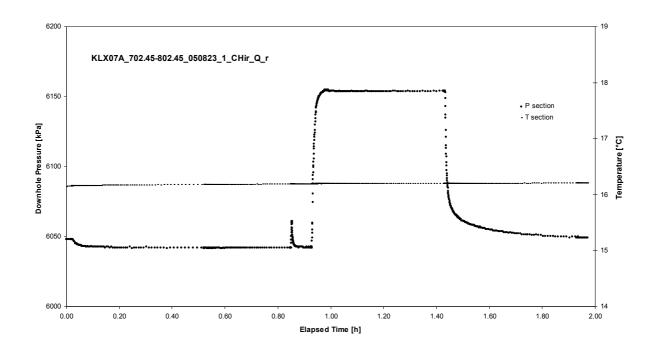
Pressure and flow rate vs. time; cartesian plot

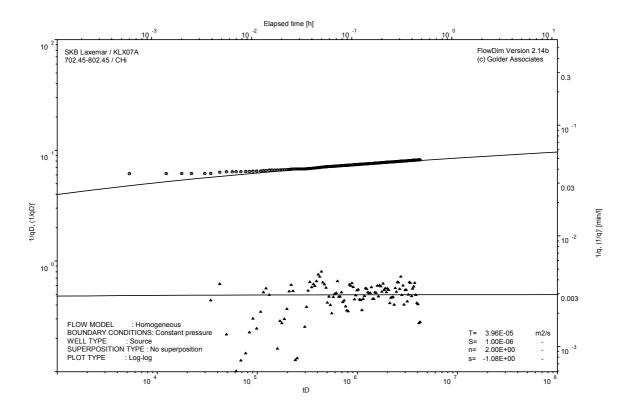


CHI phase; log-log match

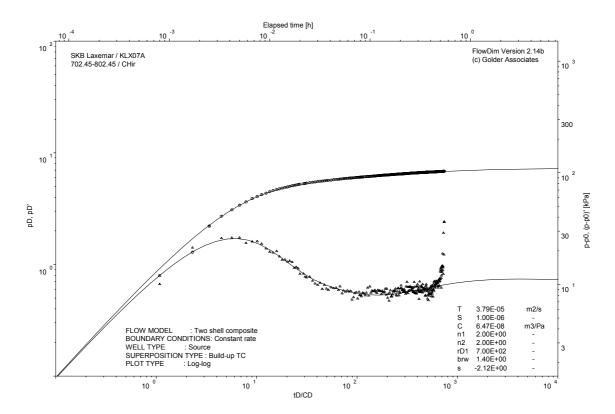


CHIR phase; log-log match

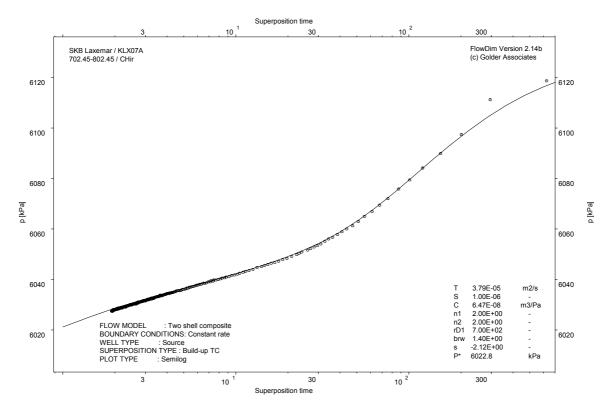



CHIR phase; HORNER match

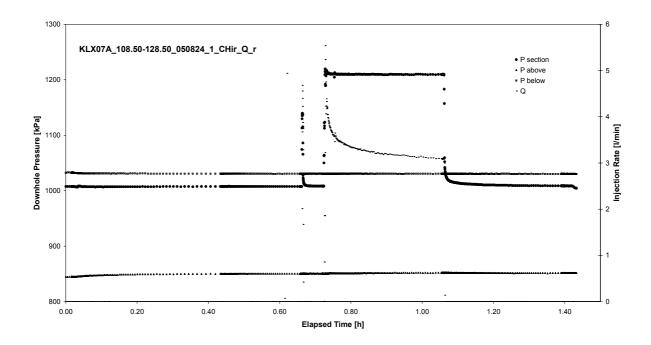
Test 702.45-802.45 m



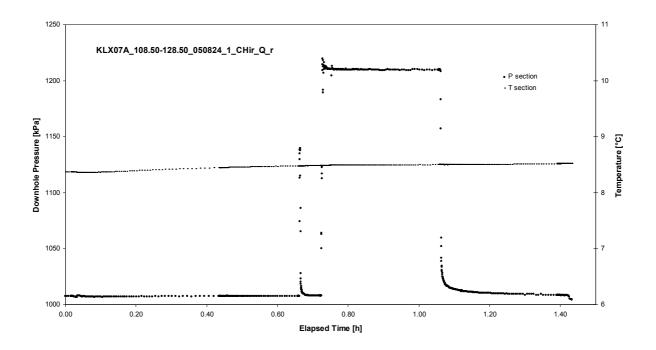
Pressure and flow rate vs. time; cartesian plot



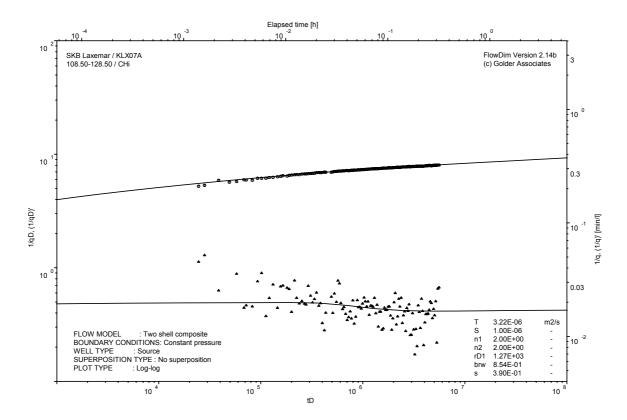
CHI phase; log-log match

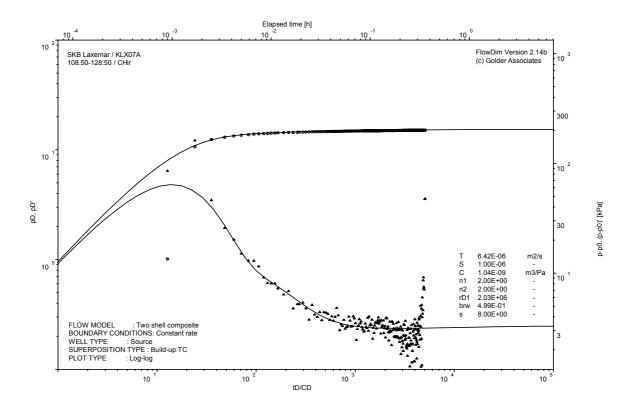


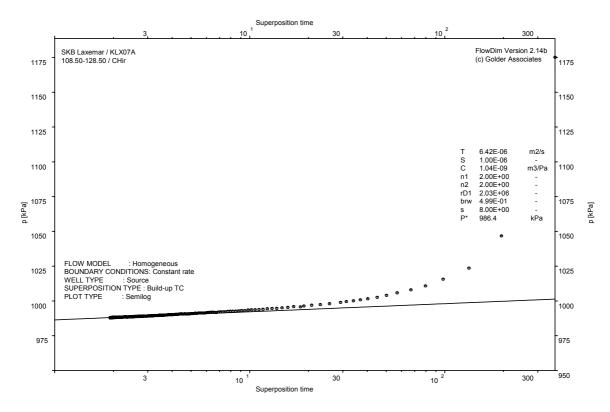
CHIR phase; log-log match



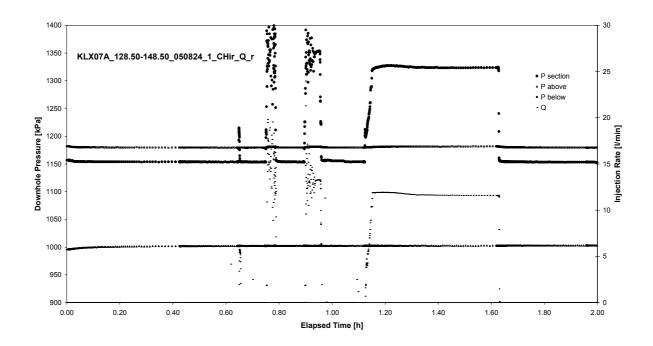
CHIR phase; HORNER match


Test 108.50-128.50 m

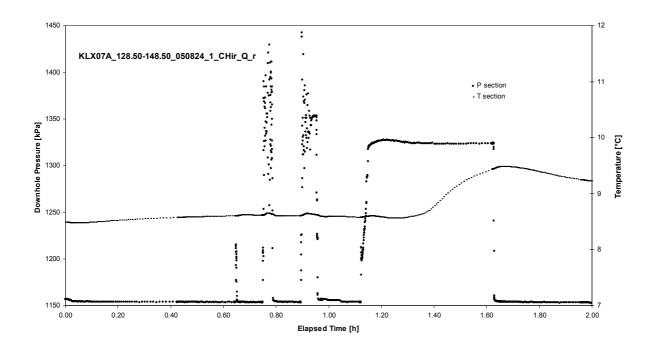

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

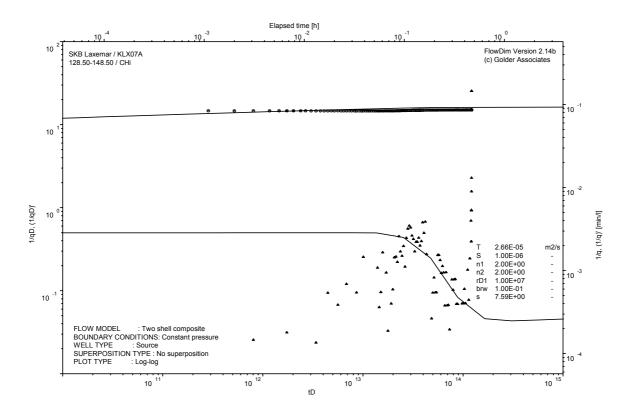
CHI phase; log-log match

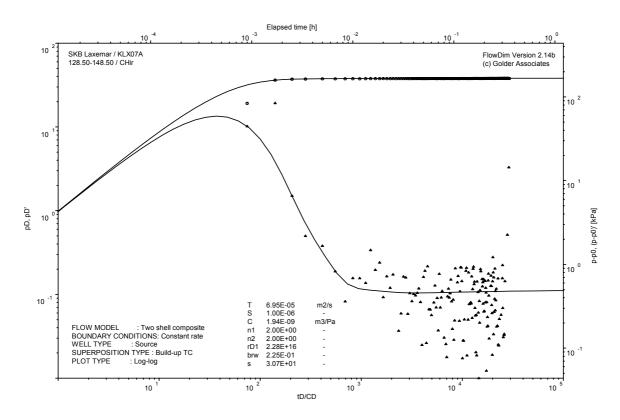


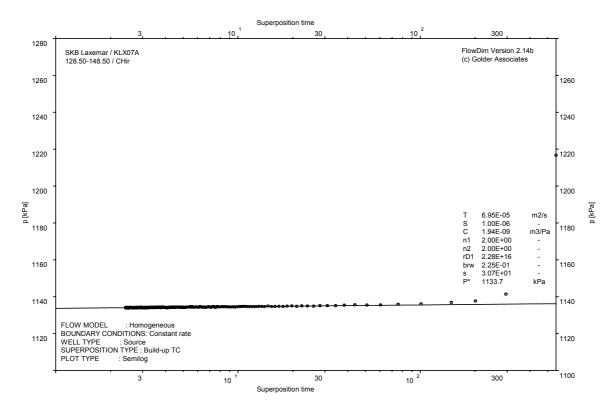
CHIR phase; log-log match



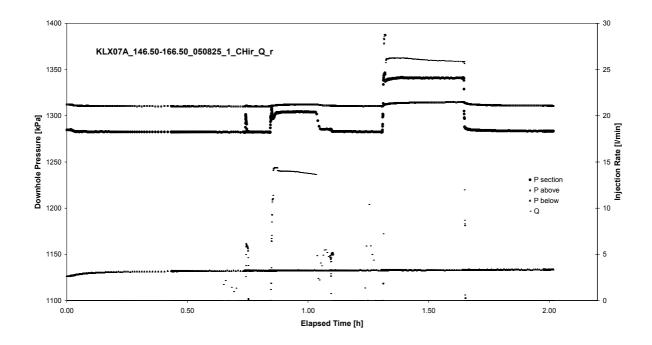
CHIR phase; HORNER match


Test 128.50-148.50 m

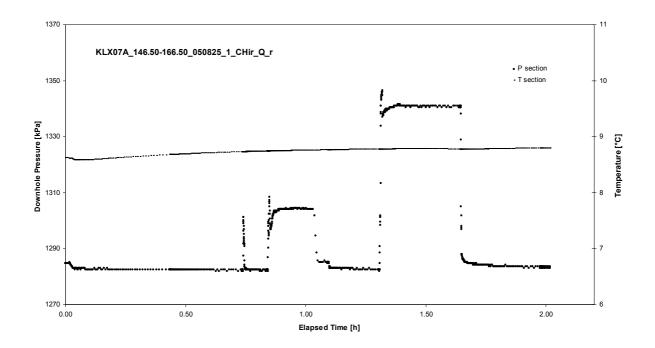

Pressure and flow rate vs. time; cartesian plot

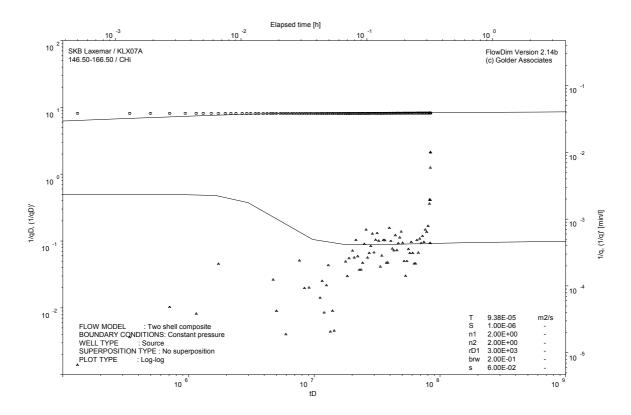

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

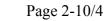


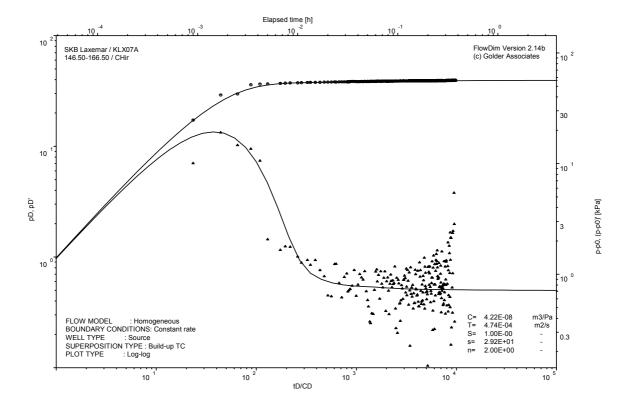
CHIR phase; log-log match

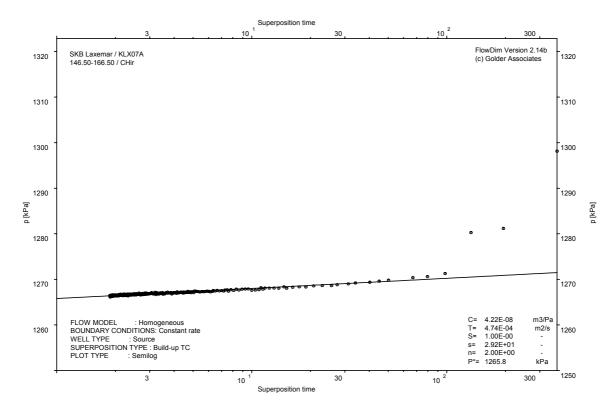



CHIR phase; HORNER match

Test 146.50-166.50 m



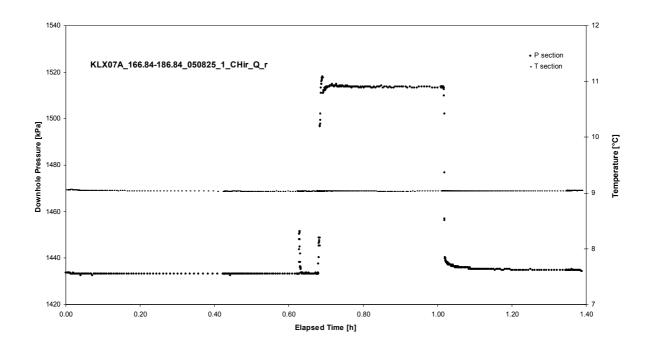

Pressure and flow rate vs. time; cartesian plot

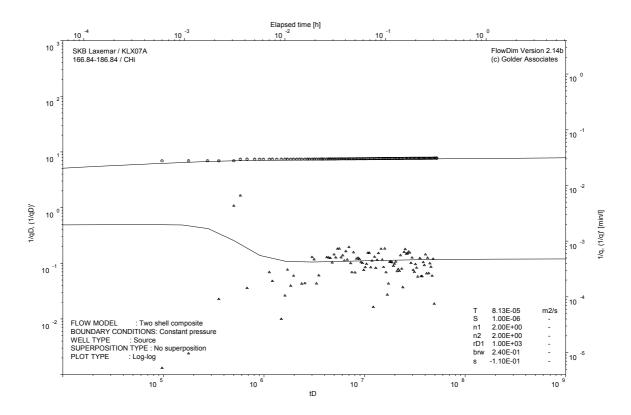


CHI phase; log-log match

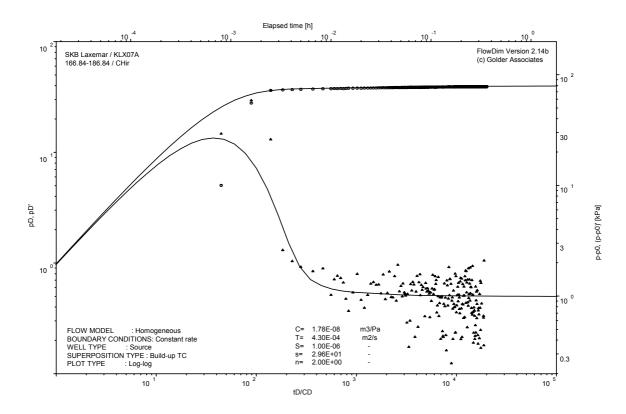


CHIR phase; log-log match

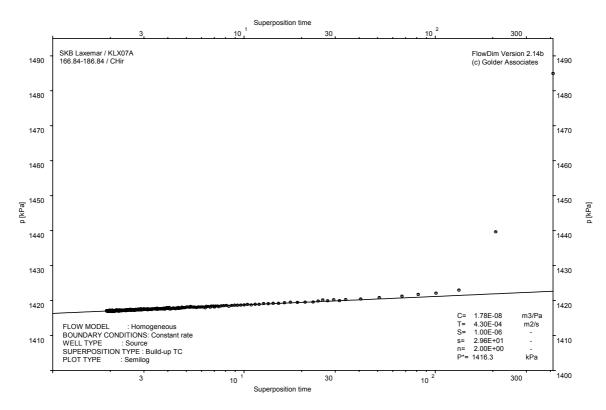



CHIR phase; HORNER match

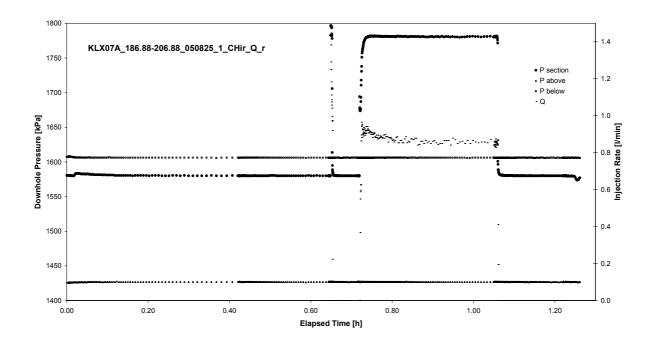
Test 166.84-186.84 m



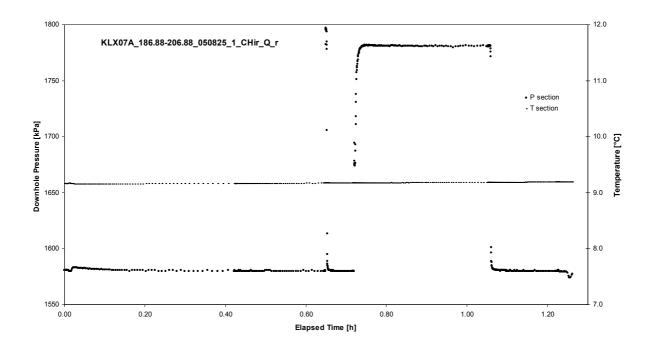
Pressure and flow rate vs. time; cartesian plot

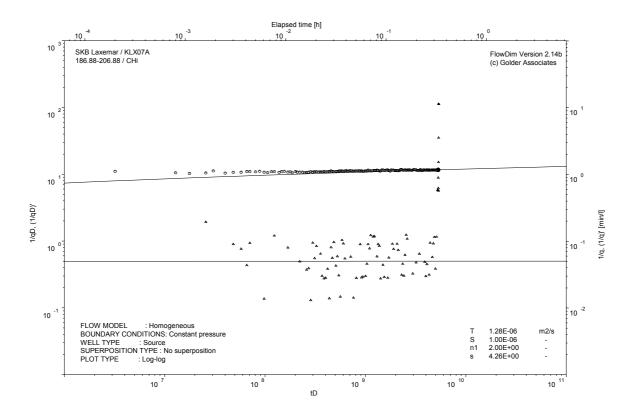


CHI phase; log-log match

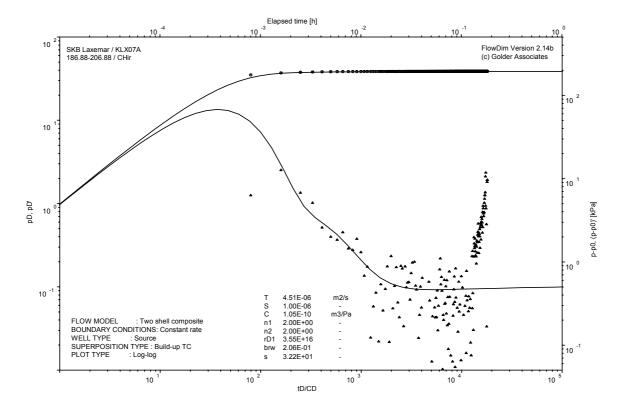


CHIR phase; log-log match

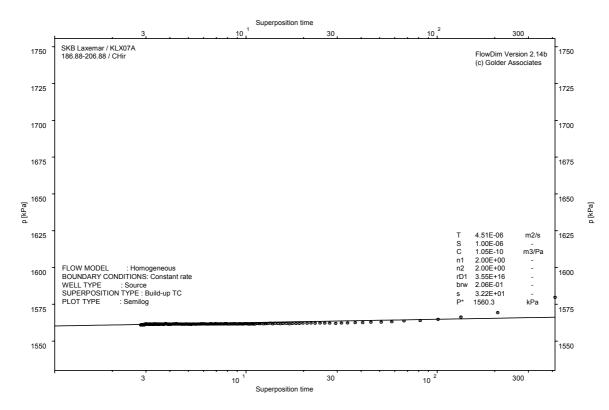



CHIR phase; HORNER match

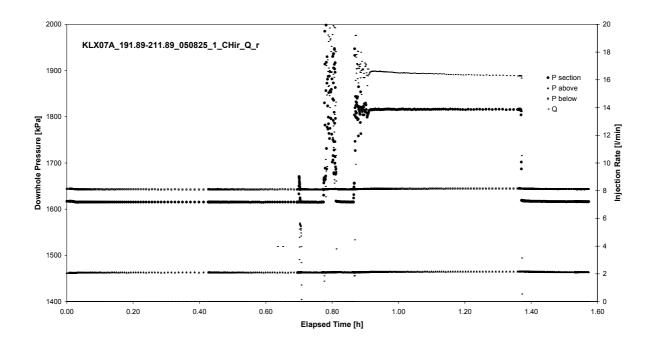
Test 186.88-206.88 m



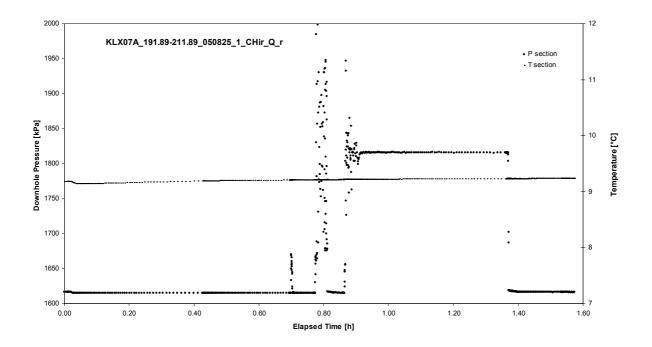
Pressure and flow rate vs. time; cartesian plot



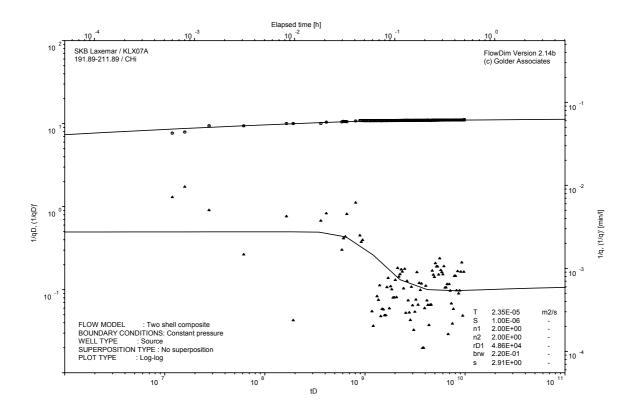
CHI phase; log-log match

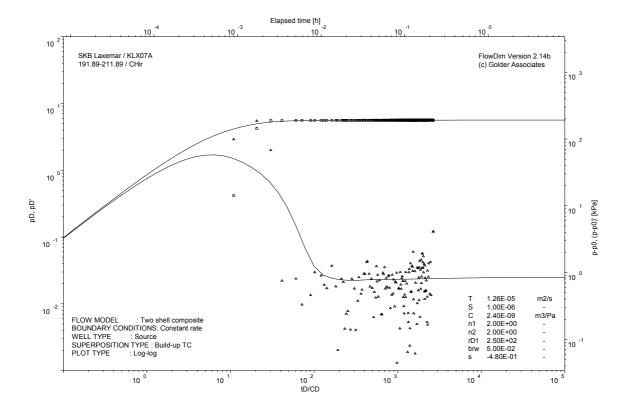


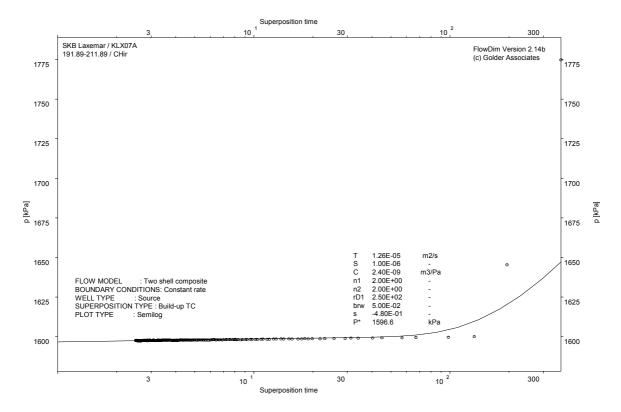
CHIR phase; log-log match



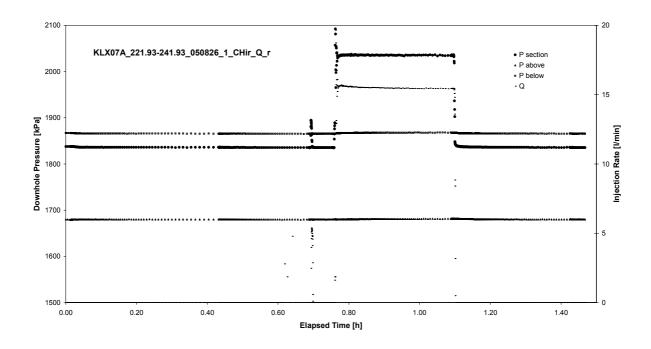
CHIR phase; HORNER match


Test 191.89-211.89 m

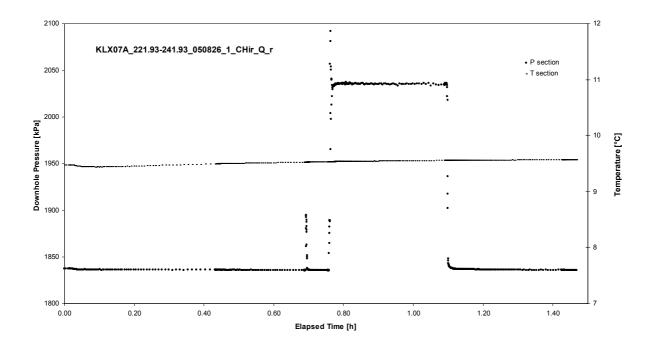

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

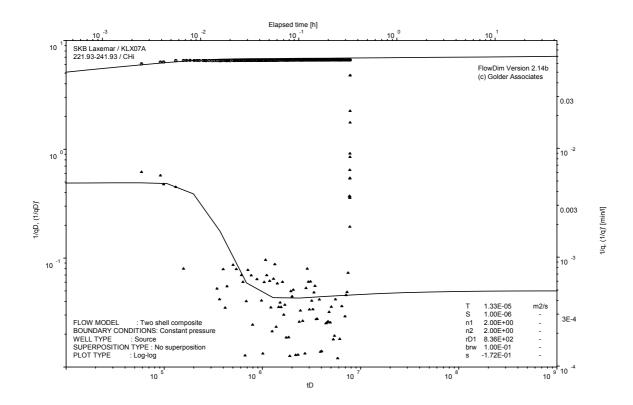
CHI phase; log-log match

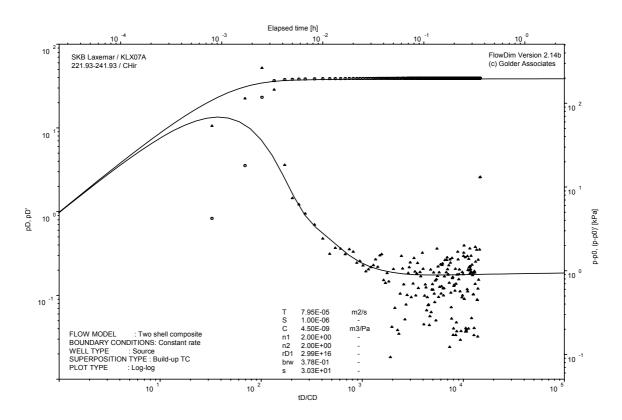


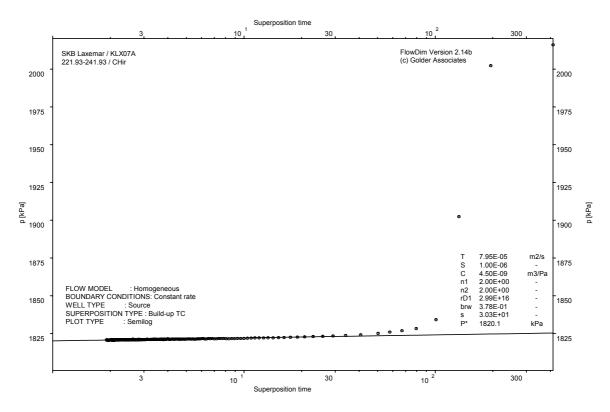
CHIR phase; log-log match



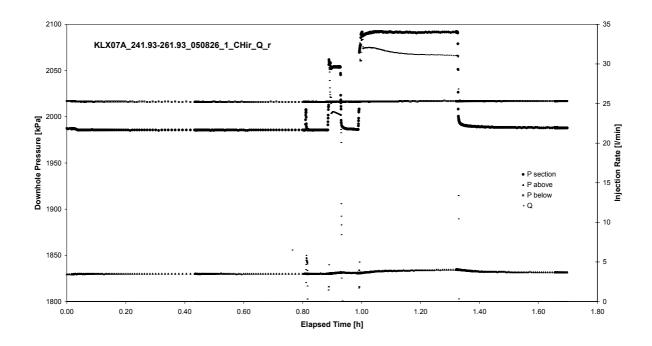
CHIR phase; HORNER match


Test 221.93-241.93 m

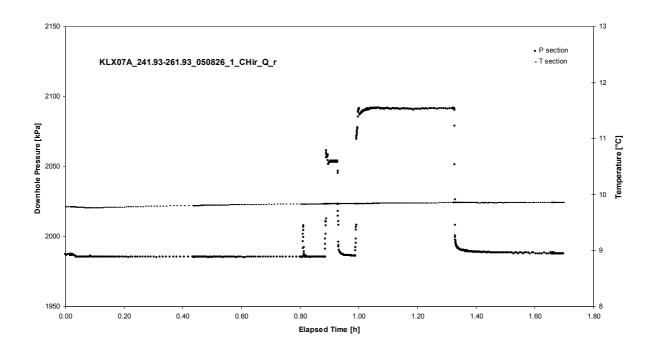

Pressure and flow rate vs. time; cartesian plot

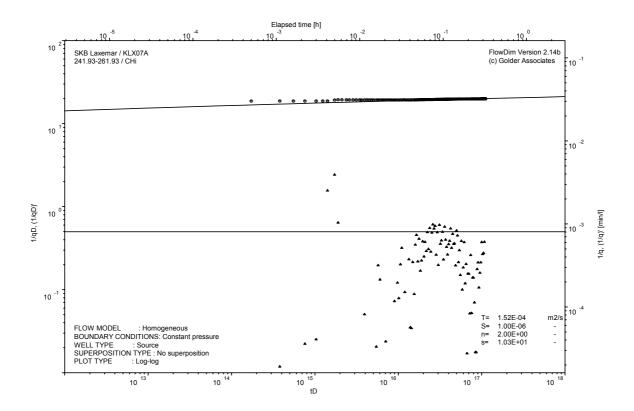

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

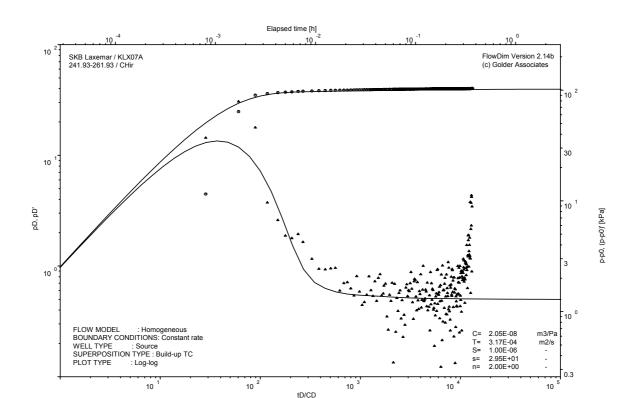


CHIR phase; log-log match

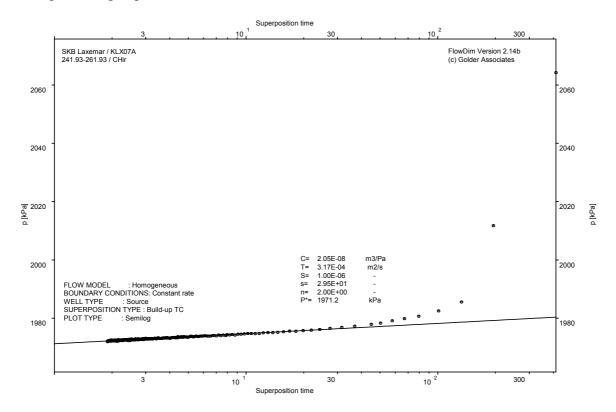



CHIR phase; HORNER match

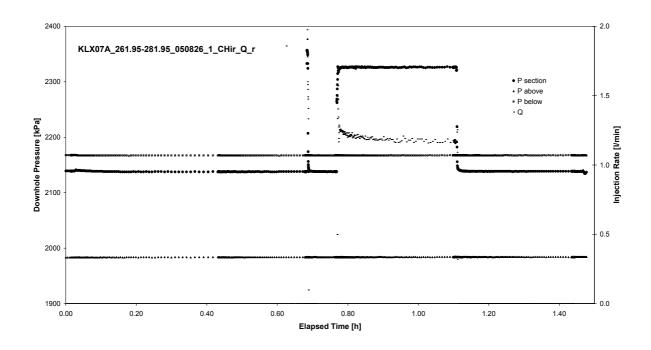
Test 241.93-261.93 m



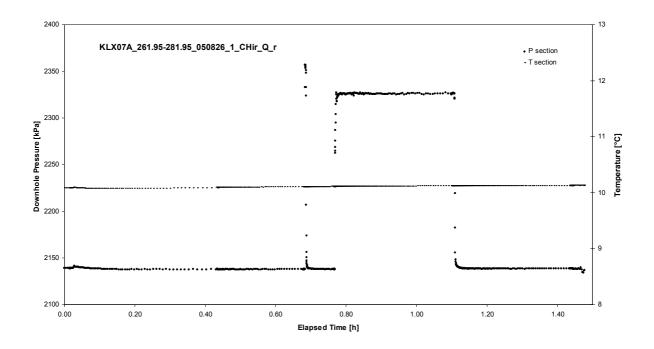
Pressure and flow rate vs. time; cartesian plot



