International Progress Report

IPR-05-17

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase

Test campaign 5

Single hole tests

Torbjörn Forsmark Ingvar Rhén SWECO VIAK AB

September 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864

SE-102 40 Stockholm Sweden Tel 08-459 84 00

+46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

 $\begin{array}{lll} \text{Report no.} & \text{No.} \\ \text{IPR-05-17} & \text{F63K} \\ \text{Author} & \text{Date} \end{array}$

Torbjörn Forsmark 2005-09-13

Ingvar Rhén

Checked by Date

Ingvar Rhén 2005-09-13

Approved Date

Anders Sjöland 2005-11-14

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase

Test campaign 5

Single hole tests

Torbjörn Forsmark Ingvar Rhén SWECO VIAK AB

September 2005

Keywords: Äspö HRL, Prototype Repository, Hydrogeology, Hydraulic tests, Pressure build-up tests, Hydraulic parameters, Transmissivity, Storage coefficient

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Abstract

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects.

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

Single hole tests were done in 12 boreholes of the Prototype Repository tunnel. In some of the holes several tests were made. The maximal pressure change (dp_p) was limited to approximately 100 metres, 200 metres and maximum possible pressure change respectively.

There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The results are shown in the table below.

Table 1 Results from the test campaign 5. (1) Indicates packer system failure, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Specific capacity (m²/s)	T _{MOYE} (m ² /s)	T _{eval} (m²/s)	Skinfactor (-)
KA3550G01:2	Χ	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	Х	max	1.4 · 10 ⁻⁹	8.9 · 10 ⁻¹⁰	6.7 · 10 ⁻¹⁰	-1.7
KA3554G01:2	Х	~100	1.1 · 10 ⁻⁷	7.2 · 10 ⁻⁸	4.5 · 10 ⁻⁷	18
KA3554G01:2	Х	~200	8.9 · 10 ⁻⁸	5.7 · 10 ⁻⁸	4.5 · 10 ⁻⁷	24
KA3554G01:2	Х	max	7.7 · 10 ⁻⁸	4.9 · 10 ⁻⁸	4.3 · 10 ⁻⁷	27
KA3554G02:4	Х	~100	1.3 · 10 ⁻⁹	8.2 · 10 ⁻¹⁰	2.0 · 10 ⁻⁸	95
KA3554G02:4	Х	max	1.2 · 10 ⁻⁹	8.0 · 10 ⁻¹⁰	1.3 · 10 ⁻⁸	61
KA3548A01:3	Х	~100	1.1 · 10 ⁻⁷	7.4 · 10 ⁻⁸	9.0 · 10 ⁻⁸	-1.7
KA3548A01:3	Х	~200	1.1 · 10 ⁻⁷	7.7 · 10 ⁻⁸	9.9 · 10 ⁻⁸	-1.8
KA3548A01:3	Х	max	1.0 · 10 ⁻⁷	6.9 · 10 ⁻⁸	8.4 · 10 ⁻⁸	-1.4
KA3542G01:3	Х	~100	5.9 · 10 ⁻⁸	3.9 · 10 ⁻⁸	4.9 · 10 ⁻⁸	-0.7
KA3542G01:3	Х	~200	5.4 · 10 ⁻⁸	3.5 · 10 ⁻⁸	6.0 · 10 ⁻⁸	0.6
KA3542G01:3	Х	max	4.7 · 10 ⁻⁸	3.0 · 10 ⁻⁸	6.5 · 10 ⁻⁸	2.4
KA3544G01:2	Х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	Х	~100	9.5 · 10 ⁻¹⁰	6.1 · 10 ⁻¹⁰	4.6 · 10 ⁻¹⁰	-1.3
KA3542G02:2	Х	max	9.9 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	4.8 · 10 ⁻¹⁰	-1.4
KA3563G:4	-	max	9.3 · 10 ⁻⁹	5.9 · 10 ⁻⁹	3.3 · 10 ⁻⁸	16
KA3546G01:2	Х	max	5.9 · 10 ⁻¹¹	3.6 · 10 ⁻¹¹	-	-
KA3566G01:2	-	max	6.4 · 10 ⁻¹¹	4.1 · 10 ⁻¹¹	6.4 · 10 ⁻¹¹	4.3
KA3572G01:2	-	max	2.3 · 10 ⁻¹⁰	1.6 · 10 ⁻¹⁰	-	-
KA3574G01:3	-	max	1.9 · 10 ⁻¹⁰	1.4 · 10 ⁻¹⁰	-	-
KA3539G:2	Х	~100	2.2 · 10 ⁻⁷	1.4 · 10 ⁻⁷	5.9 · 10 ⁻⁷	-1.3
KA3539G:2	Х	max	1.5 · 10 ⁻⁷	1.0 · 10 ⁻⁷	6.6 · 10 ⁻⁷	-0.8

Sammanfattning

Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB: s djupförvars system. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototyp förvaret men även i andra projekt.

Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer.

Enhålstester gjordes i totalt 12 stycken borrhål. Ett nionde och tionde borrhål är utrustad med HM sensorer men har ej kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM sensorer installerade. Det hålet är tänkt att användas såsom referenshål. Resultaten från denna testomgång presenteras i tabellen nedan.

Tabell 1 Resultat från testomgång 5. ⁽¹⁾ indikerar läckageproblem med manschetterna, "-" indikerar att inget värde kunnat beräknas med valt utvärderingsmetod.

Sektion	HM sektion	dp _p (m)	Specifik kapacitet (m²/s)	T _{MOYE} (m²/s)	T _{eval} (m²/s)	Skinfaktor (-)
KA3550G01:2	Х	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	Х	max	1.4 · 10 ⁻⁹	8.9 · 10 ⁻¹⁰	6.7 · 10 ⁻¹⁰	-1.7
KA3554G01:2	Х	~100	1.1 · 10 ⁻⁷	7.2 · 10 ⁻⁸	4.5 · 10 ⁻⁷	18
KA3554G01:2	Х	~200	8.9 · 10 ⁻⁸	5.7 · 10 ⁻⁸	4.5 · 10 ⁻⁷	24
KA3554G01:2	Х	max	7.7 · 10 ⁻⁸	4.9 · 10 ⁻⁸	4.3 · 10 ⁻⁷	27
KA3554G02:4	Х	~100	1.3 · 10 ⁻⁹	8.2 · 10 ⁻¹⁰	2.0 · 10 ⁻⁸	95
KA3554G02:4	X	max	1.2 · 10 ⁻⁹	8.0 · 10 ⁻¹⁰	1.3 · 10 ⁻⁸	61
KA3548A01:3	Х	~100	1.1 · 10 ⁻⁷	7.4 · 10 ⁻⁸	9.0 · 10 ⁻⁸	-1.7
KA3548A01:3	Х	~200	1.1 · 10 ⁻⁷	7.7 · 10 ⁻⁸	9.9 · 10 ⁻⁸	-1.8
KA3548A01:3	Х	max	1.0 · 10 ⁻⁷	6.9 · 10 ⁻⁸	8.4 · 10 ⁻⁸	-1.4
KA3542G01:3	Х	~100	5.9 · 10 ⁻⁸	3.9 · 10 ⁻⁸	4.9 · 10 ⁻⁸	-0.7
KA3542G01:3	Х	~200	5.4 · 10 ⁻⁸	3.5 · 10 ⁻⁸	6.0 · 10 ⁻⁸	0.6
KA3542G01:3	Х	max	4.7 · 10 ⁻⁸	3.0 · 10 ⁻⁸	6.5 · 10 ⁻⁸	2.4
KA3544G01:2	Х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	Х	~100	9.5 · 10 ⁻¹⁰	6.1 · 10 ⁻¹⁰	4.6 · 10 ⁻¹⁰	-1.3
KA3542G02:2	Х	max	9.9 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	4.8 · 10 ⁻¹⁰	-1.4
KA3563G:4	-	max	9.3 · 10 ⁻⁹	5.9 · 10 ⁻⁹	3.3 · 10 ⁻⁸	16
KA3546G01:2	Х	max	5.9 · 10 ⁻¹¹	3.6 · 10 ⁻¹¹	-	-
KA3566G01:2	-	max	6.4 · 10 ⁻¹¹	4.1 · 10 ⁻¹¹	6.4 · 10 ⁻¹¹	4.3
KA3572G01:2	-	max	2.3 · 10 ⁻¹⁰	1.6 · 10 ⁻¹⁰	-	-
KA3574G01:3	-	max	1.9 · 10 ⁻¹⁰	1.4 · 10 ⁻¹⁰	-	-
KA3539G:2	X	~100	2.2 · 10 ⁻⁷	1.4 · 10 ⁻⁷	5.9 · 10 ⁻⁷	-1.3
KA3539G:2	X	max	1.5 · 10 ⁻⁷	1.0 · 10 ⁻⁷	6.6 · 10 ⁻⁷	-0.8

Executive Summary

In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on.

Table 1 Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m²/s)	Test campaign 2 (-166 days) (m²/s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5 (-622 days) (m²/s)	Test campaign 6
KA3550G01:2	Х	(1)	(1)	(1)	(1)	(1)	(1)	
KA3552G01:2	Х	max	9.4 · 10 ⁻⁹	1.6 · 10 ⁻⁹	1.4 · 10 ⁻⁹	5.8 · 10 ⁻⁹	1.4 · 10 ⁻⁹	
KA3554G01:2	X	~100	(2)	(2)	(2)	1.0 · 10 ⁻⁷	1.1 · 10 ⁻⁷	
KA3554G01:2	X	~200	(2)	(2)	(2)	8.8 · 10 ⁻⁸	8.9 · 10 ⁻⁸	
KA3554G01:2	X	max	8.2 · 10 ⁻⁸	8.3 · 10 ⁻⁸	7.8 · 10 ⁻⁸	7.9 · 10 ⁻⁸	7.7 · 10 ⁻⁸	
KA3554G02:4	Х	~100	(2)	(2)	(2)	1.2 · 10 ⁻⁹	1.3 · 10 ⁻⁹	
KA3554G02:4	Х	max	1.3 · 10 ⁻⁹	1.2 · 10 ⁻⁹	1.2 · 10 ⁻⁹	1.2 · 10 ⁻⁹	1.2 · 10 ⁻⁹	
KA3548A01:3	Х	~100	(2)	(2)	(2)	(2)	1.1 · 10 ⁻⁷	
KA3548A01:3	Х	~200	(2)	(2)	(2)	(2)	1.1 · 10 ⁻⁷	
KA3548A01:3	Х	max	1.1 · 10 ⁻⁷	1.0 · 10 ⁻⁷	1.1 · 10 ⁻⁷	9.8 · 10 ⁻⁸	1.0 · 10 ⁻⁷	
KA3542G01:3	Х	~100	(2)	(2)	(2)	5.8 · 10 ⁻⁸	5.9 · 10 ⁻⁸	
KA3542G01:3	Х	~200	(2)	(2)	(2)	4.9 · 10 ⁻⁸	5.4 · 10 ⁻⁸	
KA3542G01:3	Х	max	5.4 · 10 ⁻⁸	4.9 · 10 ⁻⁸	4.7 · 10 ⁻⁸	4.5 · 10 ⁻⁸	4.7 · 10 ⁻⁸	
KA3544G01:2	Х	(1)	7.8 · 10 ⁻¹⁰	5.9 · 10 ⁻¹⁰	(1)	(1)	(1)	
KA3542G02:2	Х	~100	(2)	(2)	(2)	(2)	9.5 · 10 ⁻¹⁰	
KA3542G02:2	Х	max	5.4 · 10 ⁻¹⁰	4.9 · 10 ⁻¹⁰	1.0 · 10 ⁻⁹	9.8 · 10 ⁻¹⁰	9.9 · 10 ⁻¹⁰	
KA3563G:4	-	max	1.7 · 10 ⁻⁸	(2)	(2)	(2)	9.3 · 10 ⁻⁹	
KA3546G01:2	Х	max	6.1 · 10 ⁻¹⁰	6.0 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	5.7 · 10 ⁻¹⁰	5.9 · 10 ⁻¹¹	
KA3566G01:2	-	max	6.8 · 10 ⁻¹⁰	(2)	(2)	(2)	6.4 · 10 ⁻¹¹	
KA3572G01:2	-	max	1.9 · 10 ⁻¹⁰	(2)	(2)	(2)	2.3 · 10 ⁻¹⁰	
KA3574G01:3	-	max	8.7 · 10 ⁻¹⁰	(2)	(2)	(2)	1.9 · 10 ⁻¹⁰	
KA3539G:2	Х	~100	(2)	(2)	(2)	2.3 · 10 ⁻⁷	2.2 · 10 ⁻⁷	
KA3539G:2	Х	max	1.9 · 10 ⁻⁷	3.0 · 10 ⁻⁷	2.2 · 10 ⁻⁷	2.3 · 10 ⁻⁷	1.5 · 10 ⁻⁷	

