P-05-192

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX03, 2005

Subarea Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

November 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-05-192

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX03, 2005

Subarea Laxemar

Nils Rahm, Golder Associates AB

Cristian Enachescu, Golder Associates GmbH

November 2005

Keywords: Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in borehole KLX03 at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX03 performed between 5th of May and 19th of May 2005.

The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m and 20 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 106.31–992.41 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX03 i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX03. Testerna utfördes mellan den 5 maj till den 19 maj 2005.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissivitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m och 20 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 106,31–992,41 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (freshwater head).

Borehole KLX03 – Summary of results.

Contents

1	Introduction	9
2	Objective	11
3 3.1 3.2 3.3	Scope of work Borehole Injection tests Control of equipment	13 13 15 17
4 4.1 4.2 4.3	Equipment Description of equipment Sensors Data acquisition system	19 19 23 24
5 5.1 5.2 5.3 5.4 5.5	 Execution Preparations Length correction Execution of tests/measurements 5.3.1 Test principle 5.3.2 Test procedure Data handling Analyses and interpretation 5.5.1 Analysis software 5.5.2 Analysis approach 5.5.3 Analysis methodology 5.5.4 Steady state analysis 5.5.5 Flow models used for analysis 5.5.6 Calculation of the static formation pressure and equivalent freshwater head 5.7 Derivation of the recommended transmissivity and the confidence range 	25 25 25 25 25 27 28 28 28 28 28 28 30 30 30 31
6 6.1	Results 100 m single-hole injection tests 6.1.1 Section 106.31–206.31 m, test no 1, injection 6.1.2 Section 206.44–306.44 m, test no 1, injection 6.1.3 Section 306.58–406.58 m, test no 1, injection 6.1.4 Section 406.70–506.70 m, test no 1, injection 6.1.5 Section 506.71–606.71 m, test no 1, pulse injection 6.1.6 Section 506.71–606.71 m, test no 2, injection 6.1.7 Section 606.94–706.94 m, test no 1, injection 6.1.8 Section 707.09–807.09 m, test no 1, injection 6.1.9 Section 807.21–907.21 m, test no 1, injection 6.1.10 Section 892.31–992.31 m, test no 1, injection	33 33 34 34 35 36 37 37 38 39 39

6.2	20 m s	ingle-hole injection tests	40
	6.2.1	Section 106.31–126.31 m, test no 1, injection	40
	6.2.2	Section 126.35–146.35 m, test no 1, injection	41
	6.2.3	Section 146.39–166.39 m, test no 1, injection	42
	6.2.4	Section 166.42–186.42 m, test no 1 and 2, injection	43
	6.2.5	Section 186.42–206.42 m, test no 1, injection	43
	6.2.6	Section 206.44–226.44 m, test no 1, injection	44
	6.2.7	Section 226.48–246.48 m, test no 1, injection	45
	6.2.8	Section 241.48–261.48 m, test no 1, injection	46
	6.2.9	Section 251.49–271.49 m, test no 1, injection	46
	6.2.10	Section 271.54–291.54 m, test no 1, injection	47
	6.2.11	Section 286.56–306.56 m, test no 1, pulse injection	48
	6.2.12	Section 306.58–326.58 m, test no 1, injection	49
	6.2.13	Section 326.60–346.60 m, test no 1 and 2, injection and	
		slug injection	50
	6.2.14	Section 346.62–366.62 m, test no 1, pulse injection	50
	6.2.15	Section 366.65–386.65 m, test no 1, injection	51
	6.2.16	Section 386.68–406.68 m, test no 1, injection	52
	6.2.17	Section 406.70–426.70 m, test no 1, injection	53
	6.2.18	Section 426.71–446.71 m, test no 1, pulse injection	53
	6.2.19	Section 446.72–466.72 m, test no 1, injection	54
	6.2.20	Section 466.71–486.71 m, test no 1, injection	55
	6.2.21	Section 486.70–506.70 m, test no 1, pulse injection	55
	6.2.22	Section 506.71–526.71 m, test no 1, injection	56
	6.2.23	Section 526.77–546.77 m, test no 1 and 2, injection and	
		slug injection	57
	6.2.24	Section 546.83–566.83 m, test no 1, injection	57
	6.2.25	Section 566.87–586.87 m, test no 1, pulse injection	58
	6.2.26	Section 586.90–606.90 m, test no 1, injection	59
	6.2.27	Section 606.94–626.94 m, test no 1 and 2, injection and	
		slug injection	59
	6.2.28	Section 626.97–646.97 m, test no 1, injection	60
	6.2.29	Section 646.99–666.99 m, test no 1, injection	60
	6.2.30	Section 667.02–687.02 m, test no 1, injection	61
	6.2.31	Section 687.06–707.06 m, test no 1, pulse injection	62
	6.2.32	Section 707.09–727.09 m, test no 1, injection	63
	6.2.33	Section 727.13–747.13 m, test no 1, injection	63
	6.2.34	Section 747.15–767.15 m, test no 1, injection	64
	6.2.35	Section 762.16–782.16 m, test no 1, injection	65
	6.2.36	Section 777.17–797.17 m, test no 1, injection	65
	6.2.37	Section 787.19–807.19 m, test no 1, injection	66
	6.2.38	Section 807.21–827.21 m, test no 1 and 2, injection and	
		slug injection	67
	6.2.39	Section 827.24–847.24 m, test no 1, injection	68
	6.2.40	Section 847.26–867.26 m, test no 1, injection	68
	6.2.41	Section 867.28–887.28 m, test no 1, injection	69
	6.2.42	Section 887.31–907.31 m, test no 1, injection	69
	6.2.43	Section 907.33–927.33 m, test no 1, injection	70
	6.2.44	Section 927.33–947.33 m, test no 1, injection	71
	6.2.45	Section 947.34–967.34 m, test no 1, pulse injection	71
	6.2.46	Section 967.39–987.39 m, test no 1, injection	72
	6.2.47	Section 972.41–992.41 m, test no 1, injection	73

7	Synth	esis	75			
7.1	Summ	ary of results	76			
7.2	2.2 Correlation analysis					
	7.2.1 7.2.2	Comparison of steady state and transient analysis results Comparison between the matched and theoretical wellbore	85			
		storage coefficient	85			
8	Concl	usions	87			
8.1	Transı	nissivity	87			
8.2	Equiv	alent freshwater head	87			
8.3	Flow	regimes encountered	88			
9	Refer	ences	89			
Appe	ndix 1	File description table (attached only on CD)				
Appe	endix 2	Test analyses diagrams (attached only on CD)				
Appe	endix 3	Test summary sheets (attached only on CD)				
Appe	endix 4	Nomenclature (attached only on CD)				

Appendix 5 SICADA data tables (attached only on CD)

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001a/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2001b/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX03 during 5th of May and 19th of May 2005 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-05-031 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX03. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX03 is situated in the Laxemar area approximately 3.5 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from May 2004 to September 2004 at 1,000.42 m length with an inner diameter of 76 mm and an inclination of -74.93° . The upper 11.65 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208–323 mm.

The work was carried out in accordance with activity plan AP PS 400-05-031. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Activity plan	Number	Version
Test pumping and hydraulic injection tests in borehole KLX03.	AP PS 400-05-031	1.0
Method descriptions	Number	Version
Analysis of injection and single-hole pumping tests.	SKB MD 320.004e	1.0
Hydraulic injection tests.	SKB MD 323.001	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning.	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar i kärnborrhål.	SKB MD 620.010	1.0
Allmänna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn.	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar.	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar.	SKB SDP-508	1.0

Table 1-1. Controlling documents for the performance of the activity.

Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX03.

2 Objective

The objective of the hydrotests in borehole KLX03 is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m and 20 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

A further subactivity was optionally planned according to the activity plan AP PS 400-05-031 with pump tests including water chemistry investigations. These subactivity was not performed.

3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m and 20 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 5th May and 19th May 2005.

3.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

Table 3-1.	Performed in	jection tests at	borehole KLX03.
------------	--------------	------------------	-----------------

No of injection tests		Interval Positions		Time/test	Total test time	
10		100 m	106.31–992.31 m	125 min	20.8 hrs	
47*		20 m	106.31–992.41 m	90 min	70.5 hrs	
Total:	91.3 hrs					

*excluding additional overnight slug injection tests and repeated tests.

Title	Value				
Borehole length (m)	1,000.420				
Drilling period(s)	From date	To date	Secup (m)	Seclow (m)	Drilling type
	2004-05-03	2004-05-13	0.000	100.350	Percussion drilling
	2004-05-28	2004-09-07	100.350	1,000.420	Core drilling
Starting point coordinate	Length (m)	Northing (m)	Easting (m)	Elevation (masl)	Coord system
(centerpoint of TOC)	0.000	6366111.771	1547718.966	18.420	RT38-RH00 Transformed
	0.000	6366112.590	1547718.920	18.490	RT90-RHB70 Measured
	0.000	6373.037	-1842.659	18.462	ÄSPÖ96 Transformed
Angles	Length (m)	Bearing	Inclination (- =	= down)	
	0.000	199.040 RT90-RHB70	–74.930 Measured		
Borehole diameter	Secup (m)	Seclow (m)	Hole diam (m)		
	0.000	11.950	0.347		
	11.950	100.350	0.253		
	100.350	101.400	0.086		
	101.400	1,000.420	0.076		
Core diameter	Secup (m)	Seclow (m)	Core diam (m)		
	100.350	101.400	0.072		
	101.400	1,000.420	0.050		
Casing diameter	Secup (m)	Seclow (m)	Case in (m)	Case out (m)	
	0.000	100.000	0.200	0.208	
	0.100	11.650	0.311	0.323	
	100.100	100.050	0.170	0.208	
Grove milling	Length (m)	Trace detectal	ble		
	110.000	YES			
	150.000	YES			
	200.000	YES			
	250.000	YES			
	300.000	YES			
	350.000	YES			
	399.000	YES			
	450.000	YES			
	500.000	YES			
	550.000	YES			
	600.000	YES			
	650.000	YES			
	700.000	YES			
	750.000	YES			
	800.000	YES			
	850.000	YES			
	900.000	YES			
	950.000	YES			

Table 3-2. Information about KLX03 (from SICADA 2005-04-01 15:22:50).

3.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-05-031 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 106.31–992.31 m below ToC and in 20 m test sections between 106.31–992.41 m below ToC (see Table 3-3). The initial criteria for performing injection tests in 20 m test sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m tests covering the smaller 20 m sections (see Figure 3-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX03 were conducted.

Bh ID	Test section (m bToC)	Test type¹	Test no	Test start Date, time	Test stop Date, time
KLX03	106.31–206.31	3	1	2005.05.05 11:05	2005.05.05 15:38
KLX03	206.44-306.44	3	1	2005.05.05 17:25	2005.05.05 20:54
KLX03	306.58-406.58	3	1	2005.05.06 09:03	2005.05.06 11:02
KLX03	406.70–506.70	3	1	2005.05.06 12:36	2005.05.06 15:17
KLX03	506.71-606.71	4	1	2005.05.06 16:53	2005.05.07 01:45
KLX03	606.94–706.94	3	1	2005.05.07 08:53	2005.05.07 10:49
KLX03	707.09–807.09	3	1	2005.05.07 12:26	2005.05.07 14:24
KLX03	807.21–907.21	3	1	2005.05.07 16:19	2005.05.07 22:08
KLX03	892.31–992.31	3	1	2005.05.08 09:43	2005.05.08 11:40
KLX03	506.71-606.71	3	2	2005.05.08 15:36	2005.05.08 17:31
KLX03	106.31–126.31	3	1	2005.05.10 08:00	2005.05.10 09:49
KLX03	126.35–146.35	3	1	2005.05.10 10:39	2005.05.10 13:09
KLX03	146.39–166.39	3	1	2005.05.10 13:54	2005.05.10 15:47
KLX03	166.42–186.42	3	1	2005.05.10 16:43	2005.05.10 17:34
KLX03	166.42–186.42	3	2	2005.05.10 17:57	2005.05.10 19:08
KLX03	166.42–186.42	4	3	2005.05.10 19:10	2005.05.10 20:01
KLX03	186.42–206.42	3	1	2005.05.11 08:01	2005.05.11 09:37
KLX03	206.44-226.44	3	1	2005.05.11 10:16	2005.05.11 12:26
KLX03	226.44–246.44	3	1	2005.05.11 13:38	2005.05.11 15:19
KLX03	241.48–261.48	3	1	2005.05.11 16:06	2005.05.11 17:51
KLX03	251.49–271.49	3	1	2005.05.11 18:23	2005.05.11 21:31
KLX03	271.54–291.54	3	1	2005.05.12 07:53	2005.05.12 09:59
KLX03	286.56-306.56	4	1	2005.05.12 10:41	2005.05.12 13:02
KLX03	306.58-326.58	3	1	2005.05.12 13:43	2005.05.12 16:07
KLX03	326.60-346.60	3	1	2005.05.12 17:04	2005.05.12 18:29
KLX03	326.60-346.60	5	2	2005.05.12 18:31	2005.05.13 03:08
KLX03	346.62–366.62	4	1	2005.05.13 09:07	2005.05.13 10:43
KLX03	366.65–386.65	3	1	2005.05.13 11:25	2005.05.13 13:50
KLX03	386.68-406.68	3	1	2005.05.13 14:52	2005.05.13 16:18
KLX03	406.70-426.70	3	1	2005.05.13 17:00	2005.05.13 18:32

Table 3-3. Tests performed.

KLX03	426.71–446.71	4	1	2005.05.13 19:14	2005.05.14 03:57
KLX03	446.72-466.72	3	1	2005.05.14 08:09	2005.05.14 10:03
KLX03	466.71–486.71	4	1	2005.05.14 10:44	2005.05.14 11:50
KLX03	486.70–506.70	4	1	2005.05.14 12:38	2005.05.14 14:21
KLX03	506.71-526.71	3	1	2005.05.14 15:02	2005.05.14 16:02
KLX03	526.77–546.77	3	1	2005.05.14 16:44	2005.05.14 18:32
KLX03	526.77–546.77	5	2	2005.05.14 18:52	2005.05.15 05:50
KLX03	546.83–566.83	3	1	2005.05.15 09:51	2005.05.15 10:53
KLX03	566.87–586.87	4	1	2005.05.15 11:37	2005.05.15 13:21
KLX03	586.90-606.90	4	1	2005.05.15 14:04	2005.05.15 15:12
KLX03	606.94–626.94	3	1	2005.05.15 15:52	2005.05.15 17:47
KLX03	606.94–626.94	5	2	2005.05.15 20:19	2005.05.16 07:12
KLX03	626.97–646.97	4	1	2005.05.15 18:36	2005.05.15 19:41
KLX03	646.99–666.99	3	1	2005.05.16 08:32	2005.05.16 10:04
KLX03	667.02-687.02	3	1	2005.05.16 10:50	2005.05.16 13:29
KLX03	687.06–707.06	4	1	2005.05.16 14:22	2005.05.16 16:13
KLX03	707.09–727.09	3	1	2005.05.16 17:00	2005.05.16 17:59
KLX03	727.13–747.13	3	1	2005.05.16 18:39	2005.05.16 21:53
KLX03	747.15–767.15	3	1	2005.05.17 08:15	2005.05.17 09:48
KLX03	762.16–782.16	3	1	2005.05.17 10:32	2005.05.17 11:59
KLX03	777.17– 797.17	3	1	2005.05.17 12:47	2005.05.17 14:27
KLX03	787.19–807.19	3	1	2005.05.17 15:08	2005.05.17 16:53
KLX03	807.21-827.21	3	1	2005.05.17 17:44	2005.05.17 19:08
KLX03	807.21-827.21	5	2	2005.05.17 19:12	2005.05.18 03:44
KLX03	827.24-847.24	3	1	2005.05.18 08:16	2005.05.18 09:16
KLX03	847.26-867.26	3	1	2005.05.18 09:59	2005.05.18 11:02
KLX03	867.28-887.28	3	1	2005.05.18 11:43	2005.05.18 12:44
KLX03	887.31–887.31	3	1	2005.05.18 14:01	2005.05.18 16:16
KLX03	907.33–927.33	3	1	2005.05.18 17:04	1900.07.18 22:48
KLX03	927.33–947.33	3	1	2005.05.19 08:14	2005.05.19 09:24
KLX03	947.34–967.34	4	1	2005.05.19 10:03	2005.05.19 11:45
KLX03	967.39–987.39	3	1	2005.05.19 12:24	2005.05.19 13:54
KLX03	972.41–992.41	3	1	2005.05.19 14:26	2005.05.19 15:28

1: 3: Injection test; 4: Pulse injection test ; 5: Slug injection test.

Figure 3-1. Flow chart for test sections.

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.

Figure 4-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (\pm 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below and,
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 4-2.

Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Value/range	Unit	Comments
p _{sec,a,b}	Pressure	Druck PTX 162-H1464abs	9–30 4–20 0–13,5 ± 0.1	VDC mA MPa % of FS	
T _{sec,surf,air}	Temperature	BGI	18–24 4–20 0–32 ± 0.1	VDC mA °C °C	
\mathbf{Q}_{big}	Flow	Micro motion Elite sensor	0–100 ± 0.1	kg/min %	Massflow
$\boldsymbol{Q}_{\text{small}}$	Flow	Micro motion Elite sensor	0–1.8 ± 0.1	kg/min %	Massflow
p _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 ± 0.1	VDC mA KPa % of FS	
p _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 ± 0.1	VDC mA MPa % of FS	
p _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5 ± 0.15	VDC mA MPa % of FS	
L	Level indicator				Length correction

Table 4-1. Technical specifications of sensors.

Table 4-2. Sensor	positions and	l wellbore s	storage (V	NBS)	controlling	factors.

Borehole information			Senso	rs	Equipment affecting WBS coefficient			
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)	
KLX03	106.31–206.31	1	p₂ p T p₅ L	104.31 205.51 205.26 208.32 209.56	Test section	Signal cable Pump string Packer line	9.1 33 6	
KLX03	106.31–126.31	1	pa p T p₅ L	104.31 125.51 125.26 128.32 129.56	Test section	Signal cable Pump string Packer line	9.1 33 6	

4.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

5 Execution

5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Clean tanks with chloride dioxide. Filling injection tank with water out of the borehole KLX03.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

5.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of this groves are given by SKB in the activity plan (see Table 3-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the testsections to avoid wrong placements and minimize elongation effects of the test string.

5.3 Execution of tests/measurements

5.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

Figure 5-1. Flow chart for test performance.

5.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation. The injection tests in KLX03 has been carried out by applying a constant injection pressure of appr 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually. In those cases, the constant difference pressure was usually unequal to 200 kPa. In other cases, where the pressure recovery of the pulse injection test took very long, the recovery was extended and the pulse test was taken for the analysis. No injection test was performed in those sections. Additionally, in some cases, slug injection tests were conducted over night. The decision of performing a slug injection test.

The duration for each phase is presented in Table 5-1.

Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX03.

Position test tool to new test section (correct position using the borehole markers)	Approx 30 min
 Inflate packers with appr 1,900 kPa 	25 min
Close test valve	10 min
Check tubing integrity with appr 800 kPa	5 min
De-air system	2 min
Pretest, pulse injection	2–30 min
Set automatic flow control parameters or setting for manual test	5 min
Start injection	20 to 45 min
Close test valve, start recovery	20 min or more
Open test valve	10 min
Deflate packers	25 min
Move to next test depth	-

5.4 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent test analysis.

5.5 Analyses and interpretation

5.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

5.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob-Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Slug and Pulse tests are analysed both by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakrabarty and Enachescu 1997/.

5.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Injection Tests.
 - Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
 - Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
 - Non-linear regression in semi-log coordinates /superposition HORNER plot; Horner 1951/. In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

• Slug/Pulse Injection Tests.

A test cycle always started with a pulse injection test whose goal it was to derive a first estimation of the formation transmissivity. If the pressure recovery of this brief injection was very slow, it indicated a very tight section. It is then decided to extend the recovery time and measure the pressure recovery (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements and/or replacement in injection vessel). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

The performed slug injection tests are analysed using the same method as for the pulse tests. The wellbore storage coefficient is calculated using based on the radius of the test pipe.

- Calculation of initial estimates of the model parameters by using the Ramey Plot /Ramey et al. 1975/. This plot is typically not presented in the appendix.
- Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An example of the type curves is presented in Figure 5-3.

Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

Figure 5-3. Deconvolution type curve set for pulse and slug test analysis.

5.5.4 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

5.5.5 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

5.5.6 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using straight line or type curve extrapolation in the Horner plot, assuming that infinite acting radial flow (IARF) occurred.

The equivalent freshwater head (expressed in metres above sea level) was calculated from the extrapolated static formation pressure (p*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-4 shows the methodology schematically.

Figure 5-4. Schematic methodologies for calculation of the freshwater head.

The freshwater head in metres above sea level is calculated as following:

$$head = \frac{(p^* - p_{atm})}{\rho \cdot g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \cdot g}$$

5.5.7 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmassivity with distance from the borehole (composite model) was diagnosted, the inner zone transmassivity (in borehole vicinity) was recommended. This is consistence with SKB's standards.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

6 Results

In the following, results of all tests are presented and analysed. Chapter 6.1 presents the 100 m tests and 6.2 the 20 m tests. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 7-1 and 7-2 of the Synthesis chapter.

6.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX03 are presented and analysed.

6.1.1 Section 106.31–206.31 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. The pressure in the bottom zone dropped by 7 kPa. The injection rate decreased from 35.8 L/min at start of the CHi phase to 16.8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows an upward trend at late times indicating a decrease of transmissivity at some distances from the borehole. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $1.0E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-6 to $3.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,977.8 kPa.

The analysis of the CHi and CHir phases show some inconssistencies regarding the chosen flow model. However, regarding the derived transmissivity, both phases show good concistency. No further analysis is recommended.

6.1.2 Section 206.44–306.44 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection between test interval and adjacent zones was observed. The injection rate decreased from 5.6 L/min at start of the CHi phase to 2.3 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows a downward trend at late times indicating an increase of transmissivity at some distances from the borehole. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHir phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $1.4E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-7 to $4.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,951.0 kPa.

The analysis of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivity, both phases show good concistency. No further analysis is recommended.

6.1.3 Section 306.58-406.58 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 205 kPa. The pressure in the bottom zone rose by 3 kPa, indicating a connection to the interval. The injection rate decreased from 0.9 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). The CHir phase shows a flat derivative at late times. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $6.2E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-7 to $9.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,888.4 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.4 Section 406.70–506.70 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 205 kPa. No hydraulic connection between test interval and the adjacent zones was observed The injection rate decreased from 2.9 L/min at start of the CHi phase to 0.8 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at middle times and flat part at late times, indicating a higher transmissivity at some distance from the borehole and a flow dimension of 2 (radial flow). The derivative of the CHir phase shows a downward trend at medium and late times, which is indicative for an increase of transmissivity or a change in flow dimension. A two shell radial composite flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $3.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-7 to $7.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,843.6 kPa.

The analysis of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

6.1.5 Section 506.71–606.71 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result the recovery of the pulse injection was extended to about 8 hour.

During the brief injection phase a total volume of about 119 ml was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 183 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 3.6E-10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably on order of magnitude), which will implicitly translate translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Pi phase shows an upward trend at middle and late times, which is indicative for a transition to a zone of lower transmissivity. Because the outer zone stabilisation was not observed, the derived transmissivity should be regarded as an upper limit. For the analysis a radial two shell composite flow model was used. The analysis is presented in Appendix 2-5.

Selected representative parameters

The recommended transmissivity of $2.5E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurements of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be $9E-11 \text{ m}^2/\text{s}$ to $6e-10 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The flow dimension displayed during the test is 2. No static pressure could be derived.

The analysis of the Pi phase show consistency with the later conducted CHi phase.

6.1.6 Section 506.71-606.71 m, test no 2, injection

Comments to test

The test was composed of a constant pressure injection test phase with a pressure difference of 196 kPa, followed by a pressure recovery phase. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate control during the CHi phase was good and the data of the Chi phase are adequate for quantitative analysis. The injection rate decreased from 1.1 L/min at start of the CHi phase to 0.002 L/min at the end, indicating a low interval transmissivity. The slow recovery of the CHir phase indicates the presents of a closed system (no flow boundary). The test could only see the near wellbore properties.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a relatively flat derivative at early times and an upward trend at middle and late times, indicating a decrease of transmissivity at some distance from the borehole. The derivative of the CHir phase shows an upward trend, too. A two shell radial composite flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $4.1E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-11 to $8.0E-10 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth was not calculated due to the tight formation.

The analysis of the CHi and CHir phases show consistency in general. No further analysis is recommended.

6.1.7 Section 606.94–706.94 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.7 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting

homogeneous radial flow model was chosen for the analysis of the CHi phase. The CHir phase shows a downward trend at middle times and a flat derivative at late times indicating an increase of transmissivity at some distances from the borehole and a flow dimension of 2 (radial flow). A two shell composite flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $4.5E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $7.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,763.8 kPa.

The analyses of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivities, both phases show relatively good consistency. No further analysis is recommended.

6.1.8 Section 707.09-807.09 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 221 kPa. No hydraulic connection between test interval and the adjacent zones was observed The injection rate decreased from 19.1 L/min at start of the CHi phase to 7.5 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a downward trend at middle times and flat part at late times, indicating a higher transmissivity at some distance from the borehole and a flow dimension of 2 (radial flow). The derivative of the CHir phase shows a downward trend at, which is indicative for an increase of transmissivity or a change in flow dimension. A two shell radial composite flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $2.7E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-7 to $8.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,725.7 kPa.

The analysis of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

6.1.9 Section 807.21–907.21 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 191 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 18 mL/min at start of the CHi phase to 8 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a flat derivative at middle times and a downward trend at late times, indicating the transition to a zone of higher transmissivity at some distance from the borehole. A radial two shell composite flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at late times, which is typical for the transition from wellbore storage and skin dominated flow to pure formation flow. Because the formation flow stabilization was not observed, a radial homogeneous flow model with wellbore storage was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $5.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-9 to $9.0E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,700.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. But the general results are very similar and no further analysis is recommended.

6.1.10 Section 892.31–992.31 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.
The CHi phase was conducted using a pressure difference of 200 kPa. The pressure in the bottom zone rose by 129 kPa during the injection, indicating a connection to the interval. The injection rate decreased from 1.4 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relatively flat derivative at the beginning, which is indicative of a flow dimension of 2 (radial flow). The downward trend of the derivative at late times indicating whether an increase of transmissivity at some distance from the borehole or a change in flow dimension. The CHir phase derivative shows a downward trend at late times, too. A two shell radial composite flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $2.8E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-8 to $7.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,523.2 kPa.

The analysis of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

6.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX03 are presented and analysed.

6.2.1 Section 106.31-126.31 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. At the end of the injection phase, the system switched between the big and the small flowmeter, which seems to occur some misreadings. However, the CHi phase shows enough data points and is amenable for quantitative analysis. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.7 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relatively flat derivative which is indicative for a flow dimension of 2 (radial flow). The CHir phase derivative shows a downward trend at late times indicating whether the transition to a zone of higher transmissivity at some distances from the borehole or a change in flow dimension. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $2.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-8 to $5.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,214.5 kPa.

The analysis of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivity, both phases show consistency. No further analysis is recommended.

6.2.2 Section 126.35–146.35 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 16 mL/min at start of the CHi phase to 8 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a noisy but flat derivative, indicating a flow dimension of 2 (radial flow). For the analysis of the CHi phase an infinite acting homogeneous radial flow model was chosen. The derivative of the CHir phase does not allow for a specific determination of the flow dimension. However, the analysis was conducted using a homogeneous flow model with a flow dimension of two. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $8.2E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-9 to $2.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,406.5 kPa.

The analyses of the CHi and CHir phases show relatively good consistencies. No further analysis is recommended.

6.2.3 Section 146.39–166.39 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.1 L/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward trend at middle times and a relatively flat part at late times indicating an increase of transmissivity at some distance from the borehole. The CHir phase derivative shows a downward trend at middle times and late times, which is indicative for an increase of transmissivity or a change of flow dimension. A two shell radial composite flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $4.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-8 to $8.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,587.2 kPa.

The analysis of the CHi and CHir phases shows regarding the outer zone transmissivities good consistency. No further analysis is recommended.

6.2.4 Section 166.42–186.42 m, test no 1 and 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity (test no 1). Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted (test no 2). Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 328 mL/min at start of the CHi phase to 28 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows relatively fast recovery, but it is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase shows a noisy but relatively flat derivative, which is typical for a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. Mainly caused by the fast recovery and the resulting data quality, the derivative of the CHir phase does not allow for a specific determination of the flow dimension. The analysis was conducted using a homogeneous flow model with a flow dimension of two. The analysis is presented in Appendix 2-14.

Selected representative parameters

The recommended transmissivity of $4.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-8 to $9.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,788.8 kPa.

The analysis of the CHi and CHir phases show little inconsistencies, mainly caused by the fast recovery. No further analysis is recommended.

6.2.5 Section 186.42–206.42 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 33.9 L/min at start of the CHi phase to 15.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal derivative at middle and late times, indicating homogeneous radial flow geometry. The CHi phase was matches using a radial homogeneous flow model. The CHir phase derivative shows a slight stabilization (inflexion) at middles times, followed by an upward trend, typical for a decrease of transmissivity at some distance from the test section. For the analysis of the CHir phase a radial composite flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $9.2E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-6 to $2.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,974.0 kPa.

The analysis of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivity, both phases show good consistency. No further analysis is recommended.

6.2.6 Section 206.44-226.44 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 90 mL/min at start of the CHi phase to 11 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The CHi phase derivative shows stabilization at early times, followed by an unit slope upward trend at middle times and a new stabilization at a higher lever at late times. This behaviour indicates radial flow with decreasing transmissivity away from

the borehole. The CHir response is similar to the CHi response. The analysis for both phases was conducted using a radial two shell composite flow model. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $8.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-9 to $2.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,192.3 kPa.

The analysis of the CHi and CHir phases show very good consistency. No further analysis is recommended.

6.2.7 Section 226.48–246.48 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 208 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 35 mL/min at start of the CHi phase to 6 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The CHi phase derivative shows stabilization at early times, followed by a unit slope upward trend at middle times and a new stabilization at a higher lever at late times. This behaviour indicates radial flow with decreasing transmissivity away from the borehole. The derivative of the CHir phase is very similar to the CHi phase with the difference that the middle time upward trend is not so clear. Both phases were matched using a radial composite model with decreasing transmissivity away from the borehole. The analysis is presented in Appendix 2-17.

Selected representative parameters

The recommended transmissivity of $3.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-9 to $6.0E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,372.9 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.8 Section 241.48–261.48 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 226 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the injection regulation unit, which switched between the pump and the pressure vessel at the beginning, the data of the first part of the CHi phase is very noisy. However, the second part of the CHi phase can be analysed quantitively. The injection rate decreased from 1.3 L/min at start of the CHi phase to 0.2 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times which is indicative of a flow dimension of 2 (radial flow). Due to the poor data quality at early times, the CHi phase was analysed using an infinite acting homogeneous flow model, which matches the late time only. The derivative of the CHir phase shows an upward trend at late times and was analysed using a composite flow model with decreasing transmissivity away from the borehole. The choice of the model is dictated by the log-log derivative plot of the CHir phase. This is consistent with the negative skin derived from the CHi phase. The analysis is presented in Appendix 2-18.

Selected representative parameters

The recommended transmissivity of $5.5E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-8 to $1.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,495.2 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.9 Section 251.49–271.49 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence

consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 3.8 L/min at start of the CHi phase to 2.2 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early and middle times, followed by an upward trend at late times indicating whether a transition to a zone of lower transmissivity or a change in flow dimension. The derivative of the CHir phase shows a slight upward trend at middle times and stabilization at late times, which is typical for a flow dimension of 2 and a decrease of transmissivity away from the borehole. Both phases (CHi and CHir) were matched using a radial composite flow model. The analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of 2.7E-6 m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-7 to 4.0E-6 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,607.7 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.10 Section 271.54–291.54 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate control during the beginning of the CHi phase was not very good. However, the second part of the CHi phase can be analysed quantitively. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.1 L/min at the end, indicating a relatively medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward trend at early and middle times, followed by a short part that shows slight stabilization at late times indicating a flow dimension of 2 (radial flow). The CHi phase was matched using an infinite acting radial homogeneous flow model. The derivative of the CHir phase shows an upward trend at late times and was analysed using a composite flow model with decreasing transmissivity away from the borehole. The choice of the model is dictated by the log-log derivative plot of the CHir phase. This is consistent with the negative skin derived from the CHi phase. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $5.3E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-8 to $1.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,796.9 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.11 Section 286.56-306.56 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 253 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 196 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.3E-09 \text{ m}^3$ /Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows an upward trend at middle and late times, which is consistent with the transition to a lower transmissivity away from the borehole. Because the outer zone stabilisation was not observed, the derived transmissivity should be regarded as an upper limit. For the analysis a radial two shell composite flow model was used. The analysis is presented in Appendix 2-21.