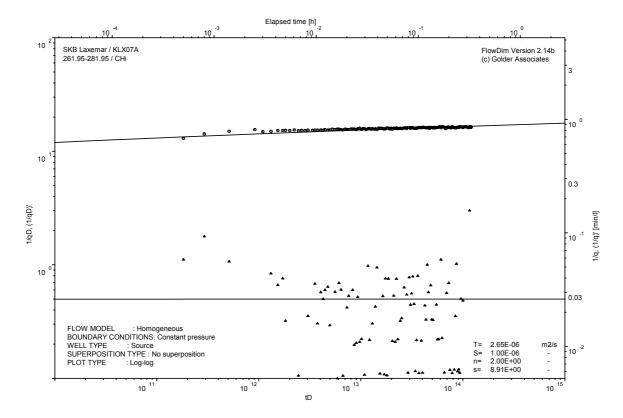
CHI phase; log-log match

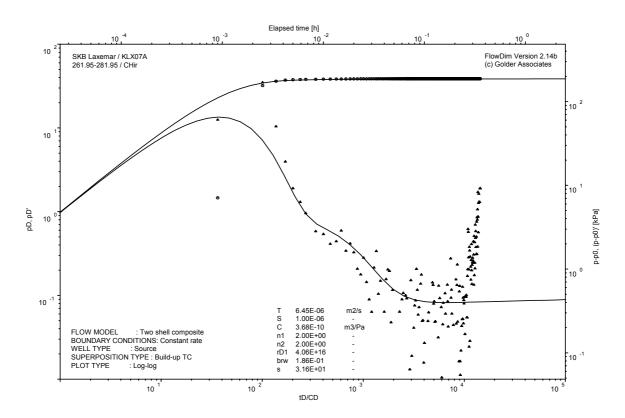


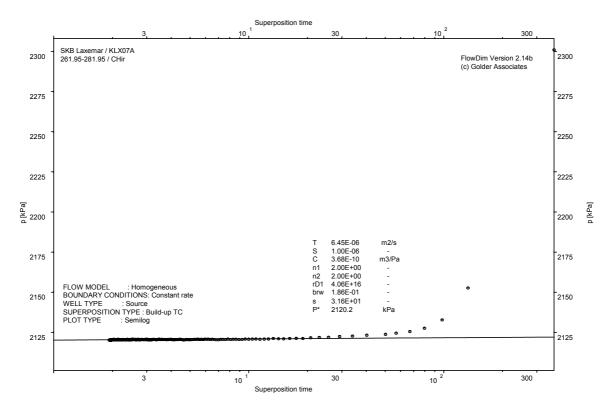
CHIR phase; log-log match



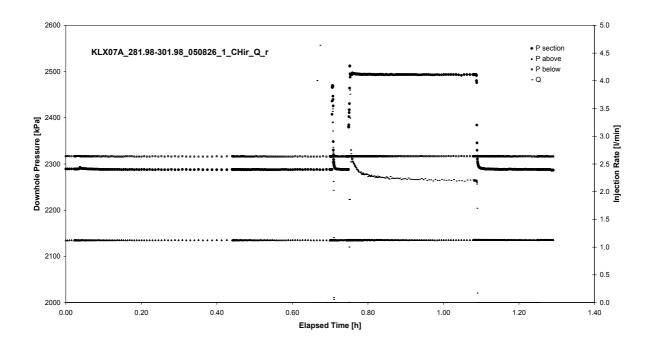
CHIR phase; HORNER match


Test 261.95-281.95 m

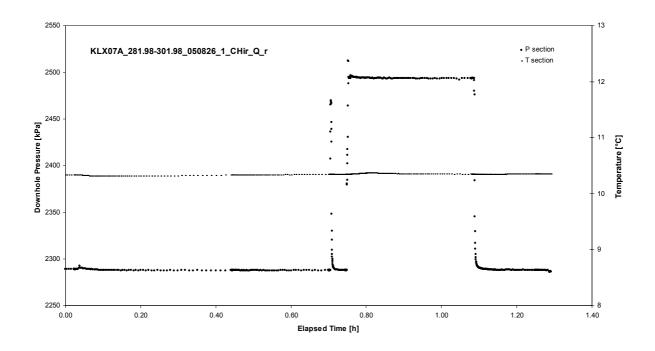

Pressure and flow rate vs. time; cartesian plot



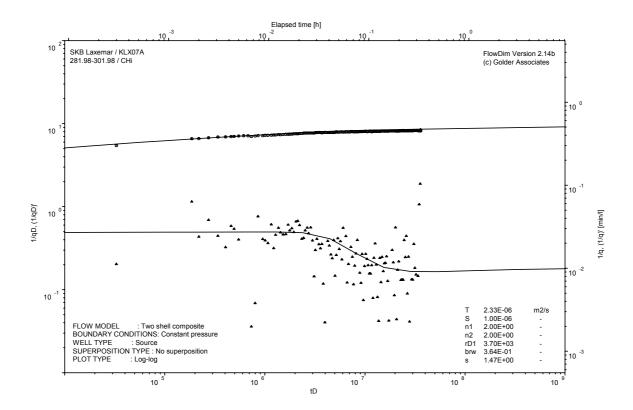
CHI phase; log-log match

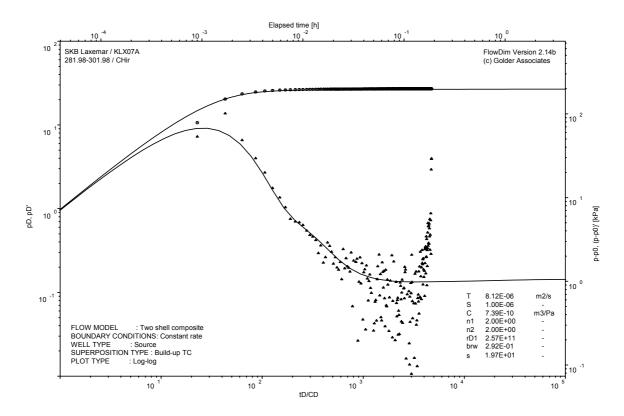


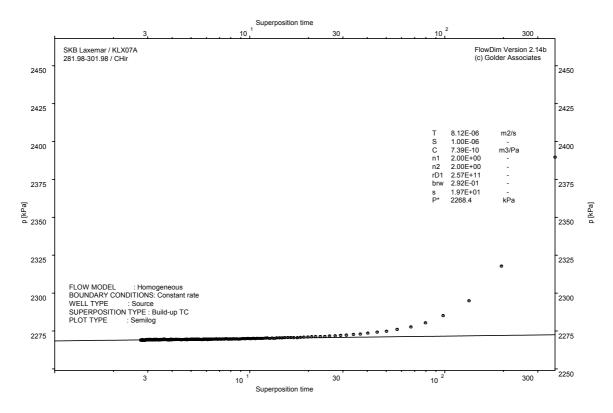
CHIR phase; log-log match



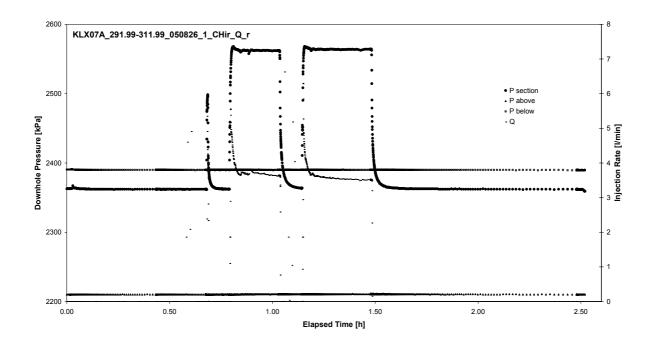
CHIR phase; HORNER match


Test 281.98-301.98 m

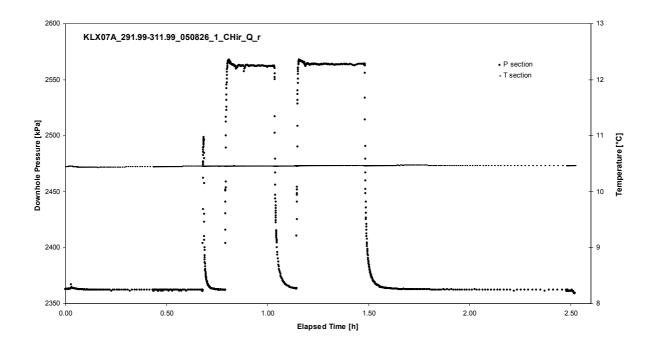

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

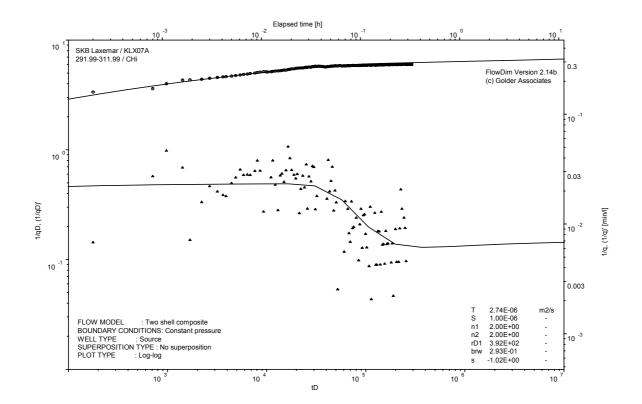
CHI phase; log-log match

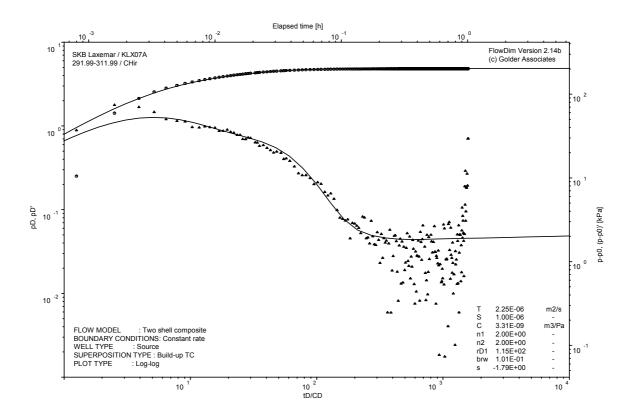


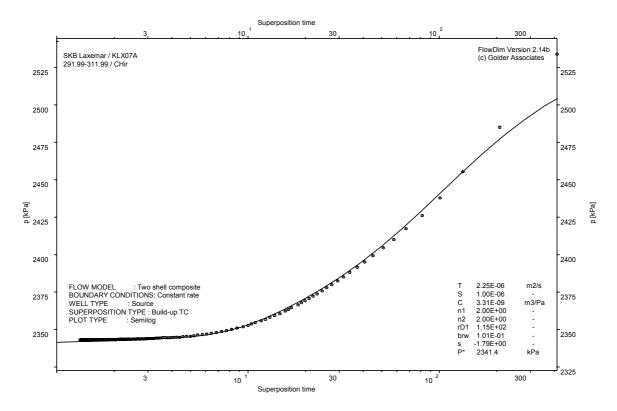
CHIR phase; log-log match



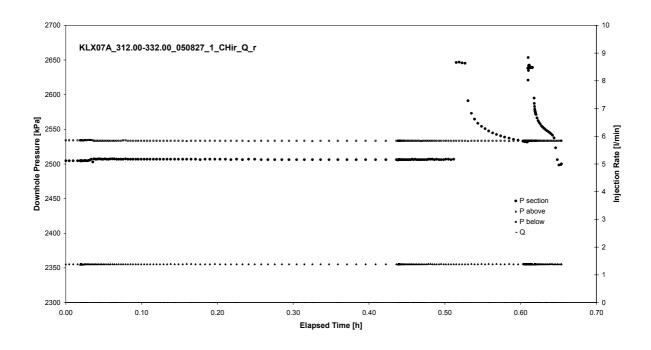
CHIR phase; HORNER match


Test 291.99-311.99 m

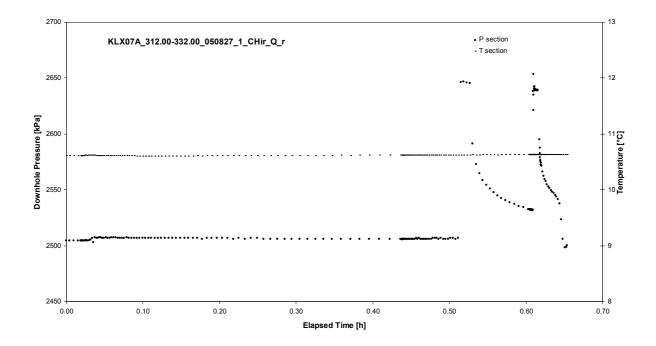

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

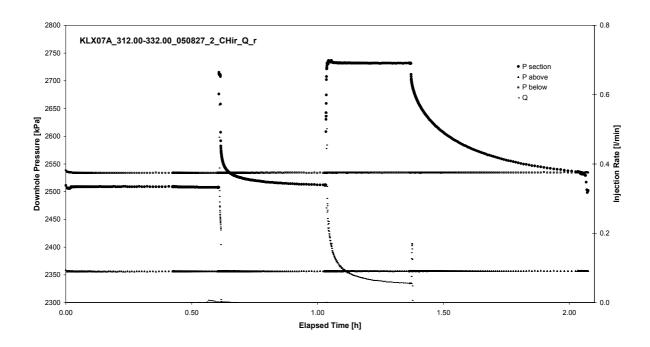
CHI phase; log-log match

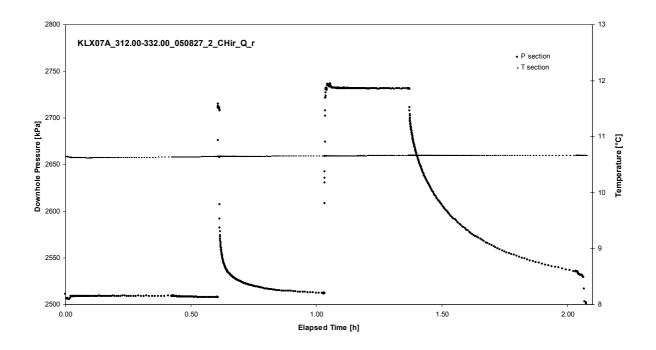


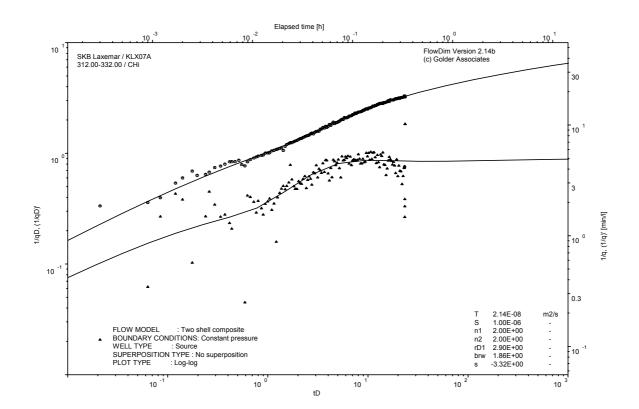
CHIR phase; log-log match

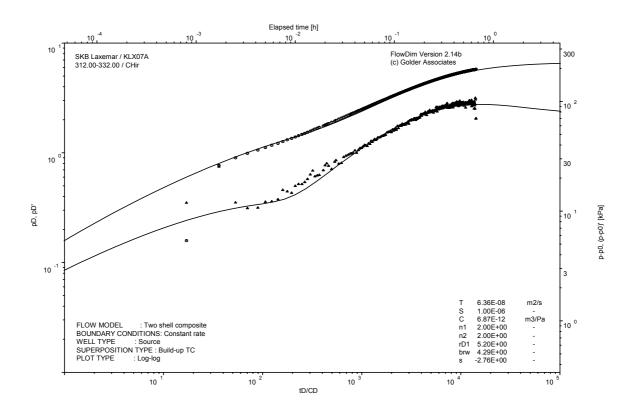


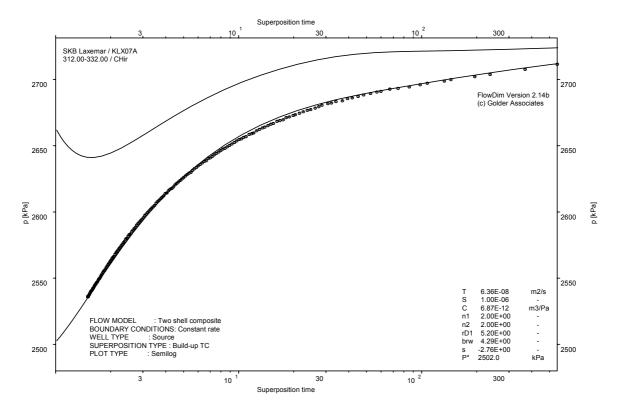
CHIR phase; HORNER match


Test 312.00 – 332.00 m


Pressure and flow rate vs. time; cartesian plot (test repeated)


Interval pressure and temperature vs. time; cartesian plot (test repeated)

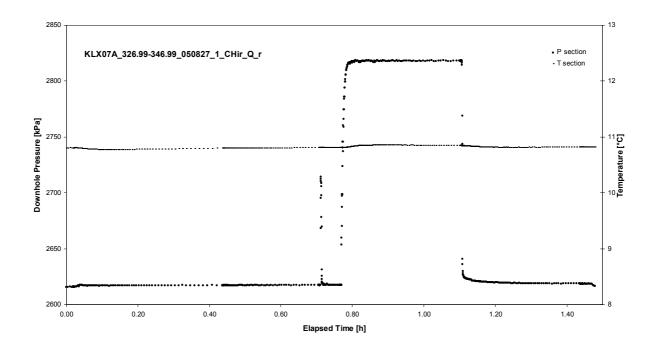

Pressure and flow rate vs. time; cartesian plot (analysed)


Interval pressure and temperature vs. time; cartesian plot (analysed)

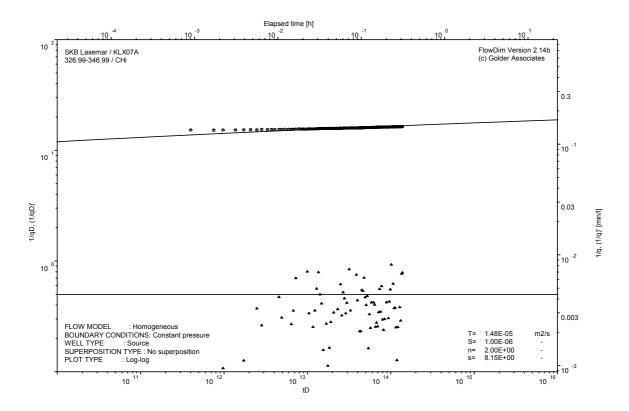
CHI phase; log-log match



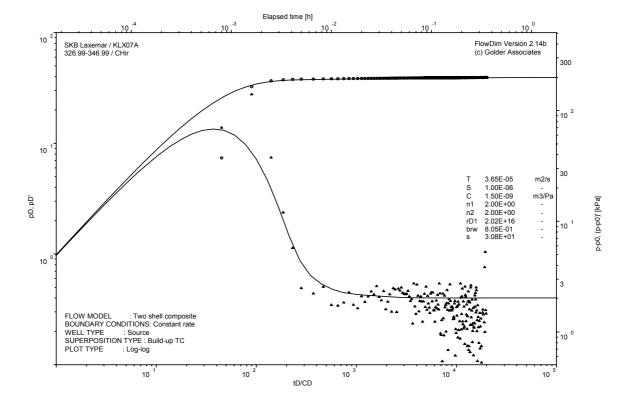
CHIR phase; log-log match



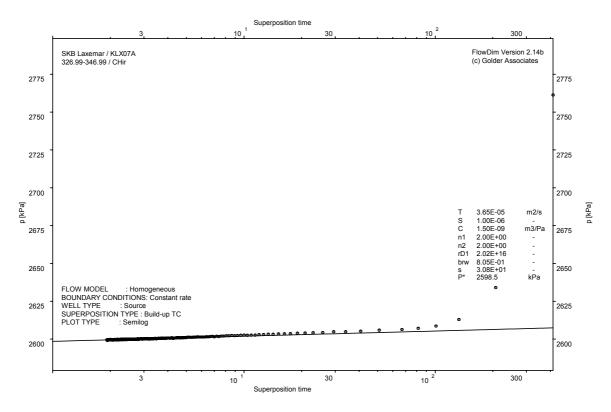
CHIR phase; HORNER match


Test 326.99-346.99 m

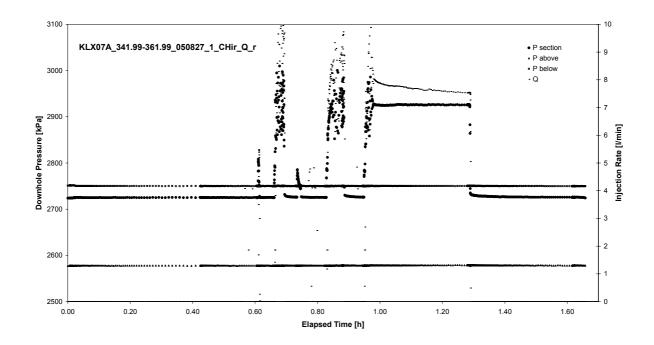
Pressure and flow rate vs. time; cartesian plot



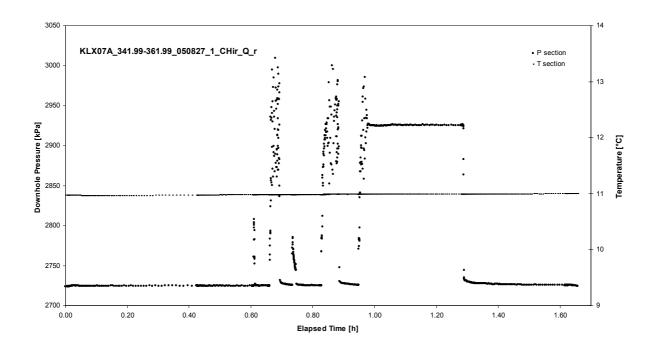
Interval pressure and temperature vs. time; cartesian plot



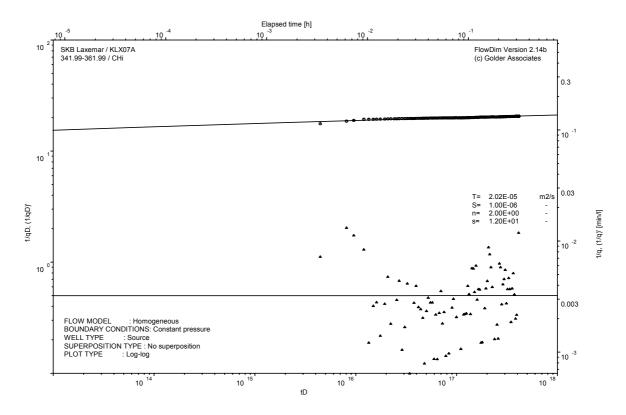
CHI phase; log-log match

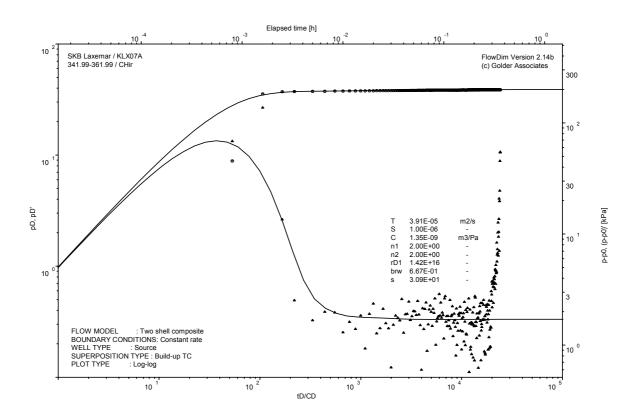


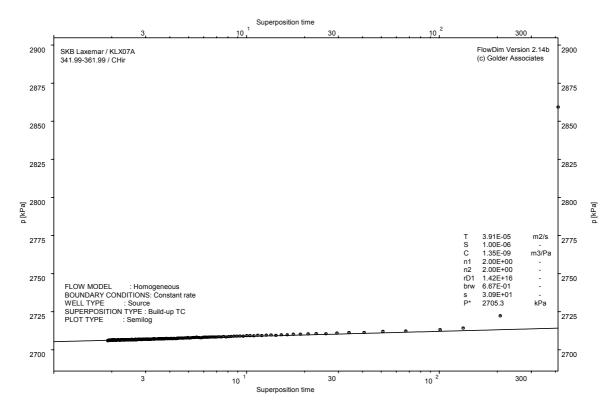
CHIR phase; log-log match



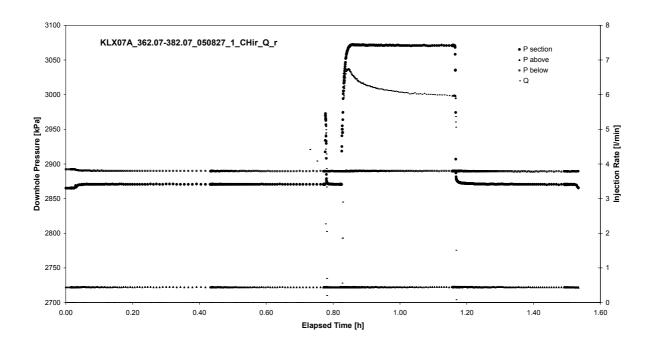
CHIR phase; HORNER match


Test 341.99-361.99 m

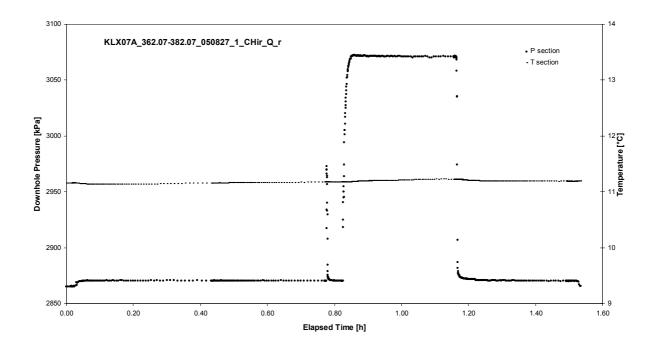

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

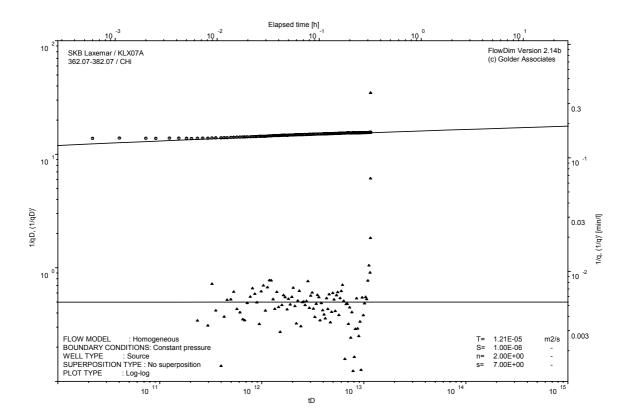
CHI phase; log-log match

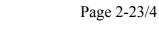


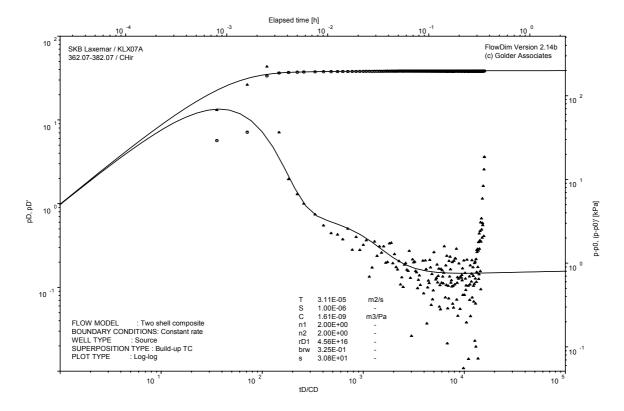
CHIR phase; log-log match



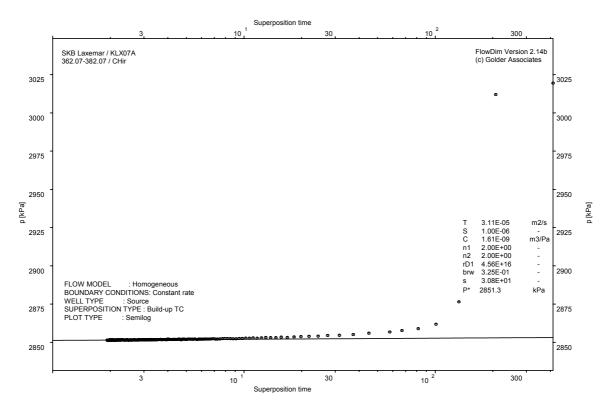
CHIR phase; HORNER match


Test 362.07-382.07 m

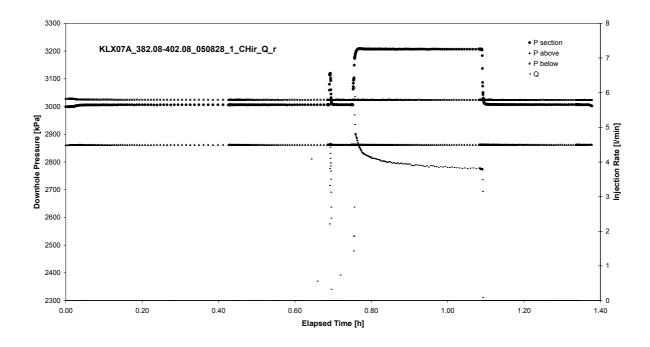

Pressure and flow rate vs. time; cartesian plot



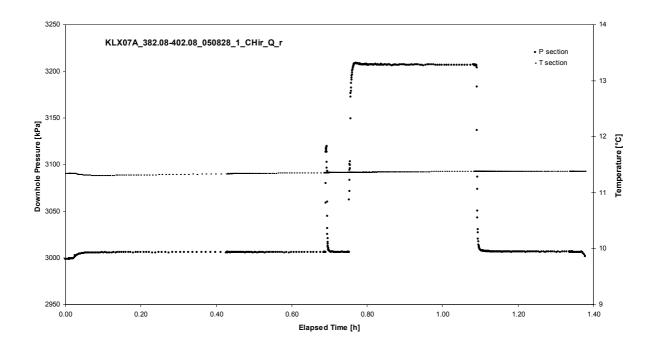
Interval pressure and temperature vs. time; cartesian plot



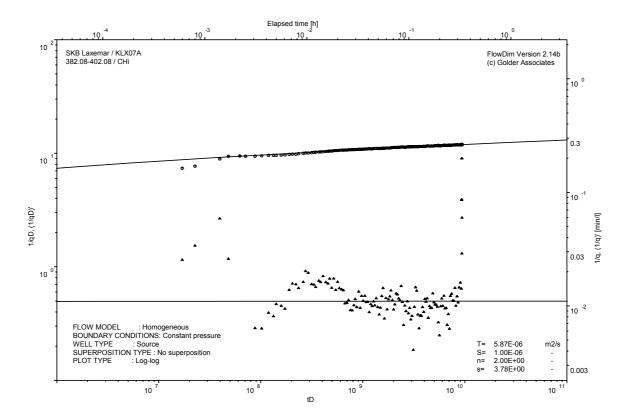
CHI phase; log-log match

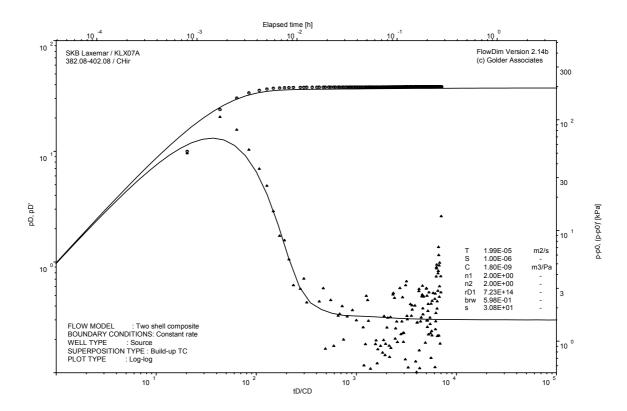


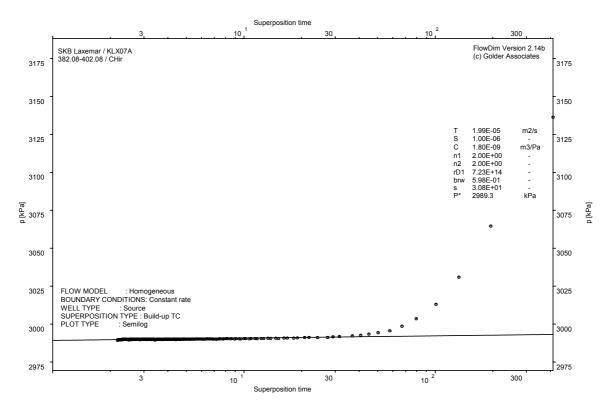
CHIR phase; log-log match



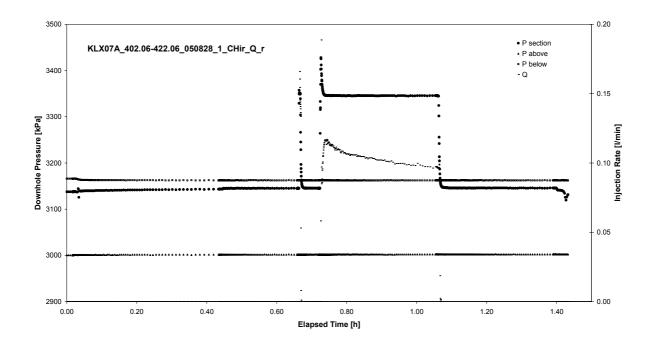
CHIR phase; HORNER match


Test 382.08-402.08 m

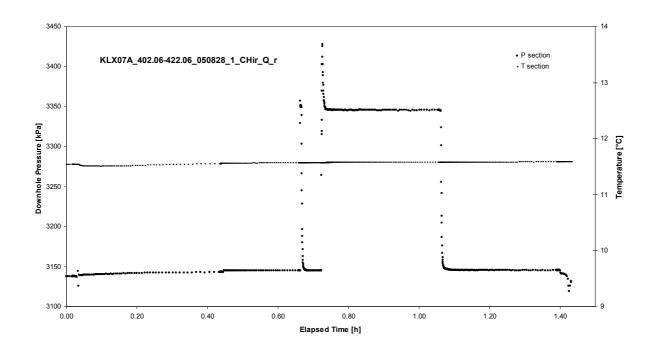

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

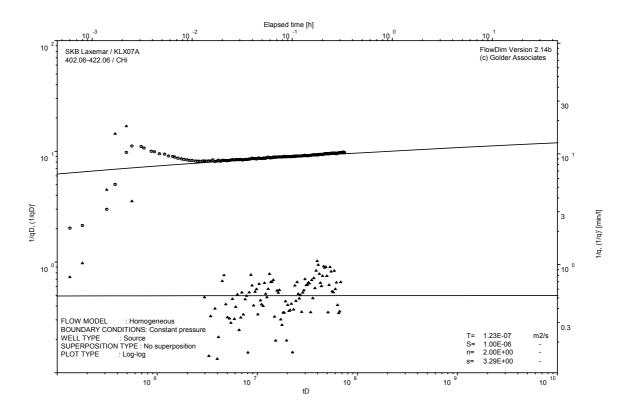
CHI phase; log-log match

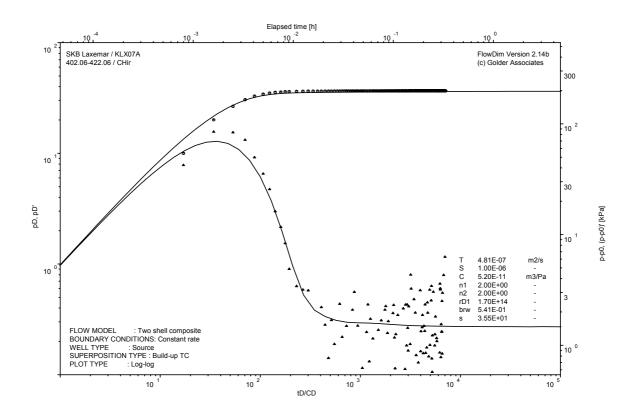


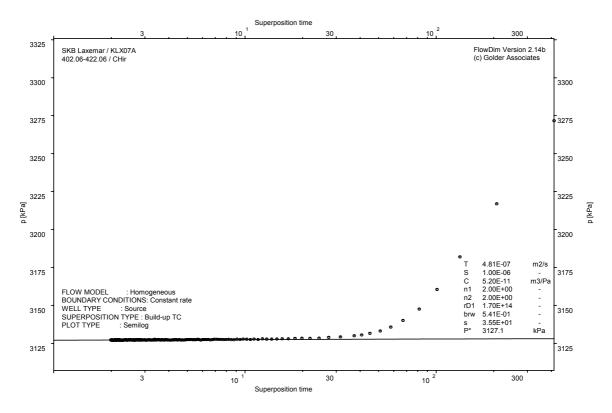
CHIR phase; log-log match



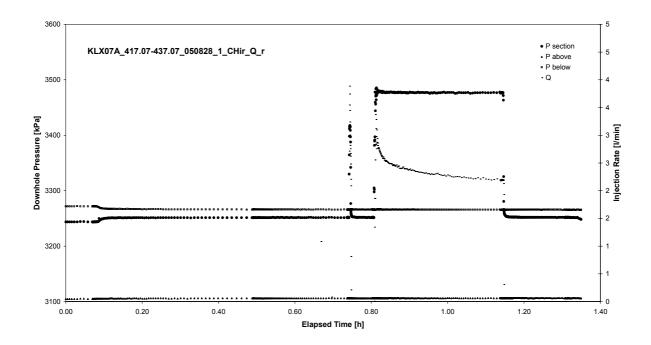
CHIR phase; HORNER match


Test 402.06-422.06 m

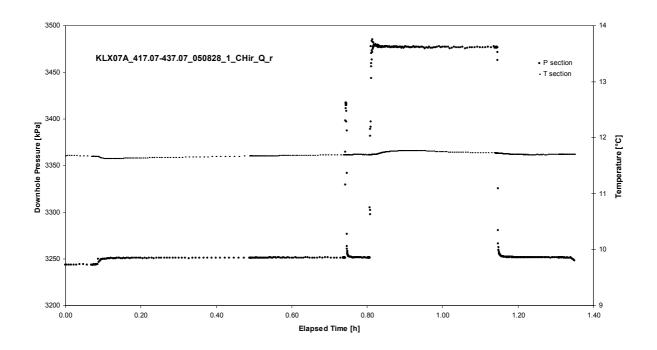

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

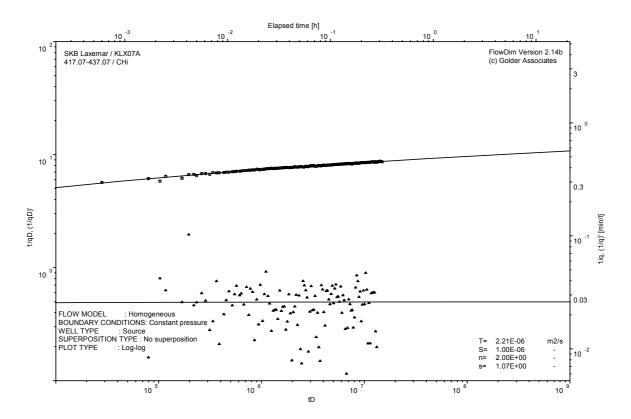
CHI phase; log-log match

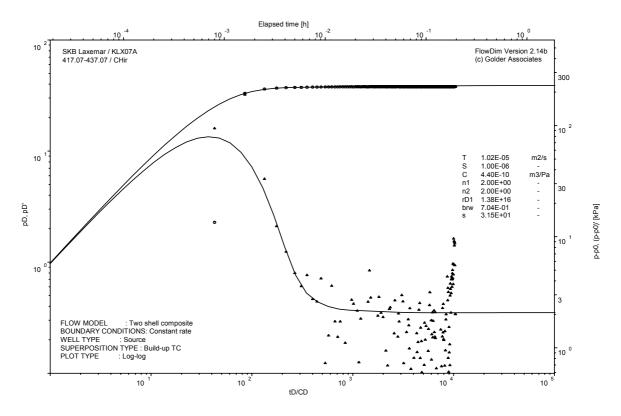


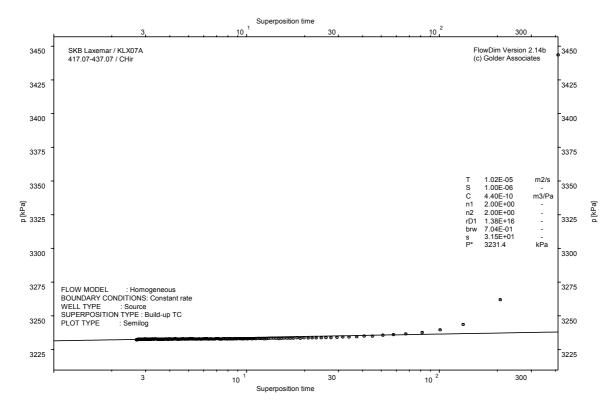
CHIR phase; log-log match



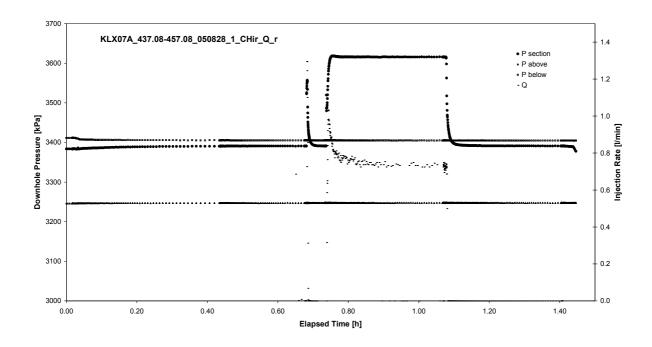
CHIR phase; HORNER match


Test 417.07-437.07 m

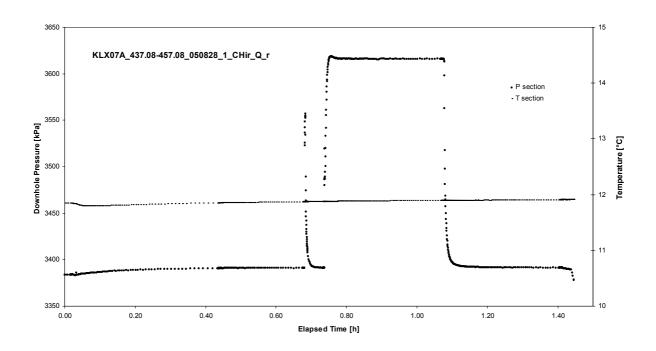

Pressure and flow rate vs. time; cartesian plot

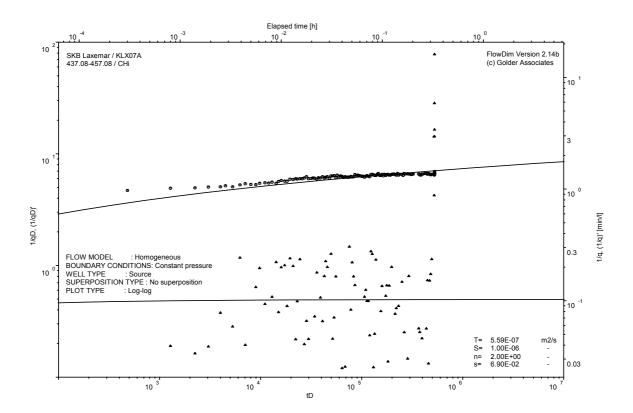

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

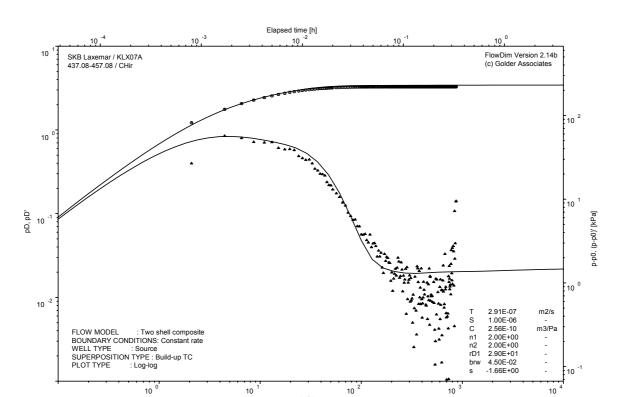


CHIR phase; log-log match

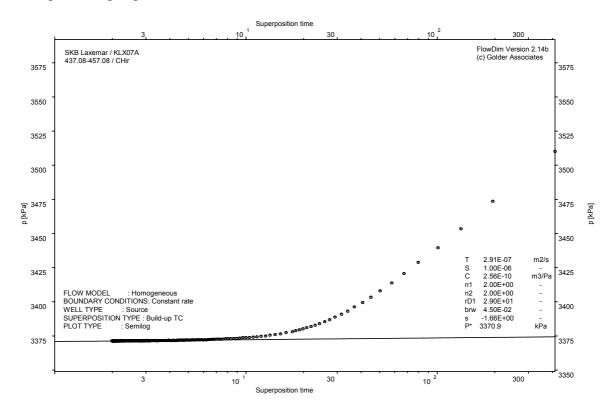



CHIR phase; HORNER match

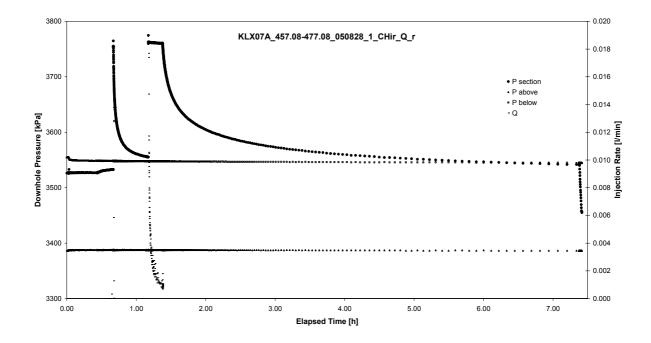
Test 437.08-457.08 m



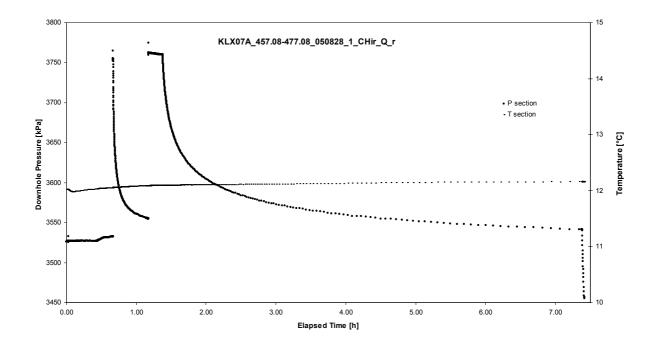
Pressure and flow rate vs. time; cartesian plot



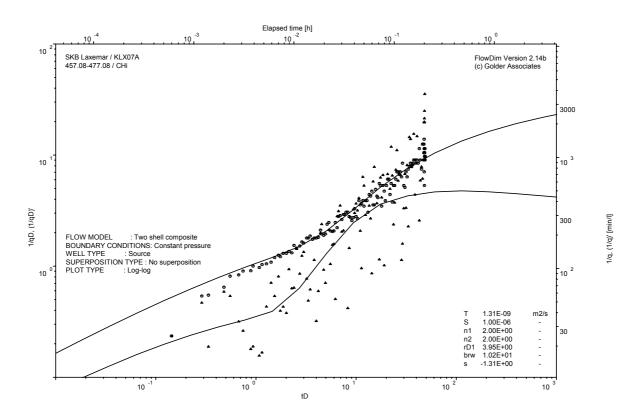
CHI phase; log-log match

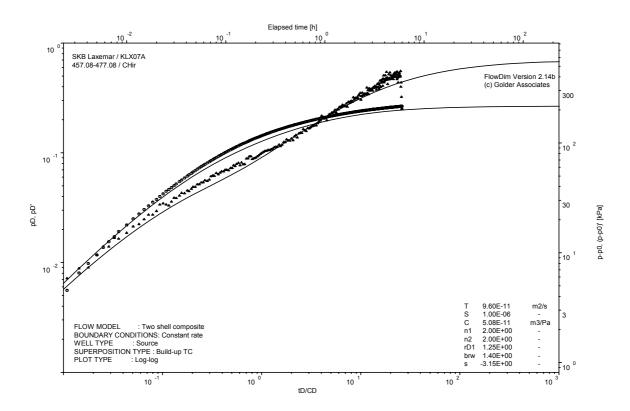

tD/CD

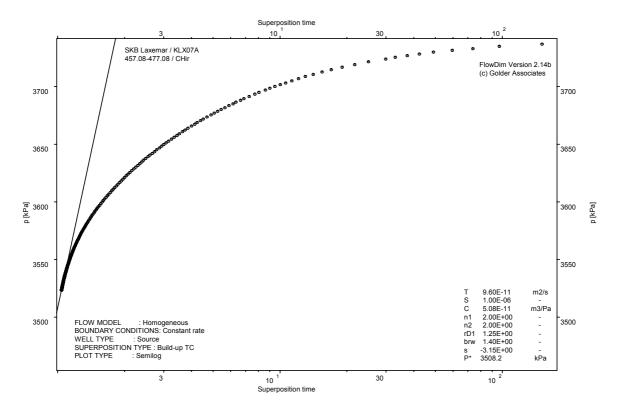
CHIR phase; log-log match



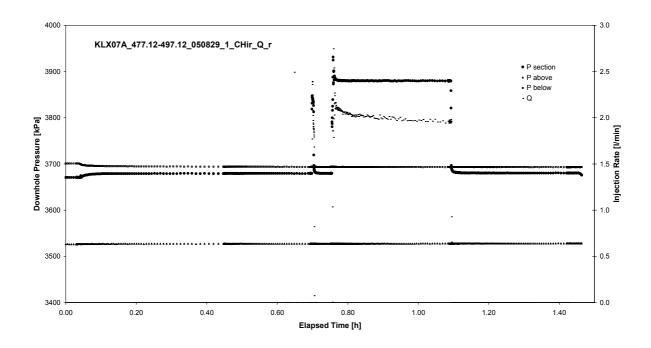
CHIR phase; HORNER match


Test 457.08-477.08 m

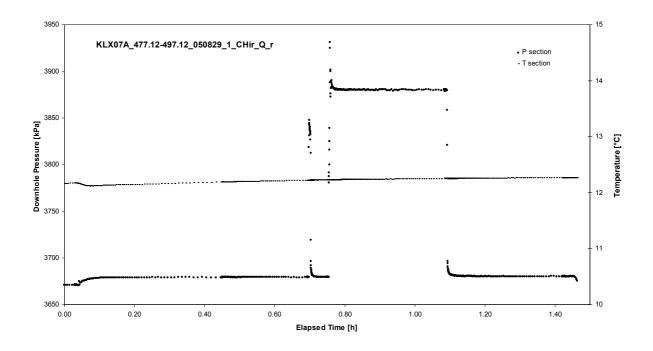

Pressure and flow rate vs. time; cartesian plot

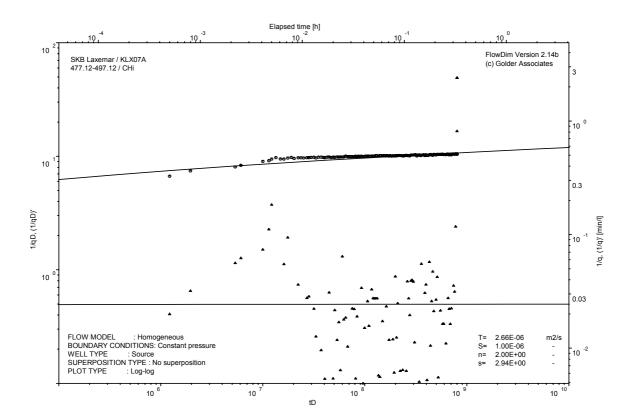

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

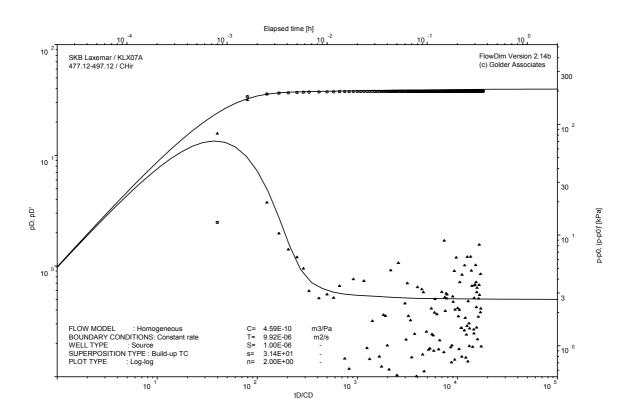


CHIR phase; log-log match

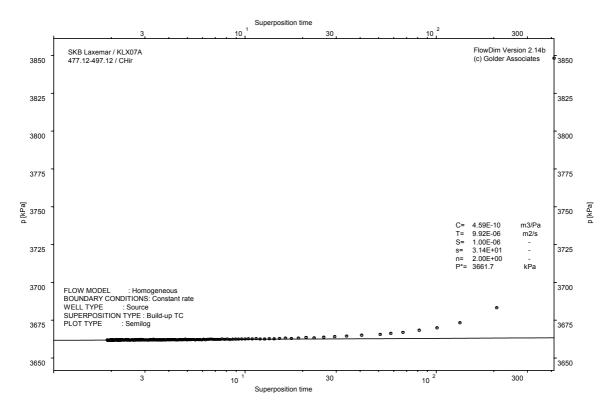



CHIR phase; HORNER match

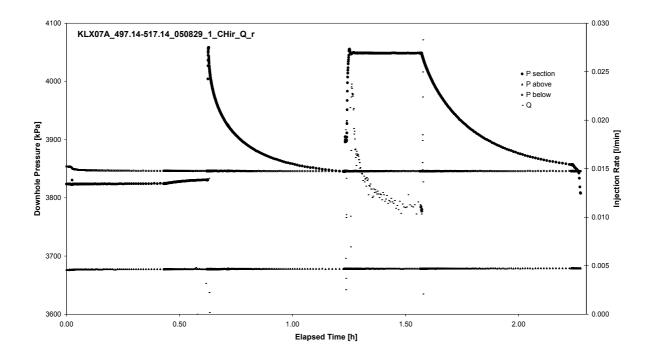
Test 477.12-497.12 m



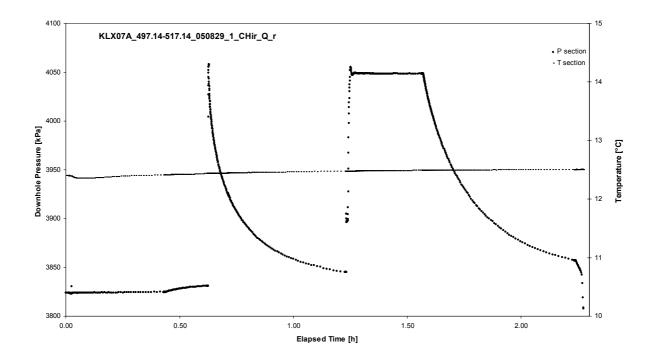
Pressure and flow rate vs. time; cartesian plot



