P-05-184

Oskarshamn site investigation

Pumping tests and hydraulic injection tests in borehole KLX06, 2005

Subarea Laxemar

Nils Rahm, Golder Associates AB Cristian Enachescu, Golder Associates GmbH

June 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-05-184

Oskarshamn site investigation

Pumping tests and hydraulic injection tests in borehole KLX06, 2005

Subarea Laxemar

Nils Rahm, Golder Associates AB Cristian Enachescu, Golder Associates GmbH

June 2005

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KLX06 at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the pumping tests for water sampling and of the hydraulic injection tests in borehole KLX06 performed between 3rd of March and 20th of April 2005.

The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m and 20 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 106.38–987.50 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head. The main objective of the pumping tests was to take water samples in certain depths for chemical analyses.

Sammanfattning

Injektionstester har utförts i borrhål KLX06 i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata från pumptesterna vid vattenprovtagningen och från de hydrauliska injektionstesterna i borrhål KLX06. Testerna utfördes mellan den 3 mars till den 20 april 2005.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m och 20 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 106,38–987,50 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head). Huvudsyftet med pumptesterna var vattenprovtagning vid specifika nivåer för kemiska laboratorieanalyser.

Borehole KLX06 - Summary of Results

Contents

1	Intro	luction	11
2	Objec	tive	13
3	Scope	of work	15
3.1	Boreh	oles	15
3.2	Tests a	and water sampling	17
3.3	Contro	ol of equipment	20
4	Equip	oment	21
4.1	Descr	iption of equipment	21
4.2	Senso	rs	26
4.3	Data a	icquisition system	26
5	Execu	tion	29
5.1	Prepa	rations	29
5.2	Lengt	h correction	29
5.3	Execu	tion of tests/measurements	29
	5.3.1	Test principle	29
	5.3.2	Test procedure	30
5.4	Data I	handling	31
3.3	Analy	ses and interpretation	21
	5.5.1 5.5.2	Analysis software	21
	5.5.2	Analysis approach	32 22
	5.5.5 5.5.4	Analysis methodology	32 22
	5.5.4	Sleady state analysis Elevy models used for analysis	23 24
	5.5.5	Calculation of the static formation pressure and equivalent	34
	5.5.0	freshwater head	34
	557	Derivation of the recommended transmissivity and the	51
	0.0.1	confidence range	35
6	Docul	ta	37
61	100 m	single-hole injection tests	37
0.1	611	Section 106 38–206 38 m test no 2 injection	37
	612	Section 206 52–306 52 m test no 1 injection	38
	6.1.3	Section 306.68–406.68 m, test no 1, injection	39
	6.1.4	Section 406.83–506.83 m, test no 1, injection	39
	6.1.5	Section 506.92–606.92 m, test no 1, injection	40
	6.1.6	Section 607.06–707.06, test no 1, injection	41
	6.1.7	Section 707.15–807.15 m, test no 1, injection	42
	6.1.8	Section 807.31–907.31 m, test no 1, injection	42
	6.1.9	Section 887.48–987.48 m, test no 1, injection	43
6.2	20 m s	single-hole injection tests	44
	6.2.1	Section 106.38–126.38 m, test no 1, injection	44
	6.2.2	Section 126.42–146.42 m, test no 1 and 2, injection and	
		slug injection	45
	6.2.3	Section 146.44–166.44 m, test no 1, injection	46
	6.2.4	Section 166.47–186.47 m, test no 1, injection	46

	6.2.5	Section 186.49–206.49 m, test no 1, injection	47
	6.2.6	Section 206.52–226.52 m, test no 1, injection	48
	6.2.7	Section 226.56–246.56 m, test no 1, injection	49
	6.2.8	Section 246.62–266.62 m, test no 1, injection	50
	6.2.9	Section 266.64–286.64 m, test no 2, injection	50
	6.2.10	Section 286.68–306.68 m. test no 1. injection	51
	6 2 11	Section 306 68–326 68 m test no 1 injection	52
	6 2 1 2	Section 326 69–346 69 m test no 1 injection	52
	6 2 13	Section 346 74–366 74 m test no 1 injection	53
	6 2 14	Section 356 77–376 77 m test no 1 injection	54
	6 2 1 5	Section 376 80–396 80 m test no 2 and 3 injection and	51
	0.2.10	slug injection	55
	6216	Section 391 80-411 80 m test no 1 injection	55
	6 2 17	Section 406 83-426 83 m test no 1 injection	56
	6 2 18	Section 426.86–426.86 m test no 1, injection	57
	6 2 10	Section 446.88 466.88 m test no 1, nulse injection	58
	6 2 20	Section 466.80–466.80 m, test no 1, pulse injection and	58
	0.2.20	slug injection	59
	6 2 21	Soution 486.00 506.00 m test no 1 injection	50
	6 2 22	Section $480.90-500.90$ in, lest no 1, injection	59
	0.2.22	Section $500.92-520.92$ in, lest no 5, injection	60
	0.2.23	Section 526.94–546.94 m, test no 1, injection	01
	6.2.24	Section $546.9/-566.9/$ m, test no 1, injection	61
	0.2.25	Section $506.98-580.98$ m, lest no 1, injection	62
	6.2.26	Section $58/.02-60/.02$ m, test no 1, injection	63
	6.2.27	Section $60/.06-62/.06$ m, test no 1, pulse injection	63
	6.2.28	Section $62/.10-64/.10$ m, test no 1, injection	64
	6.2.29	Section 64/.11–66/.11 m, test no 1, injection	65
	6.2.30	Section 667.09–687.09 m, test no 1, pulse injection	65
	6.2.31	Section $687.12 - 707.12$ m, test no 2, injection	66
	6.2.32	Section $707.15 - 727.15$ m, test no 1, injection	67
	6.2.33	Section 727.19–747.19 m, test no 1 and 2, injection and	60
		slug injection	68
	6.2.34	Section 747.22–767.22 m, test no 1, pulse injection	69
	6.2.35	Section 767.25–787.25 m, test no 1, injection	69
	6.2.36	Section 787.28–807.28 m, test no 1, injection	70
	6.2.37	Section 807.31–827.31 m, test no 2, injection	70
	6.2.38	Section 827.33–847.33 m, test no 1, injection	71
	6.2.39	Section 847.39–867.39 m, test no 1, injection	72
	6.2.40	Section 867.46–887.46 m, test no 1, injection	73
	6.2.41	Section 887.48–907.48 m, test no 1, injection	73
	6.2.42	Section 907.49–927.49 m, test no 1, injection	74
	6.2.43	Section 927.50–947.50 m, test no 1, injection	74
	6.2.44	Section 947.50–967.50 m, test no 1, injection	75
	6.2.45	Section 967.50–987.50 m, test no 1, injection	75
6.3	5 m sii	ngle hole pumping tests	76
	6.3.1	260.00–265.00 m	76
	6.3.2	558.20–563.20 m	77
	6.3.3	776.20–781.20 m	77
6.4	Water	sampling	78
	6.4.1	Uranine concentration	78
7	Synthe	esis	81
7.1	Summ	ary of results	82
7.2	Correl	ation analysis	91

	7.2.1	Comparison of steady state and transient analysis results	91
	7.2.2	Comparison between the matched and theoretical wellbore storage coefficient	92
8	Conc	lusions	95
8.1	Trans	missivity	95
8.2	Equiv	alent freshwater head	95
8.3	Flow	regimes encountered	96
9	Refer	ences	97

Attached on CD

- Appendix 1 File Description Table
- Appendix 2 Test Analyses Diagrams
- Appendix 3 Test Summary Sheets
- Appendix 4 Nomenclature
- Appendix 5 SICADA Data Tables

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB, 2001a/, as well as a site-specific program for the investigations in the Simpevarp area /SKB, 2001b/. Water sampling and hydraulic pump tests have been performed in KLX06 in three different sections. The length of the water sampling sections was 5 m and the selection of those sections is based on preliminary results from the Difference flow logging lengths and was made by SKB. The duration of pumping depended on the time for reaching acceptable uranine concentrations. Uranine is a conservative tracer used to tag the flush water utilised during drilling. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB, 2002/. These injection tests has been carried out after water sampling was finished. The work was carried out in accordance with activity plan AP PS 400-04-118. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents.

Activity plan	Number	Version
Test pumping and hydraulic injection tests in borehole KLX06	AP PS 400-04-118	1.0
Method descriptions	Number	Version
Analysis of injection and single-hole pumping tests	SKB MD 320.004e	1.0
Hydraulic injection tests	SKB MD 323.001	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning.	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar I kärnborrhål	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn.	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar	SKB SDP-508	1.0

Table 1-1.	Controlling	documents	for the	performance	of the activ	/ity.
------------	-------------	-----------	---------	-------------	--------------	-------

Pumping tests and water sampling were carried out accordingly in borehole KLX06 during 3rd March to 24th March 2005 following the methodology described in SKB MD 323.001e and in the activity plan AP PS 400-04-118 (SKB internal controlling documents). Hydraulic injection tests were carried out between 31st March to 20th April 2005. Data and results were delivered to the SKB site characterization database SICADA.

The main objective of the pumping tests was to take water samples in certain depths for chemical analyses. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Additionally, the data of the pumping tests were analysed to characterize the rock with respect to its hydraulic properties. This report describes the results and primary data evaluation of the pumping and hydraulic injection tests in borehole KLX06. The data is subsequently delivered for the site descriptive modelling. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX06 is situated in the Laxemar area approximately 3 km north-west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from August 2004 to November 2004 at 994.90 m depth with an inner diameter of 76 mm and an inclination of –65.23°. The upper 11.88 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208–323 mm.

Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX06.

2 Objective

The objective of the injection tests is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m and 20 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

The main objective of the pumping tests in KLX06 was the sampling of water in certain depths for chemical analyses. Additionally, the pumping was conducted and analysed as constant pressure pumping tests followed by a pressure recovery. The water sampling sections had a length of 5 m and are selected based on the preliminary results of the Difference flow logging. The samples taken from the upper section (260.00–265.00 m) were submitted for analysis according to SKB chemistry class 4. The other two samples (from 558.20–563.20 m and 776.20–781.20 m depth) were submitted for analysis according to SKB chemistry class 5.

3 Scope of work

The scope of work consisted of preparation of the testing equipment (PSS2 tool) which included cleaning of the down-hole tools, calibration and functional checks, pumping tests and water sampling in 5 m sections, injection tests of 100 m and 20 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

From 3rd March to 24th March 2005 three pumping tests in different 5 m sections were performed. The main objective of these tests was to take water samples from the different sections. Additionally, the pumping phases and recovery phases were analysed quantitatively as well.

Hydraulic injection tests were performed between 31st March and 20th April 2005.

Table 3-1.	Performed	injection	tests at	borehole l	KLX06 .
------------	-----------	-----------	----------	------------	----------------

No of in	jection tests	Interval	Positions	Time/test	Total test time
9		100 m	106.38–987.48 m	125 min	18.8 hrs
45*		20 m	106.38–987.50 m	90 min	58.5 hrs
Total:	77.3 hrs				

*excluding additional overnight slug injection tests and repeated tests

3.1 Boreholes

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point of the borehole is the centre of top of casing (ToC), given as Elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

Title	Value				
Borehole length (m):	994.940				
Drilling Period(s):	From Date	To Date	Secup (m)	Seclow (m)	Drilling Type
	2004-08-03	2004-08-10	0.000	100.300	Percussion drilling
	2004-08-25	2004-11-25	0.000	994.940	Core drilling
Starting point coordinate:	Length (m)	Northing (m)	Easting (m)	Elevation (mas	l) Coord Sys
(centerpoint of TOC)	0.000	6367806.640	1548566.880	17.680	RT90-RHB70
Angles:	Length (m)	Bearing	Inclination (- =	down)	
	0.000	328.810	-65.230		
Borehole diameter:	Secup (m)	Seclow (m)	Hole Diam (m)		
	0.000	9.100	0.341		
	9.100	11.880	0.253		
	11.880	100.300	0.195		
	100.290	101.880	0.086		
	101.880	994.940	0.076		
Core diameter:	Secup (m)	Seclow (m)	Core Diam (m)		
	100.290	101.690	0.072		
	101.690	994.940	0.050		
Casing diameter:	Secup (m)	Seclow (m)	Case In (m)	Case Out (m)	
	0.000	11.880	0.200	0.208	
	0.000	9.100	0.310	0.323	
Grove milling:	Length (m)	Trace detectable			
	103.000	YES			
	151.000	YES			
	200.000	YES			
	250.000	YES			
	300.000	YES			
	350.000	YES			
	400.000	YES			
	450.000	YES			
	500.000	YES			
	550.000	YES			
	600.000	YES			
	650.000	YES			
	700.000	YES			
	750.000	YES			
	800.000	YES			
	850.000	YES			
	900.000	YES			
	950.000	YES			
	980.000	YES			

Table 3-2. Information about KLX06 (from SICADA 2005-01-27 14:32:54).

3.2 Tests and water sampling

Pumping tests and water sampling were conducted according to the Activity Plan AP PS 400-04-118. The intention was to conduct constant rate tests. The main goal of these pumping tests was to reach an acceptable uranine concentration as fast as possible to take water samples from the borehole. Acceptable in this case means a target of an uranine concentration of less than 5% of the concentration from the water used during the drilling campaign (231 μ g/l).

After start of pumping, one water sampling was performed each day. These water samples were delivered to the Äspo chemistry laboratory. Simultaneous, the uranine content was measured in the field a few times a day. The intention was to pump until the ratio was at about 5%. However, in none of the three sections this ratio was reached (see Figure 6-1 to 6-3). The decision, when to abort pumping and take the final water chemistry sample, was made by SKB.

Injection tests were conducted according to the Activity Plan AP PS 400-04-118 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 106.38–987.48 m below ToC and in 20 m test sections between 106.38–987.50 m below ToC. The initial criteria for performing injection tests in 20 m test sections was a measurable flow of Q > 0.001 L/min in the previous measured tests covering the smaller sections (see Figure 3-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.

* eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, Time	Test stop Date, Time
KLX06	106.38–206.38	3	2	02.04.2005 17:03	02.04.2005 19:34
KLX06	206.52–306.52	3	1	03.04.2005 10:16	03.04.2005 12:37
KLX06	306.68-406.68	3	1	03.04.2005 14:20	03.04.2005 16:03
KLX06	406.83–506.83	3	1	03.04.2005 17:33	03.04.2005 23:08
KLX06	506.92-606.92	3	1	04.04.2005 09:33	04.04.2005 12:08
KLX06	607.06-707.06	3	1	04.04.2005 13:36	04.04.2005 15:37
KLX06	707.15–807.15	3	1	04.04.2005 17:04	05.04.2005 01:08
KLX06	807.31–907.31	3	1	05.04.2005 09:30	05.04.2005 13:01
KLX06	887.48–987.48	3	1	05.04.2005 14:30	05.04.2005 16:36
KLX06	106.38–126.38	3	1	07.04.2005 09:07	07.04.2005 10:43
KLX06	126.42–146.42	3	1 and 2	07.04.2005 11:26	07.04.2005 14:17
KLX06	146.44–166.44	3	1	07.04.2005 14:56	07.04.2005 16:28
KLX06	166.47–186.47	3	1	07.04.2005 17:08	07.04.2005 18:34
KLX06	186.49–206.49	3	1	08.04.2005 08:44	08.04.2005 10:05
KLX06	206.52-226.52	3	1	08.04.2005 11:19	08.04.2005 12:58
KLX06	226.56-246.56	3	1	08.04.2005 13:53	08.04.2005 15:36
KLX06	246.62–266.62	3	1	08.04.2005 16:26	08.04.2005 17:53
KLX06	266.64–286.64	3	2	09.04.2005 10:01	09.04.2005 11:22
KLX06	286.68–306.68	3	1	09.04.2005 12:09	09.04.2005 13:32
KLX06	306.68-326.68	3	1	09.04.2005 14:16	09.04.2005 15:35
KLX06	326.69–346.69	3	1	09.04.2005 16:16	09.04.2005 17:36
KLX06	346.74–366.74	3	1	09.04.2005 18:11	09.04.2005 19:37
KLX06	356.77–376.77	3	1	10.04.2005 08:40	10.04.2005 09:52
KLX06	376.80–396.80	3	2 and 3	10.04.2005 13:14	10.04.2005 14:50
KLX06	391.80–411.80	3	1	10.04.2005 15:31	10.04.2005 17:58
KLX06	406.83–426.83	3	1	11.04.2005 08:32	11.04.2005 10:02

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, Time	Test stop Date, Time
KLX06	426.86-446.86	3	1	11.04.2005 10:48	11.04.2005 12:18
KLX06	446.88–466.88	4	1	11.04.2005 13:03	11.04.2005 14:40
KLX06	466.89–486.89	3	1 and 2	11.04.2005 15:15	11.04.2005 16:55
KLX06	486.90–506.90	3	1	12.04.2005 08:44	12.04.2005 12:02
KLX06	506.92–526.92	3	3	13.04.2005 15:39	13.04.2005 17:22
KLX06	526.94–546.94	3	1	13.04.2005 18:08	13.04.2005 20:21
KLX06	546.97–566.97	3	1	14.04.2005 08:24	14.04.2005 10:03
KLX06	566.98–586.98	3	1	14.04.2005 10:42	14.04.2005 12:44
KLX06	587.02-607.02	-	1	14.04.2005 13:25	14.04.2005 14:30
KLX06	607.06–627.06	4	1	14.04.2005 15:07	14.04.2005 16:17
KLX06	627.10–647.10	3	1	14.04.2005 17:04	14.04.2005 19:31
KLX06	647.11–667.11	3	1	15.04.2005 08:32	15.04.2005 10:07
KLX06	667.09–687.09	4	1	15.04.2005 10:40	15.04.2005 11:57
KLX06	687.12–707.12	3	2	15.04.2005 13:52	15.04.2005 14:50
KLX06	707.15–727.15	3	1	15.04.2005 15:22	15.04.2005 17:07
KLX06	727.19–747.19	3	1 and 2	15.04.2005 17:48	15.04.2005 21:00
KLX06	747.22–767.22	4	1	16.04.2005 08:51	16.04.2005 10:17
KLX06	767.25–787.25	3	1	16.04.2005 10:54	16.04.2005 13:38
KLX06	787.28–807.28	-	1	16.04.2005 14:19	16.04.2005 15:21
KLX06	807.31–827.31	3	2	16.04.2005 17:33	17.04.2005 00:32
KLX06	827.33–847.33	3	1	17.04.2005 08:42	17.04.2005 09:59
KLX06	847.39–867.39	3	1	17.04.2005 10:29	17.04.2005 12:05
KLX06	867.46-887.46	-	1	17.04.2005 12:42	17.04.2005 13:42
KLX06	887.48–907.48	-	1	17.04.2005 14:29	17.04.2005 15:33
KLX06	907.49–927.49	3	1	17.04.2005 16:15	17.04.2005 17:58
KLX06	927.50–947.50	3	1	18.04.2005 08:42	18.04.2005 10:12
KLX06	947.50–967.50	-	1	18.04.2005 11:01	18.04.2005 12:09

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, Time	Test stop Date, Time
KLX06	967.50–987.50	-	1	18.04.2005 13:29	18.04.2005 14:37
KLX06	260.00-265.00	1	1	07.03.2005 08:59	10.03.2005 08:15
KLX06	558.20-563.20	1	1	10.03.2005 18:56	17.03.2005 08:19
KLX06	776.20–781.20	1	1	17.03.2005 16:07	23.03.2005 07:08

1: 1: Pumping test; 3: Injection test; 4: Pulse injection test ; 5: Slug injection test

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX06 were conducted.

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101-123 which is composed of two parts 1/ management description, 2/ drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-8.

Figure 4-1. A view of the layout and equipment of PSS2.

Photo 1:

Hydraulic rig.

Photo 2: Rack for pump, downhole equipment, workbench and drawers for tools.

Photo 3: Computer room, displays and gas regulators.

Photo 4: Pressure vessels for test valve, packers and injection.

Photo 5: Positioner, bottom end of down-in-hole string

Photo 6:

Packer and gauge carrier.

Photo 7: Top of test string with Photo 8: shunt valve and nylon line down to the pump basket

Control board of the pump with remote control

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.

- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below.
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The 3"-pump is placed in a pump basket and connected to the test string at about 50 to 60 m below ToC. The pumping frequency of the pump is set with a remote control on surface. The flow can be regulated with a shunt-valve on top of the test string, a nylon line connects the valve with the pump basket, so the water can circulate and the pump cannot run out of water (photo 7).

The tool scheme is presented in Figure 4-2.

Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Value/Range	Unit	Comments
p _{sec,a,b}	Pressure	Druck PTX 162–1464abs	9–30 4–20 0–13.5 Resolution Accuracy	VDC mA MPa % of FS	
$T_{sec,surf,air}$	Temperature	BGI	18–24 4–20 0–32 0.1	VDC mA °C °C	
Q _{big}	Flow	Micro motion Elite sensor	0–100 ± 0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 ± 0.1	kg/min %	Massflow
P _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 ± 0.1	VDC mA KPa % of FS	
P _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 ± 0.1	VDC mA MPa % of FS	
p _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5	VDC mA MPa	
L	Level Indicator				Length correction

Table 4-1.	Technical s	pecifications	of	sensors
		•		

Table 4-2.	Sensor positions	and wellbore	storage (WBS)) controlling f	factors.
------------	------------------	--------------	---------------	-----------------	----------

Borehole information			Sensors		Equipment affecting WBS coefficient		
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KLX06	106.38–206.38	1	pa	104.38	Test section	Signal cable	9.1
			р т	205.53 205.28		Pump string	33
			p₀ I	208.38		Packer line	6
KLX06	106.38–126.38	1	р _а	104.38	Test section	Signal cable	9.1
			р Т	125.53 125.28		Pump string	33
			p₀	128.38		Packer line	6
			L	129.63			

4.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

5 Execution

5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Clean tanks with chloride dioxide. Filling injection tank with water out of the borehole KLX06.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filing vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

5.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of this groves are given by SKB in the activity plan (see Table 3-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value is used to adjust the location of the packers for the testsections to avoid wrong placements and minimize elongation effects of the test string.

5.3 Execution of tests/measurements

5.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

Figure 5-1. Flow chart for test performance.

5.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation. The injection tests in KLX06 has been carried out by applying a constant injection pressure of ca 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection

period, the pressure recovery in the section was measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually. In those cases, the constant difference pressure was usually unequal to 200 kPa. In other cases, where the pressure recovery of the pulse injection test took very long, the recovery was extended and the pulse test was taken for the analysis. No injection test was performed in those sections.

The duration for each phase is presented in Table 5-1.

Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX06.

Position test tool to new test section (correct position using the borehole markers).	Approx 30 min.
 Inflate packers with appr. 1,900 kPa. 	25 min.
Close test valve.	10 min.
Check tubing integrity with appr. 800 kPa.	5 min.
De-air system.	2 min.
Pretest, pulse injection.	2–30 min.
 Set automatic flow control parameters or setting for manual test. 	5 min.
Start injection.	20 to 45 min.
Close test valve, start recovery.	20 min. or more
Open test valve.	10 min.
Deflate packers.	25 min.
Move to next test depth.	

5.4 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent test analysis.

5.5 Analyses and interpretation

5.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

5.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman, 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten, 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Pulse tests are analysed both by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakrabarty and Enachescu, 1997/.

5.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Injection Tests.
 - Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
 - Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
 - Non-linear regression in semi-log coordinates /superposition HORNER plot; Horner, 1951/. In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne, 1990/.