Table 2 T_{MOYE} . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m²/s)	Test campaign 2 (-166 days) (m²/s)	Test campaign 3 (-270 days) (m²/s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5 (-622 days) (m²/s)	Test campaign 6
KA3550G01:2	Х	(1)	(1)	(1)	(1)	(1)	(1)	
KA3552G01:2	Х	max	8.8 · 10 ⁻⁹	1.0 · 10 ⁻⁹	8.8 · 10 ⁻¹⁰	3.8 · 10 ⁻⁹	8.9 · 10 ⁻¹⁰	
KA3554G01:2	Х	~100	(2)	(2)	(2)	6.5 · 10 ⁻⁸	7.2 · 10 ⁻⁸	
KA3554G01:2	Х	~200	(2)	(2)	(2)	5.6 · 10 ⁻⁸	5.7 · 10 ⁻⁸	
KA3554G01:2	Х	max	5.2 · 10 ⁻⁸	5.3 · 10 ⁻⁸	5.0 · 10 ⁻⁸	5.1 · 10 ⁻⁸	4.9 · 10 ⁻⁸	
KA3554G02:4	Х	~100	(2)	(2)	(2)	8.2 · 10 ⁻¹⁰	8.2 · 10 ⁻¹⁰	
KA3554G02:4	Х	max	8.2 · 10 ⁻¹⁰	7.9 · 10 ⁻¹⁰	7.9 · 10 ⁻¹⁰	7.5 · 10 ⁻¹⁰	8.0 · 10 ⁻¹⁰	
KA3548A01:3	Х	~100	(2)	(2)	(2)	(2)	7.4 · 10 ⁻⁸	
KA3548A01:3	Х	~200	(2)	(2)	(2)	(2)	7.7 · 10 ⁻⁸	
KA3548A01:3	Х	max	7.1 · 10 ⁻⁸	6.9 · 10 ⁻⁸	6.9 · 10 ⁻⁸	6.6 · 10 ⁻⁸	6.9 · 10 ⁻⁸	
KA3542G01:3	Х	~100	(2)	(2)	(2)	3.8 · 10 ⁻⁸	3.9 · 10 ⁻⁸	
KA3542G01:3	Х	~200	(2)	(2)	(2)	3.3 · 10 ⁻⁸	3.5 · 10 ⁻⁸	
KA3542G01:3	Х	max	3.6 · 10 ⁻⁸	3.2 · 10 ⁻⁸	3.1 · 10 ⁻⁸	3.1 · 10 ⁻⁸	3.0 · 10 ⁻⁸	
KA3544G01:2	Х	(1)	5.1 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰	(1)	(1)	(1)	
KA3542G02:2	Х	~100	(2)	(2)	(2)	(2)	6.1 · 10 ⁻¹⁰	
KA3542G02:2	Х	max	3.5 · 10 ⁻¹⁰	3.1 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	6.3 · 10 ⁻¹⁰	6.4 · 10 ⁻¹⁰	
KA3563G:4	-	max	5.6 · 10 ⁻⁹	(2)	(2)	(2)	5.9 · 10 ⁻⁹	
KA3546G01:2	Х	max	3.9 · 10 ⁻¹⁰	3.9 · 10 ⁻¹⁰	4.1 · 10 ⁻¹⁰	3.6 · 10 ⁻¹⁰	3.6 · 10 ⁻¹¹	
KA3566G01:2	-	max	4.4 · 10 ⁻¹⁰	(2)	(2)	(2)	4.1 · 10 ⁻¹¹	
KA3572G01:2	-	max	1.3 · 10 ⁻¹⁰	(2)	(2)	(2)	1.6 · 10 ⁻¹⁰	
KA3574G01:3	-	max	6.1 · 10 ⁻¹⁰	(2)	(2)	(2)	1.4 · 10 ⁻¹⁰	
KA3539G:2	Х	~100	(2)	(2)	(2)	1.5 · 10 ⁻⁷	1.4 · 10 ⁻⁷	
KA3539G:2	Х	max	1.3 · 10 ⁻⁷	2.0 · 10 ⁻⁷	1.5 · 10 ⁻⁷	1.5 · 10 ⁻⁷	1.0 · 10 ⁻⁷	

Table 3 Transmissivity – transient evaluation. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (m²/s)	Test campaign 2 (-166 days) (m²/s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m²/s)	Test campaign 5 (-622 days) (m²/s)	Test campaign 6
KA3550G01:2	X	(1)	(1)	(1)	(1)	(1)	(1)	
KA3552G01:2	X	max	-	6.5 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰	2.2 · 10 ⁻⁹	6.7 · 10 ⁻¹⁰	
KA3554G01:2	Х	~100	(2)	(2)	(2)	4.9 · 10 ⁻⁷	4.5 · 10 ⁻⁷	
KA3554G01:2	X	~200	(2)	(2)	(2)	4.7 · 10 ⁻⁷	4.5 · 10 ⁻⁷	
KA3554G01:2	Χ	max	6.4 · 10 ⁻⁷	5.3 · 10 ⁻⁷	5.1 · 10 ⁻⁷	4.7 · 10 ⁻⁷	4.3 · 10 ⁻⁷	
KA3554G02:4	X	~100	(2)	(2)	(2)	-	2.0 · 10 ⁻⁸	
KA3554G02:4	X	max	1.1 · 10 ⁻⁸	2.5 · 10 ⁻⁸	-	-	1.3 · 10 ⁻⁸	
KA3548A01:3	X	~100	(2)	(2)	(2)	(2)	9.0 · 10 ⁻⁸	
KA3548A01:3	X	~200	(2)	(2)	(2)	(2)	9.9 · 10 ⁻⁸	
KA3548A01:3	X	max	8.1 · 10 ⁻⁸	9.8 · 10 ⁻⁸	8.9 · 10 ⁻⁸	8.2 · 10 ⁻⁸	8.4 · 10 ⁻⁸	
KA3542G01:3	X	~100	(2)	(2)	(2)	6.9 · 10 ⁻⁸	4.9 · 10 ⁻⁸	
KA3542G01:3	X	~200	(2)	(2)	(2)	6.6 · 10 ⁻⁸	6.0 · 10 ⁻⁸	
KA3542G01:3	X	max	9.5 · 10 ⁻⁸	9.7 · 10 ⁻⁸	8.3 · 10 ⁻⁸	6.4 · 10 ⁻⁸	6.5 · 10 ⁻⁸	
KA3544G01:2	Х	(1)	-	-	(1)	(1)	(1)	
KA3542G02:2	Х	~100	(2)	(2)	(2)	(2)	4.6 · 10 ⁻¹⁰	
KA3542G02:2	X	max	2.2 · 10 ⁻¹⁰	1.9 · 10 ⁻¹⁰	5.4 · 10 ⁻¹⁰	5.3 · 10 ⁻¹⁰	4.8 · 10 ⁻¹⁰	
KA3563G:4	-	max	-	(2)	(2)	(2)	3.3 · 10 ⁻⁸	
KA3546G01:2	X	max	7.8 · 10 ⁻¹¹	-	-	-	-	
KA3566G01:2	-	max	-	(2)	(2)	(2)	6.4 · 10 ⁻¹¹	
KA3572G01:2	-	max	-	(2)	(2)	(2)	-	
KA3574G01:3	-	max	-	(2)	(2)	(2)	-	
KA3539G:2	Х	~100	(2)	(2)	(2)	5.5 · 10 ⁻⁷	5.9 · 10 ⁻⁷	
KA3539G:2	Х	max	7.0 · 10 ⁻⁷	8.6 · 10 ⁻⁷	6.2 · 10 ⁻⁷	5.4 · 10 ⁻⁷	6.6 · 10 ⁻⁷	

Table 4 Skinfactor. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it was not possible to evaluate any value with selected method.

Section	HM section	dp _p (m)	Test campaign 1 (-0 days) (-)	Test campaign 2 (-166 days) (-)	Test campaign 3 (-270 days) (-)	Test campaign 4 (-461 days) (-)	Test campaign 5 (-622 days) (m ² /s)	Test campaign 6
KA3550G01:2	Х	(1)	(1)	(1)	(1)	(1)	(1)	
KA3552G01:2	Х	max	-	-1.8	-1.7	-2.5	-1.7	
KA3554G01:2	Х	~100	(2)	(2)	(2)	22	18	
KA3554G01:2	Х	~200	(2)	(2)	(2)	26	24	
KA3554G01:2	Х	max	43	34	34	30	27	
KA3554G02:4	Х	~100	(2)	(2)	(2)	-	95	
KA3554G02:4	Х	max	51	120	-	-	61	
KA3548A01:3	Х	~100	(2)	(2)	(2)	(2)	-1.7	
KA3548A01:3	Х	~200	(2)	(2)	(2)	(2)	-1.8	
KA3548A01:3	Х	max	-2	-0.3	-1.2	-1.2	-1.4	
KA3542G01:3	Х	~100	(2)	(2)	(2)	1.1	-0.7	
KA3542G01:3	Х	~200	(2)	(2)	(2)	2.1	0.6	
KA3542G01:3	Х	max	5	6	4.9	2.7	2.4	
KA3544G01:2	Х	(1)	-	-	(1)	(1)	(1)	
KA3542G02:2	Х	~100	(2)	(2)	(2)	(2)	-1.3	
KA3542G02:2	Х	max	-0.3	-1.3	-1.1	-1.2	-1.4	
KA3563G:4	-	max	-	(2)	(2)	(2)	16	
KA3546G01:2	Х	max	-2	-	-	-	-	
KA3566G01:2	-	max	-	(2)	(2)	(2)	4.3	
KA3572G01:2	-	max	-	(2)	(2)	(2)	-	
KA3574G01:3	-	max	-	(2)	(2)	(2)	-	
KA3539G:2	Х	~100	(2)	(2)	(2)	-1.5	-1.3	
KA3539G:2	Х	max	1.5	1.6	-0.2	-1.2	-0.8	

Contents

1	Background	17
1.1	Äspö Hard Rock Laboratory	17
1.2	Prototype repository	18
	1.2.1 General objectives	18
2	Objective	19
3	Scope	21
4	Equipment	23
4.1	Description of equipment	23
4.2	Pressure sensors	24
4.3	Flowmeter equipment	25
4.4	Deformation measurements	26
	4.4.1 Measurement equipment	26
5	Execution	31
	Preparations	31
5.2	Execution of tests/measurements	31
	5.2.1 Test principle	31
5.3	5.2.2 Test procedure Data handling	31 32
5.4	Analyses and interpretation	32
J. 1	5.4.1 Single hole tests	32
6	Results	35
6.1	Single hole tests	35
	6.1.1 KA3552G01:2, test No 5:1	35
	6.1.2 KA3554G01:2, test No 5:2a	38
	6.1.3 KA3554G01:2, test No 5:2b	41
	6.1.4 KA3554G01:2, test No 5:2c	44
	6.1.5 KA3554G02:4, test No 5:3a	47
	6.1.6 KA3554G02:4, test No 5:3b	50
	6.1.7 KA3548A01:3 , test No 5:4a 6.1.8 KA3548A01:3 , test No 5:4b	53 56
	6.1.9 KA3548A01:3, test No 5:4c	59
	6.1.10 KA3542G01:3, test No 5:5a	62
	6.1.11 KA3542G01:3, test No 5:5b	65
	6.1.12 KA3542G01:3 , test No 5:5c	68
	6.1.13 KA3542G02:2, test No 5:7a	71
	6.1.14 KA3542G02:2, test No 5:7b	74
	6.1.15 KA3563G:4, test No 5:8	77
	6.1.16 KA3546G01:2, test No 5:9	80
	6.1.17 KA3566G01:2, test No 5:10	83
	6.1.18 KA3572G01:2, test No 5:11	86
	6.1.19 KA3574G01:3, test No 5:12	89
	6.1.20 KA3539G:2, test No 5:13a 6.1.21 KA3539G:2, test No 5:13b	92 95
62	Deformation measurements	98
ĸet	Gerences	99

Tables

Table 3-1	Single hole tests during the campaign in January 2005. (1) indicates packer system failure, "X" indicates that section is equipped with HM sensors.	21
Table 4-1	Data of the measurement sections (sensors, length, number of fractures etc).	28
Table 6-1	General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01	35
Table 6-2	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	38
Table 6-3	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	41
Table 6-4	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	44
Table 6-5	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	47
Table 6-6	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	50
Table 6-7	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	53
Table 6-8	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	56
Table 6-9	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	59
Table 6-10	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	62
Table 6-11	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	65
Table 6-12	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	68
Table 6-13	General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02	71
Table 6-14	General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02	74
Table 6-15	General test data for the pressure build-up test in section 1.50-3.00 m of borehole KA3563G	77
Table 6-16	General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01	80
Table 6-17	General test data for the pressure build-up test in section 20.00-21.50 m of borehole KA3566G01	83
Table 6-18	General test data for the pressure build-up test in section 2.70-5.30 m of borehole KA3572G01	86

Table 6-19	General test data for the pressure build-up test in section 1.80-4.10 m of borehole KA3574G01	89
Table 6-20	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	92
Table 6-21	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	95

Figures

Figure 1-1	Aspö Hard Rock Laboratory	17
Figure 4-1	All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.	23
Figure 4-2	Pressure transducers connections	24
Figure 4-3	The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system	25
Figure 4-4	A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.	27
Figure 4-5	A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.	29
Figure 6-1	Flow rates during draw down in KA3552G01:2.	36
Figure 6-2	Flow rates during draw down in KA3554G01:2.	39
Figure 6-3	Flow rates during draw down in KA3554G01:2.	42
Figure 6-4	Flow rates during draw down in KA3554G01:2.	45
Figure 6-5	Flow rates during draw down in KA3554G02:4.	48
Figure 6-6	Flow rates during draw down in KA3554G02:4.	51
Figure 6-7	Flow rates during draw down in KA3548A01:3.	54
Figure 6-8	Flow rates during draw down in KA3548A01:3.	57
Figure 6-9	Flow rates during draw down in KA3548A01:3.	60
Figure 6-10	Flow rate during draw down in KA3542G01:3.	63
Figure 6-11	Flow rate during draw down in KA3542G01:3.	66
Figure 6-12	Flow rate during draw down in KA3542G01:3.	69
Figure 6-13	Flow rate during draw down in KA3542G02:2.	72
Figure 6-14	Flow rate during draw down in KA3542G02:2.	75
Figure 6-15	Flow rate during draw down in KA3563G:4.	78
Figure 6-16	Flow rate during draw down in KA3546G01:2.	81
Figure 6-17	Flow rate during draw down in KA3566G01:2.	84
Figure 6-18	Flow rate during draw down in KA3572G01:2.	87
Figure 6-19	Flow rate during draw down in KA3574G01:3.	90
Figure 6-20	Flow rate during draw down in KA3539G:2.	93
Figure 6-21	Flow rate during draw down in KA3539G:2.	96

1 Background

1.1 Äspö Hard Rock Laboratory

In order to prepare for the siting and licensing of a spent fuel repository SKB has constructed an underground research laboratory.