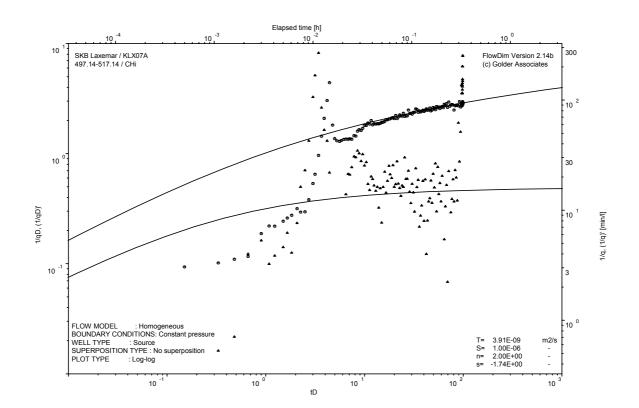
CHI phase; log-log match

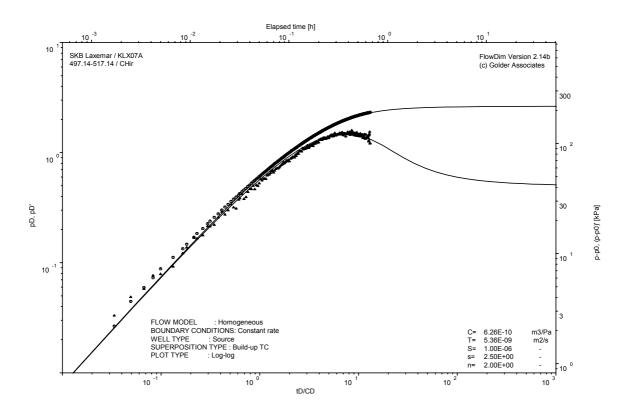


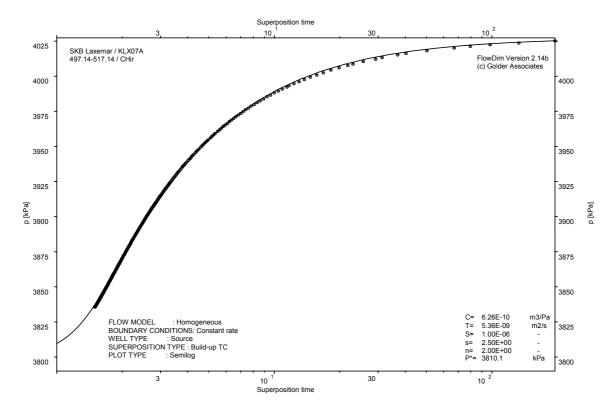
CHIR phase; log-log match



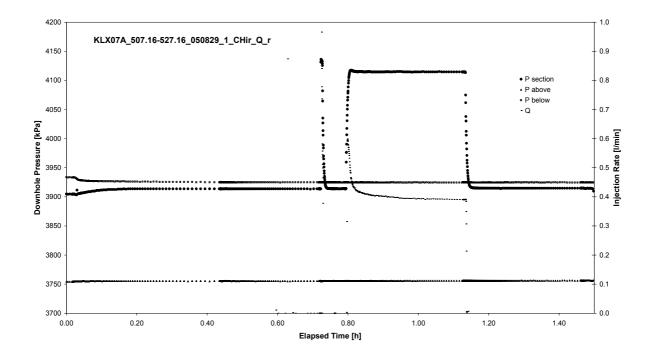
CHIR phase; HORNER match


Test 497.14-517.14 m

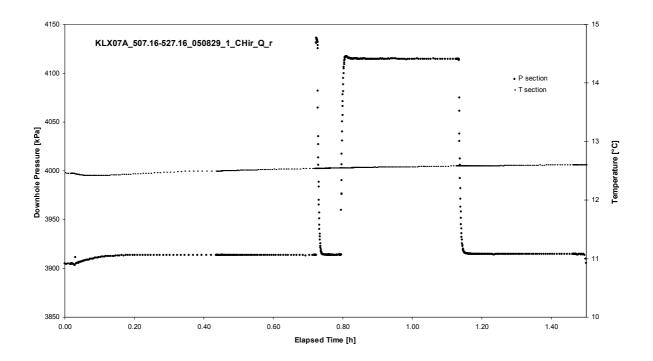

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

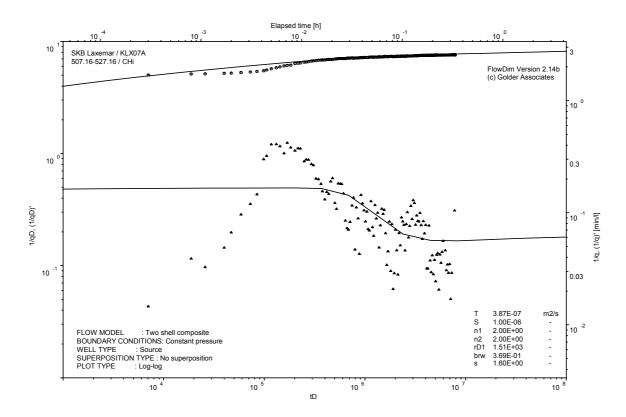
CHI phase; log-log match

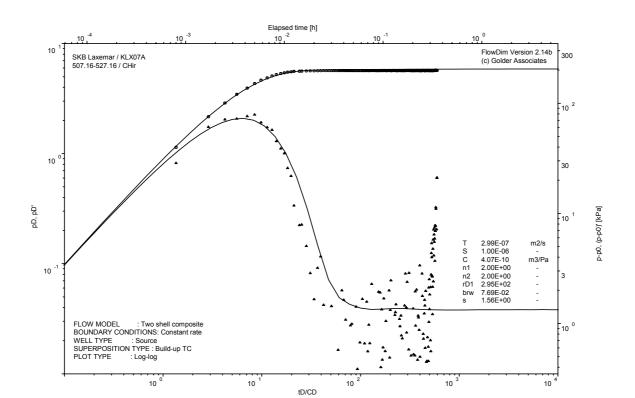


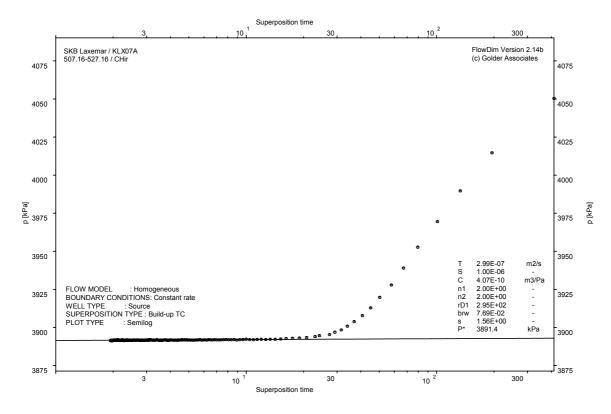
CHIR phase; log-log match



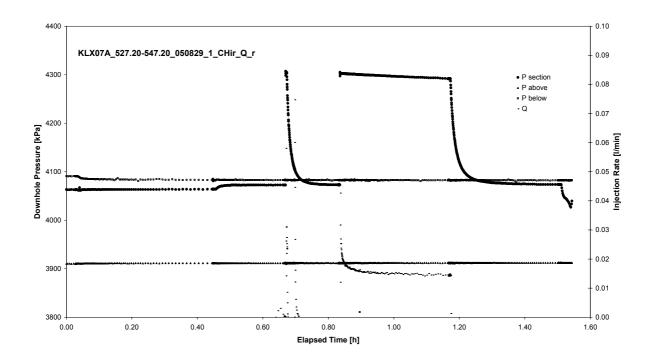
CHIR phase; HORNER match


Test 507.16-527.16 m

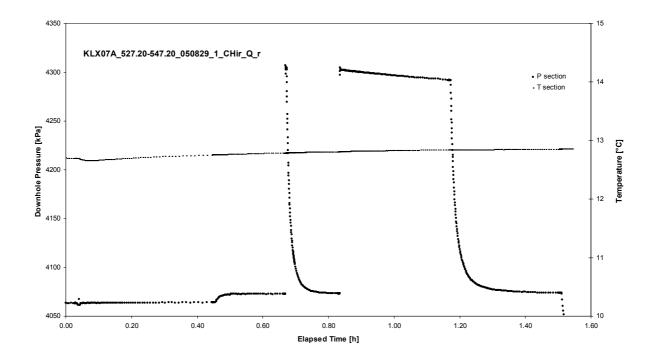

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

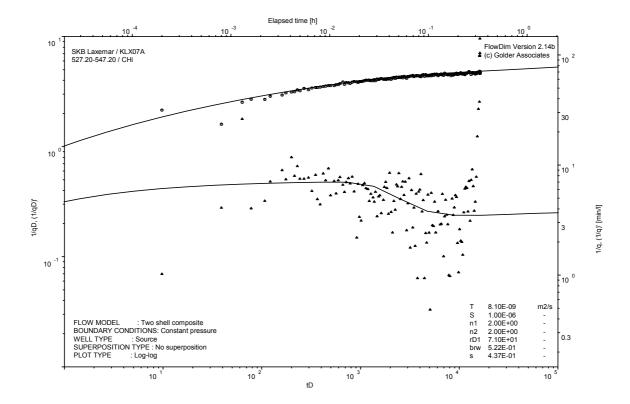
CHI phase; log-log match

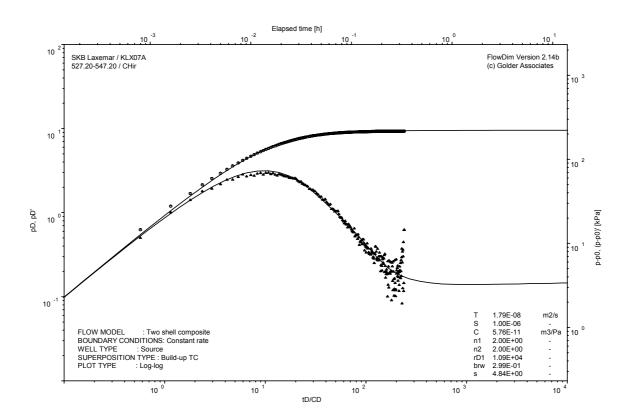


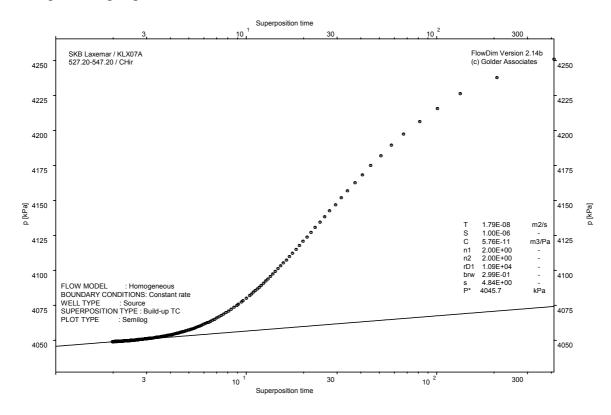
CHIR phase; log-log match



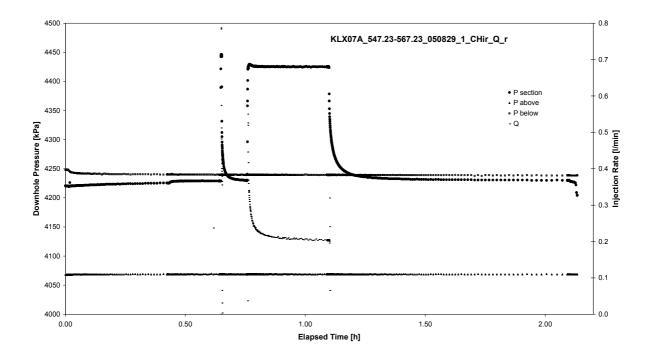
CHIR phase; HORNER match


Test 527.20-547.20 m

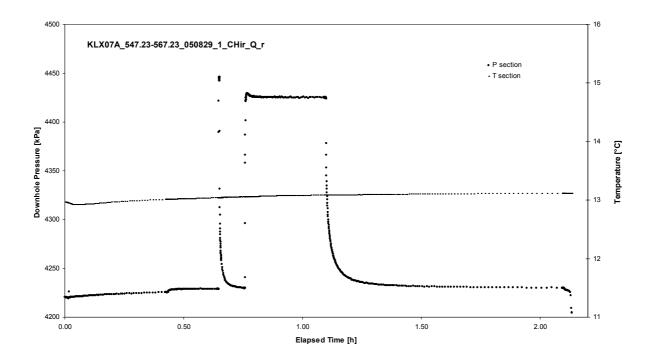

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

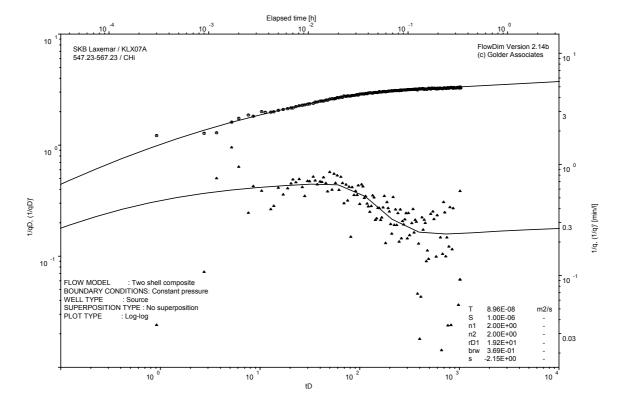


CHIR phase; log-log match

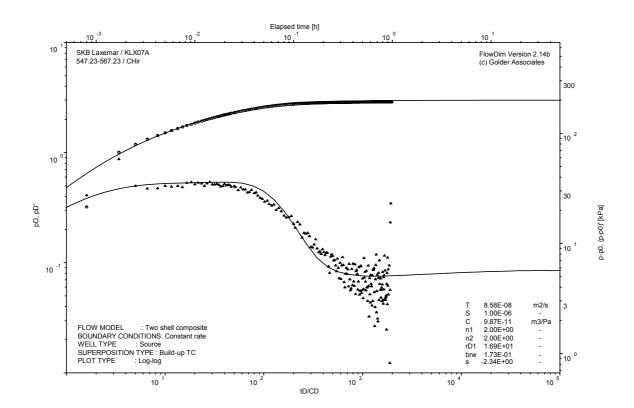


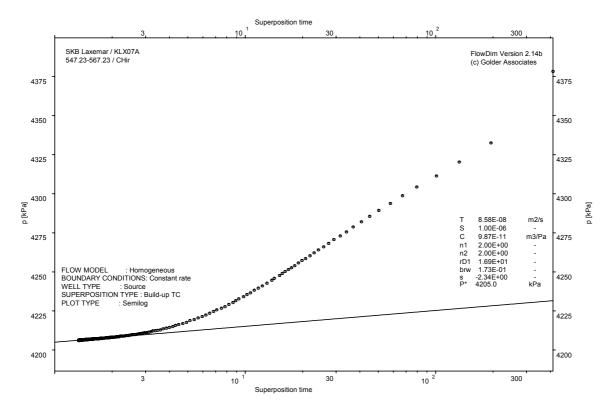
CHIR phase; HORNER match

Test 547.23-567.23 m

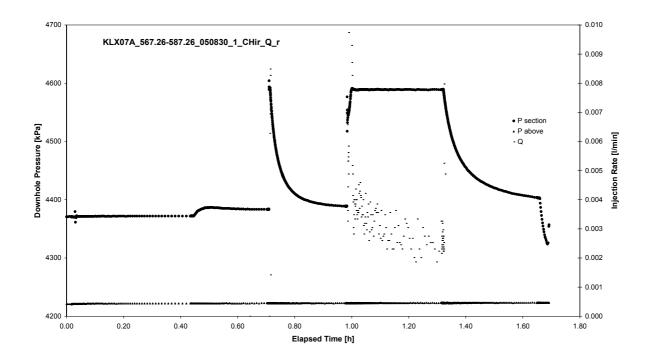


Pressure and flow rate vs. time; cartesian plot

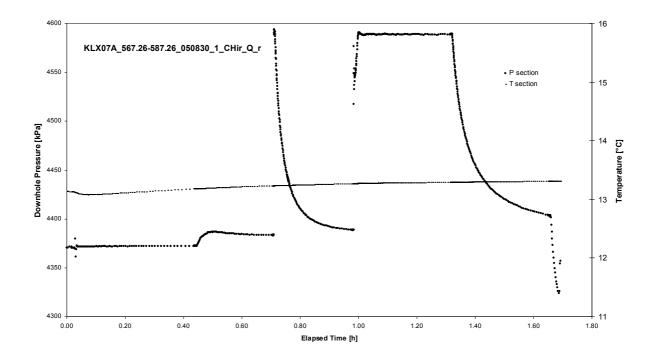


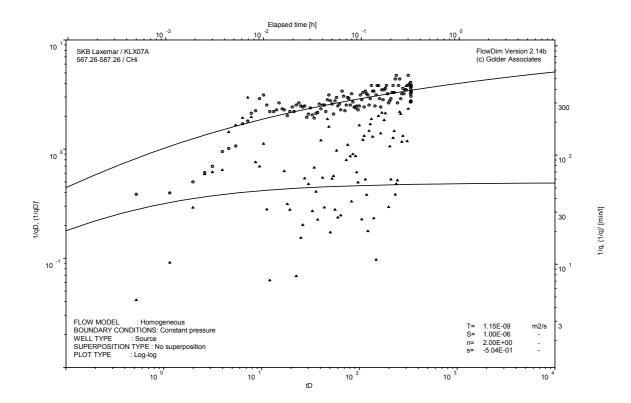

Page 2-33/3

CHI phase; log-log match

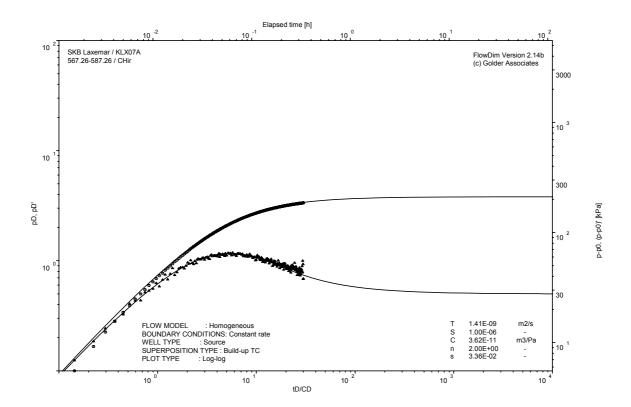


CHIR phase; log-log match

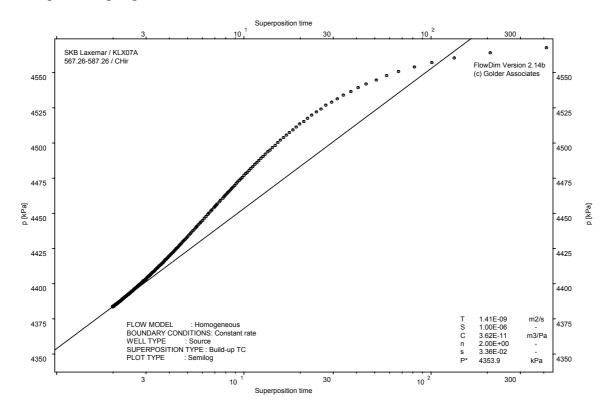



CHIR phase; HORNER match

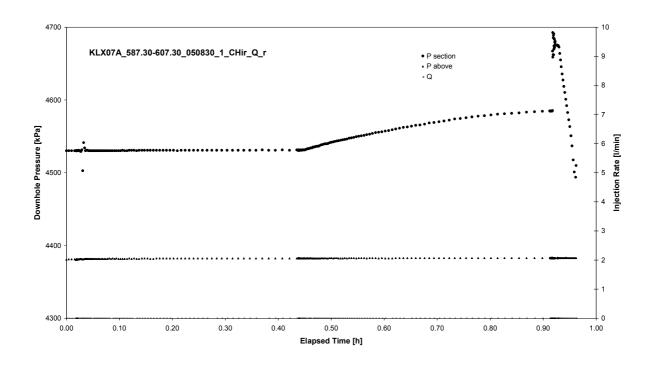
Test 567.26-587.26 m



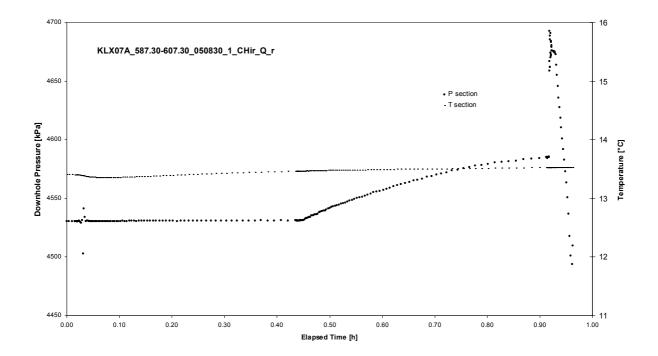
Pressure and flow rate vs. time; cartesian plot



CHI phase; log-log match



CHIR phase; log-log match



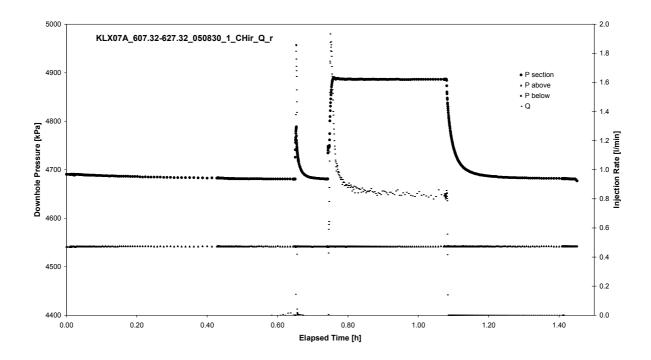
CHIR phase; HORNER match

Test 587.30-607.30 m

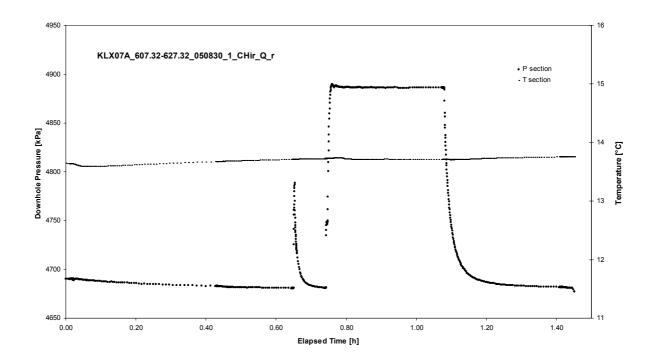
Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match


Not Analysed

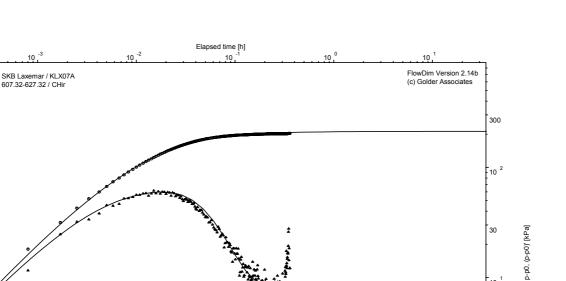
CHIR phase; log-log match

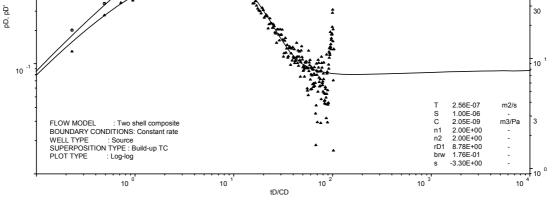

Not Analysed

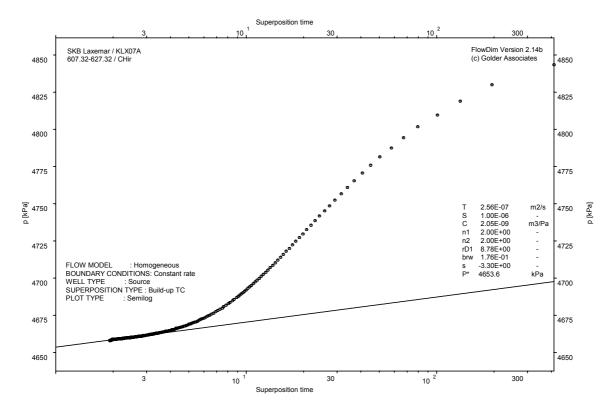
CHIR phase; HORNER match


Test 607.32-627.32 m

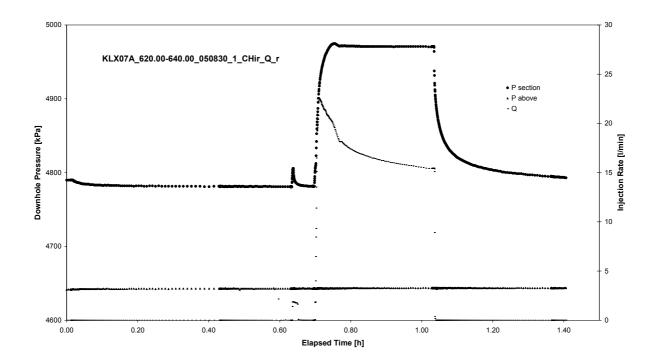
Pressure and flow rate vs. time; cartesian plot



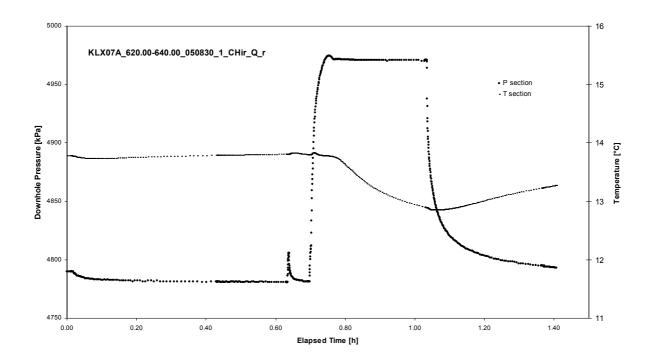

Interval pressure and temperature vs. time; cartesian plot


CHI phase; log-log match

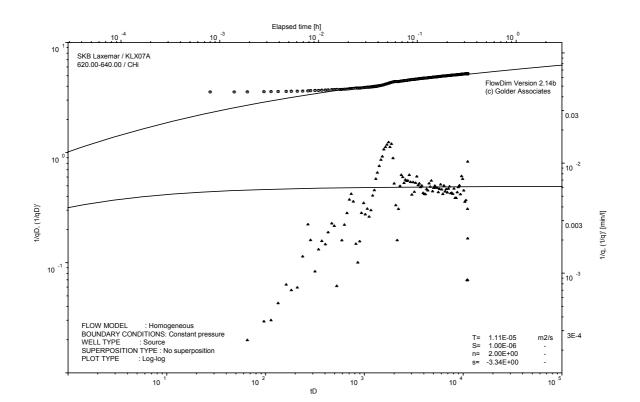
10

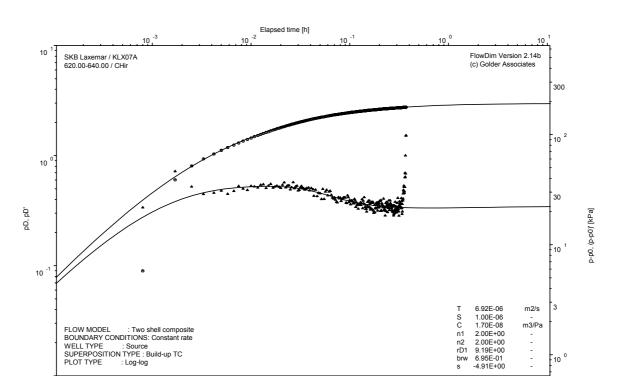


CHIR phase; log-log match



CHIR phase; HORNER match

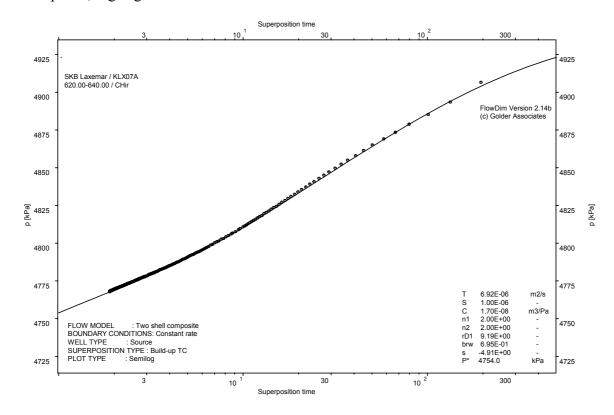

Test 620.00-640.00 m


Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

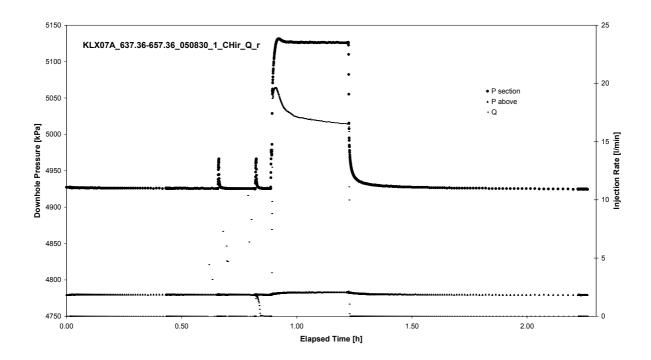
CHI phase; log-log match

tD/CD

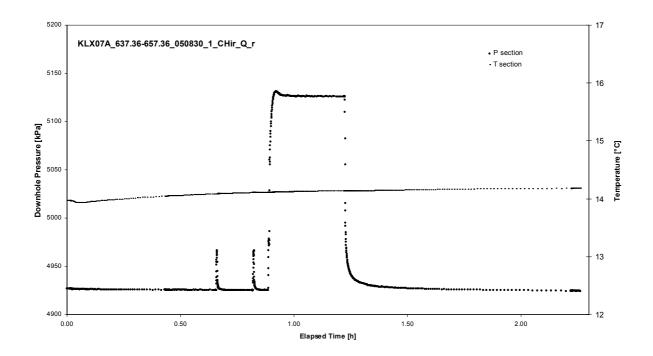

10

10

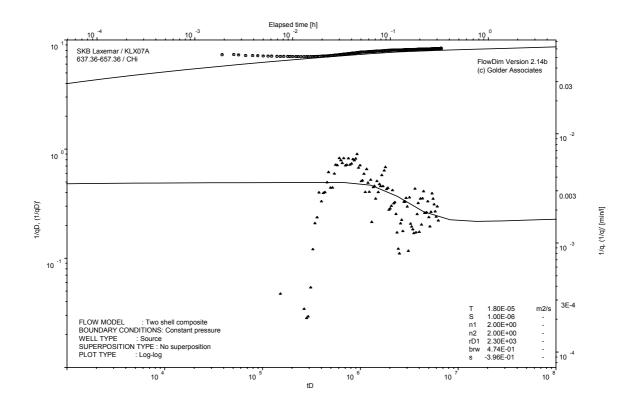
CHIR phase; log-log match


10

10

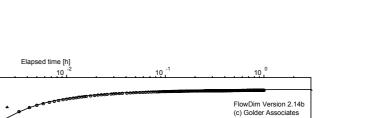


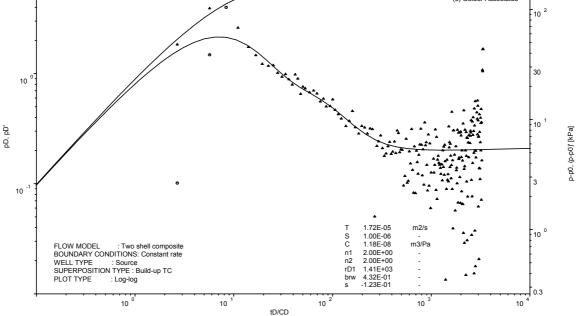
CHIR phase; HORNER match


Test 637.36-657.36 m

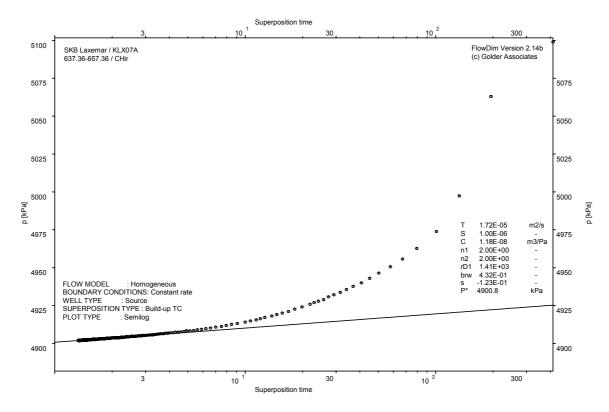
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

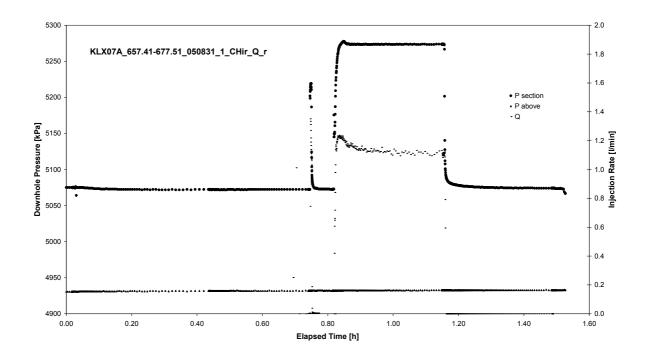



CHI phase; log-log match

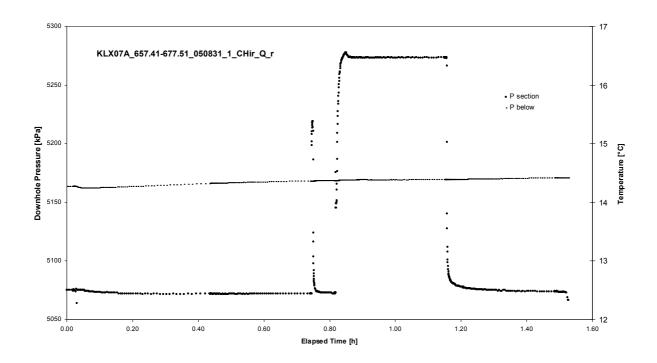
SKB Laxemar / KLX07A 637.36-657.36 / CHir


10

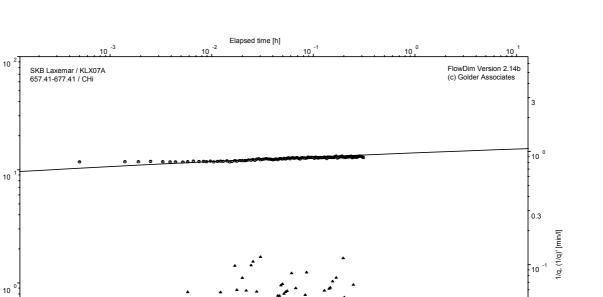
<u>10</u> -3



CHIR phase; log-log match



CHIR phase; HORNER match


Test 657.41-677.41 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

tD

CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10⁹

.

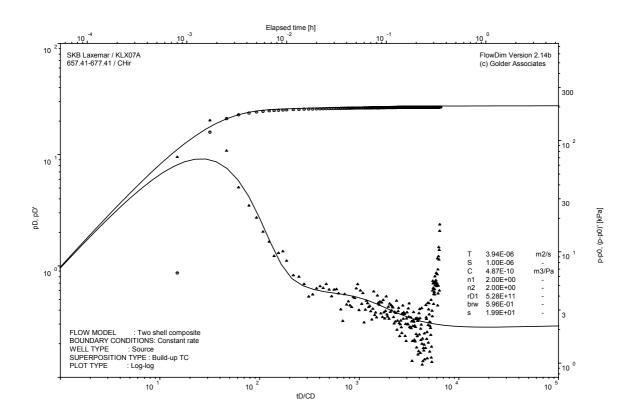
. .