• Pulse Injection Tests

A test cycle always started with a pulse injection test whose goal it was to derive a first estimation of the formation transmissivity. If the pressure recovery of this brief injection was very slow, it indicated a very tight section. It is then decided to extend the recovery time and measure the pressure recovery. The pressure recovery is analysed as a pulse injection phase (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements and/or replacement in injection vessel). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

- Calculation of initial estimates of the model parameters by using the Ramey Plot /Ramey et al. 1975/. This plot is typically not presented in the appendix.
- Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu, 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An Example of the type curves is presented in Figure 5-3

Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

Figure 5-3. Deconvolution type curve set for pulse test analysis.

5.5.4 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye, 1967/.

5.5.5 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

5.5.6 Calculation of the static formation pressure and equivalent freshwater head

The static pressure measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using straight line or type curve extrapolation in the Horner plot.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the static formation pressure, corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-4 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p^* - p_{atm})}{\rho \times g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \times g}.$$

Figure 5-4. Schematic methodologies for calculation of the freshwater head.

5.5.7 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmassivity with distance from the borehole (composite model) was diagnosted, the inner zone transmassivity (in borehole vicinity) was recommended. This is consistence with SKB's standards.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

6 Results

In the following, results of all tests are presented and analysed. Chapter 6.1 presents the 100m tests and 6.2 the 20m tests. The results are given as general comments to test pereformance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 7-1 and 7-2 of the Synthesis chapter.

6.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX06 are presented and analysed.

6.1.1 Section 106.38–206.38 m, test no 2, injection

Comments to test

The first test conducted in this section was repeated due to technical problems with the bottom packer bursting during inflation. The second test was conducted without problems. The Cartesian plots of both tests are shown in the Appendix 2-1. Only the second test was analysed.

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 15 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 32.9 L/min at start of the CHi phase to 19.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase shows a flat derivative at middle times. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $2.1E-4 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-4 to $4.0E-4 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,874.0 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.2 Section 206.52–306.52 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 59 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 23.6 L/min at start of the CHi phase to 20.6 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative is flat at late times, too. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $1.3E-4 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-5 to $3.0E-4 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,767.0 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.1.3 Section 306.68-406.68 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 118 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 28.0 L/min at start of the CHi phase to 15.0 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $2.9E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-5 to $8.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,626.6 kPa.

The analysis of the CHi and CHir phases shows relatively good consistency. No further analysis is recommended.

6.1.4 Section 406.83–506.83 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 216 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.39 L/min at start of the CHi phase to 0.11 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows a downward trend at late times indicating whether an increase of transmissivity at some distance from the borehole or a change in flow dimension. An infinite acting homogeneous radial flow model was chosen for the analysis of the Chi phase. For the analysis of the CHir phase a two shell radial composite flow model was chosen. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $9.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-8 to $2.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,437.7 kPa.

The analysis of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivities, both phases show good concistency. No further analysis is recommended.

6.1.5 Section 506.92–606.92 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 23.8 L/min at start of the CHi phase to 12.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a relatively flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The CHir phase derivative shows an upward trend at late times indicating a decrease of transmissivity at some distance from the borehole. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. For the analysis of the CHir phase a radial composite flow model was chosen. The analysis is presented in Appendix 2-5.
Selected representative parameters

The recommended transmissivity of $1.1E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-6 to $2.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,233.5 kPa.

The analysis of the CHi and CHir phases show some inconsistencies regarding the chosen flow model. However, regarding the derived transmissivities, both phases show good concistency. No further analysis is recommended.

6.1.6 Section 607.06–707.06, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate decreased from 0.69 L/min at start of the CHi phase to 0.37 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $4.5E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-7 to $7.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,010.1 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.7 Section 707.15-807.15 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 220 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate control during the beginning of the CHi phase was not very good. However, the second part of the CHi phase can be analysed quantitively. The injection rate decreased from 11.8 L/min at start of the CHi phase to 2.4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $6.5E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-7 to $1.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,714.3 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

6.1.8 Section 807.31–907.31 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection between test interval and the adjacent zones was observed. Due to the injecting regulation unit that was switching between the automatic pump and the pressure vessel at the beginning, the data of the first part of the CHi phase is very noisy. However, the second part of the CHi phase can be analysed quantitively. The injection rate decreased from

1.47 L/min at start of the CHi phase to 0.11 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The recovery phase (CHir) shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). The data of the CHir phase does not allow for a specific determination of the flow dimension. An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase and CHir phase. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $9.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-8 to $2.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,372.2 kPa.

The analysis of the CHi and CHir phases shows relatively good consistency. No further analysis is recommended.

6.1.9 Section 887.48–987.48 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 192 kPa. No hydraulic connection between test interval and the adjacent zones was observed. Due to the injecting regulation unit that was switching between the automatic pump and the pressure vessel at the beginning, the data of the first part of the CHi phase is noisy. However, the second part of the CHi phase can be analysed quantitively. The injection rate decreased from 0.48 L/min at start of the CHi phase to 0.07 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The recovery phase (CHir) shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $5.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to $8.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,874.9 kPa.

The analysis of the CHi and CHir phases shows very good consistency. No further analysis is recommended.

6.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX06 are presented and analysed.

6.2.1 Section 106.38–126.38 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 19 kPa. No hydraulic connection between test interval and the adjacent zones was observed. Due to a slow injection regulation and a change of the pressure difference at the beginning, the data of the CHi phase is noisy. However, the second part of the CHi pase can be analysed quantitatively. The injection rate decreased from 28.8 L/min at start of the CHi phase to 20.6 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Due to the low pressure difference, the CHir phase shows a relatively fast recovery.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and CHir phase show a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $1.8E-4 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-5 to $3.0E-4 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,178.8 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.2 Section 126.42–146.42 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 237 kPa. No hydraulic connection between test interval and the adjacent zones was observed. Both phases show no problems and can be analysed quantitatively. The injection rate decreased from 75 mL/min at start of the CHi phase to 23.3 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows a relatively fast recovery, but it is still amenable for quantitative analysis.

Additionally, a slug injection test was performed over night.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase does not allow for a specific determination of the flow dimension. However, the analysis was conducted using a homogeneous flow model with a flow dimension of two. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of 2.2E–8 m^2/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E–9 to 4.0E–8 m^2/s . The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,352.6 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

The analysis of the slug injection test is consistent with the results of the injection test. The derived transmissivities are $1.4E-8 \text{ m}^2/\text{s}$ from the SI-phase (open test valve) and $2.7E-8 \text{ m}^2/\text{s}$ from the analysis of the SIS-phase (test valve closed).

6.2.3 Section 146.44-166.44 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection between test interval and the adjacent zones was observed. Due to the time needed by the regulation unit to get constant pressure, the data of the Chi phase are very noisy. However, the second part is of good quality and adequate for quantitative analysis. The injection rate decreased from 0.56 L/min at start of the CHi phase to 0.45 L/min at the end, indicating a relatively moderate interval transmissivity. The CHir phase shows fast recovery, but it is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. Mainly caused by the fast recovery and the resulting data quality, the derivative of the CHir phase does not allow for a specific determination of the flow dimension. The analysis was conducted using a homogeneous flow model with a flow dimension of two. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $5.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.5E-7 to $8.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,532.2 kPa.

The analysis of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery. No further analysis is recommended.

6.2.4 Section 166.47–186.47 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 59 kPa. The pressure in the section below rose by 3 kPa indicating a small hydraulic connection to that zone. Due to the time needed by the regulation unit to get constant pressure, the data of the Chi phase are very noisy at the beginning. However, the second part is of good quality and adequate for quantitative analysis. The injection rate decreased from 24.1 L/min at start of the CHi phase to 18.9 L/min at the end, indicating a high interval transmissivity. The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times followed by a downward slope, which is indicative of a change in transmissivity at some distance from the borehole or for a change in flow dimension. A two shell composite flow model with a flow dimension of two was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal line at late times, indicating radial flow. The analysis was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $5.9E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-5 to $8.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,708.9 kPa.

The analysis of the CHi and CHir phases show some minor inconsistencies, but anyway no further analysis is recommended.

6.2.5 Section 186.49–206.49 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. Due to the time needed by the regulation unit to get constant pressure, the data of the Chi phase are very noisy at the beginning. However, the second part is of good quality and adequate for quantitative analysis. The injection rate decreased from 17.22 L/min at start of the CHi phase to 16.5 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at late times indicating a change in transmissivity at some distance from the borehole or a change in flow dimension. A two shell composite flow model with a flow dimension of two was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal line at middle and late times, indicating radial flow. The analysis was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-14.

Selected representative parameters

The recommended transmissivity of $4.7E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-5 to $8.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,884.4 kPa.

The analysis of the CHi and CHir phases show consistency in general, no further analysis is recommended.

6.2.6 Section 206.52-226.52 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good. The data of the Chi phase are of good quality and as such adequate for quantitative analysis. The injection rate decreased from 6.68 L/min at start of the CHi phase to 5.68 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows fast recovery and so the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times and a downward trend at late times, indicating the transition to a zone of higher transmissivity at some distance from the borehole. A radial two shell composite flow model was chosen for the analysis of the CHi phase. The quality of the data and derivative of the CHir phase is not good and it is not possible to determine clearly the flow dimension. The analysis was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $6.8E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-6 to $1.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,062.8 kPa.

The analysis of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery of the CHir phase.

6.2.7 Section 226.56–246.56 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was not very good at the beginning. However, the second part is of good quality and as such amenable for quantitative analysis. The injection rate decreased from 8.99 L/min at start of the CHi phase to 7.73 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows fast recovery and so the results should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). A homogeneous radial flow model was chosen for the analysis of the CHi phase. The quality of the data and derivative of the CHir phase is not good and it is not possible to determine clearly the flow dimension. The analysis was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $1.3E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-6 to $4.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,238.5 kPa.

The analysis of the CHi and CHir phases show consistency, no further analysis is recommended.

6.2.8 Section 246.62-266.62 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 135 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good. The injection rate decreased from 25.4 L/min at start of the CHi phase to 20.5 L/min at the end, indicating a relatively high interval transmissivity. The CHir is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward trend at middle times and a flat part at late times, indicating a higher transmissivity at some distance from the borehole. A radial two shell composite flow model was chosen for the analysis. The derivative of the CHir phase shows a flat derivative at late times, which is indicative for a flow dimension of two (radial flow). The analysis was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-17.

Selected representative parameters

The recommended transmissivity of $6.4E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-5 to $1.0E-4 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,415.2 kPa.

The analysis of the CHi and CHir phases show consistency in general, no further analysis is recommended.

6.2.9 Section 266.64–286.64 m, test no 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good. The injection rate decreased from 4.02 L/min at start of the CHi phase to 2.63 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows relatively fast recovery, but is of good quality and as such amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of two (radial flow). The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-18.

Selected representative parameters

The recommended transmissivity of $4.4E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-6 to $8.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,590.1 kPa.

The analysis of the CHi and CHir phases show some minor inconsistencies, which are mainly caused by the fast recovery. No further analysis is recommended.

6.2.10 Section 286.68-306.68 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 1.70 L/min at start of the CHi phase to 1.47 L/min at the end, indicating a moderate to high interval transmissivity. The CHir phase shows relatively fast recovery, but is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of two (radial flow). The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of $2.2E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-5 to $4.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,765.8 kPa.

The analysis of the CHi and CHir phases show some minor inconsistencies, which are mainly caused by the fast recovery. No further analysis is recommended.

6.2.11 Section 306.68-326.68 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 4.76 L/min at start of the CHi phase to 3.66 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows relatively fast recovery, but is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of two (radial flow). The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $4.2E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.5E-6 to $7.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,937.8 kPa.

The analysis of the CHi and CHir phases show some minor inconsistencies, which are mainly caused by the fast recovery. No further analysis is recommended.

6.2.12 Section 326.69-346.69 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate

decreased from 8.86 L/min at start of the CHi phase to 6.90 L/min at the end, indicating a high interval transmissivity. The CHir phase shows relatively fast recovery, but is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). The determination of the flow dimension using the CHir phase is difficult due to the fast recovery and the quality of the data. The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-21.

Selected representative parameters

The recommended transmissivity of $1.0E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-6 to $3.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,109.7 kPa.

The analysis of the CHi and CHir phases show some minor inconsistencies, which are mainly caused by the fast recovery. No further analysis is recommended.

6.2.13 Section 346.74–366.74 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 10.6 L/min at start of the CHi phase to 8.10 L/min at the end, indicating a high interval transmissivity. The CHir phase shows relatively fast recovery, but is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of two (radial flow). The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-22.

Selected representative parameters

The recommended transmissivity of $9.3E-6 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 6.0E-6 to $3.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,282.7 kPa.

The analysis of the CHi and CHir phases show some inconsistencies, which are mainly caused by the fast recovery. No further analysis is recommended.

6.2.14 Section 356.77-376.77 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 8.46 L/min at start of the CHi phase to 6.71 L/min at the end, indicating a high interval transmissivity. The CHir phase shows relatively fast recovery, but is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase and the CHir phase show a flat derivative at late times, indicating a flow dimension of two (radial flow). The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $1.1E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-6 to $4.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,366.2 kPa.

The analysis of the CHi and CHir phases shows consistency. No further analysis is recommended.

6.2.15 Section 376.80–396.80 m, test no 2 and 3, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was bad and it took about 7 minutes to get stable pressure conditions. It was decided to let the injection phase for 30 minutes. Only the very last part of the Chi phase was analysable quantitatively. The injection rate decreased from about 0.32 L/min at start of the CHi phase to 0.28 L/min at the end, indicating a moderate interval transmissivity. The CHi phase shows no problems, but due to the fact that no radial flow was reached, the results should be regarded carefully.

Because of the problems with the injection test, an over night slug injection test was performed.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, it is difficult to determine the flow dimension from one of the phases. A flow dimension of two was assumed. The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-24.

Selected representative parameters

The recommended transmissivity of $3.0\text{E}-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows at late times the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-8 to $6.0\text{E}-7 \text{ m}^2/\text{s}$. The analysis was conducted using a flow dimension of 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,523.8 kPa.

The analysis of the CHi and CHir phases show some inconsistencies, due to the problems mentioned above. The analysis of the SI phase shows similar results, so that no further analysis is recommended.

6.2.16 Section 391.80-411.80 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection (Pi) test conducted with the goal of deriving a first estimate of the formation transmissivity. The relative slow recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. All test phases (Pi, Chi and CHir) were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 230 kPa. No hydraulic connection to the adjacent zones was observed. Due to the time needed to get stable pressure conditions, the first part of the Chi phase is not analysable. However, the second part can be analysed quantitatively. The injection rate decreased from about 0.21 L/min at start of the CHi phase to 0.06 L/min at the end, indicating a relative low interval transmissivity. The CHir phase shows no problems, but due to the fact that no radial flow was reached, the results should be regarded carefully. The Pi phase could be analysed quantitatively, too.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating radial flow (flow dimension of 2). For the CHir and Pi phase it is difficult to determine the flow dimension. In those cases a flow dimension of two was assumed. The analyses of the Chi and CHir phase were conducted using an infinite acting homogeneous radial flow model. The analysis of the Pulse injection test was conducted using a two shel composite flow model. The analysis is presented in Appendix 2-25.

Selected representative parameters

The recommended transmissivity of $4.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows at late times the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-8 to $8.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,606.7 kPa.

The analysis of the CHi and CHir phases show inconsistencies, due to the problems mentioned above. The analysis of the Pi phase shows similar results, so that no further analysis is recommended.

6.2.17 Section 406.83-426.83 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 255 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 30.1 mL/min at start of the CHi phase to 16.7 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). The CHir phase does not reach radial flow, so that the flow dimension was assumed as two. For the analysis of both phases, a homogeneous radial flow model was chosen. The analysis is presented in Appendix 2-26.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,775.5 kPa.

The analyses of the CHi and CHir phases show consistency in general. No further analysis is recommended.

6.2.18 Section 426.86-446.86 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 230 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 30.3 mL/min at start of the CHi phase to 15.3 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). The CHir phase does not reach radial flow, so that the flow dimension was assumed as two. For the analysis of both phases, a homogeneous radial flow model was chosen. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $1.3E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,935.8 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.19 Section 446.88-466.88 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was extended to about one hour.

During the brief injection phase a total volume of 19 mL was injected (derived from the replacement in the injection vessel). This injected volume produced a pressure increase of 236 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $8.1E-11 \text{ m}^3/\text{Pa}$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Pi phase shows a flat part at middle tmes, which is indicative for a flow dimension of 2 (radial flow). At late times it shows a downward trend, indicating a transition to a zone of higher transmissivity. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $7.8E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 3E-11 to $3E-10 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The flow dimension displayed during the test is 2. No static pressure could be derived.

6.2.20 Section 466.89–486.89 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 217 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is of good quality and as such quantitatively analysable.

The injection rate decreased from about 57 mL/min at start of the CHi phase to 41 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is adequate for quantitatively analysis

Additionally, an over night slug injection (Si) test was performed.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi and the CHir phase show a flat derivative at late times, indicating a flow dimension of 2. The analysis for both phases was conducted using an infinite acting homogeneous radial flow model. The derivative of the Si phase shows a flat derivative as well. The same model was used for the analysis of this part. The analysis is presented in Appendix 2-29.

Selected representative parameters

The recommended transmissivity of $6.7E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 3.0E-8 to $9.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,264.7 kPa. The derived transmissivity of the Si phase is $6.9E-8 \text{ m}^2/\text{s}$.

The analyses of the CHi, CHir and Si phase show good consistency. No further analysis is recommended.

6.2.21 Section 486.90-506.90 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 61.9 mL/min at start of the CHi phase to 31.2 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show at middle times a flat derivative, indicating a flow dimension of two (radial flow). After that flat part, the derivative shows an upward trend followed by a second stabilisation, which is indicative for a transition to a zone of lower transmissivity. For the analysis of both phases, a two shell composite flow model was chosen. The analysis is presented in Appendix 2-30.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 7.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,415.2 kPa.

The analyses of the CHi and CHir phases show very good consistency. No further analysis is recommended.

6.2.22 Section 506.92-526.92 m, test no 3, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 220 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was not very good and it took about two minutes to get stale pressure conditions. It was decided to extend the injection phase to 30 minutes. However, the second part of the Chi phase is good and adequate for quantitative analysis. The injection rate decreased from 0.55 L/min at start of the CHi phase to 0.48 L/min at the end, indicating a moderate interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Chi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). The CHir phase does not reach radial flow. A flow dimension of two was assumed. For the analysis of both phases, an infinite acting homogeneous radial flow model was chosen. The analysis is presented in Appendix 2-31.

Selected representative parameters

The recommended transmissivity of $3.4E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the Chi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-7 to $7.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,586.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.23 Section 526.94-546.94 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate to low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 225 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is good and adequate for quantitative analysis. The injection rate decreased from 0.13 L/min at start of the CHi phase to 0.04 L/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Chi phase shows a flat derivative at middle and late times, indicating a flow dimension of two (radial flow). The CHir phase does not reach radial flow. A flow dimension of two was assumed. For the analysis of both phases, an infinite acting homogeneous radial flow model was chosen. The analysis is presented in Appendix 2-32.

Selected representative parameters

The recommended transmissivity of $3.0E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the Chi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-8 to $6.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,756.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.24 Section 546.97-566.97 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the Chi phase is adequate for quantitative analysis. The injection rate decreased from 15.3 L/min at start of the CHi phase to 12.1 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Chi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). An infinite acting homogeneous flow model was chosen for the analysis of the Chi phase. The CHir phase shows a flat derivative at middle times, at late times it shows an upward trend, which is indicative for decreasing transmissivity at some distance from the borehole. For the analysis of the CHir phase a two shell composite flow model was chosen. The analysis is presented in Appendix 2-33.

Selected representative parameters

The recommended transmissivity of $1.2E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the Chi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-6 to $3.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,917.8 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. But the general results are very similar and no further analysis is recommended.

6.2.25 Section 566.98-586.98 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 116 mL/min at start of the CHi phase to 21 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). An infinite acting homogeneous flow model was chosen for the analysis of the Chi phase. The CHir phase shows an upward trend at late times, which is indicative for decreasing transmissivity at some distance from the borehole. For the analysis of the CHir phase a two shell composite flow model was chosen. The analysis is presented in Appendix 2-34.

Selected representative parameters

The recommended transmissivity of $1.2E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the clearest radial flow. The confidence range for the interval transmissivity is estimated to be 8.0E-9 to $3.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,083.0 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history.

6.2.26 Section 587.02-607.02 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 59Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-35.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.27 Section 607.06–627.06 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 18 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 183 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $9.9E-12 \text{ m}^3/\text{Pa}$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the Pi phase shows a flat part at middle and late times, which is indicative for a flow dimension of 2 (radial flow). The analysis is presented in Appendix 2-36.

Selected representative parameters

The recommended transmissivity of $9.3E-11 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 5E-11 to $4E-10 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The flow dimension displayed during the test is 2. No static pressure could be derived.

6.2.28 Section 627.10-647.10 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 0.43 L/min at start of the CHi phase to 0.33 L/min at the end, indicating a moderate interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two (radial flow). An infinite acting homogeneous flow model was chosen for the analysis of the Chi phase. The CHir phase shows an upward trend at late times, which is indicative for a change to lower transmissivity at some distance from the borehole. For the analysis of the CHir phase a two shell composite flow model was chosen. The analysis is presented in Appendix 2-37.

Selected representative parameters

The recommended transmissivity of $4.9E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the clearest radial flow and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to $6.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,551.2 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. The outer zone transmissivity of the CHir phase is equal to the transmissivity derived from the Chi phase. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

6.2.29 Section 647.11–667.11 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a moderate to relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 162 mL/min at start of the CHi phase to 68 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, indicating a flow dimension of two (radial flow). The CHir phase does not show radial flow clearly, anyway, a flow dimension of two was assumed. An infinite acting homogeneous flow model was chosen for the analysis of both phases. The analysis is presented in Appendix 2-38.

Selected representative parameters

The recommended transmissivity of $6.0\text{E}-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the clearest radial flow and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to $9.0\text{E}-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,702.8 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.30 Section 667.09–687.09 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 19 mL was injected (derived from the flowmeter readings). This injected volume produced a pressure increase of 237 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 8.1E-11 m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the Pi phase shows an upward trend at middle times followed by a horizontal stabilisation, which is indicative for a flow dimension of two. For the analysis a radial two shell composite flow model was used. The analysis is presented in Appendix 2-39.

Selected representative parameters

The recommended transmissivity of $5.6E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase (outer zone). Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 2E-10 to $1E-9 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. No static pressure could be derived.

6.2.31 Section 687.12-707.12 m, test no 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 58 mL/min at start of the CHi phase to 6 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show an upward trend at middle times, indicating a decrease in transmissivity or a change in flow dimension. The derivative of the CHi phase shows a stabilisation at late times, which is indicative for a flow dimension of two. For the analysis of both phases a radial two shell composite flow model was chosen. The analysis is presented in Appendix 2-40.

Selected representative parameters

The recommended transmissivity of 2.2E–9 m²/s was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-9 to 6.0E-9 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth was not calculated due to the tight formation.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.32 Section 707.15–727.15 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the CHi phase is adequate for quantitative analysis. The injection rate decreased from 129 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show an upward trend at middle times, indicating a decrease in transmissivity or a change in flow dimension. The derivative of the CHi phase shows a stabilisation at late times, which is indicative for a flow dimension of two. For the analysis of both phases a radial two shell composite flow model was chosen. The analysis is presented in Appendix 2-41.