Selected representative parameters

The recommended transmissivity of $1.3E-08 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase (outer zone). Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 6E-9 to $3E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.12 Section 306.58-326.58 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 61 mL/min at start of the CHi phase to 20 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, indicating a flow dimension of 2 (radial flow). The CHi phase was matched using a radial homogeneous flow model. The derivative of the CHir phase shows a radial flow stabilisation at late times. A radial homogeneous flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-22.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,124.8 kPa.

The analyses of the CHi and CHir phases show good consistencies. No further analysis is recommended.

6.2.13 Section 326.60–346.60 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. During the injection phase some oscillations in the flow rate occurred, while the pressure stayed stable. The reason for this is unknown. However, the CHi phase is amenable for quantitative analysis. The injection rate decreased from 80 mL/min at start of the CHi phase to 54 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows very fast recovery and the results should be regarded as order of magnitude only.

Additionally, a slug injection test was performed over night (test no 2).

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a horizontal stabilization at early and middle times, followed by a unit slope upward trend, indicating a decrease of transmissivity. The CHi phase was matched using a two shell radial composite flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with the high positive skin factor followed by stabilisation at late times, indicating radial flow. The CHir phase was matched using a radial homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $9.9E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-8 to $2.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,317.9 kPa.

The analysis of the CHi and CHir phases show inconsistencies, mainly caused by the fast recovery. No further analysis is recommended.

The analysis of the slug injection tests derived a transmissivity of $3.7E-8 \text{ m}^2/\text{s}$.

6.2.14 Section 346.62-366.62 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no

constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 19 mL was injected (derived from the replacement in the injection vessel). This injected volume produced a pressure increase of 218 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $8.7E-11 \text{ m}^3/Pa$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows a continuing upward trend, which can be attributed to the fact that the dimensionless test time is to small and the semi-logarithmic asymptotic solution was not achieved (due to the very small transmissivity). The Pi phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-24.

Selected representative parameters

The recommended transmissivity of $1.4E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be $1E-11 \text{ to } 3E-11 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.15 Section 366.65-386.65 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 220 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flowrate at the end of the injection phase, the data is noisy. However, the first part of the CHi phase can be analysed quantitively. The injection rate decreased from 28 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. The CHi phase derivative shows stabilization at early times, followed by a unit slope upward trend at middle times and a noisy but relatively stable part at a higher lever at late times. This behaviour indicates radial flow with decreasing transmissivity away from the borehole. The derivative of the CHir phase is compatible with the CHi phase. Both phases were matched using a radial composite model with decreasing transmissivity away from the borehole. The analysis is presented in Appendix 2-25.

Selected representative parameters

The recommended transmissivity of $1.1E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-10 to $3.0E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,684.0 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.16 Section 386.68-406.68 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 203 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The CHi phase shows no problems and can be analysed quantitative. The injection rate decreased from 515 mL/min at start of the CHi phase to 30 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery, but is still amenable for qualitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a horizontal stabilization at middle and late times. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with the high positive skin factor followed by stabilisation at late times, indicating radial flow. The analysis of the CHir phase was conducted using a homogeneous flow model with a flow dimension of two. The analysis is presented in Appendix 2-26.

Selected representative parameters

The recommended transmissivity of $6.3E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $2.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,891.2 kPa.

The analysis of the CHi and CHir phases show inconsistencies, mainly caused by the fast recovery. No further analysis is recommended.

6.2.17 Section 406.70-426.70 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 203 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 1.3 L/min at start of the CHi phase to 0.6 L/min at the end, indicating a relatively medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of both phases show a downward trend at late times, indicating whether an increase of transmissivity at some distances from the borehole or a change in flow dimension. For the analysis of the CHi and CHir phase a two shell composite flow model with flow dimension of two was chosen. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $6.3E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $8.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,080.5 kPa.

The analyses of the CHi and CHir phases show good consistencies. No further analysis is recommended.

6.2.18 Section 426.71–446.71 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 19 mL was injected (derived from the replacement in the injection vessel). This injected volume produced a pressure increase of 247 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for

the subsequent pressure recovery can be calculated to $7.7E-09 \text{ m}^3/\text{Pa}$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows an upward trend at early and middle times, followed by a slight stabilisation at late times, typical for a flow dimension of two. The Pi phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $6.4E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 3.0E-11 to $9.0E-11 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.19 Section 446.72-466.72 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the regulation unit, which had difficulties to regulate the flow at the beginning, the first part of the CHi phase is very noisy. However, the second part of the CHi phase is amenable for quantitative analysis. The injection rate decreased from 1.5 L/min at start of the CHi phase to 0.2 mL/min at the end, indicating a relatively moderate interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a relatively flat derivative at middle times and a downward trend at late times, which is indicative for the transition to a zone of higher transmissivity at some distance from the borehole. A radial two shell composite flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at late times, which is typical for the transition from wellbore storage and skin dominated flow to pure formation flow. The formation flow stabilization was not observed, a radial homogeneous flow model with wellbore storage was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-29.

Selected representative parameters

The recommended transmissivity of $3.0E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-8 to $5.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,451.7 kPa.

The analyses of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivities, both phases show good consistency. No further analysis is recommended.

6.2.20 Section 466.71-486.71 m, test no 1, injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, the pressure kept rising and no pulse recovery was observed. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-30.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.21 Section 486.70–506.70 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 12 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 184 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent

pressure recovery can be calculated to 6.3E–11 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows a continuing upward trend, which can be attributed to the fact that the dimensionless test time is to small and the semi-logarithmic asymptotic solution was not achieved (due to the very small transmissivity). The Pi phase was matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-31.

Selected representative parameters

The recommended transmissivity of $3.0E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be $2E-11 \text{ to } 7E-11 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.22 Section 506.71-526.71 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 25 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-32.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.23 Section 526.77–546.77 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 176 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 227 mL/min at start of the CHi phase to 28 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Additionally, a slug injection test was performed over night.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilization (although noisy) at early times, followed by a unit slope upward trend and a new stabilisation at a higher level at late times. This behaviour indicates radial flow with decreasing transmissivity away from the borehole. The derivative of the CHir phase is very similar to the CHi phase with the difference that the late time stabilisation is not observed. Both phases were matched using a radial composite flow model with decreasing transmissivity away from the borehole. The analysis is presented in Appendix 2-33.

Selected representative parameters

The recommended transmissivity of $7.0E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,223.3 kPa.

The analysis of the CHi and CHir phases shows relatively good consistencies. No further analysis is recommended.

The analysis of the slug injection tests derived a transmissivity of $7.1E-9 \text{ m}^2/\text{s}$.

6.2.24 Section 546.83-566.83 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 80 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-34. **Selected representative parameters**

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.25 Section 566.87-586.87 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 19 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 170 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 1.1E-10 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows an upward trend at middle times, followed by a stabilisation at late times, which is indicative for a flow dimension of two and a decrease of transmissivity at some distances from the borehole. The Pi phase was analysed using a two shell composite flow model with a flow dimension of 2. The analysis is presented in Appendix 2-35.

Selected representative parameters

The recommended transmissivity of $3.3E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase (outer zone). Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 1E-11 to $5E-11 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.26 Section 586.90-606.90 m, test no 1, injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for 20 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-36.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.27 Section 606.94–626.94 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 180 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 94 mL/min at start of the CHi phase to 20 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Additionally, a slug injection test was performed over night.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times and was analysed using a infinite acting homogeneous flow model with a flow dimension of 2. The CHir phase derivative shows an upward trend at late times indicating a decrease of transmissivity at some distance from the borehole. A composite radial flow model was chosen for the analysis of the CHir phase. This is consistent with the negative skin derived from the CHi phase. The CHir phase was analysed using a composite radial flow model. The analysis is presented in Appendix 2-37.

Selected representative parameters

The recommended transmissivity of $5.7E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-9 to $1.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,999.2 kPa.

The analysis of the CHi and CHir phases shows good consistencies. No further analysis is recommended.

The analysis of the slug injection test derived a transmissivity of $9.5E-9 \text{ m}^2/\text{s}$.

6.2.28 Section 626.97-646.97 m, test no 1, injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for 20 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-38.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.29 Section 646.99-666.99 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 234 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. During the injection phase the pressure in the interval was slightly increasing. However, the CHi phase is amenable for quantitative analysis. The injection rate decreased from 0.6 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a relatively moderate interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase show a flat derivative at middle and late times, which is typical for a flow dimension of two. The analysis of the CHi phase was conducted using an infinite acting homogeneous flow model. The derivative of the CHir phase shows a horizontal stabilization at middle times, followed by a downward trend at late times. This behaviour indicates whether a higher transmissivity away from the borehole or a change in flow dimension. For the analysis of the CHir phase a two shell composite flow model with flow dimension of two was chosen. The analysis is presented in Appendix 2-39.

Selected representative parameters

The recommended transmissivity of $4.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $8.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,381.6 kPa.

The analyses of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the chosen transmissivities, both phases show consistencies. No further analysis is recommended.

6.2.30 Section 667.02-687.02 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flow, the recorded flow rate is very noisy. However, the CHi phase is amenable for qualitative analysis. The injection rate decreased from 9 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The CHi phase derivative is noisy and does not allow flow model identification. The CHi phase was matched using a radial homogeneous flow model. The derivative of the CHir phase shows a unit slope downward trend at middle and late times. The formation flow stabilisation was not observed and a radial homogeneous flow model with wellbore storage and skin was used for the analyses of the CHir phase. The analysis is presented in Appendix 2-40.

Selected representative parameters

The recommended transmissivity of $6.1E-10 \text{ m}^2$ /s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-10 to $9.0E-10 \text{ m}^2$ /s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,569.9 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.31 Section 687.06-707.06 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 2 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 178 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $9.2E-12 \text{ m}^3/\text{Pa}$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude). Due to the tight section and the short pressure static recovery, the derived initial formation pressure (P_i) is uncertain. Both (wellbore storage and P_i) will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows a horizontal stabilisation at early and middle times, followed by a steep downward trend at late times. Due to the uncertainties of the derived initial formation pressure, only the early and middle time data was matched by using an infinite acting radial homogeneous flow model. The analysis is presented in Appendix 2-41.

Selected representative parameters

The recommended transmissivity of $6.6E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be $2E-11 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.32 Section 707.09-727.09 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 38 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-42.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.33 Section 727.13-747.13 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 206 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 15 L/min at start of the CHi phase to 7 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The CHi phase shows a noisy but relatively flat derivative, which is typical for a flow dimension of 2. The CHi phase was matched using an infinite acting radial homogeneous flow model. The derivative of the CHir phase shows stabilisation at middle times and a downward trends at late times, indicating whether a transition to a zone of higher transmissivity or a change in flow dimension. A composite flow model with a flow dimension of 2 was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-43.

Selected representative parameters

The recommended transmissivity of $5.9E-06 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-6 to $8.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,147.9 kPa.

The analysis of the CHi and CHir phases show some inconsistency regarding the chosen flow model. However, regarding the derived transmissivities, both phases show consistencies. No further analysis is recommended.

6.2.34 Section 747.15-767.15 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 238 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the slow flow regulation at the beginning of the injection phase, the first part is very noisy. However, the second part of the CHi phase is amenable for qualitative analysis. The injection rate decreased from 0.4 L/min at start of the CHi phase to 0.2 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows fast recovery and the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. The CHi phase shows a relatively flat derivative at late times, indicating a flow dimension of 2. For the analysis of the CHi phase a radial homogeneous flow model was chosen. The CHir response shows a steep downward trend at middle times, which is consistent with a high positive skin factor followed by a slight indication of radial flow stabilisation. The CHir phase was matched using a radial homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-44.

Selected representative parameters

The recommended transmissivity of $2.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-08 to $5.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,339.7 kPa.

The analysis of the CHi and CHir phases shows consistency, with the exception of the very high skin derived from the CHir phase, which may be caused by non-Darcy flow effects in the formation. No further analysis is recommended.

6.2.35 Section 762.16–782.16 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The CHi phase shows no problems and is adequate for quantitative analysis. The injection rate decreased from 0.8 L/min at start of the CHi phase to 0.5 L/min at the end, indicating a relatively medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The CHi phase shows a horizontal stabilisation at early times and an upward trend at middle times, followed by slight indication of radial flow stabilization at a higher level at late times, which is typical for a decrease of transmissivity away from the borehole. The analysis of the CHi phase was conducted by using a two shell composite flow model with a flow dimension of 2. The CHir response is consistent with the presence of a very large positive skin factor, which, in turn is not consistent with the response of the CHi phase. The derivative of the CHir phase shows a flat derivative at late times, indicating radial flow. The CHir phase was matched using a radial homogeneous flow model with wellbore storage and skin. The analysis is presented in Appendix 2-45.

Selected representative parameters

The recommended transmissivity of $9.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the Chi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-07 to $2.0E-6 \text{ m}^2/\text{s}$ (encompasses the outer zone transmissivity value derived from the CHi phase). The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHi phase using straight line extrapolation in the Horner plot to a value of 7,486.4 kPa.

The analysis of the CHi and CHir phases shows inconsistency, regarding the chosen flow models and the very high skin derived from the CHir phase, which is likely caused by the fast recovery. However, regarding the derived transmissivities, both phases show consistencies. No further analysis is recommended.

6.2.36 Section 777.17-797.17 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 216 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. The injection rate decreased from 41 mL/min at start of the CHi phase to 13 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivative of the CHi phase shows a horizontal stabilisation at early times and a slight indication of a downward trend at middle times, followed by radial flow stabilisation at late times, which is typical for a transition to a zone of higher transmissivity. The analysis of the CHi phase was conducted by using a radial composite flow model. The derivative of the CHir phase shows a downward trend at middle and late times, which is indicative for a change of transmissivity or flow dimension. The CHir phase was matched using a radial composite flow model with increasing transmissivity away from the borehole. The analysis is presented in Appendix 2-46.

Selected representative parameters

The recommended transmissivity of $6.4E-9 \text{ m}^2/\text{s}$ was derived from the analysis of the Chi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-09 to $2.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,627.0 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.2.37 Section 787.19-807.19 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 219 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flow, the recorded flow rate is very noisy. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 12 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase is very noisy due to the low flowrate. The CHi phase was matched using an infinite acting radial homogeneous flow model. The CHir response shows a unit slop downward trend of the derivative at late

times, which is typical for the transition from wellbore storage and skin dominated flow to pure formation flow. Because the formation flow stabilisation was not observed, a radial homogeneous flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-47.

Selected representative parameters

The recommended transmissivity of $6.2E-09 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-9 to $9.0E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,725.8 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.38 Section 807.21–827.21 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 216 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flow, the recorded flow rate is very noisy. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 94 mL/min at start of the CHi phase to 20 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Additionally, a slug injection test was performed over night.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy, but flat derivative at middle times, followed by an upward trend a late times and was matched using a composite radial flow model with decreasing transmissivity at some distance form the borehole. The derivative of the CHir phase shows a unit slope downward trend at late times, which is consistent with a high positive skin factor. The CHir phase was analysed using an infinite acting homogeneous flow model with a flow dimension of 2. The analysis is presented in Appendix 2-48.

Selected representative parameters

The recommended transmissivity of 7.0E–9 m²/s was derived from the analysis of the CHi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-9 to 2.0E-8 m²/s. The flow dimension

displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,919.6 kPa.

The analysis of the CHi and CHir phases shows some inconsistencies, regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistencies. No further analysis is recommended.

The analysis of the slug injection test derived a transmissivity of $8.2E-9 \text{ m}^2/\text{s}$.

6.2.39 Section 827.24-847.24 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 50 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-49.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.40 Section 847.26-867.26 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 58 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-50.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.41 Section 867.28–887.28 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 40 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-51.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.42 Section 887.31–907.31 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 208 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flow, the recorded flow rate is very noisy. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 7 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the derivative of the CHi phase is quite noisy and does not allow flow model identification. For the analysis of the CHi phase a homogeneous radial flow model was chosen. Due The CHir response shows a unit slop downward trend of the derivative at late times, which is typical for the transition from wellbore storage and skin dominated flow to pure formation flow. The CHir phase was analysed using an infinite acting homogeneous flow model with a flow dimension of 2. The analysis is presented in Appendix 2-52.

Selected representative parameters

The recommended transmissivity of $5.1E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-10 to $9.0E-10 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,682.4 kPa.

The analysis of the CHi and CHir phases shows good consistencies. No further analysis is recommended.

6.2.43 Section 907.33-927.33 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection between the test interval and the adjacent zones was observed. Due to the low flow, the recorded flow rate is very noisy. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 4 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is quite noisy and does not allow flow model identification. The CHi phase was matched using an infinite acting radial homogeneous flow model. The CHir response shows a unit slop downward trend of the derivative at late times, which is typical for the transition from wellbore storage and skin dominated flow to pure formation flow. Because the formation flow stabilisation was not observed, a radial homogeneous flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-53.

Selected representative parameters

The recommended transmissivity of $1.9E-09 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-10 to $3.0E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,890.7 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.44 Section 927.33-947.33 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 100 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-54.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.45 Section 947.34–967.34 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 5 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 203 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $2.7E-11 \text{ m}^3$ /Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the deconvolved Pi pressure shows an upward trend at middle times, followed by a slight indication of stabilisation at late times, which is indicative for a flow dimension of two and a decrease of transmissivity at some distances from the borehole. The Pi phase was analysed using a two shell composite flow model with a flow dimension of 2. The analysis is presented in Appendix 2-55.

Selected representative parameters

The recommended transmissivity of $2.0E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase (outer zone). Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 8E–11 to 4E–10 m²/s. The flow dimension displayed during the test is 2. No static pressure could be derived.

No further analysis recommended.

6.2.46 Section 967.39-987.39 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. During the injection phase a reaction was observed in the bottom zone, indicating a connection to the test interval or a pressure travel through the bottom packer to the bottom zone. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.7 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. The CHi phase derivative shows stabilization at middle times, followed by a unit slope upward trend at late times. This behaviour indicates radial flow with decreasing transmissivity away from the borehole. The CHir response is similar to the CHi response. The analysis for both phases was conducted using a radial two shell composite flow model. The analysis is presented in Appendix 2-57.

Selected representative parameters

The recommended transmissivity of $4.6E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $9.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 9,477.1 kPa.

The analysis of the CHi and CHir phases show very good consistency. No further analysis is recommended.

6.2.47 Section 972.41–992.41 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 25 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-57.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

7.1 Summary of results

Table 7-1. General test data from constant nead injection tests in	KLX03.
--	--------

Borehole secup (m)	Borehole seclow (m)	Date and time for test, start YYYYMMDD hh:mm	Date and time for test, stop YYYYMMDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	t _p (s)	t _⊦ (s)	p₀ (kPa)	p _i (kPa)	p _թ (kPa)	p _⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
106.31	206.31	20050505 11:05	20050505 15:38	2.81E-04	3.20E-04	1,800	1,800	1,965	1,984	2,185	2,010	9.8	CHi/CHir
206.44	306.44	20050505 17:25	20050505 20:54	3.78E-05	4.45E-05	1,800	7,200	2,939	2,939	3,137	2,951	11.3	CHi/CHir
306.58	406.58	20050506 09:03	20050506 11:02	6.37E-06	6.73E-06	1,800	1,800	3,891	3,889	4,094	3,890	12.8	CHi/CHir
406.70	506.70	20050506 12:36	20050506 15:17	1.25E-05	1.42E–05	1,800	3,600	4,849	4,847	5,065	4,848	14.4	CHi /CHir
506.71	606.71	20050508 15:36	20050508 17:31	2.50E-08	3.29E-07	1,800	2,100	5,802	5,808	6,004	5,988	16.0	CHi/CHir
606.94	706.94	20050507 08:53	20050507 10:49	6.10E-06	6.48E–06	1,800	1,800	6,765	6,765	6,975	6,767	17.5	CHi/CHir
707.09	807.09	20050507 12:26	20050507 14:24	1.25E-04	1.31E–04	1,800	1,800	7,728	7,727	7,948	7,730	19.0	CHi/CHir
807.21	907.21	20050507 16:19	20050507 22:08	1.43E–07	1.59E–07	1,800	14,400	8,705	8,707	8,898	8,702	20.6	CHi/CHir
892.31	992.31	20050508 09:43	20050508 11:40	9.87E-06	1.07E–05	1,800	1,800	9,527	9,523	9,723	9,532	22.0	CHi/CHir
106.31	126.31	20050510 08:00	20050510 09:49	1.19E–05	1.24E–05	1,200	1,200	1,217	1,215	1,428	1,218	8.5	CHi/CHir
126.35	146.35	20050510 10:39	20050510 13:09	1.50E-07	1.67E–07	1,200	2,400	1,408	1,411	1,613	1,411	8.8	CHi/CHir
146.39	166.39	20050510 13:54	20050510 15:47	1.40E-06	1.70E–06	1,200	1,200	1,600	1,602	1,803	1,609	9.1	CHi/CHir
166.42	186.42	20050510 17:57	20050510 19:08	4.83E-07	5.17E–07	1,200	600	1,790	1,790	1,997	1,789	9.4	CHi/CHir
186.42	206.42	20050511 08:01	20050511 09:37	2.62E-04	2.98E-04	1,200	1,200	1,979	1,980	2,181	1,990	9.7	CHi/CHir
206.44	226.44	20050511 10:16	20050511 12:26	1.83E–07	2.67E-07	1,200	2,400	2,173	2,176	2,373	2,204	10.0	CHi/CHir
226.48	246.48	20050511 13:38	20050511 15:19	1.17E–07	1.67E–07	1,200	1,200	2,363	2,367	2,575	2,400	10.3	CHi/CHir
241.48	261.48	20050511 16:06	20050511 17:51	2.73E-06	4.17E–06	1,200	1,200	2,506	2,509	2,735	2,556	10.5	CHi/CHir
251.49	271.49	20050511 18:23	20050511 21:31	3.70E-05	4.10E–05	1,200	7,200	2,603	2,603	2,803	2,610	10.7	CHi/CHir
271.54	291.54	20050512 07:53	20050512 09:59	2.17E-06	3.40E-06	1,200	2,400	2,791	2,797	2,998	2,832	11.0	CHi/CHir
286.56	306.56	20050512 10:41	20050512 13:02	#NV	#NV	1	5,820	2,936	2,943	3,139	2,946	11.2	Pi
306.58	326.58	20050512 13:43	20050512 16:07	3.17E-07	3.83E-07	1,200	1,800	3,127	3,137	3,344	3,140	11.6	CHi/CHir
326.60	346.60	20050512 17:04	20050512 18:29	9.00E-07	9.83E-07	1,200	1,200	3,319	3,318	3,524	3,321	11.9	CHi/CHir
346.62	366.62	20050513 09:07	20050513 10:43	#NV	#NV	1	3,060	3,508	3,514	3,731	3,691	12.2	Pi
Borehole secup (m)	Borehole seclow (m)	Date and time for test, start YYYYMMDD hh:mm	Date and time for test, stop YYYYMMDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	t _p (s)	t _⊧ (s)	p₀ (kPa)	p _i (kPa)	p _թ (kPa)	p _⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
--------------------------	---------------------------	--	---	--------------------------	--------------------------	-----------------------	-----------------------	-------------	-------------------------	-------------------------	-------------------------	-------------------------	---
366.65	386.65	20050513 11:25	20050513 13:50	6.67E-08	1.00E-07	1,200	3,600	3,701	3,708	3,928	3,705	12.5	CHi/CHir
386.68	406.68	20050513 14:52	20050513 16:18	4.97E-06	5.13E–06	1,200	900	3,893	3,891	4,094	3,891	12.8	CHi/CHir
406.70	426.70	20050513 17:00	20050513 18:32	9.28E-06	1.01E–05	1,200	1,200	4,085	4,084	4,287	4,086	13.2	CHi/CHir
426.71	446.71	20050513 19:14	20050514 03:57	#NV	#NV	1	28,800	4,278	4,280	4,527	4,272	13.5	Pi
446.72	466.72	20050514 08:09	20050514 10:03	3.83E-06	4.55E-06	1,200	1,800	4,464	4,461	4,671	4,461	13.8	CHi/CHir
466.71	486.71	20050514 10:44	20050514 11:50	0.00E+00	0.00E+00	0	0	4,657	#NV	#NV	#NV	14.1	#NV
486.70	506.70	20050514 12:38	20050514 14:21	#NV	#NV	1	3,660	4,849	4,850	5,034	4,852	14.4	Pi
506.71	526.71	20050514 15:02	20050514 16:02	0.00E+00	0.00E+00	0	0	5,041	#NV	#NV	#NV	14.7	#NV
526.77	546.77	20050514 16:44	20050514 18:32	4.17E-07	7.50E-07	1,200	1,200	5,233	5,236	5,412	5,291	15.0	CHi/Chir
546.83	566.83	20050515 09:51	20050515 10:53	0.00E+00	0.00E+00	0	0	5,423	#NV	#NV	#NV	15.3	#NV
566.87	586.87	20050515 11:37	20050515 13:21	#NV	#NV	1	3,600	5,615	5,625	5,796	5,733	15.6	Pi
586.90	606.90	20050515 14:04	20050515 15:12	0.00E+00	0.00E+00	0	0	5,809	#NV	#NV	#NV	15.9	#NV
606.94	626.94	20050515 15:52	20050515 17:47	3.00E-07	4.50E-07	1,200	1,800	6,001	6,005	6,185	6,032	16.3	CHi/CHir
626.97	646.97	20050515 18:36	20050515 19:41	0.00E+00	0.00E+00	0	0	6,192	#NV	#NV	#NV	16.6	#NV
646.99	666.99	20050516 08:32	20050516 10:04	6.80E-06	7.08E-06	1,200	1,200	6,380	6,381	6,615	6,381	16.9	CHi/CHir
667.02	687.02	20050516 10:50	20050516 13:29	1.67E–08	3.33E-08	1,200	1,800	6,572	6,580	6,793	6,584	17.2	CHi/CHir
687.06	707.06	20050516 14:22	20050516 16:13	#NV	#NV	1	3,600	6,766	6,809	6,988	6,805	17.5	Pi
707.09	727.09	20050516 17:00	20050516 17:59	0.00E+00	0.00E+00	0	0	6,959	#NV	#NV	#NV	17.8	#NV
727.13	747.13	20050516 18:39	20050516 21:53	1.17E–04	1.24E–04	1,200	7,200	7,153	7,149	7,355	7,149	18.2	CHi/CHir
747.15	767.15	20050517 08:15	20050517 09:48	3.62E-06	3.85E-06	1,200	1,200	7,340	7,339	7,577	7,339	18.4	CHi/CHir
762.16	782.16	20050517 10:32	20050517 11:59	8.83E-06	9.33E-06	1,200	900	7,486	7,485	7,685	7,485	18.6	CHi/CHir
777.17	797.17	20050517 12:47	20050517 14:27	2.17E-07	2.50E-07	1,200	1,200	7,633	7,634	7,850	7,635	18.9	CHi/CHir
787.19	807.19	20050517 15:08	20050517 16:53	6.67E-08	8.33E-08	1,200	1,800	7,730	7,731	7,950	7,732	19.0	CHi/CHir
807.21	827.21	20050517 17:44	20050517 19:08	1.33E-07	1.50E–07	1,200	900	7,925	7,924	8,140	7,923	19.4	CHi/CHir
827.24	847.24	20050518 08:16	20050518 09:16	0.00E+00	0.00E+00	0	0	8,116	#NV	#NV	#NV	19.7	#NV
847.26	867.26	20050518 09:59	20050518 11:02	0.00E+00	0.00E+00	0	0	8,311	#NV	#NV	#NV	20.0	#NV

Borehole secup (m)	Borehole seclow (m)	Date and time for test, start YYYYMMDD hh:mm	Date and time for test, stop YYYYMMDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	t _p (s)	t _⊧ (s)	p₀ (kPa)	p _i (kPa)	p (kPa)	p _⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
867.28	887.28	20050518 11:43	20050518 12:44	0.00E+00	0.00E+00	0	0	8,508	#NV	#NV	#NV	20.3	#NV
887.31	907.31	20050518 14:01	20050518 16:16	1.67E–08	3.33E-08	1,200	2,400	8,702	8,710	8,918	8,709	20.6	CHi/CHir
907.33	927.33	20050518 17:04	19000718 22:48	1.67E–08	3.33E-08	1,200	8,400	8,898	8,914	9,112	8,894	20.9	CHi/CHir
927.33	947.33	20050519 08:14	20050519 09:24	0.00E+00	0.00E+00	0	0	9,088	#NV	#NV	#NV	21.3	#NV
947.34	967.34	20050519 10:03	20050519 11:45	#NV	#NV	1	3,540	9,285	9,289	9,545	9,299	21.6	Pi
967.39	987.39	20050519 12:24	20050519 13:54	1.10E–05	1.15E–05	1,200	1,200	9,480	9,477	9,677	9,479	22.0	CHi/CHir
972.41	992.41	20050519 14:26	20050519 15:28	0.00E+00	0.00E+00	0	0	9,530	#NV	#NV	#NV	22.0	#NV

#NV: not analysed
CHi: Constant Head injection phase
CHir: Recovery phase following the constant head injection phase
Pi: Pulse injection
Si: Slug injection

Interval	position	Stationary	flow	Transient	analysis													
		parameters	6	Flow regi	me	Formation	paramete	rs									Static co	nditions
up	low	Q/s	Тм	Perturb	Recovery	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Tτ	T _{TMIN}	T _{TMAX}	С	ξ	dt ₁	dt ₂	p*	\mathbf{h}_{wif}
m btoc	m btoc	m²/s	m²/s	phase	phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	-	min	min	kPa	masl
106.31	206.31	1.37E-05	1.78E–05	2	WBS22	1.0E–05	#NV	3.7E-05	1.1E–05	1.0E–05	8.0E-06	3.0E-05	5.4E-09	-4.1	1.63	26.57	1,977.8	11.34
206.44	306.44	1.87E-06	2.44E-06	2	WBS22	1.3E–06	#NV	1.4E-06	2.0E-06	1.4E-06	8.0E-07	4.0E-06	8.6E-10	-3.4	0.20	1.58	2,951.0	13.69
306.58	406.58	3.05E-07	3.97E-07	2	WBS2	6.2E–07	#NV	1.4E-06	#NV	6.2E–07	4.0E-07	9.0E-07	4.2E-10	5.5	1.00	27.33	3,888.4	12.26
406.70	506.70	5.62E-07	7.32E-07	22	WBS22	1.4E–07	3.9E-07	5.0E-07	9.1E-07	3.9E-07	1.0E–07	7.0E–07	4.4E-09	-4.3	6.55	21.34	4,843.6	12.44
506.71	606.71	1.25E-09	1.63E–09	22	WBS22	2.8E-08	4.1E–10	3.7E-08	1.5E–08	4.1E–10	8.0E-11	8.0E-10	3.7E–10	-2.0	#NV	#NV	#NV	#NV
606.94	706.94	2.85E-07	3.71E–07	2	WBS22	4.5E-07	#NV	2.2E-07	8.0E-07	4.5E-07	2.0E-07	7.0E–07	3.6E-10	2.8	1.32	28.10	6,763.8	13.71
707.09	807.09	5.56E-06	7.24E-06	22	WBS22	4.6E-06	1.1E–05	2.7E-06	1.0E-05	2.7E-06	9.0E-07	8.0E-06	2.3E-09	-3.9	0.19	0.85	7,725.7	14.32
807.21	907.21	7.36E-09	9.59E-09	22	WBS2	5.0E-09	9.9E-09	2.5E-08	#NV	5.0E-09	3.0E-09	9.0E–09	2.6E-10	-0.1	0.45	2.05	8,700.4	16.16
892.31	992.31	4.84E-07	6.30E-07	22	WBS22	4.6E-07	8.3E-07	2.8E-07	9.3E-07	2.8E-07	8.0E-08	7.0E–07	6.2E–11	-2.7	0.79	2.31	9,523.2	17.13
106.31	126.31	5.50E-07	5.75E-07	2	WBS22	6.2E-07	#NV	2.1E–07	9.9E-07	2.1E-07	8.0E-08	5.0E–07	1.0E–10	-3.0	0.19	0.65	1,214.5	10.82
126.35	146.35	7.28E-09	7.62E–09	2	WBS2	8.2E-09	#NV	1.5E–08	#NV	8.2E-09	4.0E-09	2.0E-08	6.0E-11	2.4	0.23	17.48	1,406.5	11.04
146.39	166.39	6.83E-08	7.15E–08	22	WBS22	3.6E-09	2.9E-08	1.3E–08	4.5E-08	4.5E-08	1.0E-08	8.0E-08	5.4E-10	-3.8	#NV	#NV	1,587.2	10.10
166.42	186.42	2.29E-08	2.40E-08	2	WBS2	4.1E-08	#NV	1.4E–07	#NV	4.1E-08	2.0E-08	9.0E–08	4.5E–11	5.8	1.15	15.49	1,788.8	11.29
186.42	206.42	1.28E-05	1.34E–05	2	WBS22	9.2E-06	#NV	3.3E-05	9.6E-06	9.2E-06	6.0E-06	2.0E-05	1.6E–09	-3.9	1.60	20.00	1,974.0	10.84
206.44	226.44	9.13E–09	9.55E-09	22	WBS22	8.8E-09	3.5E-09	8.4E-09	5.8E-09	8.4E-09	5.0E-09	2.0E-08	5.9E–11	-1.5	0.53	1.73	2,192.3	13.73
226.48	246.48	5.50E-09	5.76E-09	22	WBS22	8.2E-09	2.3E-09	6.6E–09	3.7E-09	3.7E-09	1.0E-09	6.0E–09	5.5E–11	0.3	2.90	17.89	2,372.9	12.76
241.48	261.48	1.19E–07	1.24E-07	2	WBS22	3.0E-08	#NV	4.2E-07	5.5E-08	5.5E-08	3.0E-08	1.0E–07	7.2E–10	-2.8	12.08	19.70	2,495.2	10.72
251.49	271.49	1.81E–06	1.90E-06	22	WBS22	2.1E-06	1.1E–06	2.7E-06	2.1E-06	2.7E-06	9.0E-07	4.0E-06	1.0E-09	-0.1	1.00	2.63	2,607.7	12.51
271.54	291.54	1.06E–07	1.11E–07	2	WBS2	1.6E–08	#NV	3.7E-07	5.3E-08	5.3E-08	3.0E-08	1.0E–07	2.8E-11	-2.9	#NV	#NV	2,796.9	12.40
286.56	306.56	#NV	#NV	#NV	WBS22	#NV	#NV	1.8E–07	1.3E–08	1.3E–08	6.0E-09	3.0E-08	1.3E–09	-3.5	#NV	#NV	#NV	#NV
306.58	326.58	1.50E-08	1.57E–08	2	WBS2	1.1E–08	#NV	1.4E–08	#NV	1.1E–08	7.0E-09	3.0E-08	1.2E–10	-0.2	0.97	17.92	3,124.8	11.91
326.60	346.60	4.29E-08	4.48E-08	22	WBS2	9.9E-08	2.7E-08	1.6E–07	#NV	9.9E-08	6.0E-08	2.0E-07	2.1E–11	7.5	0.19	1.69	3,317.9	12.20
346.62	366.62	#NV	#NV	#NV	WBS2	#NV	#NV	1.4E–11	#NV	1.4E–11	1.0E–11	3.0E–11	8.7E–11	-0.9	15.07	35.13	#NV	#NV
366.65	386.65	2.97E-09	3.11E–09	22	WBS2	2.0E-09	7.5E–10	3.8E-09	1.1E–09	1.1E–09	8.0E-10	3.0E–09	7.5E–11	-1.0	#NV	#NV	3,684.0	10.74