10¹⁰

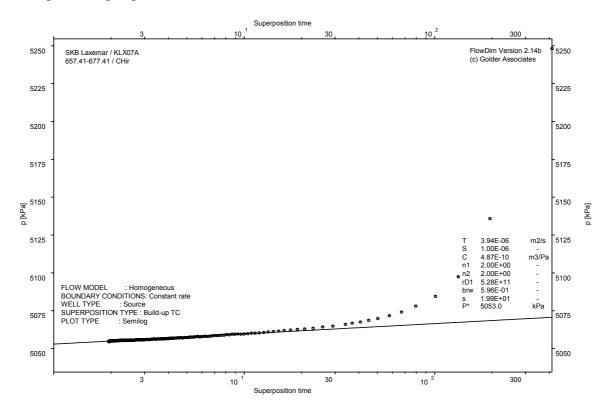
1/qD, (1/qD)'

0.03

10 -2

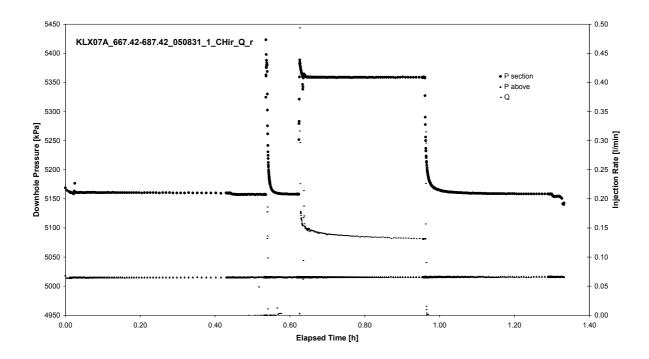

m2/s ---

10 ¹³

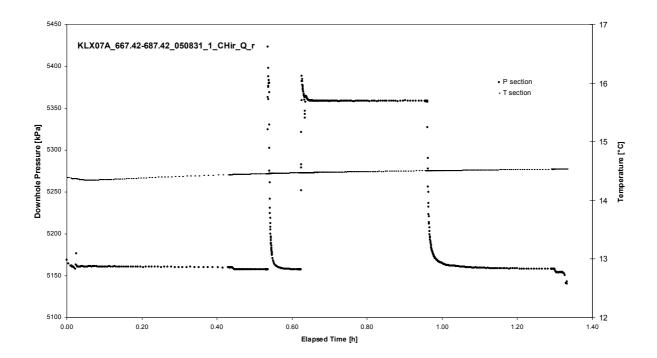

1.88E-06 1.00E-06 2.00E+00 6.01E+00

T= S= n= s=

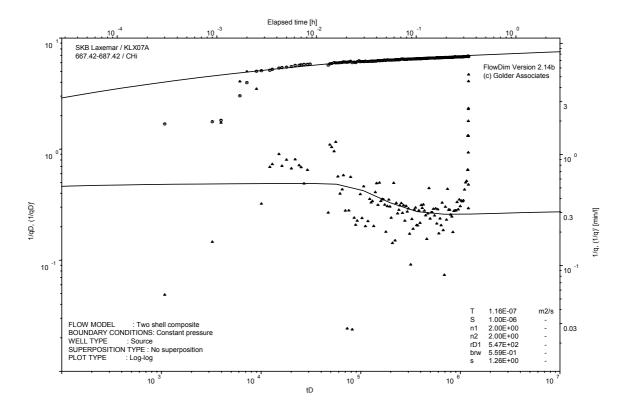
10¹²

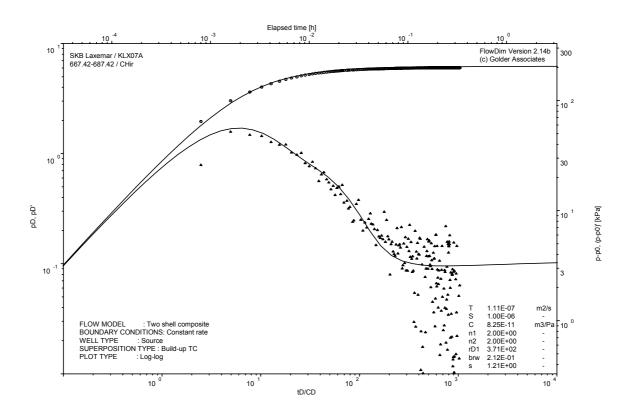


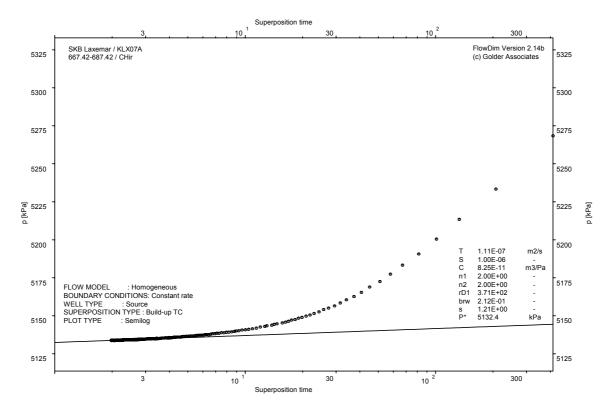
CHIR phase; log-log match



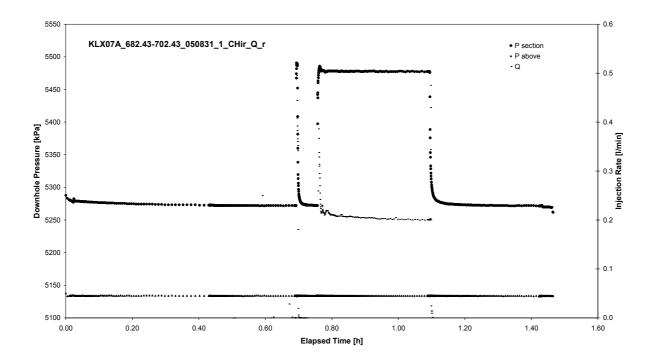
CHIR phase; HORNER match


Test 667.42-687.42 m

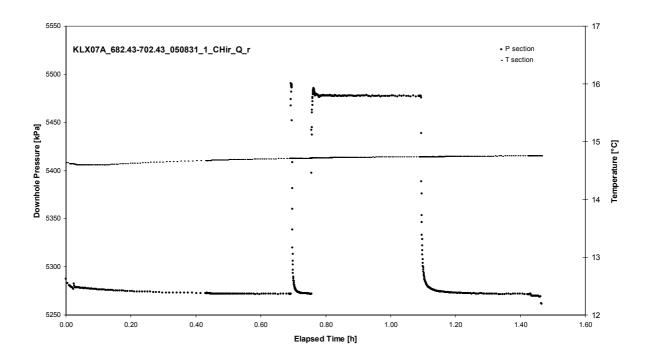

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

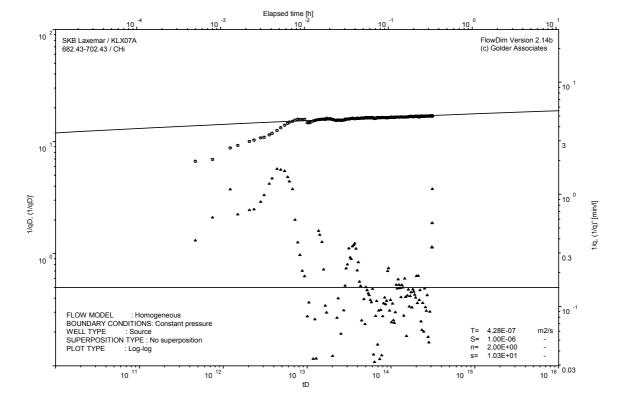


CHIR phase; log-log match

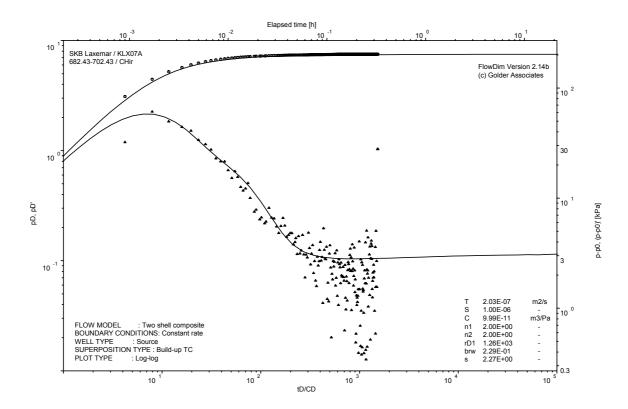


CHIR phase; HORNER match

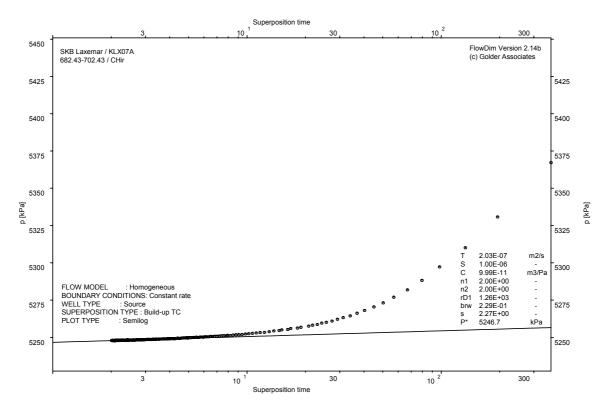
Test 682.43-702.43 m



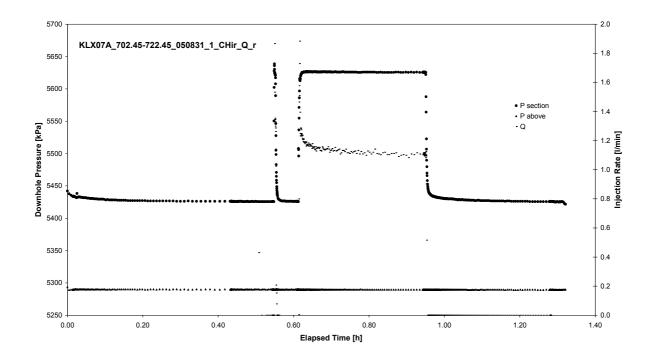
Pressure and flow rate vs. time; cartesian plot



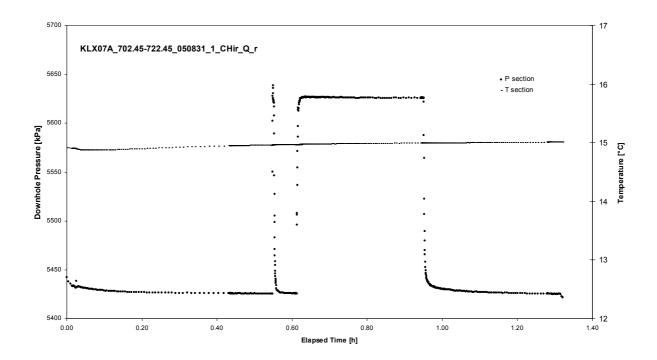
Interval pressure and temperature vs. time; cartesian plot



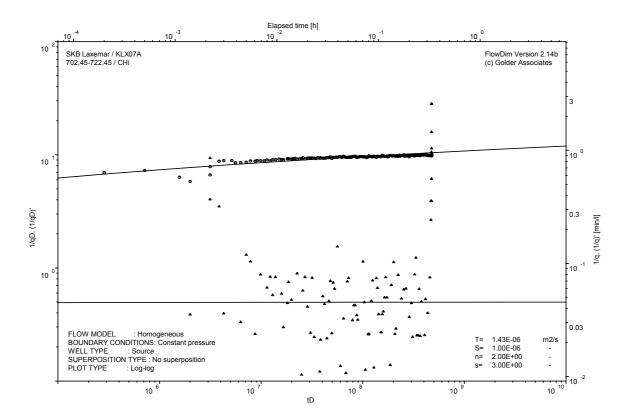
CHI phase; log-log match

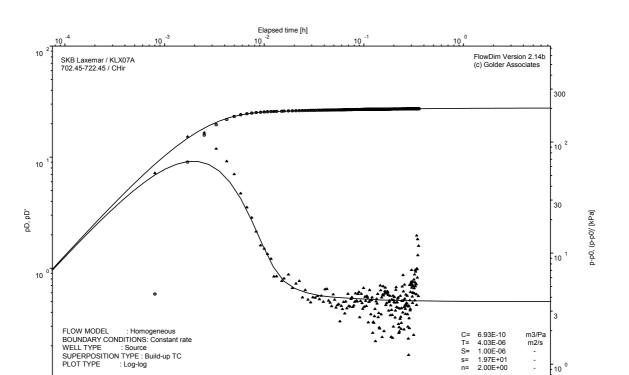


CHIR phase; log-log match



CHIR phase; HORNER match

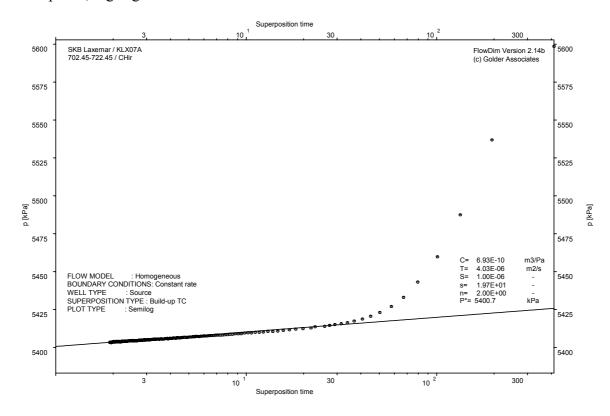

Test 702.45-722.45 m


Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

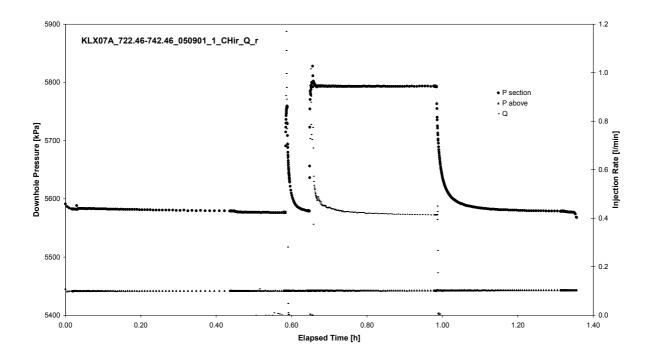
CHI phase; log-log match

tD/CD

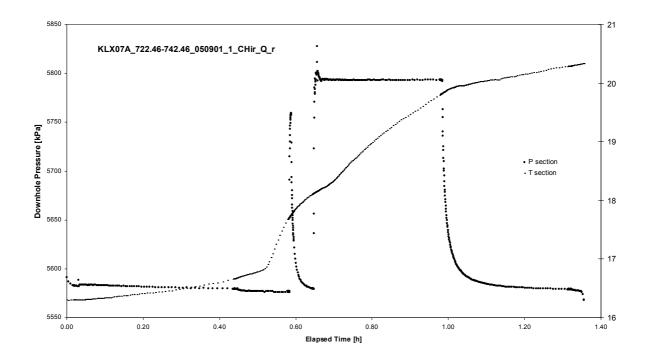

10 4

10 ⁵

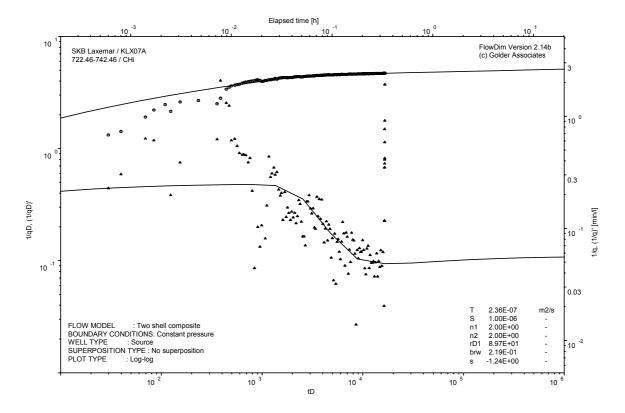
CHIR phase; log-log match


10

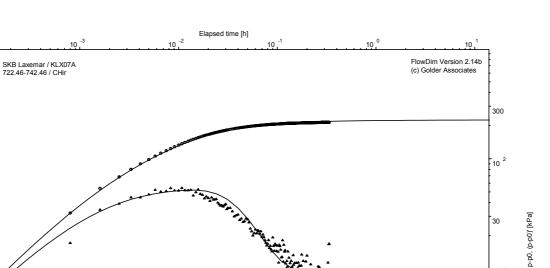
10 2

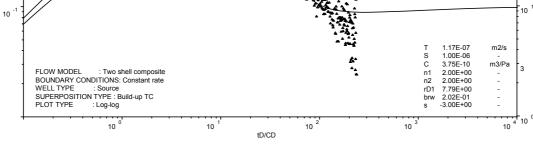


CHIR phase; HORNER match

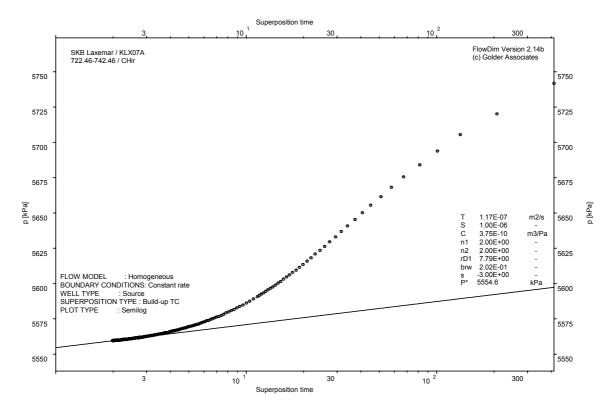

Test 722.46-742.46 m

Pressure and flow rate vs. time; cartesian plot

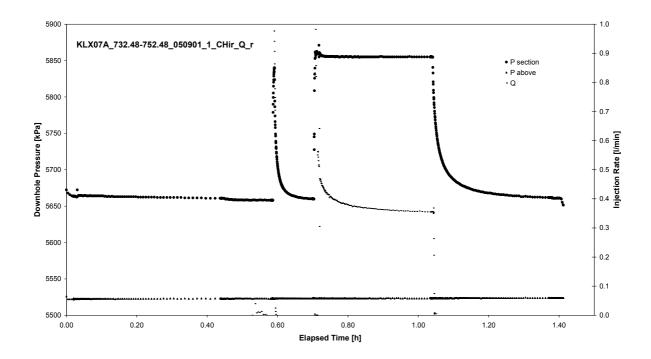

Interval pressure and temperature vs. time; cartesian plot



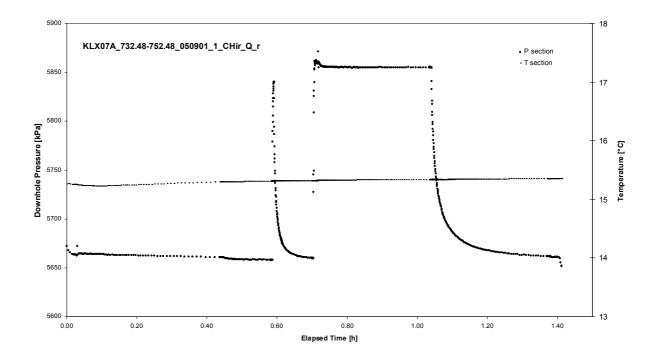
CHI phase; log-log match


10

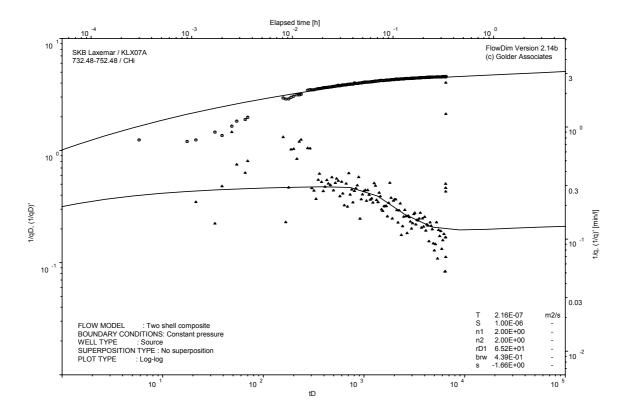
pD, pD'

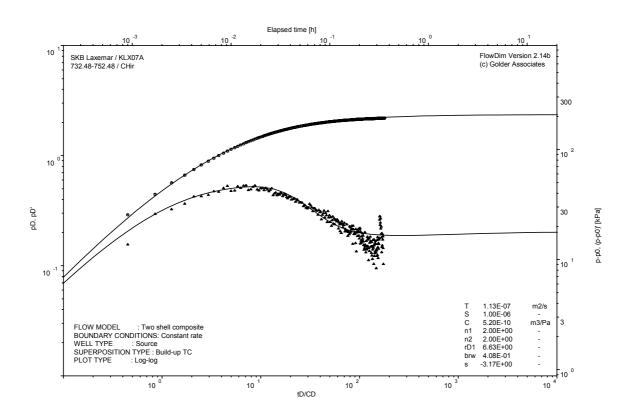


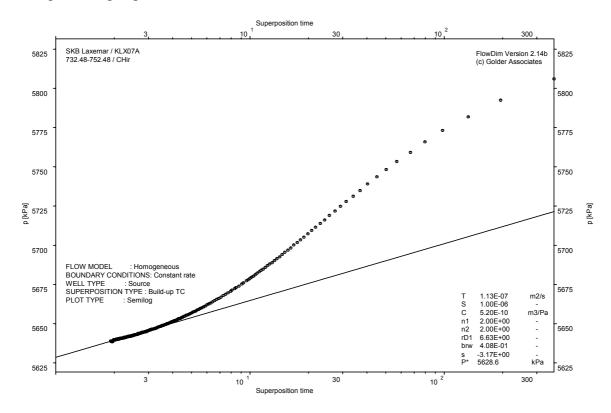
CHIR phase; log-log match



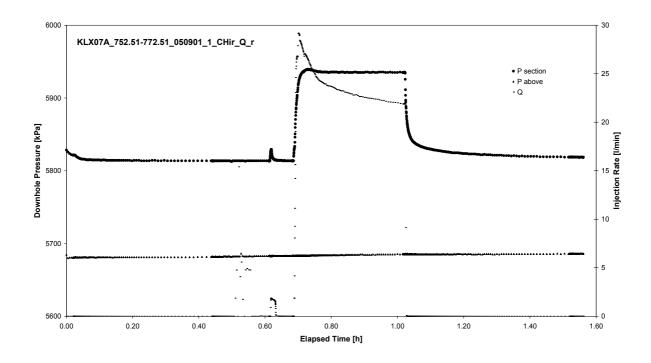
CHIR phase; HORNER match


Test 732.48-752.48 m

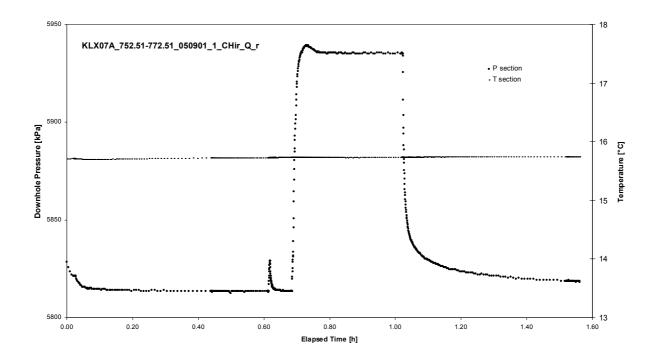

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

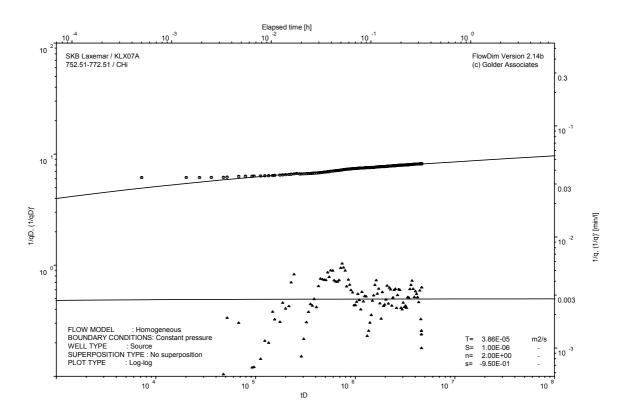
CHI phase; log-log match



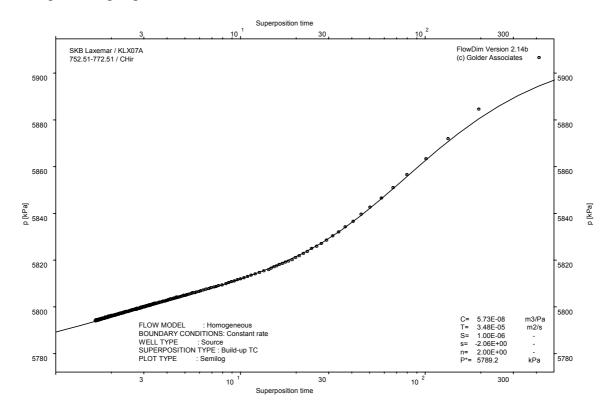
CHIR phase; log-log match



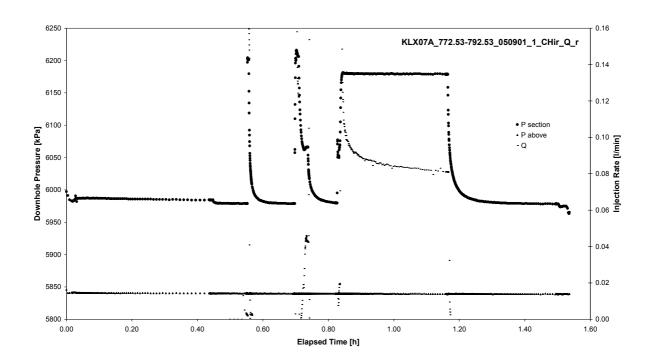
CHIR phase; HORNER match


Test 752.51-772.51 m

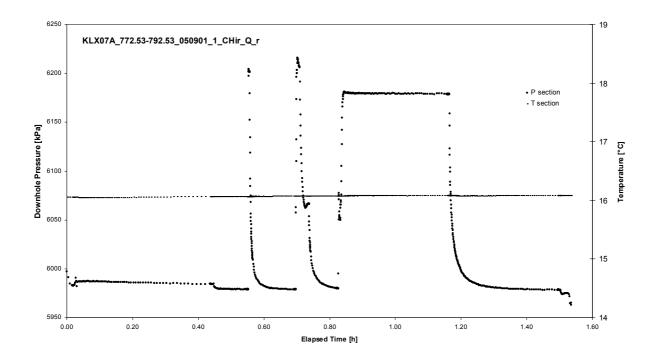
Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