Selected representative parameters

The recommended transmissivity of 2.4E–9 m²/s was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-9 to 7.0E-9 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth was not calculated due to the tight formation.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.33 Section 727.19–747.19 m, test no 1 and 2, injection and slug injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 219 kPa. No hydraulic connection between test interval and the adjacent zones was observed. The injection rate control during the injection was good and the CHi phase is amenable for quantitative analysis. The injection rate decreased from 122 mL/min at start of the CHi phase to 27 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is adequate for quantitative analysis.

Additionally, a slug injection test was performed over night.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, which is indicative of a flow dimension of 2 (radial flow). An infinite acting homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase does not allow for a specific determination of the flow dimension. It shows a downward trend at middle and late times, indicating whether a flow dimension unequal to two or a change in transmissivity. The analysis was conducted using a radial two shell composite flow model. The derivative of the slug injection (Si) phase is noisy, but it shows a flat part at late times, indicating a flow dimension of two. This phase was analysed using an infinite acting homogeneous flow model. The analysis is presented in Appendix 2-43.

Selected representative parameters

The recommended transmissivity of $2.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 1.0E-8 to $5.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,304.2 kPa.

The analyses of the CHi and CHir phases show some inconsistencies concerning the flow model. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects.

The analysis of the slug injection test is consistent with the results of the CHi phase of the injection test. The derived transmissivity is $4.0E-8 \text{ m}^2/\text{s}$.

6.2.34 Section 747.22–767.22 m, test no 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test was very slow, indicating a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase a total volume of about 60 mL was injected (derived from the replacement in injection vessel). This injected volume produced a pressure increase of 190 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $3.0E-10 \text{ m}^3/\text{Pa}$. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the Pi phase shows does not allow for a specific determination of the flow dimension. For the analysis radial flow conditions were (flow dimension of 2) were assumed and an infinite acting radial flow model was chosen. The analysis is presented in Appendix 2-43.

Selected representative parameters

The recommended transmissivity of $1.2E-10 \text{ m}^2/\text{s}$ was derived from the analysis of the Pi phase. Considering the inherent uncertainties related to the measurement (e.g. specially the measurement of the wellbore storage coefficient) and to the analysis process (e.g. numeric distortion when calculating the derivative and pressure history effects), the confidence range for the transmissivity is estimated to be 6E-11 to $3E-10 \text{ m}^2/\text{s}$. A flow dimension of 2 was assumed. No static pressure could be derived.

6.2.35 Section 767.25–787.25 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 220 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was not very good at the beginning and it took about 1 minute to get stable pressure conditions. However, the second part is of good quality and as such adequate for quantitative analysis. The injection rate decreased from 5.79 L/min at start of the CHi phase to 2.55 L/min at the end, indicating a relatively high interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at late times, indicating a flow dimension of two. This phase was analysed using an infinite acting radial flow model. The CHir phase shows at middle times an upward trend followed by a horizontal stabilisation, which is indicative for a transition to a zone of lower transmissivity at some distance from the borehole. For the analysis of this phase, a radial two shell composite flow model was chosen. The analysis is presented in Appendix 2-44.

Selected representative parameters

The recommended transmissivity of $6.4E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 5.0E-7 to $2.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,577.8 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, especially concerning the flow model. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects and change in flow rates during the injection phase.

6.2.36 Section 787.28-807.28 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 101Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-45.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.37 Section 807.31-827.31 m, test no 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result

a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the data of the CHi phase are of good quality and as such adequate for quantitative analysis. The injection rate decreased from 235 mL/min at start of the CHi phase to 38 mL/min at the end, indicating a relatively moderate to low interval transmissivity. The CHir phase shows no problems and is of good quality and as such amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test none of the two phases allows determining clearly the flow dimension. For both phases a flow dimension of two was assumed and an infinite acting radial flow model was chosen for the analysis. The analysis is presented in Appendix 2-46.

Selected representative parameters

The recommended transmissivity of 7.7E–9 m^2/s was derived from the analysis of the CHir phase (outer zone), which shows the smoothest data and derivative quality. Due to the fact that none of the phases reached radial flow, the confidence range for the interval transmissivity is estimated to be 4.0E–9 to 3.0E–8 m^2/s . The flow dimension assumed for this test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,866.7 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, especially concerning the flow model. In case further analysis of the test is planned, we recommend conducting a full superposition transient analysis in order to account for pressure history effects and change in flow rates during the injection phase.

6.2.38 Section 827.33-847.33 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 222 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was not very good; the pressure in the section started to rose after about 7 minutes of injection and kept rising until end of injection by 6 kPa. However, the data is still ok and amenable for quantitative analysis. The injection rate decreased from 135 mL/min at start of the CHi phase to 114 mL/min at the end, indicating a moderate interval transmissivity. The CHi phase shows very fast recovery and as such the results should be regarded as order of magnitude only.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase, although it is noisy, shows a flat derivative at middle and late times, indicating a flow dimension of two. The CHir phase does not allow for a specific determination of the flow dimension, a flow dimension of two was assumed. Both phases were analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-47.

Selected representative parameters

The recommended transmissivity of $2.1E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 9.0E-8 to $5.0E-7 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,998.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

6.2.39 Section 847.39-867.39 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 214 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the data of the Chi phase is adequate for quantitative analysis. The injection rate decreased from 22 mL/min at start of the CHi phase to 12 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase, although it is very noisy, shows a flat derivative at middle and late times, indicating a flow dimension of two. Due to the fact that the CHir phase did not reach radial flow conditions, it does not allow for a specific determination of the flow dimension. Both phases were analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-48.

Selected representative parameters

The recommended transmissivity of $1.1E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality and radial flow. The confidence range for the interval transmissivity is estimated to be 8.0E-9 to $4.0E-8 \text{ m}^2/\text{s}$. The flow

dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,133.9 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.40 Section 867.46-887.46 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 45Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-49.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.41 Section 887.48–907.48 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 135Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-50.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.42 Section 907.49-927.49 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 235 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the data of the Chi phase are adequate for quantitative analysis. The injection rate decreased from 43 mL/min at start of the CHi phase to 23 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase, although it is very noisy, shows a flat derivative at middle and late times, indicating a flow dimension of two. The CHir phase shows a flat derivative at late times, as well. Both phases were analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-51.

Selected representative parameters

The recommended transmissivity of $1.6E-8 \text{ m}^2/\text{s}$ was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-9 to $4.0E-8 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,508.7 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.43 Section 927.50-947.50 m, test no 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 211 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate control during the CHi phase was good and the data of the Chi phase are adequate for quantitative analysis. The injection rate decreased from 126 mL/min at start of the CHi phase to 44 mL/min at the end, indicating a relatively low interval transmissivity. The CHir phase shows no problems and is amenable for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in loglog coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, indicating a flow dimension of two. The CHir phase shows an upward trend at middle times followed by a horizontal stabilisation, which is indicative for a transition to a zone of lower transmissivity and radial flow. The CHi phase was analysed using an infinite radial acting flow model. The CHir phase was analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-52.

Selected representative parameters

The recommended transmissivity of 2.6E–8 m²/s was derived from the analysis of the CHir phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 8.0E-9 to 4.0E-8 m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,652.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.44 Section 947.50–967.50 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 500Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-53.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.2.45 Section 967.50–987.50 m, test no 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by about 500Pa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data is presented in Appendix 2-54.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1E-11 \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3 5 m single hole pumping tests

The nomenclature and symbols used during evaluation and for presentation of the results of the pump tests and flow logging are according to the SKB documents "Instruction for analysis of single-hole injection and pump tests" (SKB MD 320.004, Instruktion för analysis av injections- och enhålspumptester). If additional symbols are used, they are explained in the report text.

6.3.1 260.00-265.00 m

Comments to test

The test was conducted as a constant rate pump phase (CRw) followed by a pressure recovery phase (CRwr). The flow rate during the pumping phase was at about 8.1 L/min at a drawdown of ca 48 kPa at the end of the perturbation phase. A slight connection to the lower and upper section was observed. After 48 hours of pumping the final water chemistry sample was taken. The CHwr phase took 21 hours. Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw and the CRwr phase show a flat derivative at late times, indicating a flow dimension of 2. For the analysis of both phases a homogeneous radial flow model was chosen. The analysis is presented in Appendix 2-55.

Selected representative parameters

The recommended transmissivity of $1.0E-4 \text{ m}^2/\text{s}$ was derived from the analysis of the CRwr phase, which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 8.0E-5 to $3.0E-4 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHwr phase using straight line extrapolation in the Horner plot to a value of 2,399.4 kPa.

The analysis of the CRw and CRwr phases shows good consistency. No further analysis is recommended.
6.3.2 558.20-563.20 m

Comments to test

The test was conducted as a constant rate pump phase (CRw) followed by a pressure recovery phase (CRwr). The flow rate during the pumping phase was at about 1.4 L/min for the first 14 hours. Due to the fact, that the pressure in the interval stabilized, the rate was increased to 4.0 L/min for the next 130 hours. The drawdown at the end of the perturbation phase was at about 140 kPa. A connection the bottom zone was observed. Except of the first two hours, the uranine concentration rose during the entire perturbation phase. With agreement of the hydrogeochemist of SKB, the final water sample was taken at an uranine concentration of about 46 μ g/L (~20%). The recovery took 24 hours. Both phases were analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the both phases show a flat derivative at middle times followed by an upward trend. This indicates after radial flow at middle times, a transition to a zone of lower transmissivity at some distance from the borehole. The flow dimension for both zones is 2. A radial two shell composite flow model was chosen for the anlysis of both phases. The analysis is presented in Appendix 2-56.

Selected representative parameters

The recommended transmissivity of $1.1E-5 \text{ m}^2/\text{s}$ was derived from the analysis of the CRwr phase (inner zone), which shows good data and derivative quality. The confidence range for the transmissivity is estimated to be 6.0E-6 to $3.0E-5 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 4,881.0 kPa.

The analysis of the CRw and CRwr phases shows good consistency. No further analysis is recommended.

6.3.3 776.20-781.20 m

Comments to test

The test was conducted as a constant rate pump phase (CRw) followed by a pressure recovery phase (CRwr). For the first 3.5 hours, the rate was at about 1.5 L/min. Because of a too big drawdown, the rate was decreased to 1.2 L/min. The total perturbation phase took aboput 137 hours. The flow rate was very noisy, the reason for this is unknown, but air inside the system could have caused this problem. The drwdown of the test ionterval was at 235 kPa. The pressure in the bottom zone decreased by up to 95 kPa, indicating a connection to the interval along fractures. The Uranin concentration rose for the first 50 hours to a value of about 50–60 μ g/L (20–25%). For the rest of the pumping the concentration was more or less stable at this value. After 137 hours of pumping, it was decided to take the final water sample for analysis. The test interval was shut in and the recovery phase (CRwr) took 22 hours. The CRw phase is very nouisy, but still amenable for quantitative analysis. The data quality of the CRwr phase is good and the phase could be analysed quantitatively.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase is very noisy, so that no identification of the flow model can be clearly made. A flow dimension of two was assumed. The CRwr phase shows a flat derivative at middle times with a downward trend at late times, indicating a transition to a zone of higher transmissivity at some distance from the borehole. Both phases were analysed using a radial two shell composite flow model. The analysis is presented in Appendix 2-57.

Selected representative parameters

The recommended transmissivity of $6.6E-7 \text{ m}^2/\text{s}$ was derived from the analysis of the CRwr phase (inner zone), which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be 6.0E-7 to $1.0E-6 \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHwr phase using straight line extrapolation in the Horner plot to a value of 6,540.0 kPa.

Although the derivative of the CRw phase is very noisy, the analysis of the CRw and CRwr phases shows good consistency. No further analysis is recommended.

6.4 Water sampling

6.4.1 Uranine concentration

Three different sections were chosen for the watersampling campaign. The length of these sections was 5 m. The target for pumping was to achieve an uranine concentration of 5% or less of the initial value.

Figures 6-1 to 6-3 show the uranine concentration versus pumping time for all three tests. Basis for these diagrams are the field measurements of the uranine concentration. The field-measured concentrations of these samples are very similar to the values measured in the SKB laboratory.

All three curves show very different shapes. In the uppermost section the uranine concentration rose in the first two to three hours very steep to decrease afterwards very slowly. After two days of pumping and a concentration of about 6%, the final water sample was taken. This sample was analysed according to SKB chemistry class 4.

In the second section from 558.20–563.20 m the content of uranine decreased at the very beginning. After two to three hours, the uranine concentration started to rise. For the next 130 hours it kept rising nearly linear. The final water sample was taken at a uranine concentration of ca 20% (~45 μ g/L). It was analysed according to SKB chemistry class 5.

The curve of the last section (Figure 6-3) shows a third kind of shape. The first 48 hours are very similar to section 558.20–563.20 m, but in this section, the uranine concentration stayed approximately stable between 22 and 27%. After 136 hours of pumping, the decision was made to take the final water sample for chemical analysis. As well as the sample before, this was analysed according to SKB chemistry class 5. Partial results from the analysis of the water is presented in Table 6-1.

Figure 6-1. Uranine concentration during pumping in section 260.00–265.00.

Figure 6-2. Uranine concentration during pumping in section 558.20–563.20.

Figure 6-3. Uranine concentration during pumping in section 776.20–781.20.

Table 6-1.	Water chemistry	y KLX06, a	inalyses	results.
------------	-----------------	------------	----------	----------

Sampling date	Secup (m)	Seclow (m)	Sample no	HCO₃ (mg/L)	CI (mg/L)	рН	El. cond (mS/m)	Drill water (%)
2005-03-09 11:00	260.00	265.00	10122	226.00	36.8	8.72	56.7	5.68
2005-03-16 08:30	558.20	583.20	10130	155.00	348.0	8.39	169.0	21.40
2005-03-23 09:10	776.20	781.20	10147	107.00	1,240.0	7.94	487.0	23.20

7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition. the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

Borehole secup (m)	Borehole seclow (m)	Date and time for test. start YYYYMMDD hh:mm	Date and time for test. stop YYYYMMDD hh:mm	Q _p (m**3/s)	Q _m (m**3/s)	d (s)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p _p (kPa)	p _⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
106.38	206.38	20050402 17:03	20050402 19:34	3.22E-04	3.64E-04	1,800	006	1,873	1,874	1,886	1,875	10.3	CHi / CHir
206.52	306.52	20050403 10:16	20050403 12:37	3.43E04	3.54E-04	1,800	1,800	2,757	2,764	2,823	2,767	11.4	CHi / CHir
306.68	406.68	20050403 14:20	20050403 16:03	2.50E-04	2.68E-04	1,800	600	3,622	3,625	3,743	3,625	12.6	CHi / CHir
406.83	506.83	20050403 17:33	20050403 23:08	1.83E-06	2.00E-06	1,800	14,400	4,457	4,442	4,658	4,436	13.8	CHi / CHir
506.92	606.92	20050404 09:33	20050404 12:08	2.05E-04	2.22E-04	1,800	3,600	5,255	5,236	5,437	5,241	15.4	CHi / CHir
607.06	707.06	20050404 13:36	20050404 15:37	6.17E-06	6.67E-06	1,800	1,800	6,021	6,010	6,211	6,015	16.7	CHi / CHir
707.15	807.15	20050404 17:04	20050405 01:08	3.96E-05	5.45E-05	1,800	21,600	6,742	6,728	6,948	6,717	17.9	CHi / CHir
807.31	907.31	20050405 09:30	20050405 13:01	2.02E-06	2.88E-06	1,800	3,600	7,401	7,398	7,598	7,403	19.1	CHi / CHir
887.48	987.48	20050405 14:30	20050405 16:36	1.22E-06	1.42E–06	1,800	1,800	7,900	7,886	8,078	7,893	19.9	CHi / CHir
106.38	126.38	20050407 09:07	20050407 10:43	3.45E04	3.70E-04	1,200	1,200	1,178	1,179	1,198	1,180	9.4	CHi / CHir
126.42	146.42	20050407 11:26	20050407 14:17	3.88E-07	4.47E-07	1,200	1,200	1,355	1,359	1,589	1,358	9.6	CHi / Chir / Si
146.44	166.44	20050407 14:56	20050407 16:28	7.60E-06	7.88E-06	1,200	300	1,532	1,534	1,747	1,533	9.8	CHi / CHir
166.47	186.47	20050407 17:08	20050407 18:34	3.15E-04	3.30E-04	1,200	600	1,709	1,711	1,769	1,711	10.1	CHi / CHir
186.49	206.49	20050408 08:44	20050408 10:05	2.75E-04	2.77E-04	1,200	600	1,886	1,886	2,085	1,886	10.2	CHi / CHir
206.52	226.52	20050408 11:19	20050408 12:58	9.45E-05	9.72E-05	1,200	1,200	2,055	2,062	2,263	2,062	10.3	CHi / CHir
226.56	246.56	20050408 13:53	20050408 15:36	1.29E-04	1.33E–04	1,200	600	2,237	2,240	2,441	2,240	10.7	CHi / CHir
246.62	266.62	20050408 16:26	20050408 17:53	3.42E04	3.50E-04	1,200	006	2,413	2,417	2,549	2,416	11.0	CHi / CHir
266.64	286.64	20050409 10:01	20050409 11:22	4.38E-05	4.65E-05	1,200	006	2,588	2,589	2,790	2,589	11.2	CHi / CHir
286.68	306.68	20050409 12:09	20050409 13:32	2.44E-05	2.56E-05	1,200	600	2,763	2,765	2,966	2,765	11.4	CHi / CHir
306.68	326.68	20050409 14:16	20050409 15:35	6.20E-05	6.48E-05	1,200	600	2,936	2,937	3,138	2,938	11.7	CHi / CHir
326.69	346.69	20050409 16:16	20050409 17:36	1.16E–04	1.22E-04	1,200	600	3,108	3,110	3,310	3,110	11.9	CHi / CHir
346.74	366.74	20050409 18:11	20050409 19:37	1.37E-04	1.44E–04	1,200	1,200	3,281	3,281	3,482	3,282	12.1	CHi / CHir
356.77	376.77	20050410 08:40	20050410 09:52	1.12E-04	1.18E–04	1,200	300	3,362	3,365	3,566	3,366	12.2	CHi / CHir

Table 7-1. General test data from constant head injection tests in KLX06.

7.1 Summary of results

Borehole secup (m)	Borehole seclow (m)	Date and time for test. start YYYYMMDD hh:mm	Date and time for test. stop YYYYMMDD hh:mm	Q _p (m**3/s)	Q _m (m**3/s)	d (s)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p₀ (kPa)	p⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
376.80	396.80	20050410 13:14	20050410 14:50	4.65E-06	5.13E-06	1,800	1,500	3,538	3,538	3,739	3,540	12.5	CHi / CHir / Si
391.80	411.80	20050410 15:31	20050410 17:58	1.02E-06	1.67E–04	1,200	1,800	3,664	3,662	3,893	3,718	12.6	CHi / CHir
406.83	426.83	20050411 08:32	20050411 10:02	2.67E-07	3.03E-07	1,200	1,200	3,792	3,777	4,029	3,777	12.8	CHi / CHir
426.86	446.86	20050411 10:48	20050411 12:18	2.56E-07	2.73E-07	1,200	1,200	3,961	3,940	4,172	3,939	13.0	CHi / CHir
446.88	466.88	20050411 13:03	20050411 14:40	NN#	NN#	NN#	3,240	4,130	4,132	NN#	NN#	13.2	Pi
466.89	486.89	20050411 15:15	20050411 16:55	6.83E-07	7.08E-07	1,200	1,200	4,291	4,268	4,483	4,269	13.6	CHi / CHir / Si
486.90	506.90	20050412 08:44	20050412 12:02	5.25E-07	6.16E-07	1,200	1,200	4,456	4,438	4,648	4,452	13.7	CHi / CHir
506.92	526.92	20050413 15:39	20050413 17:22	8.02E-06	1.67E–04	1,800	1,800	4,592	4,594	4,795	4,609	14.1	CHi / CHir
526.94	546.94	20050413 18:08	20050413 20:21	6.27E-07	6.83E-07	1,200	3,600	4,779	4,760	4,988	4,758	14.4	CHi / CHir
546.97	566.97	20050414 08:24	20050414 10:03	2.02E-04	2.16E–04	1,200	1,200	4,937	4,922	5,124	4,932	14.8	CHi / CHir
566.98	586.98	20050414 10:42	20050414 12:44	3.50E-07	4.82E-07	1,200	2,400	5,101	5,099	5,294	5,104	15.1	CHi / CHir
587.02	607.02	20050414 13:25	20050414 14:30	NN#	NN#	NN#	NN#	5,261	NN#	NN#	NN#	15.4	CHi / CHir
607.06	627.06	20050414 15:07	20050414 16:17	NN#	NN#	NN#	1,200	5,414	NN#	NN#	NN#	15.7	Pi
627.10	647.10	20050414 17:04	20050414 19:31	5.50E-06	5.87E-06	1,200	3,600	5,568	5,555	5,755	5,554	15.9	CHi / CHir
647.11	667.11	20050415 08:32	20050415 10:07	1.14E–06	1.25E–06	1,200	1,200	5,713	5,705	5,915	5,708	16.2	CHi / CHir
667.09	687.09	20050415 10:40	20050415 11:57	NN#	NN#	NN#	1,800	5,868	NN#	NN#	NN#	16.4	Pi
687.12	707.12	20050415 13:52	20050415 14:50	1.02E-07	1.72E–07	1,200	1,200	6,023	6,023	6,230	6,097	16.7	CHi / CHir
707.15	727.15	20050415 15:22	20050415 17:07	1.62E–07	3.15E-07	1,200	1,200	6,169	6,169	6,370	6,253	16.9	CHi / CHir
727.19	747.19	20050415 17:48	2005041521:00	7.67E-07	9.00E-07	1,200	7,200	6,312	6,303	6,522	6,306	17.2	CHi / CHir / Si
747.22	767.22	20050416 08:51	20050416 10:17	NN#	NN#	NN#	2,460	6,456	6,457	NN#	NN#	17.4	Pi
767.25	787.25	20050416 10:54	20050416 13:38	4.25E–05	6.25E-05	1,200	3,600	6,600	6,584	6,803	6,597	17.7	CHi / CHir
787.28	807.28	20050416 14:19	20050416 15:21	NN#	NN#	NN#	NN#	6,743	NN#	NN#	NN#	17.9	ı
807.31	827.31	20050416 17:33	20050417 00:32	6.33E-07	2.02E-06	1,200	21,600	6,876	6,880	7,079	6,899	18.2	CHi / CHir
827.33	847.33	20050417 08:42	20050417 09:59	1.92E–06	1.98E–06	1,200	300	7,013	6,999	7,223	7,000	18.4	CHi / CHir
847.39	867.39	20050417 10:29	20050417 12:05	2.00E-07	2.17E–07	1,200	1,600	7,148	7,135	7,349	7,135	18.6	CHi / CHir
867.46	887.46	20050417 12:42	20050417 13:42	NN#	NN#	NN#	NN#	7,275	NN#	NN#	NN#	18.9	ı