Table 7-2. Results from analysis of constant head tests in KLX03.	
---	--

Interval	position	Stationary	flow	Transient	tanalysis													
		parameters	5	Flow regi	me	Formatior	n paramete	rs									Static co	nditions
up	low	Q/s	Тм	Perturb	Recovery	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Tτ	T _{TMIN}	T _{TMAX}	С	ξ	dt₁	dt ₂	р*	h _{wif}
m btoc	m btoc	m²/s	m²/s	phase	phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	-	min	min	kPa	masl
386.68	406.68	2.40E-07	2.51E-07	2	WBS2	6.3E-07	#NV	1.1E-06	#NV	6.3E-07	2.0E-07	2.0E-06	1.5E–10	9.4	1.10	12.64	3,891.2	12.45
406.70	426.70	4.49E-07	4.69E-07	22	WBS22	2.4E-07	7.1E–07	3.9E-07	6.3E-07	6.3E–07	2.0E-07	8.0E–07	9.1E–10	-1.1	#NV	#NV	4,080.5	12.33
426.71	446.71	#NV	#NV	#NV	WBS2	#NV	#NV	6.4E–11	#NV	6.4E–11	3.0E-11	9.0E–11	7.7E–11	-1.8	89.48	210.58	#NV	#NV
446.72	466.72	1.79E–07	1.87E–07	22	WBS2	1.4E–07	4.4E-07	3.0E-07	#NV	3.0E-07	9.0E-08	5.0E-07	3.8E-09	2.6	#NV	#NV	4,451.7	11.33
466.71	486.71	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
486.70	506.70	#NV	#NV	#NV	WBS2	#NV	#NV	3.0E-11	#NV	3.0E-11	2.0E-11	7.0E–11	6.3E–11	-3.9	#NV	#NV	#NV	#NV
506.71	526.71	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
526.77	546.77	2.32E-08	2.43E-08	22	WBS22	6.8E–08	7.0E-09	1.1E–07	6.2E-09	7.0E-09	1.0E-09	3.0E-08	5.9E–11	-0.4	6.75	10.9	5,223.3	12.26
546.83	566.83	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
566.87	586.87	#NV	#NV	#NV	WBS22	#NV	#NV	3.4E-10	3.3E–11	3.3E–11	1.0E-11	5.0E–11	1.1E–10	-2.0	26.6	54.9	#NV	#NV
586.90	606.90	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
606.94	626.94	1.64E-08	1.71E–08	2	WBS22	5.7E-09	#NV	6.7E–09	5.0E-09	5.7E-09	3.0E-09	1.0E–08	1.6E–10	-2.9	5.77	9.43	5,999.2	13.53
626.97	646.97	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
646.99	666.99	2.85E-07	2.98E-07	2	WBS22	5.6E–07	#NV	4.9E-07	1.3E–06	4.9E-07	2.0E-07	8.0E–07	7.8E–11	4.7	0.32	0.68	6,381.6	13.59
667.02	687.02	7.68E-10	8.03E-10	2	WBS2	3.1E–10	#NV	6.1E–10	#NV	6.1E–10	3.0E-10	9.0E-10	3.0E-11	0.6	#NV	#NV	6,569.9	13.31
687.06	707.06	#NV	#NV	#NV	WBS2	#NV	#NV	6.6E–11	#NV	6.6E–11	2.0E-11	8.0E–11	9.1E–12	1.3	1.39	8.33	#NV	#NV
707.09	727.09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E-13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
727.13	747.13	5.58E-06	5.84E-06	2	WBS22	9.3E-06	#NV	1.1E–06	5.9E-06	5.9E-06	2.0E-06	8.0E-06	7.5E–10	-5.1	#NV	#NV	7,147.9	13.76
747.15	767.15	1.5E–07	1.6E–07	2	WBS2	2.1E–07	#NV	9.5E-07	#NV	2.1E–07	9.0E-08	5.0E–07	5.2E–11	2.2	1.95	13.7	7,339.7	13.84
762.16	782.16	4.33E-07	4.53E-07	22	WBS2	9.9E-07	5.2E–07	2.8E-06	#NV	9.9E-07	4.0E-07	2.0E-06	5.5E–11	6.2	0.38	0.92	7,486.4	14.18
777.17	797.17	9.8E–09	1.0E–08	22	WBS22	6.4E-09	9.1E–09	5.2E-09	1.6E–08	6.4E-09	3.0E-09	1.0E–08	5.2E–11	-0.7	0.58	1.93	7,627.0	13.90
787.19	807.19	2.99E-09	3.12E-09	2	WBS2	2.6E-09	#NV	6.2E09	#NV	6.2E–09	3.0E-09	9.0E-09	5.1E–11	6.0	#NV	#NV	7,725.8	14.23
807.21	827.21	6.06E-09	6.33E-09	22	WBS2	7.0E-09	3.9E-09	2.3E-08	#NV	7.0E-09	5.0E-09	2.0E-08	5.0E–11	1.5	0.33	1.4	7,919.6	14.49
827.24	847.24	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E-13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV

Interval	position	Stationary	flow	Transient	analysis													
		parameters	6	Flow regi	me	Formation	paramete	rs									Static co	onditions
up	low	Q/s	Тм	Perturb	Recovery	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Tτ	T _{TMIN}	T _{TMAX}	С	ξ	dt₁	dt₂	р*	\mathbf{h}_{wif}
m btoc	m btoc	m²/s	m²/s	phase	phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	-	min	min	kPa	masl
847.26	867.26	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E-13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
867.28	887.28	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
887.31	907.31	7.86E-10	8.22E-10	2	WBS2	5.1E–10	#NV	5.1E–10	#NV	5.1E–10	4.0E-10	9.0E-10	4.0E-11	0.0	#NV	#NV	8,682.4	14.22
907.33	927.33	8.26E-10	8.64E-10	2	WBS2	8.4E-10	#NV	1.9E–09	#NV	1.9E–09	8.0E-10	3.0E-09	3.8E-11	3.7	#NV	#NV	8,890.7	15.95
927.33	947.33	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
947.34	967.34	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-08	2.0E-10	2.0E-10	8.0E-11	4.0E-10	2.6E-11	1.5	#NV	#NV	#NV	#NV
967.39	987.39	5.4E–07	5.6E–07	22	WBS22	4.6E-07	1.3E–06	3.1E–07	1.3E–06	4.6E-07	2.0E-07	9.0E-07	5.0E-10	-1.0	0.3	1.75	9,477.1	17.22
972.41	992.41	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E-13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV

Notes

1 T1 and T2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one T value is reported, in case a two zones composite model was recommended both T1 and T2 are given T_T denotes the recommended transmissivity.

2 The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHIR phase using straight line or type-curve extrapolation.

3 The flow regime description refers to The recommended model used in The transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.

Figure 7-1. Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injectiontests, freshwater head extrapolated.

Figure 7-2. Results summary – profile of transmissivity.

Figure 7-3. Results summary – profile of hydraulic conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that all of the steady state derived transmissivities differ by less than one order of magnitude from the transmissivities derived from the transient analysis. The values of the steady state analysis are in the most cases slightly higher than the recommended values.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the

Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx 5E-10 1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility of 7E-10 1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to two orders of magnitude larger than the theoretical values. This phenomenon was already observed at the previous boreholes. A three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by three orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a series of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.5.7.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

In some cases, no injection test were performed due to the fact that the preliminary pulse was showing a slow recovery indicating a low transmissivity. In such cases the preliminary pulse injection (Pi) was prolonged and analysed. Altogether 7 Pulse injection tests were performed and the recommended transmissivities of these sections range between 1.4E–11 m²/s and 2.0E–10 m²/s, excluding one transmissivity value of 1.3e–8 m²/s. Recommended transmissivities of the injection tests range between 1.0E–5 m²/s and 4.2E–10 m²/s. Additionaly, 4 slug injection tests (Si) were performed in tight sections over night. The analyses of the Si-phases and the former conducted injection tests in the corresponding sections show in the most cases concistence.

The transmissivity profiles in Figures 7-1 and 7-2 show transmissivities that ranges between $2.8E-7 \text{ m}^2/\text{s}$ and $1.0E-5 \text{ m}^2/\text{s}$. An exception are the intervals from 506.71–606.71 m and 807.21–907.21 m with a transmissivity of $4.2E-10 \text{ m}^2/\text{s}$ and $5.0E-9 \text{ m}^2/\text{s}$, respectively. For the 20 m sections, the transmissivities range from $1.4E-11 \text{ m}^2/\text{s}$ to $9.2E-6 \text{ m}^2/\text{s}$ (excluding skip tests).

Five 20 m sections show larger transmissivities than the appropriate longer interval. In four of the five cases, the differences are small and are covered by the confidence range. This can be explained with crossflow and connections to the adjacant zones. The 20 m section from 526.77 m to 546.77 m shows a transmissivity one order of a magnitude higher than the covering 100 m section. For the analysis of both tests a composite flow model with decreasing transmissivity away from the test section was choosen. No radial flow was reached at late times and the derived transmissivities should be seen as an upper limit of the transmissivities.

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in metres above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.5.6.

The head profile shows at a depth from 106 m to 606 m a freshwater head oscillating between 10.1 and 13.7 masl. Down to the following 1,000 m the freshwater head increase from 13 m to 17 m. This can be explained by higher salinity of the water down from c 600 m.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity, Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

8.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In few cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as 1E–8 m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed. Those analyses are presented in Appendix 2.

9 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. – Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application. – Ground Water Sept–Oct 1997, pp 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. – SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. - Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. – Third World Pet. Congress, E.J. Brill, Leiden II, pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. – Transactions, American Geophysical Union, Volume 33, No 4, pp 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. – Water Resour. Res. v. 25, no 7, pp 1,591–1,602.

Ramey H J Jr, Agarwal R G, Martin R G I, 1975. Analysis of "Slug Test" or DST flow Period data. – J. Can. Pet. Tec., September 1975.

SKB, **2001a.** Site investigations: Investigation methods and general execution programme. SKB TR-01-29, Svensk Kärnbränslehantering AB.

SKB, **2001b.** Geovetenskapligt program för platsundersökning vid Simpevarp. SKB R-01-44, Svensk Kärnbränslehantering AB.

SKB, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

Borehole: KLX03

APPENDIX 1

File Description Table

HYDRO	DTES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX03		
TEST-	AND	FILEF	PROTO	COL	Testorder dated : 2005-05-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
2005-05-05	11:05	106.31	206.31	KLX03_0106.31_200505051105.ht2	KLX03_106.31-206.31_050505_1_CHir_Q_r.csv	CHir		2005-05-05	
2005-05-05	17:25	206.44	306.44	KLX03_0206.44_200505051725.ht2	KLX03_206.44-306.44_050505_1_CHir_Q_r.csv	CHir		2005-05-06	
2005-05-06	09:03	306.58	406.58	KLX03_0306.58_200505060903.ht2	KLX03_306.58-406.58_050506_1_CHir_Q_r.csv	CHir		2005-05-06	
2005-05-06	12:36	406.70	506.70	KLX03_0406.70_200505061236.ht2	KLX03_406.70-506.70_050506_1_CHir_Q_r.csv	CHir		2005-05-06	
2005-05-06	16:53	506.71	606.71	KLX03_0506.71_200505061653.ht2	KLX03_506.71-606.71_050506_1_Pi_Q_r.csv	Pi		2005-05-07	
2005-05-07	08:53	606.94	706.94	KLX03_0606.94_200505070853.ht2	KLX03_606.94-706.94_050507_1_CHir_Q_r.csv	CHir		2005-05-07	
2005-05-07	12:26	707.09	807.09	KLX03_0707.09_200505071226.ht2	KLX03_707.09-807.09_050507_1_CHir_Q_r.csv	CHir		2005-05-07	
2005-05-07	16:19	807.21	907.21	KLX03_0807.21_200505071619.ht2	KLX03_807.21-907.21_050507_1_CHir_Q_r.csv	CHir		2005-05-08	
2005-05-08	09:43	892.31	992.31	KLX03_0892.31_200505080943.ht2	KLX03_892.31-992.31_050508_1_CHir_Q_r.csv	CHir		2005-05-08	
2005-05-08	15:36	506.71	606.71	KLX03_0506.71_200505081536.ht2	KLX03_506.71-606.71_050508_2_CHir_Q_r.csv	CHir		2005-05-08	
2005-05-10	08:00	106.31	126.31	KLX03_0106.31_200505100800.ht2	KLX03_106.31-126.31_050510_1_CHir_Q_r.csv	CHir		2005-05-10	
2005-05-10	10:39	126.35	146.35	KLX03_0126.35_200505101039.ht2	KLX03_126.35-146.35_050510_1_CHir_Q_r.csv	CHir		2005-05-10	
2005-05-10	13:54	146.39	166.39	KLX03_0146.39_200505101354.ht2	KLX03_146.39-166.39_050510_1_CHir_Q_r.csv	CHir		2005-05-10	
2005-05-10	16:43	166.42	186.42	KLX03_0166.42_200505101643.ht2	KLX03_166.42-186.42_050510_1_CHir_Q_r.csv	CHir		2005-05-10	
2005-05-10	17:57	166.42	186.42	KLX03_0166.42_200505101757.ht2	KLX03_166.42-186.42_050510_2_CHir Q r.csv	CHir		2005-05-11	

HYDRO	OTES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX03		
TEST- A	AND	FILE	PROTO	COL	Testorder dated : 2005-05-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	_
2005-05-10	19:10	166.42	186.42	KLX03_0166.42_200505101910.ht2	KLX03_166.42-186.42_050510_3_Si_Q_r.csv	Si		2005-05-11	
2005-05-11	08:01	186.42	206.42	KLX03_0186.42_200505110801.ht2	KLX03_186.42-206.42_050511_1_CHir_Q_r.csv	CHir		2005-05-11	
2005-05-11	10:16	206.44	226.44	KLX03_0206.44_200505111016.ht2	KLX03_206.44-226.44_050511_1_CHir_Q_r.csv	CHir		2005-05-11	
2005-05-11	13:38	226.48	246.48	KLX03_0226.48_200505111338.ht2	KLX03_226.48-246.48_050511_1_CHir_Q_r.csv	CHir		2005-05-11	
2005-05-11	16:06	241.48	261.48	KLX03_0241.48_200505111606.ht2	KLX03_241.48-261.48_050511_1_CHir_Q_r.csv	CHir		2005-05-11	
2005-05-11	18:23	251.49	271.49	KLX03_0251.49_200505111823.ht2	KLX03_251.49-271.49_050511_1_CHir_Q_r.csv	CHir		2005-05-12	
2005-05-12	07:53	271.54	291.54	KLX03_0271.54_200505120753.ht2	KLX03_271.54-291.54_050512_1_CHir_Q_r.csv	CHir		2005-05-12	
2005-05-12	10:41	286.56	306.56	KLX03_0286.56_200505121041.ht2	KLX03_286.56-306.56_050512_1_Pi_Q_r.csv	Pi		2005-05-12	
2005-05-12	13:43	306.58	326.58	KLX03_0306.58_200505121343.ht2	KLX03_306.58-326.58_050512_1_CHir_Q_r.csv	CHir		2005-05-12	
2005-05-12	17:04	326.60	346.60	KLX03_0326.60_200505121704.ht2	KLX03_326.60-346.60_050512_1_CHir_Q_r.csv	CHir		2005-05-12	
2005-05-12	18:31	326.60	346.60	KLX03_0326.60_200505121831.ht2	KLX03_326.60-346.60_050512_2_Si_Q_r.csv	Si		2005-05-13	
2005-05-13	09:07	346.62	366.62	KLX03_0346.62_200505130907.ht2	KLX03_346.62-366.62_050513_1_Pi_Q_r.csv	Pi		2005-05-13	
2005-05-13	11:25	366.65	386.65	KLX03_0366.65_200505131125.ht2	KLX03_366.65-386.65_050513_1_CHir_Q_r.csv	CHir		2005-05-13	
2005-05-13	14:52	386.68	406.68	KLX03_0386.68_200505131452.ht2	KLX03_386.68-406.68_050513_1_CHir_Q_r.csv	CHir		2005-05-13	
2005-05-13	17:00	406.70	426.70	KLX03_0406.70_200505131700.ht2	KLX03_406.70-426.70_050513_1_CHir_Q_r.csv	CHir		2005-05-13	
2005-05-13	19:14	426.71	446.71	KLX03_0426.71_200505131914.ht2	KLX03_426.71-446.71_050513_1_Pi_Q_r.csv	Pi		2005-05-14	

HYDRO) TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX03		
TEST- A	AND	FILE	PROTO	OCOL	Testorder dated : 2005-05-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	_
2005-05-14	08:09	446.72	466.72	KLX03_0446.72_200505140809.ht2	KLX03_446.72-466.72_050514_1_CHir_Q_r.csv	CHir		2005-05-14	
2005-05-14	10:44	466.71	486.71	KLX03_0466.71_200505141044.ht2	KLX03_466.71-486.71_050514_1_Pi_Q_r.csv	Pi		2005-05-14	
2005-05-14	12:38	486.7	506.7	KLX03_0486.70_200505141238.ht2	KLX03_486.70-506.70_050514_1_Pi_Q_r.csv	Pi		2005-05-14	
2005-05-14	15:02	506.71	526.71	KLX03_0506.71_200505141502.ht2	KLX03_506.71-526.71_050514_1_CHir_Q_r.csv	CHir		2005-05-14	
2005-05-14	16:44	526.77	546.77	KLX03_0526.77_200505141644.ht2	KLX03_526.77-546.77_050514_1_CHir_Q_r.csv	CHir		2005-05-14	
2005-05-14	18:52	526.77	546.77	KLX03_0526.77_200505141852.ht2	KLX03_526.77-546.77_050514_2_Si_Q_r.csv	Si		2005-05-15	
2005-05-15	09:51	546.83	566.83	KLX03_0546.83_200505150951.ht2	KLX03_546.83-566.83_050514_1_CHir_Q_r.csv	CHir		2005-05-15	
2005-05-15	11:37	566.87	586.87	KLX03_0566.87_200505151137.ht2	KLX03_566.87-586.87_050515_1_Pi_Q_r.csv	Pi		2005-05-15	
2005-05-15	14:04	586.90	606.90	KLX03_0586.90_200505151404.ht2	KLX03_586.90-606.90_050515_1_Pi_Q_r.csv	Pi		2005-05-15	
2005-05-15	15:52	606.94	626.94	KLX03_0606.94_200505151552.ht2	KLX03_606.94-626.94_050515_1_CHir_Q_r.csv	CHir		2005-05-15	
2005-05-15	18:36	626.97	646.97	KLX03_0626.97_200505151836.ht2	KLX03_626.97-646.97_050515_1_Pi_Q_r.csv	Pi		2005-05-15	
2005-05-15	20:19	606.94	626.94	KLX03_0606.94_200505152019.ht2	KLX03_606.94-626.94_050515_2_Si_Q_r.csv	Si		2005-05-16	
2005-05-16	08:32	646.99	666.99	KLX03_0646.99_200505160832.ht2	KLX03_646.99-666.99_050516_1_CHir_Q_r.csv	CHir		2005-05-16	
2005-05-16	10:50	667.02	687.02	KLX03_0667.02_200505161050.ht2	KLX03_667.02-687.02_050516_1_CHir_Q_r.csv	CHir		2005-05-16	
2005-05-16	14:22	687.06	707.06	KLX03_0687.06_200505161422.ht2	KLX03_687.06-707.06_050516_1_Pi_Q_r.csv	Pi		2005-05-16	

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX03		
TEST- A	AND	FILE	PROTO	OCOL	Testorder dated : 2005-05-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	_
2005-05-16	17:00	707.09	727.09	KLX03_0707.09_200505161700.ht2	KLX03_707.09-727.09_050516_1_CHir_Q_r.csv	CHir		2005-05-16	
2005-05-16	18:39	727.13	747.13	KLX03_0727.13_200505161839.ht2	KLX03_727.13-747.13_050516_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	08:15	747.15	767.15	KLX03_0747.15_200505170815.ht2	KLX03_747.15-767.15_050517_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	10:32	762.16	782.16	KLX03_0762.16_200505171032.ht2	KLX03_762.16-782.16_050517_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	12:47	777.17	797.17	KLX03_0777.17_200505171247.ht2	KLX03_777.17-797.17_050517_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	15:08	787.19	807.19	KLX03_0787.19_200505171508.ht2	KLX03_787.19-807.19_050517_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	17:44	807.21	827.21	KLX03_0807.21_200505171744.ht2	KLX03_807.21-827.21_050517_1_CHir_Q_r.csv	CHir		2005-05-17	
2005-05-17	19:12	807.21	827.21	KLX03_0807.21_200505171912.ht2	KLX03_807.21-827.21_050517_2_Si_Q_r.csv	Si		2005-05-18	
2005-05-18	08:16	827.24	847.24	KLX03_0827.24_200505180816.ht2	KLX03_827.24-847.24_050518_1_CHir_Q_r.csv	CHir		2005-05-18	
2005-05-18	09:59	847.26	867.26	KLX03_0847.26_200505180959.ht2	KLX03_847.26-867.26_050518_1_CHir_Q_r.csv	CHir		2005-05-18	
2005-05-18	11:43	867.28	887.28	KLX03_0867.28_200505181143.ht2	KLX03_867.28-887.28_050518_1_CHir_Q_r.csv	CHir		2005-05-18	
2005-05-18	14:01	887.31	907.31	KLX03_0887.31_200505181401.ht2	KLX03_887.31-907.31_050518_1_CHir_Q_r.csv	CHir		2005-05-18	
2005-05-18	17:04	907.33	927.33	KLX03_0907.33_200505181704.ht2	KLX03_907.33-927.33_050518_1_CHir_Q_r.csv	CHir		2005-05-19	
2005-05-19	08:14	927.33	947.33	KLX03_0927.33_200505190814.ht2	KLX03_927.33-947.33_050519_1_CHir_Q_r.csv	CHir		2005-05-19	
2005-05-19	10:03	947.34	967.34	KLX03_0947.34_200505191003.ht2	KLX03_947.34-967.34_050519_1_Pi_Q_r.csv	Pi		2005-05-19	
2005-05-19	12:24	967.39	987.39	KLX03 0967.39 200505191224.ht2	KLX03 967.39-987.39 050519 1 CHir Q r.csv	CHir		2005-05-19	

HYDRO	DTES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX03							
TEST- A	AND	FILEF	PROTO	DCOL	Testorder dated : 2005-05-05							
Teststart	eststart Interval boundaries Nam				of Datafiles	Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)				
2005-05-19	14:26	972.41	992.41	KLX03_0972.41_200505191426.ht2	KLX03_972.41-992.41_050519_1_CHir_Q_r.csv	CHir		2005-05-19				

Test 106.31 – 206.31 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 206.44 – 306.44 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 306.58 – 406.58 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 406.70 – 506.70 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 506.71 – 606.71 m

Pressure and flow rate vs. time; cartesian plot

10

10

,0d 10

PI phase; log-log match

Test 506.71 – 606.71 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 606.94 – 706.94 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 707.09 – 807.09 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 807.21 – 907.21 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 892.31 – 992.31 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 106.31 – 126.31 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 126.35 – 146.35 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Page 2-12/3

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 146.39 – 166.39 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 166.42 – 186.42 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 186.42 – 206.42 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 206.44 – 226.44 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 226.48 – 246.48 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 241.48 – 261.48 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 251.49 – 271.49 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 271.54 – 291.54 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; HORNER match

Test 286.56 – 306.56 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection, deconvolution match

Test 306.58 – 326.58 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 326.60 – 346.60 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 346.62 – 366.62 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 366.65 – 386.65 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 386.68 – 406.68 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 406.70 – 426.70 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 426.71 – 446.71 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 446.72 – 466.72 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 466.71 – 486.71 m

Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 486.70 – 506.70 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 506.71 – 526.71 m

Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match
CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 526.77 – 546.77 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 546.83 – 566.83 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 566.87 – 586.87 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 586.90 – 606.90 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Page 2-36/2

0

1,20

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 606.94 – 626.94 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

Page 2-37/5

SI phase; log-log match, long term measured over night

Test 626.97 – 646.97 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 646.99 – 666.99 m

Pressure and flow rate vs. time; cartesian plot

251

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 667.02 – 687.02 m

6900

6800

Downhole Pressure [kPa] 9000 9000 9000 9000

6400

6300

0,00

1

1,00

1

1,50

Elapsed Time [h]

2,00

Pressure and flow rate vs. time; cartesian plot

0,50

:

Interval pressure and temperature vs. time; cartesian plot

0,002

0,000

3,00

ļ

2,50

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match
Test 687.06 – 707.06 m

Pressure and flow rate vs. time; cartesian plot

Page 2-41/2

Pulse injection; deconvolution match

Test 707.09 – 727.09 m

Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 727.13 – 747.13 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 747.15 – 767.15 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 762.16 – 782.16 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 777.17 – 797.17 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 787.19 – 807.19 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 807.21 – 827.21 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 827.24 – 847.24 m

Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match
CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 847.26 – 867.26 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 867.28 – 887.28 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 887.31 – 907.31 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 907.33 – 927.33 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 927.33 – 947.33 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 947.34 – 967.34 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 967.39 – 987.39 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 972.41 – 992.41 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Borehole: KLX03

APPENDIX 3

Test Summary Sheets

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]			Pi		
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX03	Test start:	050506		050506 16:53		
Test section from - to (m):	506.71-606.71 m	Responsible for test execution:			Stephan Rohs		
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu		
l inear plot Ω and p		fest evaluation:		Recovery period			
		Indata		Indata			
4000 KI X03 506 71 606 71 0 505 50 5 1 Di O r		$p_{o}(kPa) =$	5811	indutu			
8000 -		p ₀ (kPa) =	5813				
	- 2.5	$p_1(kPa) =$	6148	n_(kPa) =	58/17		
5800		$p_p(Kra) =$	NA	ρ _F (κι α) –	5647		
	- 2.0	$Q_p (m^2/s) =$		t (c) -	28800		
8 5600 - 8	●P section	tp (s) =	1.005.00	$l_F(S) =$	28800		
da Pres	▲P above 1.5 g □ P below 5 ■ 0	Sel S (-)=	1.00E-06	S el S (-)=	1.00E-06		
§ 5400 -	-0 4	EC _w (mS/m)=					
5200 -	1.0	Temp _w (gr C)=	15.9				
		Derivative fact.=	NA	Derivative fact.=	0.02		
5000 -	- 0.5						
400	5.00 6.00 7.00 8.00 9.00 sed Time [b]	Results		Results			
		Q/s $(m^{2}/s)=$	NA				
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	dt ₁ (min) =	NA		
		dt ₂ (min) =	NA	dt ₂ (min) =	NA		
		$T(m^{2}/s) =$	NA	T (m²/s) =	2.5E-10		
		S (-) =	NA	S (-) =	1.0E-06		
		K _s (m/s) =	NA	$K_s(m/s) =$	5.5E-10		
Not A1	nalvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.0E-08		
110171	nury sea	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	3.6E-10		
		$C(m/n/a) = C_{D}(-) =$	NA	$C_{n}(-) =$	4 0F-02		
		$\xi(-) =$	NA	ε _β () =	-0.61		
		S (-) –		_ ([_]) د	0.01		
		$T_{m^{2}(n)} =$		$T (m^2/c) =$			
		$S_{\text{GRF}}(1175) =$		$S_{GRF}(III / S) =$			
		$D_{\text{GRF}}(\cdot) =$		$D_{GRF}(r) =$			
l og l og plot incl derivatives-	recovery period	Selected renrese	intative param	D _{GRF} (-) -			
		dt. (min) =		$C(m^3/D_{\rm P}) =$	3.6E-10		
Elapsed time th	1	$dt_1(min) =$		C(m/Pa) = C(r) = -r	3.0E-10		
10 ⁻³	0,-1	$u_2(mm) =$		C _D (-) -	4.02-02		
506./1-606./1/P1	(c) COLL ABOULD 10 °	$I_{T} (m^{-}/s) =$	5.5E-06	ς(-) =	-0.01		
			1.0E-06				
10 2		κ_{s} (m/s) =	5.5E-10				
		S _s (1/11) =	1.0E-08				
Q 10		Comments:					
· · · · · · · · · · · · · · · · · · ·	50	The recommended	transmissivity of	f 2.5E-10 m2/s was of a the inherent uncert	lerived from the		
		to the measurement	(e.g. specially f	be measurements of	the wellbore		
10 · · · · · · · · · · · · · · · · · · ·		storage coefficient)	and to the analy	sis process, the cont	fidence range		
· · ·	10 3	for the transmissivit	ty is estimated to	b be 9E-11 m^2/s to 6	e-10 m ² /s (the		
10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁶	outer zone transmis	sivity is conside	red as most represar	tive). The flow		
		derived	u during the test	is 2. No static press	ure could be		

	Test Sun	nmary Sheet			
Project:	Oskarshamn site investigati	on <u>Test type:[1]</u>			CHir
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX	03 Test start:			050511 13:38
Test section from - to (m):	226.48-246.	48 Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.0	76 Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period	_	Recovery period	
		Indata		Indata	1+
KLX03_226.48-246.48_050511_1_CHirr	0.000	p₀ (kPa) =	2363		
	●P section = 0.845 ▲P above	p; (kPa) =	2367		<u> </u>
2500 -	■P below •Q	$p_{r}(kPa) =$	2575	p₌ (kPa) =	2400
	- 0.035	$\bigcap_{n=1}^{n} (m^3/s) = 1$	1 17E-07	PF ()	
2400	0.030	$\frac{d_p(m/s)}{tn(s)} =$	1200	t _⊏ (s) =	1200
4 d ann 20		sels* ()=	1 00E-06	+ (°) S d S [*] ()−	1.00E-06
de P		5 er 3 (-)= FC (mS/m)=	1.002.00	383 (-)-	1.0012 00
2300.	- 0 620	$Temp_{(ar C)}$	10.3		╂─────┤
	0.015	Derivative fact =	0.08	Derivative fact =	0.02
2200 -	0.000	Bonnanio laot.	0.00	Bonnatino laot.	0.02
	0.005				┢────┤
2100 0.20 0.40 0.60 0.80	100 120 140 160 180	Results		Results	
Ela	psed Time (h)	Ω/c (m^2/c)	5.5E-09		
Log-Log plot incl. derivates- f	low period	U/S (111/S) =	5.8E-09		╂─────┤
		Flow regime.	transient	Flow regime.	transient
		dt_{ℓ} (min) =	6 50	dt_{ℓ} (min) =	2 90
Elapsed time (h	10, ²	dt_{1} (min) =	10.17	dt_1 (min) =	17.89
226.48-246.48 / CHI	(c) Golder Associates	$T_{1}(m^{2}/n) =$	2 3E-09	$T_{2}(m^{2}(n)) =$	3.7E-09
	-	S(-) =	1.0E-06	1(11/5) =	1.0E-06
40 1	- Martinez	K (m/s) =	1.0E 00	K (m/s) =	1.0E 00
	TO 2	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08
· · · · · · · · · · · · · · · · · · ·		$C_{s}(1/11)$		C_{s} (m ³ /D ₂) =	5.5E-11
	30	$C(\Pi /Pa) =$	NA	$C(m/Pa) = C_{2}(-) =$	6.0E 11
10 °	10 ¹	ε ₍₎ –	0.49	ε ₍₎ –	0.12-00
		ç (-) —	0.43	ς (-) -	0.00
· · · · · · · · · · · · · · · · · · ·		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
10 10 tD	10 10 10	$S_{GRF}(-) =$		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives	 recovery period 	Selected represe	entative paran	neters.	
		dt ₁ (min) =	2.90	C (m ³ /Pa) =	5.5E-11
Elapsed time	[h]	dt_2 (min) =	17.89	C _D (-) =	6.1E-03
10 1 SKB Laxemar / KLX03 Z26.48.246.48 / CHir	FlowDim Version 2.14b (c) Golder Associates 300	$T_{T}(m^{2}/s) =$	3.7E-09	ξ(-) =	0.30
	10 2	S (-) =	1.0E-06		
and the second sec	م معمد	K_{s} (m/s) =	1.9E-10		
10 °	30	S _s (1/m) =	5.0E-08		
A A A A A A A A A A A A A A A A A A A		_" Comments:	•	<u></u>	
ġ	10	The recommended	transmissivity of	f 3.7E-9 m2/s was de	erived from the
10 -1	3	analysis of the CHi	r phase (outer zo	one), which shows th	e best data and
		derivative quality.	The confidence 1	ange for the interval m_2/s . The flow dime	transmissivity
	10 °	during the test is 2	The static press	ure measured at tran	sducer denth
10 ⁰ 10 ¹	10 ² 10 ³ or ⁴	was derived from the	he CHir phase us	sing straight line extr	rapolation in the
עם שיי	CD	Horner plot to a val	lue of 2372.9 kP	a.	