In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see Figure 1-1, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m.

The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out.

Figure 1-1 Äspö Hard Rock Laboratory

1.2 Prototype repository

The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation "Prototype Repository Test". The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment.

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test.

1.2.1 General objectives

The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity.

The major objectives for the Prototype Repository are:

- To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions.
- To develop, test and demonstrate appropriate engineering standards and quality assurance methods.
- To simulate appropriate parts of the repository design and construction process.

The objective for the operation phase program is:

 To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass

2 Objective

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors, (Alm et al, 2005).

3 Scope

Single hole tests were done in 12 boreholes of the Prototype Repository tunnel. There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in Table 3-1. The first figure in the test number indicates this being the fifth single hole test campaign, while the second number indicates the chronological order of the single hole tests. The same numbering of the tests as used during test campaign 1 to 4 is used (Forsmark et al, 2004), (Forsmark, Rhén, 2004a, 2004b, 2004c, 2005). Also indicated in the table are the sections where Hydro Mechanical (HM) measurements are done. In chapter 6 the results of the tests are presented.

In some of the holes several tests were made. The maximal pressure change (dp_p) was limited to approximately 100 metres, 200 metres and maximum possible pressure change respectively.

Table 3-1 Single hole tests during the campaign in January 2005. (1) indicates packer system failure, "X" indicates that section is equipped with HM sensors.

Bore hole	Section (m)	HM sectio n	Single hole test no.	Date of test	Start of test	Flow start	Flow stop	Test stop
KA3550G01:2 ⁽¹⁾	5.20-7.30	Х	- (1)	-	-	-	-	-
KA3552G01:2	4.35-6.05	Х	5:1	2005-01-23	11:00:00	13:05:00	15:00:00	17:00:00
KA3554G01:2	22.60-24.15	Х	5:2a	2005-01-20	10:30:00	12:30:00	14:30:00	16:30:00
KA3554G01:2	22.60-24.15	Х	5:2b	2005-01-21	10:00:00	12:00:00	14:00:00	16:00:00
KA3554G01:2	22.60-24.15	Х	5:2c	2005-01-22	13:00:00	15:00:00	21:00:00	15:00:00*
KA3554G02:4	10.50-12.20	X	5:3a	2005-01-24	08:00:00	09:00:00	11:00:00	13:00:00
KA3554G02:4	10.50-12.20	X	5:3b	2005-01-25	15:00:00	16:00:00	18:00:00	20:00:00
KA3548A01:3	8.80-10.75	X	5:4a	2005-01-20	06:00:00	07:15:00	08:15:00	10:15:00
KA3548A01:3	8.80-10.75	Х	5:4b	2005-01-23	10:00:00	11:00:00	12:00:00	14:00:00
KA3548A01:3	8.80-10.75	X	5:4c	2005-01-24	06:00:00	07:00:00	08:00:00	10:00:00
KA3542G01:3	18.60-20.30	X	5:5a	2005-01-20	08:00:00	09:15:00	10:15:00	12:15:00
KA3542G01:3	18.60-20.30	X	5:5b	2005-01-21	08:00:00	09:00:00	10:00:00	12:00:00
KA3542G01:3	18.60-20.30	X	5:5c	2005-01-22	06:00:00	07:00:00	08:00:00	10:00:00
KA3544G01:2 ⁽¹⁾	8.90-10.65	X	- (1)	-	-	-	-	-
KA3542G02:2	25.60-27.20	X	5:7a	2005-01-22	08:00:00	10:00:00	13:00:00	15:00:00
KA3542G02:2	25.60-27.20	X	5:7b	2005-01-23	06:00:00	07:00:00	10:00:00	12:00:00
KA3563G:4	1.50-3.00	-	5:8	2005-01-24	11:00:00	12:00:00	13:00:00	15:00:00
KA3546G01:2	6.75-8.30	X	5:9	2005-01-25	10:00:00	11:00:00	14:00:00	16:00:00
KA3566G01:2	20.00-21.50	-	5:10	2005-01-25	06:00:00	07:00:00	07:58:00	10:00:00
KA3572G01:2	2.70-5.30	-	5:11	2005-01-21	06:00:00	07:00:00	08:00:00	10:00:00
KA3574G01:3	1.80-4.10	-	5:12	2005-01-25	08:00:00	09:00:00	10:00:00	12:00:00
KA3539G:2	15.85-17.60	X	5:13a	2005-01-19	12:00:00	13:30:00	14:30:00	16:30:00
KA3539G:2	15.85-17.60	Х	5:13b	2005-01-20	14:30:00	15:30:00	21:30:00	15:30:00*

4 Equipment

4.1 Description of equipment

A large number of boreholes were instrumented with one or several packers. In all packed-off sections, the water pressure will be measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency (Figure 4-1). The maximum scan frequency is every 3rd second. During periods with no hydraulic tests, preliminary the sampling (storing a value in the data base) frequency will be every 2nd hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to 3rd second.

Figure 4-1 All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.

4.2 Pressure sensors

The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, see Figure 4-2.

The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 - 50 bar (absolute).

According to the manufacturer the uncertainty for these transducers is +/-0.2 % (type500) and +/-0.08 % (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max. 0.05 % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every two seconds. If the change since the latest stored value exceeds a "change value" of approximately 2 kPa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes.

Figure 4-2 Pressure transducers connections

4.3 Flowmeter equipment

A new kind of flowmeter, see Figure 4-3, was used in order to obtain continously flow measurements during the tests. The equipment system used was originally developed by Micro Motion, Inc. in USA, and is comprised of a sensor and a signal processing transmitter. It is called a Coriolis mass flowmeter and measures mass flow directly. The volume flow can be obtained when knowing the temperature, the pressure and finally the density of the fluid (water).

The fluid enters the sensor and travels through the sensor's flow tubes, which vibrate and twist. The twisting characteristic is called the Coriolis effect. According to Newton's Second Law of Motion, the amount of sensor tube twist is directly proportional to the mass flow rate of the fluid flowing through the tube.

The equipment unit consist of two flowmeters with different measurement ranges. The measurement range for the large flowmeter is 0 to appr. 36 kg/min and for the small flowmeter is 0 to approx. 1.8 kg/min.

Figure 4-3 The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system

4.4 Deformation measurements

During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will close, (*Alm et al.*, 2005).

It is of great interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment.

In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered.

The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures.

The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Hydro tests will be performed in the same sections as the mechanical measurements are made, see Table 3-1.

Displacement measurements will be made continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. Most tests will be made during the first years of operation when the largest displacements are expected to be measured.

4.4.1 Measurement equipment

In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature a measurement equipment has been developed.

The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors, see Figure 4-4 and 4-5. The temperature is also measured in each sensor by a thermistor.

Figure 4-4 A schematic figure, that shows the different parts of the test equipment and also the definitions of the terms outer and inner.

The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock.

Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two-six fractures, see Table 4-1.

Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections.

Table 4-1 Data of the measurement sections (sensors, length, number of fractures etc).

Label	Cable mark	Sensor S/N	Position	Secup	Seclow	Section length (m)	Number of fractures
KA3539G-2-1	HRA 1121	3511	Inner	16.77	16.97	0.20	2
KA3539G-2-2	HRA 1122	3510	Outer	16.47	16.67	0.20	0
KA3542G01-3-1	HRA 1231	3513	Inner	19.47	19.67	0.20	0
KA3542G01-3-2	HRA 1232	3512	Outer	19.17	19.37	0.20	1
KA3542G02-2-1	HRA 1321	3515	Inner	26.50	26.70	0.20	1
KA3542G02-2-2	HRA 1322	3514	Outer	26.20	26.40	0.20	0
KA3544G01-2-1	HRA 1621	3509	Inner	9.82	10.02	0.20	1
KA3544G01-2-2	HRA 1622	3508	Outer	9.52	9.72	0.20	0
KA3546G01-2-1	HRA 1721	3517	Inner	7.67	7.87	0.20	1
KA3546G01-2-2	HRA 1722	3516	Outer	7.37	7.57	0.20	0
KA3548A01-3-1	HRA 1831	3526	Inner	9.70	10.15	0.45	2
KA3548A01-3-2	HRA 1832	3518	Outer	9.40	9.60	0.20	0
KA3550G01-2-1	HRA 2121	3527	Inner	6.10	6.70	0.60	6
KA3550G01-2-2	HRA 2122	3519	Outer	5.80	6.00	0.20	0
KA3552G01-2-1	HRA 2521	3521	Inner	5.25	5.45	0.20	0
KA3552G01-2-2	HRA 2522	3520	Outer	4.95	5.15	0.20	2
KA3554G01-2-1	HRA 2821	3525	Inner	23.54	23.80	0.26	2
KA3554G01-2-2	HRA 2822	3522	Outer	23.24	23.44	0.20	0
KA3554G02-4-1	HRA 2941	3524	Inner	11.40	11.60	0.20	0
KA3554G02-4-2	HRA 2942	3523	Outer	11.10	11.30	0.20	1
KG0010B01-1-1	-	3238	Inner	3.66	3.86	0.20	-
KG0010B01-1-2	-	3507	Outer	3.36	3.56	0.20	-

Figure 4-5 A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.

5 Execution

5.1 Preparations

Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes.

Preparations also include checking of equipment to be used in the tests. The equipment included

- measuring glasses of various sizes
- synchronizing watches with the HMS system (only normal time)
- protocols for flow measurements
- water sampling bottles
- hand calculator
- flow rate measurement equipment with Micro Motion flowmeter system

5.2 Execution of tests/measurements

5.2.1 Test principle

The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section.

5.2.2 Test procedure

The following measurement cycle was used for manual flow measurements:

- Initialising of the HMS system 30 minutes before flow start with logger frequency 5 minutes
- A couple of minutes before flow start and until 5 minutes after flow start the highest logging frequency of 3 seconds was used. Thereafter the logging frequency was 30 seconds, which was used until 30 minutes after flow start. Then a logging frequency of 5 minutes was used
- From shortly before flow stop until 5 minutes after flow stop the highest logging frequency of 2 seconds were used. Thereafter the logging frequency was 30 seconds which was used until 30 minutes after flow start and a logging frequency of 5 minutes was used
- The flow was measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop
- The valve shutting was done as swiftly as possible

5.3 Data handling

The test operator was keeping a diary during the test period. Data from the hydro tests includes:

- daily logs in accordance with Äspö Hard Rock Laboratory routines
- Protocols from flow measurements

The test coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling.

5.4 Analyses and interpretation

5.4.1 Single hole tests

When plotting the data, three different kinds of graphs can be produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change, Δp , is plotted versus the equivalent time, dt_e , in minutes. The equivalent time, dt_e , is defined as

$$dt_e = (t_p \cdot dt) / (t_p + dt)$$
 where

 $t_p =$ the flowing time of the borehole before shutting the valve

dt = the time after shutting the valve

The pressure change Δp is calculated as

 $\Delta p = p(dt) - p(tp)$

p(dt) = measured pressure after shutting the valve

p(tp) = measured pressure just before shutting the valve

The third plot is made in a logarithmic diagram, where the change of pressure, Δp , is plotted versus the equivalent time, dt_e , in minutes. The derivative of the pressure is also plotted in this diagram.

The pressure normally is signed using the p and a change of pressure using a Δp . In the diagrams the pressure can be expressed in bar, kPa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and Δs for the difference of pressure over one decade in a logarithmic diagram. The s or Δs values shall be expressed in metres before used in the formulas.

Hydrogeologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests). The improvement in hydrogeologic test analysis is attributed to the sensitivity of the derivative response to small variations in the rate of pressure

change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to:

- diagnostically determine formation response (homogeneous vs.
 heterogeneous) and boundary conditions (impermeable or constant
 head) that are evident during the test,
- determine when radial flow conditions are established and, therefore, when straight-line solution analysis of draw down data is valid, and
- assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects.

The software DERIV is used to produce the derivative. DERIV is a software for converting slug and constant-rate discharge test data and type curves to derivative format. The software has features that permit the smoothing of noisy test data, accounts for pressure derivative end-effects, and can be used to convert slug test data to equivalent constant-rate test responses.

Two different geohydrological parameters of the borehole can easily be evaluated. These parameters are:

- the specific capacity, Q/s (m^2/s)
- the transmissivity, $T (m^2/s)$

The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test.

To evaluate the transmissivity, T, the following methodology should be used:

The flow regime can be estimated from the logarithmic plot. In most cases the flow can be said to be radial to the borehole approximately 1.0-1.5 decades after the time the curve has left the 1:1 curve. The 1:1 curve indicates the well bore storage, WBS. The transmissivity is then calculated with Jacob's semi logarithmic approximation of Theis well function,

$$T = 0.183 \cdot Q / \Delta_S$$

Q = the average flow rate before shutting the valve (m^3/s)

 Δs = the pressure change in metres during a decade along the straight line (radial flow period) in the semi logarithmic diagram (m).

Sometimes both the logarithmic and the semi logarithmic diagrams indicate a more complicated flow regime than described above (WBS, transition, radial flow) and in these cases it is necessary to decide what part of the curve and what evaluation method that is appropriate for estimating the hydraulic properties.

The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity

$$\begin{split} T_{Moye} &= Q \cdot (\ 1 + ln(L/(2 \cdot r_w))) \, / \, (2 \cdot \pi \cdot \Delta h) \text{ where} \\ \Delta h &= (p_0 - p_p) \, / \, (\rho_w \cdot g) & [m] \\ L &= \text{test section length} & [m] \\ p_0 &= \text{absolute pressure in test section before start of flow period} & [Pa] \\ p_p &= \text{absolute pressure in test section before stop of flow period} & [Pa] \\ \rho_w &= \text{water density} & [kg/m^3] \\ g &= \text{acceleration of gravity} & [m/s^2] \end{split}$$

6 Results

6.1 Single hole tests

6.1.1 KA3552G01:2, test No 5:1

General test data for the pressure build-up test in the interval 4.35-6.05 m of borehole KA3552G01 are presented in Table 6-1.