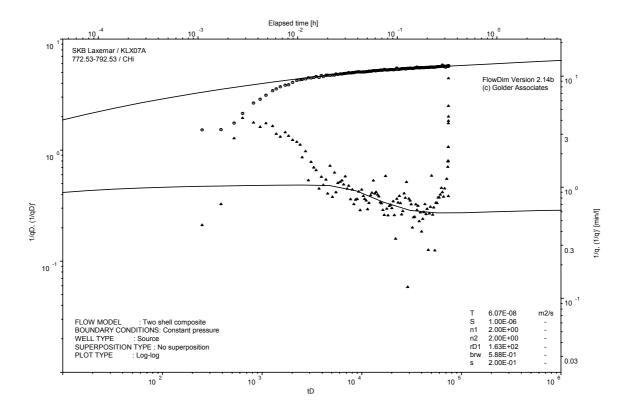
CHI phase; log-log match

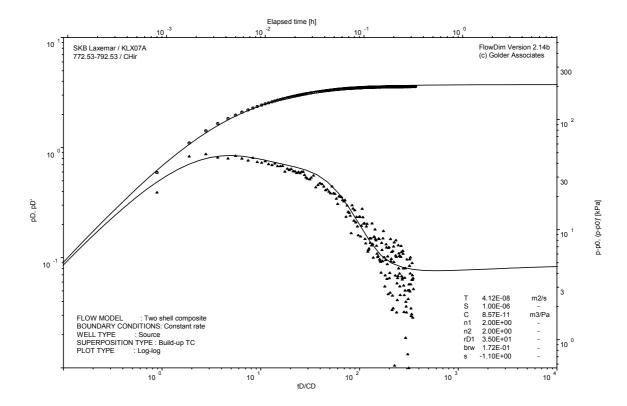


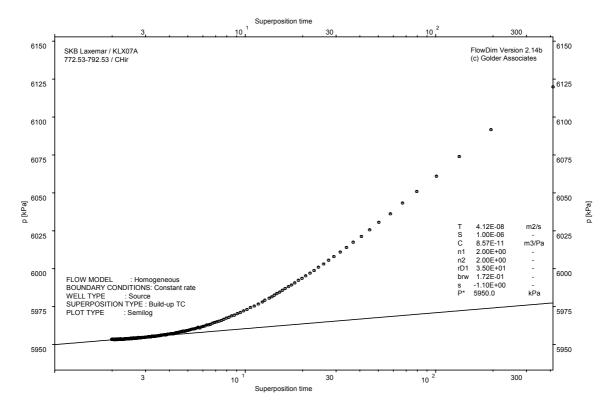
CHIR phase; log-log match



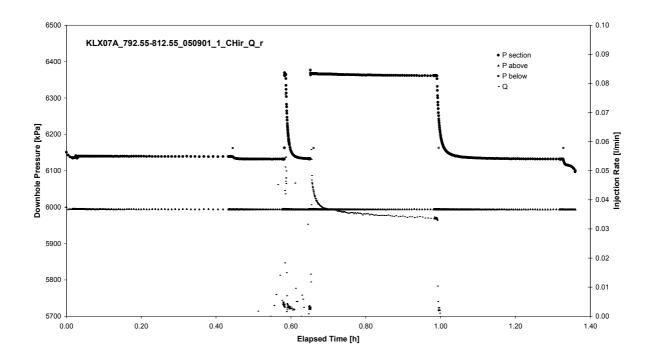
CHIR phase; HORNER match


Test 772.53-792.53 m

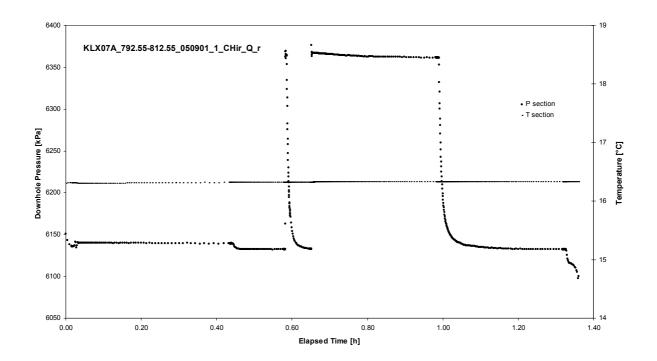

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

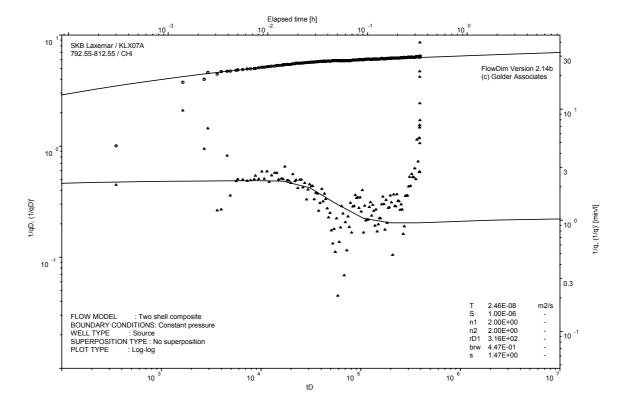
CHI phase; log-log match

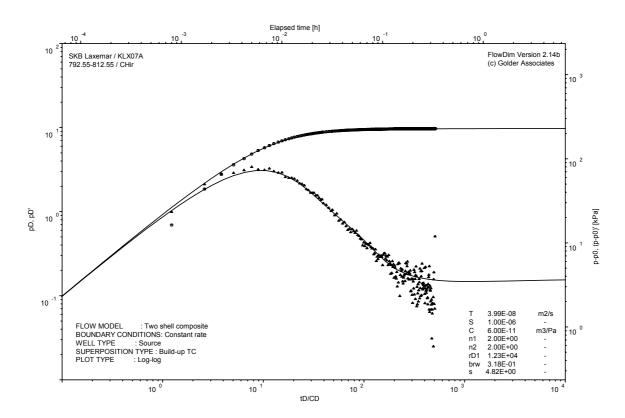


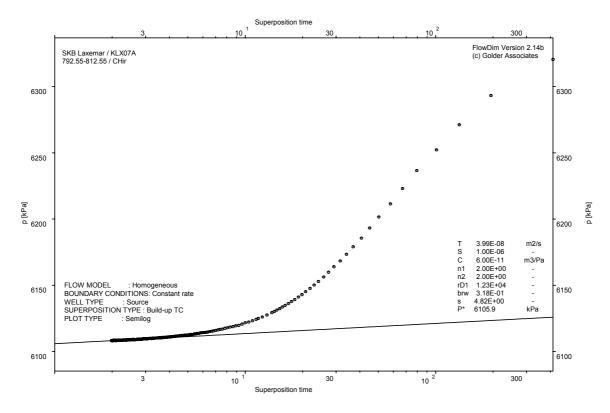
CHIR phase; log-log match



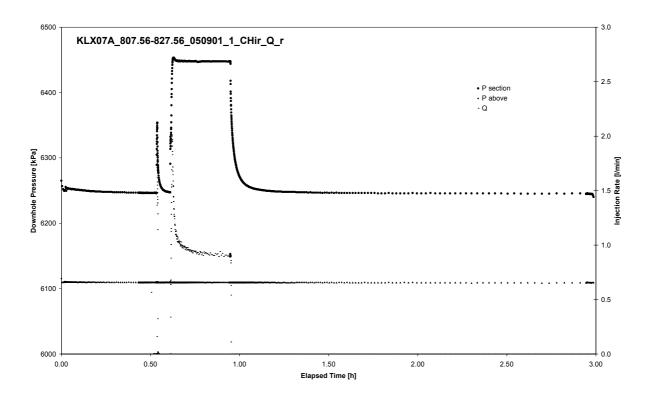
CHIR phase; HORNER match


Test 792.55-812.55 m

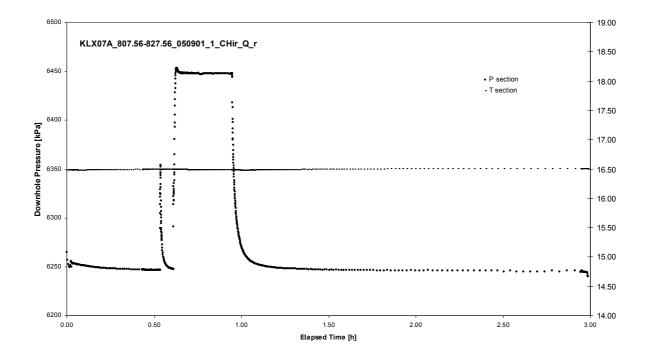

Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

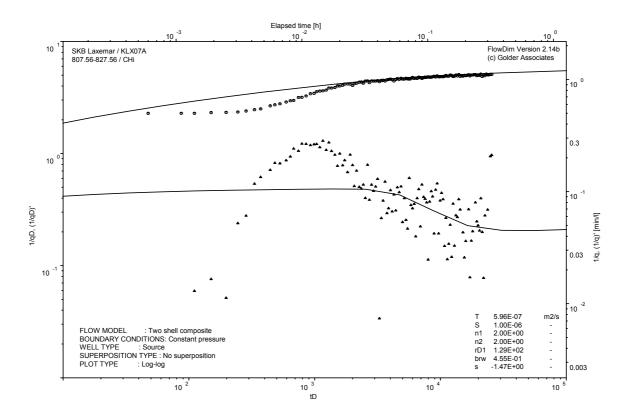
CHI phase; log-log match

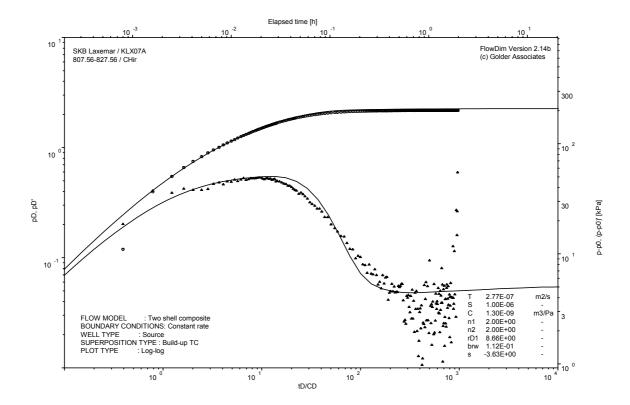


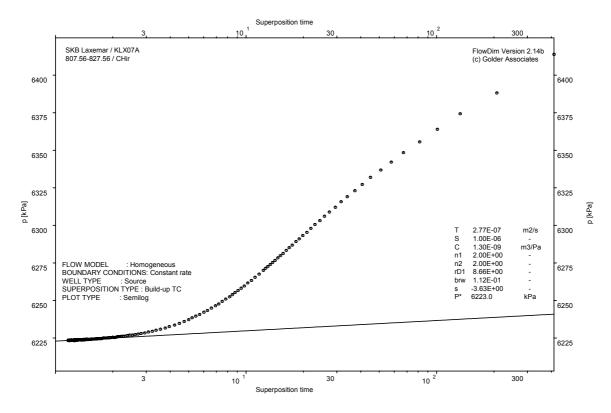
CHIR phase; log-log match



CHIR phase; HORNER match

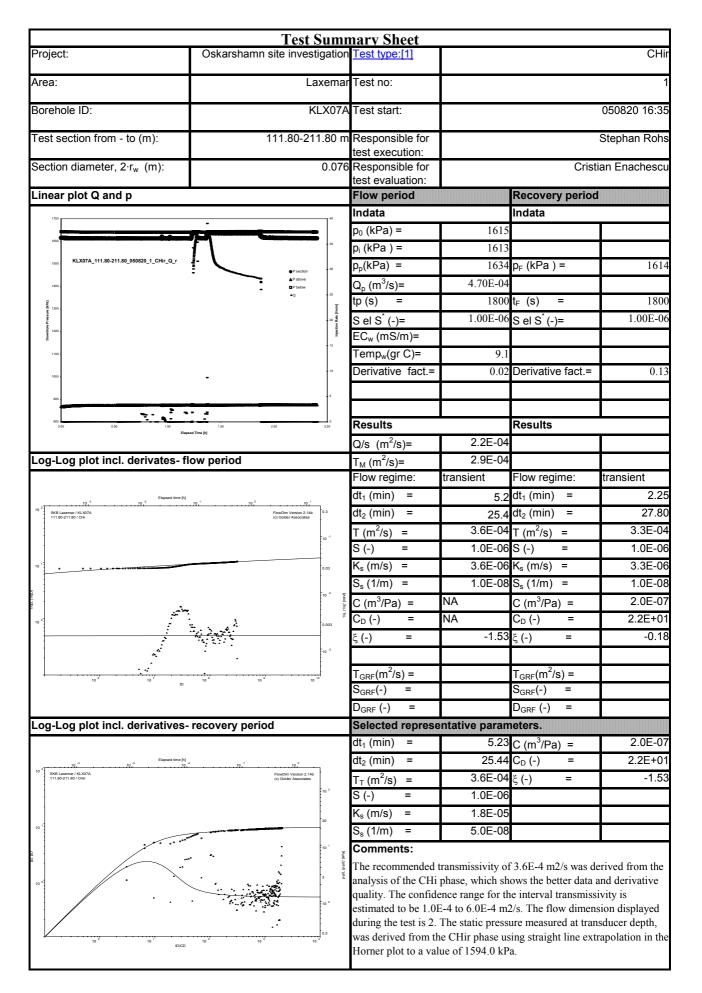

Test 807.56-827.56 m


Pressure and flow rate vs. time; cartesian plot

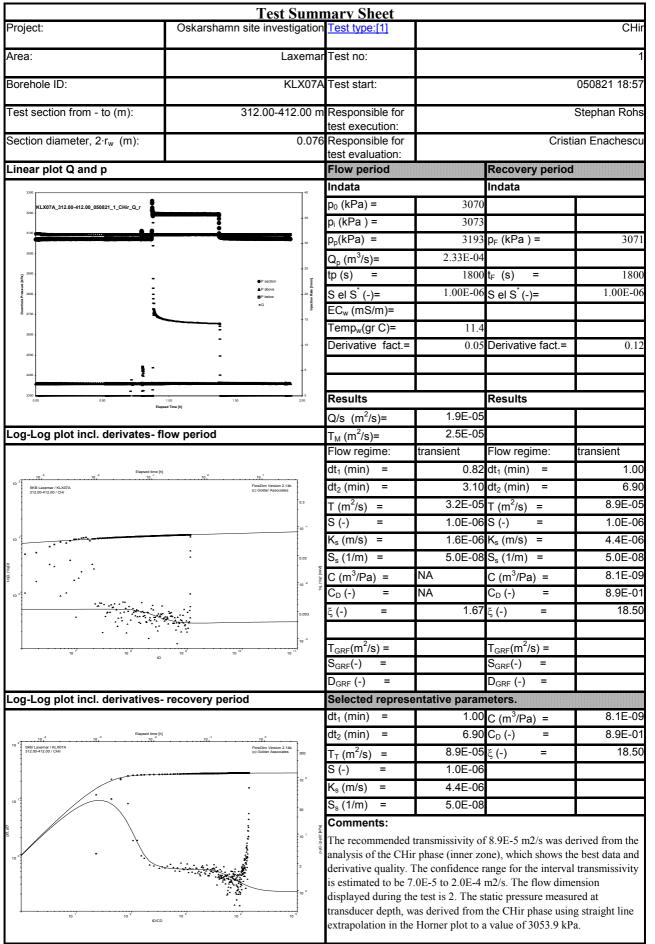

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match



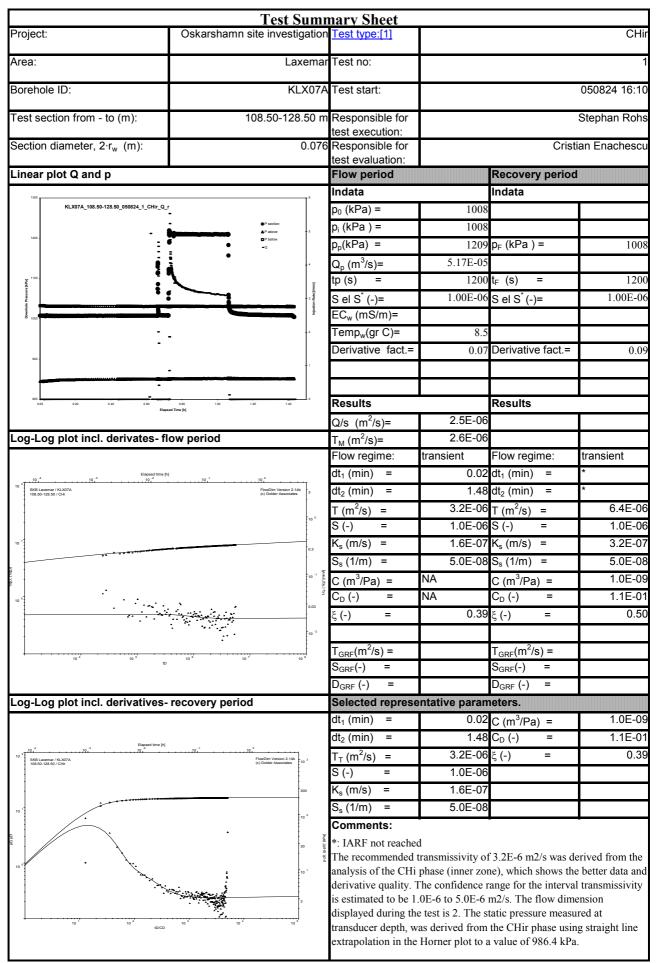
CHIR phase; HORNER match

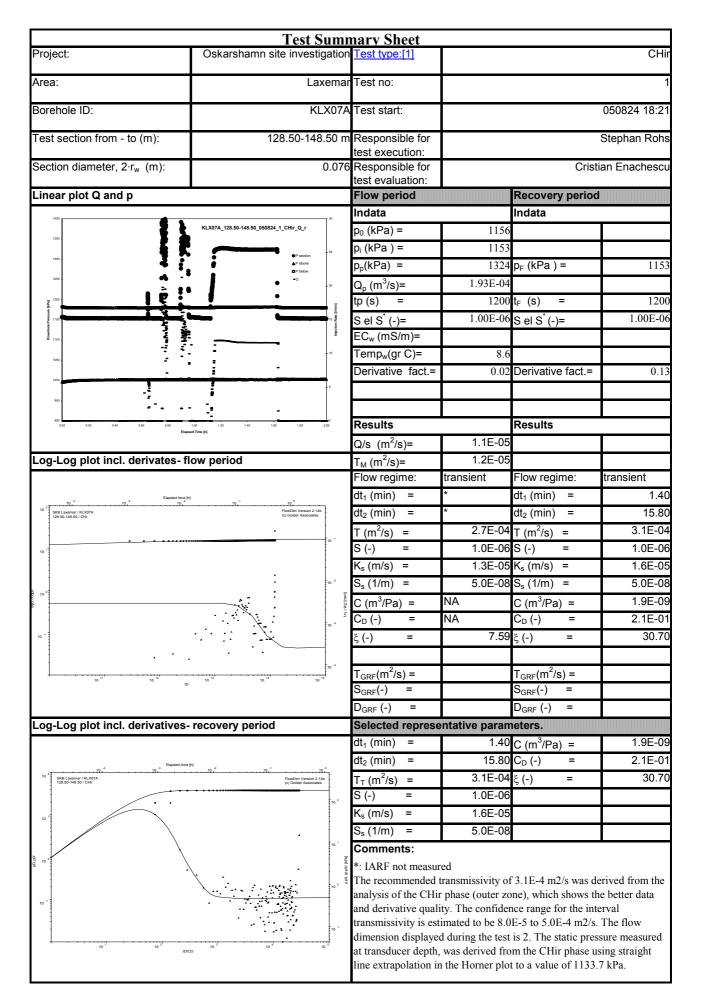

Borehole: KLX07A

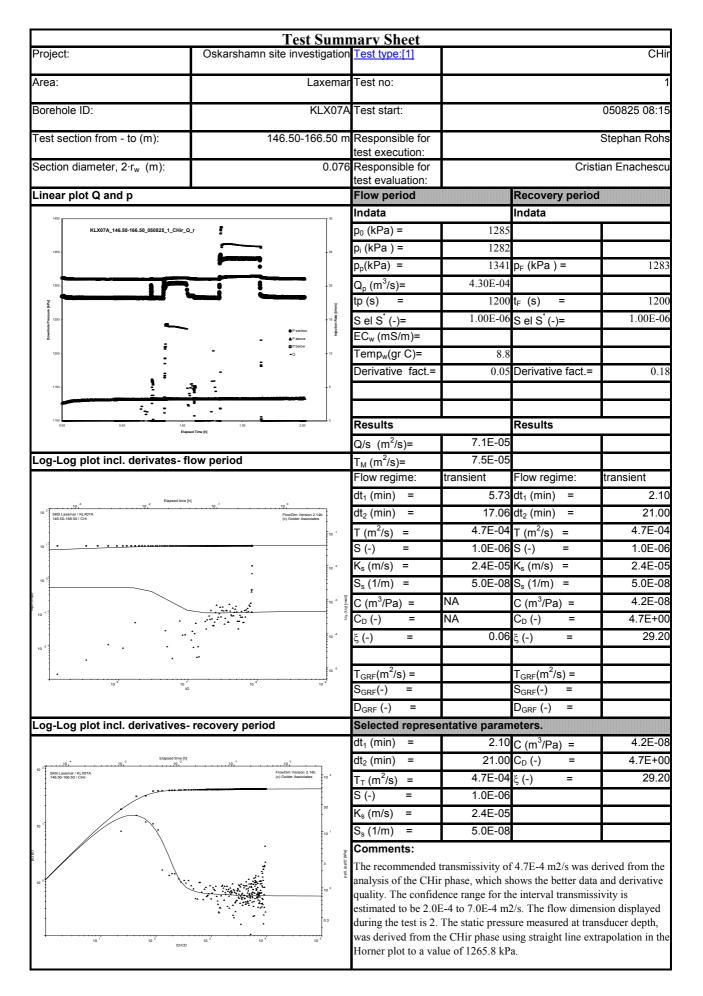
APPENDIX 3

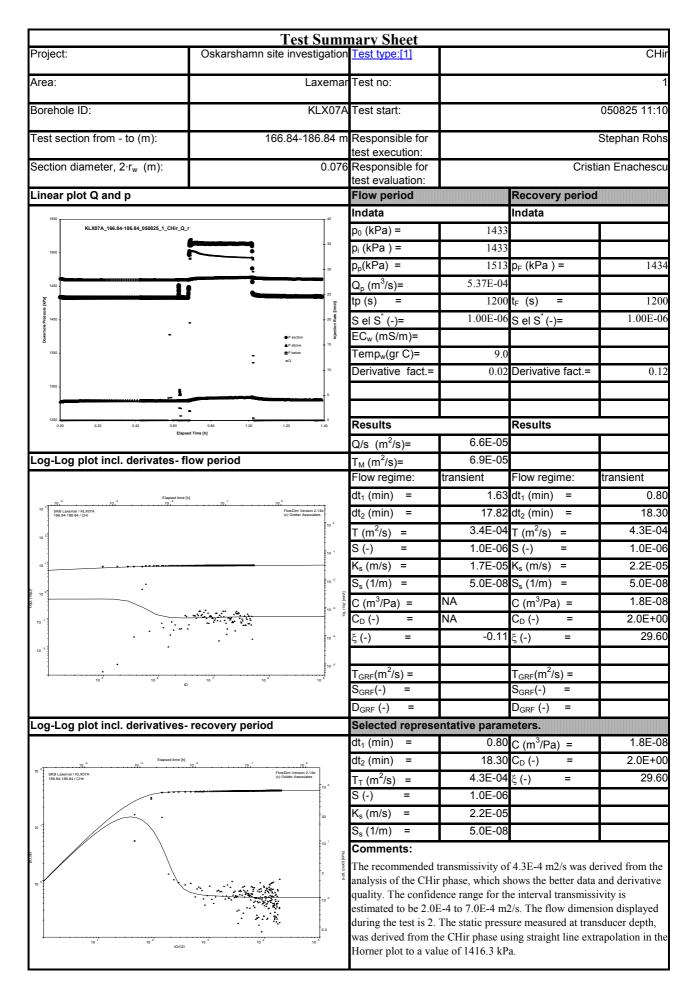
Test Summary Sheets

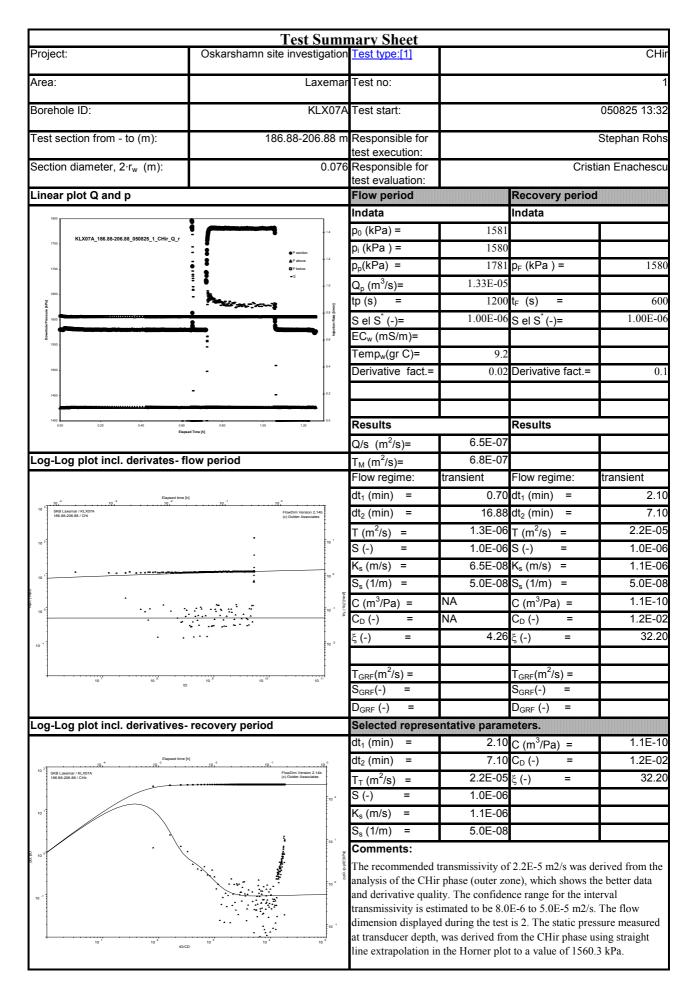
	Test Su	umn	nary Sheet					
Project:	Oskarshamn site investiga					CHir		
Area:	Laxe	emar	Test no:					
Borehole ID:	KLX07A T		Test start:		050821 15:28			
Test section from - to (m):	211.92-31		Responsible for			Stephan Rohs		
Section diameter, 2·r _w (m):	0		test execution: Responsible for		Cristian Enach			
			test evaluation:					
Linear plot Q and p			Flow period		Recovery period			
2500		T ⁴⁰	Indata		Indata			
KLX07A_211.92-311.92_050821_1_CHir_Q_r			p ₀ (kPa) =	2363				
2200		- 35	p _i (kPa) =	2361				
		- 30	p _p (kPa) =		p _F (kPa) =	2362		
2200 -	-	- 25	Q _p (m³/s)=	5.08E-04				
2100 . 2 2 2	P section P above	(minn)	tp (s) =		t _F (s) =	1800		
2000 - 2	■ P below , =Q		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
1900 .	•	9 15	EC _w (mS/m)=					
1800 -	•		Temp _w (gr C)=	10.3				
1760 -		- 10	Derivative fact.=	0.02	Derivative fact.=	0.13		
		• 5						
1500	1.00 1.20 1.40 1.60 1.60 2.4 ad Time [h]	0	Results		Results			
			Q/s (m²/s)=	7.6E-05				
Log-Log plot incl. derivates- fle	ow period		T _M (m²/s)=	9.8E-05				
			Flow regime:	transient	Flow regime:	transient		
19, ⁻⁴ Elapsed time (h)	10 ⁻²		dt ₁ (min) =		dt ₁ (min) =	3.80		
10 ² SKB Laxemar / KLX07A 211.92-311.92 / CHi	FlowDim Version 2.14b (c) Golder Associates		dt ₂ (min) =		dt ₂ (min) =	25.30		
	10	0 '1	T (m²/s) =	2.0E-04	T (m²/s) =	2.7E-04		
	0.0	.03	S (-) =	1.0E-06		1.0E-06		
10 1			K _s (m/s) =		$K_s (m/s) =$	2.7E-06		
	10	0 -2	S _s (1/m) =	1.0E-08	S _s (1/m) =	1.0E-08		
	A	00 . (1/q)' [min]	C (m³/Pa) =	NA	C (m³/Pa) =	2.7E-08		
10 °		14 600	C _D (-) =	NA	C _D (-) =	3.0E+00		
	10	0 -3	ξ(-) =	5.85	ξ(-) =	1.77		
<u> </u>	3	3E-4	T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =			
10 ~ 10 ··· 10	10 10 10 10 10		$S_{GRF}(-) =$		$S_{GRF}(-) =$	1		
			D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	neters.			
			dt ₁ (min) =	-	C (m³/Pa) =	2.7E-08		
Elapsed time (h	1)	_	dt_2 (min) =		$C_{D}(-) =$	3.0E+00		
10 ² SKB Laxemar / KLX07A 211.92-311.92 / CHir	FlowDim Version 2.14b (c) Golder Associates		$T_{T} (m^{2}/s) =$	2.7E-04		1.77		
			S (-) =	1.0E-06	- • /			
10 1		10 ⁻	$K_s (m/s) =$	1.4E-05				
•••			$S_{s}(1/m) =$	5.0E-08				
	•	10 ¹ 7	Comments:					
10 ⁻¹		*1	derivative quality. T is estimated to be 9. displayed during the	r phase (outer zo The confidence i .0E-5 to 4.0E-4 e test is 2. The s	f 2.7E-4 m2/s was do one), which shows th range for the interval m2/s. The flow dime tatic pressure measu the CHir phase usin	e best data and l transmissivity ension red at		
10 ¹ 10 ² EDICE	D 10 ⁻² 10 ⁻² 10 ⁻² 10 ⁻⁵	5			a value of 2342.3 kP			

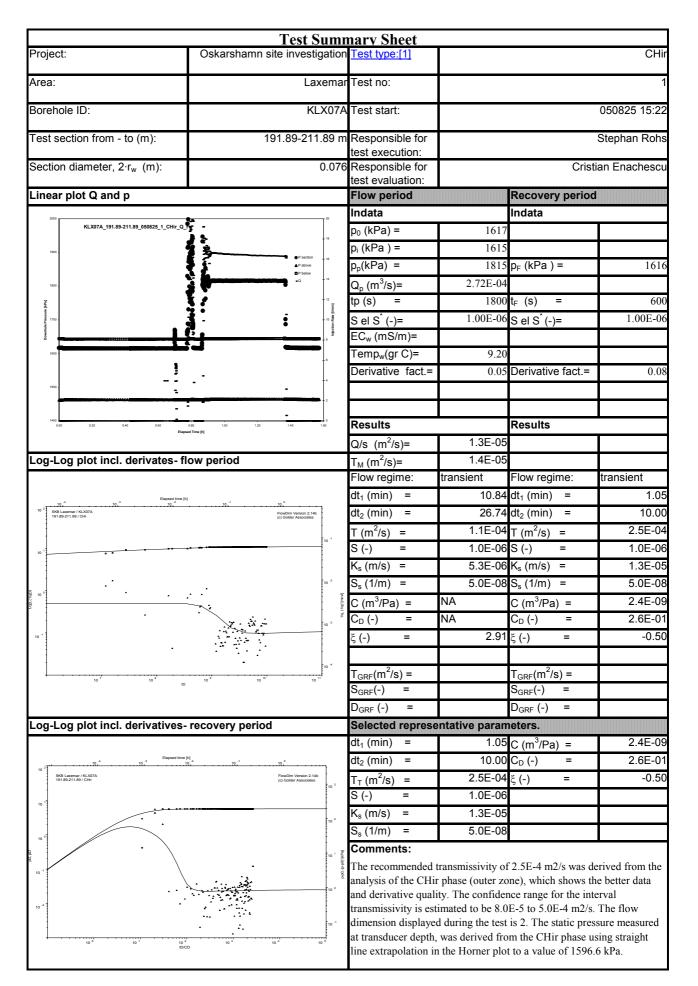


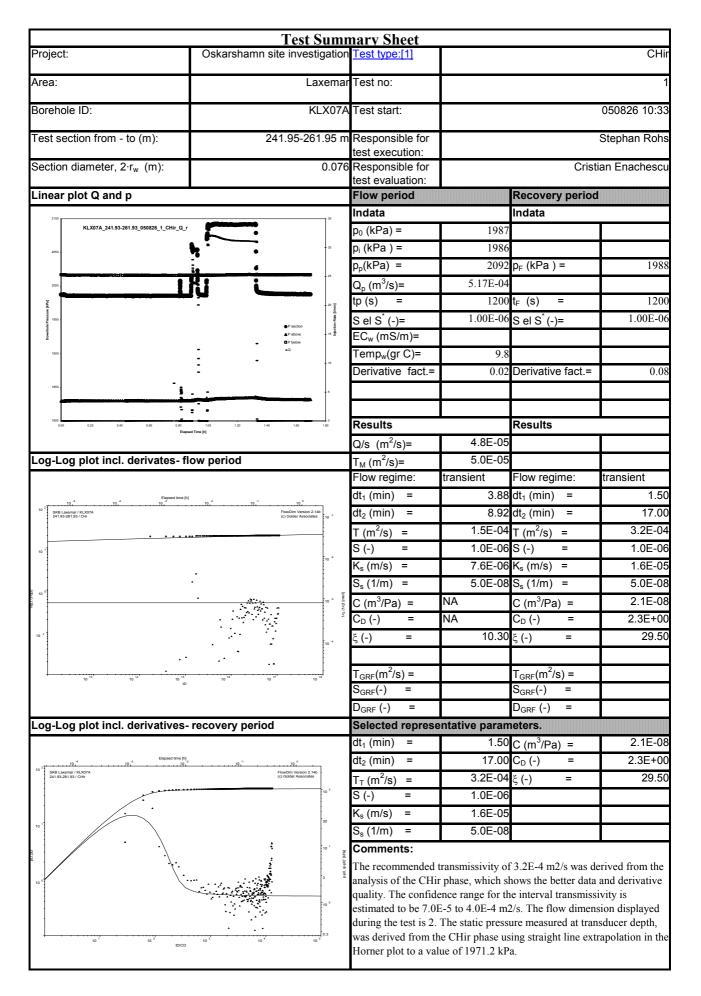

	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX07A	Test start:			050822 09:58	
Test section from - to (m):	412.07-512.07 m				Stephan Rohs	
Paatian diamatar 2 r (m);	0.076	test execution:		Criet		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Clist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period	l	
		Indata		Indata		
KLX07A_412.07-512.07_050822_1_CHir_Q_r		p ₀ (kPa) =	3785			
4000	••••••••••••••••••••••••••••••••••••••	p _i (kPa) =	3791			
	1 •	$p_{p}(kPa) =$	3991	p _F (kPa) =	379	
3900		$Q_{p} (m^{3}/s) =$	7.62E-05			
2		$\frac{d_{\beta}(m, b)}{d_{\beta}} =$	1800	t _F (s) =	180	
a 2000 -	s o Rase (prinis	S el S [*] (-)=		S el S [*] (-)=	1.00E-0	
P Commission of the second sec	●P section g ▲ P above g B before g	$EC_w (mS/m) =$		0000		
3400	■ - 00000 ± 4 = 0	Temp _w (gr C)=	12.4			
	3	Derivative fact.=		Derivative fact.=	0.0	
2200 - - -	+ 2		0.07		0.0	
3000						
0.00 0.50 1.00 Elapse	1.50 2.00 d Time [h]	Results	0.75.00	Results		
		Q/s (m²/s)=	3.7E-06			
.og-Log plot incl. derivates- fl	bw period	$T_{M} (m^{2}/s) =$	4.9E-06			
		Flow regime:	transient	Flow regime:	transient	
10 ⁻² Elapsed time (h)		dt_1 (min) =		dt_1 (min) =	3.4	
SKB Laxemar / KLX07A 412.07-512.07 / CHI	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =		dt_2 (min) =	29.6	
		T (m²/s) =		T (m²/s) =	3.0E-0	
- 99 085 W	0.3	S (-) =	1.0E-06	17	1.0E-0	
10 ¹ • • • •	- 10 ⁻¹	$K_s (m/s) =$		K _s (m/s) =	3.0E-0	
	• •	S _s (1/m) =	1.0E-08	S _s (1/m) =	1.0E-0	
· · · · ·	0.03	C (m³/Pa) =	NA	C (m³/Pa) =	1.7E-0	
10 °	tata g	C _D (-) =	NA	C _D (-) =	1.8E-0	
	10 -2	ξ(-) =	5.18	ξ(-) =	19.3	
	0.003					
10 ° 10 10	10 ¹¹ 10 ¹² 10 ¹³	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
tD		S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
.og-Log plot incl. derivatives-	recovery period	Selected represe	-	_		
		$dt_1 (min) =$	0.97	0 (iii /i u)	1.7E-0	
Elapsed time [h]		dt ₂ (min) =		C _D (-) =	1.8E-0	
U SKB Laxemar / KL307A 412.07-512.07 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	8.3E-06	ξ(-) =	5.1	
	300	S (-) =	1.0E-06			
	10 2	$K_s (m/s) =$	8.3E-08			
		S _s (1/m) =	1.0E-08			
	्र अ	Comments:				
	0 (b 40)	The recommended transmissivity of 8.3E-6 m2/s was derived from analysis of the CHi, which shows the best data and derivative qualit The confidence range for the interval transmissivity is estimated to 5.0E-6 to 1.0E-5 m2/s. The flow dimension displayed during the test				
10 0	• .					
1		5.0E-6 to 1.0E-5 m	2/s. The flow di			
		2. The static pressu	re measured at t	ransducer denth wa	s derived from	
10 ¹ 10 ²	10 [°]	The static pressu the CHir phase usin		ransducer depth, wa xtrapolation in the H		

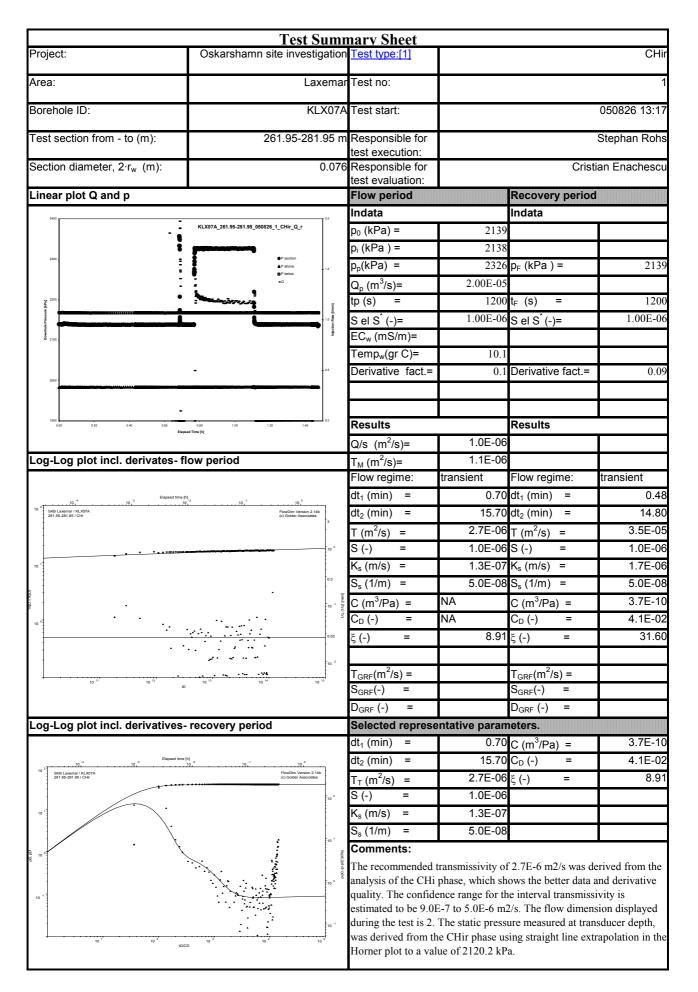

	lest S	umn	nary Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir
Area:	La>	kemar	Test no:			1
Borehole ID:	KL	X07A	Test start:			050822 13:45
Test section from - to (m):	507.16-607	'.16 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):		0.076	Responsible for		Cris	tian Enachescu
			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	d
KLX07A_507.16-607.16_050822_1_CHir_Q_r		2.0	Indata	4520	Indata	
4700			p ₀ (kPa) = p _i (kPa) =	4530 4538		
-			p _i (kPa) = p _p (kPa) =		p _F (kPa) =	4539
4500		- 1.5		9.00E-06	ρ _F (κι α) –	4339
-			$\begin{array}{l} Q_p \ (m^3/s) = \\ tp \ (s) = \end{array}$		t _F (s) =	1800
2 4300 - 8	P section A parameters	1.0 Rate [/min]	S el S [*] (-)=		u⊧ (3) = S el S [*] (-)=	1.00E-06
	P below •Q	Injection F	EC _w (mS/m)=	1.002 00	3 6 3 (-)-	1.001 00
4100			Temp _w (gr C)=	13.5		1
		0.5	Derivative fact.=		Derivative fact.=	0.06
3000 · · · · · · · · · · · · · · · · · ·	-					
-						
3700	1.00 1.20 1.40 1.60 1.80	2.00	Results		Results	
Lingur	e runs (n)		Q/s (m²/s)=	4.2E-07		
.og-Log plot incl. derivates- fl	ow period		$T_{M} (m^{2}/s) =$	5.5E-07		
			Flow regime:	transient	Flow regime:	transient
Elapsed time (1	ין 10. ⁻² 10. ⁻¹ 10	,°	dt ₁ (min) =	9.15	dt ₁ (min) =	ł
10 1 SKB Laxemar / KLX07A 507.16-607.16 / CHi		-	dt ₂ (min) =		$dt_2 (min) =$	e I
	FlowDim Version 2.14 (c) Golder Associates	10 °	T (m²/s) =		T (m²/s) =	4.8E-07
		ŀ	S (-) =	1.0E-06		1.0E-06
10 ⁰	· · · · · · · · · · · · · · · · · · ·	0.3	$K_{s}(m/s) =$		$K_s (m/s) =$	4.8E-09
•		10 1	$S_{s}(1/m) =$		$S_{s}(1/m) =$	1.0E-08
·		1q, (1q)' [m	C (m ³ /Pa) =	NA NA	C (m ³ /Pa) =	9.7E-10 1.1E-01
10 -1	• •	0.03	$C_{D}(-) =$		$C_{D}(-) =$	
		10 -2	ξ(-) =	-0.14	ξ(-) =	1.13
		ł	T _{GRF} (m²/s) =		T _{GRF} (m²/s) =	
10 ² 10 ³ tD	10 ⁴ 10 ⁵ 1	0.003	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
.og-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran		
			dt ₁ (min) =	*	C (m³/Pa) =	9.7E-10
Elapsed time (h)			dt ₂ (min) =	*	$C_{D}(-) =$	1.1E-01
10 1 SKB Laxemar / KLX07A 507.16-607.16 / CHir	,	300	$T_{T}(m^{2}/s) =$	4.8E-07		1.13
· frankan	FlowDim Version 2.14b (c) Golder Associates	10 2	S (-) =	1.0E-06		
a contraction of the second			K _s (m/s) =	2.4E-08		
10 °		30	S _s (1/m) =	5.0E-08		
·	•	10 ¹ @	Comments:	-		-
10 "		91.064-0;1064	*: IARF not reached The recommended t analysis of the CHin derivative quality. T is estimated to be 1. displayed during the transducer depth, w	transmissivity of phase (inner zo The confidence i 0E-7 to 9.0E-7 e test is 2. The s	ne), which shows the ange for the intervation m2/s. The flow dimination pressure measure measu	he best data and al transmissivity tension ured at

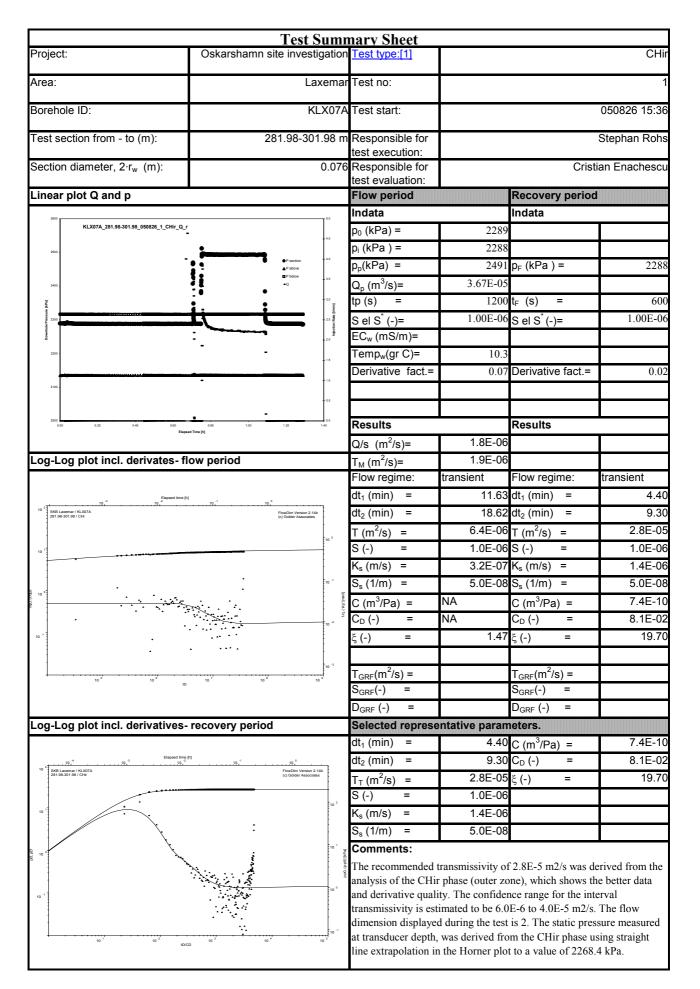

	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation				CHi	
Area:	Laxemar	emar Test no: 1				Fest no:
Borehole ID:	KLX07A	Test start:	050822		050822 17:07	
Test section from - to (m):	602.32-702.32 m	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		test evaluation: Flow period		Recovery period	l	
		Indata		Indata		
			5274			
5400 . KI	LX07A_602.32-702.32_050822_1_CHir_Q_r + 14	p ₀ (kPa) =	5267			
	12	p _i (kPa) =			50/	
5200		p _p (kPa) =		p _F (kPa) =	526	
	+ 10	$Q_p (m^3/s) =$	1.50E-04			
	●P section a literation	tp (s) =		t _F (s) =	720	
L -	▲ P above 82 ■ P below 5	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0	
4000	•Q −6	EC _w (mS/m)=				
		Temp _w (gr C)=	14.7			
4600 -	+4	Derivative fact.=	0.02	Derivative fact.=	0.1	
	-2					
0.00 0.50 1.00 1.50 Elap	2:00 2:50 3:00 3:50 4:00 peed Time [h]	Results		Results		
		Q/s (m ² /s)=	1.5E-05			
.og-Log plot incl. derivates- f	low period	T _M (m²/s)=	1.9E-05			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time ([b] 10 ⁻⁰ 10 ⁻¹ 10 ⁻²	dt_1 (min) =		dt ₁ (min) =	3.3	
10 1 SKB Laxemar / KLX07A 602.32-702.32 / CHi		dt ₂ (min) =	26.27	dt_2 (min) =	28.9	
	FlowDim Version 2.14b (c) Golder Associates	T (m²/s) =	1.1E-05	T (m²/s) =	9.8E-0	
*		S (-) =	1.0E-06	S (-) =	1.0E-0	
10 °	•	K _s (m/s) =	1.1E-07	K _s (m/s) =	9.8E-0	
	10 2	S _s (1/m) =	1.0E-08	S _s (1/m) =	1.0E-0	
· · · ·	e e e e e e e e e e e e e e e e e e e	C (m ³ /Pa) =	NA	C (m³/Pa) =	3.9E-0	
10 -1	0.003 \$	C _D (-) =	NA	C _D (-) =	4.3E+0	
	• 10 ⁻³	ξ(-) =	-3.99		-4.7	
	3E-4	T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =		
10 ⁻² 10 ⁻³ 10	10 ⁴ 10 ⁶ 10 ⁶	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
.og-Log plot incl. derivatives	- recovery period	Selected represe	ntativo naran			
	recovery period	dt_1 (min) =		C (m ³ /Pa) =	3.9E-0	
10 ⁻³ Elapsed time	[ħ] 10 ⁻¹ 10 ⁻⁰ 40 ⁻¹	,		C (m ^o /Pa) = C _D (-) =	3.9E-0 4.3E+0	
10 2 SKB Laxemar / KLX07A 602.32-702.32 / CHir	10, 10, 10, FlowDim Version 2.14b (c) Golder Associates	at ₂ ()			4.3E+0 -4.7	
	10 3	$T_T (m^2/s) =$ S (-) =	9.8E-06 1.0E-06		-4./	
10 1						
		$K_s (m/s) =$	4.9E-07			
		$S_{s}(1/m) =$	5.0E-08			
10 °	T 97550 m2/s C 1050 m2/s C 1050 m/s	analysis of the CHin derivative quality.	r phase (inner zo The confidence i	f 9.8E-6 m2/s was do one), which shows th range for the interval	e best data and l transmissivity	
FLOW MODEL : Two shell composite BOUNDARY CONSTICUES: Constant rate WELL TYPE : Source 95L TYPE W1 You with the state of the state PLOT TYPE : Log-log 10 0 10	n1 2008-00 - 10 0 - 10	is estimated to be 8.0E-6 to 3.0E-5 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight lin				
	10 ² 10 ³ 10 ⁴	transducer depth, w	as derived from		g straight lin	

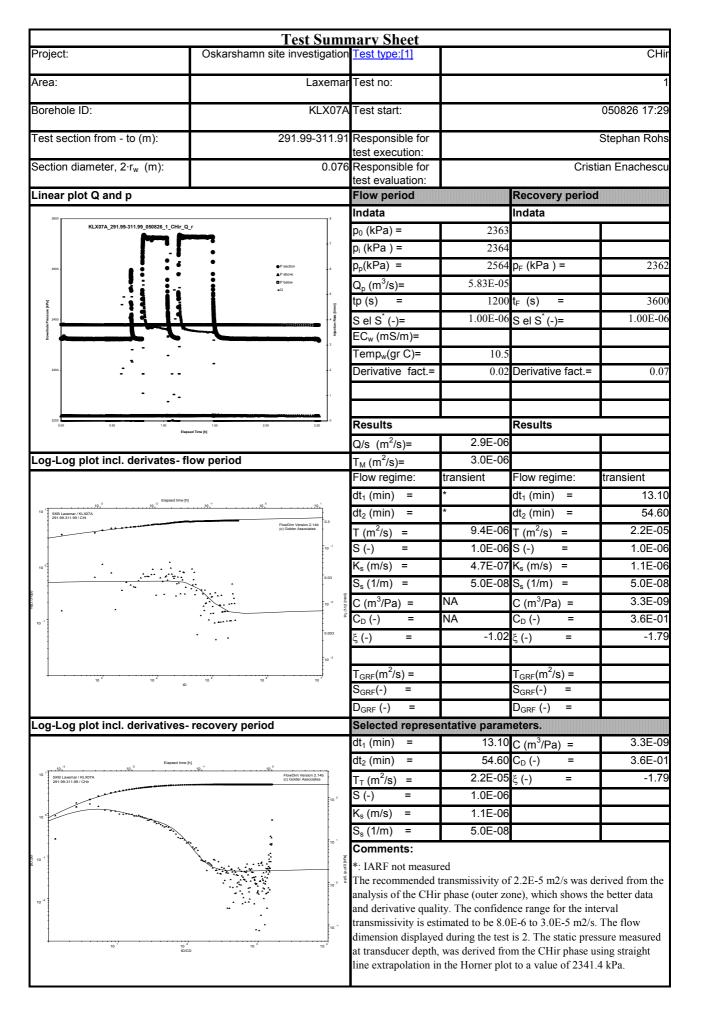

	Test Summ	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxemar	Test no:			1	
Develope		T+ -++-			050000 00:00	
Borehole ID:	KLX07A	Test start:			050823 09:33	
Test section from - to (m):	702.45-802.45 m	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
		test evaluation:		<u></u>		
Linear plot Q and p		Flow period		Recovery period		
KLX07A_702.45-802.45_050823_1_CHir_Q_r	30	Indata	(0.40	Indata	1	
6100		p ₀ (kPa) = p _i (kPa) =	6048 6043			
ecoo -	25	$p_i(kPa) = p_p(kPa) =$		p _F (kPa) =	6049	
5000 ·			3.42E-04		004	
- 5500	- 20	$\frac{Q_p (m^3/s)}{tp (s)} =$		t _F (s) =	1800	
red anse	●P section ▲P above + 15 &	(0)			1.00E-06	
B 5700 - 9 00 -		S el S [*] (-)= EC _w (mS/m)=	1.001-00	S el S [*] (-)=	1.001-00	
Ğ 5600 -	10	Temp _w (gr C)=	16.2			
5900 - -	•	Derivative fact.=		Derivative fact.=	0.0	
5400	+ 5		0.02		0.0	
500		Results		Results		
ubu uzu uxu uxu tau uxu tau Elapsed Ti	ne [h]	$Q/s (m^2/s)=$	3.0E-05			
.og-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	3.9E-05			
Log-Log plot men. derivates- no	w period	Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =		dt_1 (min) =	1.19	
10 ² SKB Laxemar / KLX07A 702.45-802.45 / CH	10, ⁻¹ 10, ¹ FlowDim Version 2.14b	dt_2 (min) =		dt_2 (min) =	3.40	
702.45-802.45 / CHi	(c) Golder Associates	$T(m^2/s) =$		$T(m^2/s) =$	3.8E-0	
	-10 ⁻¹	S (-) =	1.0E-06		1.0E-06	
10 1	10	$K_s (m/s) =$		$K_s (m/s) =$	3.8E-0	
• • • • • • • • • • • • • • • • • • •	0.03	$S_{s}(1/m) =$		$S_{s}(1/m) =$	1.0E-08	
	10 ⁻²	C (m³/Pa) =	NA	C (m³/Pa) =	6.5E-08	
10 07	10 5	C _D (-) =	NA	C _D (-) =	7.1E+00	
	0.003	ξ(-) =	-1.08	ξ(-) =	-2.12	
	- 10 ⁻³	T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =		
10 ⁻⁴ 10 ⁻⁵ tD	10 ⁶ 10 ⁷ 10 ⁸	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
_og-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative paran			
• • •		dt_1 (min) =	·····	C (m³/Pa) =	6.5E-08	
10,-4 Elapsed time (h)	10, ⁻¹ 10, ⁰ FlowDim Version 2.14b	dt ₂ (min) =		C _D (-) =	7.1E+00	
10 SKB Laxemar / KLX07A 702.45-802.45 / CHir	(c) Golder Associates	$T_{T} (m^{2}/s) =$	3.8E-05	ξ(-) =	-2.12	
		S (-) =	1.0E-06			
	300	$K_{s}(m/s) =$	1.9E-06			
10	10 ²	S _s (1/m) =	5.0E-08			
	• 500 [life]	Comments:				
1 and the second s	30 g			f 3.8E-5 m2/s was de		
10 °	10 '			hows the best data and interval transmiss		
	Verifie 12			2/s. The flow dimens		
	3	during the test is 2.	The static press	ure measured at tran	sducer depth,	
10 [°] 10 [°] tD/CD	10 ⁻² 10 ⁻³ 10 ⁻⁴			sing straight line extra	rapolation in the	
		Horner plot to a val	ue of 6022.8 kP	a.		



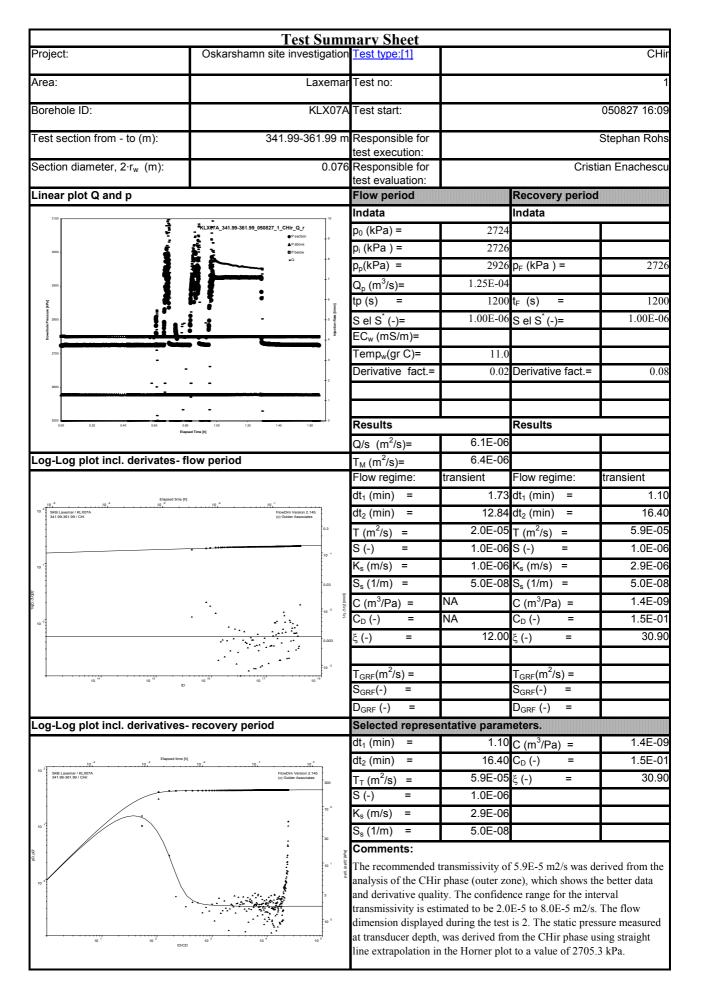


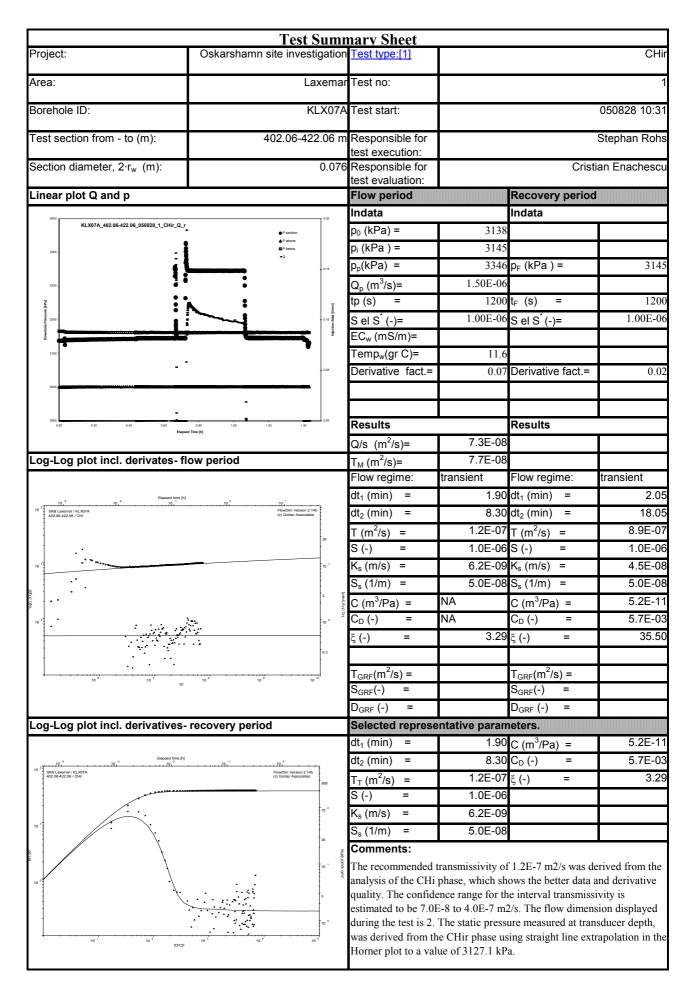


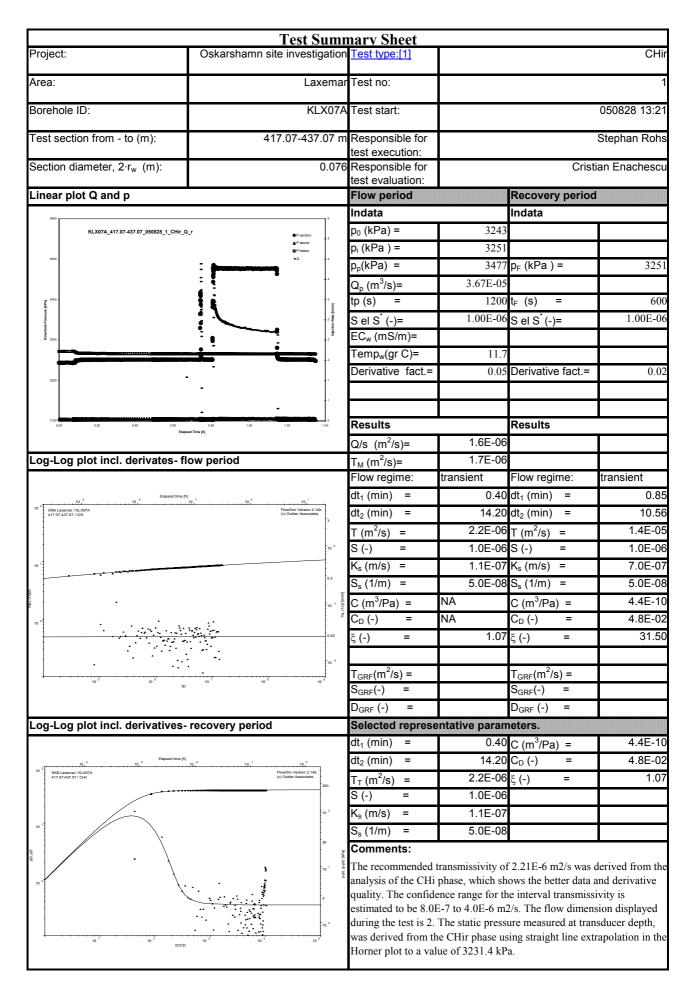


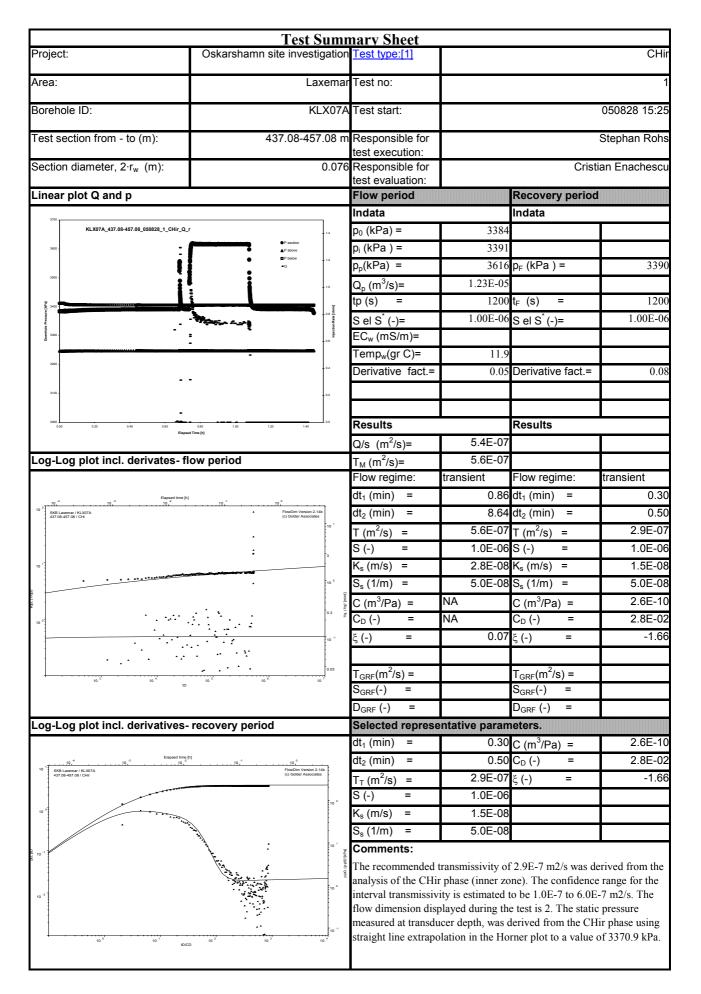

					0.11	
Oskarshamn site investiga	ation	Test type:[1]			CHi	
Laxemar		Test no:				
KLX07A		Test start:			050825 17:38	
211.92-231.9					Stephan Rohs	
				0.11		
0.				Crist	ian Enachesci	
				Recovery period		
	3	-		Indata		
2	25	p₀ (kPa) =	1765			
P section		,	1764			
▲P above 27		, ,		p _∈ (kPa) =	176	
••				Pr ()		
·				tr (s) =	120	
• •	1				1.00E-0	
			1.002.00	3 8 3 (-)-	1.001 0	
-			9.4			
-				Dorivativo fact -	0	
-5	5	Derivative lact	0.02	Derivative lact	0	
_	ŀ					
	•	Posulte		Poculte		
d Time (h)			1 2E-05	Results	1	
owneried	_					
				Flow regime:	transient	
				•	5.1	
10, ⁻¹ 10, ⁰ FlowDim Version 2, 14b		. ,			16.6	
(c) Golder Associates					2.2E-0	
10	0	· /			2.2L-0 1.0E-0	
				.,	1.0E-0 1.1E-0	
•						
•	ε				5.0E-0	
· · ·	<u> </u>	, ,		, ,	3.2E-0	
10					3.5E-0	
		ξ(-) =	5.21	ξ(-) =	30.5	
10	o *	$T_{a=z}(m^2/s) =$		$T_{a=-}(m^2/s) =$		
10 ¹¹ 10 ¹² 10 ¹³						
recovery period			entative param			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	·····			3.2E-0	
] 10. ⁻² 10 ⁻¹ 10 ⁰		-		, ,	3.5E-0	
FlowDim Version 2.14b (c) Golder Associates					30.5	
				١ / د		
•						
	01 (Ke		transmissivity of	2 2 F-4 m2/e was de	erived from the	
	analysis of the CHir phase (outer zone), which shows the better					
	and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-5 to 4.0E-4 m2/s. The flow				erval	
					The flow	
· · ·						
· · ·	10 -1	dimension displayed	d during the test	is 2. The static pres m the CHir phase us	sure measured	
	Oskarshamn site investiga Laxe KLX 211.92-231.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Oskarshamn site investigation Laxemar KLX07A 211.92-231.92 m 0.076	$Q/s (m^{2}/s) = T_{M} (m^{2}/s) =$ Flow regime: $dt_{1} (min) = dt_{2} (min) =$ $T (m^{2}/s) =$ $S (-) =$ $K_{s} (m/s) =$ $S_{s} (1/m) =$ $C (m^{3}/Pa) =$ $C_{D} (-) =$ $C (m^{3}/Pa) =$ $C_{D} (-) =$ $C_{D} (-$	Test type:[1] Laxemar Laxemar Test no: KLX07A Test start: 211.92-231.92 m Responsible for test execution: O.076 Responsible for test evaluation: Indata po(KPa) = 1765 p(KPa) = 12005 p(KPa) = 12005 </td <td>Test type:[1] Laxemar Test no: KLX07A Test start: 211:92:231:92 m Responsible for test execution: Crist test evaluation: Flow period Recovery period Indata Indata p. (kPa) = 1765 P. (kPa) = 1000 fr (s) = S el S' ()= 1.00E-06 S el S' ()= Crist test colspan="2">Crist test colspan="2" Crist</td>	Test type:[1] Laxemar Test no: KLX07A Test start: 211:92:231:92 m Responsible for test execution: Crist test evaluation: Flow period Recovery period Indata Indata p. (kPa) = 1765 P. (kPa) = 1000 fr (s) = S el S' ()= 1.00E-06 S el S' ()= Crist test colspan="2">Crist test colspan="2" Crist	