Borehole secup (m)	Borehole seclow (m)	Date and time for test. start YYYYMMDD hh:mm	Date and time for test. stop YYYYMMDD hh:mm	Q _p (m**3/s)	Q _m (m**3/s)	d (S)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p _p (kPa)	p⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
887.48	907.48	20050417 14:29	20050417 15:33	NN#	NN#	NN#	NN#	7,403	NN#	NN#	NN#	19.1	1
907.49	927.49	20050417 16:15	20050417 17:58	3.67E-07	3.95E-07	1,200	1,200	7,565	7,510	7,745	7,511	19.3	CHi / CHir
927.50	947.50	20050418 08:42	20050418 10:12	7.22E-07	9.23E-07	1,200	1,200	7,658	7,647	7,857	7,680	19.5	CHi / CHir
947.5	967.5	20050418 11:01	20050418 12:09	NN#	NN#	NN#	NN#	7,797	NN#	NN#	NN#	19.7	ı
967.5	987.5	20050418 13:29	20050418 14:37	NN#	NN#	NN#	NN#	7,900	NN#	NN#	NN#	19.9	ı
260.00	265.00	20050307 08:59	20050310 08:15	1.35E–04	1.35E-04	175,392	79,800	2,397	2,400	2,351	2,398	11.0	CRw / CRwr
558.20	563.20	20050310 18:56	20050317 08:19	6.28E-05	6.25E-05	479,400	85,020	4,901	4,884	4,748	4,831	14.5	CRw / CRwr
776.20	781.20	20050317 16:07	20050323 07:08	1.97E-05	1.95E-05	490,740	77,400	6,549	6,529	6,317	6,506	17.6	CRw / CRwr

not analysed Constant Head injection phase Recovery phase following the constant head injection phase Constant Rate with drawal phase Recovery phase folloing the constant rate with drawal Pulse injection Slug injection

#NV CHI: CHIr: CRw: PI: SI :

Interval _k	osition	Stationary	flow	Transient	analysis												
		parameters	S	Flow regir	ле	Formation	ı paramete	irs								Static co	nditions
up m btoc	low m btoc	Q/s m²/s	T _м m²/s	Perturb Phase	Recovery Phase	T _{ri} m²/s	T _{r2} m²/s	T _{s1} m²/s	Т _{s2} . m²/s ।	T _⊤ m²/s	T _{™IN} m²/s	T _{TMAX} m²/s	C m³/Pa	-∽ min	dt₂ min	p* kPa	h _{wiŕ} masl
106.38	206.38	2.63E-04	3.42E04	2	2	2.1E-04	NN#	2.1E-04	· ^N#	2.1E-04	1.0E04	4.0E04	3.7E-08	-5.3 0.3	3.1	1,874.0	13.06
206.52	306.52	5.70E-05	7.43E–05	7	2	1.3E-04	NN#	1.1E–04	NN#	1.3E–04	6.0E-05	3.0E-04	2.0E-08	4.3 0.8	3 19.4	2,767.0	14.88
306.68	406.68	2.08E-05	2.70E-05	2	2	2.9E–05	NN#	7.4E–05	NN#	2.9E–05	1.0E-05	8.0E-05	8.0E-09	-0.4 3.4	1 29.9	3,626.6	15.39
406.83	506.83	8.33E-08	1.08E-07	7	22	9.0E-08	NN#	5.8E-08	1.4E-07 §	9.0E-08	6.0E-08	2.0E-07	1.8E-10	0.8 2.2	25.7	4,437.7	13.19
506.92	606.92	9.98E-06	1.30E-05	7	22	1.1E–05	NN#	1.6E–05	8.4E-06	1.1E–05	2.0E-05	8.0E-06	2.0E-08	-1.6 5.4	t 28.7	5,233.5	12.98
607.06	707.06	3.01E-07	3.92E-07	7	2	4.5E-07	NN#	5.9E-07	, VN#	4.5E–07	3.0E-07	6.0E-07	9.6E-10	2.2 8.6	3 26.0	6,010.1	14.55
707.15	807.15	1.77E-06	2.30E-06	2	2	6.8E-07	NN#	6.5E-07)#	6.5E-07	5.0E-07	1.0E-06	4.9E-08	-5.4 21.9	9 44.9	6,714.3	13.15
807.31	907.31	9.89E-08	1.29E–07	2	2	5.1E-08	NN#	9.1E–08) NN#	9.1E–08	5.0E-08	2.0E-07	9.3E-09	-1.2 #NV	∧N# /	7,372.2	12.29
887.48	987.48	6.22E-08	8.10E-08	7	2	5.6E-08	NN#	5.7E-08	ì /N#	5.7E–08	4.0E-08	8.0E-08	5.2E-10	-0.9 10.0	0 14.0	7,874.9	13.07
106.38	126.38	1.78E–04	1.86E–04	7	2	1.8E–04	NN#	2.3E–04	NN#	1.8E–04	8.0E-05	3.0E-04	1.8E–08	-3.6 7.4	t 17.3	1,178.8	14.17
126.42	146.42	1.66E–08	1.73E–08	2	2	2.2E-08	NN#	4.3E-08	NN#	2.2E–08	9.0E-09	4.0E-08	1.8E–10	3.2 0.9	9.9	1,352.6	13.77
146.44	166.44	3.50E-07	3.66E–07	7	2	5.9E-07	NN#	1.6E–06	ì NN#	5.9E–07	3.5E-07	8.0E-07	1.6E–10	3.9 1.9	9 14.6	1,532.2	14.06
166.47	186.47	5.35E-05	5.58E-05	22	2	5.0E-05	1.3E-04	5.9E-05	ì /N#	5.9E-05	3.0E-05	8.0E-05	6.0E-09	-2.1 0.3	3.8	1,708.9	14.06
186.49	206.49	1.36E-05	1.42E–05	22	2	1.6E–05	8.4E-05	4.7E–05	, VN#	4.7E–05	3.0E-05	8.0E-05	1.5E–09	13.5 2.5	5 18.6	1,884.4	14.00
206.52	226.52	4.61E-06	4.82E-06	22	2	6.8E–06	4.5E-05	2.1E–05)#	6.8E-06	3.0E-06	1.0E-05	1.2E–09	1.2 0.6	3 1.6	2,062.8	14.22
226.56	246.56	6.28E-06	6.57E-06	7	2	1.3E–05	∧N#	2.2E-05	NN#	1.3E–05	8.0E-06	4.0E-05	4.9E-10	4.6 4.8	3 16.9	2,238.5	14.20
246.62	266.62	2.54E-05	2.65E–05	22	2	3.6E-05	1.0E-04	6.4E-05)#	6.4E–05	4.0E-05	1.0E-04	1.7E–08	0.0 0.0	1.0	2,415.2	14.34
266.64	286.64	2.14E–06	2.24E-06	7	2	4.4E–06	NN#	7.7E-06	,,, _,, _	4.4E–06	2.0E-06	8.0E-06	1.0E-09	4.7 1.1	18.1	2,590.1	14.41
286.68	306.68	1.19E–06	1.25E–06	7	2	2.2E-06	NN#	4.4E–06		2.2E–06	9.0E-05	4.0E-06	5.9E-11	3.3 1.1	17.7	2,764.8	14.55
306.68	326.68	3.03E-06	3.17E-06	7	2	4.2E-06	NN#	1.1E–05	, VN#	4.2E–06	1.5E–06	7.0E-06	6.5E-10	0.7 3.1	15.8	2,937.8	14.66
326.69	346.69	5.70E-06	5.96E-06	Р	2	1.0E-05	NN#	2.7E-05	NN#	1.0E-05	7.0E-06	3.0E-05	9.2E-10	2.4 1.1	17.4	3,109.7	14.69
346.74	366.74	6.66E–06	6.97E-06	2	2	9.3E-06	NN#	3.3E-05	5 /N#	9.3E-06	6.0E-06	3.0E-05	2.9E–10	0.6 1.0	11.7	3,282.7	14.90
356.77	376.77	5.46E-06	5.71E-06	7	WBS2	1.1E–05	∧N#	2.5E–05	NN#	1.1E–05	7.0E-06	4.0E-05	7.4E–10	3.8 1.5	5 15.3	3,366.2	14.74
376.80	396.80	2.27E-07	2.37E-07	7	WBS2	3.0E-07	∧N#	4.6E-07	; ∧N#	3.0E-07	8.0E-08	6.0E-07	8.7E-09	1.3 14.7	7 25.6	3,523.8	13.44

Table 7-2. Results from analysis of constant head tests in KLX06.

Interval	position	Stationary	flow	Transient	analysis												
		parameters	s	Flow regi	me	Formation) paramete	ers								Static	conditions
up m btoc	low m btoc	Q/s m²/s	T _w m²/s	Perturb Phase	Recovery Phase	T _{ri} m²/s	T _{r2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T _⊤ m²/s	T _{™IN} m²/s	T _{™MAX} m²/s	С m³/Ра	νı •	t, dt ₂ in mi	p* kPa	h _{wiŕ} masl
391.80	411.80	4.35E-08	4.55E-08	2	WBS2	4.2E-08	NN#	1.1E-07	NN#	4.2E-08	1.0E-08	8.0E-08	4.2E-09	0.3	9.9 19	.2 #NV	NN#
406.83	426.83	1.04E-08	1.09E-08	2	WBS2	1.1E-08	∧N#	4.9E–08	NN#	1.1E–08	7.0E-09	3.0E-08	6.2E-11	1.6	0.9 19	.3 3,775.1	5 13.23
426.86	446.86	1.08E-08	1.13E-08	2	WBS2	1.3E-08	NN#	3.8E-08	NN#	1.3E–08	7.0E–09	3.0E-08	5.6E-11	2.3	0.8 15	.5 3,935.8	3 12.43
446.88	466.88	NN#	NN#	NN#	WBS2	NN#	∧N#	7.8E–11	1.8E-10	7.8E–11	3.0E-11	3.0E-10	8.0E-11	-0.1	2.2 13	.1 #NV	NN#
466.89	486.89	3.12E-08	3.26E-08	7	WBS2	5.1E-08	NN#	6.7E-08	NN#	6.7E-08	3.0E-08	9.0E-04	5.7E-11	4.7	0.6 13	.7 4,264.	7 12.19
486.90	506.90	2.45E-08	2.57E-08	22	WBS22	4.3E-08	1.3E-08	4.9E–08	1.1E–08	1.1E–08	7.0E–09	3.0E-08	5.3E-11	0.7	7.1 18	.9 4,415.2	2 10.87
506.92	526.92	3.91E-07	4.09E-07	2	WBS2	3.4E07	NN#	4.8E-07	NN#	3.4E-07	1.0E-07	7.0E-07	2.8E-08	-1.5	7.8 23	.0 4,586.9	5 11.81
526.94	546.94	2.70E-08	2.82E-08	2	WBS2	3.0E-08	∧N#	5.8E-08	NN#	3.0E-08	1.0E-08	6.0E-08	1.7E–10	1.4	1.5 6	.6 4,756.0	3 12.75
546.97	566.97	9.86E–06	1.03E-05	2	WBS22	1.2E-05	NN#	2.0E-05	9.1E–06	1.2E-05	9.0E06	3.0E-05	7.3E–09	-1.0	4.0 17	.2 4,917.8	3 12.91
566.98	586.98	1.76E–08	1.84E-08	2	WBS2	1.2E–08	NN#	1.5E–07	1.0E08	1.2E-08	8.0E-09	3.0E-08	1.4E–10	<u>-</u>	9.5 19	.8 5,083.(13.60
587.02	607.02	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E–11	1.0E–13	1.0E–11	NN#	# ^N#	N# NN	۸N# ۸	NN#
607.06	627.06	NN#	NN#	NN#	WBS22	NN#	NN#	9.3E–11	NN#	9.3E–11	5.0E-11	4.0E–10	9.9E–12	5.5	2.4 14	.3 #NV	NN#
627.10	647.10	2.70E-07	2.82E-07	7	WBS22	4.9E-07	NN#	9.8E–07	4.4E07	4.9E-07	2.0E-07	6.0E-07	5.6E-10	4.4	1.7 13	.7 5,551.2	2 13.79
647.11	667.11	5.33E-08	5.58E-08	7	WBS2	6.0E-08	NN#	9.5E–08	NN#	6.0E-08	4.0E–08	9.0E-08	1.6E–10	1.4	3.4 15	.5 5,702.8	3 13.70
667.09	687.09	NN#	NN#	NN#	WBS22	NN#	NN#	2.8E–09	5.6E-10	5.6E-10	2.0E–10	1.0E-09	8.1E–11	-2.7 #	N# NN	ΛN# Λ	NN#
687.12	707.12	4.82E–09	5.04E-09	22	WBS22	1.7E-08	2.2E-09	4.0E–08	2.9E-09	2.2E-09	1.0E–09	6.0E-09	7.4E–11	0.2	7.5 16	/N# 2.	NN#
707.15	727.15	7.89E–09	8.25E-09	22	WBS22	1.4E08	2.4E-09	1.1E-07	4.5E-09	2.4E-09	2.0E-09	7.0E-09	2.9E–10	2.2	0.2 0	.3 #NV	NN#
727.19	747.19	3.43E–08	3.59E-08	2	WBS22	2.6E-08	NN#	4.3E-08	9.2E-08	2.6E–08	1.0E–08	5.0E-08	1.6E–10	0.0-	1.5 15	.9 6,304.2	2 14.64
747.22	767.22	NN#	NN#	NN#	WBS2	NN#	NN#	1.2E–10	NN#	1.2E-10	6.0E–11	3.0E-10	3.0E-10	-2.2 1	2.4 40	NN# 8.	NN#
767.25	787.25	1.90E-06	1.99E–06	2	WBS22	6.4E-07	NN#	1.7E–05	1.2E-06	6.4E-07	5.0E-07	2.0E-06	3.5E-08	-5.2	7.6 16	.5 6,577.8	3 13.40
787.28	807.28	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E–11	1.0E–13	1.0E–11	NN#	# ^N#	N# NN	∧N# ∧	NN#
807.31	827.31	3.12E–08	3.27E-08	N	WBS22	1.2E-09	NN#	1.3E–07	7.7E-09	7.7E-09	4.0E09	3.0E-08	6.9E09	-5.4 1	0.3 16	.5 6,866.	7 14.58
827.33	847.33	8.39E–08	8.78E–08	N	WBS2	2.1E-07	NN#	5.3E-06	NN#	2.1E-07	9.0E-08	5.0E-07	5.7E-11	9.3	1.7 13	.8 6,998.4	14.21
847.39	867.39	9.17E-09	9.59E-09	2	WBS2	1.1E-08	NN#	4.8E-08	NN#	1.1E-08	8.0E-09	4.0E-08	4.8E-11	2.5	0.9 17	.5 7,133.9	9 14.43

	nditions	h _{wif} masl	۸N#	NN#	13.31	15.41	∧N#	∧N#	14.16	12.20	13.89
	Static co	p* kPa	NN#	NN#	7,508.7	7,652.2	NN#	NN#	2,399.4	4,881.0	6,540.0
		dt₂ min	∧N#	NN#	NN#	13.3	NN#	NN#	678.0	48.0	480.0
		dt, min	NN#	NN#	∧N#	6.8	∧N#	∧N#	2.8	1.2	60.09
		wι	NN#	NN#	15.2	1.3	NN#	NN#	12.1	-3.3	-5.0
		С m³/Ра	NN#	NN#	6.0E-11	9.8E–11	NN#	NN#	2.6E–08	2.2e–9	7.0e-8
		T _{™AX} m²/s	1.0E-11	1.0E-11	4.0E-08	5.0E-08	1.0E-11	1.0E-11	3.0E-04	3.0E-05	1.0E-06
		T _{TMIN} m²/s	1.0E-13	1.0E-13	8.0E-09	9.0E-09	1.0E-13	1.0E-13	6.0E-05	6.0E-06	6.0E-07
		T _⊤ m²/s	1.0E-11	1.0E-11	1.6E-08	2.6E-08	1.0E-11	1.0E-11	1.0E-04	1.1E-05	6.6E-07
		T _{s2} m²/s	NN#	NN#	NN#	2.6E–08	NN#	NN#	NN#	8.3E-07	1.2E-06
	ers	T _{s1} m²/s	∧N#	NN#	5.5E-08	1.5E-07	NN#	NN#	1.0E-04	1.1E-05	6.6E-07
	n paramet	T _{r2} m²/s	NN#	NN#	NN#	NN#	NN#	NN#	NN#	2.8E-06	1.7E-06
	Formatio	T _{f1} m²/s	NN#	NN#	1.6E–08	1.6E–08	NN#	NN#	1.3E–04	1.2E–05	6.6E-07
ıt analysis	ime	Recovery Phase	NN#	NN#	WBS2	WBS22	NN#	NN#	WBS2	WBS22	WBS22
Transier	Flow reg	Perturb Phase	∧N#	NN#	8 2	8 2	NN#	NN#	2	22	22
/ flow	ſS	T _M m²/s	NN#	NN#	1.60E-0	3.53E-0	NN#	NN#	NN#	NN#	NN#
Stationary	paramete	Q/s m²/s	NN#	NN#	1.53E-08	3.37E-08	NN#	NN#	NN#	NN#	NN#
position		low m btoc	887.46	907.48	927.49	947.50	967.50	987.50	265.00	563.20	781.20
Interval		up m btoc	867.46	887.48	907.49	927.50	947.50	967.50	260.00	558.20	776.20

Notes

- T1 and T2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one T value is reported. In case a two zones composite model was recommended both T1 and T2 are given T_{τ} denotes the recommended transmissivity.
 - The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHIR phase using straight line or 2
- type-curve extrapolation. ო
- The flow regime description refers to The recommended model used in The transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow. 2 = radial flow. 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis. if two numbers are given (WBS22 or 22) a 2 zones composite model was used.

The Figures 7-1 to 7-3 present the transmissivity. conductivity and hydraulic freshwater head profiles.

Figure 7-1. Results summary – profiles of transmissivity and equivalent freshwater head. transmissivities derived from injectiontests. freshwater head extrapolated.

Figure 7-2. Results summary – profile of transmissivity.

Figure 7-3. Results summary – profile of hydraulic conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that all of the steady state derived transmissivities differ by less than one order of magnitude from the transmissivities derived from the transient analysis. Recommended transmissivities above $1.0E-07 \text{ m}^2/\text{s}$ are in most cases slightly higher than the values of the steady state analysis. At values below $1.0E-07 \text{ m}^2/\text{s}$. the trend seems to be the other way around.

Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water. packer elements. other test tool components. and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx 5E-10 1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility of 7E-10 1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to three orders of magnitude and more larger than the theoretical values. This phenomenon was already observed at the previous boreholes. A three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval. a volume increase by three orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon. a series of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

In addition, the observed large skin factor and large borehole coefficients is described in /Spivey et al. 2002/ and explained by turbulent flow taking place in the formation (i.e. along fractures).

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity. including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.5.7.

Whenever possible. the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

In some cases. no injection test were performed due to the fact that the preliminary pulse was showing a slow recovery indicating a low transmissivity. In such cases the preliminary pulse injection (Pi) was prolonged and analysed. Altogether 4 Pulse injection tests were performed and the recommended transmissivities of these sections range between $7.8E-11 \text{ m}^2/\text{s}$ and $5.6E-10 \text{ m}^2/\text{s}$. Recommended transmissivities of the injection tests range between $2.2E-9 \text{ m}^2/\text{s}$ and $2.1E-4 \text{ m}^2/\text{s}$. Additionaly. 4 slug injection tests (Si) were performed in tight sections over night. The analyses of the Si-phases and the former conducted injection tests in the corresponding sections show in all cases concistence. The transmissivities of the 3 pump tests (5 m section) range between $6.6E-7 \text{ m}^2/\text{s}$ and $1.0E-4 \text{ m}^2/\text{s}$.

The transmissivity profiles in Figures 7-1 and 7-2 show for the 100 m more or less an decreasing of transmissivities by increasing of the depth. The highest transmissivity of 2.1E-4 m²/s was derived in the uppermost section (106.38–206.38 m) and the lowest transmissivity of 5.7E-8 m²/s in the last section (887.48–987.48 m). The section from 506.92 m to 606.92 m with a transmissivity of 9E–8 m²/s is an exception. not following the downward trend. The derived high transmissivity is a result of one highly transmissive interval at 558.20–563.20 m bToC. A pump test was conducted at this interval and the derived transmissivity is 1.1E-05 m²/s.

For the 20 m sections. the transmissivities range from $7.8E-11 \text{ m}^2/\text{s}$ to $1.8E-4 \text{ m}^2/\text{s}$. The highest transmissivities (2.2E-8 m²/s to $1.8E-4 \text{ m}^2/\text{s}$) were derived in the upper area of the borehole in a depth between 100 m and 400 m. Below 400 m the measured transmissivities range from $7.8E-11 \text{ m}^2/\text{s}$ to $6.6E-07 \text{ m}^2/\text{s}$ (excluding skipped tests). An exception is the section from 546.97–566.97 m with a transmissivity of $1.2E-5 \text{ m}^2/\text{s}$. caused by the above mentioned highly transmissive section from 558.20–563.20 m.

Only one 20 m section (827.33–847.33 m) and one 5 m section (260.00–265.00 m) show larger transmissivities than the appropriate longer interval. The difference is small and covered by the confidence range.

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.5.6.

The head profile shows a freshwater head oszillating between 10.9 and 15.3 masl. Figure 7-1 shows no trend for increasing or decreasing of the head downwards the hole. The profile shows a wide head range. which could be explained with a not very welldefined vertical connectivity around the borehole.

8.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality. the simplest model was preferred.

In few cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation. this indicates the presence of larger transmissivity zones in the borehole vicinity. which could be caused by steep fractures that do not intersect the test interval. but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as 1E–8 m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow. a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed. Those analyses are presented in Appendix 2.

9 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. – Coc. Of Petroleum Engineers. SPE Formation Evaluation, pp 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application – Ground Water Sept–Oct 1997, pp 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis – SPE Paper 14099.

Horne R N, 1990. Modern well test analysis – Petroway Inc, Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells – Third World Pet Congress. E.J. Brill. Leiden II. pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. – Transactions. American Geophysical Union. Volume 33. No 4, pp 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans.. Inst. Eng. Australia. Apr. 1967. pp 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. – Water Resour Res v 25 no 7. pp 1591–1602.

Ramey H J Jr, Agarwal R G, Martin R G I, 1975. Analysis of "Slug Test" or DST flow Period data. – J Can Pet Tec, September 1975.

SKB, **2001a.** Site investigations: Investigation methods and general execution programme. SKB TR-01-29. Svensk Kärnbränslehantering AB.

SKB, **2001b.** Geoveteskapligt program för platsundersökning vid Simpevarp. SKB R-01-44. Svensk Kärnbränslehantering AB.

SKB, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06. Svensk Kärnbränslehantering AB.

Spivey J P, Brown K G, Sawyer W K, Frantz J H, 2002. Estimating Non Darcy Flow Coefficient from Buildup Test Data with Wellbore Storage. – Society of Petroleum Engineers. SPE 77484.