Table 6-1 General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01

General test data						
Borehole section	KA3552G	KA3552G01:2				
Test No	5:1					
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	4.35			
Test section- seclow	Seclow	m	6.05			
Test section length	L _w	m	1.70			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050123 11:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050123 13:05:00			
Stop of flow period		yymmdd hh:mm:ss	20050123 15:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050123 17:00:00			
Total flow time	t _p	min	115			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	650.35	
Absolute pressure in test section before stop of flow	p _p	kPa	97.72	
Absolute pressure in test section at stop of recovery period	Pf	kPa	603.50	
Maximal pressure change during flow period	dpp	kPa	552.63	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q	m ³ /s	7.50 · 10 ⁻⁸
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.58 · 10 ⁻⁷
Total volume discharged during flow period	V _p	m ³	=

Figure 6-1 Flow rates during draw down in KA3552G01:2.

The test was successful in regard of pressure responses.

Interpreted flow regimes

0 – 2 minutes Well Bore Storage (WBS)

2-30 minutes Transition period

25 – minutes Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 4.35-6.05 m in KA3552G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

Test Summary Sheet					
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:1		
Borehole ID:	KA3552G01	Test start:	2005-01-23	11:00	
Test section (m):	4.35-6.05	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VIA		
Linear plot Head		Flow period		Recovery period	
-380		Indata		Indata	
		p ₀ (kPa)	650.35		
-400		p _i (kPa)			
		p _p (kPa)	97.92	p _F (kPa)	603.50
e		$Q_p (m^3/s)$	7.50 · 10 ⁻⁸		
Head (mass) -420 -420 -		tp (min)	115	t _F (min)	120
		S*	1 · 10 ⁻⁶	S*	1 · 10 ⁻⁶
-440		EC _w (mS/m)			
		Te _w (gr C)			
0:00:00 6:00:00 12:00:	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.4 · 10 ⁻⁹	Flow regime:	Radial
0		T _{Moye} (m ² /s)	8.9 · 10 ⁻¹⁰	dt _{e1} (min)	25
		Flow regime:		dt _{e2} (min)	40
10	•	dt ₁ (min)		T (m ² /s)	6.7 · 10 ⁻¹⁰
(E) 20 →		dt ₂ (min)		S (-)	
20		T (m ² /s)		K _s (m/s)	
(E) 20		S (-)		S _s (1/m)	
\(\tilde{\pi} \)		K _s (m/s)		C (m³/Pa)	
40	\ 	S _s (1/m)		C _D (-)	
		C (m³/Pa)		ξ (-)	-1.7
0.1 1 10	100 1000	C _D (-)			
Time (m	in)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	II parameters.	
		Flow regime:	Radial	C (m³/Pa)	
100 =		dt ₁ (min)	30	C _D (-)	
	``	dt ₂ (min)	40	ξ (-)	-1.7
		T _T (m ² /s)	6.7 · 10 ⁻¹⁰		
€ 10		S (-)			
Recovery (m)		K _s (m/s)			
00]		S _s (1/m)			
₩ 1 · · ·		Comments:			
] -					
0.1					
0.1 1 10 Time (m	100 1000 in)				
	•				
		1			

6.1.2 KA3554G01:2, test No 5:2a

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-2.

Table 6-2 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01 $\,$

General test data						
Borehole section	KA3554G	KA3554G01:2				
Test No	5:2a					
Field crew	A. Blom/J	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	le test (dpp = approx.	100 m)			
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	2·r _w	·r _w mm 76				
Test start (start of pressure registration)		yymmdd hh:mm	20050120 10:30:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050120 12:30:00			
Stop of flow period		yymmdd hh:mm:ss	20050120 14:30:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050120 16:30:00			
Total flow time	tp	min	120			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3544.08	
Absolute pressure in test section before stop of flow	p _p	kPa	2816.30	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3548.99	
Maximal pressure change during flow period	dpp	kPa	727.78	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	8.22 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	8.17 · 10 ⁻⁶
Total volume discharged during flow period	V _p	m ³	-

Figure 6-2 Flow rates during draw down in KA3554G01:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3	minutes	Well Bore Storage (WBS)
0.3 - 7	minutes	Transition period
7 – 10	minutes	Radial flow period
10 - 35	minutes	Transition period
35 -		Possible larger scale radial flow

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:2a		
Borehole ID:	KA3554G01	Test start:	2005-01-20	10:30	
Test section (m):	22.60-24.15	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
-50		Indata		Indata	
-100		p ₀ (kPa)	3544.08		
-100		p _i (kPa)			
-150		p _p (kPa)	2816.30	p _F (kPa)	3548.99
86 - E -200 -		$Q_p (m^3/s)$	8.22 · 10 ⁻⁶		
-200 -200 -		tp (min)	120	t _F (min)	120
± -250		S*		S*	1 · 10 ⁻⁶
-300		EC _w (mS/m)			
-500		Te _w (gr C)			
-350	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.1 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	7.2 · 10 ⁻⁸	dt _{e1} (min)	7
- •		Flow regime:		dt _{e2} (min)	10
20		dt ₁ (min)		T (m ² /s)	4.5 · 10 ⁻⁷
(E)		dt ₂ (min)		S (-)	
Recovery (m)		T (m ² /s)		K _s (m/s)	
9) 40		S (-)		S _s (1/m)	
N		K _s (m/s)		C (m ³ /Pa)	
60		S _s (1/m)		C _D (-)	
-		C (m ³ /Pa)		ξ (-)	18
0.1 1 10	100 1000	C _D (-)			
Time (m	n)	ξ (-)			
Log-Log plot incl. derivative- re	covery period	Interpreted forma	tion and we	II parameters.	
<u> </u>	-	Flow regime:	Radial	C (m ³ /Pa)	
1000		dt ₁ (min)	7	C _D (-)	
		dt ₂ (min)	10	ξ (-)	18
		T _T (m ² /s)	4.5 · 10 ⁻⁷		
Ê 100		S (-)			
) August 1		K _s (m/s)			
Recovery (a)		S _s (1/m)			
1	100 1000	Comments: The response.	test was succ	essful in regard to	pressure
0.1 1 10 Time (m	nin)				

6.1.3 KA3554G01:2, test No 5:2b

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-3.

Table 6-3 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

General test data						
Borehole section	KA3554G	KA3554G01:2				
Test No	5:2b					
Field crew	A. Blom/J.	. Magnusson (SWECC	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approx. 2	200 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050121 10:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050121 12:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050121 14:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050121 16:00:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3553.90	
Absolute pressure in test section before stop of flow	p _p	kPa	1563.63	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3543.47	
Maximal pressure change during flow period	dpp	kPa	1990.27	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.78 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	1.87 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	-

Figure 6-3 Flow rates during draw down in KA3554G01:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.25	minutes	Well Bore Storage (WBS)
0.25 - 9	minutes	Transition period
9 – 12	minutes	Radial flow period
12 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet				
Project:	PROTOTYPE	Test type:	PBT	PBT		
Area:	ÄSPÖ	Test no:	5:2b			
Borehole ID:	KA3554G01	Test start:	2005-01-21	2005-01-21 10:00		
Test section (m):	22.60-24.15	Responsible for test performance:		WECO VIAK AB . Blom/J. Magnusson		
Section diameter, 2·r _w (m): 0.076		Responsible for test evaluation:	SWECO VIA			
Linear plot Head		Flow period		Recovery period		
-50		Indata		Indata		
-		p ₀ (kPa)	3553.9			
-100		p _i (kPa)				
-150 -		p _p (kPa)	1563.6	p _F (kPa)	3643.5	
m)		$Q_p (m^3/s)$	1.78 · 10 ⁻⁵			
(is -150 — — — — — — — — — — — — — — — — — — —		tp (min)	120	t _F (min)	120	
		S*		S*	1 · 10 ⁻⁶	
-250		EC _w (mS/m)				
-		Te _w (gr C)				
-300	:00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		Q/s (m ² /s)	8.9 · 10 ⁻⁸	Flow regime:	Radial	
0		T _{Moye} (m ² /s)	5.7 · 10 ⁻⁸	dt _{e1} (min)	9	
- ·		Flow regime:		dt _{e2} (min)	12	
50		dt ₁ (min)		T (m ² /s)	4.5 · 10 ⁻⁷	
(E)		dt ₂ (min)		S (-)		
Recovery (m)		T (m ² /s)		K _s (m/s)		
Secovery		S (-)		S _s (1/m)		
		K _s (m/s)		C (m ³ /Pa)		
150		S _s (1/m)		C _D (-)		
		C (m ³ /Pa)		ξ (-)	24	
0.1 1 10	100 1000	C _D (-)				
Time (i	min)	ξ (-)				
Log-Log plot incl. derivative- r	ecovery period	Interpreted forma	tion and we	Il parameters.		
		Flow regime:	Radial	C (m³/Pa)		
1000		dt ₁ (min)	9	C _D (-)		
1		dt ₂ (min)	12	ξ (-)	24	
		$T_T (m^2/s)$	4.5 · 10 ⁻⁷			
€ 100		S (-)				
Recovery (m)		K _s (m/s)				
		S _s (1/m)				
2 10 1 0.1 1 10 Time (i	100 1000	response.	est was succ	essful in regard to	pressure	
Time (r	nin)					

6.1.4 KA3554G01:2, test No 5:2c

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-4.

Table 6-4 General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01

General test data						
Borehole section	KA3554G	KA3554G01:2				
Test No	5:2c					
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050122 13:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050122 15:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050122 21:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050123 15:00:00			
Total flow time	tp	min	360			
Total recovery time	t _F	min	1080			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3567.01	
Absolute pressure in test section before stop of flow	p _p	kPa	616.60	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3570.49	
Maximal pressure change during flow period	dpp	kPa	2950.41	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.27 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	2.46 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.497

Figure 6-4 Flow rates during draw down in KA3554G01:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.3	minutes	Well Bore Storage (WBS)
0.3 – 9	minutes	Transition period
9 – 13	minutes	Radial flow period
13 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

			mmary Sheet	Test Su		
		PBT	Test type:	PROTOTYPE		Project:
		5:2c	Test no:	ÄSPÖ		Area:
	13:00	2005-01-22	Test start:	KA3554G01		Borehole ID:
	SWECO VIAK AB A. Blom/J. Magnusson		Responsible for test performance:	22.60-24.15	section (m): 22.60-24.15	
		SWECO VI. T. Forsmark	Responsible for test evaluation:	0.076	eter, 2·r _w (m):	Section diame
od	Recovery period		Flow period	Linear plot Head		
	Indata		Indata			0 —
		3567.0	p ₀ (kPa)			4
			p _i (kPa)			-100
3570.5	p _F (kPa)	616.6	p _p (kPa)			<u></u>
		2.26 · 10 ⁻⁵	$Q_p (m^3/s)$			-200
1080	t _F (min)	360	tp (min)			-200
1 · 10 ⁻⁶	S*		S*			
			EC _w (mS/m)			-300
			Te _w (gr C)			1
0.2	Derivative fact.		Derivative fact.	0 12:00:00 0:00:00	12:00:00 0:00:0	-400
	Results		Results			Lin-Log plot
Radial	Flow regime:	7.7 · 10 ⁻⁸	Q/s (m ² /s)			
9	dt _{e1} (min)	4.9 · 10 ⁻⁸	T _{Moye} (m ² /s)			0 1
13	dt _{e2} (min)		Flow regime:			50
4.3 · 10 ⁻⁷	T (m ² /s)		dt ₁ (min)		'a	
	S (-)		dt ₂ (min)		0	Ē 100 -
	K _s (m/s)		T (m ² /s)		0	(E) 100 - 15
	S _s (1/m)		S (-)		-	00
	C (m ³ /Pa)		K _s (m/s)		a de la companya de l	ž 200
	C _D (-)		S _s (1/m)			250
27	ξ (-)		C (m ³ /Pa)			-
			C _D (-)	100 1000	1 10	300
			ξ (-)		Time (r	0.1
	II parameters.	tion and we	Interpreted forma	covery period	t incl. derivative- re	og-Log plot
	C (m³/Pa)	Radial	Flow regime:			
	C _D (-)	9	dt ₁ (min)			1000
27	ξ (-)	13	dt ₂ (min)			1
		4.3 · 10 ⁻⁷	$T_T (m^2/s)$			1
			S (-)		• • • • • • • • • • • • • • • • • • • •	Ē 100
			K _s (m/s)		. /	Recovery (m)
n processes	pooful in research (loot was =	S _s (1/m) Comments: The t		\	200
o pressure	ocasiui iii regaru to	icsi was succ	response.	100 1000	1 100 /n	ž 10
_	second in regard to	ast was subt		100 1000 nin)	1 10 Time (n	1

6.1.5 KA3554G02:4, test No 5:3a

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-5.

Table 6-5 General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02 $\,$

General test data						
Borehole section	KA3554G	KA3554G02:4				
Test No	5:3a					
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approx. 1	00 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	10.50			
Test section- seclow	Seclow	m	12.20			
Test section length	L _w	m	1.70			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050124 08:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050124 09:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050124 11:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050124 13:00:00			
Total flow time	tp	min	120			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1911.24	
Absolute pressure in test section before stop of flow	p _p	kPa	1118.60	
Absolute pressure in test section at stop of recovery period	Pf	kPa	1921.06	
Maximal pressure change during flow period	dpp	kPa	792.64	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.00 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.12 · 10 ⁻⁷
Total volume discharged during flow period	V _p	m ³	=

Figure 6-5 Flow rates during draw down in KA3554G02:4.

The test was successful in regard to pressure response, but no radial flow occurred.