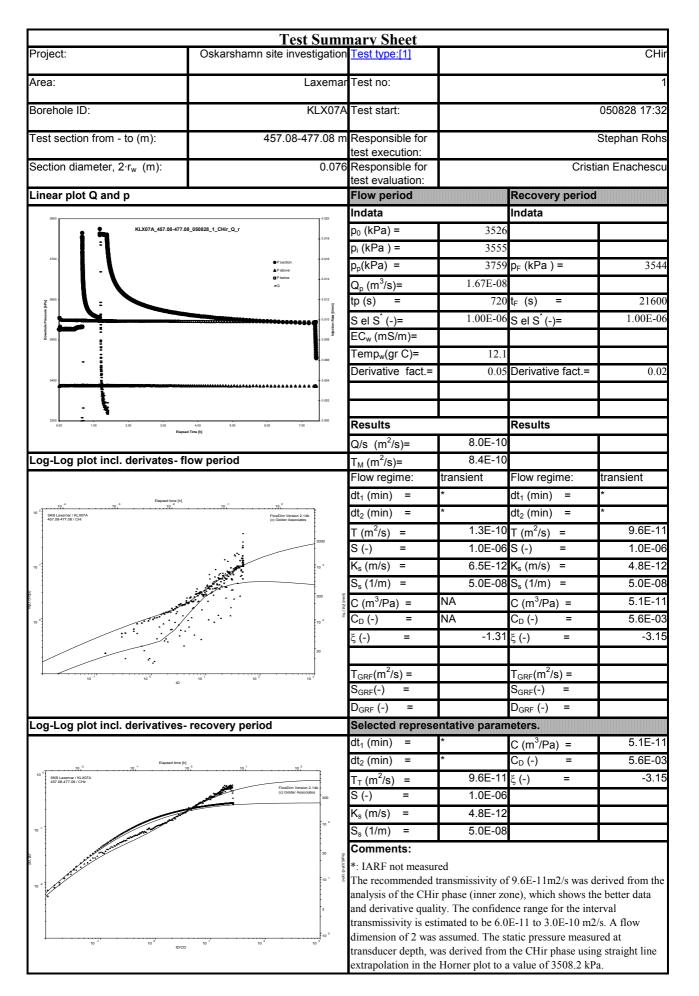
		-		CHi
Oskarshamn site investigation	Test type:[1]			
Laxemar	Test no:			
KLX07A	Test start:			050826 08:21
221.93-241.93 m	Responsible for			Stephan Rohs
	test execution:			·
0.076			Crist	ian Enachesci
			Recovery period	I
	Indata		Indata	
20	p₀ (kPa) =	1838		
● P section ▲ P above	,	1836		
P below -Q				183
- 15				105
				120
				1.00E-0
entre		1.00E-00	5 el 5 (-)=	1.001-0
•	, ,	0.5		
* 3	Derivative fact.=	0.05	Derivative fact.=	0.0
0.80 1.00 1.20 1.40 d Time [h]				
	, ,			
	-		-	transient
FlowDim Version 2.14b (c) Golder Associates	dt ₁ (min) =			4.2
•	dt_2 (min) =			19.2
±	T (m²/s) =			2.1E-0
:	S (-) =	1.0E-06	S (-) =	1.0E-0
0.003	K _s (m/s) =	6.7E-06	K _s (m/s) =	1.1E-0
84) by by	S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-0
	C (m³/Pa) =	NA	C (m³/Pa) =	4.5E-0
3E-4	C _D (-) =	NA	C _D (-) =	5.0E-0
*	ξ(-) =	-0.17	ξ(-) =	30.3
10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻⁹				
	$T_{GRF}(m^2/s) =$		$T_{GRE}(m^2/s) =$	
			D _{GRF} (-) =	
recovery period	Selected represe	entative paran	neters.	
	dt ₁ (min) =			4.5E-0
0, ²	dt_2 (min) =			5.0E-0
FlowDim Version 2.14b (c) Golder Associates				30.3
10 ²				
10 1		0.02 00		
		transmissivity	f 2 1F-4 m2/0 was d	erived from the
	and derivative quality. The confidence range for the interval			
	transmissivity is est			
10 ⁻¹	transmissivity is est dimension displayed at transducer depth,	d during the test	is 2. The static pres	sure measured
	Oskarshamn site investigation Laxemar KLX07A 221.93-241.93 m 0.076	0.076 Responsible for test evaluation: Flow period Indata $p_0 (kPa) =$ $p_p(kPa) =$ $p_p(kPa) =$ $p_p(kPa) =$ $Q_p (m^3/s) =$ $p_p(kPa) =$ $Q_p (m^3/s) =$ $p_p(kPa) =$ $Q_p (m^3/s) =$ $p_p(kPa) =$ $Q_p (m^3/s) =$	Oskarshamn site investigation Test type:[1] Laxemar Test no: KLX07A Test start: 221.93-241.93 m Responsible for test execution: 0.076 Responsible for test evaluation: Flow period Indata $p_0(kPa) =$ 1838 $p_1(kPa) =$ 1838 $p_0(kPa) =$ 1000E-06 E 2000 S el S (-)= 1.000E-06 E	Oskarshamn site investigation Test type:[1] Laxemar KLX07A Test no: XLX07A Test start: 221:93-241:93 m Responsible for test exacution: 0.076 Responsible for test evaluation: Indata Indata Indata Re

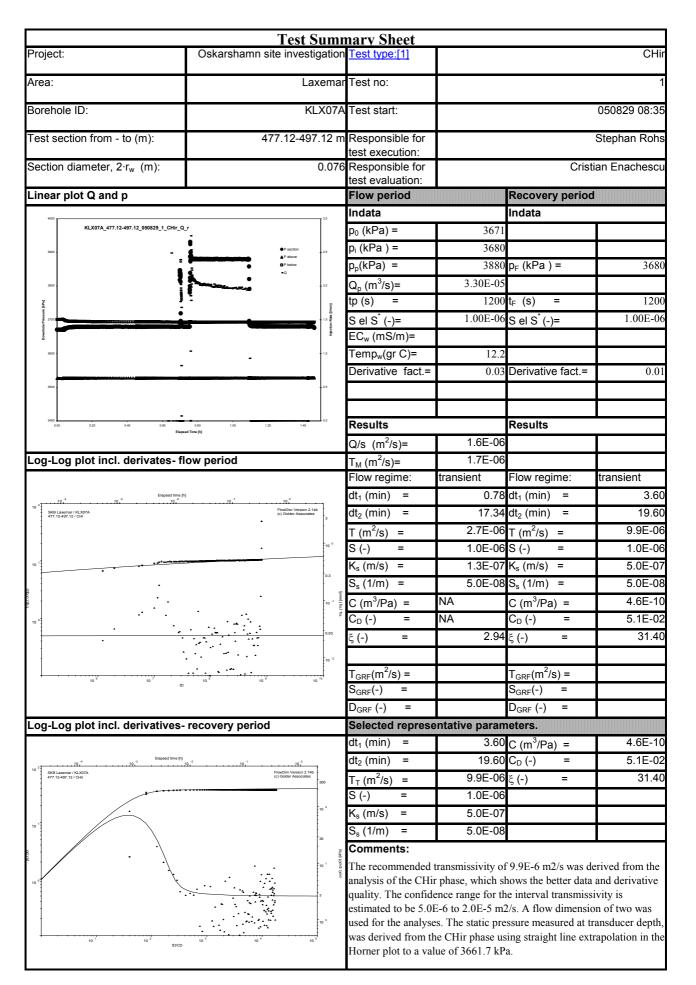


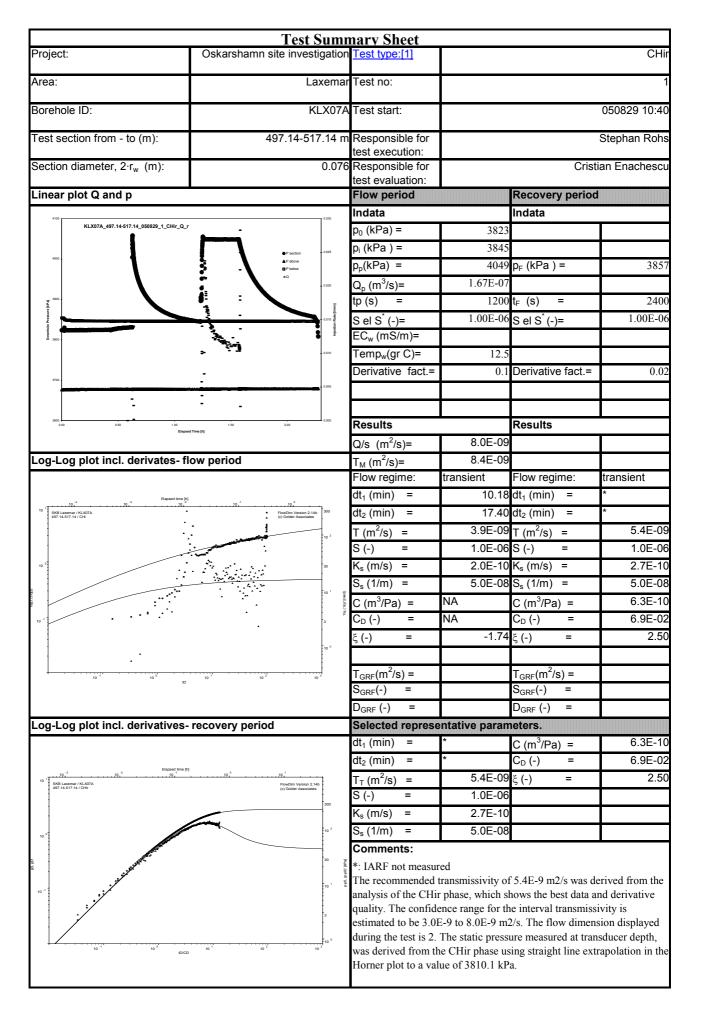

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Borehole ID:	KLX07A	Test start:			050827 11:12
est section from - to (m):	312.00-332.00 m				Stephan Roh
Section diameter Or. (m):	0.070	test execution: Responsible for		Criet	ion Encohooo
Section diameter, $2 \cdot r_w$ (m):	0.076	test evaluation:		Clist	ian Enachescu
inear plot Q and p		Flow period		Recovery period	
2600	1 0.8	Indata		Indata	
KLX07A_312.00-332.00_050827_2_CHir_(۹_r	p ₀ (kPa) =	2507		
•	P section A P abrue	p _i (kPa) =	2512		
2700 -	P below •Q	p _p (kPa) =	2731	p _F (kPa) =	253
2880 -	; \	Q _p (m ³ /s)=	8.33E-07		
2000 -		tp (s) =		t _F (s) =	240
2550		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
2500		EC _w (mS/m)=			
2450 -	1	Temp _w (gr C)=	10.7		
2400 -	÷	Derivative fact.=	0.06	Derivative fact.=	0.0
	00 150 200	Results		Results	
	psed Time (h)	Q/s $(m^2/s)=$	3.7E-08		
og-Log plot incl. derivates- f	flow period	$T_{\rm M} (m^2/s) =$	3.9E-08		
		Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =		dt_1 (min) =	29.4
Elapsed time	2 [h] 10 ⁻¹ 10 ⁰ 10 ¹ FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =		dt_2 (min) =	38.3
312.00-332.00 / CHI	(c) Golder Associates	$T(m^2/s) =$		$T(m^2/s) =$	1.5E-0
		S (-) =	1.0E-06		1.0E-0
10 0		$K_s (m/s) =$		$K_s (m/s) =$	7.4E-1
And the second	2 2	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0
	•	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	6.9E-1
10 1	10 ¥: #	$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	7.6E-0
· .	0.3	ξ(-) =	-3.32		-2.7
	ĺ			,	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T _{GRF} (m ² /s) =		$T_{GRF}(m^2/s) =$	1
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³ ID	$S_{GRF}(-) =$		$S_{GRF}(-) =$	1
		D _{GRF} (-) =		D _{GRF} (-) =	
og-Log plot incl. derivatives	- recovery period	Selected represe			
		dt ₁ (min) =		C (m ³ /Pa) =	6.9E-1
10 1		dt_2 (min) =		C _D (-) =	7.6E-0
10 SKB Laxemar / KLX07A 312.00-332.00 / CHir	FlowOim Version 2.14b 300 (c) Golder Associates	$T_{T} (m^{2}/s) =$	1.5E-08		-2.7
	10 ²	S (-) =	1.0E-06		
10 0		$K_s (m/s) =$	7.4E-10		
		$S_{s}(1/m) =$	5.0E-08		
	10 ¹ 10			f 1.5E-8 m2/s was de	
10 -1	۵. ع			one), which shows the	
1	-10 °			nce range for the interest nce range for the interest nce and the intere	
		Leanonnoorvity to cot			
		dimension displayed	d during the test	is 2. The static pres	sure measured
10 ⁻¹ 10 ⁻² 50%	10 ⁻² 10 ⁻⁴ 10 ⁻⁵	dimension displayed at transducer depth,	was derived fro	is 2. The static pres om the CHir phase us t to a value of 2502.	sing straight

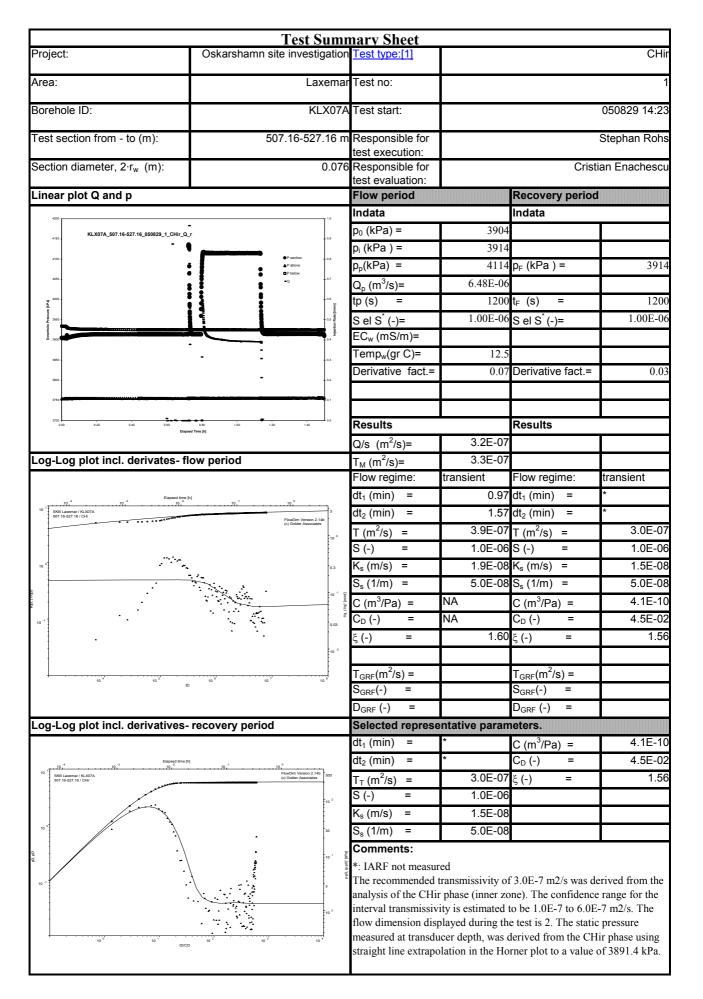

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Borehole ID:	KLX07A	Test start:			050827 14:01
Fest section from - to (m):	326.99-346.99 m				Stephan Rohs
	0.070	test execution:		Oria	tion Encohore
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Cris	tian Enachesc
₋inear plot Q and p		Flow period		Recovery perio	d
		Indata		Indata	
2000 KLX07A_326.99-346.99_050827_1_CHir_Q	¹⁰	p ₀ (kPa) =	2616		
	●P section ● P above ■ P below	p _i (kPa) =	2618		
2800 -	-9 -8	$p_{p}(kPa) =$		p _F (kPa) =	261
	7	$Q_p (m^3/s) =$	1.17E-04		201
- 2700		$\frac{Q_p (\Pi / S)}{tp (s)} =$		t _F (s) =	120
Criti annse					1.00E-0
		$S el S^{*}(-)=$	1.00E-00	S el S [*] (-)=	1.0012-0
å 2800. -	:	EC _w (mS/m)=	10.0		-
	- 3	Temp _w (gr C)=	10.8		
2500 -	, -	Derivative fact.=	0.02	Derivative fact.=	0.0
	- 1				
2400	0.80 1.00 1.20 1.40	Results		Results	
		Q/s (m ² /s)=	5.7E-06		
.og-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	6.0E-06		
		Flow regime:	transient	Flow regime:	transient
Elapsed time [h]		dt₁ (min) =	1.75	dt ₁ (min) =	1.2
10 ⁻² SKB Laxemar / KLX07A 326.99.46.99 / CH	10 ⁻¹ 10 ⁰ 10 ¹ FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	15.23	dt_2 (min) =	16.6
	0.3	$T(m^{2}/s) =$	1.5E-05	T (m ² /s) =	4.5E-0
		S (-) =	1.0E-06	, ,	1.0E-0
10 1	10 -1	$K_s (m/s) =$	7.4E-07	$K_s (m/s) =$	2.3E-0
		$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0
	0.03 E	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.5E-0
	ې 10 ² ^ي		NA	$C_{D}(-) =$	1.7E-0
10		ξ(-) =	8.15		30.8
	0.003	· / / ک		~ (<i>)</i>	
· · · · · · · · · · · · · · · · · · ·	10 ⁻³	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =	
10 ¹¹ 10 ¹² 10 ¹³ tD	10 ¹⁴ 10 ¹⁵ 10 ¹⁶	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
og-Log plot incl. derivatives-	recovery period	Selected represe	entative paran		
		dt_1 (min) =		C (m ³ /Pa) =	1.5E-0
	10 ⁻² 10 ⁻¹ 40 ⁰	dt_2 (min) =		$C_{D}(-) =$	1.7E-0
Elapsed time [h]			4.5E-05		30.8
10 2 10 4 10 3 Elapsed time (h) 326.99-346.99 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{\tau}(m^2/s) =$			55.0
	Flowbim Version 2:14b (c) Guider Associates 300	$T_T (m^2/s) =$ S(-) =			
	FlowEnry Version 2.14b (c) Golder Associates 300 10 ²	S (-) =	1.0E-06		
	300	S (-) = K _s (m/s) =	1.0E-06 2.3E-06		
	300	$S(-) = K_{s}(m/s) = S_{s}(1/m) =$	1.0E-06		
	200 [10 ⁻² 20 20	$S(-) = K_{s}(m/s) = S_{s}(1/m) = Comments:$	1.0E-06 2.3E-06 5.0E-08		
	300	$S(-) = K_{s}(m/s) = S_{s}(1/m) = Comments:$ The recommended	1.0E-06 2.3E-06 5.0E-08 transmissivity of	f 4.5E-5 m2/s was c	
	200 [10 ⁻² 20 20	$S (-) =$ $K_{s} (m/s) =$ $S_{s} (1/m) =$ Comments: The recommended analysis of the CHin	1.0E-06 2.3E-06 5.0E-08 transmissivity of r phase (outer zo	f 4.5E-5 m2/s was cone), which shows t	he better data
	200 [10 ⁻² 20 20	$S(-) = K_{s}(m/s) = S_{s}(1/m) = Comments:$ The recommended	1.0E-06 2.3E-06 5.0E-08 transmissivity of r phase (outer zo ity. The confider	f 4.5E-5 m2/s was cone), which shows the formation of the second state of the second s	he better data terval
	200 [10 ⁻² 20 20	S(-) = $K_s(m/s) =$ $S_s(1/m) =$ Comments: The recommended analysis of the CHii and derivative quali- transmissivity is est dimension displaye	1.0E-06 2.3E-06 5.0E-08 transmissivity of r phase (outer zc ity. The confider imated to be 1.0 d during the test	f 4.5E-5 m2/s was c one), which shows t nce range for the in iE-5 to 7.0E-5 m2/s is 2. The static pre	he better data terval 5. The flow ssure measured
		$S (-) =$ $K_{s} (m/s) =$ $S_{s} (1/m) =$ Comments: The recommended analysis of the CHia and derivative qualitation that the second	1.0E-06 2.3E-06 5.0E-08 transmissivity of r phase (outer ze ity. The confider imated to be 1.0 d during the test was derived fro	f 4.5E-5 m2/s was c one), which shows t nee range for the in rE-5 to 7.0E-5 m2/s is 2. The static pre om the CHir phase t	he better data terval 5. The flow ssure measured using straight

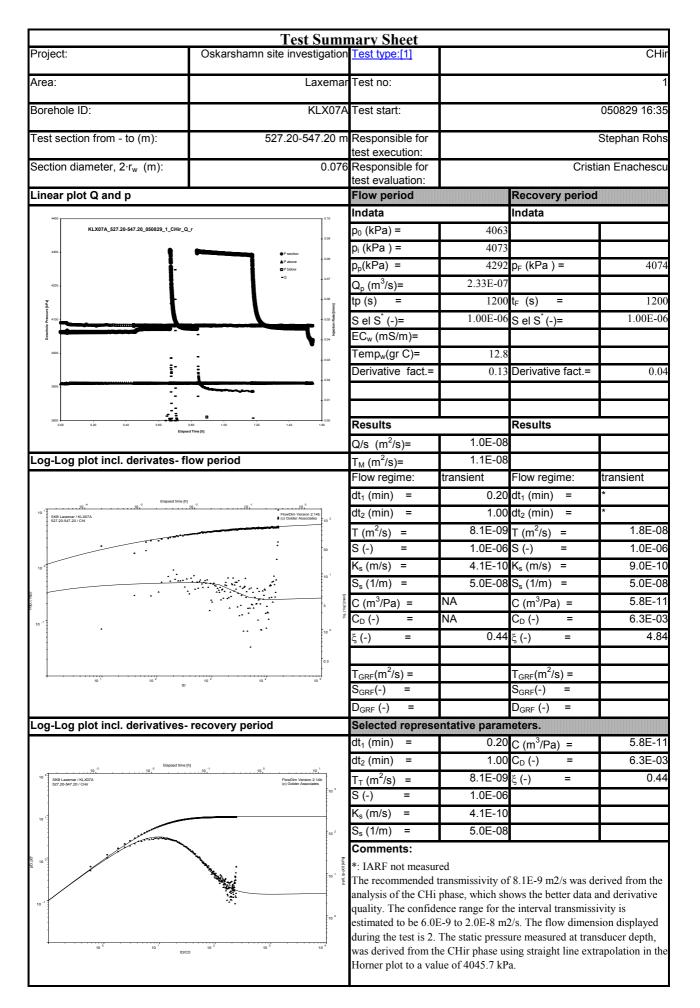


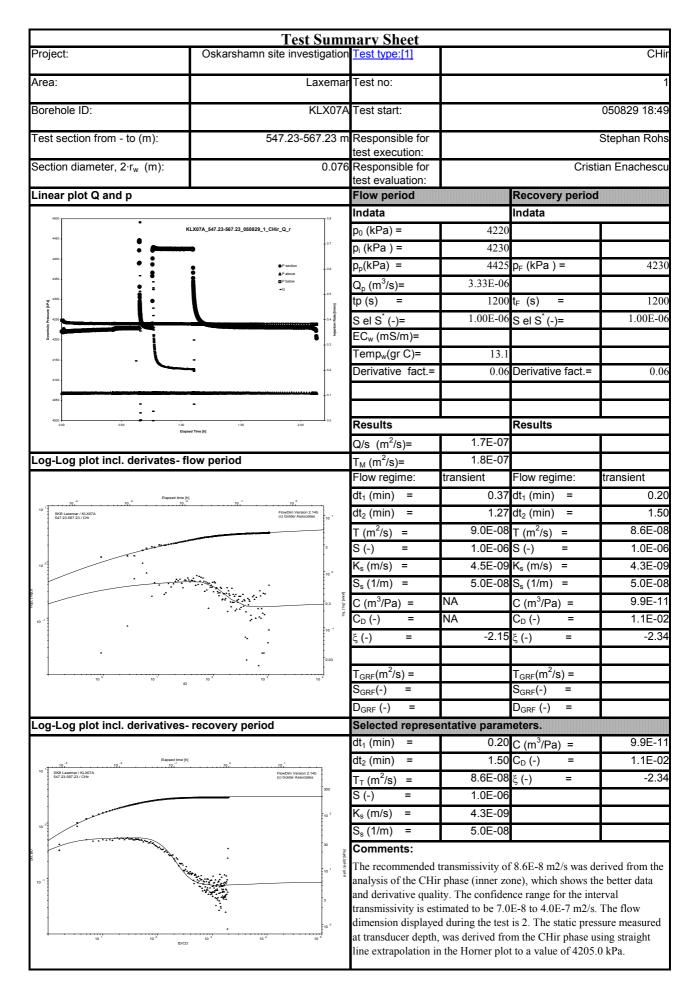

Test type:[1] Test no: Test start: Responsible for est execution: Responsible for est execution: Flow period ndata o_0 (kPa) = o_p (kPa) = o_p (kPa) = o_p (kPa) = o_p (m ³ /s)= p (s) = Sel S [*] (-)= ECw (mS/m)= Tempw(gr C)= Derivative fact.= Results	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2		CHi 050827 18:3 Stephan Roh ian Enachesci 287 120 1.00E-0
Test start: Responsible for est execution: Responsible for est evaluation: Flow period ndata D_0 (kPa) = D_0 (kPa	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Cristi Recovery period Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	Stephan Roh
Responsible for est execution: Responsible for est evaluation: Flow period ndata p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (m ³ /s)= p(s) = Sel S [*] (-)= EC _w (mS/m)= Temp _w (gr C)= Derivative fact.=	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Cristi Recovery period Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	Stephan Roh
est execution: Responsible for est evaluation: Flow period ndata p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (m ³ /s)= p (s) = Sel S [*] (-)= EC _w (mS/m)= Temp _w (gr C)= Derivative fact.= Results	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Cristi Recovery period Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	an Enachesco 287 120
Responsible for est evaluation: Flow period ndata p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (m ³ /s)= p(s) = Sel S [*] (-)= EC _w (mS/m)= Temp _w (gr C)= Derivative fact.= Results	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Recovery period Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	287
est evaluation: Flow period ndata $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (m^3/s) =$ p (s) = $S el S^* (-) =$ $EC_w (mS/m) =$ $Femp_w (gr C) =$ Derivative fact.= Results	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Recovery period Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	287
Flow period ndata $p_0 (kPa) =$ $p_0 (kPa) =$ $p_p (kPa) =$ $p_p (m^3/s) =$ p (s) = $S el S^* (-) =$ $EC_w (mS/m) =$ $Femp_w (gr C) =$ Derivative fact.= Results	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	287
$p_{0} (kPa) =$ $p_{0} (kPa) =$ $p_{0} (kPa) =$ $p_{0} (kPa) =$ $p_{0} (m^{3}/s) =$ $p (s) =$ $S el S^{*} (-) =$ $EC_{w} (mS/m) =$ $Femp_{w}(gr C) =$ $Derivative fact. =$ $Results$	2865 2871 3071 9.83E-05 1200 1.00E-06 11.2	Indata p _F (kPa) = t _F (s) = S el S [*] (-)=	287
$p_{i} (kPa) =$ $p_{p}(kPa) =$ $p_{p} (m^{3}/s) =$ $p (s) =$ $EC_{w} (mS/m) =$ $Cerivative fact. =$ $Results$	2871 3071 9.83E-05 1200 1.00E-06 11.2	t _F (s) = S el S (-)=	120
$p_{p}(kPa) =$ $p_{p}(m^{3}/s)=$ $p(s) =$ $S el S^{*}(-)=$ $EC_{w} (mS/m)=$ $Temp_{w}(gr C)=$ $Derivative fact.=$ $Results$	3071 9.83E-05 1200 1.00E-06 11.2	t _F (s) = S el S (-)=	120
$\begin{aligned} & p_{p}(m^{3}/s) = \\ & p(s) = \\ & S el S^{*}(-) = \\ & EC_{w}(mS/m) = \\ & Femp_{w}(gr C) = \\ & Derivative fact. = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	9.83E-05 1200 1.00E-06 11.2	t _F (s) = S el S (-)=	120
$\begin{aligned} & p_{p}(m^{3}/s) = \\ & p(s) = \\ & S el S^{*}(-) = \\ & EC_{w}(mS/m) = \\ & Femp_{w}(gr C) = \\ & Derivative fact. = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	9.83E-05 1200 1.00E-06 11.2	t _F (s) = S el S (-)=	
p (s) = S el S [*] (-)= EC _w (mS/m)= Temp _w (gr C)= Derivative fact.= Results	1.00E-06 11.2	S el S (-)=	
S el S [*] (-)= EC _w (mS/m)= Temp _w (gr C)= Derivative fact.= Results	1.00E-06 11.2	S el S (-)=	1.00E-0
EC _w (mS/m)= Femp _w (gr C)= Derivative fact.= Results	11.2		
Temp _w (gr C)= Derivative fact.= Results		Derivative fact =	
Derivative fact.= Results		Derivative fact =	
Results	0.03		0
		Descrifte	
		Results	
Q/s (m²/s)=	4.8E-06		
Γ _M (m ² /s)=	5.0E-06		
low regime:	transient	Flow regime:	transient
$dt_1 (min) =$		dt_1 (min) =	0.5
			1.4
, ,			3.1E-0
			1.0E-0
,			1.6E-0
		.,	5.0E-0
, ,		, ,	1.6E-0
- 、			1.8E-0
, (-) =	7.00	ξ(-) =	30.8
$G_{\rm CPF}(m^2/s) =$		$T_{CPF}(m^2/s) =$	
	ntative param		
$t_1(min) =$	•••••••••••••••••••••••••••••••••••••••		1.6E-0
			1.8E-0
			7.0
S(-) =			
	0.02 00		
The recommended t nalysis of the CHi juality. The confide	phase, which sh nce range for th	ows the better data a ne interval transmission	and derivative ivity is
luring the test is 2.	The static press	ure measured at tran	sducer depth,
	$\begin{array}{l} (1,10) \\ (-) \\ (-) \\ = \\ (-) $	t_2 (min) = 17.20 (m^2/s) = 1.2E-05 s_1 (-) = 1.0E-06 t_s (m/s) = 6.1E-07 t_s (1/m) = 5.0E-08 t_s (1/m) = 5.0E-08 t_s (1/m) = NA t_s (1/m) = NA t_s (1/m) = NA t_s (1/m) = 7.00 $t_{GRF}(-)$ = 0 t_1 (min) = 1.20 t_2 (min) = 1.2E-05 t_1 (m ² /s) = 1.2E-05 t_1 (m ² /s) = 1.0E-06 t_8 (m/s) = 6.1E-07 t_8 (1/m) = 5.0E-08 comments: 0 the recommended transmissivity of nalysis of the CHi phase, which shuality. The confidence range for th stimated to be 6.0E-6 to 4.0E-5 m ²	t_2 (min) = 17.20 dt_2 (min) = t_2 (m ² /s) = 1.2E-05 T (m ² /s) = t_1 (m ² /s) = 1.0E-06 $S(-)$ = t_3 (m/s) = $6.1E-07$ K_s (m/s) = t_s (m/s) = $6.1E-07$ K_s (m/s) = t_s (1/m) = $5.0E-08$ S_s (1/m) = t_s (1/m) = T_{GRF} (m ² /s) = T_{GRF} (m ² /s) = t_{GRF} (-) = T_{GRF} (m ² /s) = T_{GRF} (m ² /s) = t_{GRF} (-) = D_{GRF} (-) = D_{GRF} (-) = t_1 (min) = 1.20 C (m ³ /Pa) = t_2 (min) = t_2 (min) = $1.2E-05$ ξ (-) = t_3 (m/s) = t_5 (1/m) = $5.0E-08$ t_5 (m/s) = $6.1E-07$ t_8 (1/m) = $5.0E-08$ t_5 (methed transmissivity of $1.2E-5$ m2/s was definally sis of the CHi phase, which shows the better data at uality. The confidence range for the interval transmissi stimated to be $6.0E-6$ to $4.0E-5$ m2/s. The flow dimensi uring the test is 2. The static pressure measured at transmissi uring the test is 2. The static pressure measured

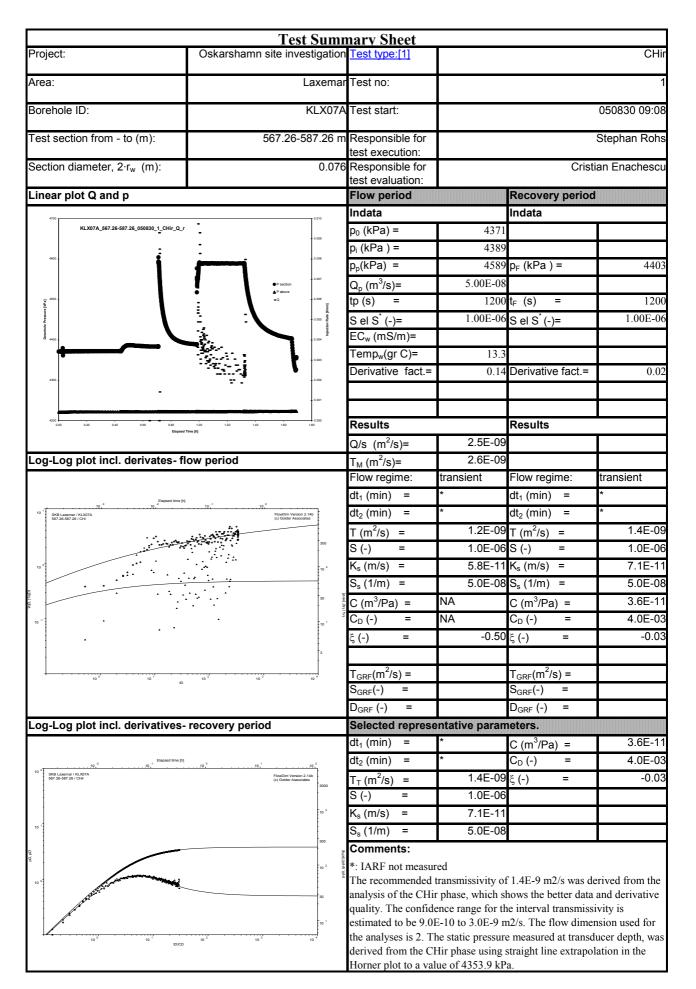

	I est Sum	<u>nary Sheet</u>			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Borehole ID:	KLX07A	Test start:			050828 08:24
Test section from - to (m):	382.08-402.08	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	test execution:		Criet	ian Enachescu
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Clist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
KLX07A_382.08-402.08_050828_1_CHir_Q_r	P section	p ₀ (kPa) =	2999		
3200 -	A P above 7 ■ P below	p _i (kPa) =	3006		
3100 -		$p_p(kPa) =$	3207	p _F (kPa) =	300
5000		$Q_{p} (m^{3}/s) =$	6.33E-05	FT X - 7	
F 2000 -	5	$\frac{d_p(m/s)}{tp(s)} =$		t _F (s) =	90
2. 8 2 2200 -	Pase (Innin)	S el S [*] (-)=		S el S [*] (-)=	1.00E-0
American Contraction Contracti	Injection 1	EC _w (mS/m)=	1.002 00	3 8 3 (-)-	1.001 0
2700.	-	$Temp_w(gr C)=$	11.4		
2600 -	2	Derivative fact.=		Derivative fact.=	0.0
2500 -	•		0.1		0.0
2400 -	, <mark>-</mark> 1				
2000 0.00 0.20 0.40 0.80 Elapsed Ti	0.80 1.00 1.20 1.40	Results		Results	
		Q/s $(m^{2}/s)=$	3.1E-06		
.og-Log plot incl. derivates- flo	v period	$T_{M} (m^{2}/s) =$	3.2E-06		
		Flow regime:	transient	Flow regime:	transient
Elapsed time [ħ]		dt ₁ (min) =	0.80	dt ₁ (min) =	1.5
10 ⁻² SKB Laxemar / CLX07A 3820 Buelor 0 / CLX07A	FlowDim Version 2.14b	dt ₂ (min) =	17.50	dt ₂ (min) =	14.5
	(c) contra reaccourts	$T(m^{2}/s) =$	5.9E-06	T (m²/s) =	3.3E-0
		S (-) =	1.0E-06	, ,	1.0E-0
10	0.3	$K_s (m/s) =$	2.9E-07	$K_s (m/s) =$	1.7E-0
• •	10 -1	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0
•		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.8E-0
	• 0.03 ±	$\frac{C_{\rm D}(-)}{C_{\rm D}(-)} =$	NA	$C_D(-) =$	2.0E-0
10 °		ξ(-) =	3.78		30.8
	10 ⁻²	5()			
	•	$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =	
10 ⁻⁷ 10 ⁻⁸ 1D	10 ⁹ 10 ¹⁰ 10 ¹¹	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	
.og-Log plot incl. derivatives- r	ecovery period	Selected represe	ntative param	neters.	
		dt_1 (min) =	0.80	C (m³/Pa) =	1.8E-0
Elapsed time (h)		dt_2 (min) =		$C_{D}(-) =$	2.0E-0
10 ² SKB Laxemar / KLX07A 382.08.402.08 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	5.9E-06		3.7
		S (-) =	1.0E-06		
	10 ²	$K_s (m/s) =$	2.9E-07		
		$S_{s}(1/m) =$	5.0E-08		
	30	Comments:			
	• 32 [02- 10 ¹ d;		ransmissivity of	f 5.9E-6 m2/s was de	erived from the
10 °	ž d			ows the better data a	
	3	quality. The confide	ence range for th	e interval transmiss	ivity is
				2/s. The flow dimens	
· · · · · · · · · · · · · · · · · · ·	10 ⁰			ure measured at tran	
10 ¹ 10 ² tD/CD	10 ³ 10 ⁴ 10 ⁵	Horner plot to a val		sing straight line extr	apolation in th
		II.amaan mlatta a sol	uo of 2080 2 kD	0	