Borehole: KLX06	

APPENDIX 1

File Description Table

HYDRC) TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: F	KLX06		
TEST- A	AND	FILE	PROTO	OCOL	Testorder dated : 2005-03-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
2005-03-07	08:58	260,00	265,00	KLX06_0260.00_200503070858.ht2	KLX06_260.00-265.00_050307_1_CRwr_Q_r.csv	CRwr	2005-04-20	2005-03-11	
2005-03-10	18:55	558,20	563,20	KLX06 0558.20 200503101855.ht2	KLX06 558.20-563.20 050310 1 CRwr O r.csv	CRwr	2005-04-20	2005-03-17	
2005-03-17	16:06	776,20	781,20	KLX06_0776.20_200503171606.ht2	KLX06_776.20-781.20_050317_1_CRwr_Q_r.csv	CRwr	2005-04-20	2005-03-24	
2005-04-01	14:25	106,38	206,38	KLX06 0106.38 200504011425.ht2	KLX06 106.38-206.38 050401 1 CHir Q r.csv	CHir	2005-04-20	2005-04-02	
2005-04-02	17:03	106,38	206,38	KLX06_0106.38_200504021703.ht2	KLX06_106.38-206.38_050402_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-02	
2005-04-03	10:16	206,52	306,52	KLX06 0206.52 200504031016.ht2	KLX06 206.52-306.52 050403 1 CHir Q r.csv	CHir	2005-04-20	2005-04-03	
2005-04-03	14:20	306,68	406,68	KLX06_0306.68_200504031420.ht2	KLX06_306.68-406.68_050403_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-03	
2005-04-03	17:33	406,83	506,83	KLX06 0406.83 200504031733.ht2	KLX06 406.83-506.83 050403 1 CHir Q r.csv	CHir	2005-04-20	2005-04-04	
2005-04-04	09:33	506,92	606,92	KLX06_0506.92_200504040933.ht2	KLX06_506.92-606.92_050404_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-04	
2005-04-04	13:36	607,06	707,06	KLX06 0607.06 200504041336.ht2	KLX06 607.06-707.06 050404 1 CHir Q r.csv	CHir	2005-04-20	2005-04-04	
2005-04-05	09:30	807,31	907,31	KLX06_0807.31_200504050930.ht2	KLX06_807.31-907.31_050405_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-05	
2005-04-07	09:07	106,38	126,38	KLX06_0106.38_200504070907.ht2	KLX06_106.38-126.38_050407_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-07	
2005-04-07	11:26	126,42	146,42	KLX06_0126.42_200504071126.ht2	KLX06_126.42-146.42_050407_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-07	
2005-04-07	14:56	146,44	166,44	KLX06_0146.44_200504071456.ht2	KLX06_146.44-166.44_050407_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-07	
2005-04-07	17:08	166,47	186,47	KLX06 0166.47 200504071708.ht2	KLX06 166.47-186.47 050407 1 CHir Q r.csv	CHir	2005-04-20	2005-04-07	

HYDRO) TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: ŀ	KLX06		
TEST- A	AND	FILEF	ROTC	DCOL	Testorder dated : 2005-03-05				
Teststart		Interval boundar	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
2005-04-07	19:24	126,42	146,42	KLX06_0126.42_200504071924.ht2	KLX06_126.42-146.42_050407_2_SI_Q_r.csv	SI	2005-04-20	2005-04-08	
2005-04-08	08:44	186,49	206,49	KLX06_0186.49_200504080844.ht2	KLX06_186.49-206.49_050408_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-08	
2005-04-08	11:19	206,52	226,52	KLX06_0206.52_200504081119.ht2	KLX06_206.52-226.52_050408_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-08	
2005-04-08	13:53	226,56	246,56	KLX06_0226.56_200504081353.ht2	KLX06_226.56-246.56_050408_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-08	
2005-04-08	16:26	246,62	266,62	KLX06_0246.62_200504081626.ht2	KLX06_246.62-266.62_050408_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-08	
2005-04-09	08:06	266,64	286,64	KLX06_0266.64_200504090806.ht2	KLX06_266.64-286.64_050409_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-09	
2005-04-09	10:01	266,64	286,64	KLX06_0266.64_200504091001.ht2	KLX06_266.64-286.64_050409_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-09	
2005-04-09	12:09	286,68	306,68	KLX06_0286.68_200504091209.ht2	KLX06_286.68-306.68_050409_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-09	
2005-04-09	14:16	306,68	326,68	KLX06_0306.68_200504091416.ht2	KLX06_306.68-326.68_050409_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-09	
2005-04-09	16:16	326,69	346,69	KLX06_0326.69_200504091616.ht2	KLX06_326.69-346.69_050409_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-09	
2005-04-09	18:11	346,74	366,74	KLX06_0346.74_200504091811.ht2	KLX06_346.74-366.74_050409_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-10	
2005-04-10	08:40	356,77	376,77	KLX06_0356.77_200504100840.ht2	KLX06_356.77-376.77_050410_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-10	
2005-04-10	10:57	376,80	396,80	KLX06_0376.80_200504101057.ht2	KLX06_376.80-396.80_050410_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-10	
2005-04-10	13:14	376,80	396,80	KLX06_0376.80_200504101314.ht2	KLX06_376.80-396.80_050410_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-10	
2005-04-10	15:31	391,80	411,80	KLX06_0391.80_200504101531.ht2	KLX06_391.80-411.80_050410_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-10	
2005-04-10	18:30	376,80	396,80	KLX06_0376.80_200504101830.ht2	KLX06_376.80-396.80_050410_3_SI_Q_r.csv	SI	2005-04-20	2005-04-11	

HYDRO)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION	NO.: ŀ	KLX06		
TEST- A	AND	FILEF	PROTO	OCOL	Testorder dated : 2005-03-05				
Teststart		Interval boundari	ies	Name	of Datafiles	Testtype	Copied to	Plotted	Sign.
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	
2005-04-11	08:32	406,83	426,83	KLX06_0406.83_200504110832.ht2	KLX06_406.83-426.83_050411_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-11	
2005-04-11	10:48	426,86	446,86	KLX06_0426.86_200504111048.ht2	KLX06_426.86-446.86_050411_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-11	
2005-04-11	13:03	446,88	466,88	KLX06_0446.88_200504111303.ht2	KLX06_446.88-466.88_050411_1_PI_Q_r.csv	PI	2005-04-20	2005-04-11	
2005-04-11	15:15	466,89	486,89	KLX06_0466.89_200504111515.ht2	KLX06_466.89-486.89_050411_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-11	
2005-04-11	16:58	466,89	486,89	KLX06_0466.89_200504111658.ht2	KLX06_466.89-486.89_050411_1_SI_Q_r.csv	SI	2005-04-20	2005-04-12	
2005-04-12	08:44	486,90	506,90	KLX06_0486.90_200504120844.ht2	KLX06_486.90-506.90_050412_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-12	
2005-04-12	13:00	506,92	526,92	KLX06_0506.92_200504121300.ht2	KLX06_506.92-526.92_050412_1_CHir_Q_r.XLS	CHir	2005-04-20	2005-04-12	
2005-04-13	12:20	506,92	526,92	KLX06_0506.92_200504131220.ht2	KLX06_506.92-526.92_050413_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-13	
2005-04-13	15:39	506,92	526,92	KLX06_0506.92_200504131539.ht2	KLX06_506.92-526.92_050413_3_CHir_Q_r.csv	CHir	2005-04-20	2005-04-13	
2005-04-13	18:08	526,94	546,94	KLX06_0526.94_200504131808.ht2	KLX06_526.94-546.94_050413_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-14	
2005-04-14	08:24	546,97	566,97	KLX06_0546.97_200504140824.ht2	KLX06_546.97-566.97_050414_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-14	
2005-04-14	10:42	566,98	586,98	KLX06_0566.98_200504141042.ht2	KLX06_566.98-586.98_050414_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-14	
2005-04-14	13:25	587,02	607,02	KLX06_0587.02_200504141325.ht2	KLX06_587.02-607.02_050414_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-14	
2005-04-14	15:07	607,06	627,06	KLX06_0607.06_200504141507.ht2	KLX06_607.06-627.06_050414_1_PI_Q_r.csv	PI	2005-04-20	2005-04-14	
2005-04-14	17:04	627,10	647,10	KLX06_0627.10_200504141704.ht2	KLX06_627.10-647.10_050414_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-15	

HYDRC)TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX06					
TEST- A	AND	FILE	PROTO	OCOL	Testorder dated : 2005-03-05					
Teststart		Interval boundaries		Name of Datafiles		Testtype	Copied to	Plotted	Sign.	
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	_	
2005-04-15	08:32	647,11	667,11	KLX06_0647.11_200504150832.ht2	KLX06_647.11-667.11_050415_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-15		
2005-04-15	10:40	667,09	687,09	KLX06_0667.09_200504151040.ht2	KLX06_667.09-687.09_050415_1_PI_Q_r.csv	PI	2005-04-20	2005-04-15		
2005-04-15	12:34	687,12	707,12	KLX06_0687.12_200504151234.ht2	KLX06_687.12-707.12_050415_1_PI_Q_r.csv	PI	2005-04-20	2005-04-15		
2005-04-15	13:52	687,12	707,12	KLX06_0687.12_200504151352.ht2	KLX06_687.12-707.12_050415_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-15		
2005-04-15	15:22	707,15	727,15	KLX06_0707.15_200504151522.ht2	KLX06_707.15-727.15_050415_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-15		
2005-04-15	17:48	727,19	747,19	KLX06_0727.19_200504151748.ht2	KLX06_727.19-747.19_050415_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-16		
2005-04-15	21:44	727,19	747,19	KLX06_0727.19_200504152144.ht2	KLX06_727.19-747.19_050415_2_SI_Q_r.csv	SI	2005-04-20	2005-04-16		
2005-04-16	08:51	747,22	767,22	KLX06_0747.22_200504160851.ht2	KLX06_747.22-767.22_050416_1_PI_Q_r.csv	PI	2005-04-20	2005-04-16		
2005-04-16	10:54	767,25	787,25	KLX06_0767.25_200504161054.ht2	KLX06_767.25-787.25_050416_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-16		
2005-04-16	14:19	787,28	807,28	KLX06_0787.28_200504161419.ht2	KLX06_787.28-807.28_050416_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-16		
2005-04-16	15:57	807,31	827,31	KLX06_0807.31_200504161557.ht2	KLX06_807.31-827.31_050416_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-16		
2005-04-16	17:33	807,31	827,31	KLX06_0807.31_200504161733.ht2	KLX06_807.31-827.31_050416_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-17		
2005-04-17	08:42	827,33	847,33	KLX06_0827.33_200504170842.ht2	KLX06_827.33-847.33_050417_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-17		
2005-04-17	10:29	847,39	867,39	KLX06_0847.39_200504171029.ht2	KLX06_847.39-867.39_050417_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-17		
2005-04-17	12:42	867,46	887,46	KLX06_0867.46_200504171242.ht2	KLX06_867.46-887.46_050417_1_CHir_Q_r.XLS	CHir	2005-04-20	2005-04-17		
2005-04-17	14:29	887,48	907,48	KLX06 0887.48 200504171429.ht2	KLX06 887.48-907.48 050417 1 CHir Q r.csv	CHir	2005-04-20	2005-04-17		

HYDRO) TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX06					
TEST- AND FILEPROTOCOL					Testorder dated : 2005-03-05					
Teststart		Interval boundaries		Name of Datafiles		Testtype	Copied to	Plotted	Sign.	
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)		
2005-04-17	16:15	907,49	927,49	KLX06_0907.49_200504171615.ht2	KLX06_907.49-927.49_050417_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-17		
2005-04-18	08:42	927,50	947,50	KLX06_0927.50_200504180842.ht2	KLX06_927.50-947.50_050418_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-18		
2005-04-18	11:01	947,50	967,50	KLX06_0947.50_200504181101.ht2	KLX06_947.50-967.50_050418_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-18		
2005-04-18	13:29	967,50	987,50	KLX06_0967.50_200504181329.ht2	KLX06_967.50-987.50_050418_1_CHir_Q_r.csv	CHir	2005-04-20	2005-04-18		
2005-04-18	17:14	827,33	847,33	KLX06_0827.33_200504181714.ht2	KLX06_827.33-847.33_050418_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-19		
2005-04-19	09:03	827,33	847,33	KLX06_0827.33_200504190903.ht2	KLX06_827.33-847.33_050419_3_CHir_Q_r.csv	CHir	2005-04-20	2005-04-19		
2005-04-19	17:38	346,74	366,74	KLX06_0346.74_200504191738.ht2	KLX06_346.74-366.74_050419_2_CHir_Q_r.csv	CHir	2005-04-20	2005-04-20		

APPENDIX 2-1

Test 106.38 – 206.38 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Interval pressure and temperature vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-2

Test 206.52 – 306.52 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-3

Test 306.68 – 406.68 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 406.83 – 506.83 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 506.92 – 606.92 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 607.06 – 707.06 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

10

10

1/qD, (1/qD)'

10 0

10

tD

*

*

10 8

T= 4.47E-07 S= 1.00E-06 n= 2.00E+00 s= 2.22E+00

CHI phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10

2

10 6

۸

.

0.3

10 -1

0.03

m2/s

-

10⁹

CHIR phase; log-log match

CHIR phase; HORNER match

Test 707.15 – 807.15 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 807.31 – 907.31 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 887.48 – 987.48 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 106.38 – 126.38 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 126.42 – 146.42 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

SIS phase; log-log match, long term measured over night

SIS phase; HORNER match, long term measured over night

Test 146.44 – 166.44 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

10

10

10

10⁰

pD, pD'

CHIR phase; log-log match

CHIR phase; HORNER match

30

10

m3/Pa m2/s -10

10 4

1.60E-10 1.55E-06 1.00E-06 2.05E+01 2.00E+00

p-p0, (p-p0)' [kPa]

Test 166.47 – 186.47 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 186.49 – 206.49 m

Pressure and flow rate vs. time; cartesian plot

tD

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 206.52 – 226.52 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 226.56 – 246.56 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 246.62 – 266.62 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 266.64 – 286.64 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 286.68 – 306.68 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 306.68 – 326.68 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 326.69 – 346.69 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 346.74 – 366.74 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

-5

10

10 4

10

CHIR phase; log-log match

CHIR phase; HORNER match

Test 356.77 – 376.77 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 376.80 – 396.80 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Interval pressure and temperature vs. time; cartesian plot (analysed)

CHI phase; log-log match

10²

tD/CD

10

10

CHIR phase; log-log match

6

10

10

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 391.80 – 411.80 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

CHIR phase analysed as pulse injection; deconvolution match

Test 406.83 – 426.83 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 426.86 – 446.86 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 446.88 – 466.88 m

Pressure and flow rate vs. time; cartesian plot

CHIR phase analysed as pulse injection; deconvolution match

Test 466.89 – 486.89 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

10

10 ⁻³

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 486.90 – 506.90 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 506.92 – 526.92 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 526.94 – 546.94 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 546.97 – 566.97 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 566.98 – 586.98 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 587.02 – 607.02 m

Pressure and flow rate vs. time; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 607.06 – 627.06 m

Pressure and flow rate vs. time; cartesian plot

CHIR phase analysed as pulse injection; deconvolution match

Test 627.10 – 647.10 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; HORNER match

Test 647.11 – 667.11 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

10

10

10 ⁰

PD, PD'

CHIR phase; log-log match

CHIR phase; HORNER match

10

Test 667.09 – 687.09 m

Pressure and flow rate vs. time; cartesian plot

CHIR phase analysed as pulse injection; deconvolution match

Test 687.12 – 707.12 m

Pressure and flow rate vs. time; cartesian plot (test repeated)

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Pressure and flow rate vs. time; cartesian plot (analysed)

Interval pressure and temperature vs. time; cartesian plot (analysed)

CHI phase; log-log match

CHIR phase; log-log match

Test 707.15 – 727.15 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

10

10

10 0

pD, pD'

10 2

tD/CD

CHIR phase; log-log match

FLOW MODEL : Two shell composite BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : Build-up TC PLOT TYPE : Log-log

10

10 0

3

10 0

10⁴

m2/s m3/Pa

-

1.05E-07 1.00E-06 2.90E-10 2.00E+00 2.00E+00 2.64E+02 2.32E+01 1.78E+00

T S n1 n2 rD1 brw s

10³

Test 727.19 – 747.19 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

SI phase; log-log match, long term measured over night

Test 747.22 – 767.22 m

Pressure and flow rate vs. time; cartesian plot

10

10

CHIR phase analysed as pulse injection; deconvolution match

Test 767.25 – 787.25 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 787.28 – 807.28 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot
CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 807.31 – 827.31 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Pressure and flow rate vs. time; cartesian plot, long term measured over night

Interval pressure and temperature vs. time; cartesian plot, long term measured over night

CHI phase; log-log match, long term measured over night

CHIR phase; log-log match, long term measured over night

CHIR phase; HORNER match, long term measured over night

Test 827.33 – 847.33 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 847.39 – 867.39 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 867.46 – 887.46 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 887.48 – 907.48 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 907.49 – 927.49 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

1/qD, (1/qD)'

10 -1

CHIR phase; log-log match

CHIR phase; HORNER match

Test 927.50 – 947.50 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 947.50 – 967.50 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

Test 967.50 – 987.50 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Not Analysed

CHI phase; log-log match

Not Analysed

CHIR phase; log-log match

Not Analysed

CHIR phase; HORNER match

APPENDIX 2-55

Test 260,00 – 265,00 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

10 ³ tD/CD

10 4

C= 1.01E-07 T= 1.30E-04 S= 1.00E-06 s= 1.72E+01 n= 2.00E+00

10 ⁵

m3/Pa m2/s - 0.3

10 ⁶

CRw phase; log-log match

FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10¹

10 ²

CRwr phase; log-log match

CRwr phase; HORNER match

APPENDIX 2-56

Test 558,20 – 563,20 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CRw phase; log-log match

CRw phase; HORNER match

CRwr phase; log-log match

CRwr phase; HORNER match

APPENDIX 2-57

Test 776,20 – 781,20 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CRw phase; log-log match

CRw phase; HORNER match

CRwr phase; log-log match

CRwr phase; HORNER match

Borehole: KLX06

APPENDIX 3

Test Summary Sheets

Test Summary Sheet						
Project:	Oskarshamn site investigat	tion	Test type:[1]			CHir
Area:	Laxer	mar	Test no:			1
Borehole ID:	KL>	X06	Test start:			050403 10:19
Test section from - to (m):	206.52-306.52	2 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	0,0	076	Responsible for		Cristi	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
2000	30	0	n_{o} (kPa) =	2757	indutu	
			p ₀ (kPa) =	2757		
2700 . KLX06_206.52-306.52_050403_1_CHir_Q_r	25	5	p _i (kla) =	2704	n (kPa) -	2767
			$p_p(\mathbf{K} \mathbf{F} \mathbf{a}) =$	2 425 04	μ _F (κμα) –	2707
2900 -	20	0	Q _p (m˘/s)=	3,43E-04		1000
(r	P section	[umin]	tp (s) =	1800	t _F (s) =	1800
2 230 - 8	P below 15	etion Rate	S el S (-)=	1,00E-06	S el S (-)=	1,00E-06
E S	•	an A	EC _w (mS/m)=			
2100 -	-	0	Temp _w (gr C)=	11,4		
1			Derivative fact.=	0,02	Derivative fact.=	0,03
1920 -						
1700			Results		Results	
Elapo	ied Time [h]		Ω/α (m ² /\alpha)=	5 7E-05		
l og l og plot incl. derivates, fl	ow period		Q/S (III/S) =	7.4E-05		
			T _M (III /S)-	transient	Flow regime:	transient
			dt (min) =		dt (min) =	
10 ⁻² Elapsed time [n]	10, ¹ 10, ⁰		$dt_1(min) =$	0,83	$dt_1(min) =$	1,44
SRB Laxemar / RLX06 206.52-306.52 / Chi	(c) Golder Associates		$u_2(mn) =$	19,30	$dl_2(mn) =$	12,00
	10 -1		I (m ⁻ /s) =	1,3E-04	I (m ⁻ /s) =	1,1E-04
• • • • • • • • • • • • • • • • • • • •			S (-) =	1,0E-06	S (-) =	1,0E-06
10			$K_s(m/s) =$	1,3E-06	$K_s(m/s) =$	1,1E-06
	• \$	ĥ	$S_s(1/m) =$	1,0E-08	$S_s(1/m) =$	1,0E-08
) api	•	q.(1/q) [m	C (m³/Pa) =	NA	C (m³/Pa) =	2,0E-08
10 °	0.003	3	C _D (-) =	NA	C _D (-) =	2,2E+00
	10 ⁻³		ξ(-) =	4,29	ξ(-) =	1,91
•			$T_{opr}(m^2/s) =$		$T_{opr}(m^2/s) =$	
10 ^{°0} 10 ^{°10} tD	10 ¹¹ 10 ¹² 10 ¹³		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{CDF}(-) =$		$D_{CDF}(-) =$	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	eters.	
			dt (min) =	0.83	$C(m^{3}/D_{2}) =$	2.0E-08
Elapsed time [h]			$dt_1(min) =$	10.38	$C_{(III / Pa)} = C_{-}(-) = -$	2.0E+00
10 ² SKB Laxemar /KLX06	FlowDim Version 2.14b (c) Golder Associates		$\frac{dt_2(1111)}{dt_2(1111)} =$	1 25 04	CD(-) -	2,21100
200.52.300.52.7 Cill	300		$I_{T}(m^{-}/s) =$	1,3E-04	ς(-) =	4,29
	10 2		S (-) =	1,0E-06		
10 1	1444 Martin Martin Carlos and San		κ_{s} (m/s) =	1,3E-06		
	- 30		$S_{s}(1/m) =$	1,0E-08		
	·	(KPa)	Comments:			
	· · ·	p-p0. (p-p	The recommended f	transmissivity of	1.3E-4 m2/s was de	rived from the
	· · · · · · · · · · · · · · · · · · ·		quality The confide	phase, which sh ence range for th	e interval transmissi	ivity is
			estimated to be 6.01	E-5 to $3.0E-4$ m ²	2/s. The flow dimens	sion displayed
	10 °		during the test is 2.	The static press	are measured at tran	sducer depth,
10 ° 10 10 10 10 10 10 10 10 10 10 10 10 10	10 ² 10 ³ 10 ⁴		was derived from th	e CHir phase us	ing straight line extr	apolation in the
10.00			Horner plot to a val	ue of 2767.0 kP	a.	

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050403 14:20	
Test section from - to (m):	306.68-406.68 m	Responsible for test execution:			Stephan Rohs	
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Cristi	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
	- 16	Indata		Indata		
KLX06_306.68-406.68_050403_1_CHir_Q_r	[p ₀ (kPa) =	3622			
	 30	p _i (kPa) =	3625			
	:	p _p (kPa) =	3743	p _F (kPa) =	3625	
3500 -	25 ●P section	$Q_{p} (m^{3}/s) =$	2,50E-04			
e.	■ ▲P above ■ P below 20 ਵ	tp(s) =	1800	t _F (s) =	600	
e 3300 -		S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
Down mode	15 Infection	EC _w (mS/m)=		()		
3 100 -		Temp _w (gr C)=	12,6			
	- 10	Derivative fact.=	0,02	Derivative fact.=	0,02	
2000 -	• +s					
2700 0,20 0,40 0,60 0,60	1,00 1,20 1,40 1,80 1,80	Results		Results		
Elapa	d Time (h)	Q/s (m ² /s)=	2,1E-05			
Log-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	2,7E-05			
		Flow regime:	transient	Flow regime:	transient	
ط ع Elapsed time [ʰ]	-1 0	dt ₁ (min) =	3,41	dt ₁ (min) =	1,27	
10 SKB Laxemar / KLXD6 306.64-06.68 / Chi	FlowDim Version 2.14b	dt_2 (min) =	29,88	dt ₂ (min) =	3,52	
	0.03	T (m ² /s) =	2,9E-05	T (m²/s) =	7,4E-05	
		S (-) =	1,0E-06	S (-) =	1,0E-06	
10 °	10 ⁻⁷	$K_s (m/s) =$	2,9E-07	$K_s (m/s) =$	7,4E-07	
π	0.003	$S_{s}(1/m) =$	1,0E-08	S _s (1/m) =	1,0E-08	
Inquiring a second s	(tot)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	8,0E-09	
10 -1	10 ⁻³ Z	C _D (-) =	NA	C _D (-) =	8,8E-01	
	3E-4	ξ(-) =	-0,41	ξ(-) =	12,74	
	•					
10 ⁴ 10 ⁵	10 ⁶ 10 ⁷ 10 ⁸	T _{GRF} (m ² /s) =		T _{GRF} (m²/s) =		
		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.		
		dt ₁ (min) =	3,41	C (m ³ /Pa) =	8,0E-09	
21	· · · · · · · · · · · · · · · · · · ·	dt_2 (min) =	29,88	C _D (-) =	8,8E-01	
10 SKB Laxemar / KLX06 306.68-406.68 / Chir	FlowDim Version 2.14b (c) Golder Associates 300	$T_{T}(m^{2}/s) =$	2,9E-05	ξ(-) =	-0,41	
		S (-) =	1,0E-06			
	10 [°]	$K_s (m/s) =$	2,9E-07			
10	20	S _s (1/m) =	1,0E-08			
a .		Comments:				
	10 ¹	The recommended t	ransmissivity of	2.9E-5 m2/s was de	rived from the	
10 *	· · · ·	analysis of the CHi	phase, which sh	ows the best data and	d derivative	
	3	estimated to be 1.0E	E-5 to $8.0E-5$ m ²	2/s. The flow dimens	ion displayed	
	10 °	during the test is 2.	The static press	ure measured at tran	sducer depth,	
	10 ² 10 ³ 10 ⁴	was derived from th	e CHir phase us	ing straight line extr	apolation in the	
ECD		Horner plot to a val	ue of 3626.6 kP	a.		