Interpreted flow regimes

0 - 1	minutes	Well Bore Storage (WBS)
1 - 30	minutes	Transition period
30 – 40	minutes	Radial flow period
40 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet				
Project:	PROTOTYPE	Test type:	PBT	РВТ		
Area:	ÄSPÖ	Test no:	5:3a			
Borehole ID:	KA3554G02	Test start:	2005-01-24 08:00			
Test section (m): 10.50-12.20		Responsible for test performance:		WECO VIAK AB Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark			
Linear plot Head		Flow period		Recovery period		
-240		Indata		Indata		
-260		p ₀ (kPa)	1911.2			
		p _i (kPa)				
-280 		p _p (kPa)	1118.6	p _F (kPa)	1921.1	
-300 -		$Q_p (m^3/s)$	1.00 · 10 ⁻⁷			
_		tp (min)	120	t _F (min)	120	
-320		S*		S*	1 · 10 ⁻⁶	
-340		EC _w (mS/m)				
		Te _w (gr C)				
-360 	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		Q/s (m ² /s)	1.3 · 10 ⁻⁹	Flow regime:	Radial	
0 0000000000000000000000000000000000000		T _{Moye} (m ² /s)	8.2 · 10 ⁻¹⁰	dt _{e1} (min)	30	
1 10 1		Flow regime:		dt _{e2} (min)	40	
20		dt ₁ (min)		T (m ² /s)	2.0 · 10 ⁻⁸	
Recovery (m)		dt ₂ (min)		S (-)		
<u> </u>		T (m ² /s)		K _s (m/s)		
8 60		S (-)		S _s (1/m)		
<u>م</u> ا		K _s (m/s)		C (m ³ /Pa)		
80		S _s (1/m)		C _D (-)		
1		C (m ³ /Pa)		ξ (-)	95	
0.1 1 10	100 1000	C _D (-)				
Time (r	min)	ξ (-)				
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	Il parameters.		
		Flow regime:	Radial	C (m³/Pa)		
KA3554G	02:4	dt ₁ (min)	30	C _D (-)		
100		dt ₂ (min)	40	ξ (-)	95	
		$T_T (m^2/s)$	2.0 · 10 ⁻⁸			
		S (-)				
€ 10 · · · · · · · · · · · · · · · · · ·		K _s (m/s)				
Yer,		S _s (1/m)			4141	
(i) 10 (ii) (iii) (i		Comments: No ra	adiai flow pha	ise occurred during	tne test.	
].						
0.1						
0:1 1 10 Time (m	100 1000 in)					

6.1.6 KA3554G02:4, test No 5:3b

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-6.

Table 6-6 General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02 $\,$

General test data						
Borehole section	KA3554G	KA3554G02:4				
Test No	5:3b					
Field crew	A. Blom/J.	. Magnusson (SWECC	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	10.50			
Test section- seclow	Seclow	m	12.20			
Test section length	L _w	m	1.70			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050125 15:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050125 16:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050125 18:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050125 20:00:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1949.91	
Absolute pressure in test section before stop of flow	p _p	kPa	98.65	
Absolute pressure in test section at stop of recovery period	Pf	kPa	1949.71	
Maximal pressure change during flow period	dpp	kPa	1851.26	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.26 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.08 · 10 ⁻⁷
Total volume discharged during flow period	V _p	m ³	=

Figure 6-6 Flow rates during draw down in KA3554G02:4.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 1	minutes	Well Bore Storage (WBS)
1 – 39	minutes	Transition period
39 – 41	minutes	Probable radial flow period
41 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sur	mmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:3b		
Borehole ID:	KA3554G02	Test start:	2005-01-25 15:00		
Test section (m):	10.50-12.20	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI T. Forsmar		
Linear plot Head		Flow period		Recovery period	
-240		Indata		Indata	
-280		p ₀ (kPa)	1949.9		
-200		p _i (kPa)			
-320		p _p (kPa)	98.6	p _F (kPa)	1949.7
-360360		$Q_p (m^3/s)$	2.26 · 10 ⁻⁷		
-360360		tp (min)	120	t _F (min)	120
-400		S*		S*	1 · 10 ⁻⁶
-440		EC _w (mS/m)			
		Te _w (gr C)			
0:00:00 6:00:00 12:00:	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.2 · 10 ⁻⁹	Flow regime:	Radial
0 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 - 9 -		T _{Moye} (m ² /s)	8.0 · 10 ⁻¹⁰	dt _{e1} (min)	39
		Flow regime:		dt _{e2} (min)	41
40		dt ₁ (min)		T (m ² /s)	1.3 · 10 ⁻⁸
[E]		dt ₂ (min)		S (-)	
Recovery (m)		T (m ² /s)		K _s (m/s)	
00 120		S (-)		S _s (1/m)	
		K _s (m/s)		C (m³/Pa)	
160		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	61
200		C _D (-)		3()	
0.1 1 10 Time (r	100 1000 min)	ξ (-)			
Log-Log plot incl. derivative- re		Interpreted forma	ition and we	II narameters	
==== E== Piot mon donitative-1	coo.ory poriou	Flow regime:	Radial	C (m ³ /Pa)	
KA35540	602:4	dt ₁ (min)	39	C _D (-)	
1000		dt ₂ (min)	41	ξ(-)	61
		T_T (m ² /s)	1.3 · 10 ⁻⁸	\ \bar{\-\}	
		S (-)	1.0 10		
Ê 100 €		K _s (m/s)			
		S _s (1/m)			
W 100 Time (r	100 1000 nin)	Comments:			
•					

6.1.7 KA3548A01:3, test No 5:4a

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-7.

Table 6-7 General test data for the pressure build-up test in section $8.80\text{-}10.75~\mathrm{m}$ of borehole KA3548A01

General test data						
Borehole section	KA3548A0	KA3548A01:3				
Test No	5:4a					
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approx.	100 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	8.80			
Test section- seclow	Seclow	m	10.75			
Test section length	L _w	m	1.95			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050120 06:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050120 07:15:00			
Stop of flow period		yymmdd hh:mm:ss	20050120 08:15:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050120 10:15:00			
Total flow time	tp	min	60			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3211.48	
Absolute pressure in test section before stop of flow	p _p	kPa	1669.26	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2965.93	
Maximal pressure change during flow period	dpp	kPa	1542.22	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.70 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.87 · 10 ⁻⁵
Total volume discharged during flow period	V _p	m ³	-

Figure 6-7 Flow rates during draw down in KA3548A01:3.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.05	minutes	Well Bore Storage (WBS)
0.05 - 0.35	minutes	Transition period
0.35 - 0.5	minutes	Radial flow period
0.5 - 25	minutes	Transition period
25 –	minutes	Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sur	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:4a		
Borehole ID:	KA3548A01	Test start:	2005-01-20 06:00		
Test section (m):	8.80-10.75	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
-120		Indata		Indata	
		p ₀ (kPa)	3211.5		
-160		p _i (kPa)			
<u></u>		p _p (kPa)	1669.3	p _F (kPa)	2965.9
eu -200		$Q_p (m^3/s)$	1.70 · 10 ⁻⁵		
(is -200 — — — — — — — — — — — — — — — — — —		tp (min)	60	t _F (min)	120
		S*		S*	1 · 10 ⁻⁶
-280		EC _w (mS/m)			
- '		Te _w (gr C)			
-320	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		$Q/s (m^2/s)$	1.1 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	7.4 · 10 ⁻⁸	dt _{e1} (min)	0.35
1		Flow regime:		dt _{e2} (min)	0.5
		dt ₁ (min)		T (m ² /s)	9.0 · 10 ⁻⁸
Recovery (m)		dt ₂ (min)		S (-)	
l lei	\	T (m ² /s)		K _s (m/s)	
000		S (-)		S _s (1/m)	
₩ 200 		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
-		C (m ³ /Pa)		ξ (-)	-1.7
0.1 1 10	100 1000	C _D (-)			
Time (r	nin)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	I parameters.	
		Flow regime:	Radial	C (m³/Pa)	
KA3548A	.01:3	dt ₁ (min)	0.35	C _D (-)	
1000		dt ₂ (min)	0.5	ξ (-)	-1.7
		$T_T (m^2/s)$	9.0 · 10 ⁻⁸		
		S (-)			
Recovery (m) 100 100 100 100 100 100 100 100 100 10		K _s (m/s)			
ver)		S _s (1/m)			
0	_	Comments: A su	ccessiul test.		
ŭ 10 <u>*</u>					
0.1 1 _ 10	100 1000				
0.1 1 10 Time (n	nin)				

6.1.8 KA3548A01:3, test No 5:4b

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-8.

Table 6-8 General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01 $\,$

General test data						
Borehole section	KA3548A0	KA3548A01:3				
Test No	5:4b					
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approxim	nate 200 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	8.80			
Test section- seclow	Seclow	m	10.75			
Test section length	L _w	m	1.95			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050123 10:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050123 11:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050123 12:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050123 14:00:00			
Total flow time	tp	min	60			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3288.56	
Absolute pressure in test section before stop of flow	p _p	kPa	1945.28	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3227.22	
Maximal pressure change during flow period	dpp	kPa	1343.28	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.53 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.63 · 10 ⁻⁵
Total volume discharged during flow period	V _p	m ³	=

Figure 6-8 Flow rates during draw down in KA3548A01:3.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.15	minutes	Well Bore Storage (WBS)
0.15 - 0.3	minutes	Transition period
0.3 - 0.6	minutes	Radial flow period
0.6 - 17	minutes	Transition period
17 - 25	minutes	Radial flow period
25 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sur	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:4b		
Borehole ID:	KA3548A01	Test start:	2005-01-23	10:00	
Test section (m):	8.80-10.75	Responsible for test performance:	SWECO VI. A. Blom/J.		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
-120		Indata		Indata	
-		p ₀ (kPa)	3288.6		
-160		p _i (kPa)			
		p _p (kPa)	1945.3	p _F (kPa)	3227.2
E -200		Q _p (m ³ /s)	1.53 · 10 ⁻⁵		
-200		tp (min)	60	t _F (min)	120
		S*		S*	1 · 10 ⁻⁶
-240		EC _w (mS/m)			
		Te _w (gr C)			
-280	1:00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.1 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	7.7 · 10 ⁻⁸	dt _{e1} (min)	0.3
		Flow regime:		dt _{e2} (min)	0.6
40 -		dt ₁ (min)		T (m ² /s)	9.9 · 10 ⁻⁸
<u> </u>		dt ₂ (min)		S (-)	
Recovery (m)		T (m ² /s)		K _s (m/s)	
8 8 1		S (-)		S _s (1/m)	
_	ا ا	K _s (m/s)		C (m ³ /Pa)	
120		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	-1.8
160	400	C _D (-)			
0.1 1 10 Time () 100 1000 min)	ξ (-)			
Log-Log plot incl. derivative-		Interpreted forma	ation and we	II parameters.	
<u> </u>	• •	Flow regime:	Radial	C (m ³ /Pa)	
KA3548.	A01:3	dt ₁ (min)	0.3	C _D (-)	
1000		dt ₂ (min)	0.6	ξ (-)	-1.8
		T _T (m ² /s)	9.9 · 10 ⁻⁸		
		S (-)			
€ 100		K _s (m/s)			
(ery		S _s (1/m)			
Recovery (m)	<u>.</u> ا ب	Comments: A su	ccessful test.		
2 10					
1 1 1 10	100 1000				
0.1 1 10 Time (100 1000 min)				

6.1.9 KA3548A01:3, test No 5:4c

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-9.

Table 6-9 General test data for the pressure build-up test in section $8.80\text{-}10.75~\mathrm{m}$ of borehole KA3548A01

General test data			
Borehole section	KA3548A0	01:3	
Test No	5:4c		
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)
Test equipment system	HMS		
General comment	Single hol	e test (dpp = max)	
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	8.80
Test section- seclow	Seclow	m	10.75
Test section length	L _w	m	1.95
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm	20050124 06:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20050124 07:00:00
Stop of flow period		yymmdd hh:mm:ss	20050124 08:00:00
Test stop (stop of pressure registration)		yymmdd hh:mm	20050124 10:00:00
Total flow time	tp	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3283.25	
Absolute pressure in test section before stop of flow	p _p	kPa	583.18	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3202.69	
Maximal pressure change during flow period	dpp	kPa	2700.07	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.75 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.63 · 10 ⁻⁵
Total volume discharged during flow period	V _p	m ³	-

Figure 6-9 Flow rates during draw down in KA3548A01:3.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.15	minutes	Well Bore Storage (WBS)
0.15 - 0.3	minutes	Transition period
0.3 - 0.8	minutes	Radial flow period
0.8 - 20	minutes	Transition period
20 - 25	minutes	Radial flow period
25 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sur	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:4c		
Borehole ID:	KA3548A01	Test start:	2005-01-24	06:00	
Test section (m):	8.80-10.75	Responsible for test performance:	SWECO VI. A. Blom/J.		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
-100		Indata		Indata	
		p ₀ (kPa)	3283.2		
		p _i (kPa)			
<u></u>		p _p (kPa)	583.2	p _F (kPa)	3202.7
(max		Q _p (m ³ /s)	2.75 · 10 ⁻⁵		
Head (mas)		tp (min)	60	t _F (min)	120
± -300 −		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
-400	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	1.0 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	6.9 · 10 ⁻⁸	dt _{e1} (min)	0.3
		Flow regime:		dt _{e2} (min)	0.8
		dt ₁ (min)		T (m ² /s)	8.4 · 10 ⁻⁸
Ê 100 €		dt ₂ (min)		S (-)	
		T (m ² /s)		K _s (m/s)	
Recovery (m)		S (-)		S _s (1/m)	
₩ 200		K _s (m/s)		C (m ³ /Pa)	
		S _s (1/m)		C _D (-)	
-		C (m ³ /Pa)		ξ (-)	-1.4
0.1 1 10	100 1000	C _D (-)			
Time (r	nin)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	ation and we	II parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
KA3548 <i>A</i>	A01:3	dt ₁ (min)	0.3	C _D (-)	
1000		dt ₂ (min)	0.8	ξ (-)	-1.4
		T_T (m ² /s)	8.4 · 10 ⁻⁸		
		S (-)			
Recovery (m)		K _s (m/s)			
leny leny		S _s (1/m)			
000		Comments: A su	ccessful test.		
<u>ل</u> ا 10					
• -					
0.1 1 10	100 1000				
Time (r	nin)				

6.1.10 KA3542G01:3 , test No 5:5a

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-10.