Test Summary Sheet							
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir		
Area:	Laxema	ar Test no:			1		
Borehole ID:	KLX0	3 Test start:			050512 07:53		
Test section from - to (m):	271.54-291.5	4 Responsible for			Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for		Crist	ian Enachescu		
Linear plot Q and p	L	Flow period		Recovery period			
		Indata	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Indata	0-		
3109	KLX03_271.54-291.54_050512_1_CHir_Q_r	p ₀ (kPa) =	2791				
200	10	p _i (kPa) =	2797				
	●P section ▲P above	$p_{p}(kPa) =$	2998	p _F (kPa) =	2832		
2000	■ P below • Q 0.8	$Q_{\rm p} (m^3/s) =$	2.17E-06				
2		$\frac{dp(m,re)}{tp(s)} =$	1200	t _⊏ (s) =	2400		
2400	Rate Driver	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
Downin de	P) jectio n	EC _w (mS/m)=					
2700 -	0.4	Temp _w (gr C)=	11.0				
		Derivative fact.=	0.02	Derivative fact.=	0.02		
2800							
2500 0.59 1.00	150 200	Results		Results	L		
Elap	zed Time (h)	$Q/s (m^2/s) =$	1.1E-07				
Log-Log plot incl. derivates- fl	ow period	$T_{M}(m^{2}/s) =$	1.1E-07				
	· ·	Flow regime:	transient	Flow regime:	transient		
Elosed time I	hl	dt_1 (min) =	NA	dt₁ (min) =	NA		
10 ¹ SKB Laxemar / KLX03	10,010,1	dt_2 (min) =	NA	dt_2 (min) =	NA		
271.54.291.54 / CHi	(c) Golder Associates	$T(m^2/s) =$	1.6E-08	$T(m^2/s) =$	5.3E-08		
		S (-) =	1.0E-06	S (-) =	1.0E-06		
10 0	10 ¹	$K_s(m/s) =$	8.0E-10	K _s (m/s) =	2.7E-09		
	*	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08		
	3 3	$C (m^{3}/Pa) =$	NA	$C(m^3/Pa) =$	2.8E-11		
	10 ⁰	$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	3.1E-03		
		ξ(-) =	-4.87	٤ (-) =	-2.90		
	0.3	3()		5()			
	10 -1	$T_{CPF}(m^2/s) =$		$T_{CPF}(m^2/s) =$			
10 ⁻² 10 ⁻¹ st	10 ⁰ 10 ¹ 10 ²	$S_{GRF}(-) =$		$S_{GRF}(-) =$			
		$D_{GRF}(-) =$		$D_{GRF}(-) =$			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.			
		dt ₁ (min) =	NA	C (m ³ /Pa) =	2.8E-11		
Elapsed time (b)	40 ⁻¹ 40 ⁰	dt_2 (min) =	NA	$C_{D}(-) =$	3.1E-03		
10 2 SKB Laxemar / KLX03 271.54-291.54 / CHr	FlowDim Version 2.14b (c) Golder Associates	$T_{T}(m^{2}/s) =$	5.3E-08	ξ(-) =	-2.90		
		S (-) =	1.0E-06				
	300	$K_s (m/s) =$	2.7E-09				
10 1		$S_{s}(1/m) =$	5.0E-08				
	The second se	Comments:					
R .	find a start of the start of th	The recommended	transmissivity of	5.3E-8 m2/s was de	erived from the		
10 °	<i>7</i>	analysis of the CHi	r phase (outer zo	one), which shows th	ie best data and		
	10 ¹	derivative quality.	The confidence r	ange for the interval	transmissivity		
		is estimated to be 3	.0E-8 to 1.0E-7	m2/s. The flow dime	ension displayed		
	3	during the test is 2.	i ne static press	ure measured at tran	suucer depth,		
10 ¹ 10 ² tD/CD	10 ³ 10 ⁴ 10 ⁵	Horner plot to a val	ue of 2796.9 kP	a.	aporation in the		
		pier to a val					

Test Summary Sheet							
Project:	Oskarshamn site investig	gation	Test type:[1]			Pi	
Area:	Lax	kemar	Test no:			1	
Borehole ID:	к	LX03	Test start:	050512 10:4			
Test section from - to (m):	286.56-3	06.56	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):		0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p			Flow period		Recovery period		
300		50	Indata		Indata]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+	
	KLX03_286.56-306.56_050512_1_Pi_Q_r		p ₀ (kPa) =	2936			
3150 -		4.5	p _i (kPa) =	2943			
3100 -	P section P above	4.0	p _p (kPa) =	3139	p _F (kPa) =	2946	
3050 -	P below • Q	- 3.5	$Q_{p} (m^{3}/s) =$	NA			
Z 300 -	i	3.0	tp(s) =	0	t _⊏ (s) =	5820	
2 2000		2.5 B	S el S [*] (-)=	1.00E-06	Sel S [*] (-)=	1.00E-06	
-		h jectio n	EC (mS/m)=				
D 2100		- 2.0	Temp (ar C)=	11.2		┢─────┤	
2850 -		1.5	Derivative fact =	NA	Derivative fact =	0.02	
2800 -		- 1.0	Derivative lact	NA	Derivative lact	0.02	
2750	<u>:</u>	0.5					
2700		0.0	Desults		Deculto		
0.00 0.50 1.00 Ei	1.50 2.00 apsed Time [h]	2.50	Results		Results		
			Q/s (m²/s)=	NA	ļ		
Log-Log plot incl. derivates- f	low period		T _M (m²/s)=	NA	L		
			Flow regime:	transient	Flow regime:	transient	
			$dt_1 (min) =$	NA	dt_1 (min) =	NA	
			dt_2 (min) =	NA	dt_2 (min) =	NA	
			T (m²/s) =	NA	T (m²/s) =	1.3E-08	
			S (-) =	NA	S (-) =	1.0E-06	
			$K_s (m/s) =$	NA	$K_s (m/s) =$	6.5E-10	
Not A	nalysed		S _s (1/m) =	NA	S _s (1/m) =	5.0E-08	
			C (m³/Pa) =	NA	C (m³/Pa) =	1.3E-09	
			C _D (-) =	NA	C _D (-) =	1.4E-01	
			ξ(-) =	NA	ξ(-) =	-3.50	
			$T_{GRE}(m^2/s) =$		$T_{GRE}(m^2/s) =$		
			$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives	- recovery period		Selected represe	intative param	ieters.	л	
			dt_1 (min) =	NA	$C (m^{3}/Pa) =$	1.3E-09	
10 ⁻³ 10 ⁻² Elapsed time (h] 10 ⁻¹ 10 ⁻⁰ 10 ⁻¹		dt_2 (min) =	NA	$C_{D}(-) =$	1.4E-01	
10 ² SKB Laxemar / KLX03 286.56-306.56 / Pi	FlowDim Version 2.14b (c) Golder Associates	0.3	$T_{-}(m^2/s) =$	1.3E-08	ξ(-) =	-3.50	
		10 -1	S(-) =	1.0F-06	ν (<i>)</i>		
-			$K_{-}(m/s) =$	6.5E-10			
10 ⁻¹			$S_{a}(1/m) =$	5.0E-08	l	<u> </u>	
	and the second se		Commente:	0.02 00	L	L	
		10 ⁻⁴ isoud pourty	The recommonded	transmissivity of	$f = 1.3 E = 0.8 m^{2/3} m^{2/3}$	derived from the	
10 °		0.003	analysis of the Pi pl	ansinissivity of nase (outer zone). Considering the in	herent	
· · · · · · · · · · · · · · · · · · ·			uncertainties related	l to the measure	ment (e.g. specially	the	
		10 ⁻³	measurement of the	wellbore storag	e coefficient) and to	the analysis	
· · ·			process, the confide	ence range for th	e transmissivity is e	stimated to be	
10 ⁰ 10 ¹	10 ² 10 ³ 10 ⁴		оЕ-9 to 3E-8 m2/s. No static pressure c	i ne now dimens ould be derived	ation displayed during	3 the test is 2.	
			r to static pressure e	cala de derived.			

Test Summary Sheet						
Project:	Oskarshamn site investiga	ation	Test type:[1]			Si
Area:	Laxe	emar	Test no:			2
Borehole ID:	KL	.X03	Test start:			050512 18:31
Test section from - to (m):	326.60-346	6.60	Responsible for test execution:		Stephan Roh	
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
· · ·			Indata		Indata	*****************************
3300 KLX03 326.60-346.60 050512 2 Si Q r	section	10	n. (kPa) =	3310		
3450	▲P above ■P below	9	$p_0(R, \alpha) =$	2210		
	•0	8	р _і (кға) –	5519	4 D	2.7.4
3400			р _р (кРа) =	NA	р _F (кРа) =	NA
		1	Q _p (m ³ /s)=	NA		
		° T	tp (s) =	28800	t _F (s) =	1200
3300 -		on Rate (M	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Downh di		og o	EC _w (mS/m)=			
3250 -			Temp, (ar C)=	11 9		┼───┤
3200 -	t	3	Derivative fact =	0.09	Derivative fact =	NA
	-	2		0.07		
3150 -		1				

3100 0.00 1.00 2.00 3.00 4.00 Elapse	5.00 6.00 7.00 8.00 9.00 od Time [h]	0	Results		Results	
			Q/s $(m^{2}/s)=$	NA		
Log-Log plot incl. derivates- flo	ow period		T _M (m ² /s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt. (min) =	8 50	dt (min) =	NA
Elapsed time [h	¹		$dt_1 (min) =$	0.00	dt_1 (min) =	
SN5 Lakeman / NL AUS 326.60-346.60 / Si	FlowDim Version 2.14b . (c) Golder Associates	3	$dl_2(mn) =$	20.27	$u_2(mn) =$	NA
and the second			T (m²/s) =	3.7E-08	T (m²/s) =	NA
		10 0	S (-) =	1.0E-06	S (-) =	NA
10 0			K _s (m/s) =	0.0E+00	K _s (m/s) =	NA
	· •	0.3 3	$S_{s}(1/m) =$	5.0E-08	S _s (1/m) =	NA
			C (m ³ /Pa) =	4.6E-08	C (m ³ /Pa) =	NA
		10 outcoad	$C_{D}(-) =$	5.1E-06	$C_{D}(-) =$	NA
10		0.02	ج (-) =	0.00	د) =	NA
		0.00	· () د	0.00	()	
		10 -2	- (2)		- (2)	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵		$I_{GRF}(m^{-}/s) =$		$I_{GRF}(m^{-}/s) =$	
Ð			$S_{GRF}(-) =$		S _{GRF} (-) =	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected represe	intative paran	ieters.	
			dt_1 (min) =	8.50	C (m³/Pa) =	4.6E-08
			dt_2 (min) =	26.27	C _D (-) =	5.1E-06
			T_{T} (m ² /s) =	3.7E-08	ξ(-) =	0.00
			S (-) =	1.0E-06		
			$K_{c}(m/s) =$	0.0E+00		
Not Ar	aluced		$S_{-}(1/m) =$	0.0E+00		┼───┤
INOU AL	iai y 500		Commonte	0.02.00		L
			- Similaria			

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]			Pi		
Area:	Laxemai	Test no:			1		
Borehole ID:	KLX03	Test start:			050513 09:07		
Test section from - to (m):	346.62-366.62	Responsible for test execution:			Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	ian Enachescu		
Linear plot Q and p		Flow period		Recovery period			
3800	* 10	Indata	<u></u>	Indata	<u>:*:*:*:*:*:*:*:*:*:*:*:*:*:*:</u> *		
KLX03_346.62-366.62_050513_1_Pi_Q_r	● P section ▲ P above	p ₀ (kPa) =	3508				
3750	DP below -Q	p _i (kPa) =	3514				
3700 -	2	p _p (kPa) =	3731	p _F (kPa) =	3691		
3850 -	• • • •	$Q_{\rm p} (m^3/s) =$	NA				
§ 300 -	• <u>-</u>	tp(s) =	0	t _F (s) =	3060		
800 1350 1350 100 100 100 100 100 100 100 100 100 1		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
ap 4		EC _w (mS/m)=		()			
	•	Temp _w (gr C)=	12.2				
3450 -	+ 3	Derivative fact.=	NA	Derivative fact.=	0.08		
3400 -	+ 2 -						
3350 -	1						
3300 0.20 0.49 0.80	0.80 1.00 1.20 1.40 1.60	Results		Results			
Elaps	ed Time (h)	$\Omega/s (m^2/s) =$	NA				
Log-Log plot incl. derivates- flo	ow period	T_{11} (m ² /s)=	NA				
	· ·	Flow regime:	transient	Flow regime:	transient		
		dt₁ (min) =	NA	dt₁ (min) =	15.07		
		dt_2 (min) =	NA	dt_2 (min) =	35.13		
		$T(m^2/s) =$	NA	$T(m^2/s) =$	1 4F-11		
		S(-) =	NA	S (-) =	1.0E-06		
		$K_{-}(m/s) =$	NA	$K_{-}(m/s) =$	7.0E-13		
Not Ar	alved	$S_{1}(1/m) =$	NA	$S_{2}(1/m) =$	5.0E-08		
Not Ai	larysed	$C_{s}(m^{3}/P_{0}) =$	NA	$C_{s}(m^{3}/P_{0}) =$	8.7E-11		
		$C(\Pi/Pa) = C_{D}(-) =$	NA	$C(\Pi / Fa) = C_{D}(-) =$	9.6E-03		
		$\xi(z) = 0$	NA	ε ₍₋₎ =	-0.90		
		- (⁻) ک			0.00		
		$T_{opr}(m^2/s) =$		$T_{ops}(m^2/s) =$			
		$S_{CRE}(-) =$		$S_{CRE}(-) =$			
		$D_{GRF}(-) =$		$D_{GRF}(-) =$			
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.			
		dt_1 (min) =	15.07	$C (m^{3}/Pa) =$	8.7E-11		
Elapsed time (۱)] 10 ⁻¹ 10 ⁰ 10 ¹	dt_2 (min) =	35.13	$C_{\rm D}(-) =$	9.6E-03		
10 5KB Laxemar / KLX03 346.62-366.62 / CHI	FlowDim Version 2.14b (c) Golder Associates	$T_{T}(m^{2}/s) =$	1.4E-11	ξ(-) =	-0.90		
	10 1	S (-) =	1.0E-06	5()			
		$K_s(m/s) =$	7.0E-13				
10 0	3	$S_{s}(1/m) =$	5.0E-08				
		Comments:		1	·		
a	* <u>eee</u> eee	The recommended	transmissivity of	f 1.4E-11 m2/s was o	derived from the		
10 1	a.3	analysis of the Pi pl	hase. Considerin	g the inherent uncer	tainties related		
		to the measurement	(e.g. specially t	he measurement of t	he wellbore		
	10 -1	storage coefficient)	and to the analy	sis process (e.g. nur	neric distortion		
[confidence range for	or the transmissi	vity is estimated to h	e 1E-11 to 3E-		
10 ⁻² 10 ⁻¹ tD	10 [°] 10 [°] 10 [°] 10 [°]	11 m2/s.The flow d	imension displa	yed during the test is	s 2. No static		
		pressure could be d	erived.				

	Test Summary Sheet							
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir		
Area:	Laxe	emar	Test no:			1		
Borehole ID:	KL	.X03	Test start:			050513 14:52		
Test section from - to (m):	386.68-40	6.68	Responsible for test execution:			Stephan Rohs		
Section diameter, 2·r _w (m):	0.	.076	Responsible for test evaluation:		Crist	ian Enachescu		
Linear plot Q and p			Flow period		Recovery period			
4200	I°	180	Indata		Indata			
KLX03_386.68-406.68_050513_1_CHir_Q_r			p ₀ (kPa) =	3893				
4100 -	•	170	p _i (kPa) =	3891				
	P section	1.60	p _p (kPa) =	4094	p _F (kPa) =	3891		
4000	DP below -Q		$Q_{p} (m^{3}/s) =$	4.97E-06				
3		150	tp(s) =	1200	t⊧ (s) =	900		
2 8 9 3000	•	Bate (Ivmin	S el S [*] (_)=	1.00E-06	S el S [*] (-)=	1.00E-06		
wwhite da P		hjecton	5 er 5 (-)- FC (mS/m)=		5 6 5 (-)-			
3800 -	•	1.30	Temp (ar C)=	12.8		ł		
	-	20	Derivative fact -	0.07	Dorivativo fact -	0.02		
3700			Derivative Tact	0.07	Derivative lact	0.02		
	-	1.10				 		
3400		1.00	Descrite		Desults			
0.00 0.20 0.40 0.80 Elapse	1.80 1.00 1.20 1.40 1.80 d Time [h]		Results	0.45.05	Results			
			Q/s (m²/s)=	2.4E-07				
Log-Log plot incl. derivates- fle	ow period		T _M (m²/s)=	2.5E-07				
			Flow regime:	transient	Flow regime:	transient		
Elapsed time [n 24] 		$dt_1 (min) =$	1.10	dt ₁ (min) =	NA		
10 SKB Laxemar / KLX03 386.68-406.68 / CHi	FlowDim Version 2.14b (c) Golder Associates	10 ¹	dt_2 (min) =	12.64	dt ₂ (min) =	NA		
			T (m²/s) =	6.3E-07	T (m²/s) =	1.1E-06		
10 1			S (-) =	1.0E-06	S (-) =	1.0E-06		
· · · ·		10 0	$K_s (m/s) =$	3.2E-08	$K_s (m/s) =$	5.5E-08		
	·	_	$S_{s}(1/m) =$	5.0E-08	S _s (1/m) =	5.0E-08		
40 10 °		10 (prim)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.5E-10		
		Å4,	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	1.7E-02		
10 -1			ξ(-) =	9.40	ξ(-) =	20.46		
		10 -2	5()		5(7)			
10 ¹¹ 10 ¹² m	10 ⁻¹³ 10 ⁻⁵⁴ 10 ⁻¹⁵		T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =			
-			S _{GRF} (-) =		S _{GRF} (-) =			
			D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period		Selected represe	intative paran	ieters.			
			dt ₁ (min) =	1.10	C (m³/Pa) =	1.5E-10		
Elapsed time [h]			dt_2 (min) =	12.64	C _D (-) =	1.7E-02		
10 SKB Laxemar / KLX03 386.68-406.68 / CHir	FlowD(m Version 2.14b (c) Golder Associates		$T_{T} (m^2/s) =$	6.3E-07	ξ(-) =	9.40		
	300	0	S (-) =	1.0E-06				
	F 10	2	$K_s (m/s) =$	3.2E-08				
10 1	··· .		$S_{s}(1/m) =$	5.0E-08				
	30	7	Comments:			L		
		5 000 (B-00) (B	The recommended t analysis of the CHi quality. The confide estimated to be 2.0F during the test was 2 was derived from the	ransmissivity of phase, which sh ence range for th 2-7 to 2.0E-6 m ² 2. The static pre the CHir phase us	6.3E-7 m2/s was do ows the best data an e interval transmiss 2/s. The flow dimens ssure measured at tr ing straight line extra	rived from the d derivative ivity is sion displayed ansducer depth, rapolation in the		
E)CD			Horner plot to a val	ue of 3891.2 kP	a.			

	Test Summary Sheet							
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir			
Area:	Laxema	r Test no:			1			
Borehole ID:	KLX0	3 Test start:			050513 17:00			
Test section from - to (m):	406.70-426.7	0 Responsible for test execution:			Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for test evaluation:		Crist	ian Enachescu			
Linear plot Q and p		Flow period		Recovery period				
4300	•	Indata		Indata				
KLX03_406.70-426.70_050513_1_CHir_Q_r	P section	p ₀ (kPa) =	4085					
l i i	A P above	p _i (kPa) =	4084					
4200 -	•q 112	p _p (kPa) =	4287	p _F (kPa) =	4086			
4150 -	1.0	$Q_{p} (m^{3}/s) =$	9.28E-06					
1100- Tegi		tp (s) =	1200	t _F (s) =	1200			
4050 -	0.8 0	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06			
00 4000 -	200 no 100 no 10	EC _w (mS/m)=						
380 -		Temp _w (gr C)=	13.2					
	- 0.4	Derivative fact.=	0.02	Derivative fact.=	0.02			
3000	- 0.2							
3800	•	Rosulte		Posults				
0.00 0.20 0.40 0.90 Etapa	0.80 1.00 1.20 1.40 1.60 dl Time [h]		4.5E_07	Results				
Log-Log plot incl. derivates- fl	ow period	Q/s (m/s) =	4.3E-07					
		T _M (m /s)=		Flow regime:	transient			
		t tow regime.		t low legime.				
Elapsed time []	¹ ,, 10, ⁰ ,, 10, ¹	$dt_1 (min) =$		dt_1 (min) =				
SRE Laxemar / KLXU3 406.70-426.70 / CH	(c) Golder Associates	$dt_2(ff(f)) =$		$dt_2(11111) =$	6 3E 07			
40 04 0 40 0 000 dat a 9		I(m/s) =	1.1E-07	I (m /s) =	0.3E-07			
· · · · · · ·	• 10 °	S(-) = K(m/n) = -	1.0L-00	S(-) = K(m/c) = -	2.2E.09			
10	± 0.3	$R_{s}(11/s) =$	5.0E-00	$R_{s}(11/5) =$	5.2E-00			
1000		$S_{s}(1/11) =$	5.UE-00	$S_{s}(1/11) =$	5.0E-00			
	10 -1	C (m [°] /Pa) =		C (m°/Pa) =	9.1E-10			
10 -1		² C _D (-) =		$C_D(-) =$	1.0E-01			
	•	ζ(-) =	-2.64	ζ(-) =	-1.10			
	4	$T_{opc}(m^2/s) =$		$T_{opc}(m^2/s) =$				
10 ⁻¹ 10 ⁻²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	$S_{CRF}(-) =$		$S_{CRE}(-) =$				
		$D_{GRE}(-) =$		$D_{GRF}(-) =$				
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.				
		dt₁ (min) =	NA	$C_{(m^{3}/Pa)} =$	9.1E-10			
Elapsed time (h)		dt_2 (min) =	NA	$C_{D}(-) =$	1.0E-01			
10 1 5KB Laxemar / KLX03 406.70-426.70 / CHir	FlowDim Version 2.14b (c) Golder Associates 300	$T_{T}(m^2/s) =$	6.3E-07	ξ(-) =	-1.10			
		S (-) =	1.0E-06	5()				
Transa	10 2	$K_s(m/s) =$	3.2E-08					
10 °	ی اور	S _s (1/m) =	5.0E-08					
		Comments:						
d qu	40 ⁴	The recommended	transmissivity of	f 6.3E-7 m2/s was de	erived from the			
10 -1	-	analysis of the Chir	phase (outer zo	ne), which shows th	e best data and			
	3	derivative quality.	The confidence r	ange for the interval	transmissivity			
	10 °	is estimated to be 2	.0E-7 to 8.0E-7	m2/s. The flow dime	ension displayed			
	·····	was derived from the	1 ne static press	ure measured at tran	succer depth, rapolation in the			
10 ⁰ 10 ¹ 10 ¹	10 ² 10 ³ 10 ⁴	Horner plot to a val	ue of 4080.5 kP	a.	upolucion in the			
		1						

Test Summary Sheet						
Project:	Oskarshamn site investiga	ation	Test type:[1]			Pi
Area:	Laxe	mar	Test no:			1
Borehole ID:	KL	X03	Test start:			050513 19:14
Test section from - to (m):	426.71-446.71		Responsible for test execution:			Stephan Rohs
Section diameter, $2 \cdot r_w$ (m):	0.	.076	Responsible for test evaluation:		Cristi	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
4000 1		10	Indata		Indata	
KLX03_426.71-446.71_050513_1_Pi_Q_r			p ₀ (kPa) =	4278		
4500	● P section	9	p _i (kPa) =	4280		
	▲ P above - 6 ■ P below	8	p _p (kPa) =	4527	p _F (kPa) =	4272
4400	-0	7	$Q_{p} (m^{3}/s) =$	NA		
	- e	•	tp(s) =	0	t _F (s) =	28800
4300	***	Rate Dimir	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
	*******************************	Injection	EC _w (mS/m)=			
4200		4	Temp(ar C)=	13.5		
-	• ₁ ,	3	Derivative fact =	NA	Derivative fact =	0.02
4 100 -	+ 2	2		1111		0.02
		1				
4000		0	Posulte		Posulte	
0.00 1.00 2.00 3.00 4.00 Elapa	5.00 6.00 7.00 8.00 9.00 sed Time (h)	2		ΝΑ	Results	
Levier plating devivator fi			Q/s (m ⁻ /s)=			
Log-Log plot Incl. derivates- fi	ow period		I _M (m ⁻ /s)=		F 1	
			Flow regime:	transient	Flow regime:	transient
			$dt_1 (min) =$	NA	$dt_1 (min) =$	89.48
			$dt_2(min) =$	NA	$dt_2 (min) =$	210.58
			T (m²/s) =	NA	T (m²/s) =	6.4E-11
			S (-) =	NA	S (-) =	1.0E-06
			K _s (m/s) =	NA	K _s (m/s) =	3.2E-12
Not Ar	nalysed		$S_s(1/m) =$	NA	$S_s(1/m) =$	5.0E-08
			C (m³/Pa) =	NA	C (m³/Pa) =	7.7E-11
			C _D (-) =	NA	C _D (-) =	8.5E-03
			□(-) =	NA	□(-) =	-1.80
			T _{GRF} (m²/s) =		T _{GRF} (m ² /s) =	
			S _{GRF} (-) =		S _{GRF} (-) =	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	neters.	
			dt ₁ (min) =	89.48	C (m³/Pa) =	7.7E-11
Elapsed time [h] 10, ⁰		dt ₂ (min) =	210.58	C _D (-) =	8.5E-03
10 SKB Laxemar / KLX03 426.71-446.71 / Pi	FlowDim Version 2.14b (c) Golder Associates	3	$T_{T} (m^{2}/s) =$	6.4E-11	□(-) =	-1.80
			S (-) =	1.0E-06		
		10 0	K _s (m/s) =	3.2E-12		
10 °			S _s (1/m) =	5.0E-08		
	and the second	0.3	Comments:			
i station	-	10 4	The recommended	transmissivity of	6.4E-11 m2/s was c	lerived from the
10 1		Deco	analysis of the Pi pł	nase. Considerin	g the inherent uncer	tainties related
	r i	0.03 ed p	to the measurement	(e.g. specially t	he measurement of t	he wellbore
		nssai	storage coefficient)	and to the analy	rsis process, the conf	idence range $11 \text{ m}^2/2$ The
[10 1	flow dimension dist	ly is estimated to) DE 3.UE-11 to 9.0E e test is 2 No statio	-11 m2/s. The
10 ⁻⁴ 10 ⁻¹ 10 ⁻¹ 10	10 ¹ 10 ² 10 ³		be derived.	Juyou dui ing th	e tost 15 2. 110 Stalle	pressure could

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX03	B Test start:			050514 08:09
Test section from - to (m):	446.72-466.72	Responsible for test execution:			Stephan Rohs
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	tian Enachescu
Linear plot Q and p		Flow period		Recovery period	1
P		Indata	<u></u>	Indata	
4800	KLX03_446.72-466.72_050514_1_CHir_Q_r	p ₀ (kPa) =	4464		T
4700 -	14	p _i (kPa) =	4461		+
	112	$p_{p}(kPa) =$	4671	p _F (kPa) =	4461
4800	! \	$Q_{p}(m^{3}/s) =$	3.83E-06	,	+
z l	1.0	tp(s) =	1200	t _F (s) =	1800
4500		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Downhold	hjeeto	EC _w (mS/m)=			+
4400 -	●P section	Temp _w (gr C)=	13.8		
	AP above OP below -O	Derivative fact.=	0.05	Derivative fact.=	0.02
4300 -	02				
4200	1.00 1.20 1.40 1.80 1.80 2.00	Results		Results	1
		Q/s (m²/s)=	1.8E-07		
Log-Log plot incl. derivates-	flow period	$T_{M} (m^{2}/s) =$	1.9E-07		
		Flow regime:	transient	Flow regime:	transient
Elapsed	ime [h] 10 10	dt ₁ (min) =	NA	dt ₁ (min) =	NA
10 ¹ SKB Laxemar / KLX03 446.72-466.72 / CHI	FlowDim Version 2.14b (c) Golder Associates	dt ₂ (min) =	NA	dt_2 (min) =	NA
	3	T (m²/s) =	4.4E-07	T (m²/s) =	3.0E-07
**************************************		S (-) =	1.0E-06	S (-) =	1.0E-06
10 [°] • • • • • [•] • • •	10 [°]	K _s (m/s) =	2.2E-08	$K_s (m/s) =$	1.5E-08
JO		S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08
1/40. (1/	diameter and discussion of the second s	C (m³/Pa) =	NA	C (m³/Pa) =	3.8E-09
10 -1	-10 ⁻¹ ²	C _D (-) =	NA	C _D (-) =	4.2E-01
	aas	ξ(-) =	-1.14	ξ(-) =	2.60
		$T_{GRE}(m^2/s) =$		$T_{GBE}(m^2/s) =$	
10 ⁻² 10 ⁻³	10 ^{°*} 10 ^{°5} 10 [°] tD	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		D _{GRF} (-) =		D _{GRF} (-) =	1
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	NA	C (m³/Pa) =	3.8E-09
	[P]	dt ₂ (min) =	NA	C _D (-) =	4.2E-01
10 ² SKB Laxemar / KLX03 446.72-466.72 / CHir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	3.0E-07	ξ(-) =	2.60
	10 3	S (-) =	1.0E-06		
	300	K _s (m/s) =	1.5E-08		
10		S _s (1/m) =	5.0E-08		
		Comments: The recommended analysis of the Chir quality. The confide estimated to be 9.01 during the test is 2. was derived from th	transmissivity of phase, which sh ence range for th E-8 to 5.0E-7 m2 The static press the CHir phase us	5 3.0E-7 m2/s was d nows the best data and he interval transmiss 2/s. The flow dimen- ture measured at trans- sing straight line ext	erived from the nd derivative ivity is sion displayed isducer depth, rapolation in the
טיד 10 עבו עבוי	טי עס 10	Horner plot to a val	ue of 4451.7 kP	a	