Project:

Area:

S_s (1/m) Comments:

=

The recommended transmissivity of 1.1E-5 m2/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-5 to 8.0E-6 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5233.5 kPa.

1,0E-08

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			Chir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050404 13:36	
Test section from - to (m):	607.06-707.06 m	Responsible for test execution:			Stephan Rohs	
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
KLX06_607.06-707.06_050404_1_CHir_Q_r	1.0	p_{o} (kPa) =	6021			
s200.	- 0,9	p₀ (u) p. (kPa.) =	6010			
	- 0,8	$p_1(kra) =$	6211	n (kPa) -	6015	
e000	0.7	$p_p(\mathbf{R} \mathbf{a}) =$	6.17E.06	ρ _F (κι α) –	0013	
		Q _p (m [×] /s)=	6,1/E-06		1000	
₹ 5800 - §	● P section	tp (s) =	1800	$t_F(s) =$	1800	
h olo Press	■ P above - 0,5	S el S (-)=	1,00E-06	S el S (-)=	1,00E-06	
§ 500 -	0,4	EC _w (mS/m)=				
-		Temp _w (gr C)=	16,7			
	-	Derivative fact.=	0,07	Derivative fact.=	0,02	
5200 ·						
-	-					
5000 0,20 0,40 0,60 0,60	1,00 1,20 1,40 1,80 1,80 2,00	Results		Results	•	
Elapse	d Time (h)	Q/s $(m^{2}/s)=$	3,0E-07			
Log-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	3.9E-07			
	• • • •	Flow regime:	transient	Flow regime:	transient	
Elarged lime (b)		dt_{ℓ} (min) =	8 64	dt_{ℓ} (min) =		
10 ² SKB Laxemar / KLX06		$dt_1(min) =$	26.04	dt_{1} (min) =	NA	
607.06-707.06 / CN	(c) Golder Associates	$T_{1}(r=2/r)$	4 55 07	T_{1}	5 0E 07	
	10	1 (m/s) =	4,52-07	1 (m /s) =	5,9⊑-07	
	3	S (-) =	1,0E-06	S (-) =	1,0E-06	
		$K_s (m/s) =$	4,5E-09	κ_{s} (m/s) =	5,9E-09	
, tradi	10 °	$S_{s}(1/m) =$	1,0E-08	$S_{s}(1/m) =$	1,0E-08	
40 G	යි. ප්රී ප්රී	C (m ³ /Pa) =	NA	C (m³/Pa) =	9,6E-10	
10 %	0.3 ⁻	$C_D(-) =$	NA	$C_D(-) =$	1,1E-01	
	10 1	ξ(-) =	2,22	ξ(-) =	3,43	
	. :	$T_{m^{2}(2)} =$		$T (m^2/c) =$	╂────┤	
10 [°] 10 [°]	10 ⁷ 10 ⁸ 10 ⁹ 0.03	$I_{GRF}(III/S) =$		GRF(III/S) =	╂────┤	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
	no occurry in out of	$D_{\text{GRF}}(-)$ –		D _{GRF} (-) –	******	
Log-Log plot incl. derivatives-	recovery period	Selected represe		eters.	0.005.40	
		$dl_1(min) =$	8,64	C (m)/Pa) =	9,60E-10	
10.4 Elapsed time [h]		$dt_2 (min) =$	26,04	$C_{D}(-) =$	1,06E-01	
SKB Lavenar / KL206 607.06-707.06 / Chir	FowD/m Version 2.14b (c) Golder Associates	$T_{T}(m^{2}/s) =$	4,5E-07	ξ(-) =	2,22	
		S (-) =	1,0E-06			
	300	$K_s (m/s) =$	4,5E-09			
10		S _s (1/m) =	1,0E-08			
8	1 ¹⁰ ~	Comments:				
	- E - 60 - 30	The recommended t	ransmissivity of	4.5E-7 m2/s was de	erived from the	
	Attention and a second se	analysis of the CHi	phase, which sh	ows the best data an	d derivative	
	10 ¹	quality. The confide	ence range for th	e interval transmiss	ivity is	
		estimated to be 3.01	5-/ to 7.0E-7 m2	2/s. The flow dimens	sion displayed	
<u> </u>	3	was derived from the	e CHir phase us	ing straight line even	soucer depth,	
10 ⁹ 10 ¹ ID/CD	10 ² 10 ² 10 ⁴	Horner plot to a val	ue of 6010.1 kP	a.	upolution in the	

	Test Si	ımı	nary Shoot			
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Area:	Lax	emar	Test no:	st no:		
Borehole ID:	KI	_X06	Test start:			050404 17:04
T +	202.45.00		Deensersible for			Otaukan Daha
l est section from - to (m):	707.15-80	07.15	test execution:			Stephan Rons
Section diameter, 2·r _w (m):	(),076	Responsible for		Crist	tian Enachescu
Linear plot O and p			test evaluation:		Pocovoru porio	.
			Indata		Indata	4
		10	p_0 (kPa) =	6742	indutu	
6900 - KLX	06_707.15-807.15_050404_1_CHir_Q_r	- 9	$p_i(kPa) =$	6728		
600		- 8	$p_{p}(kPa) =$	6948	p _F (kPa) =	6717
6700 -		- 7	$\Omega_{\rm r}$ (m ³ /s)=	3,96E-05	,	
- -		-6 E	$\frac{dp}{dp}$ (m/d) =	1800	t _F (s) =	21600
2 7 2 6500	Provision	2 Rate [Vm	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
99 99 90 90 90 90 90 90 90 90 90 90 90 9	▲ P above ■ P below	h Injection	EC _w (mS/m)=		()	
6700	-0	- 3	Temp _w (gr C)=	17,9		
· · · · · · · · · · · · · · · · · · ·			Derivative fact.=	0,03	Derivative fact.=	0,02
		ľ				
6100 -		- 1				
6000	5,00 6,00 7,00 8,00 ad Time [h]	10	Results	-	Results	•
			Q/s (m ² /s)=	1,8E-06		
Log-Log plot incl. derivates- fl	ow period		$T_{M} (m^{2}/s) =$	2,3E-06		
			Flow regime:	transient	Flow regime:	transient
Elapsed time #	ار 1,01,	1	dt_1 (min) =	9,18	$dt_1(min) =$	21,90
SKB Laxemar / KLX06 707.15-807.15 / Chi	 FlowDim Version 2.14b (c) Golder Associates 	10 0	$dt_2 (min) =$	22,26	$dt_2 (min) =$	44,88
	-		$T(m^{2}/s) =$	6,8E-07	T (m²/s) =	6,5E-07
		0.3	S(-) =	1,0E-00	S(-) = K(m/s) =	1,0E-00
10	A second second	10 -1	$R_{s}(11/3) =$	0,0E-09	$R_{s}(11/3) =$	0,5E-03
		[hrint]	$C_{s}(1/11) = C_{s}(1/11)$	NA	$C_{s}(1/11) = C_{s}(1/11)$	4.9E-08
	•	0.03 1/d ⁺ (1/d),	$C(III/Fa) = C_{D}(-) =$	NA	$C(III / Fa) = C_{D}(-) =$	5.4E+00
10 -1		10 -2	ξ(-) =	-5,08	ε(-) =	-5,44
			· · · · · · · · · · · · · · · · · · ·	-,	5()	- ,
		0.003	$T_{GRE}(m^2/s) =$		$T_{GRE}(m^2/s) =$	
. 10 ⁻¹ 10 ⁰ 10	10 ¹ 10 ² 10	3	S _{GRF} (-) =		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected repres	entative paran	neters.	
			dt_1 (min) =	21,90	C (m ³ /Pa) =	4,9E-08
Elapsed time [b]			dt_2 (min) =	44,88	C _D (-) =	5,4E+00
10 SKB Laxemar / KLX06 707.15.807.15 / Chir	FlowDim Version 2.14b (c) Golder Associates	3	$T_{T} (m^{2}/s) =$	6,5E-07	ξ(-) =	-5,44
		0	S (-) =	1,0E-06		
	11,		K _s (m/s) =	6,5E-09		
10 Internet and the second sec		2	S _s (1/m) =	1,0E-08		
an ar an art is in the the term	•	or (kPa)	Comments:	, , ,		. 10 4
••• · · · · · · · · · · · · · · · · · ·		P40. (05	The recommended analysis of the CHi	transmissivity of	t 6.5E-/ m2/s was d hows the best data a	erived from the
U -	10	1	quality. The confid	lence range for th	ie interval transmiss	sivity is
			estimated to be 5.0	E-7 to 1.0E-6 m2	2/s. The flow dimen	sion displayed
			during the test is 2.	The static press	ure measured at tran	nsducer depth,
10 ⁰ 10 ¹ toxod	10 ^x 10 ³ 10 ⁴		Horner plot to a va	llue of 6714.3 kP	a.	apolation in the
			r r r r a va			

Project:Oskarshamn site investigationTest log:[1]ChiArea:LaxemarTest no:1Borehole ID:KLX06Test start:050405 14:30Test section from - to (m):B87.48-867.48Responsible for test secutionStephen Rois set secutionSection diameter, $2r_w$ (m):0.078Responsible for test secutionCristian Enachescu test secutionLinear plot Q and pFlow periodResponsible for test secutionCristian Enachescu deviationImage: deviationResponsible for test secutionResponsible for test secutionCristian Enachescu deviationImage: deviationResponsible for test secutionResponsible for test secutionCristian Enachescu deviationImage: deviationResponsible for test secutionResultsResultsImage: deviationResultsResultsResultsImage: deviationResultsResultsResultsImage: deviationTansientFlow regime: transientFlow regime: transientFlow regime: transientImage: deviationTansientFlow regime: transientFlow regime: transientFlow regime: transientImage: deviationTansient timTansient timFlow regime: transientFlow regime: transientImage: deviationTansient timFlow regime: transientFlow regime: transientFlow regime: transientImage: deviationTansient timFlow regime: transientFlow regime: transientFlow r		Test Su	ımn	nary Sheet			
Area:LaxemaTest no:1Borehole ID:KLX06Test start:0504051430Test section from - to (m):887.49-087.48 m Responsible for test secution:Stephan Role test secution:Cristian Enachescu test secution:Section diameter, $2r_w$ (m):0.0767 Responsible for test secution:Recovery periodInear plot Q and pFlow period $p_1(kPa) = 122E-06$ $p_1(kPa) = 122E-06$ $p_2(kPa) = 1004-06$ St st $(c) = 1000$ $p_2(kPa) = 1004-06$ St st $(c) = 1004-06$ $p_2(kPa) = 1004-06$ St st $(c) = 1004-06$ $p_2(kPa) = 1004-06$ St st $(c) = 1004-06$ $p_2(kPa) = 1004-06$ St st $(c) = 1004-06$ $p_2(m^2) = 1004-06$ St $(c) = 1004-06$ $p_2(m) = 1004-06$ St $(m) = 10$	Project:	Oskarshamn site investiga	ation	Test type:[1]			Chir
Borehole ID: KLXOE Test start: 060405 14:30 Test section from - to (m): 887.48 967.48 m Responsible for between the resculator. Stephan Rols between the resculator. Cristian Enachesculter evaluation: Cristian Enachescultered enachesculter evaluation: Cristian	Area:	Laxe	emar	Test no:			1
Test section from - to (m): 887.48-967.48 m Responsible for securitor: Section diameter, $2r_{w}$ (m): Linear plot Q and p Linear plot Q and p Linear plot Q and p	Borehole ID:	KL	.X06	Test start:			050405 14:30
Section diameter, $2r_{w}$ (m): Linear plot Q and p Linear plot Q and p	Test section from - to (m):	887.48-987.4	48 m	Responsible for			Stephan Rohs
Linear plot Q and p Fiew period fiew period	Section diameter, $2 \cdot r_w$ (m):	0	,076	Responsible for		Crist	ian Enachescu
$\int_{Q_{1}} \left(\frac{1}{1}\right)^{2} \left($	Linear plot Q and p			Flow period		Recovery period	
$\int_{a} (kPa) = \frac{7900}{(kPa) = 1786}$ $\int_{a} (kPa) = \frac{1800}{(kPa) = 1199}$ $\int_{a} (kPa) = \frac{100000}{(kPa) = 1199}$ $\int_{a} (kPa) = \frac{100000}{(kPa) = 1199}$ $\int_{a} (kPa) = \frac{100000}{(kPa) = 199}$ $\int_{a} (kPa) = \frac{100000}{(kPa) = 10000}$ $\int_{a} (kPa) = \frac{1000000}{(kPa) = 10000}$ $\int_{a} (kPa) = \frac{10000000}{(kPa) = 10000}$ $\int_{a} (kPa) = \frac{10000000}{(kPa) = 10000}$ $\int_{a} (kPa) = \frac{100000000}{(kPa) = 10000}$ $\int_{a} (kPa) = 1000000000000000000000000000000000000$				Indata		Indata	
$\int_{C_{1}} \frac{1}{(k^{2}a)^{2}} = \frac{7886}{8078} \frac{1}{(k^{2}a)^{2}} = \frac{7886}{8078} \frac{1}{(k^{2}a)^{2}} = \frac{7886}{8078} \frac{1}{(k^{2}a)^{2}} = \frac{7886}{8078} \frac{1}{(k^{2}a)^{2}} = \frac{7887}{8078} \frac{1}{(k^{2}a)^{2}} = \frac{1}{10222-066} \frac{1}{(k^{2}a)^{2}} = \frac{1}{1002-06} \frac{1}{(k^{2}a)^{2}} = \frac{1}{102-06} \frac{1}{(k^{$	- 0076	KLX06_887.48-987.48_050405_1_CHir_Q_r	0,50	p ₀ (kPa) =	7900		
$ \int_{\mathbf{k}_{1}} \frac{\mathbf{p}_{1}(\mathbf{k}^{2}\mathbf{k}) = \frac{8078}{1,222.06} \int_{\mathbf{k}_{2}} (\mathbf{k}^{2}\mathbf{k}) = \frac{7893}{1,222.06} \\ \frac{\mathbf{q}_{2}(\mathbf{m}^{2}\mathbf{k}) = \frac{1,222.06}{1,222.06} \\ \frac{\mathbf{q}_{2}(\mathbf{m}^{2}\mathbf{k}) = \frac{1,222.06}{1,002.06} \\ \frac{\mathbf{q}_{2}(\mathbf{k}) = \frac{1,222.06}{1,002.06} \\ \frac{\mathbf{q}_{2}(\mathbf{k}) = \frac{1,002.06}{1,002.06} \\ \frac{\mathbf{q}_{2}(\mathbf{m}) = 1,002.$			0,45	p _i (kPa) =	7886		
$\frac{1}{\sqrt{2} (m^2/s)} = \frac{1,221-06}{1,221-06} = \frac{1}{1,221-06} = \frac{1}{1,221-06} = \frac{1}{1,001-06} = \frac{1}{1,001$	9200		0,40	p _p (kPa) =	8078	p _F (kPa) =	7893
$\int_{C_{1}} \int_{C_{2}} \int_{C$	•		0,35	Ω_{r} (m ³ /s)=	1,22E-06		
$\frac{1}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}00^{-}0^{-}}{100^{-}00^{-}}$ $\frac{100^{-}00^{-}0^{-}0^{-}0^{-}0^{-}0^{-}0^{$		●P section ▲P above	0,30	tp(s) =	1800	t _F (s) =	1800
$\frac{1}{10000000000000000000000000000000000$	4 come	0 0	of the plane	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$		- 0	uogaolu 120	EC _w (mS/m)=			
$\frac{1}{1000} = \frac{1}{1000} = 1$				Temp _w (gr C)=	19,9		<u> </u>
$I_{acc} = I_{acc} = I_{a$			0,15	Derivative fact.=	0,06	Derivative fact.=	0,02
$\frac{1}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	7700 -		0,10				
$\frac{1}{10000000000000000000000000000000000$		-	0,05				
$\frac{\operatorname{C}_{\operatorname{C}}(\operatorname{m}^{2}/\operatorname{s})=}{\operatorname{C}_{\operatorname{C}}(\operatorname{m}^{2}/\operatorname{s})=} = \frac{\operatorname{C}_{\operatorname{C}}\operatorname{E}_{\operatorname{C}}\operatorname{B}}{\operatorname{C}_{\operatorname{C}}(\operatorname{m}^{1}/\operatorname{s})=} = \frac{\operatorname{C}_{\operatorname{C}}\operatorname{E}_{\operatorname{C}}\operatorname{B}}{\operatorname{C}_{\operatorname{C}}(\operatorname{m}^{1}/\operatorname{s})=} = \frac{\operatorname{C}_{\operatorname{C}}\operatorname{C}_{\operatorname{C}}\operatorname{C}}{\operatorname{C}_{\operatorname{C}}(\operatorname{m}^{1}/\operatorname{s})=} = \frac{\operatorname{C}_{\operatorname{C}}\operatorname{C}_{\operatorname{C}}\operatorname{C}}{\operatorname{C}_{\operatorname{C}}\operatorname{C}}$	7200 0,50 1,00	1,50 2,00	0,00	Results		Results	
Log-Log plot incl. derivates- flow period $T_{M} (m^{2}/s) = 8, 1E-08$ Flow regime: transient $T_{M} (m^{2}/s) = 3,37$ dt; (min) = 10,02 dt; (min) = 3,37 dt; (min) = 10,02 dt; (min) = 23,76 dt; (min) = 11,02 dt; (min) = 5,7E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 1,0E-08 S (·) = 5,7E-10 S (·) = 0,53 E (·) = -5,7E-10 S (·) = 0,53 E (·) = -0,53 E (·) = -0,57 C (·) = 0,53 E (·) = -0,53 E (·) = -0,57 C (·) = 0,53 E (·) = -0,53 E (·) = -0,57 C (·) = 0,53 E (·) = -0,57 C (·) = 0,53 E (·) = -0,57 C (·) = 0,53 E (·) = -0,57 C (·) = 0,57 C (·) = 0,087 C (·) = 0,	Elaps	ed Time (nj		Q/s (m ² /s)=	6,2E-08		
Flow regime: transient Flow regime: transient f_{1} (min) = 10.02 transient f_{2} (min) =	Log-Log plot incl. derivates- f	low period		T_{M} (m ² /s)=	8,1E-08		
$\int_{1}^{\infty} \int_{1}^{\infty} \int_{1$				Flow regime:	transient	Flow regime:	transient
$\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{1}{2} \int_{\mathbb{R}^{2}} \frac{1}{2}$	10 ⁻³ Elapsed time [h]	10. ⁻¹ 10. ⁰ 10. ¹		dt ₁ (min) =	3,37	dt ₁ (min) =	10,02
$\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2}$	10 2 SKB Laxemar / KLX06 887.48-987.48 / Chi	FlowDim Version 2.14b (c) Golder Associates		dt ₂ (min) =	23,76	dt ₂ (min) =	14,04
$S(\cdot) = 1, 0E-06$ $S(\cdot) = 1, 0E-08$ $S(\cdot) = 1, $		▲ 10	2	T (m²/s) =	5,6E-08	T (m²/s) =	5,7E-08
$I_{A} = I_{A} = I_{A$		ż		S (-) =	1,0E-06	S (-) =	1,0E-06
$\int_{a}^{b} \int_{a}^{b} \int_{a$	10	30)	$K_s (m/s) =$	5,6E-10	$K_s (m/s) =$	5,7E-10
$\int_{a}^{a} \int_{a}^{b} \int_{a$	5		, ¹	S _s (1/m) =	1,0E-08	S _s (1/m) =	1,0E-08
$\int_{C_{D}} \frac{1}{(-)} = \frac{NA}{C_{D}(-)} = \frac{5,7E-02}{(-)}$ $\int_{C_{D}} \frac{1}{(-)} = \frac{1}{C_{O}(-)} = \frac{5,7E-02}{(-)}$ $\int_{C_{D}} \frac{1}{(-)} = \frac{1}{C_{O}(-)} = \frac{5,7E-02}{(-)}$ $\int_{C_{RF}} \frac{1}{(-)} = \frac{1}{C_{RF}(m^{2}/s)} = \frac{1}{C_{RF}(-)} = \frac{1}{C_{O}(-)}$ $\int_{C_{RF}} \frac{1}{(-)} = \frac{1}{C_{O}(-)} = \frac{1}{C_{O}(-)} = \frac{1}{C_{O}(-)} = \frac{1}{C_{O}(-)}$ $\int_{C_{RF}} \frac{1}{(-)} = \frac{1}{C_{O}(-)} = \frac{1}{C_{O}$	WD (144	•	(Inim) (pit)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	5,2E-10
$\frac{1}{10^{10}} = \frac{1}{10^{10}} + \frac{1}{10^{10}$	10 °	3	144. ($C_{D}(-) =$	NA	$C_{D}(-) =$	5,7E-02
$\int_{\mathbb{R}^{n}} \frac{1}{1 + \frac{1}{1$		10	, °	ξ(-) =	-0,53	ξ(-) =	-0,87
$T_{GRE}(m^{2}/s) = T_{GRE}(m^{2}/s) = T_{GRE}(m^{$				· ·		· ·	
$S_{GRF}(-) = S_{GRF}(-) = D_{GRF}(-) = D_{GR}(-) =$		• a	3	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
$D_{GRF}(\cdot) = D_{GRF}(\cdot) = D_{GR}(\cdot) = D_{$	ID			S _{GRF} (-) =		S _{GRF} (-) =	
Log-Log plot incl. derivatives - recovery periodSelected representative parameters. $u_1^{(m)} = 10,02 C (m^3/Pa) = 5,2E-10$ $u_2^{(m)} = 14,04 C_D (-) = 5,7E-02$ $u_1^{(m)} = 14,04 C_D (-) = 5,7E-02$ $u_1^{(m)} = 14,04 C_D (-) = 5,7E-02$ $u_1^{(m)} = 14,04 C_D (-) = -0,87$ $u_1^{(m)} = 1,0E-06$ $u_1^{(m)} = 1,0E-06$ $u_2^{(m)} = 1,0E-08$ $u_1^{(m)} = 1,0E-08$ $u_2^{(m)} = 1,0E-08$ $u_2^{(m)} = 1,0E-08$ $u_2^{(m)} = 1,0E-08$ $u_1^{(m)} = 1,0E-08$ $u_2^{(m)} = 1,0E-08$ $u_1^{(m)} = 1,0E-08$ $u_2^{(m)} = 1,0E-08$				D _{GRF} (-) =		D _{GRF} (-) =	
$d_{1} (\min) = 10.02 C (m^{3}/Pa) = 5.2E-10$ $d_{2} (\min) = 14.04 C_{D} (-) = 5.7E-02$ $T_{T} (m^{2}/s) = 5.7E-08 \xi (-) = -0.87$ $S (-) = 1.0E-06$ $K_{S} (m/s) = 5.7E-10$ $S_{S} (1/m) = 1.0E-08$ $M_{S} (m/s) = 5.7E-10$ $S_{S} (1/m) = 1.0E-08$ $M_{S} (m/s) = 5.7E-10$ $S_{S} (1/m) = 1.0E-08$ $M_{S} (m/s) = 5.7E-8 m^{2}/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m^{2}/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.$	Log-Log plot incl. derivatives-	recovery period		Selected represe	intative paran	neters.	
$\frac{9}{10^{-1}} \underbrace{10^{-1}}_{0^{-1}} \underbrace{10^{-1}}$				$dt_1 (min) =$	10,02	C (m ³ /Pa) =	5,2E-10
$\frac{10^{-1}}{10^{-1}}$	Eapsed time [h]			dt_2 (min) =	14,04	C _D (-) =	5,7E-02
$S(-) = 1,0E-06$ $K_{s} (m/s) = 5,7E-10$ $S_{s} (1/m) = 1,0E-08$ Comments: The recommended transmissivity of 5.7E-8 m2/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.	10 SKB Laxemar / KLX06 887.48-987.48 / Chir	FlowDim Version 2.14b (c) Golder Associates 3000	D	$T_{T}(m^{2}/s) =$	5,7E-08	ξ(-) =	-0,87
$K_{s} (m/s) = 5,7E-10$ $S_{s} (1/m) = 1,0E-08$ $Comments:$ The recommended transmissivity of 5.7E-8 m2/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.		r ar		S (-) =	1,0E-06		
S_{s} (1/m) = 1,0E-08 Comments: The recommended transmissivity of 5.7E-8 m2/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.				$K_s (m/s) =$	5,7E-10		
Comments: The recommended transmissivity of 5.7E-8 m2/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.	10	300		$S_{s}(1/m) =$	1,0E-08		
The recommended transmissivity of 5.7E-8 m2/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.			Kaal	Comments:			
analysis of the CHII phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHII phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.	a subscription of the second	10	p-p0.(pp0)[The recommended to	transmissivity of	5.7E-8 m2/s was de	erived from the
estimated to be 4.0E-8 to 8.0E-8 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.	10 °	30		quality The confide	ence range for the	iows the best data a	ivity is
during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.	· · · · //			estimated to be 4.01	E-8 to $8.0E-8$ m ²	2/s. The flow dimens	sion displayed
was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7874.9 kPa.		10 1		during the test is 2.	The static press	ure measured at tran	sducer depth,
Horner plot to a value of 7874.9 kPa.	10 ⁰ 10 ¹ ID/CD	10 ² 10 ² 10 ⁴		was derived from th	e CHir phase us	ing straight line extr	apolation in the
				Horner plot to a val	ue of 7874.9 kP	a.	