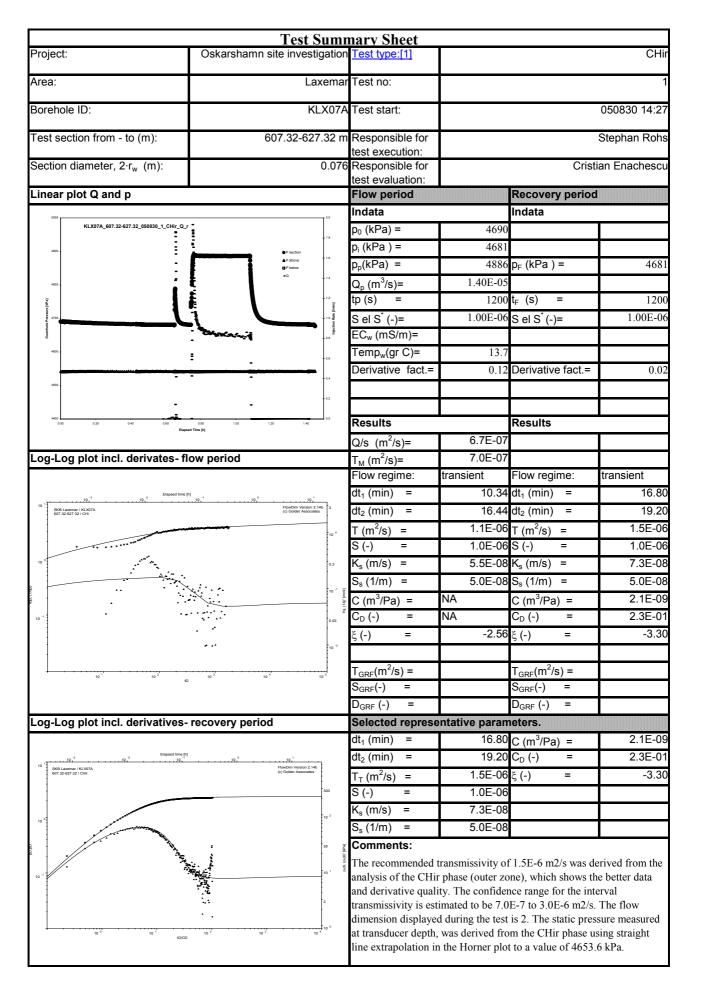


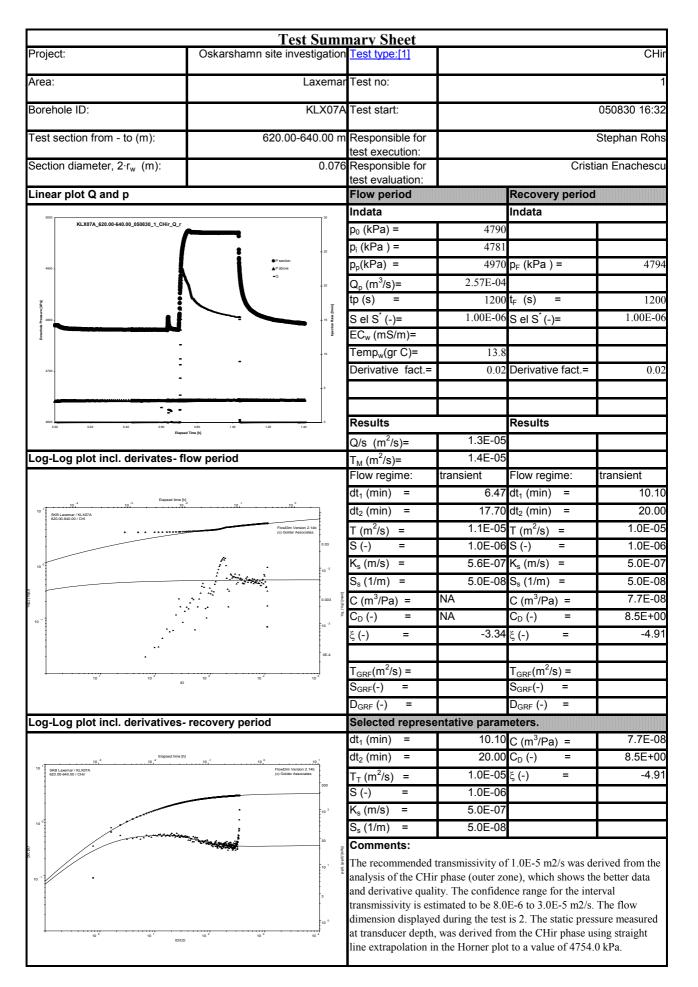


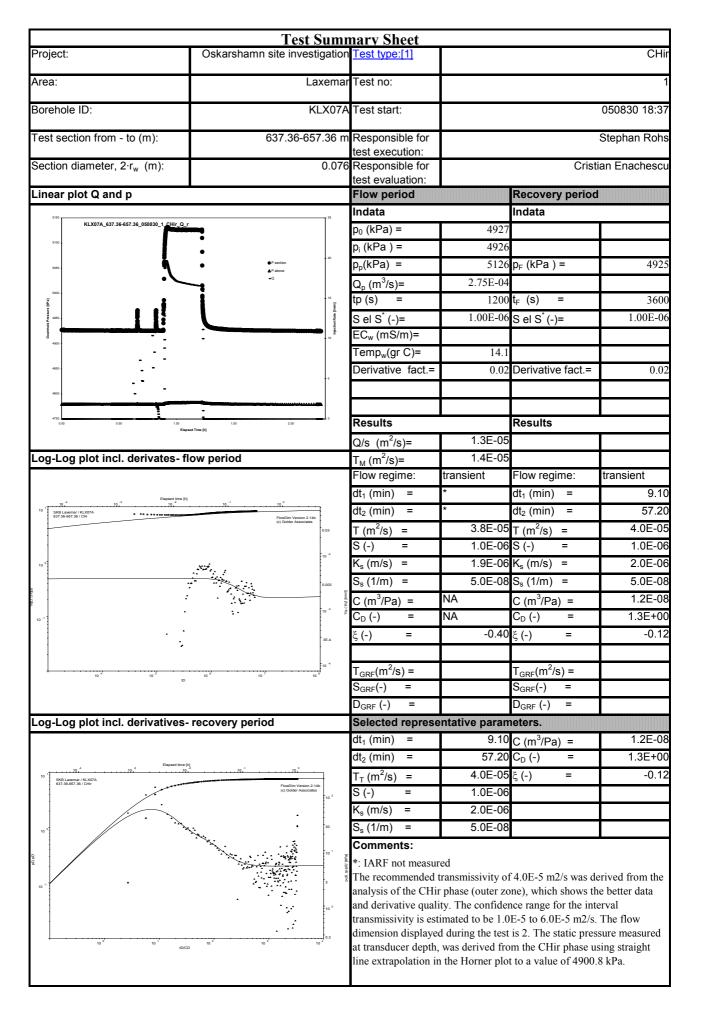


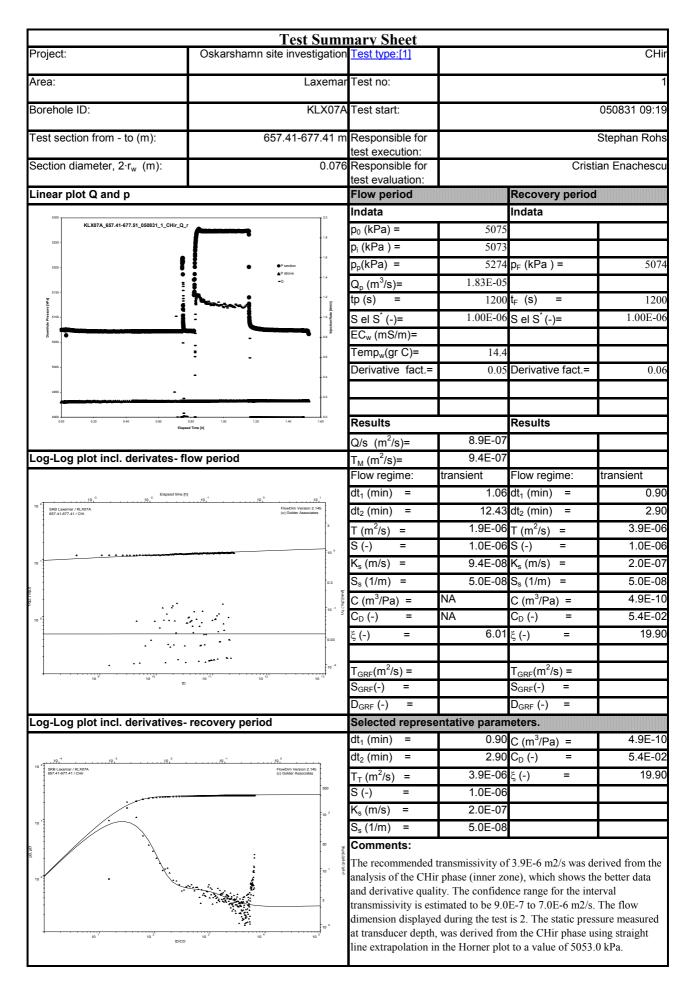




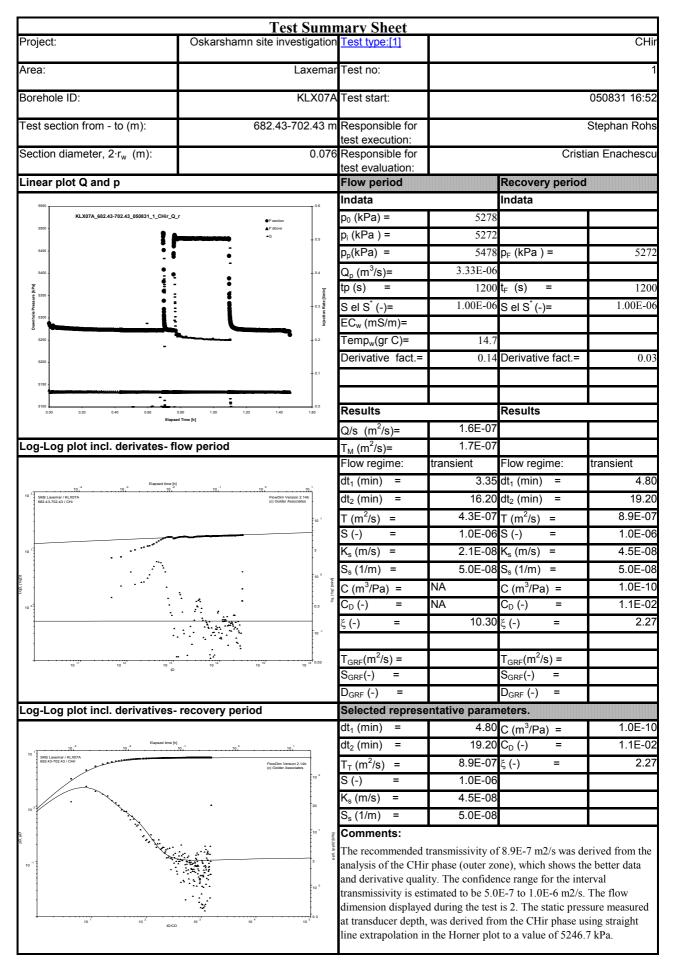


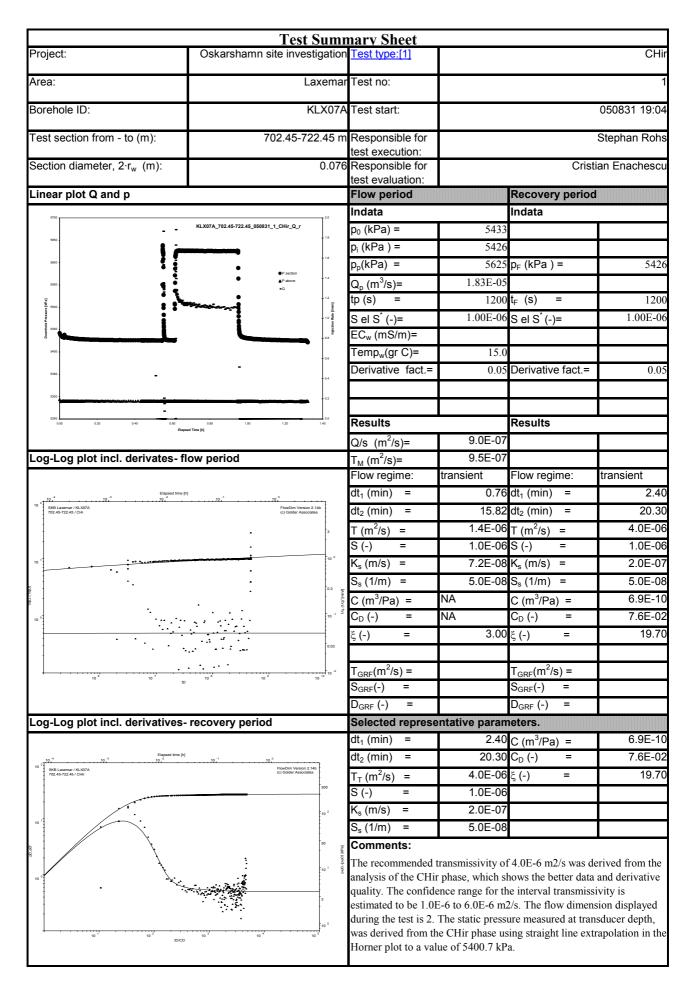


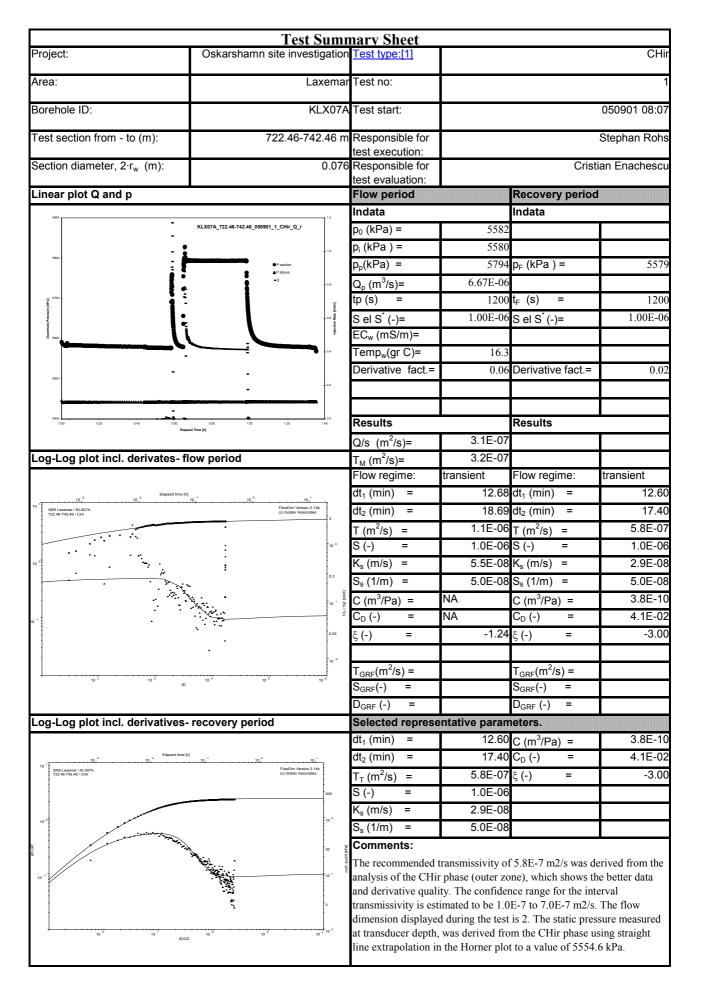


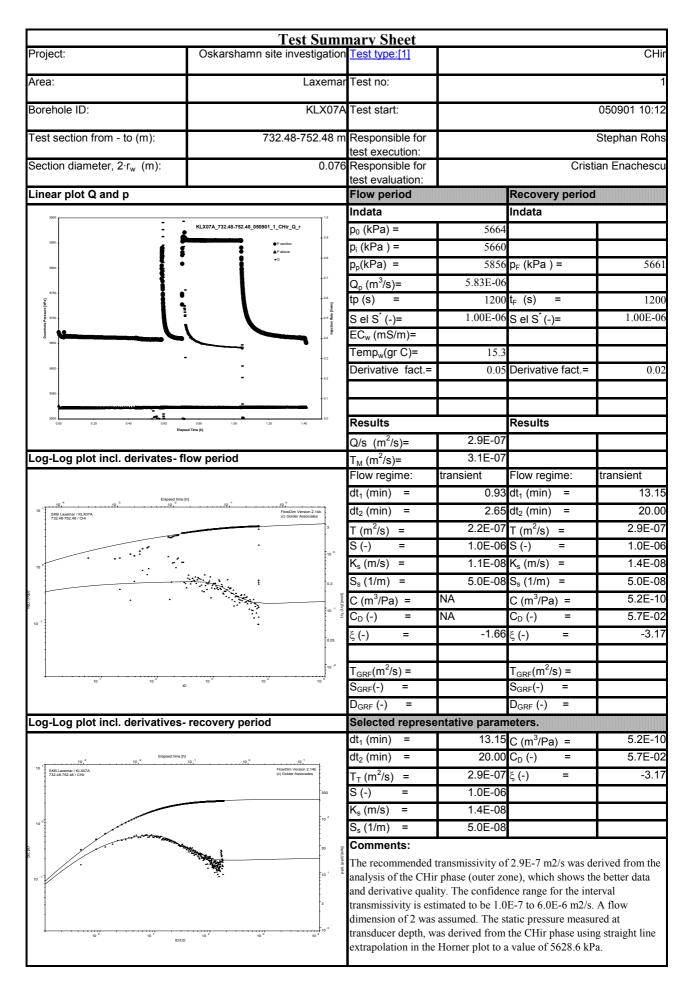


	Test Sumn	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			СН
Area:	Laxemar	Test no:			
Borehole ID:	KLX07A	Test start:			050830 11:3
Test section from - to (m):					Stephan Roh
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Crist	ian Enachesc
Section diameter, $2^{-1}w$ (m).	0.070	test evaluation:		Clist	
Linear plot Q and p		Flow period		Recovery period	
4700 -	- 10	Indata		Indata	
KLX07A_587.30-607.30_050830_1_CHir_Q_		p ₀ (kPa) =	4531		
	● P section ● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	p _i (kPa) =	NA		
4600 -	* *	p _p (kPa) =	NA	p _F (kPa) =	NA
	-7	Q _p (m ³ /s)=	NA		
tr di ani	• • • • •	tp (s) =	NA	t _F (s) =	NA
8 8 4500 - ●	o s Rass Primin.	S el S [*] (-)=	NA	S el S [*] (-)=	NA
Downthade	98 00 (jul) 4	EC _w (mS/m)=			
		Temp _w (gr C)=	13.5		1
4400 -	*3	Derivative fact.=	NA	Derivative fact.=	NA
400	0 0 0.00 0.70 0.00 0.00 1.00	Results		Results	
Elapsed			NA	Results	
.og-Log plot incl. derivates- flo	w pariod	$Q/s (m^2/s) =$	NA		
Log-Log plot incl. derivates- no		T _M (m²/s)= Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt_1 (min) =	NA
		$dt_1(min) =$ $dt_2(min) =$	NA	$dt_1(min) = dt_2(min) =$	NA
			NA		NA
		T (m ² /s) = S (-) =	NA	$T (m^2/s) =$ S (-) =	NA
		S (-) = K _s (m/s) =	NA	e ()	NA
No.4 Au	a la cara d	$S_{s}(11/s) =$	NA	$K_s (m/s) =$ $S_s (1/m) =$	NA
Not An	alysed		NA		NA
		C (m ³ /Pa) = C _D (-) =		C (m ³ /Pa) = C _D (-) =	
		- 0 ()	NA NA	- 0 ()	NA NA
		ξ(-) =	NA	ξ(-) =	INA
		- , 2, ,		- (²)	───
		$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$		$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$	
		D _{GRF} (-) =			
.og-Log plot incl. derivatives- r	ecovery period	Selected represe dt ₁ (min) =	NA		NA
		$dt_1(min) = dt_2(min) =$	NA	C (m ³ /Pa) = C _D (-) =	NA
		. ,	NA NA	- 0 ()	NA NA
		$T_{T}(m^{2}/s) =$		ξ(-) =	
		S(-) =	NA		
ЪТ / A	-1d	$K_{s}(m/s) =$	NA		
		S _s (1/m) = Comments:	NA	I	
				ed packer complian	
		transmissivity is lov			,

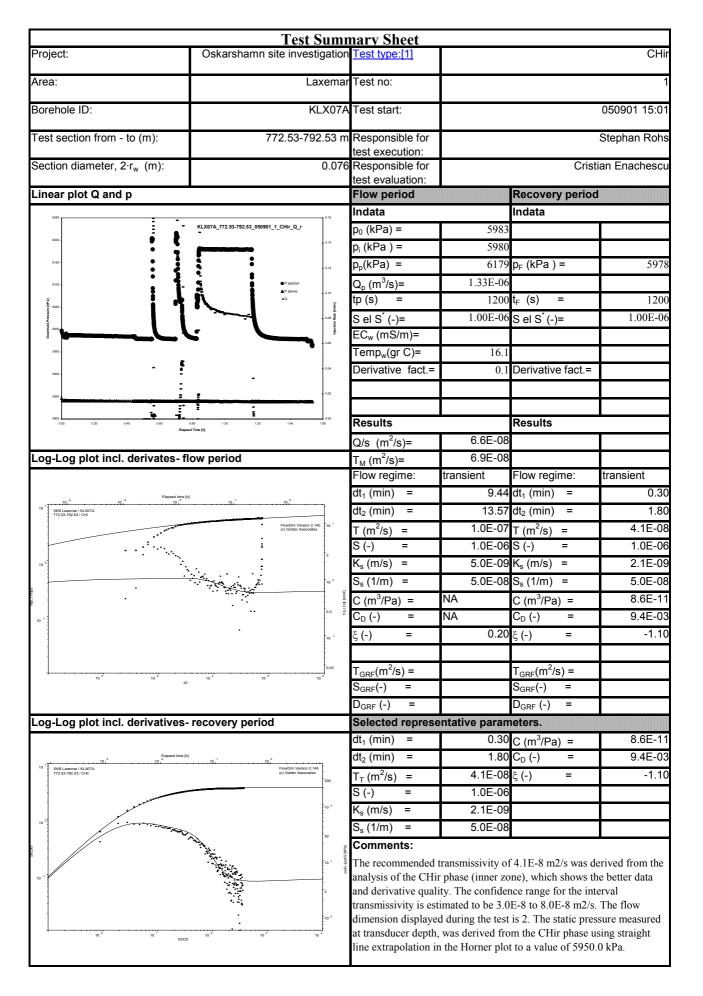


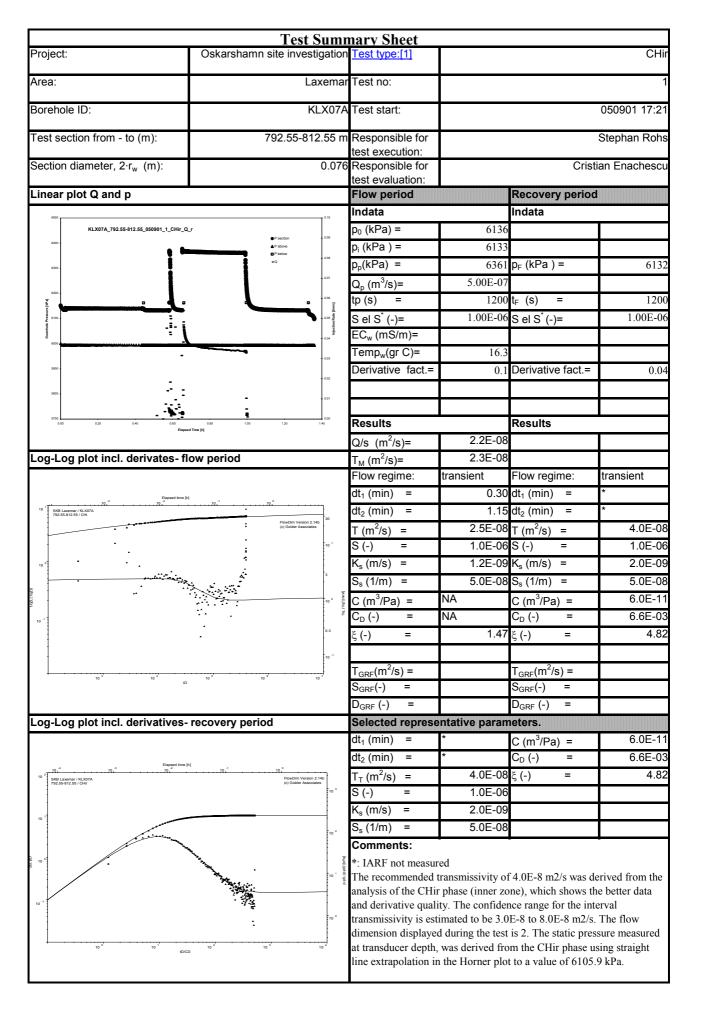


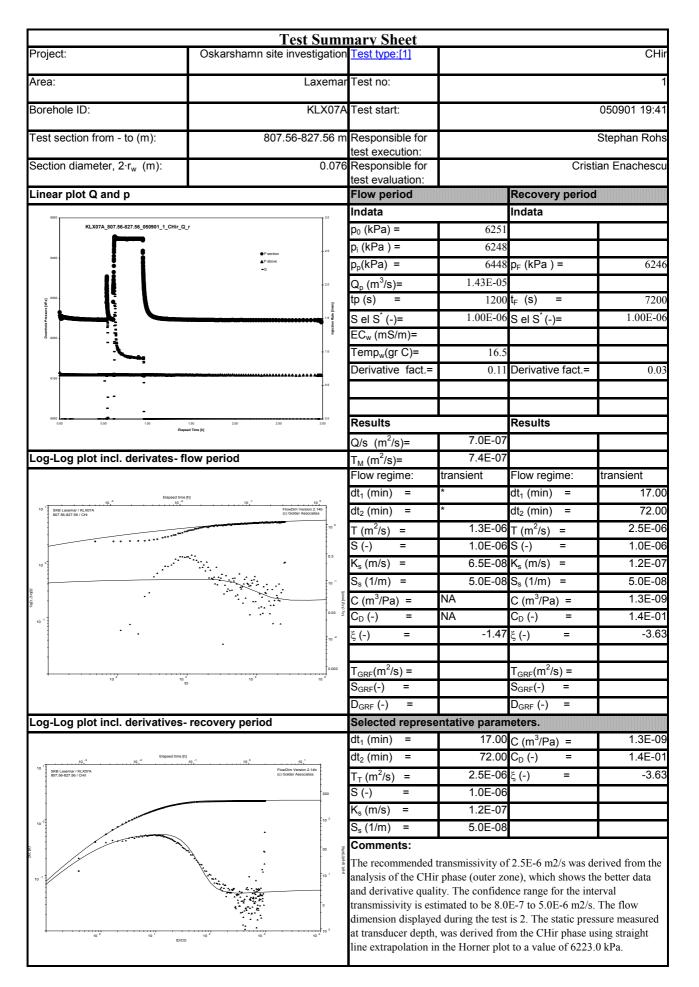




	Test Sur	nmary Sheet			
Project:	Oskarshamn site investigati				CHi
Area:	laxer	nar Test no:			1
	Luxon				
Borehole ID:	KLX0	7A Test start:			050831 14:40
Test section from - to (m):	667.42-687.42	m Responsible for			Stephan Rohs
		test execution:			
Section diameter, 2·r _w (m):	0.0	76 Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
	040	Indata		Indata	
KLX07A_667.42-687.42_05083@1_CHir_Q_	ŗ	p ₀ (kPa) =	5161		
5400 B	• 0.45	p _i (kPa) =	5158		
5350	● •Q	p _p (kPa) =	5359	p _F (kPa) =	5158
5300 -	0.35	$Q_{p} (m^{3}/s) =$	2.17E-06		
5250 -	- 0.30 E	tp (s) =	1200	t _F (s) =	1200
8 5000 - 9 5000 -	- 025 8 5	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
5150 5150	0.20	EC _w (mS/m)=			
5100 -	0.15	Temp _w (gr C)=	14.5		
5050	0.10	Derivative fact.=	0.07	Derivative fact.=	0.02
	-				
· · ·					
4250 0.00 0.20 0.40 0.60 Elapse	0.80 1.00 1.20 1.40	Results		Results	-
		Q/s (m^{2}/s)=	1.1E-07		
_og-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	1.1E-07		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (*	1) 2, ²	dt_1 (min) =		$dt_1 (min) =$	8.30
10 ¹ SKB Laxemar / KLX07A 667.42-687.42 / CHI	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =		$dt_2 (min) =$	17.00
:.	3	$T(m^2/s) =$		$T(m^2/s) =$	5.2E-07 1.0E-06
	*	$S(-) = K_{s}(m/s) =$	1.0E-06	S (-) = K _s (m/s) =	2.6E-0
10 0	10 °	$R_{s}(11/s) =$ S _s (1/m) =		$R_s (II/S) =$ $S_s (1/m) =$	2.6E-08 5.0E-08
•	0.3		5.0E-00		5.0E-00 8.3E-1
·		$C (m^3/Pa) = C_D (-) =$	NA	C (m ³ /Pa) = C _D (-) =	9.1E-0
10 -1	1 0 ⁻¹	$\xi(-) =$		ξ(-) =	1.2
	▲ 0.03	ς (-)	1.20	ς (-)	1.2
		$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =	
10 ⁻³ 10 ⁻⁴ 10	10 ⁵ 10 ⁶ 10 ⁷	$S_{GRF}(-) =$		$S_{GRF}(-) =$	<u> </u>
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran		
		dt_1 (min) =	-	C (m³/Pa) =	8.3E-1
10 ⁻⁴ 10 ⁻³ Elapsed time (h	1 10 ⁻¹ 40 ⁰	dt_2 (min) =		$C_{D}(-) =$	9.1E-03
10 1 SKB Laxemar / KLX07A 667.42-687.42 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	5.2E-07	ξ(-) =	1.2
		S (-) =	1.0E-06		
		K _s (m/s) =	2.6E-08		
10 °	30	S _s (1/m) =	5.0E-08		
	10	¿Comments:			
				f 5.2E-7 m2/s was d	
10 -1	3			one), which shows the nce range for the int	
	10 [°]			DE-7 to $7.0E-7 \text{ m}2/\text{s}$.	
	10			is 2. The static pres	
	· * *				
10 ⁻⁰ 10 ⁻¹	10 ⁻² 10 ⁻³ 10 ⁻⁴	at transducer depth,	, was derived fro	om the CHir phase u t to a value of 5132.	







	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation				CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX07A	Test start:			050901 12:30
Test section from - to (m):	752.51-772.51 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
8000		Indata		Indata	
i (KLX07A_752.51-772.51_050901_1_CHir_Q_r	p ₀ (kPa) =	5821		
→ →	P section 25	p _i (kPa) =	5814		
5000 -	•0	p _p (kPa) =	5935	p _F (kPa) =	5819
	+ 20	$Q_{p} (m^{3}/s) =$	3.65E-04		
	s.	tp (s) =	1200	t _F (s) =	1800
5800	the Diversity	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
- Downtoide	Injection	$EC_w (mS/m) =$			
-	+ 10	Temp _w (gr C)=	15.7		
5700 -	-	Derivative fact.=		Derivative fact.=	0.02
	±.5		0.02	20110110100	0.02
<u> </u>					
0.00 0.20 0.40 0.60 0 Elapsed	80 1.00 1.20 1.40 1.60 tTimma [h]	Results		Results	1
		Q/s (m²/s)=	3.0E-05		
.og-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	3.1E-05		
		Flow regime:	transient	Flow regime:	transient
. 10 , 4 Elapsed time [h]		dt_1 (min) =		dt ₁ (min) =	4.50
10 ² SKB Laxemar / KLX07A 752.51-772.51 / CHi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =		dt_2 (min) =	27.60
	0.3	T (m²/s) =		T (m²/s) =	3.5E-05
	10 ⁻¹	S (-) =	1.0E-06		1.0E-06
10 1		$K_{s}(m/s) =$		$K_s (m/s) =$	1.7E-06
	0.03	$S_{s}(1/m) =$	5.0E-08	S _s (1/m) =	5.0E-08
	[uuu] 10 ⁻² (1)	C (m³/Pa) =	NA	C (m³/Pa) =	5.7E-08
10 07		C _D (-) =	NA	C _D (-) =	6.3E+00
	0.003	ξ(-) =	-0.95	ξ(-) =	-2.06
· · ·	* * •	τ (21)		- (2)	
10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁵	10 ^e 10 ⁷ 10 ^e	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
	· ·	$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe			5 75 00
		dt_1 (min) =		C (m³/Pa) =	5.7E-08
Elapsed time [h]		dt_2 (min) =		C _D (-) =	6.3E+00
10 - SKB Laxemar / KLX07A 752.51-772.51 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	3.5E-05		-2.06
		S (-) =	1.0E-06		
1	300	$K_s (m/s) =$	1.7E-06		
10 1		S _s (1/m) =	5.0E-08		
	10 R	Comments:			
· · · · · · · · · · · · · · · · · · ·	30 A			f 3.5E-5 m2/s was de	
10 °				hows the best data a	
	10			e interval transmiss	
•				2/s. The flow dimensured at trans	
/	3			sing straight line ext	
10 ^{°°} 10 [°] 10 [°]	10 ² 10 ³ 10 ⁴	Horner plot to a val			apointion in the
		r			

Borehole: KLX07A

APPENDIX 4

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,				
Aw		Horizontal area of water surface in open borehole, not	$[L^2]$	m ²
		including area of signal cables, etc.		
b		Aquifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	[L]	m
L		Corrected borehole length	ĨL]	m
L ₀		Uncorrected borehole length	ĨL]	m
L _p		Point of application for a measuring section based on its centre point or centre of gravity for distribution of transmissivity in the measuring section.	[L]	m
L _w		Test section length.	[L]	m
dL		Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)	[L]	m
r		Radius	[L]	m
r _w		Borehole, well or soil pipe radius in test section.	[L]	m
r _{we}		Effective borehole, well or soil pipe radius in test section. (Consideration taken to skin factor)	[L]	m
r _s		Distance from test section to observation section, the shortest distance.	[L]	m
r _t		Distance from test section to observation section, the interpreted shortest distance via conductive structures.	[L]	m
r _D		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
Zr		Level for reference point on borehole	[L]	m
Z _{wu}		Level for test section (section that is being flowed), upper limitation	[L]	m
Z _{wl}		Level for test section (section that is being flowed), lower limitation	[L]	m
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m
Z _{ou}		Level for observation section, upper limitation	[L]	m
Z _{ol}		Level for observation section, lower limitation	[L]	m
Z _{os}		Level for sensor that measures response in observation section	[L]	m
E		Evaporation:	[L ³ /(T L ²)]	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m³/s ́
ET		Evapotranspiration	$[L^{3}/(T L^{2})]$	mm/y, mm/d,
_		hydrological budget:	[L ³ /T]	m³/s
Р		Precipitation	$[L^3/(T L^2)]$	mm/y, mm/d,
D		hydrological budget:	$[L^{3}/T]$	m ³ /s
R		Groundwater recharge	$[L^{3}/(T L^{2})]$	mm/y, mm/d, m ³ /s
D		hydrological budget:	$[L^{3}/T]$	
D		Groundwater discharge	$[L^{3}/(T L^{2})]$	mm/y, mm/d, m ³ /s
		hydrological budget:	[L ³ /T]	mĭ/s
QR		Run-off rate	[L ³ /T]	m ³ /s
Qp		Pumping rate	[L ³ /T]	m³/s
Qı		Infiltration rate	[L ³ /T]	m³/s
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s
Q ₀		Flow in test section during undisturbed conditions (flow logging).	[L ³ /T]	m³/s

Qp		Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s
•		Stabilised pump flow in flow logging.		
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s
Q ₁		Flow in test section during pumping with pump flow Q _{p1} , (flow logging).	[L ³ /T]	m³/s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L ³ /T]	m ³ /s
ΣQ_0	SumQ0	Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)	[L ³ /T]	m³/s
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L ³ /T]	m³/s
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{p2}	[L ³ /T]	m³/s
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1 - \Sigma Q_0$	[L ³ /T]	m³/s
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma Q_2 - \Sigma Q_0$	[L ³ /T]	m³/s
q		Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).	([L ³ /T*L ²]	m/s
V		Volume	[L ³]	m ³
V _w		Water volume in test section.	[L ³] [L ³]	m ³
V _p		Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
V		Velocity	([L ³ /T*L ²]	m/s
V _a		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. v _a =q/n _e	([L ³ /T*L ²]	m/s
t		Time	[T]	hour,mi n,s
t ₀		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_p).	Т	S
t _F		Duration of recovery phase (from p_p to p_F).	[T]	s
t_1 , t_2 etc		Times for various phases during a hydro test.	Т	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[Т]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
p		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
pa		Atmospheric pressure	$[M/(LT)^{2}]$	kPa
p _a		Absolute pressure; pt=pa+pq	$[M/(LT)^2]$	kPa
p _g		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	$[M/(LT)^2]$	kPa
p ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
pi	1	Pressure in measuring section before start of flow.	[M/(LT) ²]	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
p _f		Pressure during recovery.	$[M/(LT)^2]$	kPa
p _p		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
p _F		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
r r		$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	L / /]	🗸

dp	Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa
dp _f	$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s	$dp_s = p_s - p_p \text{ or } = p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dpp	$dp_p = p_i - p_p$ or $p_p = p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F	$dp_F = p_p - p_F$ or $p_F = p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
H	Total head; (potential relative a reference level) (indication of h for phase as for p). H=h _e +h _p +h _v	[L]	m
h	Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=he+hp	[L]	m
h _e	Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p	Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v	Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S	Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
Sp	Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀	Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i	Level above reference level in measuring section before start of flow.	[L]	m
h _f	Level above reference level during perturbation phase.	[L]	m
h _s	Level above reference level during recovery phase.	[L]	m
h _p	Level above reference level in measuring section before flow stop.	[L]	m
h _F	Level above reference level in measuring section at end of recovery.	[L]	m
dh	Level difference, drawdown of water level between two points of time.	[L]	m
dh _f	$\dot{h}_{f} = h_{i} - h_{f}$ or $= h_{f} - h_{i}$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh _f usually expressed positive.	[L]	m
dh _s	$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p	$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F	$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w	Temperature in the test section (taken from temperature	1	°C

		logging). Temperature		
Te _{w0}		Temperature in the test section during undisturbed		°C
		conditions (taken from temperature logging).		
		Temperature		
Te₀		Temperature in the observation section (taken from		°C
		temperature logging). Temperature		
ECw		Electrical conductivity of water in test section.		mS/m
EC _w EC _{w0}		Electrical conductivity of water in test section during		mS/m
		undisturbed conditions.		
ECo		Electrical conductivity of water in observation section		mS/m
TDS _w		Total salinity of water in the test section.	$[M/L^3]$	mg/L
TDS _{w0}		Total salinity of water in the test section during	$[M/L^3]$	mg/L
1 D OWO		undisturbed conditions.	[1011] =]	ing/L
TDS₀		Total salinity of water in the observation section.	[M/L ³]	mg/L
1000		Total samily of water in the observation section.		ing/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	[L/T ²]	m/s ²
		gravity)		
π	pi	Constant (approx 3.1416).	[-]	
			1	
r		Residual. r= p_c - p_m , r= h_c - h_m , etc. Difference between		
		measured data (p_m , h_m , etc.) and estimated data (p_c , h_c ,		
		etc)		
ME				
		Mean error in residuals $ME = \frac{1}{2}\sum_{r=1}^{\infty} r$		
		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
MAE				
		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
		mean absolute error. $MIIE = n \sum_{i=1}^{ r_i } r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
DMC				
RMS		$\left[1 \sum_{n=1}^{n} 2\right]^{0.5}$		
		Root mean squared error. $RMS = \left -\sum_{i} r_{i}^{2} \right $		
		$(n_{i=1})$		
NRMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_i^2\right)^{0.5}$ Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{2}\sum_{r=1}^{n} (r - ME)^2\right)$		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual.		
SEIVIK				
		$SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
		$SEMR = \left \frac{1}{(r_i - ME)^2} \right $		
		(n(n-1))		
_				
Paramete	ers		<u>rı</u> 2/ 1	2,
Q/s		Specific capacity s=dp _p or s=s _p =h ₀ -h _p (open borehole)	[L ² /T]	m²/s
D		Interpreted flow dimension according to Barker, 1988.	[-]	-
dt ₁		Time of starting for semi-log or log-log evaluated	[T]	S
		characteristic counted from start of flow phase and		
		recovery phase respectively.		
dt ₂		End of time for semi-log or log-log evaluated	[T]	S
		characteristic counted from start of flow phase and		
	1	recovery phase respectively.	1	

dt	Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ	Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
Т	Transmissivity	[L ² /T]	m²/s
T _M	Transmissivity according to Moye (1967)	$[L^2/T]$	m ² /s
T _Q	Evaluation based on Q/s and regression curve between	$[L^2/T]$	m ² /s
α (Q/s and T, as example see Rhén et al (1997) p. 190.		
Ts	Transmissivity evaluated from slug test	$[L^2/T]$	m²/s
T _D	Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
TI	Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}	Transient evaluation based on semi-log or log-log diagram for perturbation phase in injection or pumping.	[L ² /T]	m²/s
T _{Ss} , T _{Ls}	Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.	[L ² /T]	m²/s
Τ _T	Transient evaluation (log-log or lin-log). Judged best evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}	[L ² /T]	m²/s
T _{NLR}	Evaluation based on non-linear regression.	$[L^2/T]$	m²/s
T _{Tot}	Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[L ² /T]	m²/s
		F1 (797)	,
K	Hydraulic conductivity	[L/T]	m/s
K _s	Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m	Hydraulic conductivity matrix, intact rock Intrinsic permeability	[L/T] [L ²]	m/s m ²
kb	Permeability-thickness product: kb=k·b	[L ³]	m ³
SB	Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*	Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S C*	Storage coefficient, (Storativity)	[-]	-
S* Sy	Assumed storage coefficient Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S _r)	[-]	-
S _{ya}	Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. S_{ya} = S_y (often called S_y in literature)	[-]	-
Sr	Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
S _f	Fracture storage coefficient	[-]	-
S _m	Matrix storage coefficient	[-]	-
S _{NLR}	Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}	Judged most representative storage coefficient for particular test section and (in certain cases) evaluation	[-]	-

		time with respect to available data (made by SKB at a		
		later stage).		
S		Specific storage coefficient; confined storage.	[1/L]	1/m
Ss*		Assumed specific storage coefficient; confined storage.	[1/L]	1/m
Cf		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. $c_r=b'/K'$ where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard.	[T]	s
L _f		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.	[L]	m
ξ	Skin	Skin factor	[-]	-
ح ۶*	Skin	Assumed skin factor	[-]	-
ξ* C		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
C _D		$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.	[-]	-
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
T _{GRF}		Transmissivity interpreted using the GRF method	[L ² /T]	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
C _w		Water compressibility; corresponding to β in hydrogeological literature.	[(LT ²)/M]	1/Pa
Cr		Pore-volume compressibility, (rock compressibility); Corresponding to α/n in hydrogeological literature.	[(LT ²)/M]	1/Pa
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in c_t if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ²)/M]	1/Pa
nct		Porosity-compressibility factor: nct = n·ct	[(LT ²)/M]	1/Pa
nc _t b		Porosity-compressibility-thickness product: nctb= n·ctb	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
е		Transport aperture. e = n _e ⋅b	[L]	m
ρ	Density	Density	[M/L ³]	kg/(m ³)
ρ _w	Density-w	Fluid density in measurement section during pumping/injection	[M/L ³]	kg/(m ³)
ρο	Density-o	Fluid density in observation section	[M/L ³]	kg/(m ³)
ρ _{sp}	Density-sp	Fluid density in standpipes from measurement section	[M/L ³]	$kg/(m^3)$
μ	my	Dynamic viscosity	[M/LT]	Pas
μ _w	my	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s
FC _T		Fluid coefficient for intrinsic permeability, transference of k to K; K=FC _T ·k; FC _T = $\rho_w \cdot g/\mu_w$	[1/LT]	1/(ms)
FCs		Fluid coefficient for porosity-compressibility, transference	$[M/T^{2}L^{2}]$	Pa/m

		of c_t to S_s ; S_s =FC _s ·n· c_t ; FC _s = ρ_w ·g	
Index on I	K, T and S	$[or of to O_{S}, O_{S}^{-1} O_{S} \cap O_{t}^{-1} O_{S}^{-1} O_{S}$	
S		S: semi-log	
<u> </u>		L: log-log	
f		Pump phase or injection phase, designation following S	
1		or L (withdrawal)	
6		Recovery phase, designation following S or L (recovery)	
s NLR		NLR: Non-linear regression. Performed on the entire test	
NLIN		sequence, perturbation and recovery	
М		Moye	
GRF		Generalised Radial Flow according to Barker (1988)	
		Matrix	
m f		Fracture	
measl		Measurement limit. Estimated measurement limit on	
IIICasi		parameter being measured (T or K)	
Т		Judged best evaluation based on transient evaluation.	
Tot		Judged most representative parameter for particular test	
		section and (in certain cases) evaluation time with	
		respect to available data (made by SKB at a later stage).	
b		Bloch property in a numerical groundwater flow model	
е		Effective property (constant) within a domain in a	
		numerical groundwater flow model.	
Index on p	o and Q		
0		Initial condition, undisturbed condition in open holes	
i		Natural, "undisturbed" condition of formation parameter	
f		Pump phase or injection phase (withdrawal, flowing	
		phase)	
S		Recovery, shut-in phase	
р		Pressure or flow in measuring section at end of	
		perturbation period	
F		Pressure in measuring section at end of recovery period.	
m		Arithmetical mean value	
С		Estimated value. The index is placed last if index for	
		"where" and "what" are used. Simulated value	
m		Measured value. The index is placed last if index for	
		"where" and "what" are used. Measured value	
Some mis	cellaneous ind	dexes on p and h	
W		Test section (final difference pressure during flow phase	
		in test section can be expressed dpwp; First index shows	
		"where" and second index shows "what")	
0		Observation section (final difference pressure during flow	
		phase in observation section can be expressed dp _{op} ;	
		First index shows "where" and second index shows	
		"what")	
f		Fresh-water head. Water is normally pumped up from	
		section to measuring hoses where pressure and level are	
		observed. Density of the water is therefore approximately	
		the same as that of the measuring section. Measured	
		groundwater level is therefore normally represented by	
		what is defined as point-water head. If pressure at the	
		measuring level is recalculated to a level for a column of	
		water with density of fresh water above the measuring	
		point it is referred to as fresh-water head and h is	
		indicated last by an f. Observation section (final level	
		during flow phase in observation section can be	
		expressed \dot{h}_{opf} ; the first index shows "where" and the	
		second index shows "what" and the last one	
		"recalculation")	

Borehole: KLX07A

APPENDIX 5

SICADA data tables

Tage 5/T

SKB		SIC	CADA	/Data	Impo	rt Tem	plate			plified version v1.4
File Identity							Compiled B	у		
Created By		Stephan Rohs					ck For Delive			
Created		2005-10-10				De	livery Approv	al		
		KLX07A			1				400-05-045	
Activity Type		KLX07A - Injectio				Projec	ct	AFFS	400-03-045	
Activity Informa	ation				<u></u>	Additional Act	tivity Data			
						C10	P20	P200	P220	R25
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	Field crew manager	Field crew	evaluating data	Report
KLX07A	20050820 16:35	20050901 22:40	108.50	827.56		Golder	Stephan Rohs	Stephan Rohs, Tomas Cronquist	Cristian Enachescu, Jörg Böhner, Stephan Rohs	Cristian Enachescu, Jörg Böhner, Stephan Rohs
	1	1	8	1	1		1	1		1

Table		plu_s_	hole_test_d
	PL	U Injection and pu	mping, General information
Column	Deteture	11	Oshuma Description
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_p	FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	оС	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC,see table descr.
fluid salinity tdswm		mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error flag	CHAR		If error flag = "*" then an error occured and an error
in_use	CHAR		If in use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	
ih.	LOAT	111	Hydraulic point of application