Table 6-10 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01 $\,$

General test data			
Borehole section	KA3542G	01:3	
Test No	5:5a		
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = approx. 1	00 m)
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	L _w	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm	20050120 08:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20050120 09:15:00
Stop of flow period		yymmdd hh:mm:ss	20050120 10:15:00
Test stop (stop of pressure registration)		yymmdd hh:mm	20050120 12:15:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3062.24	
Absolute pressure in test section before stop of flow	p _p	kPa	1768.22	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3124.08	
Maximal pressure change during flow period	dpp	kPa	1294.02	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	7.67 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	8.17 · 10 ⁻⁶
Total volume discharged during flow period	Vp	m ³	-

Figure 6-10 Flow rate during draw down in KA3542G01:3.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.2	minutes	Well Bore Storage (WBS)
0.2 - 3	minutes	Transition period
3 – 6	minutes	Possible radial flow
6 – 25	minutes	Transition period
25 – 30	minutes	Radial flow period
30 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:5a		
Borehole ID:	KA3542G01	Test start:	2005-01-20	08:00	
Test section (m):	18.60-20.30	Responsible for test performance:		SWECO VIAK AB A. Blom/J. Magnusson	
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
0 —		Indata		Indata	
		p ₀ (kPa)	3062.2		
		p _i (kPa)			
<u></u>		p _p (kPa)	1768.2	p _F (kPa)	3124.1
weim)		Q _p (m ³ /s)	7.67 · 10 ⁻⁶		
Head (mas)		tp (min)	60	t _F (min)	120
-200		S*		S*	1 · 10 ⁻⁶
		EC _w (mS/m)			
		Te _w (gr C)			
-300	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	5.9 · 10 ⁻⁸	Flow regime:	Radial
0		T _{Moye} (m ² /s)	3.9 · 10 ⁻⁸	dt _{e1} (min)	25
		Flow regime:		dt _{e2} (min)	30
40		dt ₁ (min)		T (m ² /s)	4.9 · 10 ⁻⁸
(E) 1		dt ₂ (min)		S (-)	
Recovery (m)		T (m ² /s)		K _s (m/s)	
		S (-)		S _s (1/m)	
		K _s (m/s)		C (m ³ /Pa)	
120		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	-0.7
0.1 1 10	100 1000	C _D (-)			
Time (mi	n)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	ation and we	II parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
KA35420	601:3	dt ₁ (min)	25	C _D (-)	
1000		dt ₂ (min)	30	ξ (-)	-0.7
		$T_T (m^2/s)$	4.9 · 10 ⁻⁸		
- 100 T		S (-)			
(E) 100		K _s (m/s)			
Recovery (m)		S _s (1/m) Comments: A su	coessful tost		
9 10 10 10 10 10 10 10 10 10 10 10 10 10		Comments: A Su	oocssiui lest.		
ŭ 10 €					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0.1 1 10	. 100 1000				
Time (n	nin)				
1		1			

6.1.11 KA3542G01:3, test No 5:5b

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-11.

Table 6-11 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

General test data			
Borehole section	KA3542G	01:3	
Test No	5:5b		
Field crew	A. Blom/J.	. Magnusson (SWECO	VIAK)
Test equipment system	HMS		
General comment	Single hol	e test (dpp = approx. 2	00 m)
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	Lw	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050121 08:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20050121 09:00:00
Stop of flow period		yymmdd hh:mm:ss	20050121 10:00:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050121 12:00:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3182.98	
Absolute pressure in test section before stop of flow	p _p	kPa	1445.75	
Absolute pressure in test section at stop of recovery period	Pf	kPa	3141.75	
Maximal pressure change during flow period	dp _p	kPa	1737.23	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	9.42 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	1.02 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m^3	-

Figure 6-11 Flow rate during draw down in KA3542G01:3.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.2	minutes	Well Bore Storage (WBS)
0.2 - 5	minutes	Transition period
5 – 7	minutes	Radial flow period
7 - 30	minutes	Transition period
30 - 35	minutes	Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

			Test Sun	nmary Sheet			
Project:		PROTOTYPE		Test type:	PBT		
Area:		ÄSPÖ		Test no:	5:5b		
Borehole ID:		KA3542G01		Test start:	2005-01-21 08:00		
Test section (m):		18.60-20.30		Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m	1):	0.076		Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head				Flow period		Recovery period	i
0 —				Indata		Indata	
-				p ₀ (kPa)	3183.0		
-100				p _i (kPa)			
	+			p _p (kPa)	1445.7	p _F (kPa)	3141.7
E -200				Q _p (m ³ /s)	9.42 · 10 ⁻⁶		
Head (masl)				tp (min)	60	t _F (min)	120
				S*		S*	1 · 10 ⁻⁶
-300	7			EC _w (mS/m)			
				Te _w (gr C)			
-400 	12:00:	00 18:00:00	0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot				Results		Results	
				Q/s (m ² /s)	5.4 · 10 ⁻⁸	Flow regime:	Radial
0				T _{Moye} (m ² /s)	3.5 · 10 ⁻⁸	dt _{e1} (min)	30
				Flow regime:		dt _{e2} (min)	35
40				dt ₁ (min)		T (m ² /s)	6.0 · 10 ⁻⁸
(E) 80				dt ₂ (min)		S (-)	
ery				T (m ² /s)		K _s (m/s)	
Recovery (m)				S (-)		S _s (1/m)	
&				K _s (m/s)		C (m ³ /Pa)	
160				S _s (1/m)		C _D (-)	
]		-		C (m ³ /Pa)		ξ (-)	0.6
200	10	400	1000	C _D (-)			
0.1 1 T	10 ime (mi	100 n)	1000	ξ (-)			
Log-Log plot incl. deriva				Interpreted forma	tion and we	II parameters.	
		••		Flow regime:	Radial	C (m³/Pa)	
	A3542G	301:3		dt ₁ (min)	30	C _D (-)	
1000				dt ₂ (min)	35	ξ (-)	0.6
				T_T (m ² /s)	6.0 · 10 ⁻⁸		
				S (-)			
(E) 100				K _s (m/s)			
Secovery (m)				S _s (1/m)			
Ope				Comments: A su	ccessful test.		
<u>۳</u> 10							
1							
-							
0.1 1	10 Time (n	100 nin)	1000				
				1			

6.1.12 KA3542G01:3, test No 5:5c

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-12.

Table 6-12 General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01 $\,$

General test data			
Borehole section	KA3542G	01:3	
Test No	5:5c		
Field crew	A. Blom/J	. Magnusson (SWECO	VIAK)
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = max)	
	Nomen- clature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	L _w	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050122 06:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20050122 07:00:00
Stop of flow period		yymmdd hh:mm:ss	20050122 08:00:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050122 10:00:00
Total flow time	tp	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	3195.99	
Absolute pressure in test section before stop of flow	pp	kPa	276.39	
Absolute pressure in test section at stop of recovery period	p _f	kPa	3130.46	
Maximal pressure change during flow period	dpp	kPa	2919.60	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.36 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	=
Total volume discharged during flow period	Vp	m^3	=

Figure 6-12 Flow rate during draw down in KA3542G01:3. The reason for the loss of registered flow data is unknown.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.2	minutes	Well Bore Storage (WBS)
0.2 - 3	minutes	Transition period
3 - 7	minutes	Spherical flow period
7 - 30	minutes	Transition period
30 – 35	minutes	Radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

30.5 0 10 ⁻⁶
0 10 ⁻⁶
10 ⁻⁶
10 ⁻⁶
2
dial
dial
J. (4)
5 · 10 ⁻⁸
ļ
ļ

6.1.13 KA3542G02:2, test No 5:7a

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-13.

Table 6-13 General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02 $\,$

General test data						
Borehole section	KA3542G	KA3542G02:2				
Test No	5:7a					
Field crew	A. Blom/J	. Magnusson (SWECO	VIAK)			
Test equipment system	HMS					
General comment	Single hol	le test (dp _p = approxim	ate 100 m)			
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	25.60			
Test section- seclow	Seclow	m	27.20			
Test section length	L _w	m	1.60			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050122 08:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050122 10:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050122 13:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050122 15:00:00			
Total flow time	t _p	min	180			
Total recovery time	t _F	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2222.90	
Absolute pressure in test section before stop of flow	p _p	kPa	1434.53	
Absolute pressure in test section at stop of recovery period	Pf	kPa	2152.71	
Maximal pressure change during flow period	dpp	kPa	788.37	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	7.50 · 10 ⁻⁸
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	9.33 · 10 ⁻⁸
Total volume discharged during flow period	V _p	m ³	-

Figure 6-13 Flow rate during draw down in KA3542G02:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 0.6	minutes	Well Bore Storage (WBS)
0.6 - 17	minutes	Transition period
17 - 21	minutes	Radial flow
21 – 60	minutes	Transition period
60 -	minutes	Larger scale radial flow

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ	Test no:	5:7a			
Borehole ID:	KA3542G02	Test start:	2005-01-22 08:00			
Test section (m):	25.60-27.20	Responsible for test performance:	SWECO VIA			
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VIA			
Linear plot Head		Flow period		Recovery period		
-150		Indata		Indata		
-200		p ₀ (kPa)	2222.9			
		p _i (kPa)				
<u></u> -250		p _p (kPa)	1434.5	p _F (kPa)	2152.7	
-300 -		$Q_p (m^3/s)$	7.50 · 10 ⁻⁸			
-300300	1	tp (min)	180	t _F (min)	120	
-350		S*		S*	1 · 10 ⁻⁶	
-400		EC _w (mS/m)				
-		Te _w (gr C)				
-450 	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		$Q/s (m^2/s)$	9.5 · 10 ⁻¹⁰	Flow regime:	Radial	
0		T _{Moye} (m ² /s)	6.1 · 10 ⁻¹⁰	dt _{e1} (min)	17	
		Flow regime:		dt _{e2} (min)	21	
20		dt ₁ (min)		T (m ² /s)	4.6 · 10 ⁻¹⁰	
(E)		dt ₂ (min)		S (-)		
∑		T (m ² /s)		K _s (m/s)		
Recovery (m)		S (-)		S _s (1/m)		
<u>~</u> 60 −		K _s (m/s)		C (m ³ /Pa)		
		S _s (1/m)		C _D (-)		
		C (m ³ /Pa)		ξ (-)	-1.3	
0.1 1 10	100 1000	C _D (-)				
Time (mir		ξ (-)				
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	Il parameters.		
		Flow regime:	Radial	C (m ³ /Pa)		
KA3542G	02:2	dt ₁ (min)	17	C _D (-)		
100		dt ₂ (min)	21	ξ (-)	-1.3	
		$T_T (m^2/s)$	4.6 · 10 ⁻¹⁰			
		S (-)				
(E) 10		K _s (m/s)				
Recovery (m)		S _s (1/m)				
		Comments: A suc	ccessiui test.			
0.1						
0.1 1 10 Time (m	100 1000 in)					

6.1.14 KA3542G02:2, test No 5:7b

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-14.

Table 6-14 General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02

General test data							
Borehole section	KA3542G	KA3542G02:2					
Test No	5:7b						
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)				
Test equipment system	HMS						
General comment	Single ho	le test (dp _p = max)					
	Nomen- clature	Unit	Value				
Test section- secup	Secup	m	25.60				
Test section- seclow	Seclow	m	27.20				
Test section length	Lw	m	1.60				
Test section diameter	2·r _w	mm	76				
Test start (start of pressure registration)		yymmdd hh:mm	20050123 06:00:00				
Packer expanded		yymmdd hh:mm:ss	-				
Start of flow period		yymmdd hh:mm:ss	20050123 07:00:00				
Stop of flow period		yymmdd hh:mm:ss	20050123 10:00:00				
Test stop (stop of pressure registration)		yymmdd hh:mm	20050123 12:00:00				
Total flow time	t _p	min	180				
Total recovery time	t _F	min	120				

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2262.42	
Absolute pressure in test section before stop of flow	p _p	kPa	103.47	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1984.33	
Maximal pressure change during flow period	dpp	kPa	2158.95	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.13 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	4.67 · 10 ⁻⁷
Total volume discharged during flow period	Vp	m ³	-

Figure 6-14 Flow rate during draw down in KA3542G02:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 1	minutes	Well Bore Storage (WBS)
1 - 20	minutes	Transition period
20 - 25	minutes	Radial flow
25 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:7b		
Borehole ID:	KA3542G02	Test start:	2005-01-23 06:00		
Test section (m):	25.60-27.20	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	
-150		Indata		Indata	_
-200		p ₀ (kPa)	2262.4		
<u> </u>		p _i (kPa)			
<u>@</u> -250		p _p (kPa)	103.5	p _F (kPa)	1984.3
-300 - /		$Q_p (m^3/s)$	$2.13 \cdot 10^{-7}$		
		tp (min)	180	t _F (min)	120
-350 		S*		S*	1 · 10 ⁻⁶
-400		EC _w (mS/m)			
		Te _w (gr C)			
-450	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	9.9 · 10 ⁻¹⁰	Flow regime:	Radial
0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T _{Moye} (m ² /s)	6.4 · 10 ⁻¹⁰	dt _{e1} (min)	20
- TOTAL - TOTA		Flow regime:		dt _{e2} (min)	25
40		dt ₁ (min)		T (m ² /s)	4.8 · 10 ⁻¹⁰
(E) 80 -		dt ₂ (min)		S (-)	
ρ -		T (m ² /s)		K _s (m/s)	
Recovery (m) 120		S (-)		S _s (1/m)	
<u> </u>		K _s (m/s)		C (m ³ /Pa)	
160		S _s (1/m)		C _D (-)	
, 1	\	C (m ³ /Pa)		ξ (-)	-1.4
0.1 1 10	100 1000	C _D (-)			
Time (mi	n)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	II parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
KA3542G	602:2	dt ₁ (min)	20	C _D (-)	
1000		dt ₂ (min)	25	ξ (-)	-1.4
		$T_T (m^2/s)$	4.8 · 10 ⁻¹⁰		
Ê 100		S (-)			
Recovery (m)		K _s (m/s)			1
		S _s (1/m) Comments: A suc	nooceful toot		
8 10 10		Comments: A Su	ocessiui lest.		
1					
0,1 1 10	100 1000				
Time (n	11111)				
		1			

6.1.15 KA3563G:4, test No 5:8

General test data for the pressure build-up test in the interval 1.50-3.00 m of borehole KA3563G are presented in Table 6-15.