Project: Oskarshamn site investigation Test type:[1] Area: Laxemar Test no: Borehole ID: KLX03 Test start: Test section from - to (m): 466.71-486.71 Responsible for test execution: Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Image: Section from - to (m): Image: Section diameter, $2 \cdot r_w$ (m): 0.076 Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Image: Section diameter, 1.050514_1.PLQ.r Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diameter, 2 - r_w (m): Image: Section diamete		
Area: Laxemar Test no: Borehole ID: KLX03 Test start: Test section from - to (m): 466.71-486.71 Responsible for test execution: Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Indata $mathrmal{MLX03_466.71-486.71_050514_1.PLQ.r}$ $mathrmal{MLX03_466.71-486.71_050514_1.PLQ.r}$ Indata $mathrmal{MLX03_466.71-486.71_050514_1.PLQ.r}$ Indata $mathrmal{MLX03_466.71-486.71_050514_1.PLQ.r}$ Indata $mathrmal{MLX03_466.71-486.71_050514_1.PLQ.r}$ Indata		Pi
Borehole ID: KLX03 Test start: Test section from - to (m): 466.71-486.71 Responsible for test execution: Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Indata μ_u μ_u NA		1
Test section from - to (m): 466.71-486.71 Responsible for test execution: Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Indata p_0 (kPa) = 465 p_i (kPa) = NA		050514 10:44
Section diameter, $2 \cdot r_w$ (m): 0.076 Responsible for test evaluation: Linear plot Q and p Flow period Indata p_0 (kPa) = 465 p_i (kPa) = NA		Stephan Rohs
Linear plot Q and p Flow period Indata p_0 (kPa) = 465 μ_0 (kPa) = NA Index (LOP =) NA	Cris	tian Enachescu
$ \begin{array}{c} interms protocuting $	Recovery perior	4
$KLX03_{466.71_{486.71_{0}50514_{1}PL_{Q}r}} $	Indata	
$p_{i} (kPa) = NA$	7	
$\mathbf{p}_{n}(\mathbf{KPa}) = \mathbf{NA}$	p _F (kPa) =	NA
$O_{r} (m^{3}/s) = NA$		1
$z^{4/2}$ tp (s) =	0 t _F (s) =	1200
S = 1.00E-0	⁶ SelS [*] (-)=	1.00E-06
•		
$\begin{array}{c} \bullet_{\text{Paction}} \\ \bullet_{\text{Paction}} \\$	1	
Derivative fact.= NA	Derivative fact.=	NA
488-		1
	Results	
D/s (m ² /s)=		
Log-Log plot incl. derivates- flow period $T_{\rm tw} (m^2/s) = NA$		
Flow regime: transient	Flow regime:	transient
dt ₁ (min) = NA	dt_1 (min) =	NA
dt_2 (min) = NA	dt_2 (min) =	NA
$T(m^2/s) = NA$	$T(m^{2}/s) =$	NA
S(-) = NA	S (-) =	NA
K _s (m/s) = NA	$K_s (m/s) =$	NA
Not Analysed $S_s(1/m) = NA$	$S_{s}(1/m) =$	NA
$C (m^3/Pa) = NA$	C (m ³ /Pa) =	NA
$C_{D}(-)$ = NA	C _D (-) =	NA
ξ (-) = NA	ξ(-) =	NA
T _{GRF} (m ² /s) =	$T_{GRF}(m^2/s) =$	
$S_{GRF}(-) =$	S _{GRF} (-) =	
D _{GRF} (-) =	D _{GRF} (-) =	
Log-Log plot incl. derivatives- recovery period Selected representative para	meters.	
dt ₁ (min) = NA	C (m ³ /Pa) =	NA
dt ₂ (min) = NA	C _D (-) =	NA
$T_{T} (m^2/s) = NA$	ξ(-) =	NA
S (-) = NA		
K _s (m/s) = NA		
Not Analysed $S_s(1/m) = NA$		
Comments:		
Based on the test response (prolon transmissivity is lower than 1E-11	ged packer complian m2/s.	ce) the interval

Test Summary Sheet						
Project:	Oskarshamn site investigatio	on <u>Test type:[1]</u>			Pi	
Area:	Laxem	ar Test no:			1	
Borehole ID:	KLX	03 Test start:	0505		050514 12:38	
Test section from - to (m):	486.70-506.7	70 Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.07	76 Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
5100	20	Indata	*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!*!	Indata	<u>]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]+]</u>	
KLX03_486.70-506.70_050514_1_Pi_Q_r	•	p₀ (kPa) =	4849			
9090 -	P section	p _i (kPa) =	4850			
5000 -	A Pabove D P below 1.5	$p_{n}(kPa) =$	5034	p _F (kPa) =	4852	
4850 -	•a • • •	$O_{(m^{3}/s)} =$	NA	,		
- ⁴⁰⁰		$\frac{d_p(m/s)}{d_p} =$	0	t _r (s) =	3660	
		ερ (c) ε αι ε [*] ()=	1 00E-06	ε d ε [*] ()−	1.00F-06	
e e e e e e e e e e e e e e e e e e e	al pector R	Sei S (-)= EC (mS/m)=	1.001-00	S el S (-)=	1.002-00	
≗ ₄₈₀₀ .	•	EC_w (III3/III)=	14.4			
4750 -		Temp _w (gr C)=	14.4		0.02	
4705 -	+ 0.5	Derivative fact.=	NA	Derivative fact.=	0.02	
4550						
i i				-		
4000 0.00 0.20 0.40 0.80 0.80 Elipsa	1.00 1.20 1.40 1.80 1.80 ad Time [h]	Results	R	Results		
		Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	ow period	T _M (m²/s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt ₂ (min) =	NA	
		T (m²/s) =	NA	T (m²/s) =	3.0E-11	
		S (-) =	NA	S (-) =	1.0E-06	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	1.5E-12	
Not Ar	nalvsed	S _s (1/m) =	NA	S _s (1/m) =	5.0E-08	
		$C (m^3/Pa) =$	NA	$C (m^{3}/Pa) =$	6.3E-11	
		$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	6.9E-03	
		ξ(-) =	NA	ξ(-) =	-3.94	
		5()		5()		
		$T_{aar}(m^2/s) =$		$T_{and}(m^2/s) =$		
		$S_{OPF}(-) =$		$S_{ORF}(-) =$		
		$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran			
		dt_{4} (min) =	NA	$C (m^3/P_{c}) =$	6 3E-11	
Elapsed time (h	1	dt_1 (min) =	NA	$C(\Pi/Fa) =$	6.9E-03	
10 SKB Laxemar / KLX03 skB zaxemar / KLX03		$T_{1}(m^{2}(n)) =$	3 0E 11	ε ₍₎ =	0.5E-00	
		T_{T} (m/s) =	1 0E 06	ς(-) –	-3.94	
10 °	10 °	3(-) =	1.0E-00			
		R_s (III/S) =	1.5E-12			
10 -1	10-1	$S_s(1/11) =$	5.UE-08	1		
		Comments:				
10 ⁻²	10 -2	The recommended	transmissivity of	t 3.0E-11 m2/s was o	terived from the	
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		to the measurement	t (e.g. specially f	he measurement of t	he wellbore	
10 -3	10 -3	storage coefficient)	and to the analy	sis process, the con	fidence range	
		for the transmissivi	ty is estimated to	b be 2E-11 to 7E-11	m2/s. The flow	
10 ⁻³ 10 ⁻² 10 ⁻²	10 ⁻¹ 10 ⁻⁴	dimension displaye	d during the test	is 2. No static press	ure could be	
U.		derived.				

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]	CHir			
Area:	Laxemar	Test no:	1			
Borehole ID:	KLX03	Test start:	050514 15:02			
Test section from - to (m):	506.71-526.71	Responsible for test execution:	Stephan Rohs			
Section diameter, 2·r _w (m):	0.076	Responsible for	Cristian Enachescu			
Linear plot Q and p		Flow period	Recovery period			
	- 10	Indata	ndata Indata		0+0+0+0+0+0+0+0+0+0+0+0+0+0+	
KLX03_506.71-526.71_050514_1_CHir_Q_r	P section	p ₀ (kPa) =	5041			
	▲P above ■P below	p _i (kPa) =	NA			
5100 -	-Q 4 8	p _p (kPa) =	NA	p _F (kPa) =	NA	
		Q _n (m ³ /s)=	NA			
	् ब	tp (s) =	0	t _F (s) =	0	
975 800 -	s a fate βin	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
al ommande	ရမ် နိုင် - 4	$EC_w (mS/m) =$				
5		Temp _w (gr C)=	14.7		╉────┤	
4900 -	- 3	Derivative fact.=	NA	Derivative fact.=	NA	
	- 2					
					<u>├</u> ────┤	
4800	0.50 0.60 0.70 0.80 0.90 100	Results		Results	<u> </u>	
Elaps	sed Time [h]	$\Omega(a_1(m^2/a))=$	NA	litooulito		
l og l og plot incl. derivates- fl	ow period	Q/S (III/S) =			╉────┤	
		T_{M} (ff /S)=	transient	Flow regime:	transient	
		t low regime.		t low legime.		
		$dt_1(min) =$		dt_1 (min) =		
		$u_{12}(mm) = \frac{1}{2}$		$dl_2(\Pi\Pi) =$		
		I (m ⁻ /s) =		I (m ⁻ /s) =		
		S(-) = K(m/n) = 0		S(-) = K(m(a)) = -		
NT-4 A	1	$R_s(III/s) =$		$R_s(III/S) =$		
Not Ar	halysed	$S_{s}(1/11) =$		$S_{s}(1/11) =$		
		C (m°/Pa) =		C (m°/Pa) =		
		$C_{\rm D}(-) =$		$C_{\rm D}(-) =$		
		ς(-) =	NA	ς(-) =	NA	
		— 2. 3		2	 	
		I _{GRF} (m ⁻ /s) =		I _{GRF} (m ⁻ /s) =	┥────┤	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	┟────┤	
log log plating! downstrees	recovery partiad	$\nu_{\rm GRF}(-) =$		⊔ _{GRF} (-) =		
Log-Log plot Incl. derivatives-	Selected represe	Intauve paran				
Not Analysed		$u_1(mn) =$		C (m [×] /Pa) =		
		$u_2(mn) =$	NA	$U_{\rm D}(-) =$	NA	
		$T_T (m^2/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA		<u> </u>	
		κ_{s} (m/s) =	NA		 	
		$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test re transmissivity is lov	sponse (prolong ver than 1E-11 r	ed packer compliand n2/s.	:e) the interval	

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			Si	
Area:	Laxemar	Test no:			2	
Borehole ID:	KLX03	Test start:	050514 18:52			
Test section from - to (m):	526.77-546.77 m	Responsible for test execution:	Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	Cristian Enachescu			
Linear plot Q and p		Flow period	Recovery period			
		Indata	Indata		1+	
KLX03_526.77-546.77_050514_2_Si	Q_r Prection	p ₀ (kPa) =	5236			
	▲P above ■P below	p _i (kPa) =	5236		╂────┤	
	•0 •8	$p_{-}(kPa) =$	NA	p⊢(kPa) =	NA	
5300		$O(m^3/c)$	NA	PF (
		$Q_p (\Pi /S) =$	36000	t (c) -	1200	
410 anns	e (himite)	(p(s)) =	1.00E.06	$r_{\rm F}(3) =$	1 00E 06	
2, 500 - 8 9	7.5 & 8.6 8.6	SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00	
õ.	-4	EC _w (mS/m)=			Į	
	- s	Temp _w (gr C)=	8.9			
6100 -	- 2	Derivative fact.=	0.06	Derivative fact.=	NA	
	······································					
5000	600 8.00 10.00	Results	Results			
Elaps	d Time [h]	$Q/s (m^2/s) =$	NA			
Log-Log plot incl. derivates- flo	ow period	$T_{11} (m^2/s) =$	NA		<u>├────</u>	
	•	Flow regime:	transient	Flow regime:	transient	
		$dt_{\ell}(min) =$	219.89	dt₄ (min) =	NA	
10 ¹ SKB Laxemar / KLX06	10 °	$dt_1(min) =$	380.80	dt_{o} (min) =	NΔ	
526.77-546.77 / SI	(c) Golder Associates	$T_{1}(m^{2}(n)) =$	7 1E-09	$T_{m}^{2}(n) =$	NA	
	10	1 (m/s) =	1.1E-09	1 (m/s) =		
	3	3(-) =	1.02-00	S(-) = K(m(n)) = 0		
10 °		R_s (III/S) =	3.6E-10	κ_{s} (III/s) =		
	10 ° 10	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	NA	
		C (m³/Pa) =	4.6E-08	C (m³/Pa) =	NA	
10 -1	0.3 U	$C_{D}(-) =$	5.1E-06	$C_{D}(-) =$	NA	
	to ⁻¹	ξ(-) =	-3.98	ξ(-) =	NA	
				0		
10 ⁻¹ 10 ⁰ m	10 ⁻¹ 10 ⁻² 10 ⁻³ 0.03	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		$S_{GRF}(-) =$		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives- recovery period		Selected represe	intative paran	ieters.		
		dt ₁ (min) =	219.89	C (m ³ /Pa) =	4.6E-08	
Not Analysed		$dt_2 (min) =$	389.89	$C_{D}(-) =$	5.1E-06	
		$T_{T} (m^{2}/s) =$	7.1E-09	ξ(-) =	-3.98	
		S (-) =	1.0E-06			
		K _s (m/s) =	3.6E-10			
		$S_s(1/m) =$	5.0E-08			
		Comments:	-			

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]	CHir			
Area:	Laxemar	Test no:	1			
Borehole ID:	KLX03	Test start:	050515 09:51			
Test section from - to (m):	546.83-566.83	Responsible for test execution:	Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for	Cristian Enachescu			
Linear plot Q and p		Flow period	Recovery period			
Proc 2 and P		Indata		Indata		
550		p₀ (kPa) =	5423			
5500	· · · · · · · · · · · · · · · · · · ·	p; (kPa) =	NA			
	-	$p_r(kPa) =$	NA	p _⊏ (kPa) =	NA	
5450	7	$O_{(m^{3}/c)} =$	NA	PF ()		
		$\frac{Q_p(\Pi / S)}{tp(s)} =$	0	t_ (s) =	0	
6 5400- 80 8 8	ste (himin)	$(0, 0) = 0^{*}(x)$	1.00E-06	$(3)^{+}$	1.00E-06	
£ 97 € 5350 -	● P section	Seis (-)= EC (mS/m)=	1.002-00	Sei S (-)=	1.00L-00	
<u>8</u>	▲Pabove - 4 ■ P below	$EC_w (IIIS/III) =$	15.2			
5300 -	-o 13	Temp _w (gr C)=	15.5	Device the fact		
	- 2	Derivative fact.=	NA	Derivative fact.=	NA	
8250 -	1					
500 0.20 0.40 Elapsi	060 0.80 1.00 1.20 ed Time [h]	Results		Results		
		Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	ow period	T _M (m²/s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt ₁ (min) =	NA	
		dt ₂ (min) =	NA	dt ₂ (min) =	NA	
		$T(m^{2}/s) =$	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_{s}(m/s) =$	NA	
Not Ar	nalysed	S _s (1/m) =	NA	S _s (1/m) =	NA	
		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
Log-Log plot incl. derivatives- recovery period						
		$T_{GRE}(m^2/s) =$		$T_{GRE}(m^2/s) =$		
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
		Selected represe	intative param	neters.	.	
		dt ₁ (min) =	NA	C (m ³ /Pa) =	NA	
		dt_2 (min) =	NA	$C_{\rm D}(-) =$	NA	
Not Analysed		$T_{-}(m^2/s) =$	NA	٤ (-) =	NA	
		S(-) =	NA	5()		
		$K_{a}(m/s) =$	NA			
		$S_{2}(1/m) =$	NA			
		Comments:				
		Based on the test re transmissivity is low	sponse (prolong ver than 1E-11 r	ed packer compliand n2/s.	ce) the interval	

	Test Su	ımn	nary Sheet			
Project:	Oskarshamn site investigation		<u>Test type:[1]</u>	Pi		
Area:	Laxemar		Test no:	1		
Borehole ID:	KLX03		Test start:	050515 11:37		
Test section from - to (m):	566.87-58	86.87	Responsible for test execution:	Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	C).076	Responsible for test evaluation:	Cristian Enachescu		
Linear plot Q and p			Flow period	Recovery period		
		Indata		Indata		
KLX03_566.87-586.87_050515_1_Pi_Q_r	P section		p ₀ (kPa) =	5615		
5850 -	AP above ■ P below ■ Q	0.9	p _i (kPa) =	5625		
- 0086	-	0.8	p _p (kPa) =	5796	p _F (kPa) =	5733
5750 -		0.7	$Q_{p} (m^{3}/s) =$	NA		
چ ⁵⁷⁰⁰ -			tp(s) =	0	t _F (s) =	3600
2. 84 860		Rate filmle	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
	•	hjecton	EC _w (mS/m)=			
- 9800-			Temp(ar C)=	15.6		
5550 -		0.3	Derivative fact =	NA	Derivative fact =	0.02
5500 -		0.2		1171	Benvalive laot.	0.02
5450		0.1				
5400		0.0	Poculte		Poculte	
0.00 0.20 0.40 0.60 0.80 Elaps	1.00 1.20 1.40 1.60 1.2 ed Time [h]	80		ΝΑ	Results	
Log Log plot incl. dorivatos, fl	ownoriad		Q/s (m /s)=			
Log-Log plot incl. derivates- in	ow period		I _M (m ⁻ /s)=	INA transient	-	4
			Flow regime:	transient	Flow regime:	
			$dt_1 (min) =$	NA	$dt_1 (min) =$	26.57
			$dt_2 (min) =$	NA	$dt_2 (min) =$	54.88
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	3.3E-11
			S (-) =	NA	S (-) =	1.0E-06
			$K_{s} (m/s) =$	NA	K _s (m/s) =	1.7E-12
Not Ar	nalysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-08
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.1E-10
			C _D (-) =	NA	C _D (-) =	1.2E-02
			ξ(-) =	NA	ξ(-) =	-2.00
			T _{GRF} (m ² /s) =		$T_{GRF}(m^2/s) =$	
			S _{GRF} (-) =		S _{GRF} (-) =	
			D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives- recovery period		Selected represe	entative paran	neters.		
			dt ₁ (min) =	26.57	C (m ³ /Pa) =	1.1E-10
Elapsed time [n	۹ 10, ⁻¹		dt_2 (min) =	54.88	C _D (-) =	1.2E-02
10 SKB Laxemar / KLX03 566.87-586.87 / Pi	FlowDim Version 2.14b (c) Golder Associates	10 1	T_{T} (m ² /s) =	3.3E-11	ξ(-) =	-2.00
			S (-) =	1.0E-06		
		$K_s (m/s) =$	1.7E-12			
			$S_{s}(1/m) =$	5.0E-08		
8	Comments:					
			The recommended transmissivity of 3.3E-11 m2/s was derived from the			
			analysis of the Pi phase (outer zone). Considering the inherent			
10 ⁻¹		uncertainties related to the measurement (e.g. specially the				
			measurement of the wellbore storage coefficient) and to the analysis			
			process, the confidence range for the transmissivity is estimated to be 1E-11 to 5E-11 m ² /s The flow dimension displayed during the test is 2			
10 ⁻² 10 ⁻¹ tD	10 ^u 10 ¹ 10 ²		No static pressure could be derived.			
1	P					

Test Summary Sheet						
Project:	Oskarshamn site investig	Test type:[1]	CHir			
Area:	Laxemar		Test no:	1		
Borehole ID:	KLX03		Test start:	050515 14:04		
Test section from - to (m):	586.90-606.90		Responsible for test execution:	Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for	Cristian Enachescu		
l inear plot Q and p			test evaluation:	Recovery period		
			Indata	Indata Indata		
6000 10 10		p₀ (kPa) =	5809			
KLX03_586.90-606.90_050515_1_Pi_Q_r		9	p _i (kPa) =	5818		
5900		- 8	$p_{p}(kPa) =$	NA	p _F (kPa) =	5988
	•	. 7	$Q_{x} (m^{3}/s) =$	NA		
		·6 [tp(s) =	0	t _⊏ (s) =	1200
91 92 92 92 92	· ·	G Rate [fmi	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
eion	·	Injection	EC_{w} (mS/m)=			
ē	P section	- 4	Temp(ar C)=	15.9		
5700 -	P below • Q	• 3	Derivative fact.=	NA	Derivative fact.=	NA
		• 2				
		• 1				
5600 020 040		• 0 20	Results		Results	
Elaps	ed Time [h]	-	Ω/s (m ² /s)=	NA		
Log-Log plot incl. derivates- fl	ow period		U/3 (111/3)- T (m ² /s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt₄ (min) =	NA	dt₄ (min) =	NA
			dt_2 (min) =	NA	dt_2 (min) =	NA
			$T_{m}(m^{2}/s) =$	NA	$T(m^2/c) =$	NA
			S(-) =	NA	S(-) =	NA
			$K_{-}(m/s) =$	NA	$K_{-}(m/s) =$	NA
Not Ar	nalvsed		$S_{a}(1/m) =$	NA	$S_{a}(1/m) =$	NA
Not Ai	laly SCu		$C_{\rm s}(m^3/P_{\rm 2}) =$	NA	$C_{\rm s}(m^3/P_{\rm 2}) =$	NA
			$C(\Pi / Pa) = C_{D}(-) =$	NA	$C_{n}(-) =$	NA
			ε (-) =	NA	ε (-) =	NA
		()) ()		
		$T_{a=-}(m^2/s) =$		$T_{a=2}(m^2/s) =$		
			$S_{CRF}(-) =$		$S_{CRE}(-) =$	
			$D_{CRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives- recovery period		Selected represe	ntative paran	eters.		
		dt_1 (min) =	NA	$C(m^{3}/Pa) =$	NA	
			dt_2 (min) =	NA	$C_{D}(-) =$	NA
Not Analysed		$T_{T}(m^2/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA	5()		
		$K_s(m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test re 11 m2/s.	sponse the inter	val transmissivity is	lower than 1E-	

	Test Su	mm	ary Sheet				
Project:	Oskarshamn site investiga	ation]	Test type:[1]			Si	
Area:	Laxer	mar 1	Test no:			2	
Borehole ID:	KL)	X03 1	Fest start:		050515 20:19		
Test section from - to (m):	606.94-626	6.94 F	Responsible for	Stephan Rohs			
Section diameter, 2·r _w (m):	0.	.076 F	Responsible for est evaluation:	Cristian Enachescu			
Linear plot Q and p		Ē	low period	Recovery period			
· · ·			ndata		Indata		
600 KI XI3 606 94.626 94 060515 2 Si O r		" r	$h_{\rm e}(kPa) =$	6001			
KLX03_606.94-626.94_050515_2_Si_Q_r	P section 9	۲ ۲	$b_0(kr a) =$	5200			
1	AP above P bebw 8	4	D _i (KPa) =	5299			
6100	-0	p	o _p (kPa) =	NA	p _F (kPa) =	6027	
3	7	' C	Q _p (m ³ /s)=	NA			
Re d		° _⊊ t	p(s) =	36000	t _F (s) =	1200	
6000 ecco	5	n Rate [IV	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downinh da	•	, ^{sel}	EC _w (mS/m)=		()		
		. F	Temp(ar C)=	16.3			
500 -	- 3		Derivative fact -	0.12	Derivative fact -	NA	
	- 2	2		0.12	Derivative lact	INA	
	+1	, –					
5000	8.00 8.00 10.00 1 Time [h]	° F	Results		Results		
		C	Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	w period	- I	$\Gamma_{\rm M}$ (m ² /s)=	NA			
	•	F	Flow regime:	transient	Flow regime:	transient	
		-	$\frac{1}{1}$ (min) =	17 63	dt (min) =	NA	
10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	. 10, ¹		$dt_1(min) =$	67.13	$dt_1 (min) =$		
5KB Laxemar / RLXUS 606.94.626.94 / Si	(c) Golder Associates	, L	2 (mm) =	07.13	dl_2 (mm) =	NA	
		ו	Γ (m²/s) =	9.5E-09	T (m²/s) =	NA	
and a set of the set of the set of the set	3	S	S (-) =	1.0E-06	S (-) =	NA	
	-	۲	< _s (m/s) =	4.7E-10	K _s (m/s) =	NA	
	10	° ,	S _s (1/m) =	5.0E-08	S _s (1/m) =	NA	
	14 <u>.</u>	inted pres	C (m ³ /Pa) =	4.6E-08	C (m ³ /Pa) =	NA	
	•	3 ³	$C_{\rm D}(-) =$	5.1E-06	$C_{D}(-) =$	NA	
		. 8	÷ (-) =	-2.95	د) =	NA	
	10		⊳ (<i>)</i>		() ~		
		.03	r (1-2/-)		\mathbf{T} (\mathbf{r} , 2 (\mathbf{r})		
10 ¹ 10 ² 10	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵		$I_{GRF}(M/S) =$		$I_{GRF}(m/s) =$		
			$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		L	$\mathcal{D}_{\text{GRF}}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	ieters.		
		С	$dt_1 (min) =$	17.63	C (m³/Pa) =	4.6E-08	
		С	$dt_2 (min) =$	67.13	C _D (-) =	5.1E-06	
		1	Γ_{T} (m ² /s) =	9.5E-09	ξ(-) =	-2.95	
Not Analysed		S	S (-) =	1.0E-06			
		٢	K₅(m/s) =	4.8E-10			
		ç	$S_{(1/m)} =$	5 0E-08			
		È	Commente:	0.02 00		<u> </u>	

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			Pi	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX03	Test start:			050515 18:36	
Test section from - to (m):	626.97-646.97	Responsible for test execution:	Stephan Rohs			
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
	- 10	Indata	<u></u>	Indata	<u>1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+</u>	
KLX03 626.97-646.97 050515 1 Pi Q r	● P section ▲ P above	p₀ (kPa) =	6192			
6402-		p _i (kPa) =	6206			
		p _p (kPa) =	NA	p _F (kPa) =	NA	
e300 .	7	Q ₂ (m ³ /s)=	NA			
<u>a</u>	•	tp(s) =	0	t _F (s) =	1200	
		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downinde	and and a second s	$EC_w (mS/m) =$			<u> </u>	
8100 -	-	Temp _w (gr C)=	16.6		ł	
	-	Derivative fact.=	NA	Derivative fact.=	NA	
ecco	2				ł	
	- 1					
5900	0.80 0.80 1.00 1.20	Results		Results	<u> </u>	
Elaps	ed Time (h)	$\Omega/s (m^2/s) =$	NA			
Log-Log plot incl. derivates- fl	ow period	T_{11} (m ² /s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt₁ (min) =	NA	dt₄ (min) =	NA	
		dt_2 (min) =	NA	dt_2 (min) =	NA	
		$T_{m}(m^{2}/s) =$	NA	$T(m^2/c) =$	NA	
		S(-) =	NA	S(-) =	NA	
		K (m/s) =	NA	K (m/s) =	NA	
Not Ar	alved	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
Not Al	laryseu	$C_s(m^3/D_2) =$	NA	$C_s(m^3/D_c) =$	NA	
		$C(\Pi / Pa) = C_{D}(-) =$	NA	$C_{n}(-) =$	NA	
		ε ₍₎ -		د) -	NA	
		ς (-)		S (-) –		
		$T_{}(m^2/s) =$		$T_{}(m^2/c) =$		
		$S_{ORF}(-) =$		$S_{CRF}(-) =$		
		$D_{CRF}(-) =$		$D_{CRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.		
5 . 5	· · · · · · · · · · · · · · · · · · ·	dt₁ (min) =	NA	$C_{(m^{3}/P_{a})} =$	NA	
		dt_2 (min) =	NA	$C_{D}(-) =$	NA	
		$T_{-}(m^{2}/s) =$	NA	ε (-) =	NA	
		S (-) =	NA	() د		
		$K_{c}(m/s) =$	NA			
Not Analysed		$S_{a}(1/m) =$	NA			
		Comments:				
		Based on the test re 11 m2/s.	sponse the inter-	val transmissivity is	lower than 1E-	

	Test Su	ımn	nary Sheet				
Project:	Oskarshamn site investiga	ation	Test type:[1]		CF		
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KL	X03	Test start:	050516 08:32			
Test section from - to (m):	646.99-666.99		Responsible for test execution:		Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p			Flow period		Recovery period		
8700 -		1.0	Indata		Indata		
KLX03_646.99-666.99_050516_1_CHir_Q_r			p ₀ (kPa) =	6380			
esco -	●P section ▲P above	0.9	p _i (kPa) =	6381			
:	□P below ● •Q	0.8	p _p (kPa) =	6615	p _F (kPa) =	6381	
8500.	•	0.7	$Q_{p} (m^{3}/s) =$	6.80E-06			
• (b)		0.6 E	tp (s) =	1200	t _F (s) =	1200	
6400 -		n Rate (l/m	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downhide		ogsøfu 0.4	EC _w (mS/m)=				
6300			Temp _w (gr C)=	16.9			
	•	0.3	Derivative fact.=	0.04	Derivative fact.=	0.03	
e200	-	0.2					
:		0.1					
8100 0.20 0.40 0.80 0	180 1.00 1.20 1.40 1.8	0.0	Results		Results	<u> </u>	
Elipse	i Time (h)		Q/s (m ² /s)=	2.9E-07			
Log-Log plot incl. derivates- flo	w period		$T_{M} (m^{2}/s) =$	3.0E-07			
			Flow regime:	transient	Flow regime:	transient	
-3 -2 Elapsed time (h)	491		dt ₁ (min) =	1.42	dt ₁ (min) =	0.32	
10 SKB Laxemar / KLX03 646.99-666.99 / CH	10, 10, 10, 10, FlowDim Version 2.14b (c) Golder Associates		dt_2 (min) =	18.30	dt ₂ (min) =	0.68	
1		10 1	T (m²/s) =	5.6E-07	T (m²/s) =	4.9E-07	
-			S (-) =	1.0E-06	S (-) =	1.0E-06	
		3	$K_s (m/s) =$	2.8E-08	$K_s (m/s) =$	2.5E-08	
		10 0	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08	
φ.(),φ.		[/wiw].(t	$C (m^{3}/Pa) =$	NA	$C (m^{3}/Pa) =$	7.8E-11	
²	• .	0.3 ¹ /4' (%	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	8.6E-03	
	1	10 ⁻¹	ξ(-) =	5.28	ξ(-) =	4.70	
	• •	D.03	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
10 ⁸ 10 ⁹ tD	10 ¹⁰ 10 ¹¹ 10 ¹²		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	ieters.		
			dt ₁ (min) =	0.32	C (m ³ /Pa) =	7.8E-11	
Elapsed time (n)	10, ⁻¹ 10, ⁰		dt_2 (min) =	0.68	C _D (-) =	8.6E-03	
KB Laxemar / KLX03 645.99-66.99 / CHir	FlowDim Version 2.14b (c) Golder Associates	10 3	$T_{T} (m^2/s) =$	4.9E-07	ξ(-) =	4.70	
			S (-) =	1.0E-06			
10			K _s (m/s) =	2.5E-08			
		10 2	S _s (1/m) =	5.0E-08			
B 10 °	•	. [e_4	Comments:				
	Sec. et al.	100 ⁻¹ 00	The recommended t	ransmissivity of	4.9E-7 m2/s was de	erived from the	
	· immed and a second	Ā	analysis of the Chir	phase (inner zon	ne), which shows the	e best data and	
10 -1			aerivative quality. I	ne confidence r $0E_7$ to 8 $0E_7$	ange for the interval m2/s. The flow dime	transmissivity	
		10	during the test is 2.	The static press	are measured at tran	sducer depth,	
10 ¹ 10 ²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵		was derived from th	e CHir phase us	ing straight line extr	apolation in the	
10/02			Horner plot to a val	ue of 6381.6 kP	a.		

	Test Sum	mary Sheet					
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			Pi		
Area:	Laxema	r Test no:			1		
Borehole ID:	KLX0	3 Test start:	050516		050516 14:22		
Test section from - to (m):	est section from - to (m): 687.06-707.06			Stephan Rohs			
Section diameter, 2·r _w (m):	Section diameter, $2 \cdot r_w$ (m): 0.076			Crist	ian Enachescu		
l inear plot Ω and p		test evaluation:		Recovery period			
		Indata		Indata			
7000	KLX03_687.06-707.06_050516_1_Pi_Q_r	$p_0 (kPa) =$	6766				
6950 -	÷0.9	p _i (kPa) =	6809				
6900 -	0.8	$p_p(kPa) =$	6988	p _F (kPa) =	6805		
6890 -	0.7	$Q_{n} (m^{3}/s) =$	NA				
2 600	10.5 g	tp(s) =	0	t _F (s) =	3600		
8 8750 -	- 0.5 g	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
то б етоо.	●P section ▲ P above 0.4	EC _w (mS/m)=					
690 -	■P below ●Q	Temp _w (gr C)=	17.5				
		Derivative fact.=	NA	Derivative fact.=	0.07		
e550 -	+ 0.1						
6500 0.00 0.20 0.40 0.60 0.60 Elap	1.00 1.20 1.40 1.80 1.80 2.00 sed Time [h]	Results		Results			
		Q/s (m ² /s)=	NA				
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	dt_1 (min) =	1.39		
		dt ₂ (min) =	NA	dt ₂ (min) =	8.33		
		$T(m^{2}/s) =$	NA	T (m²/s) =	6.6E-11		
		S (-) =	NA	S (-) =	1.0E-06		
		$K_s (m/s) =$	NA	$K_s (m/s) =$	3.3E-12		
Not A	nalysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-08		
		C (m³/Pa) =	NA	C (m³/Pa) =	9.1E-12		
		C _D (-) =	NA	$C_D(-) =$	1.0E-03		
		ξ(-) =	NA	ξ(-) =	1.30		
				2			
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
		$S_{GRF}(-) =$		$S_{GRF}(-) =$			
Log Log plot incl. dominatives	recovery period	$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	ieters.			
Elapsed time (*	1	$dt_1(min) =$	1.39	C (m ² /Pa) =	9.1E-12		
10 SKB Laxemar / KLX03 687.07-707.07 / Pi	FlowDim Version 2.14b (c) Golder Associates	$u_2(mm) = $	6.53 6.6E 11	$C_D(-) =$	1.0E-03		
	0.3	$I_{T}(m^{-}/s) =$	1.0E-11	ς(-) =	1.30		
10 ⁻¹		S(-) =	1.0E-00 3.3E-12				
		$S_{s}(11/3) =$	5.0E-08				
	0.03	Comments:	0.02-00		L		
	1	The recommended	transmissivity of	f 6 6E-11 m ^{2/} s was a	lerived from the		
10 -1		analysis of the Pi p	hase. Considerin	g the inherent uncer	tainties related		
	÷	to the measurement	t (e.g. specially t	he measurement of t	he wellbore		
	•	storage coefficient)) and to the analy	sis process (e.g. nur	neric distortion		
10 ⁰ 40 ¹	10 ⁻³	confidence range for	or the transmission	vity is estimated to b	e 2E-11 to 8E-		
U U U	10 10	11 m2/s.The flow of	dimension displa	yed during the test is	s 2. No static		
		pressure could be d	pressure could be derived.				