KLX07A

KLX07A

050901 17:21

050901 19:41

792.55

807.56

050901 18:43

050901 22:40

812.55

827.56

3

3

formation tot_volum flow_rate_end_ value_type_ mean_flow_ idcode start date stop date seclow section no test type type start flow period stop flow period rate gm a measi l a measl u e vp secup ap ap KLX07A 111.80 211.80 2.33E-04 050820 16:35 050820 18:59 1 2005-08-21 19:50:06 2005-08-21 20:20:16 5.02E-04 1.67E-08 8.33E-04 9.03E-01 3 0 KLX07A 050821 15:28 050821 17:22 311.92 1 2005-08-21 16:19:54 2005-08-21 16:50:04 5.08E-04 5.23E-04 8.33E-04 9.42E-01 211.92 3 0 1.67E-08 KLX07A 050821 18:57 050821 20:52 312.00 412.00 3 1 2005-08-21 19:50:06 2005-08-21 20:20:16 2.33E-04 0 2.45E-04 1.67E-08 8.33E-04 4.41E-01 KLX07A 050822 09:58 050822 11:58 412.07 512.07 3 2005-08-22 10:56:33 2005-08-22 11:26:43 7.62E-05 0 8.00E-05 1.67E-08 8.33E-04 1.44E-01 KLX07A 050822 13:45 050822 15:37 507.16 607.16 3 2005-08-22 14:35:37 2005-08-22 15:05:47 9.00E-06 0 9.33E-06 1.67E-08 8.33E-04 1.68E-02 KLX07A 050822 17:07 050822 20:46 602.32 702.32 3 2005-08-22 18:13:54 2005-08-22 18:44:04 1.50E-04 0 1.70E-04 1.67E-08 8.33E-04 3.06E-01 KLX07A 050823 09:33 050822 11:31 702.45 802.45 2005-08-23 10:29:39 2005-08-22 10:59:49 3.42E-04 0 3.67E-04 1.67E-08 8.33E-04 6.60E-01 3 KLX07A 050824 16:10 050824 17:37 108.50 128.50 З 2005-08-24 16:55:02 2005-08-24 17:15:22 5.17E-05 0 5.50E-05 1.67E-08 8.33E-04 6.60E-02 KLX07A 050824 18:21 050824 20:21 128.50 148.50 3 2005-08-24 19:29:14 2005-08-24 19:59:24 1.93E-04 0 1.95E-04 1.67E-08 8.33E-04 2.34E-01 4.35E-04 KLX07A 050825 08:15 050825 10:27 146.50 166.50 З 2005-08-25 09:35:05 2005-08-25 10:05:15 4.30E-04 0 1.67E-08 8.33E-04 5.22E-01 KLX07A 050825 11:10 166.84 2005-08-25 11:51:49 2005-08-25 12:11:59 5.37E-04 5.47E-04 8.33E-04 6.56E-01 050825 12:33 186.84 3 0 1.67E-08 KLX07A 050825 13:32 0 1.45E-05 1.74E-02 050825 14:48 186.88 206.88 3 2005-08-25 14:15:51 2005-08-25 14:36:01 1.33E-05 1.67E-08 8.33E-04 KLX07A 050825 15:22 2005-08-25 16:14:32 2005-08-25 16:44:42 2.72E-04 2.75E-04 8.33E-04 4.95E-01 050825 16:56 191.89 211.89 3 0 1.67E-08 KLX07A 050825 17:38 050825 19:06 2005-08-25 18:24:30 2005-08-25 18:44:40 2.55E-04 2.57E-04 1.67E-08 8.33E-04 3.08E-01 211.92 231.92 3 0 KLX07A 050826 08:21 050826 09:49 221.93 241.93 2005-08-26 09:07:38 2005-08-26 09:27:48 2.57E-04 0 2.58E-04 1.67E-08 8.33E-04 3.10E-01 3 1 KLX07A 050826 10:33 050826 12:15 241.93 261.93 3 1 2005-08-26 11:33:49 2005-08-26 11:53:59 5.17E-04 0 5.23E-04 1.67E-08 8.33E-04 6.28E-01 2.00E-05 8.33E-04 KLX07A 050826 13:17 050826 14:46 261.95 281.95 3 1 2005-08-26 14:04:32 2005-08-26 14:24:42 2.00E-05 0 1.67E-08 2.40E-02 8.33E-04 KLX07A 050826 15:36 050826 16:54 281.98 301.98 3 1 2005-08-26 16:22:16 2005-08-26 16:42:26 3.67E-05 0 3.83E-05 1.67E-08 4.60E-02 KLX07A 050826 17:29 050826 20:01 291.99 311.99 3 1 2005-08-26 18:39:12 2005-08-26 18:59:22 5.83E-05 0 6.00E-05 1.67E-08 8.33E-04 7.20E-02 KLX07A 050827 11:12 050827 13:17 312.00 332.00 3 1 2005-08-27 12:15:01 2005-08-27 12:35:11 8.33E-07 0 1.33E-06 1.67E-08 8.33E-04 1.60E-03 KLX07A 050827 14:01 050827 15:30 326.99 346.99 1 2005-08-27 14:48:43 2005-08-27 15:08:53 1.17E-04 0 1.18E-04 1.67E-08 8.33E-04 1.42E-01 3 KLX07A 050827 16:09 050827 17:49 341.99 361.99 3 1 2005-08-27 17:07:05 2005-08-27 17:27:15 1.25E-04 0 1.28E-04 1.67E-08 8.33E-04 1.54E-01 KLX07A 050827 18:31 050827 20:04 362.07 382.07 3 1 2005-08-27 19:21:59 2005-08-27 19:42:09 9.83E-05 0 1.02E-04 1.67E-08 8.33E-04 1.22E-01 KLX07A 050828 08:24 050828 11:08 382.08 402.08 1 2005-08-28 09:10:31 2005-08-28 09:10:51 6.33E-05 6.67E-05 1.67E-08 8.33E-04 8.00E-02 3 0 KLX07A 050828 10:31 050828 11:57 402.06 422.06 3 1 2005-08-28 11:15:04 2005-08-28 11:35:14 1.50E-06 0 1.67E-06 1.67E-08 8.33E-04 2.00E-03 KLX07A 050828 13:21 050828 14:43 417.07 437.07 3 1 2005-08-28 14:10:56 2005-08-28 14:31:06 3.67E-05 0 3.83E-05 1.67E-08 8.33E-04 4.60E-02 050828 15:25 KLX07A 050828 16:32 437.08 457.08 3 2005-08-28 16:10:48 2005-08-28 16:10:58 1.23E-05 0 1.25E-05 1.67E-08 8.33E-04 1.50E-02 KLX07A 050828 17:32 050829 00:57 457.08 477.08 3 2005-08-28 18:43:08 2005-08-28 18:55:18 1.67E-08 0 5.00E-08 1.67E-08 8.33E-04 3.60E-05 KLX07A 050829 08:35 050829 10:03 477.12 497.12 2005-08-29 09:21:41 2005-08-29 09:41:51 3.33E-05 0 3.33E-05 8.33E-04 4.00E-02 З 1.67E-08 KLX07A 050829 10:40 050829 12:56 497.14 517.14 3 2005-08-29 11:54:29 2005-08-29 12:14:39 1.67E-07 ٥ 2.83E-07 1.67E-08 8.33E-04 3.40E-04 KLX07A 050829 14:23 050829 15:53 507.16 527.16 3 2005-08-29 15:11:18 2005-08-29 15:31:28 6.67E-06 0 6.67E-06 1.67E-08 8.33E-04 8.00E-03 KLX07A 050829 16:35 050829 18:09 527.20 547.20 2005-08-29 17:26:52 2005-08-29 17:47:02 2.33E-07 0 2.67E-07 1.67E-08 8.33E-04 3.20E-04 3 KLX07A 050829 18:49 050829 20:18 547.23 567.23 2005-08-29 19:35:59 2005-08-29 19:56:09 3.33E-06 0 3.67E-06 1.67E-08 8.33E-04 4.40E-03 3 KLX07A 050830 09:08 050830 10:50 567.26 587.26 2005-08-30 10:08:06 2005-08-30 10:28:16 5.00E-08 0 5.00E-08 1.67E-08 8.33E-04 6.00E-05 3 KLX07A 050830 11:38 050830 12:37 587.30 607.30 3 #NV #NV 0.00E+00 -1 0.00E+00 1.67E-08 8.33E-04 0.00E+00 KLX07A 050830 14:27 050830 15:54 607.32 627.32 3 2005-08-30 15:12:44 2005-08-30 15:32:54 1.40E-05 0 1.47E-05 1.67E-08 8.33E-04 1.76E-02 KLX07A 050830 16:32 050830 17:56 620.00 640.00 3 1 2005-08-30 17:14:38 2005-08-30 17:34:48 2.57E-04 0 2.85E-04 1.67E-08 8.33E-04 3.42E-01 KLX07A 050830 18:37 2.87E-04 3.44E-01 050830 20:53 637.36 657.36 3 1 2005-08-30 19:31:27 2005-08-30 19:51:37 2.75E-04 0 1.67E-08 8.33E-04 KLX07A 050831 09:19 050831 10:51 657.41 677.41 2005-08-31 10:09:00 2005-08-31 10:29:10 1.83E-05 0 1.83E-05 1.67E-08 8.33E-04 2.20E-02 3 1 KLX07A 050831 14:40 050831 16:00 667.42 687.42 1 2005-08-31 15:18:46 2005-08-31 15:38:56 2.17E-06 0 2.33E-06 1.67E-08 8.33E-04 2.80E-03 3 3.50E-06 8.33E-04 KLX07A 050831 16:52 050831 18:20 682.43 702.43 1 2005-08-31 17:38:42 2005-08-31 17:58:52 3.33E-06 4.20E-03 3 0 1.67E-08 KLX07A 050831 19:04 050831 20:24 702.45 722.45 3 1 2005-08-31 19:42:07 2005-08-31 20:02:17 1.83E-05 0 1.83E-05 1.67E-08 8.33E-04 2.20E-02 KLX07A 050901 08:07 050901 09:29 722.46 742.46 3 1 2005-09-01 08:46:50 2005-09-01 09:07:00 6.67E-06 0 7.33E-06 1.67E-08 8.33E-04 8.80E-03 KLX07A 050901 10:12 050901 11:37 732.48 752.48 3 1 2005-09-01 10:54:54 2005-09-01 11:15:04 5.83E-06 0 6.33E-06 1.67E-08 8.33E-04 7.60E-03 050901 12:30 KLX07A 050901 14:04 752.51 772.51 3 1 2005-09-01 13:12:31 2005-09-01 13:32:41 3.65E-04 0 3.92E-04 1.67E-08 8.33E-04 4.70E-01 KLX07A 792.53 050901 15:01 050901 16:33 772.53 3 1 2005-09-01 15:51:40 2005-09-01 16:11:50 1.33E-06 0 1.47E-06 1.67E-08 8.33E-04 1.76E-03

1 2005-09-01 18:01:01 2005-09-01 18:21:01

1 2005-09-01 20:18:39 2005-08-01 20:38:49

5.00E-07

1.43E-05

0

0

6.67E-07

1.63E-05

1.67E-08

1.67E-08

8.33E-04 8.00E-04

8.33E-04 1.96E-02

			dur_flow_ph	dur_rec_p	initial_head_	head_at_flow_e	final head		press_at_flow_end	final_press	fluid_temp	fluid_elcon	fluid_salinit	fluid_salini	referenc		
idcode	secup		ase_tp		hi	nd hp	hf	initial_press_pi	press_at_now_end	pf	tew	d ecw	y tdsw	_	e	comments	q
KLX07A	111.80	211.80	1800				4.11	1613	1634	-	9.1	-	<u>,</u>	· j _····	-		161.80
KLX07A	211.92	311.92	1800	1800			4.48	2361	2427	2362	10.3					1	261.92
KLX07A	312.00	412.00	1800	1800			5.02	3073	3193		11.4						362.00
KLX07A	412.07	512.07	1800	1800			6.20	3791	3991	3792	12.4						462.07
KLX07A	507.16	607.16	1800				7.24	4538	4746		13.5					1	557.16
KLX07A	602.32	702.32	1800	7200			6.64	5267	5367	5264	14.7						652.32
KLX07A	702.45	802.45	1800				8.59	6043	6154		16.2					1	752.45
KLX07A	108.50	128.50	1200				4.76	1008	1209		8.5					1	118.50
KLX07A	128.50	148.50	1200				4.53	1153	1324	1	8.8						138.50
KLX07A	146.50	166.50	1200				4.41	1282	1341	1283	8.7					1	156.50
KLX07A	166.84	186.84	1200	1			4.51	1433	1513	· · · · · · · · · · · · · · · · · · ·	9.0						176.84
KLX07A	186.88	206.88	1200	600			4.32	1580	1781	1580	9.2						196.88
KLX07A	191.89	211.89	1800	600			4.34	1615	1815	· · · · · · · · · · · · · · · · · · ·	9.2						201.89
KLX07A	211.92	231.92	1200	1200			4.31	1764	1965		9.4						221.92
KLX07A	221.93	241.93	1200	1200			4.27	1836	2036	1836	9.5						231.93
KLX07A	241.93	261.93	1200	1200			4.34	1986	2092	1988	9.8						251.93
KLX07A	261.95	281.95	1200	1200			4.33	2138	2326	2139	10.1						271.95
KLX07A	281.98	301.98	1200	600		1	4.36	2288	2491	2288	10.3						291.98
KLX07A	291.99	311.99	1200	3600			4.34	2364	2564	2362	10.5						301.99
KLX07A	312.00	332.00	1200	2400		1	5.87	2512	2731	2536	10.7						322.00
KLX07A	326.99	346.99	1200	1200		1	4.73	2618	2818	2618	10.8						336.99
KLX07A	341.99	361.99	1200	1200		1	4.74	2726	2926		11.0						351.99
KLX07A	362.07	382.07	1200	1200			5.27	2871	3071	2871	11.2						372.07
KLX07A	382.08	402.08	1200	900			5.31	3006	3207	3006	11.4						392.08
KLX07A	402.06	422.06	1200	1200			5.45	3145	3346	3145	11.6						412.06
KLX07A	417.07	437.07	1200	600			5.49	3251	3477	3251	11.7						427.07
KLX07A	437.08	457.08	1200	1200			5.66	3391	3616	3390	11.9						447.08
KLX07A	457.08	477.08	720	21600		1	5.41	3555	3759	3544	12.1						467.08
KLX07A	477.12	497.12	1200	1200			6.17	3680	3880	3680	12.2						487.12
KLX07A	497.14	517.14	1200	2400]	6.06	3845	4049	3857	12.5						507.14
KLX07A	507.16	527.16	1200	1200			6.57	3914	4114	3914	12.5						517.16
KLX07A	527.20	547.20	1200	1200		1	6.59	4073	4292	4074	12.8						537.20
KLX07A	547.23	567.23	1200	1200			7.05	4230	4425	4230	13.1						557.23
KLX07A	567.26	587.26	1200	1200			6.44	4389	4589	4403	13.2						577.26
KLX07A	587.30	607.30	0	0			#NV	#NV	#NV	/ #NV	13.5						597.30
KLX07A	607.32	627.32	1200	1200			5.46	4681	4886	4681	13.7						617.32
KLX07A	620.00	640.00	1200	1200			5.78	4781	4970	4794	13.5						630.00
KLX07A	637.36	657.36	1200	3600			7.14	4926	5126	4925	14.1						647.36
KLX07A	657.41	677.41	1200	1200			6.96	5073	5274	5074	14.4						667.41
KLX07A	667.42	687.42	1200	1200			7.23	5158	5359	5158	14.5						677.42
KLX07A	682.43	702.43	1200	1200			7.17	5272	5478	5272	14.7						692.43
KLX07A	702.45	722.45	1200	1200			7.28	5426	5625	5426	15.0			1		1	712.45
KLX07A	722.46	742.46	1200	1200			7.40	5580	5794	5579	15.2						732.46
KLX07A	732.48	752.48	1200	1200			7.15	5660	5856	5661	15.3						742.48
KLX07A	752.51	772.51	1200	1800			7.98	5814	5935	5819	15.7						762.51
KLX07A	772.53	792.53	1200	1200			8.85	5980	6179	5978	16.1						782.53
KLX07A	792.55	812.55	1200	1200			9.24	6133	6361	6132	16.3						802.55
KLX07A	807.56	827.56	1200	7200			9.58	6248	6448	6246	16.5						817.56

Table		plu s ho	le_test_ed1
			ping/injection. Basic evaluation
	-		
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE DATE		Date (yymmdd hh:mm:ss) Date (yymmdd hh:mm:ss)
stop_date project	CHAR		project code
dcode	CHAR		Object or borehole identification code
ecup	FLOAT	m	Upper section limit (m)
eclow	FLOAT	m	Lower section limit (m)
ection no	INTEGER	number	Section number
est_type	CHAR	nambol	Test type code (1-7), see table description!
ormation_type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
p	FLOAT	m	Hydraulic point of application for test section, see descr.
eclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
pec_capacity_q_s	FLOAT	m**2/s	Specific capacity (Q/s) of test section, see table descript.
alue_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
ransmissivity_tq	FLOAT	m**2/s	Tranmissivity based on Q/s, see table description
alue_type_tq	CHAR		0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>
oc_tq	CHAR		Best choice code. 1 means TQ is best choice of T, else 0
ransmissivity_moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
oc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
alue_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
nydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
ormation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
vidth_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
b	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
_measl_tb	FLOAT	m**3/s	Estimated upper meas. limit of evaluated TB,see description
ib	FLOAT	m	SB:S=storativity,B=width of formation,1D model,see descript.
issumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
eakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
ransmissivity_tt	FLOAT	m**2/s	TT:Transmissivity of formation, 2D radial flow model,see
/alue_type_tt	CHAR CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
oc_tt measl q s	FLOAT	m**2/s	Best choice code. 1 means TT is best choice of T, else 0 Estimated lower meas. limit for evaluated TT,see table descr
_measi_q_s i_measi_q_s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity_s	FLOAT	111 2/5	S:Storativity of formation based on 2D rad flow,see descr.
assumed s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
DC_S	FLOAT		Best choice of S (Storativity) ,see descr.
i	FLOAT	m	Radius of influence
i index	CHAR		ri index=index of radius of influence :-1,0 or 1, see descr.
eakage coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff,see desc
hydr cond ksf	FLOAT	m/s	Ksf:3D model evaluation of hydraulic conductivity, see desc.
/alue_type_ksf	CHAR		0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>
_measl_ksf	FLOAT	m/s	Estimated lower meas.limit for evaluated Ksf,see table desc.
_measl_ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf,see table descr
pec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
;	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
d	FLOAT		CD: Dimensionless wellbore storage coefficient
kin	FLOAT		Skin factor;best estimate of flow/recovery period,see descr.
lt1	FLOAT	s	Estimated start time of evaluation, see table description
lt2	FLOAT	s	Estimated stop time of evaluation. see table description
1	FLOAT	S	Start time for evaluated parameter from start flow period
2	FLOAT	s	Stop time for evaluated parameter from start of flow period
Ite1	FLOAT	S	Start time for evaluated parameter from start of recovery
Ite2	FLOAT	s	Stop time for evaluated parameter from start of recovery
_horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
ransmissivity_t_nlr	FLOAT	m**2/s	T_NLR Transmissivity based on None Linear Regression
torativity_s_nlr	FLOAT		S_NLR=storativity based on None Linear Regression,see
alue_type_t_nlr	CHAR		0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit</lower>
nc_t_nlr	CHAR FLOAT	m**3/22	Best choice code. 1 means T_NLR is best choice of T, else 0
_nlr d nlr	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr. Dimensionless wellbore storage constant, see table descrip.
a_nir kin_nlr	FLOAT		Skin factor based on Non Linear Regression,see desc.
Rin_nir ransmissivity_t_grf	FLOAT	m**2/s	T GRF:Transmissivity based on Genelized Radial Flow,see
ransmissivity_t_gri /alue_type_t_grf	CHAR	2/5	0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
c_t_grf	CHAR		Best choice code. 1 means T GRF is best choice of T, else 0
storativity s grf	FLOAT		S GRF:Storativity based on Generalized Radial Flow, see des.
low dim grf	FLOAT		Inferred flow dimesion based on Generalized Rad. Flow model
comment	VARCHAR	no unit	Short comment to the evaluated parameters
error_flag	CHAR	unit	If error flag = "*" then an error occured and an error
n_use	CHAR		If in use = "*" then the activity has been selected as
ign	CHAR		Signature for QA data accknowledge (QA - OK)
-			

KL)	X0	7A
-----	----	----

							formation		seclen	spec_capacity	value_type_	transmissivity	value t	1	transmissivi		value type	hydr_cond_
idcode	start_date	stop_date	secup	seclow	section_no	test_type	type	lp	class	_q_s	value_type_ q_s	_tq	value_t ype_tq	hc ta	ty move	bc tm	tm	moye
KLX07A	050820 16:35	050820 18:59	111.80	211.80	deddion_ne	3	= • •	161.80				0	Jbo_id	00_lq	2.86E-04	_) 0	
KLX07A	050821 15:28	050821 17:22	211.92	311.92		3		261.92				0	-		9.84E-05			
KLX07A	050821 18:57	050821 20:52	312.00	412.00		3	·	362.00				0			2.48E-05			
KLX07A	050822 09:58	050822 11:58	412.07	512.07		3		462.07				0			4.87E-06		0	
KLX07A	050822 13:45	050822 15:37	507.16	607.16		3		557.16				0			5.53E-07		0	
KLX07A	050822 17:07	050822 20:46	602.32	702.32		3	3 1	652.32		·····		0			1.92E-05		0 0	
KLX07A	050823 09:33	050822 11:31	702.45	802.45		3	3 1	752.45				0			3.93E-05		0 0	
KLX07A	050824 16:10	050824 17:37	108.50	128.50		3		118.50				0			2.64E-06		0 0	
KLX07A	050824 18:21	050824 20:21	128.50	148.50		3		138.50				0			1.16E-05		0 0	
KLX07A	050825 08:15	050825 10:27	146.50	166.50		3	3 1	156.50				0	1		7.48E-05		0 0	
KLX07A	050825 11:10	050825 12:33	166.84	186.84		3	3 1	176.84	20	6.58E-05	(0			6.88E-05	0	0 0	3.44E-06
KLX07A	050825 13:32	050825 14:48	186.88	206.88		3	3 1	196.88	20	6.51E-07	(0	1	1	6.81E-07	0	0 0	3.41E-08
KLX07A	050825 15:22	050825 16:56	191.89	211.89		3	3 1	201.89	20	1.33E-05	(0			1.39E-05	0	0 0	6.95E-07
KLX07A	050825 17:38	050825 19:06	211.92	231.92		3	3 1	221.92	20	1.24E-05	(0		1	1.30E-05	(0 0	6.50E-07
KLX07A	050826 08:21	050826 09:49	221.93	241.93		3	3 1	231.93	20	1.26E-05	(0			1.32E-05	0	0 0	6.60E-07
KLX07A	050826 10:33	050826 12:15	241.93	261.93		3	3 1	251.93	20	4.79E-05	(0		1	5.01E-05	0	0 0	2.51E-06
KLX07A	050826 13:17	050826 14:46	261.95	281.95		3	3 1	271.95	20	1.04E-06	(0			1.09E-06	0	0 0	5.45E-08
KLX07A	050826 15:36	050826 16:54	281.98	301.98		3	3 1	291.98	20	1.77E-06	(0			1.85E-06	0	0 0	9.25E-08
KLX07A	050826 17:29	050826 20:01	291.99	311.99		3	3 1	301.99	20	2.86E-06	(0			2.99E-06	0	0 0	1.50E-07
KLX07A	050827 11:12	050827 13:17	312.00	332.00		3	3 1	322.00	20	3.73E-08	(0			3.90E-08	(0 0	1.95E-09
KLX07A	050827 14:01	050827 15:30	326.99	346.99		3	3 1	336.99	20	5.72E-06	(0			5.99E-06	(0 0	3.00E-07
KLX07A	050827 16:09	050827 17:49	341.99	361.99		3	3 1	351.99	20	6.13E-06	(0			6.41E-06	(0 0	3.21E-07
KLX07A	050827 18:31	050827 20:04	362.07	382.07		3	3 1	372.07			(0			5.05E-06	(0 0	2.53E-07
KLX07A	050828 08:24	050828 11:08	382.08	402.08		3	3 1	392.08	20	3.09E-06	(0			3.23E-06	i (0 0	1.62E-07
KLX07A	050828 10:31	050828 11:57	402.06	422.06		3	3 1	412.06	20	7.32E-08	(0			7.66E-08	(0 0	3.83E-09
KLX07A	050828 13:21	050828 14:43	417.07	437.07		3		427.07				0			1.66E-06			
KLX07A	050828 15:25	050828 16:32	437.08			3		447.08				0			5.63E-07		0 0	
KLX07A	050828 17:32	050829 00:57	457.08	477.08		3	·	467.08				0			8.38E-10		0 0	
KLX07A	050829 08:35	050829 10:03	477.12	497.12		3	- <u>2</u>	487.12				0			1.69E-06		0 0	002.00
KLX07A	050829 10:40	050829 12:56	497.14	517.14		3		507.14	+			0			8.38E-09			
KLX07A	050829 14:23	050829 15:53	507.16	527.16		3		517.16				0			3.33E-07		0 0	
KLX07A	050829 16:35	050829 18:09	527.20	547.20		3		537.20				0			1.09E-08		· · · · · · · · · · · · · · · · · · ·	
KLX07A	050829 18:49	050829 20:18	547.23	567.23		3	·	557.23				0			1.75E-07	<u> </u>	· · · · · · · · · · · · · · · · · · ·	002 00
KLX07A	050830 09:08	050830 10:50	567.26	587.26		3		577.26				0			2.57E-09			
KLX07A	050830 11:38	050830 12:37	587.30	607.30		3	·	597.30		£					#N\	(- į	
KLX07A	050830 14:27	050830 15:54	607.32	627.32		3		617.32				0		ļ	7.01E-07	(C	0 0	
KLX07A	050830 16:32	050830 17:56	620.00	640.00		3		630.00		·····		0			1.39E-05			0.002 01
KLX07A	050830 18:37	050830 20:53	637.36	657.36		3	·	647.36				0			1.41E-05		0 0	1.002 01
KLX07A	050831 09:19	050831 10:51	657.41	677.41		3		667.41				0			9.36E-07			
KLX07A	050831 14:40	050831 16:00	667.42	687.42		3		677.42				0			1.11E-07	+		
KLX07A	050831 16:52	050831 18:20	682.43	702.43		3		692.43				0		ļ	1.66E-07		<u> </u>	0.002 00
KLX07A	050831 19:04	050831 20:24	702.45	722.45		3		712.45				0		ļ	9.45E-07	0		
KLX07A	050901 08:07	050901 09:29	722.46	742.46		3		732.46		£		0		ļ	3.20E-07			
KLX07A	050901 10:12	050901 11:37	732.48	752.48		3		742.48				0		ļ	3.05E-07	(0 0	
KLX07A	050901 12:30	050901 14:04	752.51	772.51		3		762.51		£		0		ļ	3.10E-05		0 0	
KLX07A	050901 15:01	050901 16:33	772.53	792.53		3		782.53				0			6.88E-08		0 0	0
KLX07A	050901 17:21	050901 18:43	792.55	812.55		3		802.55		·····		0			2.25E-08		0 0	
KLX07A	050901 19:41	050901 22:40	807.56	827.56		3	8 1	817.56	20	7.03E-07		0	1	1	7.35E-07	1 (0 0	3.68E-08

- N	

			f	م گم ماغام						laskans foot	4								
idcode	secup		formation_ width b	width_of_c hannel b	tb	I measl tb	u measl tb	sh	assumed sb	leakage_fact or If	transmissi vity tt		hc tt	l measl q s	u meast a s	storativity s	a pomuzza	bc s ri	ri index
KLX07A	111.80	211.80	width_b	nannei_b		I_IIICUSI_LD		30	assumed_so		3.58E-04	_"	-	1.00E-04	6.00E-04	1.00E-06	-	-	-
KLX07A	211.92	311.92									2.73E-04	0	÷•••••••	9.00E-05	4.00E-04	1.00E-06	1.00E-06		
KLX07A	312.00	412.00			1			[8.87E-05	0		7.00E-05	2.00E-04	1.00E-06	1.00E-06		
KLX07A	412.07	512.07			-			<u> </u>			8.25E-06	0		5.00E-06	1.00E-05	1.00E-06	1.00E-06		
KLX07A	507.16	607.16			1						4.82E-07	0	\$	1.00E-07	9.00E-07	1.00E-06	1.00E-06		
KLX07A	602.32	702.32							1		9.76E-06	0	1	8.00E-06	3.00E-05	1.00E-06	1.00E-06	166.2	3 1
KLX07A	702.45	802.45						1			3.79E-05	0	1	2.00E-05	5.00E-05	1.00E-06	1.00E-06	80.0	5 1
KLX07A	108.50	128.50									3.22E-06	0	1	1.00E-06	5.00E-06	1.00E-06	1.00E-06	28.5	3 -1
KLX07A	128.50	148.50							1		3.09E-04	0	1	8.00E-05	5.00E-04	1.00E-06	1.00E-06	328.0	3 0
KLX07A	146.50	166.50									4.74E-04	0	1	2.00E-04	7.00E-04	1.00E-06	1.00E-06	365.1	3 0
KLX07A	166.84	186.84									4.30E-04	0	1	2.00E-04	7.00E-04	1.00E-06	1.00E-06	356.3	4 0
KLX07A	186.88	206.88									2.19E-05	0	1	8.00E-06	5.00E-05	1.00E-06	1.00E-06	36.9	5 -1
KLX07A	191.89	211.89									2.52E-04	0	1	8.00E-05	5.00E-04	1.00E-06	1.00E-06	220.4	6 0
KLX07A	211.92	231.92									2.18E-04	0	1	7.00E-05	4.00E-04	1.00E-06	1.00E-06	117.0	9 -1
KLX07A	221.93	241.93									2.10E-04	0		9.00E-05	4.00E-04	1.00E-06	1.00E-06		
KLX07A	241.93	261.93						l			3.17E-04	0	1	7.00E-05	4.00E-04	1.00E-06	1.00E-06		9 0
KLX07A	261.95	281.95									2.65E-06	0	1	9.00E-07	5.00E-06	1.00E-06	1.00E-06		
KLX07A	281.98	301.98						l			2.78E-05	0	1	6.00E-06	4.00E-05	1.00E-06	1.00E-06		
KLX07A	291.99	311.99									2.23E-05	0	f	8.00E-06	3.00E-05	1.00E-06	1.00E-06		
KLX07A	312.00	332.00						ļ			1.48E-08	0		9.00E-09	4.00E-08	1.00E-06	1.00E-06		
KLX07A	326.99	346.99			_						4.53E-05	0	1	1.00E-05	7.00E-05	1.00E-06	1.00E-06		
KLX07A	341.99	361.99							[5.86E-05	0	1	2.00E-05	8.00E-05	1.00E-06	1.00E-06		
KLX07A	362.07	382.07			_			ļ			1.21E-05	0	÷••••••••	6.00E-06	4.00E-05	1.00E-06	1.00E-06		
KLX07A	382.08	402.08						[5.87E-06	0		3.00E-06	8.00E-06	1.00E-06	1.00E-06		
KLX07A	402.06	422.06			_			ļ			1.23E-07	0		7.00E-08	4.00E-07	1.00E-06	1.00E-06		
KLX07A	417.07	437.07			_			ļ			2.21E-06	0	\$	8.00E-07	4.00E-06	1.00E-06	1.00E-06		
KLX07A	437.08	457.08			_ _						2.91E-07	0		1.00E-07	6.00E-07	1.00E-06	1.00E-06		
KLX07A	457.08	477.08						ļ			9.60E-11	0	÷	6.00E-11	3.00E-10	1.00E-06	1.00E-06		
KLX07A	477.12	497.12						ļ			9.92E-06	0		5.00E-06	2.00E-05	1.00E-06	1.00E-06		
KLX07A	497.14	517.14						ļ			5.36E-09	0		3.00E-09	8.00E-09	1.00E-06	1.00E-06		
KLX07A	507.16	527.16						[2.99E-07	0		1.00E-07	6.00E-07	1.00E-06	1.00E-06		
KLX07A	527.20	547.20						ļ			8.10E-09	0	1	6.00E-09	2.00E-08	1.00E-06	1.00E-06		
KLX07A	547.23	567.23									8.58E-08	0	÷••••••••	7.00E-08	4.00E-07	1.00E-06	1.00E-06		
KLX07A	567.26	587.26									1.41E-09	0		9.00E-10	3.00E-09	1.00E-06	1.00E-06		
KLX07A	587.30	607.30						ļ			1.00E-11	-1		1.00E-13	1.00E-11	1.00E-06	1.00E-06		
KLX07A	607.32	627.32									1.45E-06	0		7.00E-07 8.00E-06	3.00E-06	1.00E-06	1.00E-06		
KLX07A	620.00 637.36	640.00 657.36									9.96E-06 3.98E-05	0	J	1.00E-05	3.00E-05	1.00E-06 1.00E-06	1.00E-06		
KLX07A												0	÷		6.00E-05		1.00E-06		
KLX07A	657.41	677.41									3.94E-06		£	9.00E-07	7.00E-06	1.00E-06	1.00E-06		
KLX07A	667.42	687.42								+	5.24E-07	0		1.00E-07	7.00E-07	1.00E-06	1.00E-06		
KLX07A KLX07A	682.43 702.45	702.43 722.45									8.86E-07 4.03E-06	0		5.00E-07 1.00E-06	1.00E-06 6.00E-06	1.00E-06 1.00E-06	1.00E-06 1.00E-06		
KLX07A	702.45	742.45									4.03E-06 5.79E-07	0		1.00E-06	7.00E-06	1.00E-06	1.00E-06		
KLX07A KLX07A	722.40	742.46						<u> </u>			5.79E-07 2.89E-07	0	÷••••••••	1.00E-07	7.00E-07 6.00E-07	1.00E-06	1.00E-06		
KLX07A KLX07A	732.48	752.48						ļ			2.89E-07 3.48E-05	0	f	1.00E-07 2.00E-05	6.00E-07 5.00E-05	1.00E-06	1.00E-06 1.00E-06		
KLX07A KLX07A	752.51	792.53						<u> </u>			3.48E-05 4.12E-08	0	÷•••••••••	2.00E-05 3.00E-08	5.00E-05 8.00E-08	1.00E-06	1.00E-06		
KLX07A KLX07A	792.55	792.53 812.55									4.12E-08 3.99E-08	0	}	3.00E-08 3.00E-08	8.00E-08 8.00E-08	1.00E-06	1.00E-06		
KLX07A KLX07A	807.56	812.55		+				}			3.99E-08 2.29E-06	0		3.00E-08 8.00E-07	8.00E-08 5.00E-06	1.00E-06	1.00E-06		

				-		-							-			_						-					-	-	-			
			leakage_	ond_k			_u_m	neas sp	ec_storag	assumed_										transmissiv	vistorativity	value_typ					transmissiv	t value_typ		storativity_	flow_di	
idcode	secup s	eclow	coeff	sf	e_ksf	ksf	I_ks	sf e_	ssf	ssf	C	cd	skin	dt1	dt2 t	1 t2	dte1	dte2	p_horner	ty_t_nir	_s_nir	_t_nlr	nir	r	cd_nir	r	y_t_grf	_t_grf	grf	s_grf	m_grf	comment
KLX07A	111.80	211.80									1.98E-07			312					1594.0													
KLX07A	211.92	311.92									2.71E-08	2.99E+00	1.77		1519				2342.3													
KLX07A	312.00	412.00									8.08E-09	8.91E-01	18.49		414				3053.9													
KLX07A	412.07	512.07									1.67E-09	1.84E-01	5.18		1526				3772.6													
KLX07A	507.16	607.16									9.70E-10	1.07E-01	1.13		#NV				4515.4													
KLX07A	602.32	702.32									3.89E-08	4.29E+00	-4.74		1734				5240.6													
KLX07A	702.45	802.45									6.47E-08	7.13E+00	-2.12		204				6022.8													
KLX07A	108.50	128.50									1.04E-09	1.15E-01	0.39		89				986.4													
KLX07A	128.50	148.50				ļ					1.94E-09	2.14E-01	30.71	84	948	_			1133.7			ļ										
KLX07A	146.50	166.50									4.22E-08	4.65E+00	29.17		1260				1265.8													
KLX07A	166.84	186.84					_				1.78E-08	1.96E+00	29.60		1098	_			1416.3													
KLX07A	186.88	206.88					_				1.05E-10	1.16E-02			426				1560.3													
KLX07A	191.89	211.89					_				2.40E-09	2.65E-01	-0.48		600	_			1596.6													
KLX07A	211.92	231.92									3.19E-09	3.52E-01	30.50		996				1745.2													
KLX07A	221.93	241.93									4.50E-09	4.96E-01	30.29		1152	_			1820.1													
KLX07A	241.93	261.93									2.05E-08	2.26E+00			1017	_			1971.2													
KLX07A	261.95	281.95					_				3.68E-10	4.06E-02			943				2120.2				-									
KLX07A	281.98	301.98									7.39E-10	8.15E-02			555				2268.4				-									
KLX07A	291.99	311.99					_				3.31E-09	3.65E-01	-1.79		3276				2341.4													
KLX07A	312.00	332.00					-				6.87E-12	7.57E-04	-2.76		2328				2502.0													
KLX07A	326.99	346.99									1.50E-09	1.65E-01	30.80		996				2598.5										-			
KLX07A KLX07A	341.99	361.99									1.39E-09	1.53E-01	30.90		984				2705.3 2851.3													
	362.07	382.07				+					1.61E-09	1.77E-01 1.98E-01	7.00	Junior	1029																	
KLX07A	382.08	402.08									1.80E-09		3.78		1052				2989.3 3127.1													
KLX07A KLX07A	402.06	422.06				+					5.20E-11 4.40E-10	5.73E-03 4.85E-02			496 854				3127.1							-						
KLX07A	417.07	457.08									2.56E-10	4.65E-02 2.82E-02			30				3370.9													
KLX07A	457.08	477.08									2.56E-10 5.08E-11	5.60E-03							3508.2													
KLX07A	457.00	497.12				+					4.59E-10	5.06E-02			1176				3661.7													
KLX07A	477.12	517.14				+					4.59E-10 5.36E-09	5.91E-01	2.50		#NV				3810.1													
KLX07A	507.16	527.16					-				4.07E-10	4.49E-02			#NV				3891.4													
KLX07A	527.20	547.20					-				4.07E-10 5.76E-11	6.35E-03			61				4045.7										-			
KLX07A	547.23	567.23									9.87E-11	1.09E-02			93				4205.0									-				
KLX07A	567.26	587.26				-	-				3.62E-11	3.99E-03	0.03		#NV				4205.0				-					+	-			
KLX07A	587.30	607.30				· · · ·	-				#NV	#NV	#NV		#NV				#055.5 #NV			· · ·	1									
KLX07A	607.32	627.32				+	+			+	2.05E-09	2.26E-01	-3.30		1152	++			4653.3		+	+	+				+	+	-			+
KLX07A	620.00	640.00				+				-	7.70E-08	8.49E+00	-4.91		1200	+-+			4754.0			+	+				1		•			
KLX07A	637.36	657.36				+					1.18E-08	1.30E+00			3432	++			4900.8			+	1				+					
KLX07A	657.41	677.41				+				-	4.87E-10	5.37E-02			174	+-+			5053.0			+	+				1		•			
KLX07A	667.42	687.42				+					8.25E-11	9.09E-03			1020	++			5132.4			+					+					
KLX07A	682.43	702.43				+				+	9.99E-11	1.10E-02			1149	+-+			5246.7			+	1				1		•			
KLX07A	702.45	722.45				+					6.93E-10	7.64E-02			1215				5400.7			+					+					
KLX07A	722.46	742.46					+			+	3.75E-10	4.13E-02			1044				5554.6			1					1					
KLX07A	732.48	752.48				1					5.20E-10	5.73E-02			1199				5628.6		-	1	1					+	-			
KLX07A	752.51	772.51				1					5.73E-08	6.32E+00	-2.06		1656				5789.2		-		1					+				
KLX07A	772.53	792.53				1					8.57E-11	9.45E-03	-1.10		111				5950.0		-	1	1					+	-			
KLX07A	792.55	812.55									6.00E-11	6.61E-03	4.82		#NV				6105.9			<u> </u>	1					+				
KLX07A	807.56	827.56				1	-			1	1.30E-09	1.43E-01	-3.63		4320				6223.0			1	1					+				
LAUIA	007.00	021.30		1	-	-	1			1	1.300-09	1.432-01	-5.05	1022	4320				0223.0			1	1				1		1			1

Tab	ble		ble_test_obs sections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

			1	-	1	1	-	-	1				1	
idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX07A	050820 16:35	050820 18:59	111.80	211.80	_	110.80	844.73	875	875	876	1640	1643	1641	
KLX07A	050821 15:28	050821 17:22	211.92			210.92		1610		1612				
KLX07A	050821 18:57	050821 20:52	312.00			311.00				2361				
KLX07A	050822 09:58	050822 11:58	412.07			411.07				3073				
KLX07A	050822 13:45	050822 15:37	507.16			506.16				3775				
KLX07A	050822 17:07	050822 20:46	602.32			601.32				4503				
KLX07A	050823 09:33	050822 11:31	702.45			701.45			5289	5289				
KLX07A	050824 16:10	050824 17:37	108.50			107.50				852				
KLX07A	050824 18:21	050824 20:21	128.50			127.50				1003				
KLX07A	050825 08:15	050825 10:27	146.50			145.50				1134		-		
KLX07A	050825 11:10	050825 12:33	166.84			145.84				1281	1459			
KLX07A	050825 13:32	050825 14:48	186.88			185.88			1427	1427				
KLX07A	050825 15:22	050825 16:56	191.89			190.89				1465				
KLX07A	050825 17:38	050825 19:06	211.92			210.92				1400				
KLX07A	050826 08:21	050826 09:49	221.93			220.93				1680			1865	
KLX07A	050826 10:33	050826 12:15	241.93			240.93			1835	1832				
KLX07A	050826 13:17	050826 14:46	261.95			240.95			1984	1984				
KLX07A	050826 15:36	050826 16:54	281.98			280.98				2136	-	-		
KLX07A	050826 17:29	050826 20:01	291.99			290.99				2130			-	
KLX07A	050827 11:12	050827 13:17	312.00			311.00				2357				
KLX07A	050827 14:01	050827 15:30	326.99			325.99				2357				
KLX07A	050827 14:01	050827 17:49	341.99			340.99				2409			-	
KLX07A	050827 18:31	050827 20:04	362.07			361.07				2722				
KLX07A	050828 08:24	050828 11:08	382.08			381.08			2723	2722				
KLX07A	050828 10:31	050828 11:57	402.06			401.06				3002				
KLX07A	050828 13:21	050828 14:43	402.00			401.00				3106				
KLX07A	050828 15:25	050828 16:32	417.07			436.08				3248				
KLX07A	050828 17:32	050829 00:57	457.08			456.08			-	3386				
KLX07A	050829 08:35	050829 00.57	457.00			456.06			3500	3528				
KLX07A	050829 08.35	050829 10:03	477.12			476.12				3526				
KLX07A	050829 10:40	050829 12:56	507.16			506.16		3070		3757				
		050829 15:55								3757				
KLX07A	050829 16:35		527.20			526.20 546.23				4069				
KLX07A	050829 18:49	050829 20:18	547.23											
KLX07A	050830 09:08	050830 10:50	567.26			566.26				4224				bottom gauge failed
KLX07A KLX07A	050830 11:38	050830 12:37	587.30 607.32			586.30			#NV 4542	#NV				bottom gauge failed
	050830 14:27	050830 15:54				606.32			-	4542				bottom gauge failed
KLX07A	050830 16:32	050830 17:56	620.00			619.00				4643				bottom gauge failed
KLX07A	050830 18:37	050830 20:53	637.36			636.36				4779				bottom gauge failed
KLX07A	050831 09:19	050831 10:51	657.41			656.41				4933				bottom gauge failed
KLX07A	050831 14:40	050831 16:00	667.42			666.42				5016				bottom gauge failed
KLX07A	050831 16:52	050831 18:20	682.43			681.43				5134				bottom gauge failed
KLX07A	050831 19:04	050831 20:24	702.45			701.45		5290		5290				bottom gauge failed
KLX07A	050901 08:07	050901 09:29	722.46			721.46				5443				bottom gauge failed
KLX07A	050901 10:12	050901 11:37	732.48			731.48			5523	5524				bottom gauge failed
KLX07A	050901 12:30	050901 14:04	752.51			751.51				5686				bottom gauge failed
KLX07A	050901 15:01	050901 16:33	772.53			771.53				5839				bottom gauge failed
KLX07A	050901 17:21	050901 18:43	792.55			791.55			5994	5994				bottom gauge failed
KLX07A	050901 19:41	050901 22:40	807.56	827.56		806.56	844.73	6110	6110	6109	#NV	#NV	#NV	bottom gauge failed