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX06	Test start:			050407 09:07
Test section from - to (m):	106.38-126.38 m	Responsible for test execution:			Stephan Rohs
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
KLX06_106.38-126.38_050407_1_CHir_Q_r	-	p ₀ (kPa) =	1178		
		p _i (kPa) =	1179		<u> </u>
		$p_{p}(kPa) =$	1198	p _F (kPa) =	1180
1960-		$O_{(m^3/s)} =$	3.45E-04		
7	-	$d_p (m/3)^{-}$	1200	t _⊏ (s) =	1200
4. 9 9 9 1100-	ିଆ କାର୍ଯ୍ୟ 15 6 6	S d S [*] ()-	1 00E-06	s al s [*] ()-	1.00E-06
ow th do P	● P section 5 ▲ P above 3	5 er 3 (-)- FC (mS/m)=	1,002.00	3 el 3 (-)-	1,002.00
1950-	■ P below ■ Q = 10	Temp (ar C)=	9.4		┣────┤
		Derivative fact =	0.03	Derivative fact =	0.1
1000 -	• •	Derivative lact	0,05	Derivative lact	0,1
		Poculto		Populto	L
0,00 0,20 0,40 0,60 Elapsi	0.80 1.00 1.20 1.40 1.60 ed Time [h]	Results		Results	
les les platinel devivates fl		Q/s (m ⁻ /s)=	1,82-04		
Log-Log plot incl. derivates- n	ow period	I _M (m²/s)=	1,9E-04		tropoiont
		Flow regime:		Flow regime:	
Elapsed time [b] -1		dl ₁ (min) =	7,38	$dl_1(min) =$	0,33
SKB Laxemar / KLX06 106.38-126.38 / Chi	FlowDim Version 2.14b (c) Golder Associates	$al_2(min) =$	17,34	$dl_2 (min) =$	5,88
	0.3	$T(m^{2}/s) =$	1,8E-04	T (m²/s) =	2,3E-04
	10 -1	S (-) =	1,0E-06	S (-) =	1,0E-06
10 ⁻¹		κ_{s} (m/s) =	9,0E-06	κ_{s} (m/s) =	1,1E-05
	• •	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
	• (P) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	C (m³/Pa) =	NA	C (m³/Pa) =	1,8E-08
10 0		$C_{\rm D}(-) =$	NA 0.50	$C_{\rm D}(-) =$	2,0E+00
. And	0.003	ξ(-) =	-3,56	ξ(-) =	-2,64
· · · · · · · · · · · · · · · · · · ·		$T_{ops}(m^2/s) =$		$T_{opr}(m^2/s) =$	<u>+</u>
10 ⁻³ 10 ⁻⁴ 10	10 ^d 10 ⁷	$S_{GRF}(-) =$		$S_{GRF}(-) =$	╉────┤
		$D_{GRE}(-) =$		$D_{GRF}(-) =$	<u>+</u>
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	ieters.	
<u> </u>		dt_1 (min) =	7,38	$C_{(m^{3}/Pa)} =$	1,8E-08
Elapsed time [h]		dt_2 (min) =	17,34	$C_{\rm D}(-) =$	2,0E+00
10 10 10 10 10 10 10 10 10 10 10 10 10 1		$T_{T}(m^2/s) =$	1,8E-04	ξ(-) =	-3,56
	FlowDim Version 2.14b (c) Golder Associates	S (-) =	1,0E-06		<u> </u>
		$K_s(m/s) =$	9,0E-06		
10 0	3 	$S_{s}(1/m) =$	5,0E-08		
· · · · · · · · · · · · · · · · · · ·	10°	Comments:	-		
ମୁ ମୁ ସ	201 160	The recommended	transmissivity of	1.8E-4 m2/s was de	erived from the
10 -1	0.3 Å	analysis of the CHi	phase, which sh	ows the best data an	d derivative
		quality. The confide	ence range for th	e interval transmiss	ivity is
	10 -1	estimated to be 8.01	E-5 to 3.0E-4 m2	2/s. The flow dimens	sion displayed
		auring the test is 2.	I ne static press	are measured at tran	saucer depth,
10 [°] 10 ² ELCD	10 ² 10 ⁴ 10 ²	Horner plot to a val	ue of 1178.8 kP	a.	

Test Summary Sheet						
Project:	Oskarshamn site investigati	ion Test type:[1]			CHir	
Area:	Laxen	nar Test no:			1	
Borehole ID:	KLX	06 Test start:			050407 11:26	
Test section from - to (m):	126.42-146.42	m Responsible for			Stephan Rohs	
Section diameter, 2·r _w (m):	0,0	076 Responsible for		Crist	ian Enachescu	
Lincer plot Q and p		test evaluation:		Bassyant porto		
Linear plot Q and p				Recovery period		
1700	Q10		1255	Indata		
- KLX06_1	26.42-146.42_050407_1_CHir_Q_r	$p_0 (kPa) =$	1355			
1600 -	● P section ▲ P above 0,08	$p_i(RPa) =$	1359	n (kDa) -	1259	
	- D below - Q 007	р _р (кРа) =	1589	р _F (кРа) =	1358	
1500 -		$Q_p (m^3/s) =$	3,88E-07		1000	
Trad to a	006	tp (s) =	1200	t _F (s) =	1200	
86 1400-	0.05	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
	0.04	Ê EC _w (mS/m)=				
1300 -	003	Temp _w (gr C)=	9,6			
1200-	- 002	Derivative fact.=	0,1	Derivative fact.=	0,02	
	- 001					
1100 0,00 0,50 1,00 Elaps	1,50 2,00 2,50 3,00 ad Time [h]	Results		Results		
		Q/s $(m^{2}/s)=$	1,7E-08			
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	1,7E-08			
		Flow regime:	transient	Flow regime:	transient	
10 ⁻⁴ Elapsed time (h)	10 ⁻¹ 10 ⁰	dt_1 (min) =	0,94	dt ₁ (min) =	*	
10 2 SKB Laxemar / KLX06 128.42 - 146.42 (Chi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	6,60	dt ₂ (min) =	*	
	• Juo	$T(m^{2}/s) =$	2,2E-08	T (m²/s) =	4,3E-08	
	10 2	S (-) =	1,0E-06	S (-) =	1,0E-06	
10 1		$K_s (m/s) =$	1,1E-09	$K_s (m/s) =$	2,2E-09	
۵۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲	30	$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	5,0E-08	
1480. (1480	1 0 ¹	$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	1,8E-10	
10 0		$\frac{1}{2}$ C _D (-) =	NA	C _D (-) =	2,0E-02	
	3	ξ(-) =	3,2	ξ(-) =	9,3	
	- 10 °					
10 4 10 5	10 ⁶ 10 ⁷ 10 ⁸	$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =		
E.		S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	ieters.		
		dt_1 (min) =	0,94	C (m³/Pa) =	1,8E-10	
Elapsed time [n]	10, ⁻¹	dt_2 (min) =	6,60	C _D (-) =	2,0E-02	
10 - SKB Laxemar / KLX06 126.42-146.42 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_T (m^2/s) =$	2,2E-08	ξ(-) =	3,2	
		S (-) =	1,0E-06			
	300	$K_s (m/s) =$	1,1E-09			
10 1	- 10 ²	$S_{s}(1/m) =$	5,0E-08			
3	×	¿ Comments:				
2 	30 III	*: IARF not measur	red			
10°	×.	* The recommended	transmissivity of	2.2E-8 m2/s was de	erived from the	
. /	analysis of the CH1 quality. The confid-	analysis of the CHi phase, which shows the best data and der		ivity is		
	estimated to be 9.0	quality. The confidence range for the interval transmissivity is estimated to be 9.0E-9 to 4.0E-8 m ² /s. The flow dimension div				
10 ⁰ 40 ¹		during the test is 2. The static pressure measured at trans			sducer depth,	
ID/CD	W	was derived from the	ne CHir phase us	ing straight line extr	rapolation in the	
		nonier plot to a val	iue 01 1332.0 KP	a.		

	Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			SI	
Area:	Laxemar	Test no:			2	
Borehole ID:	KLX06	Test start:			050407 19:24	
Test section from - to (m):	126.42-146.42 m	Responsible for test execution:			Stephan Rohs	
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
· · ·		Indata		Indata	1+	
KLX06	126.42-146.42 050407 2 Si Q r	p ₀ (kPa) =	1356			
	0.9	p _i (kPa) =	1358			
		$p_{\rm p}(\rm kPa) =$	1381	p _⊏ (kPa) =	1359	
L L	- 0.7	$O_{1}(m^{3}/c) =$	NA	PF (··· •)		
1360	0,6	$Q_p (\Pi / S) =$	28800	t_ (s) =	1200	
r d'A	de (Menico)	(p(3)) =	1 00E 06	$(3)^{-1}$	1.00E.06	
2, 1300- 8 E	●P section § ▲P above §	SelS (-)=	1,00E-00	S el S (-)=	1,00E-00	
Š	■ P below - 0,4 • Q	EC _w (mS/m)=				
1250-	- 0,3	Temp _w (gr C)=	9,8			
	- 0.2	Derivative fact.=	0,07	Derivative fact.=	0,02	
1200 -	- 0,1					
1150		Results		Results	<u> </u>	
Elaps	ed Time [h]	Ω/c (m ² /c)=	NA			
l og l og plot incl. derivates, fl	ow period	$\frac{Q}{3} (\frac{11}{3}) =$	NΔ		╂────┤	
		T _M (III /S)=	transient	Elow regime:	transiont	
		dt (min) -		dt (min) -		
10 ⁻¹ Elapsed time	h]10,10,10,	$dt_1(min) =$	400.80	dt_1 (min) =		
126.42-146.42 / Si	(c) Golder Associates 10	$\operatorname{ul}_2(\operatorname{IIIII}) =$	409,80	$\operatorname{dl}_2(\operatorname{IIIII}) =$		
10 2		I (m ⁻ /s) =	1,4E-08	I (m ⁻ /s) =	2,7E-08	
	10 *	S (-) =	1,0E-06	S (-) =	1,0E-06	
10 5		K_{s} (m/s) =	7,0E-10	K _s (m/s) =	1,3E-09	
8	10 1	$S_s(1/m) =$	5,0E-08	$S_s(1/m) =$	5,0E-08	
e .	a portpour	C (m ³ /Pa) =	NA	C (m³/Pa) =	3,9E-10	
10	10° 8	C _D (-) =	NA	C _D (-) =	4,2E-02	
		ξ(-) =	-1,43	ξ(-) =	0,44	
10	10 -1					
		$T_{CDE}(m^2/s) =$		$T_{CDF}(m^2/s) =$		
10 ⁻⁵ 10 ⁴	10 [±] 10 [€]	$S_{GRF}(-) =$		$S_{GRF}(-) =$	 	
		$D_{CRE}(-) =$		$D_{CRF}(-) =$	╉────┤	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	ieters.		
		dt. (min) =	44 34	$C(m^3/D_{\rm P}) =$	3.9E-10	
Elapsed time [h]		dt_1 (min) -	400.8	$C(m/Pa) = C_{-}(x)$	0,0E 10	
10 ² 3KB Lawmar / KLX06		dl_2 (mm) =	409,8	C _D (-) -	4,2E-02	
120.42-140.42 / 515	(0) 5000 Parcenes 300	$I_{T}(m^{2}/s) =$	1,4E-08	ς(-) =	-1,43	
	10 ²	S (-) =	1,0E-06			
		$K_s (m/s) =$	7,0E-10			
	30	$S_s(1/m) =$	5,0E-08			
	[634]	Comments:				
a second	- ^{10.} Gi 9. gi					
10 °						
. //						
	10 °					
	10 ² 10 ³ 40 ⁴					
טאסיען איז איז	10 10					

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	r Test no:			1
Borehole ID:	KLX00	6 Test start:			050408 08:44
Test section from - to (m):	186.49-206.49 n	n Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,076	6 Responsible for test evaluation:		Cristi	an Enachescu
Linear plot Q and p		Flow period		Recovery period	
2100	20	Indata		Indata	
		p ₀ (kPa) =	1886		
2000 KEKUL10049-20049_000400_1_01m_4_1		p _i (kPa) =	1886		
2000 -	1 6	p _p (kPa) =	2085	p _F (kPa) =	1886
1980 -	14	$Q_{p} (m^{3}/s) =$	2,75E-04		
2 1000		tp (s) =	1200	t _F (s) =	600
1850 -	- 10 P	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
₹6 ₩ ■ 1800	P section ▲P above P below * ⁸	EC _w (mS/m)=			
	••	Temp _w (gr C)=	10,2		
0,001		Derivative fact.=	0,03	Derivative fact.=	0,02
1700	-				
1650 -	2				
1600 0,20 0,40 0,80	• • 0 0.80 1,00 1,20 1,40	Results		Results	
Elapso	d Time (h)	Q/s $(m^{2}/s)=$	1,4E-05		
Log-Log plot incl. derivates- flo	ow period	T_{M} (m ² /s)=	1,4E-05		
	-	Flow regime:	transient	Flow regime:	transient
Elapsed time (h)		dt_1 (min) =	9,68	dt_1 (min) =	2,45
10 ² SKB Laxemar / KLX06		dt_2 (min) =	19,03	dt_2 (min) =	18,56
186.49-206.49 / Chi	(c) Golder Associates	$T(m^2/s) =$	8,4E-05	$T(m^2/s) =$	4,7E-05
10 ¹ • • • • • • • • • • • • • • • • • • •	10 -1	S (-) =	1,0E-06	S (-) =	1,0E-06
		$K_s (m/s) =$	4,2E-06	$K_s(m/s) =$	2,3E-06
10 0	10 *	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
(<i>G</i> #1)		$C (m^3/Pa) =$	NA	$C (m^{3}/Pa) =$	1,5E-09
¹ 10 ⁻¹	10 5	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	1,7E-01
1	*	<u>کر</u> =	-0,2	ξ(-) =	13,5
10 -2		5()		5()	
		$T_{ops}(m^2/s) =$		$T_{ops}(m^2/s) =$	
10 ⁴ 10 ⁵ tD	10 ⁶ 10 ⁷ 10 ⁸	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRE}(-) =$		$D_{GRE}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.	
0 01		dt₁ (min) =	2,45	$C (m^3/Pa) =$	1,5E-09
Elapsed time (h)		dt_2 (min) =	18.56	$C_{D}(-) =$	1.7E-01
10 ³ SKB Laxemar / KLX06 16 64-206.49 / Chir		$T_{-}(m^2/s) =$	4.7E-05	ξ(-) =	13.5
		S (-) =	1.0E-06	~()	,-
10 ²	10 3	$K_{s}(m/s) =$	2.3E-06		
• • • • • • •		$S_{c}(1/m) =$	5.0E-08		
10 ¹	10 ²	Comments:	-,		1
	1 (Ba)	The recommended t	transmissivity of	f 4 7E-5 m2/s was de	erived from the
10 *	10 9	analysis of the CHin	phase, which s	hows the best data an	nd derivative
		quality. The confide	ence range for th	ne interval transmiss	vity is
10 -1	10 ⁰	estimated to be 3.01	E-5 to 8.0E-5 m2	2/s. The flow dimens	sion displayed
		during the test is 2.	I ne static press	ure measured at tran	saucer depth,
	10 ⁻¹	Horner plot to a val	ue of 1884.4 kP	a	aporation in the

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	r Test no:			1
Borehole ID:	KLX06	ð Test start:			050408 11:19
Test section from - to (m):	206.52-226.52 m	Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for		Cristi	an Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
2300	10	n (kPa) -	2055	maata	
KLX06_206.52-226.52_050408_1_CHir_Q_r		$p_0 (kPa) =$	2055		$ \longrightarrow $
2200	●P section ▲P above s	р _і (кРа) =	2062		
	B P below - Q	p _p (kPa) =	2263	p _F (kPa) =	2062
2150	1	$Q_{p} (m^{3}/s) =$	9,45E-05		
g 2100	·	tp (s) =	1200	t _F (s) =	1200
2050		S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
-	-	EC_{w} (mS/m)=	, ,		<u> </u>
• 2000.	-	Temp (ar C)=	10.3		┣────┤
1950 -	-	Derivetive feet -	10,5	Derivative feet -	0.04
1920 -	a	Derivative Tact.=	0,04	Derivative fact.=	0,04
1850					
-	:				
1800 0,00 0,20 0,40 0,60 0,80 Elaps	1,00 1,20 1,40 1,60 1,80 ed Time [h]	Results	-	Results	
		Q/s (m²/s)=	4,6E-06		
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	4,8E-06		
		Flow regime:	transient	Flow regime:	transient
Elapsed time [1	3	dt₁ (min) =	0,64	dt ₁ (min) =	0,48
10 2 SKB Laxemar / KLX05		dt_2 (min) =	1,60	dt_2 (min) =	1,52
206.52-226.52 / Chi	(c) Golder Associates 10	$T(m^{2}/c) =$	6.8E-06	$T(m^2/c) =$	2 1E-05
		S(-) =	1.0E-06	S(-) =	1.0E-06
		S(-) = K(m/n) = -	1,0⊑-00	S(-) = K(m/n) = -	1,0E-00
1		$R_{s}(11/5) =$	5,4E-07	$R_{s}(11/5) =$	1,0E-00
(CD4) 10 °	. 5	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
		C (m³/Pa) =	NA	C (m³/Pa) =	1,2E-09
		$C_{D}(-) =$	NA	$C_D(-) =$	1,3E-01
10 -1	• • • • • • • • • • • • • • • • • • •	ξ(-) =	1,2	ξ(-) =	19,5
		$T_{CPF}(m^2/s) =$		$T_{CPF}(m^2/s) =$	
10 ⁻ 10 ⁻ 10 ⁻	10 - 10 -	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRE}(-) =$		$D_{GRE}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	Intative param	eters.	
		dt. (min) =	0.64	$O(ar^{3}(D_{a}))$	1 2E-09
Elapsed time (21	dt (min) -	1,60	C(m/Pa) = C(r) = -r	1,2E 00
10 2 SKB Laxemar / KLX06	10, ⁻²	$u_2(mm) =$	1,00	C _D (-) -	1,3E-01
206.52-226.52 / Chir	(c) Golder Associates	$T_T (m^2/s) =$	6,8E-06	ς(-) =	1,2
	10 2	S (-) =	1,0E-06		
10 '		K _s (m/s) =	3,4E-07		
	-	$S_{s}(1/m) =$	5,0E-08		
	10	Comments:			
· · · · · ·		The recommended	transmissivity of	f 6.8E-6 m2/s was de	erived from the
· · ·		analysis of the CHi	phase (inner zon	ne), which shows the	best data and
10 -1		derivative quality.	The confidence i	ange for the interval $\frac{1}{2}$	transmissivity
		is estimated to be 3.	UE-6 to $1.0E-5$	m2/s. The flow dime	ension red at
L		transducer depth w	e iest is 2. The s as derived from	the CHir phase usin	o straight line
10 ^{°,} 10 ^{°2} 10/C/	0 [°] 10 [°] 10 [°]	extrapolation in the	Horner plot to a	a value of 2062.8 kP	a.