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			
Area:	Laxemar	Test no:			1
Borehole ID:	KLX03	Test start:	050516		
Test section from - to (m):	707.09-727.09 m	Responsible for test execution:		Stephan Roh	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p	Flow period		Recovery period		
7100 -	Indata	<u></u>	Indata		
KI Y03 707 00 727 00 050546 1 Ch	p ₀ (kPa) =	6959		1	
7050 -		p _i (kPa) =	NA		1
		p _p (kPa) =	NA	p _F (kPa) =	NA
	7	$Q_{\rm p} ({\rm m}^3/{\rm s}) =$	1.67E-04		
6950 -	● ^{+ 6} _ਵ	tp(s) =	0	t _F (s) =	0
2 5 6 6900 -	●P section ▲P above 15 64	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
lowmhole		$EC_w (mS/m) =$			
6850 -	14	Temp _w (gr C)=	17.8		
6800 -	- 3	Derivative fact.=	NA	Derivative fact.=	NA
	- ²				
6750 -	- 1				+
6700	o	Rosults		Rosults	
0.00 0.10 0.20 0.30 0.40 Ela	0.50 0.60 0.70 0.80 0.90 1.00 psed Time (h)	$O(z_1/m^2/z_2)$	ΝΑ	Results	T
Log Log plot incl. derivates f	low pariod	Q/s (m /s)=			
Log-Log plot lifel: derivates- i	iow period	I _M (m ⁻ /s)=	INA transient	F 1	
		Flow regime:	transient	Flow regime:	transient
		$dt_1 (min) =$	NA	$dt_1 (min) =$	NA
		$dt_2 (min) =$	NA	$dt_2 (min) =$	NA
		$T(m^2/s) =$	NA	$T(m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	K _s (m/s) =	NA
Not A	nalysed	S _s (1/m) =	NA	S _s (1/m) =	NA
		C (m³/Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		S _{GRF} (-) =		S _{GRF} (-) =	
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative paran	neters.	
		$dt_1 (min) =$	NA	C (m ³ /Pa) =	NA
		dt_2 (min) =	NA	C _D (-) =	NA
		$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
Not Analysed		K _s (m/s) =	NA		
		$S_{s}(1/m) =$	NA		
		Comments:			
		Based on the test re transmissivity is low	sponse (prolong wer than 1E-11 r	ed packer compliand n2/s.	ce) the interval

Test Summary Sheet						
Project:	Oskarshamn site investigatior	Test type:[1]			CHir	
Area:	Laxemai	Test no:			1	
Borehole ID:	KLX03	Test start:			050517 10:32	
Test section from - to (m):	762.16-782.16	Responsible for test execution:	Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
KLX03_762.16-782.16_050517_1_CHir_Q_r	1.0	p ₀ (kPa) =	7486			
7700	• 0.9	p _i (kPa) =	7485			
	A P above 0.8 D P below	p _p (kPa) =	7685	p _F (kPa) =	7485	
7600 -	a7	$Q_{p} (m^{3}/s) =$	8.83E-06			
F	• •	tp(s) =	1200	t _F (s) =	900	
7500	0.5 2	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downtrold	- 0.4	EC _w (mS/m)=				
7400 -	-	Temp _w (gr C)=	18.6			
	- 02	Derivative fact.=	0.05	Derivative fact.=	0.04	
7300	- 0.1					
7200 0.00 0.40 0.60	0.80 1.00 1.20 1.40 1.80	Results		Results		
Elap	Ead Time [h]	$Q/s (m^{2}/s) =$	4.3E-07			
Log-Log plot incl. derivates- f	ow period	$T_{M} (m^{2}/s) =$	4.5E-07			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time (h)	10 ⁻¹ 10 ⁰ 10 ¹	dt_1 (min) =	0.38	dt ₁ (min) =	NA	
10 2 SKB Laxemar / KLX03 762.16-782.16 / CHi	FlowDim Version 2.14b (c) Golder Associates	dt ₂ (min) =	0.92	dt ₂ (min) =	NA	
		T (m²/s) =	9.9E-07	T (m²/s) =	2.8E-06	
	3	S (-) =	1.0E-06	S (-) =	1.0E-06	
10 1	10 °	K _s (m/s) =	5.0E-08	$K_s (m/s) =$	1.4E-07	
	•	S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08	
	0.3	C (m³/Pa) =	NA	C (m³/Pa) =	5.5E-11	
10 °	10 ⁻¹ 10	$C_{D}(-) =$	NA	$C_{D}(-) =$	6.1E-03	
· · · · · · · · · · · · · · · · · · ·) ' (print)	ノ(-) =	6.15) (-) =	32.49	
	0.03	$T_{(m^{2}(c))} =$		$T_{m^{2}(c)} =$		
10 ⁹ 10 ¹⁰	10 ¹¹ 10 ¹² 10 ¹³	$S_{CRF}(-) =$		$S_{GRF}(1175) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.		
		dt_1 (min) =	0.38	C (m ³ /Pa) =	5.5E-11	
Elapsed time [h]		dt ₂ (min) =	0.92	$C_{D}(-) =$	6.1E-03	
10 ² SKB Laxemar / KLX03 762.16-782.16 / CHir	FlowDim Version 2.14b (c) Golder Associates 300	$T_{T}(m^{2}/s) =$	9.9E-07	/(-) =	6.15	
	96.62.0000000000000000000000000000000000	S (-) =	1.0E-06			
	10 ²	$K_s (m/s) =$	5.0E-08			
10	30	S _s (1/m) =	5.0E-08			
\.		Comments:				
	10 1	The recommended	transmissivity of	9.9E-7 m2/s was de	erived from the	
10 0	analysis of the Chi	phase (inner zon	e), which shows the	best data and		
derivative quality. The configuration $\frac{1}{2}$ derivative quality. The configuration $\frac{1}{2}$ derivative quality. The configuration $\frac{1}{2}$ derivative quality.				$5 \text{ m}^2/\text{s}$ (encompasses	the outer zone	
	10 ⁰	transmissivity value	derived from th	e CHi phase). The f	low dimension	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵	displayed during the	e test is 2. The s	tatic pressure measu	red at	
		transducer depth, w extrapolation in the	as derived from Horner plot to a	the CHir phase usin a value of 7486.4 kP	g stra1ght line a.	
		· · · ·	1			

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Si
Area:	Laxemar	Test no:			2
Borehole ID:	KLX03	Test start:			050517 19:12
Test section from - to (m):	ection from - to (m): 807.21-827.21		Stephan Rohs		
Section diameter, 2·r _w (m):	0.076	Responsible for	Cristian Enachescu		
l inear plot Q and p		Flow period	Recovery period		
		Indata		Indata	
*100 KLX03_807.21-827.21_050517_2_Si_Q_r		n _o (kPa) =	I_	indutu	
		p₀(ki u) =	7922		
	=Q = 8	$p_1(kPa) =$	9021	n (kPa) -	7096
8000 -	7	$p_p(\kappa r a) =$	0031 NIA	р _F (кга) -	/980
		$Q_p (m^{\circ}/s) =$	NA 20000		1200
[Fad] ann	Crement of a	tp (s) =	28800	t _F (S) =	1200
82 7900 - 92 99	- 5 estin Ret	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
Down	ب ة •	EC _w (mS/m)=			
	- 3	Temp _w (gr C)=	8.9		
7800 -	- 2	Derivative fact.=	0.17	Derivative fact.=	NA

7700	500 600 7.00 8.00 9.00	Results		Results	
Elapse	i Time (h)	$\Omega/s (m^2/s) =$	NA		
Log-Log plot incl. derivates- flo	w period	$T_{\rm ev} (m^2/s) =$	NA		
5 51	•	Flow regime:	transient	Flow regime:	transient
		dt. (min) =	5.00	dt_{ℓ} (min) =	NA
Elapsed time [h]		dt ₁ (min) –	42.63	dt_1 (min) –	
SKB Laxemar / KLX03 807.21-827.21 / Si	FlowDim Version 2.14b	$d_{12}(11111) =$	9 2E 00	$T_{2}(1111) = T_{2}(1111)$	
	(c) Golder Associates 10	I (m ⁻ /s) =	0.2E-09	I (m ⁻ /s) =	
	* • • • • • • • • • • • • • • • • • • •	S (-) =	1.0E-00	3 (-) –	
10	<u></u>	κ_{s} (m/s) =	4.1E-10	κ_{s} (m/s) =	NA
		$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	NA
18 -		C (m³/Pa) =	4.6E-08	C (m³/Pa) =	NA
10 '1		$C_D(-) =$	5.1E-06	$C_D(-) =$	NA
	10 -1	ξ(-) =	0.08	ξ(-) =	NA
10 ² 10 ³	10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
-		S _{GRF} (-) =		S _{GRF} (-) =	
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	ieters.	
		$dt_1 (min) =$	NA	C (m³/Pa) =	4.6E-08
		$dt_2 (min) =$	NA	C _D (-) =	5.1E-06
		$T_{T} (m^{2}/s) =$	8.2E-09	ξ(-) =	0.08
Not Analysed		S (-) =	1.0E-06		
		$K_s (m/s) =$	4.1E-10		
		S _s (1/m) =	5.0E-08		
		Comments:			

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX03	Test start:	050518 0			
Test section from - to (m):	827.24-847.24	Responsible for test execution:			Stephan Rohs	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Cristian Enachesc		
Linear plot Q and p		Flow period	<u>.</u>	Recovery period		
		Indata		Indata	<u> + + + + + + + + + + + + + + + + + + +</u>	
8300 KI Y03 927 24 947 24 060619 1 CHir O	70	p ₀ (kPa) =	8116			
↓ P above □ P bdow		p _i (kPa) =	NA			
8200 -	•• b †•	p _p (kPa) =	NA	p _F (kPa) =	NA	
	7	$Q_{p} (m^{3}/s) =$	NA			
2	· _	tp(s) =	0	t _⊏ (s) =	0	
2 and	s s -	S el S [*] (-)=	1.00E-06	Sel S [*] (-)=	1.00E-06	
Downin de	P I Dector	EC, (mS/m)=				
		Temp(ar C)=	19.7			
8000 -	- 3	Derivative fact.=	NA	Derivative fact.=	NA	
	- 2					
7900	o	Rosults		Rosults		
0.00 0.10 0.20 0.30 0.40 Elapse	oso uso u.ro o.so u.so 1.00 ad Time [h]	$O(a_1(m^2/a))$	ΝΔ	Results		
Log-Log plot incl. derivates, fl	aw period	Q/S (ff /S) =				
	Sw period	T _M (m /s)=	transient	Flow regime:	transient	
		l low legime.	NA	t low regime.		
		$dt_1 (min) =$		dt_1 (min) =		
		$dl_2(\Pi\Pi) =$		$dl_2(\Pi\Pi) =$		
		1 (m/s) =		I (m /s) =		
		S(-) = K(m(a)) = 0		S(-) = K(m(a)) = -		
Not Ar	alward	$R_{s}(11/5) =$		$R_{s}(11/5) =$		
Not Ar	lalysed	$S_{s}(1/11) =$		$S_{s}(1/11) =$		
		C (m ² /Pa) =		$C(m^{2}/Pa) =$		
		$C_D(-) =$		$C_D(-) =$		
		ς(-) =	NA	ς(-) =	NA	
		$T_{and}(m^2/s) =$		$T_{a=-}(m^2/s) =$		
		$S_{CPF}(-) =$		$S_{OPF}(-) =$		
		$D_{CRF}(-) =$		$D_{CRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	eters.		
· · · · · · · · · · · · · · · · · · ·		dt₁ (min) =	NA	$C (m^3/P_2) =$	NA	
		dt_1 (min) =	NA	$C_{n}(-) =$	NA	
		$T_{1}(m^{2}(c)) =$	ΝΔ	ε ₍₎ -	NΔ	
		$S_{(-)} =$		s (-) –		
		K (m/s) =				
Not An	alward	$R_{s}(11/3) =$				
Not Analysed					L	
		Based on the test re transmissivity is low	sponse (prolong wer than 1E-11 r	ed packer compliand n2/s.	ce) the interval	

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]	С			
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX03	Test start: 05			050518 09:59	
Test section from - to (m):	847.26-867.26	Responsible for test execution:	Stephan Rohs			
Section diameter, 2·r _w (m):	Responsible for	Cristian Enaches				
Linear plot Q and p	Flow period		Recovery period			
8450	Indata					
KLX03_847.26-867.26_050518_1_CHir	Q_r P section	p ₀ (kPa) =	8311			
seo:		p _i (kPa) =	NA			
		p _p (kPa) =	NA	p _F (kPa) =	NA	
8390	• • • • • • • • • • • • • • • • • • •	Q _p (m ³ /s)=	NA			
R 8300		tp (s) =	1200	t _F (s) =	1200	
anta a	- ភ័ ម្នារ - ភ័ ម្នារ	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
7 0 2250 -	\$39 <u>1</u>	EC _w (mS/m)=				
		Temp _w (gr C)=	20.0			
8200 -	+ 3	Derivative fact.=	NA	Derivative fact.=	NA	
8150 -	-2					
		-				
0.00 0.20 0.40 Elaps	0.80 0.80 1.00 1.20 ed Time [h]	Results		Results	1	
		$Q/s (m^2/s) =$	NA			
Log-Log plot incl. derivates- fle	ow period	T _M (m²/s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt ₂ (min) =	NA	
		T (m²/s) =	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		K_{s} (m/s) =	NA	$K_{s} (m/s) =$	NA	
Not Ar	nalysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	intative paran	neters.		
		dt ₁ (min) =	NA	C (m³/Pa) =	NA	
		dt_2 (min) =	NA	C _D (-) =	NA	
		T _T (m²/s) =	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Analysed		S _s (1/m) =	NA			
		Comments: Based on the test re transmissivity is low	sponse (prolong ver than 1E-11 r	ed packer compliand n2/s.	ce) the interval	

Test Summary Sheet							
Project:	Oskarshamn site investiga	ation <mark>1</mark>	[est type:[1]	CH			
Area:	Laxe	emar T	Fest no:			1	
Borehole ID:	KL	.X03 T	Fest start:			050518 11:43	
Test section from - to (m):	867.28-887	7.28 F	Responsible for est execution:	Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0.	.076 F	Responsible for		Crist	ian Enachescu	
Linear plot Q and p			low period		Recovery period		
8700	1,	., II	ndata		Indata		
KLX03_867.28-887.28_050518_1_CHir_Q	r ●Psection ▲Pabove + g	p	o ₀ (kPa) =	8508			
Prelow - Q		р	o _i (kPa) =	NA			
8600 -	i	° p	o _p (kPa) =	NA	p _F (kPa) =	NA	
<u>a</u>		, C	Ω _ρ (m³/s)=	NA			
(red)		°° _≆ tµ	p (s) =	0	t _F (s) =	0	
8500 -		on Rate (IV	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downie	.	., ⁵⁸ E	EC _w (mS/m)=				
	Š	Ţ	「emp _w (gr C)=	20.3			
8400 -		C	Derivative fact.=	NA	Derivative fact.=	NA	
	+ :	2					
		-1					
8300 0.20 0.40	0.60 0.80 1.00 1.20		Results	Results			
Elups	ed Time [h]	C	$2/s (m^2/s) =$	NA			
Log-Log plot incl. derivates- fl	ow period	т	$(m^2/s) =$	NA			
	•	F	low regime:	transient	Flow regime:	transient	
		d	dt₁ (min) =	NA	dt₁ (min) =	NA	
		d	dt_2 (min) =	NA	dt_2 (min) =	NA	
		T	$\Gamma(m^2/s) =$	NA	$T(m^2/s) =$	NA	
		S	S(-) =	NA	S (-) =	NA	
		ĸ	(m/s) =	NA	$K_{-}(m/s) =$	NA	
Not Ar	nalvsed	9	$S_{2}(1/m) =$	NA	$S_{-}(1/m) =$	NA	
Not Al	laly sou		$(m^{3}/P_{2}) =$	NA	$C_{s}(m^{3}/P_{2}) =$	NA	
			$C_{n}(-) =$	NA	$C(\Pi / Pa) = C_{D}(-) =$	NA	
				NΔ	ε ₍₎ -	NA	
		ر ر	, (-) –		ς (-)	147 (
		-	$\Gamma_{}(m^2/c) =$		$T_{}(m^2/c) =$		
		S	$S_{OPF}(-) =$		$S_{CPF}(-) =$		
		Ē	$D_{CRF}(-) =$		$D_{CRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	S	Selected represe	ntative param	ieters.		
- <u> </u>		с Н	lt₁ (min) =	NA	$C (m^3/P_2) =$	NA	
		d	dt_2 (min) =	NA	$C_{D}(-) =$	NA	
		- -	$(m^2/c) -$	NA	ε ₍₋) -	NA	
		S	$S_{(-)} =$	NΔ	ς(-) –		
		ĸ	(m/s) =	NΔ			
Not Analysed		9	$S_{s}(11/3) = S_{s}(1/m) = S_$				
			Commente:				
			Based on the test rest rest ransmissivity is low	sponse (prolong ver than 1E-11 n	ed packer compliand n2/s.	ce) the interval	

Test Summary Sheet						
Project:	Oskarshamn site investigation	on <u>Test type:[1]</u>			CHir	
Area:	Laxem	ar Test no:			1	
Borehole ID:	KLX	03 Test start:			050519 08:14	
Test section from - to (m):	927.33-947.33	m Responsible for test execution:		Stephan Rohs		
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for test evaluation:		Cristian Enachesc		
Linear plot Q and p		Flow period		Recovery period		
2250	Indata		Indata			
KLX03_927.33-947.33_050519_1_CHir_Q_r	p ₀ (kPa) =	9088				
9200 -		p _i (kPa) =	NA			
	and the second sec	p _p (kPa) =	NA	p _F (kPa) =	NA	
9150		$Q_{p} (m^{3}/s) =$	NA			
F 2100		tp(s) =	0	t _F (s) =	0	
	Bate Driver	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
90 9050 -	● locao → loc	$EC_w (mS/m) =$				
-	1*	Temp(ar C)=	21.3			
9000 -	●P section - 3 ▲P above	Derivative fact =	NA	Derivative fact =	NA	
	■P below •Q	Derivative last.	1111	Benvalive laot.	1171	
8950 -	- 1					
		Beaulte		Beaulta		
0.00 0.20 0.40 0 Elapse	0.80 0.80 1.00 1.20 d Time [h]			Results		
les les platinel derivates fla		Q/s (m ⁻ /s)=	NA			
Log-Log plot incl. derivates- fic	ow period	T _M (m²/s)=	NA	-		
		Flow regime:	transient	Flow regime:	transient	
		$dt_1(min) =$	NA	$dt_1 (min) =$	NA	
		dt_2 (min) =	NA	$dt_2 (min) =$	NA	
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		K _s (m/s) =	NA	K _s (m/s) =	NA	
Not An	alysed	S _s (1/m) =	NA	S _s (1/m) =	NA	
		C (m³/Pa) =	NA	C (m ³ /Pa) =	NA	
		$C_{D}(-) =$	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.		
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA	
		dt ₂ (min) =	NA	C _D (-) =	NA	
		T_{T} (m ² /s) =	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Analysed		$S_{s}(1/m) =$	NA			
		Comments:				
		Based on the test re transmissivity is lo	esponse (prolong wer than 1E-11 r	ed packer compliand n2/s.	ce) the interval	

Test Summary Sheet							
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir	
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KL	.X03	Test start:			050519 10:03	
Test section from - to (m):	947.34-967.34		Responsible for test execution:	Stephan Rohs			
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for test evaluation:		Cristian Enachesco		
Linear plot Q and p	<u></u>		Flow period		Recovery period		
9800 -		T ⁵	Indata		Indata		
KLX03_947.34-967.34_050519_1_Pi_Q_r			p ₀ (kPa) =	9285			
9550 -	• D the		p _i (kPa) =	9289			
9500 -	●P section ▲P above ■P below	4	p _p (kPa) =	9545	p _F (kPa) =	9299	
9450 -	=Q		$Q_{p} (m^{3}/s) =$	NA			
£ 9400 -		3	tp(s) =	0	t _F (s) =	3540	
		s Rate (l/mk	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
000 0000 0000 0000 0000 0000 0000 0000 0000		hjecton	$EC_w (mS/m) =$				
		ĺ	Temp(ar C)=	21.6			
9250 -	•		Derivative fact =	NA	Derivative fact =	0.06	
9200 -		- 1					
9150 -							
9100			Results		Results	I	
Вар	sed Time [h]		Ω/c (m ² /c)=	NA			
l og l og plot incl. derivates- fl	ow period		Q/S (III/S) =	NA			
			T _M (III /S)=	transient	Flow regime:	transient	
			dt_{ℓ} (min) =		dt_{ℓ} (min) =	#NIV	
			$dt_1(min) =$		$dt_1(min) =$	#NV	
			$T_{12}(1111) = T_{12}(1111)$		$T_{2}(1111) = T_{2}(1111)$	#11V 2.0E-10	
			1 (m/s) =		1 (m/s) =	2.0E-10	
			S(-) = K(m/c) = -		S(-) = K(m/c) = -	1.0E-00	
Not Ar	alward		$R_{s}(11/3) =$		$R_{s}(11/s) =$	5.0E.08	
Not Al	larysed		$S_{s}(1/11) =$		$S_{s}(1/11) =$	3.0L-08 2.6⊑ 11	
			C (m /Pa) =		C (m /Pa) =	2.02-11	
			C _D (-) =		C _D (-) =	2.92-03	
			ς(-) =	INA	ς(-) =	1.45	
			T (2(-)		T (2/-)		
			$I_{GRF}(M/S) =$		$I_{GRF}(M/S) =$		
			$O_{GRF}(-) =$		$O_{GRF}(-) =$		
l og l og plot incl. derivatives.	recovery period		Selected represe	intative naran			
			$dt_{\ell}(min) =$		$C (m^3/P_2) =$	2.6E-11	
-1 -3 Elapsed time [h]			$dt_1(min) = dt_2(min) =$		$C(\Pi/Pa) =$	2.0E-11 2.9E-03	
10 2 SKB Laxemar / RL X03 947 / 34-967 34 / Pi	FlowDim Version 2.14b (c) Golder Associates		$T_{2}(m^{2}(n)) =$	2 0E-10	ε ₍₎ –	2.0E-05	
0.00			$T_{T}(11/S) =$	2.0E-10	ς(-) –	1.43	
			S (-) =	1.0E-00			
10 *	-2	$R_{s}(11/3) =$	5.0E-08				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ar	Commonts:	5.0⊑-00				
2d	23 perpendition	The recommended in	tronomicsivity of	$20E 10 m^{2}/s was$	larived from the		
10 *	ů Decon	analysis of the Pi pl	hase (outer zone). Considering the in	herent		
10 ³			uncertainties related	to the measure	ment (e.g. specially	the	
	3E-	4	measurement of the	wellbore storag	e coefficient) and to	the analysis	
· ·			process, the confide $8E_{11}$ to $4E_{10}$ m ²	ence range for th	e transmissivity is e	stimated to be	
10 ⁴ 10 ³ tD	10 [°] 10 [°] 10 [°]		No static pressure of	s. The now aime	ension displayed du	ing the test is 2.	
	- to static pressure e	and be derived.					

	Test Si	umn	nary Sheet					
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir		
Area:	Lax	emar	Test no:			1		
Borehole ID:	KI	_X03	Test start:			050519 14:26		
Test section from - to (m):	972.41-99	92.41	Responsible for test execution:	Stephan Roh				
Section diameter, $2 \cdot r_w$ (m):	C).076	Responsible for test evaluation:	Crist	ian Enachescu			
Linear plot Q and p			Flow period		Recovery period			
1000		- 10	Indata		Indata	0+0+0+0+0+0+0+0+0+0+0+0+0+0+		
KLX03_972.41-992.41_050519_1_CHir_Q	U.		p ₀ (kPa) =	9530		1		
10700 -		• •	p _i (kPa) =	NA				
10500	P sedion	- 8	p _p (kPa) =	NA	p _F (kPa) =	NA		
	P below • Q	7	Q_{2} (m ³ /s)=	NA				
10300 - Z	0	- ⁶ _	tp(s) =	0	t _⊏ (s) =	0		
85 87 86 10100	•	c Rate (l/min	S el S [*] (-)=	1.00E-06	Sel S [*] (-)=	1.00E-06		
a puturo de la companya de	•	hjecton	EC., (mS/m)=					
		ľ	Temp (ar C)=	22.0				
9700	•	3	Derivative fact =	NA	Derivative fact =	NA		
		2		117	Derivative lact			
9600 -	ş	1						
			Poculto		Booulto			
0.00 0.20 0.40 Bapa	0.60 0.80 1.00 1 sed Time [h]	20			Results			
	eur neufed		Q/s (m ⁻ /s)=	NA				
Log-Log plot incl. derivates- in	ow period		I _M (m ⁻ /s)=	NA				
			Flow regime:	transient	Flow regime:	transient		
			$dt_1 (min) =$	8.50	$dt_1 (min) =$	10.02		
			$dt_2 (min) =$	26.27	$dt_2 (min) =$	14.04		
			$T(m^2/s) =$	NA	$T(m^2/s) =$	NA		
			S (-) =	NA	S (-) =	NA		
			K _s (m/s) =	NA	K _s (m/s) =	NA		
Not Ar	nalysed		$S_s(1/m) =$	NA	S _s (1/m) =	NA		
			C (m³/Pa) =	NA	C (m³/Pa) =	NA		
			C _D (-) =	NA	C _D (-) =	NA		
			ξ(-) =	NA	ξ(-) =	NA		
			T _{GRF} (m²/s) =		$T_{GRF}(m^2/s) =$			
			S _{GRF} (-) =		S _{GRF} (-) =			
			D _{GRF} (-) =		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period		Selected represe	intative paran	ieters.			
			dt ₁ (min) =	NA	C (m ³ /Pa) =	NA		
			dt ₂ (min) =	NA	C _D (-) =	NA		
			$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA		
			S (-) =	NA				
			K _s (m/s) =	NA				
Not Ar	nalysed		S _s (1/m) =	NA				
			Comments:					
			Based on the test re transmissivity is low	sponse (prolong ver than 1E-11 r	ed packer compliand n2/s.	:e) the interval		

Borehole: KLX03

APPENDIX 4

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,	constants	•		•
A _w		Horizontal area of water surface in open borehole, not including area of signal cables, etc.	[L ²]	m²
b		Aguifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	liLi	m
L		Corrected borehole length	líLí	m
Lo		Uncorrected borehole length	líLí	m
L		Point of application for a measuring section based on its	liLi	m
٣		centre point or centre of gravity for distribution of transmissivity in the measuring section.		
L _w		Test section length.	[L]	m
dĽ		Step length, Positive Flow Log - overlapping flow logging.	[L]	m
r		Radius	[[]]	m
r		Borehole, well or soil pipe radius in test section.		m
rwo		Effective borehole, well or soil pipe radius in test section.		m
		(Consideration taken to skin factor)		
r _s		Distance from test section to observation section, the shortest distance	[L]	m
r _t		Distance from test section to observation section, the	[L]	m
		Dimensionless radius r =r/r		
r _D		Dimensionless radius, $r_D = r/r_w$	-	-
2		Level above reference point		m
Z _r		Level for test section (section that is being flowed) upper		m
Z _{wu}		limitation		m
Z _{wl}		Level for test section (section that is being flowed), lower limitation	[L]	m
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m
Z _{ou}		Level for observation section, upper limitation	[L]	m
Z _{ol}		Level for observation section, lower limitation	[L]	m
Z _{os}		Level for sensor that measures response in observation	[L]	m
		section		
E		Evaporation:	[L ³ /(T L ²)]	mm/y,
		hydrological budget:	[L ³ /T]	m ³ /s
ET		Evapotranspiration	$[L^{3}/(T L^{2})]$	mm/y,
		hydrological budget:	[L ³ /T]	mm/d, m³/s
Р		Precipitation	$[L^{3}/(TL^{2})]$	mm/y,
		budrological budgati	ri ³ / - -1	mm/d,
D		hydrological budget:	$[L^{7}/I]$	m²/s
ĸ		Groundwater recharge	[L ⁻ /(I L ⁻)]	mm/y, mm/d,
		hydrological budget:	[L°/T]	m³/s
D		Groundwater discharge	[L³/(T L²)]	mm/y, mm/d,
		hydrological budget:	$[L^3/T]$	m³/s
Q _R		Run-off rate	$[L^3/T]$	m³/s
Q _p		Pumping rate	$[L^3/T]$	m³/s
Q		Infiltration rate	$[L^3/T]$	m³/s
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s
Q ₀		Flow in test section during undisturbed conditions (flow logging).	[L ³ /T]	m³/s