Table 6-15 General test data for the pressure build-up test in section 1.50-3.00 m of borehole KA3563G $\,$

General test data						
Borehole section	KA3563G	KA3563G:4				
Test No	5:8					
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	1.50			
Test section- seclow	Seclow	m	3.00			
Test section length	L _w	m	1.50			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050124 11:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050124 12:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050124 13:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050124 15:00:00			
Total flow time	t _p	min	60			
Total recovery time	t⊧	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	411.09	
Absolute pressure in test section before stop of flow	p _p	kPa	99.74	
Absolute pressure in test section at stop of recovery period	pf	kPa	406.65	
Maximal pressure change during flow period	dpp	kPa	311.35	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.91 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	4.61 · 10 ⁻⁷
Total volume discharged during flow period	V _p	m ³	=

Figure 6-15 Flow rate during draw down in KA3563G:4.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 9	minutes	Well Bore Storage (WBS)
9 – 31	minutes	Transition period
31 - 37	minutes	Beginning of radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 1.50-3.00 m in KA3563G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:8		
Borehole ID:	KA3563G	Test start:	2005-01-24 11:00		
Test section (m):	1.50-3.00	Responsible for test performance:	SWECO VI. A. Blom/J. I		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period		Recovery period	ı
-410 KA3563	G:4	Indata		Indata	
		p ₀ (kPa)	411.1		
-420		p _i (kPa)			
		p _p (kPa)	99.7	p _F (kPa)	406.6
nasi		$Q_p (m^3/s)$	2.91 · 10 ⁻⁷		
-430 -430 -		tp (min)	60	t _F (min)	120
<u> </u>		S*		S*	1 · 10 ⁻⁶
-440		EC _w (mS/m)			
-		Te _w (gr C)			
-450	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	9.3 · 10 ⁻⁹	Flow regime:	Radial
0		T _{Moye} (m ² /s)	5.9 · 10 ⁻⁹	dt _{e1} (min)	31
		Flow regime:		dt _{e2} (min)	37
10		dt ₁ (min)		T (m ² /s)	3.3 · 10 ⁻⁸
(E) \		dt ₂ (min)		S (-)	
Recovery (m)		T (m ² /s)		K _s (m/s)	
		S (-)		S _s (1/m)	
_		K _s (m/s)		C (m ³ /Pa)	
30 -		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	-16
0.1 1 10	100 1000	C _D (-)			
Time (min)	ξ (-)			
Log-Log plot incl. derivative- re	covery period	Interpreted forma	tion and we	II parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
100		dt ₁ (min)	31	C _D (-)	
		dt ₂ (min)	37	ξ (-)	-16
		T _T (m ² /s)	3.3 · 10 ⁻⁸		
€ 10		S (-)			
ery		K _s (m/s)			
Recovery (m)		S _s (1/m)			
0.1 1 10 Time (mi	100 1000 n)	Comments: The noticed at the end			ow period is

6.1.16 KA3546G01:2, test No 5:9

General test data for the pressure build-up test in the interval 6.75-8.30 m of borehole KA3546G01 are presented in Table 6-16.

Table 6-16 General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01

General test data						
Borehole section	KA3546G	KA3546G01:2				
Test No	5:9					
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)			
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	6.75			
Test section- seclow	Seclow	m	8.30			
Test section length	L _w	m	1.55			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm	20050125 10:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20050125 11:00:00			
Stop of flow period		yymmdd hh:mm:ss	20050125 14:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm	20050125 16:00:00			
Total flow time	t _p	min	180			
Total recovery time	t⊧	min	120			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	638.79	
Absolute pressure in test section before stop of flow	p _p	kPa	113.37	
Absolute pressure in test section at stop of recovery period	Pf	kPa	604.36	
Maximal pressure change during flow period	dpp	kPa	525.42	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.93 · 10 ⁻⁹
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.27 · 10 ⁻⁸
Total volume discharged during flow period	V _p	m ³	=

Figure 6-16 Flow rate during draw down in KA3546G01:2. The flow in this section is very low.

The test generated a pressure drop and following recovery of 52.5 metres, which is a larger pressure response than in test 1:9, 2:9, 3:9 and 4:9.

Interpreted flow regimes

0-20 minutes Well Bore Storage (WBS)

20 – minutes Transition period

No radial flow regime period was established.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 6.75-8.30 m in KA3546G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	ummary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ	Test no:	5:9			
Borehole ID:	KA3546G01	Test start:	2005-01-25	5 10:00		
Test section (m):	6.75-8.30	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson			
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:		SWECO VIAK AB T. Forsmark		
Linear plot Head		Flow period		Recovery period	t	
-360		Indata		Indata		
-		p ₀ (kPa)	638.8			
-380		p _i (kPa)				
<u></u>	www -	p _p (kPa)	113.4	p _F (kPa)	604.4	
-400 days -400		Q _p (m ³ /s)	2.9 · 10 ⁻⁹			
(Se -400 -400 -400 -420 -420 -420 -420 -420		tp (min)	180	t _F (min)	120	
<u> </u>		S*		S*	1 · 10 ⁻⁶	
-440		EC _w (mS/m)				
-		Te _w (gr C)				
-460	D:00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		Q/s (m ² /s)	5.6 · 10 ⁻¹¹	Flow regime:	-	
0		T _{Moye} (m ² /s)	3.6 · 10 ⁻¹¹	dt _{e1} (min)	-	
		Flow regime:		dt _{e2} (min)	-	
10		dt ₁ (min)		T (m ² /s)	-	
Ê 20		dt ₂ (min)		S (-)		
Recovery (E) 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T (m ² /s)		K _s (m/s)		
0 30		S (-)		S _s (1/m)		
<u>م</u> ا		K _s (m/s)		C (m ³ /Pa)		
40	\ 	S _s (1/m)		C _D (-)		
	Mr.	C (m ³ /Pa)		ξ (-)		
0.1 1 10	100 1000	C _D (-)				
Time (mi	n)	ξ (-)				
Log-Log plot incl. derivative-	recovery period	Interpreted forma	tion and we	II parameters.		
		Flow regime:		C (m ³ /Pa)		
KA35460	601:2	dt ₁ (min)		C _D (-)		
100		dt ₂ (min)		ξ (-)		
		$T_T (m^2/s)$				
		S (-)				
Ē 10	141	K _s (m/s)				
Recovery (m)	·#	S _s (1/m) Comments: No raperiod.	l adial flow reg	I gime occurred durin	g the test	
0.1 . 1 10	100 1000					
0.1 . 1 10 Time (r	nin)					

6.1.17 KA3566G01:2, test No 5:10

General test data for the pressure build-up test in the interval 20.00-21.50 m of borehole KA3566G01 are presented in Table 6-17.

Table 6-17 General test data for the pressure build-up test in section 20.00-21.50 m of borehole KA3566G01 $\,$

General test data					
Borehole section	KA3566G	KA3566G01:2			
Test No	5:10				
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)		
Test equipment system	HMS				
General comment	Single hol	le test (dp _p = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	20.00		
Test section- seclow	Seclow	m	21.50		
Test section length	L _w	m	1.50		
Test section diameter	2·r _w	2·r _w mm 76			
Test start (start of pressure registration)		yymmdd hh:mm	20050125 06:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20050125 07:00:00		
Stop of flow period		yymmdd hh:mm:ss	20050125 07:58:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20050125 10:00:00		
Total flow time	tp	min	58		
Total recovery time	t _F	min	122		

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1504.93	
Absolute pressure in test section before stop of flow	p _p	kPa	164.60	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1634.12	
Maximal pressure change during flow period	dpp	kPa	1340.33	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	8.57 · 10 ⁻⁹
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	9.32 · 10 ⁻⁹
Total volume discharged during flow period	V _p	m ³	-

Figure 6-17 Flow rate during draw down in KA3566G01:2.

The test was successful in regard to pressure response.

Interpreted flow regimes

0 - 10	minutes	Well Bore Storage (WBS)
10 - 50	minutes	Transition period
50 – 54	minutes	Beginning of a radial flow period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 20.00-21.50 m in KA3566G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

PROTOTYPE ÄSPÖ KA3566G01 20.00-21.50 0.076	Test type: Test no: Test start: Responsible for test performance: Responsible for test evaluation:	PBT 5:10 2005-01-25 SWECO VI A. Blom/J. I		
KA3566G01 20.00-21.50	Test start: Responsible for test performance: Responsible for	2005-01-25 SWECO VI		
20.00-21.50	Responsible for test performance: Responsible for	SWECO VI		
	test performance:		ΛΚ ΛD	
0.076	Responsible for			
	test evaluation:	SWECO VI T. Forsmark		
	Flow period		Recovery period	ı
	Indata		Indata	
	p ₀ (kPa)	1504.9		
	p _i (kPa)			
	p _p (kPa)	164.6	p _F (kPa)	1648.6
		8.57 · 10 ⁻⁹		
		58	t _F (min)	602
	S*		S*	1 · 10 ⁻⁶
				+
:00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
	Results		Results	
	Q/s (m ² /s)	6.4 · 10 ⁻¹¹	Flow regime:	Radial
	T _{Moye} (m ² /s)	4.1 · 10 ⁻¹¹	dt _{e1} (min)	50
			dt _{e2} (min)	54
				6.4 · 10 ⁻¹¹
	T (m ² /s)			
	S (-)			
	-			
				4.3
100 1000			3 ()	
in)				
ecovery period		ition and we	II parameters.	
		1	_	
			<u> </u>	
				4.3
			7 (/	+
		0.7 10		+
				+
100 1000 nin)				
	in) ecovery period	$\begin{array}{c} p_{0} (kPa) \\ p_{1} (kPa) \\ p_{p} (kPa) \\ Q_{p} (m^{3}/s) \\ tp (min) \\ S^{*} \\ EC_{w} (mS/m) \\ Te_{w} (gr C) \\ Derivative fact. \\ \hline \\ Results \\ Q/s (m^{2}/s) \\ T_{Moye} (m^{2}/s) \\ Flow regime: \\ dt_{1} (min) \\ dt_{2} (min) \\ T (m^{2}/s) \\ S (-) \\ K_{s} (m/s) \\ S_{s} (1/m) \\ C (m^{3}/Pa) \\ \hline \\ C_{D} (-) \\ \xi (-) \\ \hline \\ ecovery period \\ \hline \\ \\ Interpreted formal \\ Flow regime: \\ dt_{1} (min) \\ dt_{2} (min) \\ T_{T} (m^{2}/s) \\ S (-) \\ K_{s} (m/s) \\ S_{s} (1/m) \\ \hline \\ Comments: \\ \hline \\ \\ Comments: \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6.1.18 KA3572G01:2, test No 5:11

General test data for the pressure build-up test in the interval 2.70-5.30 m of borehole KA3572G01 are presented in Table 6-18.

Table 6-18 General test data for the pressure build-up test in section 2.70-5.30 m of borehole KA3572G01

General test data					
Borehole section	KA3572G	KA3572G01:2			
Test No	5:11	5:11			
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)		
Test equipment system	HMS				
General comment	Single ho	le test (dp _p = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	2.70		
Test section- seclow	Seclow	m	5.30		
Test section length	L _w	m	2.60		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20050121 06:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20050121 07:00:00		
Stop of flow period		yymmdd hh:mm:ss	20050121 08:00:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20050121 10:00:00		
Total flow time	t _p	min	60		
Total recovery time	t _F	min	120		

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	355.32	
Absolute pressure in test section before stop of flow	p _p	kPa	99.24	
Absolute pressure in test section at stop of recovery period	Pf	kPa	119.43	
Maximal pressure change during flow period	dpp	kPa	256.08	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	5.83 · 10 ⁻⁹
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	V _p	m ³	-

Figure 6-18 Flow rate during draw down in KA3572G01:2.

No radial flow regime period could be evaluated.

Interpreted flow regimes

It was not possible to evaluate any flow regimes from this test.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 2.70-5.30 m in KA3572G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:11		
Borehole ID:	KA3572G01	Test start:	2005-01-21 06:00		
Test section (m):	2.30-5.30	Responsible for test performance:	SWECO VI. A. Blom/J. N		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VI. T. Forsmark		
Linear plot Head		Flow period	•	Recovery period	
-410		Indata		Indata	
_		p ₀ (kPa)	355.3		
-420		p _i (kPa)			
		p _p (kPa)	99.2	p _F (kPa)	256.1
## -430 -430		$Q_p (m^3/s)$	5.83 · 10 ⁻⁹		
Head (mas) -430 -		tp (min)	60	t _F (min)	120
		S*		S*	1 · 10 ⁻⁶
-440		EC _w (mS/m)			
		Te _w (gr C)			
0:00:00 6:00:00 12:00:	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	$2.3 \cdot 10^{-10}$	Flow regime:	-
0 -		T _{Moye} (m ² /s)	1.6 · 10 ⁻¹⁰	dt _{e1} (min)	-
-	\	Flow regime:		dt _{e2} (min)	-
2		dt ₁ (min)		T (m ² /s)	-
Recovery (m)		dt ₂ (min)		S (-)	
ery		T (m ² /s)		K _s (m/s)	
000 6		S (-)		S _s (1/m)	
🖁		K _s (m/s)		C (m ³ /Pa)	
8 -		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	-
0.1 1 10	100 1000	C _D (-)			
Time (min)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	ll parameters.	
J : 5	- y p	Flow regime:	-	C (m ³ /Pa)	
10 +		dt ₁ (min)	_	C _D (-)	
	<u>.1</u>	dt ₂ (min)	_	ξ(-)	-
]	: <i>[</i>	T_T (m ² /s)	_	5()	
E 1	<i>:/</i>	S (-)			
		K _s (m/s)			
Recovery (m)		S _s (1/m)			
9 0.1 • • • • • • • • • • • • • • • • • • •		Comments:			
0.01 1 10 Time (m	100 1000 iin)				

6.1.19 KA3574G01:3 , test No 5:12

General test data for the pressure build-up test in the interval 1.80-4.10 m of borehole KA3574G01 are presented in Table 6-19.

Table 6-19 General test data for the pressure build-up test in section 1.80-4.10 m of borehole KA3574G01 $\,$

General test data					
Borehole section	KA3574G	KA3574G01:3			
Test No	5:12	5:12			
Field crew	A. Blom/J	. Magnusson (SWECC	VIAK)		
Test equipment system	HMS				
General comment	Single hol	le test (dp _p = max)			
	Nomen- clature	Unit	Value		
Test section- secup	Secup	m	1.80		
Test section- seclow	Seclow	m	4.10		
Test section length	L _w	m	2.30		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm	20050125 08:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20050125 09:00:00		
Stop of flow period		yymmdd hh:mm:ss	20050125 10:00:00		
Test stop (stop of pressure registration)		yymmdd hh:mm	20050125 12:00:00		
Total flow time	t _p	min	60		
Total recovery time	t⊧	min	120		

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	173.66	
Absolute pressure in test section before stop of flow	p _p	kPa	90.34	
Absolute pressure in test section at stop of recovery period	p _f	kPa	92.56	
Maximal pressure change during flow period	dpp	kPa	83.32	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.67 · 10 ⁻⁹
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	8.77 · 10 ⁻⁷
Total volume discharged during flow period	V _p	m ³	=

Figure 6-19 Flow rate during draw down in KA3574G01:3.

No radial flow regime period could however be evaluated.

Interpreted flow regimes

It was not possible to evaluate any flow regimes from this test.

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 1.80-4.10 m in KA3574G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	5:12		
Borehole ID:	KA3574G01	Test start:	2005-01-25 08:00		
Test section (m):	1.80-4.10	Responsible for test performance:	SWECO VIA		
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	SWECO VIA		
Linear plot Head		Flow period		Recovery period	
-438		Indata		Indata	
		p ₀ (kPa)	173.7		
-440		p _i (kPa)			
		p _p (kPa)	90.3	p _F (kPa)	92.5
-442 (Japan (Japan Head (Japan		Q _p (m ³ /s)	1.67 · 10 ⁻⁹		
p -444		tp (min)	60	t _F (min)	120
_		S*		S*	1 · 10 ⁻⁶
-446		EC _w (mS/m)			
		Te _w (gr C)			
0:00:00 6:00:00 12:00	:00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m^2/s)	1.9 · 10 ⁻¹⁰	Flow regime:	-
0		T _{Moye} (m ² /s)	1.4 · 10 ⁻¹⁰	dt _{e1} (min)	-
0.05		Flow regime:		dt _{e2} (min)	-
0.05	•	dt ₁ (min)		T (m ² /s)	-
E 0.1	•	dt ₂ (min)		S (-)	
Recovery (m)	•	$T (m^2/s)$		K _s (m/s)	
Ο 0.15 -	•	S (-)		S _s (1/m)	
<u> </u>	•	K _s (m/s)		C (m ³ /Pa)	
0.2	•	S _s (1/m)		C _D (-)	
	•	C (m ³ /Pa)		ξ (-)	-
0.25 1 1 10	100 1000	C _D (-)			
Time (m	in)	ξ (-)			
Log-Log plot incl. derivative- r	ecovery period	Interpreted forma	tion and we	Il parameters.	
		Flow regime:	-	C (m ³ /Pa)	
10		dt ₁ (min)	-	C _D (-)	
		dt ₂ (min)	-	ξ (-)	-
		$T_T (m^2/s)$	-		
E 1		S (-)			
Recovery (m)		K _s (m/s)			
-		S _s (1/m)			
<u>و</u> 0.1	• •	Comments:			
	•				
0.04	y -				
0.01	100 1000				
0.1 1 10 Time (n	nin)				

6.1.20 KA3539G:2, test No 5:13a

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-20.

Table 6-20 General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G

General test data				
Borehole section	KA3539G:2			
Test No	5:13a			
Field crew	A. Blom/J.	Magnusson (SWECO	VIAK)	
Test equipment system	HMS			
General comment	Single hol	e test (dp _p = approx. 1	00 m)	
	Nomencl ature	Unit	Value	
Test section- secup	Secup	m	15.85	
Test section- seclow	Seclow	m	17.60	
Test section length	L _w	m	1.75	
Test section diameter	2·r _w	mm	76	
Test start (start of pressure registration)		yymmdd hh:mm:ss	20050119 12:00:00	
Packer expanded		yymmdd hh:mm:ss	-	
Start of flow period		yymmdd hh:mm:ss	20050119 13:30:00	
Stop of flow period		yymmdd hh:mm:ss	20050119 14:30:00	
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20050119 16:30:00	
Total flow time	t _p	min	120	
Total recovery time	t _F	min	60	

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1962.14	
Absolute pressure in test section before stop of flow	p _p	kPa	806.60	
Absolute pressure in test section at stop of recovery period	Pf	kPa	1831.40	
Maximal pressure change during flow period	dpp	kPa	1155.54	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.53 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	3.13 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	-

Figure 6-20 Flow rate during draw down in KA3539G:2.

The test was successful in regard to pressure response. A linear channel flow period occurs during this test.

Interpreted flow regimes

0 - 0.05	minutes	Well Bore Storage (WBS)
0.05 - 0.2	minutes	Transition period
0.2 - 0.5	minutes	Radial flow period
0.5 - 1	minutes	Transition period
1 - 2.5	minutes	Possible linear channel flow period
2.5 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project:	PROTOTYPE	Test type:	РВТ		
Area:	ÄSPÖ	Test no:	5:13a		
Borehole ID:	KA3539G	Test start:	2005-01-19 12:00		
Test section (m):	15.85-17.60	Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson		
Section diameter, 2·r _w (m): 0.076		Responsible for test evaluation:	SWECO VI. T. Forsmark	ECO VIAK AB orsmark	
Linear plot Head		Flow period	Recovery period		
-200		Indata		Indata	
-		p ₀ (kPa)	1962.1		
-240		p _i (kPa)			
<u>s</u> -280		p _p (kPa)	806.6	p _F (kPa)	1831.4
(se -280		$Q_p (m^3/s)$	2.53 · 10 ⁻⁵		
9 -320 -		tp (min)	60	t _F (min)	120
†		S*		S*	1 · 10 ⁻⁶
-360	V	EC _w (mS/m)			
-		Te _w (gr C)			
-400	00 18:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	2.2 · 10 ⁻⁷	Flow regime:	Radial
0		T _{Moye} (m ² /s)	1.4 · 10 ⁻⁷	dt _{e1} (min)	0.2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Flow regime:		dt _{e2} (min)	0.5
40		dt ₁ (min)		T (m ² /s)	5.9 · 10 ⁻⁷
€ 80 E		dt ₂ (min)		S (-)	
90 7		T (m ² /s)		K _s (m/s)	
Recovery (E)	•	S (-)		S _s (1/m)	
<u>~</u>		K _s (m/s)		C (m ³ /Pa)	
160		S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ (-)	-1.3
0.1 1 10	100 1000	C _D (-)			
Time (mi	n)	ξ (-)			
Log-Log plot incl. derivative- re	ecovery period	Interpreted forma	tion and we	Il parameters.	
		Flow regime:	Radial	C (m ³ /Pa)	
KA3539	G:2	dt ₁ (min)	0.2	C _D (-)	
1000		dt ₂ (min)	0.5	ξ (-)	-1.3
1		$T_T (m^2/s)$	5.9 · 10 ⁻⁷		
£ 100 +		S (-)			
n) y		K _s (m/s)			
- Ne		S _s (1/m) Comments: A cha	annel flow re-	rime is astablished	during this
Recovery (m)		test.		,: SS	g 4110
0.1 1 10 Time (r	100 1000 nin)				

6.1.21 KA3539G:2, test No 5:13b

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-21.

Table 6-21 General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G

General test data				
Borehole section	KA3539G:2			
Test No	5:13b			
Field crew	A. Blom/J.	Magnusson (SWECO	VIAK)	
Test equipment system	HMS			
General comment	Single hole test (dpp = max)			
	Nomencl ature	Unit	Value	
Test section- secup	Secup	m	15.85	
Test section- seclow	Seclow	m	17.60	
Test section length	L _w	m	1.75	
Test section diameter	2·r _w	mm	76	
Test start (start of pressure registration)		yymmdd hh:mm	20050120 14:30:00	
Packer expanded		yymmdd hh:mm:ss	-	
Start of flow period		yymmdd hh:mm:ss	20050120 15:30:00	
Stop of flow period		yymmdd hh:mm:ss	20050120 21:30:00	
Test stop (stop of pressure registration)		yymmdd hh:mm	20050121 15:30:00	
Total flow time	tp	min	360	
Total recovery time	t _F	min	1080	

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1971.70	
Absolute pressure in test section before stop of flow	p _p	kPa	525.76	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1983.72	
Maximal pressure change during flow period	dpp	kPa	1445.94	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.20 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	3.02 · 10 ⁻⁵
Total volume discharged during flow period	V _p	m ³	-

Figure 6-21 Flow rate during draw down in KA3539G:2.

The test was successful in regard to pressure response. A linear channel flow period during this test.

Interpreted flow regimes

0 - 0.05	minutes	Well Bore Storage (WBS)
0.05 - 0.25	minutes	Transition period
0.25 - 0.4	minutes	Radial flow period
0.4 - 0.8	minutes	Transition period
0.8 - 2	minutes	Possible linear channel flow period
2 –	minutes	Transition period

Calculated parameters

Quantitative analysis was made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sum	mary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ	Test no:	5:13b	5:13b		
Borehole ID: KA3539G		Test start:	2005-01-20 14:30			
Test section (m): 15.85-17.60		Responsible for test performance:	SWECO VIAK AB A. Blom/J. Magnusson			
Section diameter, 2·r _w (m): 0.076		Responsible for test evaluation:	SWECO VIA			
Linear plot Head		Flow period		Recovery period		
-200		Indata		Indata		
-		p ₀ (kPa)	1971.7			
-240		p _i (kPa)				
<u>₩</u> -280		p _p (kPa)	525.8	p _F (kPa)	1983.7	
e -200]		Q _p (m ³ /s)	2.20 · 10 ⁻⁵			
(sg -280 — — — — — — — — — — — — — — — — — — —		tp (min)	360	t _F (min)	1080	
_		S*		S*	1 · 10 ⁻⁶	
-360		EC _w (mS/m)				
\		Te _w (gr C)				
-400	0 12:00:00 0:00:00	Derivative fact.		Derivative fact.	0.2	
Lin-Log plot		Results		Results		
		$Q/s (m^2/s)$	1.5 · 10 ⁻⁷	Flow regime:	Radial	
0		T _{Moye} (m ² /s)	1.0 · 10 ⁻⁷	dt _{e1} (min)	0.25	
-		Flow regime:		dt _{e2} (min)	0.4	
40		dt ₁ (min)		T (m ² /s)	6.6 · 10 ⁻⁷	
Ē 80		dt ₂ (min)		S (-)		
/ery		T (m ² /s)		K _s (m/s)		
Recovery 150		S (-)		S _s (1/m)		
~]		K _s (m/s)		C (m ³ /Pa)		
160		S _s (1/m)		C _D (-)		
1		C (m ³ /Pa)		ξ (-)	-0.8	
0.1 1 10	100 1000	C _D (-)				
Time (min)	ξ (-)				
Log-Log plot incl. derivative- re	covery period	Interpreted forma	tion and we	II parameters.	1	
		Flow regime:	Radial	C (m³/Pa)		
KA35390	G:2	dt ₁ (min)	0.25	C _D (-)		
1000		dt ₂ (min)	0.4	ξ (-)	-0.8	
1		T _T (m ² /s)	6.6 · 10 ⁻⁷			
		S (-)				
Ē 100		K _s (m/s)				
Ge 1		S _s (1/m)	1.0		1	
100 (Geowery (Line 1) (100 (Line 1) (Li	100 1000	Comments: A chatest.	amiernowie(ymre is established	aumy ulis	
Time (m	in)					

6.2 Deformation measurements

Deformation measurements started 2003-05-06. Evaluation of the deformations will be made in a separate report.

References

Alm P, Forsmark T, Rhen I, 2005. Äspö HRL – Prototype repository – Installations for measurements of flow into tunnels, water pressure in rock and hydro mechanical responses in boreholes during operation phase. SKB IPR-05-04.

Forsmark T, Forsman I, Rhén I, 2004. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Interference tests. SKB IPR-04-16.

Forsmark T, Rhén I, 2004a. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Single hole tests. SKB IPR-04-17.

Forsmark T, Rhén I, 2004b. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 2 – Single hole tests. SKB IPR-04-18.

Forsmark T, Rhén I, 2004c. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 3 – Single hole tests. SKB IPR-04-19.

Forsmark T, Rhén I, 2005. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 4 – Single hole tests. SKB IPR-05-02.

Forsmark T, Rhén I, 2005. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 5 – Interference tests. SKB IPR-05-18.