Qp		Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s
,		Stabilised pump flow in flow logging.		
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s
Q ₁		Flow in test section during pumping with pump flow Q _{p1} ,	$[L^3/T]$	m³/s
		(flow logging).		
Q ₂		Flow in test section during pumping with pump flow Q_{p1} ,	[L ³ /T]	m³/s
		(flow logging).		
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L ³ /T]	m³/s
ΣQ_0	SumQ0	Cumulative volumetric flow along borehole, undisturbed	$[L^3/T]$	m³/s
		conditions (ie, not pumped)		
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump	[L ³ /T]	m³/s
		flow Q _{p1}		
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump	$[L^3/T]$	m³/s
_		flow Q _{p2}	_	
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole,	[L ³ /T]	m³/s
		$\Sigma Q_1 - \Sigma Q_0$		
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole,	[L ³ /T]	m³/s
-		$\Sigma Q_2 - \Sigma Q_0$		
q		Volumetric flow per flow passage area (Specific	$([L^{3}/T^{*}L^{2}])$	m/s
-		discharge (Darcy velocity, Darcy flux, Filtration velocity)).		
V		Volume	[L ³]	m ³
V _w		Water volume in test section.	[L ³]	m ³
Vp		Total water volume injected/pumped during perturbation	[L ³]	m ³
F		phase.		
V		Velocity	$([L^{3}/T*L^{2}])$	m/s
Va		Mean transport velocity (Average linear velocity (Average	$([L^3/T*L^2]$	m/s
_		linear groundwater velocity, Mean microscopic velocity));.		
		v _a =q/n _e		
t		Time	[T]	hour,mi
				n,s
to		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as	[T]	S
		p _p).		
t _F		Duration of recovery phase (from p_p to p_F).	[T]	S
t_1, t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi
				n,s
dt		Running time from start of flow phase and recovery	[T]	S
	_	phase respectively.		
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as	[T]	S
	_	running time for recovery phase.		
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
р		Static pressure; including non-dynamic pressure which	[M/(LT) ²]	kPa
		depends on water velocity. Dynamic pressure is normally		
		ignored in estimating the potential in groundwater flow		
		relations.		
p _a		Atmospheric pressure	$[M/(LT)^2]$	kPa
pt		Absolute pressure; pt=pa+pg	$[M/(LT)^2]$	kPa
pg		Gauge pressure; Difference between absolute pressure	$[M/(LT)^2]$	kPa
		and atmospheric pressure.	ļ	
p ₀		Initial pressure before test begins, prior to packer	$[M/(LT)^2]$	kPa
		expansion.		
pi		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
p _s		Pressure during recovery.	$[M/(LT)^{2}]$	kPa
pp		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
р _Е		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
n		$p_{p}=2\pi T p/(\Omega, \alpha)$ Dimensionless pressure	-	_
PD				

dp	Pressure difference, drawdown of pressure surface	$[M/(LT)^2]$	kPa
	between two points of time.		
dp _f	$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of	[M/(LT) ²]	kPa
	pressure surface between two points of time during		
	perturbation phase. dp _f usually expressed positive.		
ap _s	$dp_s = p_s - p_p$ or $p_p - p_s$, pressure increase/drawdown of		кра
	pressure surface between two points of time during		
dn	$dp_{s} = p_{s} - p_{s}$ or $p_{s} = p_{s} - p_{s}$ maximal pressure	$[N/(1 T)^2]$	kPa
up _p	$dp_p = p_i = p_p$ or $= p_p = p_i$, maximal pressure increase/drawdown of pressure surface between two		Νά
	points of time during perturbation phase, dp _o expressed		
	positive.		
dp _F	$dp_F = p_p - p_F$ or $p_F = p_p$, maximal pressure	$[M/(LT)^2]$	kPa
	increase/drawdown of pressure surface between two		
	points of time during recovery phase. dp _F expressed		
	positive.		
H	Total head; (potential relative a reference level)	[L]	m
	(indication of h for phase as for p). $H=h_e+h_p+h_v$		
h	Groundwater pressure level (hydraulic head (piezometric	[L]	m
	nead; possible to use for level observations in borenoies,		
h	Static field()); (indication of fi for phase as for p). $fi=fi_e+fi_p$	ri 1	
l le	reference level for measuring point		111
h	Pressure head: Level above reference level for height of	[]]	m
пр	measuring point of stationary column of water giving		
	corresponding static pressure at measuring point		
h _v	Velocity head; height corresponding to the lifting for	[L]	m
v	which the kinetic energy is capable (usually neglected in		
	hydrogeology)		
S	Drawdown; Drawdown from undisturbed level (same as	[L]	m
	dh _p , positive)		
Sp	Drawdown in measuring section before flow stop.	[L]	m
L.			
n _o	Initial above reference level before test begins, prior to	[L]	m
h.	Level above reference level in measuring section before	ri 1	m
11	start of flow	[[]]	
h _f	Level above reference level during perturbation phase.	[[_]	m
h _s	Level above reference level during recovery phase.	[L]	m
h _p	Level above reference level in measuring section before	liLi	m
٣	flow stop.		
h _F	Level above reference level in measuring section at end	[L]	m
	of recovery.		
dh	Level difference, drawdown of water level between two	[L]	m
	points of time.		
dh _f	$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of	[L]	m
	pressure surface between two points of time during		
db	db = b b or = b b proceure increase (drawdown of	ri 1	
un _s	$u_{I_s} = n_s - n_p o_I - n_p - n_s$, pressure increase/urawdown or		m
	recovery phase, db, usually expressed positive		
dh	$dh_p = h_i - h_p$ or $= h_r - h_i$ maximal pressure	<u>[]</u>	m
	increase/drawdown of pressure surface between two	^(_)	
	points of time during perturbation phase. dh _o expressed		
	positive.		
dh _F	$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure	[L]	m
	increase/drawdown of pressure surface between two		
	points of time during perturbation phase. dh _F expressed		
	positive.		
Te _w	Temperature in the test section (taken from temperature		Ο̈́

		logging). Temperature		
Te _{w0}		Temperature in the test section during undisturbed		°C
		conditions (taken from temperature logging).		-
		Temperature		
Teo		Temperature in the observation section (taken from		°C
- 0		temperature logging). Temperature		
EC.,,		Electrical conductivity of water in test section.		mS/m
		Electrical conductivity of water in test section during		mS/m
_ = • ₩0		undisturbed conditions.		
EC _o		Electrical conductivity of water in observation section		mS/m
TDS		Total salinity of water in the test section.	$[M/L^3]$	ma/L
TDSwo		Total salinity of water in the test section during	[M/I ³]	ma/l
0 wo		undisturbed conditions.	[
TDS		Total salinity of water in the observation section.	$[M/L^3]$	ma/L
00			[]	
q		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	$[L/T^2]$	m/s ²
5		gravity)		
π	pi	Constant (approx 3.1416).	[-]	
r		Residual, r= p _c -p _m , r= h _c -h _m , etc. Difference between		
		measured data (p_m , h_m , etc) and estimated data (p_c , h_c ,		
		etc)		
ME		1		
		Mean error in residuals. $ME = -\sum_{i} r_{i}$		
		n = 1		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
MAE		$1 \frac{n}{2}$		
		Mean absolute error. $MAE = -\sum r_i $		
		n = n		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
RMS		$(1^{n})^{0.5}$		
		Root mean squared error. $RMS = \left \frac{1}{2} \sum r_i^2 \right $		
		$\left(n \prod_{i=1}^{n} r^{i}\right)$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
SDR		Standard deviation of residual.		
		$\begin{pmatrix} 1 & n \end{pmatrix}^{0.5}$		
		$SDR = \left \frac{1}{1 - 1} \sum (r_i - ME)^2 \right $		
		$\left(n-1\sum_{i=1}^{n} \left(1-1\right)\right)$		
SEMR		Standard error of mean residual.		
		$(1, n)^{0.5}$		
		$SEMR = \left(\frac{1}{2} \sum_{r=1}^{n} (r - ME)^2 \right)$		
		$\binom{n(n-1)}{n} \sum_{i=1}^{n(n-1)} \binom{n(n-1)}{i}$		
Parameter	'S	1	I	L
Q/s		Specific capacity s=dp, or s=s_=h_0-h_1 (open borehole)	[] ² /T]	m²/s
				,0
D		Interpreted flow dimension according to Barker 1988	[-]	_
-				
dt₁		Time of starting for semi-log or log-log evaluated	ГГТІ	s
		characteristic counted from start of flow phase and		-
		recovery phase respectively.		
		· , ,		
dt ₂		End of time for semi-log or log-log evaluated	[T]	S
-		characteristic counted from start of flow phase and		
		recovery phase respectively.		

dtL	Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ	Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
т	Tranamiasivity		m^2/c
T.	Transmissivity according to Move (1967)	[L 7]	m^2/s
	Evaluation based on O/s and regression curve between	$[L^{2}/T]$	m ² /s
ιQ	Ω /s and T as example see Rhén et al (1997) p 190		11173
Te	Transmissivity evaluated from slug test	$[L^2/T]$	m²/s
Tn	Transmissivity evaluated from PFL-Difference Flow	$[L^2/T]$	m²/s
	Meter	[]	
T	Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}	Transient evaluation based on semi-log or log-log	$[L^2/T]$	m²/s
	diagram for perturbation phase in injection or pumping.		
T _{Ss} , T _{Ls}	Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.	[L ² /T]	m²/s
T _T	Transient evaluation (log-log or lin-log). Judged best	$[L^2/T]$	m²/s
	evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}		
T _{NLR}	Evaluation based on non-linear regression.	$[L^2/T]$	m²/s
T _{Tot}	Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[L ² /T]	m²/s
K	Hydraulic conductivity	[L/T]	m/s
K _s	Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m	Hydraulic conductivity matrix, intact rock	[L/T]	m/s
k	Intrinsic permeability	[L ²]	m²
kb	Permeability-thickness product: kb=k·b	[L°]	m°
SB	Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*	Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
0	Otenens as officient (Oteneticity)		
S C*	Storage coefficient, (Storativity)		-
S S	Theoretical specific vield of water (Specific vield)		-
U,	unconfined storage. Defined as total porosity (n) minus retention capacity (S_r)		
S _{ya}	Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. S _{ya} = S _y (often called S _y in literature)	[-]	-
Sr	Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
S _f	Fracture storage coefficient	[-]	-
S _m	Matrix storage coefficient	[-]	-
S _{NLR}	Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}	Judged most representative storage coefficient for particular test section and (in certain cases) evaluation	[-]	-

		time with respect to available data (made by SKB at a	1	
		later stage)		
S		Specific storage coefficient: confined storage	[1/]	1/m
Os S *		Assumed specific storage coefficient: confined storage.		1/m
S _s		Assumed specific storage coefficient, commed storage.		1/111
-		I hadroulie register oor The hudroulie registeres is on	(7)	
Cf		Hydraulic resistance: The hydraulic resistance is an	[1]	S
		aquitard with a flow vertical to a two-dimensional		
		formation. The inverse of c is also called Leakage		
		coefficient. $c_f = D/K$ where b is thickness of the aquitard		
-		and K its hydraulic conductivity across the aquitard.		
L _f		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.0}$ where K represents	[L]	m
		characteristics of the aquifer.		
ξ	Skin	Skin factor	[-]	-
٤*	Skin	Assumed skin factor	[-]	-
Ċ		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
		$C_{\rm D} = C \cdot \rho_{\rm w} q / (2\pi \cdot S \cdot r_{\rm w}^2)$. Dimensionless wellbore storage		
CD		coefficient	[-]	-
<u>.</u>	Stor-ratio	$\omega = S_{1}/(S_{1} + S_{2})$ storage ratio (Storativity ratio): the ratio	[-]	-
ω		of storage coefficient between that of the fracture and		
		total storage		
		lotal storage.		
2	Interflow coeff	$\lambda = \alpha (K (K)) + \alpha^2$ interperential flow coefficient	[[]	
r	Internow-coen	$\lambda = \alpha \cdot (\kappa_m / \kappa_f) \cdot r_w$ interporosity flow coefficient.	[-]	-
-			ri 2/ 77 1	2,
I _{GRF}		Transmissivity interpreted using the GRF method		m ⁻ /s
S _{GRF}		Storage coefficient interpreted using the GRF method	[[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	<u> [[-]</u>	-
Cw		Water compressibility; corresponding to β in	[(LT ²)/M]	1/Pa
		hydrogeological literature.		
Cr		Pore-volume compressibility, (rock compressibility);	$[(LT^2)/M]$	1/Pa
		Corresponding to α/n in hydrogeological literature.		
C _t		$c_t = c_r + c_w$, total compressibility; compressibility per	$[(LT^{2})/M]$	1/Pa
		volumetric unit of rock obtained through multiplying by		
		the total porosity, n. (Presence of gas or other fluids can		
		be included in c _t if the degree of saturation (volume of		
		respective fluid divided by n) of the pore system of		
		respective fluid is also included)		
nc,		Porosity-compressibility factor: nc+= n·c+	$[(LT^2)/M]$	1/Pa
nc _t b		Porosity-compressibility-thickness product: nc.b= n.c.b	$\frac{1}{1}(L^2T^2)/M1$	m/Pa
n		Total porosity	<u> </u>	-
n.		Kinematic porosity (Effective porosity)	+	-
		Transport aperture, e = n .b		m
C				111
	Donoity	Density	ГМ / / ³ 1	$ka/(m^3)$
ρ	Density			Kg/(III)
ρ _w	Density-w	Fluid density in measurement section during	[M/L°]	kg/(m°)
		pumping/injection	3	3
ρο	Density-o	Fluid density in observation section	[M/L [°]]	kg/(m°)
ρ _{sp}	Density-sp	Fluid density in standpipes from measurement section	[M/L ³]	$kg/(m^3)$
μ	my	Dynamic viscosity	[M/LT]	Pas
μ _w	my	Dynamic viscosity (Fluid density in measurement section	[M/LT]	Pas
	-	during pumping/injection)	· ·	
FC⊤		Fluid coefficient for intrinsic permeability. transference of	[1/LT]	1/(ms)
		k to K' K=FC _T :k' FC _T = o_{μ} :a/ μ_{μ}	` <i>`</i>	(,
FCs		Fluid coefficient for porosity-compressibility transference	[M/T ² I ² 1	Pa/m
·			1 L · · · · · · · ·	

	of c_t to S_s ; $S_s = FC_s \cdot n \cdot c_t$; $FC_s = \rho_w \cdot q$	
Index on K	Tand S	
S	S: semi-log	
L	L: log-log	
f	Pump phase or injection phase, designation following S	
	or L (withdrawal)	
S	Recovery phase, designation following S or L (recovery)	
NLR	NLR: Non-linear regression. Performed on the entire test	
	sequence, perturbation and recovery	
Μ	Moye	
GRF	Generalised Radial Flow according to Barker (1988)	
m	Matrix	
f	Fracture	
measl	Measurement limit. Estimated measurement limit on	
	parameter being measured (T or K)	
Т	Judged best evaluation based on transient evaluation.	
Tot	Judged most representative parameter for particular test	
	section and (in certain cases) evaluation time with	
	respect to available data (made by SKB at a later stage).	
b	Bloch property in a numerical groundwater flow model	
е	Effective property (constant) within a domain in a	
	numerical groundwater flow model.	
Index on p	and Q	1
0	Initial condition, undisturbed condition in open holes	
i	Natural, "undisturbed" condition of formation parameter	
f	Pump phase or injection phase (withdrawal, flowing	
	phase)	
S	Recovery, shut-in phase	
р	Pressure or flow in measuring section at end of	
	perturbation period	
F	Pressure in measuring section at end of recovery period.	
m	Arithmetical mean value	
С	Estimated value. The index is placed last if index for	
	"where" and "what" are used. Simulated value	
m	Measured value. The index is placed last if index for	
Como mico	where and what are used. Measured value	
Some misc	Enaneous moexes on p and n	
vv	in test section (initial difference pressure during now phase	
	"where" and second index shows "what")	
0	Observation section (final difference pressure during flow	
0	nhase in observation section can be expressed do	
	First index shows "where" and second index shows	
	"what")	
f	Fresh-water head. Water is normally pumped up from	
	section to measuring hoses where pressure and level are	
	observed. Density of the water is therefore approximately	
	the same as that of the measuring section. Measured	
	groundwater level is therefore normally represented by	
	what is defined as point-water head. If pressure at the	
	measuring level is recalculated to a level for a column of	
	water with density of fresh water above the measuring	
	point it is referred to as fresh-water head and h is	
	indicated last by an f. Observation section (final level	
	during flow phase in observation section can be	
	expressed h _{opf} , the first index shows "where" and the	
	second index shows "what" and the last one	
	"recalculation")	

Borehole: KLX03

APPENDIX 5

SICADA data tables

	SKR		SIC	ADA/	Data I	mpor	rt Temp	olate		(Sim	plified version v1.4	
										SKB &	Ergodata AB 2004	
	File Identity			1				Compiled By				
	Created By		Stephan Rohs				Quality Check	For Delivery				
	Created		20.06.2006				Deliv	very Approval				
						1	I 	1				
	Activity Type		KLX03				Project		AP PS 4	00-05-031		
			KLX03 - Injection	test								
397	Activity Informa	ation					Additional Activ	vity Data				
							C10	P20 Field crew	P200	P220	R25	
	ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	manager	Field crew	data	Report	
	KLX03	2005.05.05 11:05	2005.05.19 15:28	106.31	992.31		Golder	Stephan Rohs	Stephan Rohs, Mesegena Gebrezghi	Cristian Enachescu, Jörg Böhner, Stephan Rohs	Cristian Enachescu, Jörg Böhner, Stephan Rohs	
					·		·	·		·		

Table		plu_s_ho	le_test_d
		PLU Injection and pumpi	ing, General information
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_	r FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	oC	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity, see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC,see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling,see
reference	CHAR	-	SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application
·			

r			1	1	1		f			flass, nata a					4.4.4
idaada	atart data	aton data		aaalaw	agation no	toot turns	formation_	start flow pariod	aton flow noriad	flow_rate_e	value_type	mean_now_ra	q_measi	q_measi	
			secup	Seciow	section_no	lest_type	type	start_now_period			_qp			u	
	20050505 11.05	20050505 15.36	100.31	200.31		2	1	2005-05-05 14.35.52	2005-05-05 15.00.02	2.01E-04	0	3.20E-04	1.07E-00	0.33E-04	5.75E-01
	20050505 17:25	20050505 20:54	200.44	306.44		3	1	2005-05-05 18:22:21	2005-05-05 18:52:31	3.78E-05	0	4.45E-05	1.07E-08	8.33E-04	8.01E-02
	20050506 09.05	20050506 11.02	300.30	400.00		2	1	2005-05-06 10:00.30	2005-05-00 10.30.40	1.255.05	0	0.73E-00	1.07E-00	0.33E-04	
	20050500 12.30	20050506 15.17	400.70	500.70		3	1	2005-05-00 13.45.19	2005-05-00 14.15.29	1.25E-05	0	1.42E-03	1.07E-00	0.33E-04	2.30E-02
KLX03	20050508 15:30	20050508 17:31	506.71	000.71		3	1	2005-05-08 10:24:10	2005-05-08 10:54:20	2.50E-08	0	3.29E-07	1.07E-08	8.33E-04	5.93E-04
KLXU3	20050507 08:53	20050507 10:49	606.94	706.94		3		2005-05-07 09:47:08	2005-05-07 10:17:18	6.10E-06	0	0.48E-00	1.07E-08	8.33E-04	1.17E-02
KLX03	20050507 12:26	20050507 14:24	707.09	807.09		3	1	2005-05-07 13:21:46	2005-05-07 13:51:56	1.25E-04	0	1.31E-04	1.67E-08	8.33E-04	2.36E-01
KLXU3	20050507 16:19	20050507 22:08	807.21	907.21		3	1	2005-05-07 17:36:17	2005-05-07 18:06:27	1.43E-07	0	1.59E-07	1.67E-08	8.33E-04	2.87E-04
KLX03	20050508 09:43	20050508 11:40	892.31	992.31		3	1	2005-05-08 10:38:21	2005-05-08 11:08:31	9.87E-06	0	1.07E-05	1.67E-08	8.33E-04	1.92E-02
KLX03	20050510 08:00	20050510 09:49	106.31	126.31		3	1	2005-05-10 09:07:07	2005-05-10 09:27:17	1.19E-05	0	1.24E-05	1.67E-08	8.33E-04	1.48E-02
KLX03	20050510 10:39	20050510 13:09	126.35	146.35		3	1	2005-05-10 12:06:57	2005-05-10 12:27:07	1.50E-07	0	1.67E-07	1.67E-08	8.33E-04	2.00E-04
KLX03	20050510 13:54	20050510 15:47	146.39	166.39		3	1	2005-05-10 15:05:17	2005-05-10 15:25:37	1.40E-06	0	1.70E-06	1.67E-08	8.33E-04	2.04E-03
KLX03	20050510 17:57	20050510 19:08	166.42	186.42		3	1	2005-05-10 18:36:10	2005-05-10 18:56:20	4.83E-07	0	5.17E-07	1.67E-08	8.33E-04	6.20E-04
KLX03	20050511 08:01	20050511 09:37	186.42	206.42		3	1	2005-05-11 08:55:30	2005-05-11 09:15:40	2.62E-04	0	2.98E-04	1.67E-08	8.33E-04	3.58E-01
KLX03	20050511 10:16	20050511 12:26	206.44	226.44		3	1	2005-05-11 11:24:08	2005-05-11 11:44:18	1.83E-07	0	2.67E-07	1.67E-08	8.33E-04	3.20E-04
KLX03	20050511 13:38	20050511 15:19	226.48	246.48		3	1	2005-05-11 14:37:44	2005-05-11 14:57:54	1.17E-07	0	1.67E-07	1.67E-08	8.33E-04	2.00E-04
KLX03	20050511 16:06	20050511 17:51	241.48	261.48		3	1	2005-05-11 17:09:28	2005-05-11 17:29:38	2.73E-06	0	4.17E-06	1.67E-08	8.33E-04	5.00E-03
KLX03	20050511 18:23	20050511 21:31	251.49	271.49		3	1	2005-05-11 19:08:56	2005-05-11 19:29:06	3.70E-05	0	4.10E-05	1.67E-08	8.33E-04	4.92E-02
KLX03	20050512 07:53	20050512 09:59	271.54	291.54		3	1	2005-05-12 08:57:10	2005-05-10 09:17:20	2.17E-06	0	3.40E-06	1.67E-08	8.33E-04	4.08E-03
KLX03	20050512 10:41	20050512 13:02	286.56	306.56		4	1	2005-05-12 11:23:34	2005-05-12 11:23:35	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050512 13:43	20050512 16:07	306.58	326.58		3	1	2005-05-12 15:14:57	2005-05-12 15:35:07	3.17E-07	0	3.83E-07	1.67E-08	8.33E-04	4.60E-04
KLX03	20050512 17:04	20050512 18:29	326.60	346.60		3	1	2005-05-12 17:47:42	2005-05-12 18:07:52	9.00E-07	0	9.83E-07	1.67E-08	8.33E-04	1.18E-03
KLX03	20050513 09:07	20050513 10:43	346.62	366.62		4	1	2005-05-13 09:50:04	2005-05-13 09:50:05	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050513 11:25	20050513 13:50	366.65	386.65		3	1	2005-05-13 12:28:27	2005-05-13 12:48:37	6.67E-08	0	1.00E-07	1.67E-08	8.33E-04	1.20E-04
KLX03	20050513 14:52	20050513 16:18	386.68	406.68		3	1	2005-05-13 15:41:22	2005-05-13 16:01:32	4.97E-06	0	5.13E-06	1.67E-08	8.33E-04	6.16E-03
KLX03	20050513 17:00	20050513 18:32	406.70	426.70		3	1	2005-05-13 17:50:35	2005-05-13 18:17:37	9.28E-06	0	1.01E-05	1.67E-08	8.33E-04	1.21E-02
KLX03	20050513 19:14	20050514 03:57	426.71	446.71		4	1	2005-05-13 19:54:31	2005-05-13 19:54:32	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050514 08:09	20050514 10:03	446.72	466.72		3	1	2005-05-14 09:11:08	2005-05-14 09:31:28	3.83E-06	0	4.55E-06	1.67E-08	8.33E-04	5.46E-03
KLX03	20050514 10:44	20050514 11:50	466.71	486.71		4	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050514 12:38	20050514 14:21	486.70	506.70		4	1	2005-05-14 13:17:56	2005-05-14 13:17:57	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050514 15:02	20050514 16:02	506.71	526.71		3	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050514 16:44	20050514 18:32	526.77	546.77		3	1	2005-05-14 17:50:06	2005-05-14 18:10:16	4.17E-07	0	7.50E-07	1.67E-08	8.33E-04	9.00E-04
KLX03	20050515 09:51	20050515 10:53	546.83	566.83		3	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050515 11:37	20050515 13:21	566.87	586.87		4	1	2005-05-15 12:19:17	2005-05-15 12:19:18	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050515 14:04	20050515 15:12	586.90	606.90		4	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050515 15:52	20050515 17:47	606.94	626.94		3	1	2005-05-15 16:55:04	2005-05-15 17:15:24	3.00E-07	0	4.50E-07	1.67E-08	8.33E-04	5.40E-04
KLX03	20050515 18:36	20050515 19:41	626.97	646.97		4	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050516 08:32	20050516 10:04	646.99	666.99		3	1	2005-05-16 09:21:49	2005-05-16 09:41:59	6.80E-06	0	7.08E-06	1.67E-08	8.33E-04	8.50E-03
KLX03	20050516 10:50	20050516 13:29	667.02	687.02		3	1	2005-05-16 12:07:06	2005-05-16 12:27:16	1.67E-08	0	3.33E-08	1.67E-08	8.33E-04	4.00E-05
KLX03	20050516 14:22	20050516 16:13	687.06	707.06		4	1	2005-05-16 15:11:11	2005-05-16 15:11:12	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX03	20050516 17:00	20050516 17:59	707.09	727.09	1	3	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8.33E-04	0.00E+00
KLX03	20050516 18:39	20050516 21:53	727.13	747.13		3	1	2005-05-16 19:31:04	2005-05-16 19:51:14	1.17E-04	0	1.24E-04	1.67E-08	8.33E-04	1.48E-01
KLX03	20050517 08:15	20050517 09:48	747 15	767 15		3	1	2005-05-17 09:06:24	2005-05-17 09:26:34	3 62E-06	0	3 85E-06	1.67E-08	8.33E-04	4 62E-03
KI X03	20050517 10:32	20050517 11:59	762 16	782 16		3	1	2005-05-10 11:22:44	2005-05-10 11:42:54	8 83E-06	0	9.33E-06	1.67E-08	8.33E-04	1 12E-02
KLX03	20050517 12:47	20050517 14:27	777 17	797 17		3	1	2005-05-17 13:44:54	2005-05-17 14:05:04	2 17E-07	0	2 50E-07	1.67E-08	8.33E-04	3.00E-04
KLX03	20050517 15:08	20050517 16:53	787 19	807.19		3	1	2005-05-17 16:01:47	2005-05-17 16:21:57	6.67E-08	0	8.33E-08	1.67E-08	8.33E-04	1.00E-04
KI X03	20050517 17:44	20050517 10:08	807.21	827.21		3	1	2005-05-17 18:31:42	2005-05-17 18:51:52	1 33E-07	0	1 50E-07	1.67E-08	8 33E-04	1.80E-04
KL X03	20050517 17:44	20050518 09:16	827.24	847.24		3	1	2000-00-11 10.01.42 #NIV	2000-00-17 10.01.02 #NIV	0.00E+00	-1	0.00E+00	1.67E-08	8 33E-04	0.00E+00
KLX03	20050518 00:50	20050518 11:02	847.26	867.26		3	1	#NV	#NV	0.00E+00	-1	0.00E+00	1.67E-08	8 33E-04	0.00E+00
	20050510 03:33	20050510 11:02	047.20	007.20		2	1	#NV	#NV	0.00E+00	-1	0.002+00	1.67E-00	0.00E-04	0.00E+00
	20050510 11.43	20050510 12.44	007.20	007.20		3	1	#INV 2005-05-19 15-14-24	#INV 2005-05-19 15-24-44	1.67E 00	-1	2 22E 00	1.07 E-00	8 32E 04	
	20050510 14:01		007.31	907.31		2	1	2005-05-10 15.14.34	2005-05-10 15.34:44	1.07	0	J.JJE-U8	1.070-00	0.000-04	4.000-05
	20050510 17:04	19000/18 22:48	907.33	921.33		3	1	2000-00-18 18:20:57 #NN7	2000-00-18 18:40:07 #NN/	1.0/E-U8	0	3.33E-08	1.0/E-08	0.33E-04	4.00E-05
	20050519 08:14	20050519 09:24	921.33	947.33		3	1	#INV	#INV	U.UUE+00	-1	0.00E+00	1.0/E-08	0.33E-04	U.UUE+00
	2005051910:03	2005051911:45	947.34	907.34		4	1	2005-05-19 10:43:50	2005-05-19 10:43:51	#INV	-1		1.0/E-08	0.33E-04	#INV
KLXU3	20050519 12:24	20050519 13:54	967.39	987.39		3	1	2005-05-19 13:12:07	2005-05-19 13:32:17	1.10E-05	0	1.15E-05	1.6/E-08	8.33E-04	1.38E-02
KLX03	20050519 14:26	20050519 15:28	972.41	992.41	1	3	[]	#NV	#NV	U.UUE+00	-1	0.00E+00	1.67E-08	8.33E-04	U.00E+00

idcode

KLX03 KLX03

400 KLX03 KLX03

KLX03

KLX03

KLX03

KLX03

KLX03

907.33

927.33

947.34

967.39

972.41

927.33

947.33

967.34

987.39

992.41

1200

1200

0

1

0

8400

3540

1200

0

0

		dur_flow_phase	dur_rec_phase	initial_head_	head_at_flow_end_	final_head_	initial_press	press_at_flow_end	final_press	fluid_temp	fluid_elcond	fluid_salinity_	fluid_salinity_			
secup	seclow	_tp	_tf	hi	hp	hf – –	 pi	_pp	pf	_tew	_ecw	tdsw	tdswm	reference	comments	lp
106.31	206.31	1800	1800			11.34	1984	2185	2010	9.8						156.31
206.44	306.44	1800	7200			13.69	2939	3137	2951	11.3						256.44
306.58	406.58	1800	1800			12.26	3889	4094	3890	12.8						356.58
406.70	506.70	1800	3600			12.44	4847	5065	4848	14.4						456.70
506.71	606.71	1800	2100			#NV	5808	6004	5988	16.0						556.71
606.94	706.94	1800	1800			13.71	6765	6975	6767	17.5						656.94
707.09	807.09	1800	1800			14.32	7727	7948	7730	19.0						757.09
807.21	907.21	1800	14400			16.16	8707	8898	8702	20.6						857.21
892.31	992.31	1800	1800			17.13	9523	9723	9532	22.0						942.31
106.31	126.31	1200	1200			10.82	1215	1428	1218	8.5						116.31
126.35	146.35	1200	2400			11.04	1411	1613	1411	8.8						136.35
146.39	166.39	1200	1200			10.10	1602	1803	1609	9.1						156.39
166.42	186.42	1200	600			11.29	1790	1997	1789	9.4						176.42
186.42	206.42	1200	1200			10.84	1980	2181	1990	9.7						196.42
206.44	226.44	1200	2400			13.73	2176	2373	2204	10.0						216.44
226.48	246.48	1200	1200			12.76	2367	2575	2400	10.3						236.48
241.48	261.48	1200	1200			10.72	2509	2735	2556	10.5						251.48
251.49	271.49	1200	7200			12.51	2603	2803	2610	10.7						261.49
271.54	291.54	1200	2400			12.40	2797	2998	2832	11.0						281.54
286.56	306.56	1	5820			#NV	2943	3139	2946	11.2						296.56
306.58	326.58	1200	1800			11.91	3137	3344	3140	11.6						316.58
326.60	346.60	1200	1200			12.20	3318	3524	3321	11.9						336.60
346.62	366.62	1	3060			#NV	3514	3731	3691	12.2						356.62
366.65	386.65	1200	3600			10.74	3708	3928	3705	12.5						376.65
386.68	406.68	1200	900			12.45	3891	4094	3891	12.8						396.68
406.70	426.70	1200	1200			12.33	4084	4287	4086	13.2						416.70
426.71	446.71	1	28800			#NV	4280	4527	4272	13.5						436.71
446.72	466.72	1200	1800			11.33	4461	4671	4461	13.8						456.72
466.71	486.71	0	0			#NV	#NV	#NV	#NV	14.1						476.71
486.70	506.70	1	3660			#NV	4850	5034	4852	14.4						496.70
506.71	526.71	0	0			#NV	#NV	#NV	#NV	14.7						516.71
526.77	546.77	1200	1200			12.26	5236	5412	5291	15.0						536.77
546.83	566.83	0	0			#NV	#NV	#NV	#NV	15.3						556.83
566.87	586.87	1	3600			#NV	5625	5796	5733	15.6	1					576.87
586.90	606.90	0	0			#NV	#NV	#NV	#NV	15.9						596.90
606.94	626.94	1200	1800			13.53	6005	6185	6032	16.3						616.94
626.97	646.97	0	0			#NV	#NV	#NV	#NV	16.6						636.97
646.99	666.99	1200	1200			13.59	6381	6615	6381	16.9						656.99
667.02	687.02	1200	1800			13.31	6580	6793	6584	17.2	!					677.02
687.06	707.06	1	3600			#NV	6809	6988	6805	17.5	i					697.06
707.09	727.09	0	0			#NV	#NV	#NV	#NV	17.8						717.09
727.13	747.13	1200	7200	1		13.76	7149	7355	7149	18.2						737.13
747.15	767.15	1200	1200			13.84	7339	7577	7339	18.4						757.15
762.16	782.16	1200	900			14.18	7485	7685	7485	18.6	i					772.16
777.17	797.17	1200	1200			13.90	7634	7850	7635	18.9	1				1	787.17
787.19	807.19	1200	1800	1		14.23	7731	7950	7732	19.0	1				1	797.19
807.21	827.21	1200	900			14.49	7924	8140	7923	19.4						817.21
827.24	847.24	0	0		1	#NV	#NV	#NV	#NV	19.7	1	1			1	837.24
847.26	867.26	0	0	1	1	#NV	#NV	#NV	#NV	20.0	1					857.26
867.28	887.28	0	0			#NV	#NV	#NV	#NV	20.3					1	877.28
887.31	907.31	1200	2400		1	14.22	8710	8918	8709	20.6	1	1			1	897.31

15.95

17.22

#NV

#NV

#NV

8914

#NV

9289

9477

#NV

9112

#NV

9545

9677

#NV

8894

#NV

9299

9479

#NV

20.9

21.3

21.6

22.0

22.0

917.33

937.33

957.34

977.39

982.41

Table	e plu_s_hole_test_ed1 PLU Single hole tests, pumping/injection. Basic evaluation		le_test_ed1
			ing/injection. Basic evaluation
		1	
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description!
formation_type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
lp	FLOAT	m	Hydraulic point of application for test section, see descr.
seclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m**2/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m**2/s	Tranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>
bc_tq	CHAR		Best choice code. 1 means TQ is best choice of T, else 0
transmissivity_moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
bc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
width_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
tb	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
I_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
u_measl_tb	FLOAT	m**3/s	Estimated upper meas. limit of evaluated TB,see description
sb	FLOAT	m	SB:S=storativity,B=width of formation,1D model,see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m**2/s	TT:Transmissivity of formation, 2D radial flow model, see
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
Imeaslqs	FLOAT	m**2/s	Estimated lower meas. limit for evaluated TT, see table descr
u measl q s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity s	FLOAT		S:Storativity of formation based on 2D rad flow,see descr.
assumed s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
bc s	FLOAT		Best choice of S (Storativity) ,see descr.
ri	FLOAT	m	Radius of influence
ri index	CHAR		ri index=index of radius of influence :-1.0 or 1. see descr.
leakage coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff.see desc
hvdr cond ksf	FLOAT	m/s	Ksf:3D model evaluation of hydraulic conductivity see desc.
value type ksf	CHAR		0:true value1:Ksf <lower meas.limit.1:ksf="">upper meas.limit.</lower>
l measl ksf	FLOAT	m/s	Estimated lower meas limit for evaluated Ksf.see table desc.
u measl ksf	FLOAT	m/s	Estimated upper meas limit for evaluated Ksf see table descr
spec storage ssf	FLOAT	1/m	Ssf Specific storage 3D model evaluation see table descr
assumed ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage.3D model evaluation.see table des.
с	FLOAT	m**3/pa	C: Wellbore storage coefficient: flow or recovery period
cd	FLOAT		CD: Dimensionless wellbore storage coefficient
skin	FLOAT		Skin factor; best estimate of flow/recovery period, see descr.
dt1	FLOAT	s	Estimated start time of evaluation, see table description
dt2	FLOAT	s	Estimated stop time of evaluation, see table description
t1	FLOAT	s	Start time for evaluated parameter from start flow period
t2	FLOAT	s	Stop time for evaluated parameter from start of flow period
dte1	FLOAT	s	Start time for evaluated parameter from start of recovery
dte2	FLOAT	s	Stop time for evaluated parameter from start of recovery
p horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
transmissivity t nlr	FLOAT	m**2/s	T NLR Transmissivity based on None Linear Repression
storativity s nlr	FLOAT	20	S NLR=storativity based on None Linear Regression see
value type t plr	CHAR		0:true value -1:T. NI R
bc t nlr	CHAR		Rest choice code 1 means T NI R is best choice of T also 0
c_nlr	FLOAT	m**3/na	Wellbore storage coefficient based on NLR see descr
cd nlr	FLOAT		Dimensionless wellhore storage constant, see table descrip
skin nlr	FLOAT		Skin factor based on Non Linear Pagrassion see desc
transmissivity + a-f		m**2/c	T GRE Transmissivity based on Constitute Padial Flow and
uanomosivity_t_gff		111 2/5	
value_type_t_gn			Post shoise and a manner T. OPE is best shoise of T. Har C.
uc_t_giT			Dest choice code. I means I_GKF is best choice of I, else U
SIDIALIVITY_S_GIT	FLUAT		S_GRF. Storativity based on Generalized Radial Flow, see des.
now_aim_grt			Interned flow dimesion based on Generalized Rad. Flow model
		no_unit	Short comment to the evaluated parameters
error_tiag	CHAR		IT error_tiag = "^" then an error occured and an error
in_use	CHAR		IT In_use = "^" then the activity has been selected as
sign	CHAR		Signature tor QA data accknowledge (QA - OK)
KLX03

								formation t		seclen	spec capacity	value tvr	e transmiss	value type		transmissivitv		value type	hvdr cond
	idcode	start_date	stop_date	secup	seclow	section_no t	est_type	ype	lp	class	_q_s	qs	ivity_tq	tq	bc_tq	moye	bc_tm	tm	moye
	KLX03	20050505 11:05	20050505 15:38	106.31	206.31	3	3	1	156.31	100	1.37E-05	0			<u> </u>	1.78E-05	0	0	1.78E-07
	KLX03	20050505 17:25	20050505 20:54	206.44	306.44	3	}	1	256.44	100	1.87E-06	0				2.44E-06	0	0	2.44E-08
	KLX03	20050506 09:03	20050506 11:02	306.58	406.58	3	}	1	356.58	100	3.05E-07	0				3.97E-07	0	0	3.97E-09
	KLX03	20050506 12:36	20050506 15:17	406.70	506.70	3	}	1	456.70	100	5.62E-07	0				7.32E-07	0	0	7.32E-09
	KLX03	20050508 15:36	20050508 17:31	506.71	606.71	3	}	1	556.71	100	1.25E-09	0				1.63E-09	0	0	1.63E-11
	KLX03	20050507 08:53	20050507 10:49	606.94	706.94	3	}	1	656.94	100	2.85E-07	0				3.71E-07	0	0	3.71E-09
	KLX03	20050507 12:26	20050507 14:24	707.09	807.09	3	}	1	757.09	100	5.56E-06	0				7.24E-06	0	0	7.24E-08
	KLX03	20050507 16:19	20050507 22:08	807.21	907.21	3	}	1	857.21	100	7.36E-09	0				9.59E-09	0	0	9.59E-11
	KLX03	20050508 09:43	20050508 11:40	892.31	992.31	3	}	1	942.31	100	4.84E-07	0				6.30E-07	0	0	6.30E-09
	KLX03	20050510 08:00	20050510 09:49	106.31	126.31	3	}	1	116.31	20	5.50E-07	0				5.75E-07	0	0	2.88E-08
	KLX03	20050510 10:39	20050510 13:09	126.35	146.35	3	}	1	136.35	20	7.28E-09	0				7.62E-09	0	0	3.81E-10
	KLX03	20050510 13:54	20050510 15:47	146.39	166.39	3	}	1	156.39	20	6.83E-08	0				7.15E-08	0	0	3.58E-09
	KLX03	20050510 17:57	20050510 19:08	166.42	186.42	3	}	1	176.42	20	2.29E-08	0				2.40E-08	0	0	1.20E-09
	KLX03	20050511 08:01	20050511 09:37	186.42	206.42	3	3	1	196.42	20	1.28E-05	0				1.34E-05	0	0	6.70E-07
	KLX03	20050511 10:16	20050511 12:26	206.44	226.44	3	}	1	216.44	20	9.13E-09	0				9.55E-09	0	0	4.78E-10
	KLX03	20050511 13:38	20050511 15:19	226.48	246.48	3	}	1	236.48	20	5.50E-09	0				5.76E-09	0	0	2.88E-10
	KLX03	20050511 16:06	20050511 17:51	241.48	261.48	3	}	1	251.48	20	1.19E-07	0				1.24E-07	0	0	6.20E-09
	KLX03	20050511 18:23	20050511 21:31	251.49	271.49	3	}	1	261.49	20	1.81E-06	0				1.90E-06	0	0	9.50E-08
	KLX03	20050512 07:53	20050512 09:59	271.54	291.54	3	3	1	281.54	20	1.06E-07	0				1.11E-07	0	0	5.55E-09
	KLX03	20050512 10:41	20050512 13:02	286.56	306.56	4	ŀ	1	296.56	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050512 13:43	20050512 16:07	306.58	326.58	3	}	1	316.58	20	1.50E-08	0				1.57E-08	0	0	7.85E-10
	KLX03	20050512 17:04	20050512 18:29	326.60	346.60	3	}	1	336.60	20	4.29E-08	0				4.48E-08	0	0	2.24E-09
	KLX03	20050513 09:07	20050513 10:43	346.62	366.62	4	ŀ	1	356.62	20	#NV	-1				#NV	0	-1	#NV
4	KLX03	20050513 11:25	20050513 13:50	366.65	386.65	3	}	1	376.65	20	2.97E-09	0				3.11E-09	0	0	1.56E-10
0	KLX03	20050513 14:52	20050513 16:18	386.68	406.68	3	}	1	396.68	20	2.40E-07	0				2.51E-07	0	0	1.26E-08
2	KLX03	20050513 17:00	20050513 18:32	406.70	426.70	3	}	1	416.70	20	4.49E-07	0				4.69E-07	0	0	2.35E-08
	KLX03	20050513 19:14	20050514 03:57	426.71	446.71	4	•	1	436.71	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050514 08:09	20050514 10:03	446.72	466.72	3	}	1	456.72	20	1.79E-07	0				1.87E-07	0	0	9.35E-09
	KLX03	20050514 10:44	20050514 11:50	466.71	486.71	4	•	1	476.71	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050514 12:38	20050514 14:21	486.70	506.70	4	-	1	496.70	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050514 15:02	20050514 16:02	506.71	526.71	3	}	1	516.71	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050514 16:44	20050514 18:32	526.77	546.77	3	}	1	536.77	20	2.32E-08	0				2.43E-08	0	0	1.22E-09
	KLX03	20050515 09:51	20050515 10:53	546.83	566.83	3	}	1	556.83	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050515 11:37	20050515 13:21	566.87	586.87	4	•	1	576.87	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050515 14:04	20050515 15:12	586.90	606.90	4	ŀ	1	596.90	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050515 15:52	20050515 17:47	606.94	626.94	3	}	1	616.94	20	1.64E-08	0				1.71E-08	0	0	8.55E-10
	KLX03	20050515 18:36	20050515 19:41	626.97	646.97	4	•	1	636.97	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050516 08:32	20050516 10:04	646.99	666.99	3	}	1	656.99	20	2.85E-07	0				2.98E-07	0	0	1.49E-08
	KLX03	20050516 10:50	20050516 13:29	667.02	687.02	3	}	1	677.02	20	7.68E-10	0				8.03E-10	0	0	4.02E-11
	KLX03	20050516 14:22	20050516 16:13	687.06	707.06	4	<u> </u>	1	697.06	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050516 17:00	20050516 17:59	707.09	727.09	3	}	1	717.09	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050516 18:39	20050516 21:53	727.13	747.13	3	}	1	737.13	20	5.58E-06	0				5.84E-06	0	0	2.92E-07
	KLX03	20050517 08:15	20050517 09:48	747.15	767.15	3	}	1	757.15	20	1.49E-07	0		ļ		1.56E-07	0	0	7.80E-09
	KLX03	20050517 10:32	20050517 11:59	762.16	782.16	3	}	1	772.16	20	4.33E-07	0				4.53E-07	0	0	2.27E-08
	KLX03	20050517 12:47	20050517 14:27	777.17	797.17	3	}	1	787.17	20	9.84E-09	0				1.03E-08	0	0	5.15E-10
	KLX03	20050517 15:08	20050517 16:53	787.19	807.19	3	}	1	797.19	20	2.99E-09	0				3.12E-09	0	0	1.56E-10
	KLX03	20050517 17:44	20050517 19:08	807.21	827.21	3	}	1	817.21	20	6.06E-09	0				6.33E-09	0	0	3.17E-10
	KLX03	20050518 08:16	20050518 09:16	827.24	847.24	3	5	1	837.24	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050518 09:59	20050518 11:02	847.26	867.26	3	5	1	857.26	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050518 11:43	20050518 12:44	867.28	887.28	3	5	1	877.28	20	#NV	-1				#NV	0	-1	#NV
	KLXU3	20050518 14:01	20050518 16:16	887.31	907.31	3	5	1	897.31	20	7.86E-10	0				8.22E-10	0	0	4.11E-11
	KLX03	20050518 17:04	19000718 22:48	907.33	927.33	3	5	1	917.33	20	8.26E-10	0				8.64E-10	0	0	4.32E-11
	KLXU3	20050519 08:14	20050519 09:24	927.33	947.33	3	5	1	937.33	20	#NV	-1		Ļ		#NV	0	-1	#NV
	KLX03	20050519 10:03	20050519 11:45	947.34	967.34	4		1	957.34	20	#NV	-1				#NV	0	-1	#NV
	KLX03	20050519 12:24	20050519 13:54	967.39	987.39	3	5	1	977.39	20	5.40E-07	0				5.64E-07	0	0	2.82E-08
	KLX03	20050519 14:26	20050519 15:28	972.41	992.41	3	3	1	982.41	20	#NV	-1				#NV	0	-1	#NV

				formation w	width of c					assumed	leakage f	transmissivity	value type				u measl ɑ	storativitv				
	idcode	secup	seclow	idth_b	hannel_b	tb	I_measl_tb	u_measl_tb	sb	sb	actor_lf	tt	tt	b	c_tt	l_measl_q_s	s	_s	assumed_s	bc_s ri	ri	_index
	KLX03	106.31	206.31	<u> </u>						•	-	1.01E-05	0		1	8.00E-06	3.00E-05	1.00E-06	1.00E-06	170).86	0
	KLX03	206.44	306.44	-	1	1						1.42E-06	0		1	8.00E-07	4.00E-06	1.00E-06	1.00E-06	25	5.12	-1
	KLX03	306.58	406.58	5		1						6.23E-07	0		1	4.00E-07	9.00E-07	1.00E-06	1.00E-06	85	5.15	0
	KLX03	406.70	506.70)					l			3.85E-07	0		1	1.00E-07	7.00E-07	1.00E-06	1.00E-06	75	5.52	-1
	KLX03	506.71	606.71									4.15E-10	0		1	8.00E-11	8.00E-10	1.00E-06	1.00E-06	13	3.68	1
	KLX03	606.94	706.94			ļ						4.52E-07	0		1	2.00E-07	7.00E-07	1.00E-06	1.00E-06	78	3.58	0
	KLX03	707.09	807.09)								2.65E-06	0		1	9.00E-07	8.00E-06	1.00E-06	1.00E-06	20).58	-1
	KLX03	807.21	907.21									5.03E-09	0		1	3.00E-09	9.00E-09	1.00E-06	1.00E-06	6	6.67	-1
	KLX03	892.31	992.31			ļ						2.83E-07	0		1	8.00E-08	7.00E-07	1.00E-06	1.00E-06	19	9.40	-1
	KLX03	106.31	126.31									2.06E-07	0		1	8.00E-08	5.00E-07	1.00E-06	1.00E-06	5	9.50	-1
		120.35	140.30)								8.20E-09	0		1	4.00E-09	2.00E-08	1.00E-06	1.00E-06	20	0.00	0
	KLX03	140.39	100.39									4.50E-08	0		1	1.00E-08		1.00E-06	1.00E-00	30	200	-1
		186.42	206.42									4.13E-00	0		1	2.00E-06	9.00E-00	1.00E-00	1.00E-00	135	5.68	0
		206.44	200.42			\$						9.22L-00 8.35E-09	0		1	5.00E-00	2.00L-03	1.00E-00	1.00E-00		3 96	1
	KLX03	226.48	246.48	1	1				+			3.67E-09	0		1	1.00E-09	6.00E-09	1.00E-06	1.00E-06	19).26	
	KLX03	241.48	261.48		1	1			+			5.54E-08	0	~	1	3.00E-08	1.00E-07	1.00E-06	1.00E-06	37	. <u>9</u> 7	
	KLX03	251.49	271.49)	1	1					1	2.66E-06	0		1	9.00E-07	4.00E-06	1.00E-06	1.00E-06	36	5.24	1
	KLX03	271.54	291.54			1				1		5.33E-08	0		1	3.00E-08	1.00E-07	1.00E-06	1.00E-06	53	3.18	
	KLX03	286.56	306.56	5								1.29E-08	0		1	6.00E-09	3.00E-08	1.00E-06	1.00E-06	58	3.14	1
	KLX03	306.58	326.58	}		1	1			1		1.08E-08	0		1	7.00E-09	3.00E-08	1.00E-06	1.00E-06	25	5.23	0
	KLX03	326.60	346.60)		1				1		9.91E-08	0		1	6.00E-08	2.00E-07	1.00E-06	1.00E-06	12	2.76	1
	KLX03	346.62	366.62	2								1.35E-11	0		1	1.00E-11	3.00E-11	1.00E-06	1.00E-06	7	7.57	0
	KLX03	366.65	386.65	5								1.10E-09	0		1	8.00E-10	3.00E-09	1.00E-06	1.00E-06	24	1.71	1
Б	KLX03	386.68	406.68	}								6.26E-07	0		1	2.00E-07	2.00E-06	1.00E-06	1.00E-06	69	9.61	0
ω	KLX03	406.70	426.70)		<u> </u>					l	6.30E-07	0		1	2.00E-07	8.00E-07	1.00E-06	1.00E-06	69	9.73	-1
	KLX03	426.71	446.71			ļ						6.37E-11	0	ļ	1	3.00E-11	9.00E-11	1.00E-06	1.00E-06	34	1.25	0
	KLX03	446.72	466.72	2	ļ	ļ						2.97E-07	0		1	9.00E-08	5.00E-07	1.00E-06	1.00E-06	70).75	-1
	KLX03	466.71	486.71			ļ						1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	٩V	#NV
	KLX03	486.70	506.70)								2.95E-11	0		1	2.00E-11	7.00E-11	1.00E-06	1.00E-06	10).07	0
	KLX03	506.71	526.71			ļ						1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	10	#NV
	KLX03	526.77	546.77									7.03E-09	0		1	1.00E-09	3.00E-08	1.00E-06	1.00E-06	16	5.71 N7	1
	KLX03	546.83	500.83	,		<u> </u>						1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#1	10	#INV
		500.87	500.07									3.27E-11	0		1	1.00E-11	5.00E-11	1.00E-00	1.00E-00	10).20 IV/	4NI)/
		606.90	626.90			+			+		1	5.70E-09	-1		1	1.00E-13	1.00E-11	1.00E-00	1.00E-00	21	V 50	#INV 0
		626.97	646.97	,		<u>.</u>						1.00E-03	-1		1	1.00E-03	1.00E-00	1.00E-00	1.00E-00	2	 JV	±NIV
	KLX03	646.99	666.99	1								4 92E-07	0		1	2.00E-07	8.00E-07	1.00E-00	1.00E-00	12	2 08	-1
	KLX03	667.02	687.02	,	+				+		1	6 13E-10	0	~	1	3.00E-10	9.00E-07	1.00E-00	1.00E-00	15	5.08	-1
	KLX03	687.06	707.06		1	1						6.60E-11	0		1	2.00E-11	8.00E-11	1.00E-06	1.00E-06	12	2.22	0
	KLX03	707.09	727.09)	1	1			1	1	1	1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	١V	#NV
	KLX03	727.13	747.13	3		<u> </u>				•••••••••••••••••••••••••••••••••••••••		5.88E-06	0		1	2.00E-06	8.00E-06	1.00E-06	1.00E-06	298	3.44	-1
	KLX03	747.15	767.15	;		1						2.06E-07	0		1	9.00E-08	5.00E-07	1.00E-06	1.00E-06	52	2.72	0
	KLX03	762.16	782.16	5					1	1	1	9.88E-07	0		1	4.00E-07	2.00E-06	1.00E-06	1.00E-06	16	6.73	1
	KLX03	777.17	797.17	'					1		1	6.39E-09	0		1	3.00E-09	1.00E-08	1.00E-06	1.00E-06	6	6.87	1
	KLX03	787.19	807.19)								6.23E-09	0		1	3.00E-09	9.00E-09	1.00E-06	1.00E-06	26	6.93	-1
	KLX03	807.21	827.21]						7.00E-09	0		1	5.00E-09	2.00E-08	1.00E-06	1.00E-06	5	5.99	1
	KLX03	827.24	847.24	-		<u> </u>					l	1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	١V	#NV
	KLX03	847.26	867.26	5		ļ						1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	١V	#NV
	KLX03	867.28	887.28	s		Ļ			ļ			1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	1V	#NV
	KLX03	887.31	907.31		ļ	ļ						5.08E-10	0	_	1	4.00E-10	9.00E-10	1.00E-06	1.00E-06	16	5.61	-1
	KLX03	907.33	927.33	<u> </u>		<u>.</u>						1.94E-09	0		1	8.00E-10	3.00E-09	1.00E-06	1.00E-06	43	3.45	-1
	KLX03	927.33	947.33	5	ļ	ļ						1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	1V	#NV
	KLX03	947.34	967.34			<u> </u>	1					2.04E-10	0		1	8.00E-11	4.00E-10	1.00E-06	1.00E-06	16	0.06	1
	KLX03	967.39	987.39	1		<u> </u>						4.56E-07	U		1	2.00E-07	9.00E-07	1.00E-06	1.00E-06	19	9.UZ	-1
	KLX03	972.41	992.41		1	1	1	1	1	1	1	1.00E-11	-1		1	1.00E-13	1.00E-11	1.00E-06	1.00E-06	#N	٩V	#NV

				lookogo	bydr oo		Imagal	u maa anaa ata assum									tranomica	eterativit	value tu	ha t	a ad	okin	transmiss	volue tu	ha t	storativit flow di	aamman
idcod		cun	seclow	coeff	nd ksf	ype_ks f	ksf	s kef rane sef ed sef	c cd	skin	dt1	dt2	t1 t2	1 oth	dte2	n horner	ivity t nlr	v s nir	ne t nir	nlr	o_ cu_	nlr	ivity t orf	ne t arf	orf	v s arf m arf	t
KI XO	2 1	06 31	206 31	_00011			_101		5 36E-09 5 91E-01	-4.1	97.8	1504.2		- 4101	0102	1077.8		<u>y_o_</u>	po_t_m					po_t_911	9.1	<u></u>	· · · · · · · · · · · · · · · · · · ·
KI XO	$\frac{1}{2}$	06.44	306.44						8 64E-10 9 52E-02	-3.4	12	94.8				2051.0						+					
KI XO	3 3	06 58	406 58						4 16E-10 4 59E-02	5.5	60	1639.8				3888.4									<u> </u>		
KLX0	3 4	06.70	506.70						4.37E-09 4.82E-01	-4.3	393	1280.4				4843.6											
KLX0	3 5	06.71	606.71						3.74E-10 4.12E-02	-2.0	#NV	#NV				5974.9									1		
KLX0	3 6	06.94	706.94						3.57E-10 3.93E-02	2.8	79.2	1686				6763.8							1		1		
KLX0	3 7	07.09	807.09						2.28E-09 2.51E-01	-3.9	11.4	51			-	7725.7											
KLX0	3 8	07.21	907.21						2.64E-10 2.91E-02	-0.1	27	123				8700.4							1				
KLX0	3 8	92.31	992.31						6.22E-11 6.86E-03	-2.7	47.4	138.6				9523.2											
KLX0	3 1	06.31	126.31						1.02E-10 1.12E-02	-3.0	11.4	39				1214.5											
KLX0	3 1	26.35	146.35						5.98E-11 6.59E-03	2.4	13.8	1048.8				1406.5											
KLX0	3 1	46.39	166.39						5.38E-10 5.93E-02	-3.8	#NV	#NV				1587.2											
KLX0	3 1	66.42	186.42						4.51E-11 4.97E-03	5.8	69	929.4			L	1788.8											
KLX0	3 1	86.42	206.42						1.58E-09 1.74E-01	-3.9	96	1200			ļļ.	1974.0							ļ				
KLX0	3 2	06.44	226.44					<u></u>	5.85E-11 6.45E-03	-1.5	31.8	103.8			ļļ.	2192.3											
KLX0	3 2	26.48	246.48						5.52E-11 6.08E-03	0.3	174	1073.4			-	2372.9									ļ		
KLX0	3 2	41.48	261.48	ļ					7.16E-10 7.89E-02	-2.8	724.8	1182			ļļ.	2495.2									ļ		ļ
KLX0	3 2	51.49	271.49						1.02E-09 1.12E-01	-0.1	60	157.8			-	2607.7											
KLX0	3 2	71.54	291.54			ļ			2.83E-11 3.12E-03	-2.9	#NV	#NV			ļļ.	2796.9				ļ			ļ		ļ		
KLX0	3 2	86.56	306.56						1.29E-09 1.42E-01	-3.5	#NV	#NV			-	#NV											
KLX0	3 3	06.58	326.58						1.24E-10 1.37E-02	-0.2	58.2	1075.2			-	3124.8									ļ		
KLX0	3 3	26.60	346.60						2.08E-11 2.29E-03	/.5	11.4	101.4				3317.9											
KLX0	5 3	40.02	300.02						8.72E-11 9.01E-03	-0.9	904.2	2107.8				#INV											
KLX0	5 3	00.00	380.00						1.47E-11 8.23E-03	-1.0	#INV	#INV				3084.0											
		00.00	400.00						0.07E 10 1.70E-02	9.4	00 #NIV/	/ 30.4 #NI\/				3091.2							+				
4	2 1	26 71	420.70						7 60E 11 8 48E 03	-1.1	5368.8	12634.8				4000.J							+				
KLX0	3 4	46 72	466 72						3 84E-09 4 23E-01	2.6	#NV	#N\/				4451 7											
KI X0	3 4	66 71	486 71						#NV #NV	#NV	#NV	#NV			-	#NV							+				
KLX0	3 4	86.70	506.70						6.25E-11 6.89E-03	-3.9	#NV	#NV				#NV						+	1				
KLX0	3 5	06.71	526.71						#NV #NV	#NV	#NV	#NV				#NV						1	1		1		
KLX0	3 5	26.77	546.77						5.94E-11 6.55E-03	-1.5	405	652.8				5223.3						+	1		1		·····
KLX0	3 5	46.83	566.83						#NV #NV	#NV	#NV	#NV				#NV					-		1				
KLX0	3 5	66.87	586.87						1.10E-10 1.21E-02	-2.0	1594.2	3292.8				#NV											
KLX0	3 5	86.90	606.90						#NV #NV	#NV	#NV	#NV				#NV									1		
KLX0	3 6	06.94	626.94						1.63E-10 1.80E-02	-2.9	346.2	565.8				5999.2									1		
KLX0	36	26.97	646.97						#NV #NV	#NV	#NV	#NV				#NV											
KLX0	3 6	46.99	666.99						7.80E-11 8.60E-03	4.7	19.2	40.8				6381.6											
KLX0	3 6	67.02	687.02						3.01E-11 3.32E-03	0.6	#NV	#NV				6569.9											
KLX0	36	87.06	707.06						9.12E-12 1.01E-03	1.3	83.4	499.8				#NV											
KLX0	3 7	07.09	727.09						#NV #NV	#NV	#NV	#NV				#NV											
KLX0	3 7	27.13	747.13						7.46E-10 8.22E-02	-5.1	#NV	#NV				7147.9							<u> </u>				
KLX0	3 7	47.15	767.15						5.24E-11 5.78E-03	2.2	117	819			L	7339.7											
KLX0	3 7	62.16	782.16						5.52E-11 6.08E-03	6.2	22.8	55.2			-	7486.4									ļ		
KLX0	3 7	77.17	797.17						5.18E-11 5.71E-03	-0.7	34.8	115.8			-	7627.0											
KLX0	3 7	87.19	807.19						5.08E-11 5.60E-03	6.0	#NV	#NV			-	7725.8									ļ		
KLX0	3 8	07.21	827.21						4.95E-11 5.46E-03	1.5	19.8	84			ļ	7919.6											
KLX0	3 8	27.24	847.24						#NV #NV	#NV	#NV	#NV			-	#NV									ļ		
KLX0	8 8	47.26	867.26						#NV #NV	#NV	#NV	#NV				#NV											
KLX0		07.20	007.28						#NV #NV	#NV	#INV	#INV			<u> </u>	#INV						+			<u> </u>		
KLX0		07.31	907.31					<u>↓ </u>	3.90E-11 4.30E-U3	2.7		#INV			┝	0002.4											
KLX0	2 9	01.33	921.33	ļ					3.02E-11 4.21E-U3	3./	#INV	#INV			\vdash	009U.7						+					
	2 9	47 24	947.33	<u> </u>		<u> </u>			#INV #INV	#1NV	#NV	#INV #NIV				#INV #NIV							+		<u> </u>	+	
KLX0	2 0	67 30	907.34						4 96E-10 5 47E 02	-1.0	#INV 10	#INV 105			-	#INV Q/77 1						+			<u> </u>	+	
	2 0	72 /1	002 /1		L				+.50E-10 0.47E-02 #NIV #NIV	#NV	10 #NIV	105 #NIV				9477.1 #NI\/											
KLAU.	, 9	12.41	392.4 I	1	1	1				771 % V	#INV	#INV		1		#IN V		1		1		1	1		-		1

Tal	ble	plu_s_h Data of observation	ole_test_obs sections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX03	20050505 11:05	20050505 15:38	106.31	206.31				996	996	996	2026	2020	2023	
KLX03	20050505 17:25	20050505 20:54	206.44	306.44				1972	1971	1971	2974	2973	2973	ļ
KLX03	20050506 09:03	20050506 11:02	306.58	406.58				2925	2925	2925	3928	3931	3928	
KLX03	20050506 12:36	20050506 15:17	406.70	506.70				3886	3887	3886	4888	4888	4888	
KLX03	20050508 15:36	20050508 17:31	506.71	606.71				4845	4846	4846	5847	5847	5847	L
KLX03	20050507 08:53	20050507 10:49	606.94	706.94				5809	5808	5809	6804	6804	6804	
KLX03	20050507 12:26	20050507 14:24	707.09	807.09				6772	6774	6774	7768	7768	7769	
KLX03	20050507 16:19	20050507 22:08	807.21	907.21				7743	7743	7744	8742	8742	8743	
KLX03	20050508 09:43	20050508 11:40	892.31	992.31				8573	8573	8573	10202	10331	10310	
KLX03	20050510 08:00	20050510 09:49	106.31	126.31				1013	1013	1013	1256	1256	1256	
KLX03	20050510 10:39	20050510 13:09	126.35	146.35				1203	1203	1203	1446	1446	1446	
KLX03	20050510 13:54	20050510 15:47	146.39	166.39				1394	1394	1394	1637	1637	1637	
KLX03	20050510 17:57	20050510 19:08	166.42	186.42				1585	1585	1585	1829	1828	1829	
KLX03	20050511 08:01	20050511 09:37	186.42	206.42				1776	1776	1776	2018	2018	2018	
KLX03	20050511 10:16	20050511 12:26	206.44	226.44				1970	1970	1969	2208	2208	2208	1
KLX03	20050511 13:38	20050511 15:19	226.48	246.48				2160	2160	2160	2340	2340	2399	I
KLX03	20050511 16:06	20050511 17:51	241.48	261.48				2304	2303	2303	2543	2543	2543	
KLX03	20050511 18:23	20050511 21:31	251.49	271.49				2399	2340	2399	2638	2639	2638	1
KLX03	20050512 07:53	20050512 09:59	271.54	291.54				2590	2590	2590	2829	2829	2829	1
KLX03	20050512 10:41	20050512 13:02	286.56	306.56				2734	2734	2735	2973	2973	2973	
KLX03	20050512 13:43	20050512 16:07	306.58	326.58				2926	2926	2926	3164	3164	3164	
KLX03	20050512 17:04	20050512 18:29	326.60	346.60				3119	3118	3118	3356	3357	3357	1
KLX03	20050513 09:07	20050513 10:43	346.62	366.62				3309	3309	3310	3547	3547	3548	1
KLX03	20050513 11:25	20050513 13:50	366.65	386.65				3502	3503	3502	3739	3739	3739	
KLX03	20050513 14:52	20050513 16:18	386.68	406.68				3695	3695	3695	3931	3934	3931	1
KLX03	20050513 17:00	20050513 18:32	406.70	426.70				3887	3888	3888	4123	4123	4123	
KLX03	20050513 19:14	20050514 03:57	426.71	446.71				4079	4078	4076	4313	4313	4312	
KLX03	20050514 08:09	20050514 10:03	446.72	466.72				4269	4269	4269	4505	4505	4505	
KLX03	20050514 10:44	20050514 11:50	466.71	486.71				#NV	#NV	#NV	#NV	#NV	#NV	
KLX03	20050514 12:38	20050514 14:21	486.70	506.70				4655	4655	4655	4889	4889	4889	1
KLX03	20050514 15:02	20050514 16:02	506.71	526.71				#NV	#NV	#NV	#NV	#NV	#NV	1
KLX03	20050514 16:44	20050514 18:32	526.77	546.77				5040	5040	5040	5272	5272	5272	1
KLX03	20050515 09:51	20050515 10:53	546.83	566.83				#NV	#NV	#NV	#NV	#NV	#NV	1
KLX03	20050515 11:37	20050515 13:21	566.87	586.87	1			5425	5425	5425	5656	5656	5656	
KLX03	20050515 14:04	20050515 15:12	586.90	606.90			1	#NV	#NV	#NV	#NV	#NV	#NV	
KLX03	20050515 15:52	20050515 17:47	606.94	626.94				5811	5811	5811	6040	6040	6040	1
KLX03	20050515 18:36	20050515 19:41	626.97	646.97				#NV	#NV	#NV	#NV	#NV	#NV	1
KLX03	20050516 08:32	20050516 10:04	646.99	666.99				6194	6194	6194	6422	6422	6422	1
KLX03	20050516 10:50	20050516 13:29	667.02	687.02				6387	6387	6387	6614	6614	6614	1
KLX03	20050516 14:22	20050516 16:13	687.06	707.06				6581	6581	6581	6806	6806	6806	
KLX03	20050516 17:00	20050516 17:59	707.09	727.09			-	#NV	#NV	#NV	#NV	#NV	#NV	1
KLX03	20050516 18:39	20050516 21:53	727.13	747.13				6968	6967	6967	7191	7195	7191	
KLX03	20050517 08:15	20050517 09:48	747.15	767.15			1	7158	7158	7158	7382	7383	7382	1
KLX03	20050517 10:32	20050517 11:59	762.16	782.16				7304	7304	7304	7527	7528	7527	1
KLX03	20050517 12:47	20050517 14:27	777.17	797.17				7450	7450	7450	7673	7673	7673	1
KLX03	20050517 15:08	20050517 16:53	787.19	807.19		1		7548	7548	7548	7771	7771	7770	1
KLX03	20050517 17:44	20050517 19:08	807.21	827.21				7743	7742	7742	7964	7964	7964	
KLX03	20050518 08:16	20050518 09:16	827.24	847.24				#NV	#NV	#NV	#NV	#NV	#NV	
KLX03	20050518 09:59	20050518 11:02	847.26	867.26	1	1		#NV	#NV	#NV	#NV	#NV	#NV	
KLX03	20050518 11:43	20050518 12:44	867.28	887.28		1		#NV	#NV	#NV	#NV	#NV	#NV	1
KLX03	20050518 14:01	20050518 16:16	887.31	907.31	1	1		8525	8525	8526	8742	8742	8742	
KLX03	20050518 17:04	19000718 22:48	907.33	927.33		1		8721	8720	8719	8936	8936	8935	
KLX03	20050519 08:14	20050519 09:24	927.33	947.33				#NV	#NV	#NV	#NV	#NV	#NV	
KLX03	20050519 10:03	20050519 11:45	947.34	967.34	1			9111	9111	9111	9324	9324	9324	1
KLX03	20050519 12:24	20050519 13:54	967.39	987.39	1	+		9308	9308	9309	10256	10318	10314	
KLX03	20050519 14:26	20050519 15:28	972 41	992.41			1	#NV	#NV	#NV	#NV	#NV	#NV	