	Test Sum	marv Sheet			
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir
Area:	Laxema	ar Test no:			1
Borehole ID:	KLXC	6 Test start:			050408 13:53
Test section from - to (m):	226.56-246.56	n Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,07	6 Responsible for		Crist	an Enachescu
Linear plot Q and p		Flow period		Recovery period	
P		Indata		Indata	
2500	¹⁰	$p_{o}(kPa) =$	2237		I
2450 . KLX06_226.56-246.56_050408_1_CHir_Q_r		p₀ (kPa.) =	2240		┢────┤
2400 -	8	$p_{\rm l}({\rm kPa}) =$	2441	n_ (kPa) =	2240
● P section ▲ P above	7	$p_p(K a) =$	1 20E 04	ρ _F (κι α) –	2240
• Q •	•••	$Q_p (m^{\circ}/s) =$	1,29E-04	t (a) -	(00
eg 200 -		tp (s) =	1200	t _F (s) =	600
89 2250 - 8 9 9 9		S el S (-)=	1,00E-06	S el S (-)=	1,00E-06
- E 2200 -	4 [£]	$EC_w (mS/m) =$			
2150 -	3	Temp _w (gr C)=	10,7		
2100 -	2	Derivative fact.=	0,02	Derivative fact.=	0,02
2050					
2000 0.20 0.40 0.60 0.80	1,00 1,20 1,40 1,60 1,80	Results		Results	
Elapse	d Time (h)	$\Omega/s (m^2/s) =$	6,3E-06		
Log-Log plot incl. derivates- fl	ow period	$T_{\rm rec} (m^2/s) =$	6.6F-06		
		Flow regime:	transient	Flow regime:	transient
		dt. (min) =	4 78	dt. (min) =	0.55
Elapsed time [n 10 ⁻²	, , , , , , , 10 , ⁻¹ , , , , , , , 10 , ⁰	dt_1 (min) =	16.02	$dt_1(min) =$	2.08
SKB Laxemar / KLX06 226.56-246.56 / Chi	FlowDim Version 2.14b (c) Golder Associates	$dt_2(1111) =$	1 25 05	$\frac{dt_2}{dt_2}$ (mm) =	2,00
		$1 (m^{-}/s) =$	1,3E-05	I (m ⁻ /s) =	2,2E-05
10 1	▲ 10 ⁻¹	S(-) =	1,0E-06	S (-) =	1,0E-06
	•	κ_{s} (m/s) =	6,5E-07	κ_{s} (m/s) =	1,1E-06
10 to 10	10 -2	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
den .		^b C (m [°] /Pa) =	NA	C (m³/Pa) =	4,9E-10
		$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	5,4E-02
10 -1	• • • • • • • • • • • • • • • • • • •	ξ(-) =	4,6	ξ(-) =	14,1
		$ (^2)$		- (2)	
10 ⁻⁸ 10 ⁻⁹ 10	10 ¹⁰ 10 ¹¹ 10 ¹² 10 ⁴	$I_{GRF}(m/s) =$		I _{GRF} (m/s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	┟────┤
Log Log plot incl. domivativos	recovery period			D _{GRF} (-) –	
Log-Log plot incl. derivatives-	recovery period	Selected represe		ieters.	
		dl_1 (min) =	4,70	C (m)/Pa) =	4,9E-10
Elapsed time [h] , , , ,10,- ² , , , ,10, ⁻¹ , , , , ,10, ⁻¹	$dt_2 (min) =$	16,92	$C_{\rm D}(-) =$	5,4E-02
SKB Laxemar / KLX06 226.56-246.56 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_T (m^2/s) =$	1,3E-05	ς(-) =	4,6
		S (-) =	1,0E-06		ļ]
10	10 2	$K_s (m/s) =$	6,5E-07		
		$S_s(1/m) =$	5,0E-08		
	10 1	Comments:			
9	· · · · · · · · · · · · · · · · · · ·	The recommended	transmissivity of	f 1.3E-5 m2/s was de	erived from the
•		analysis of the CH1	phase, which sh	ows the best data an	d derivative
10 -1	10 °	estimated to be 8 01	E-6 to $4.0E-5$ m ²	2/s. The flow dimens	sion displayed
		during the test is 2.	The static press	ure measured at tran	sducer depth,
40 ¹ 40 ²	10 ⁻³ 40 ⁻⁴ 40 ⁻⁵ 10 ⁻¹	was derived from the	ne CHir phase us	sing straight line ext	apolation in the
U 10 tD/CE	טי 10 10)	Horner plot to a val	ue of 2238.5 kP	a	

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX06	Test start:			050408 16:26
Test section from - to (m):	246.62-266.62 m	Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for		Cristi	an Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
	20	p ₀ (kPa) =	2413		
KLX06_246.62-266.62_050408_1_CHIF_Q_F	25	p _i (kPa) =	2417		
2900 -	•	p _p (kPa) =	2549	p _F (kPa) =	2416
	·	Q_{2} (m ³ /s)=	3,42E-04		
240 2		tp(s) =	1200	t _F (s) =	900
2 240 -	15 Page 1	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
Down in cie	●P section	EC _w (mS/m)=		00.0()	
2350 -	▲ P above ■ P below 10	Temp _w (gr C)=	11,0		
2300 -	-9	Derivative fact.=	0,07	Derivative fact.=	0,02
	- +5		,		
2250	-				
2200 0,00 0,20 0,40 0,60	0,80 1,00 1,20 1,40	Results		Results	
Elaps	ed Time (h)	$Q/s (m^2/s) =$	2,5E-05		
Log-Log plot incl. derivates- fl	ow period	T_{M} (m ² /s)=	2,7E-05		
	•	Flow regime:	transient	Flow regime:	transient
Elegand line R	a	dt_1 (min) =	0,55	dt_1 (min) =	2,20
10 ² SKB Laxemar / KLX06		dt_2 (min) =	1,01	dt_2 (min) =	5,75
246.62-286.62 / Chi	(c) Golder Associates	$T(m^2/s) =$	3,6E-05	$T(m^2/s) =$	6,4E-05
	10 ⁻¹	S (-) =	1,0E-06	S (-) =	1,0E-06
		$K_s(m/s) =$	1.8E-06	$K_s(m/s) =$	3.2E-06
	10 -2	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
/(dt 10 °	liveraid ()	$C_{(m^{3}/Pa)} =$	NA	$C_{(m^{3}/Pa)} =$	1.7E-08
ž		$C_{D}(-) =$	NA	$C_{D}(-) =$	1.9E+00
10 -1	10 3	٤(-) =	0	٤ (-) =	7.2
	•	()	-	()	
	10 ⁻⁴	$T_{a=-}(m^2/s) =$		$T_{a=-}(m^2/s) =$	
10 [°] 10 [°] 10	10 ^{-7'} 10 ^{-4'}	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRE}(-) =$		$D_{GRE}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.	
		dt₁ (min) =	0.55	C (m ³ /Pa) =	1.7E-08
Elapsed time [h]		dt_2 (min) =	1.01	$C_{D}(-) =$	1.9E+00
10 ² SKB Laxemar / KLX06 246 a 246 a 1 / 2010		$T_{-}(m^{2}/s) =$	6.4E-05	ξ(-) =	7.2
246.02/200.02 / UTIII	(c) Golder Associates	S (-) =	1.0E-06	5()	
		$K_s(m/s) =$	3.2E-06		
10 1	10 ⁻²	$S_{s}(1/m) =$	5.0E-08		
1 Interior		Comments:	2,52 30		
	* 30 gg	The recommended t	transmissivity of	f 6 4E-5 m2/s was de	erived from the
10 0	9 2 10 ' Å	analysis of the CHin	phase, which s	hows the best data an	nd derivative
	in the second se	quality. The confide	ence range for th	e interval transmissi	vity is
	3	estimated to be 4.01	E-5 to 1.0E-4 m2	2/s. The flow dimens	ion displayed
		during the test is 2.	The static press	ure measured at trans	soucer depth,
10 ⁰ 10 ¹ 10 ² tD/CD	10 ³ 10 ⁴ 10 ⁵	Horner plot to a val	ue of 2415.2 kP	a	aporation in the

Test Summary Sheet										
Project:	Oskarshamn site investigation		Test type:[1]	CHir						
Area:	Laxemar		Test no:	2						
Borehole ID:	KLX06		Test start:		050409 10:01					
Test section from - to (m):	m - to (m): 266.64-286.64 m		Responsible for		Jörg Böhner					
Section diameter, 2·r _w (m): 0,076			Responsible for	Cristian Enachescu						
Linear plot O and p			test evaluation:	Recovery period						
			Indata		Indata					
2000			n. (kPa) =	2588	muata					
KLX06_266.64-286.64_050409_2_CHir_Q_r		6	p₀ (ki a) = p₀ (kPa) =	2589						
2800 -	P section A P shown		$p_i(kra) =$	230)	n₋ (kPa.) =	2589				
	P below O	5	$\rho_{p}(\mathbf{k}, \mathbf{a})$	4 38E-05		2505				
2700	s		$Q_p (\Pi / S) =$	1200	t _r (s) =	900				
		the filming	(p(3)) =	1.00F-06	$r_{\rm F}(3) =$	1.00F-06				
		Injection F	Sei S (-)- FC (mS/m)=	1,001 00	S el S (-)-	1,002.00				
2500			Temp(gr C)=	11.2						
	:	2	Derivative fact =	0.04	Derivative fact =	0.02				
-	<u>.</u>			0,04		0,02				
•										
2300 0,00 0,20 0,40 0,80	0,80 1,00 1,20 1,4	0	Results		Results					
Elap	aed Time [h]		$Q/s (m^2/s) =$	2,1E-06						
Log-Log plot incl. derivates- fl	ow period		T_{M} (m ² /s)=	2,2E-06						
			Flow regime:	transient	Flow regime:	transient				
			dt ₁ (min) =	1,07	dt ₁ (min) =	2,63				
10 ⁻³ Elapsed bine (r 10 ⁻³ SKB Laxemar / KL X06	1 10 -1 10 0 How Dim Version 2.140		dt ₂ (min) =	18,07	dt ₂ (min) =	9,13				
266.64-286.64 / CN	(c) Golder Associates	۰	T (m²/s) =	4,4E-06	T (m²/s) =	7,7E-06				
• •			S (-) =	1,0E-06	S (-) =	1,0E-06				
10		-1	$K_{s}(m/s) =$	2,2E-07	K _s (m/s) =	3,85E-07				
a a transmission of the second s	10		S _s (1/m) =	5,0E-08	S _s (1/m) =	5,00E-08				
v.0.v.1.teor		(Min) (p)	C (m ³ /Pa) =	NA	C (m³/Pa) =	1,0E-09				
	10	6 1/q.(1	C _D (-) =	NA	C _D (-) =	1,1E-01				
10 -1	•		ξ(-) =	4,7	ξ(-) =	13,7				
	10	-3								
10 ⁰ 10 ⁹	10 ¹⁰ 10 ¹¹ 10 ¹²		T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =					
٢D			S _{GRF} (-) =		S _{GRF} (-) =					
			$D_{GRF}(-) =$		D _{GRF} (-) =					
Log-Log plot incl. derivatives- recovery period			Selected represe	intative paran	eters.	1 05 00				
			$dt_1(min) =$	1,07	C (m /Pa) =	1,0E-09				
Elapsed time (h)	10, ⁻² 10, ⁻¹ 1		$dt_2 (min) =$	18,07	$C_{\rm D}(-) =$	1,1E-01				
SKB Laxemar / KLX06 266.64-286.64 / Chir	FbwDlm Version 2:14b (c) Golder Associates		$I_{T}(m^{-}/s) =$	4,4E-00	ς(-) =	4,7				
	300		S(-) = K(m/c) = -	1,0E-00						
	10 ²		$R_{s}(11/3) =$	2,2L-07						
	×.		Comments:	3,0⊏-00		L				
	The recommended transmissivity of $4 4 \text{E} - 6 \text{ m}^2/2$ was derived from the									
	analysis of the CHi phase, which shows the best data and derivative									
quality. The confidence range for the interval transmissi					ivity is					
· · · · · · · · · · · · · · · · · · ·			estimated to be 2.0E-6 to 8.0E-6 m^2/s . The flow dimension displayed							
			during the test is 2. The static pressure measured at transducer depth,							
10 ⁰ 10 ¹ tD/CD	Horner plot to a value of 2590.1 kPa.									
			r							

Test Summary Sheet										
Project:	Oskarshamn site investigation	Test type:[1]	CHir							
Area:	a: Laxemar		1							
Borehole ID:	KLX06	Test start:	050409 12:09							
Test section from - to (m):	286.68-306.68 m	Responsible for	Jörg Böhner							
Section diameter, 2·r _w (m): 0,076		Responsible for	Cristian Enachescu							
Linear plot Ω and p		Flow period	Recovery period							
		indata Indata								
3000	2.0	n. (kPa) =	2763	indutu						
2350 . KLX06_286.68-306.68_050409_1_CHir_Q_r	1.8	p ₀ (kPa) =	2765							
2000 -	1.6	$p_{1}(kra) =$	2765	n (kPa) -	2765					
2860 -	1.4	$p_p(K \mid a) =$	2,44E,05	р _F (кга) –	2703					
	E I	$Q_p (m^{\circ}/s) =$	2,44E-03	t (a) -	(00					
		tp (s) =	1200	t _F (s) =	600					
8 2750 - 9 4		S el S (-)=	1,00E-06	S el S (-)=	1,00E-06					
å 2700.	● P section 3 ● P above 0,8	EC _w (mS/m)=								
2650 -	■ P bidow = •Q •0.6	Temp _w (gr C)=	11,4							
2000 -		Derivative fact.=	0,07	Derivative fact.=	0,02					
2550	- 0.2									
2000 0,20 0,40 0,00 Finne	Results	Results								
		Q/s $(m^{2}/s)=$	1,2E-06							
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	1,2E-06							
		Flow regime:	transient	Flow regime:	transient					
Elapsed time (1	dt ₁ (min) =	1,13	dt₁ (min) =	0,20					
10 2 SKB Laxemar / KL206		dt_2 (min) =	17,70	dt ₂ (min) =	7,53					
	(c) Golder Associates	$T(m^2/s) =$	2,2E-06	$T(m^2/s) =$	4,4E-06					
	10 °	S (-) =	1,0E-06	S (-) =	1,0E-06					
10		$K_s(m/s) =$	1.1E-07	K _s (m/s) =	2.20E-07					
		$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.00E-08					
(gr 10 °	Build	$C_{(m^{3}/P_{2})} =$	NA	$C (m^3/P_2) =$	5.9F-11					
<u>#</u>	141, 140	$C(m/Pa) = C_{ra}(-) =$	NA	$C_{n}(-) =$	6,5E-03					
10 ⁻¹	10 -2	ε ₍₎ -	33	ε ₍₎ -	18.8					
		s (-) –	0,0	ς(-)	10,0					
	10 -3	$T_{CDF}(m^2/s) =$		$T_{cpr}(m^2/s) =$						
10 ⁷ 10 ⁸ 10 ¹	10 ⁹ 10 ¹⁰	$S_{GRF}(-) =$		$S_{GRF}(-) =$						
		$D_{GRE}(-) =$		$D_{GRE}(-) =$						
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.						
		dt₁ (min) =	1.13	$C (m^{3}/P_{2}) =$	5.9E-11					
Elapsed time (h)		dt_2 (min) =	17.7	$C_{n}(-) =$	6.5E-03					
10 ² SKB Laxemar / KLX06 226, 68-306, 84 / Chir	FlowOlm Version 2.14b	$T_{1}(m^{2}/s) =$	2 2E-06	ε ₍₋) =	3.3					
	(0) Concernational and	S(-) =	1.0E-06	_ (⁻) د	0,0					
		K (m/s) =	1,0E 00							
10	10 ²	$R_{s}(11/3) =$	5.0E-08							
			5,0∟-00		l					
de d	30 6 <u>0</u>									
	9 9 10 10	1 ne recommended transmissivity of 2.2E-6 m2/s was derived from the analysis of the CHi phase, which shows the best data and derivative								
		quality. The confidence range for the interval transmissivity is								
	estimated to be 9.0E-5 to 4.0E-6 m2/s. The flow dimension displayed									
	•	during the test is 2.	The static press	ure measured at tran	sducer depth,					
10 ¹ 10 ² 10 ²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁶	was derived from the Horner plot to a val	e CHir phase us ue of 2765.8 kP	sing straight line ext a.	rapolation in the					
Test Summary Sheet										
---	---	---	------------------------------	--	------------------	--	--			
Project:	Oskarshamn site investigatio	on Test type:[1]			CHir					
Area:	Laxem	ar Test no:			1					
Borehole ID:	KLX	06 Test start:			050409 14:16					
Test section from - to (m):	306.68-326.68	m Responsible for test execution:			Jörg Böhner					
Section diameter, $2 \cdot r_w$ (m):	0,07	76 Responsible for test evaluation:		Cristi	an Enachescu					
Linear plot Q and p	A	Flow period		Recovery period						
2700	- 10	Indata		Indata						
KLX06_306.68-326.68_050409_1_CHir_Q_r		p ₀ (kPa) =	2936							
3150 -	P section	p _i (kPa) =	2937							
3100	A P above 8 P below	$p_n(kPa) =$	3138	p _F (kPa) =	2938					
3050 -	• • • • •	$O_{(m^{3}/s)} =$	6.20E-05	, ,						
- ³⁰⁰⁰	•	$\frac{d_p(m/s)}{d_p} =$	1200	t _r (s) =	600					
		다 (J)	1.00E-06	r (0)	1.00F-06					
		Sel S (-)= EC (mS/m)=	1,002-00	Sel S (-)=	1,002-00					
ă 2900-		$LC_w (III3/III) =$	11.7							
2850 -	- 3	Temp _w (gr C)=	11,7	Device the freet	0.02					
2800 -	-	Derivative fact.=	0,03	Derivative fact.=	0,02					
2750	1									
	:									
2700 0.20 0.40 0.60 Elap	0,80 1,00 1,20 1,40 sed Time [h]	Results	-	Results						
		Q/s (m²/s)=	3,0E-06							
Log-Log plot incl. derivates- f	low period	T _M (m ² /s)=	3,2E-06							
		Flow regime:	transient	Flow regime:	transient					
Elapsed time	[7]	dt_1 (min) =	3,14	dt₁ (min) =	0,64					
10 10 10 10 10 10 10 10 10 10 10 10 10 1		dt_2 (min) =	18,27	dt ₂ (min) =	5,82					
••••	(c) [10 °	$T(m^{2}/s) =$	4,2E-06	$T(m^{2}/s) =$	1,1E-05					
		S (-) =	1,0E-06	S (-) =	1,0E-06					
10 ************************************	-	K _s (m/s) =	2.1E-07	K _s (m/s) =	5.5E-07					
	•	$S_{s}(1/m) =$	5.0F-08	$S_{s}(1/m) =$	5.0F-08					
0 (10 00) 0 0 0	The second se	$C_{\rm m}^{\rm 3/De} = -$	NA	$C_{s}(m^{3}/D_{2}) =$	6,5E-10					
and the second se	10 -2	$C_{\rm rel}(1117) = C_{\rm rel}(1117)$		$C(\Pi/Pa) = C_{-}(-) = -$	7.2E-02					
		CD(-) =	0.7	CD(-) -	14.0					
10		ς(-) =	0,7	ς(-) =	14,0					
	10	- (2)		- (2)						
10 ⁵ 10 ⁶		$I_{GRF}(m/s) =$		$I_{GRF}(M/S) =$						
		$S_{GRF}(-) =$		$S_{GRF}(-) =$						
	waaawamu naniad	D _{GRF} (-) –		D _{GRF} (-) –						
Log-Log plot incl. derivatives-	recovery period	Selected represe		eters.						
		$dt_1 (min) =$	3,14	C (m³/Pa) =	6,5E-10					
Elapsed time (h)	······································	$dt_2 (min) =$	18,27	$C_{\rm D}(-) =$	7,2E-02					
10 SKB Laxemar / KLX06 306.68-326.68 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_T (m^2/s) =$	4,2E-06	ξ(-) =	0,7					
	300	S (-) =	1,0E-06							
		$K_s (m/s) =$	2,1E-07							
10	10 2	S _s (1/m) =	5,0E-08							
e ·	30	¿ Comments:								
ŝ		The recommended	transmissivity of	$f 4.2E-6 \text{ m}^2/\text{s}$ was de	rived from the					
10 °	10 1	analysis of the CHi	phase, which sh	ows the best data an	d derivative					
	· · · · · · · · · · · · · · · · · · ·	quality. The confide	ence range for th	e interval transmissi	vity is					
	3	estimated to be 1.51	E-6 to 7.0E-6 m ⁴	/s. The flow dimens	ion displayed					
		was derived from the	e CHir phase us	sing straight line extr	apolation in the					
10 10 ⁻ 10.000	טר 10 10 10 ייר	Horner plot to a val	ue of 2937.8 kP	a.						

Test Summary Sheet							
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir	
Area:	Lax	emar	Test no:				
Borehole ID:	К	LX06	Test start:	050409 18:7			
Test section from - to (m):	346.74-366.	.74 m	Responsible for			Jörg Böhner	
Section diameter, 2·r _w (m):	(0,076	Responsible for		Crist	ian Enachescu	
			test evaluation:				
Linear plot Q and p			Flow period		Recovery period		
3500		٦	Indata	2201	Indata		
340 KLX06_346.74-366.74_050409_1_CHir_Q_r		14	p ₀ (kPa) =	3281			
3400	P section	12	p _i (kPa) =	3281			
	© P below •Q		p _p (kPa) =	3482	p _F (kPa) =	3282	
3350		10	Q _p (m ³ /s)=	1,37E-04			
a 3300		The second secon	tp (s) =	1200	t _F (s) =	1200	
2 3250 - 9	•	son Rate ()	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
	-	e Inject	EC _w (mS/m)=				
			Temp _w (gr C)=	12,1			
300		- 4	Derivative fact.=	0,02	Derivative fact.=	0,03	
3080		• 2					
3000 0,20 0,40 0,60 Elac	0,80 1,00 1,20	0	Results		Results		
			Q/s (m ² /s)=	6,7E-06			
Log-Log plot incl. derivates- fl	ow period		T _M (m ² /s)=	7,0E-06			
			Flow regime:	transient	Flow regime:	transient	
Elapsed time (h]		dt_1 (min) =	1,02	dt ₁ (min) =	0,65	
10 ² SKB Laxemar / KLXO6 SKB Laxemar / KLXO6	FlowDim Version 2.14b	10 °	dt_2 (min) =	11,69	dt ₂ (min) =	7,45	
•			$T(m^{2}/s) =$	9,3E-06	$T(m^{2}/s) =$	3,3E-05	
		1	S (-) =	1.0E-06	S (-) =	1.0E-06	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 -1	$K_{c}(m/s) =$	4.7F-07	$K_{s}(m/s) =$	1.7E-06	
		ł	$S_{a}(1/m) =$	5.0E-08	$S_{a}(1/m) =$	5.0E-08	
10 10 °	ture the state of	10 ⁻²	$C_{s}(m^{3}(D_{2})) =$	0,0 <u>2</u> 00	$C_{s}(m^{3}(D_{2})) =$	2.9E-10	
144		141.(14)	$C(\Pi /Pa) = C_{-}(x) = -$		$C(\Pi/Pa) = C_{-}(1) = -$	2,0E 10	
		ł	CD(-) =	0.6	CD(-) =	3,2L-02	
	•	10 -3	ς(-) =	0,0	ς(-) =	20,4	
1	<u></u>	[$T_{GPE}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
10 [°] 10 [°] 10	10 ' 10 '		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	eters.		
J J			dt₁ (min) =	1.02	$C(m^{3}/P_{2}) =$	2.9E-10	
Elapsed time (h)	2 d ^		dt_2 (min) =	11.69	$C_{D}(-) =$	3.2F-02	
10 2 SKB Laxemar / KLX06			$T_{-}(m^{2}/c) =$	9.3E-06	ε(-) =	0.6	
346.74-366.74 / Chir	(c) Golder Associates	300	S(-) =	1.0E-06	ר (⁻) כ	0,0	
• • • • •			$K_{(m/s)} =$	1,0⊏-00		╂────┤	
10		10 2	$R_{s}(11/s) =$	4,7L-07			
	•	30	$O_{s}(1/11) =$	0,0E-08		L	
	•	10 ¹ 0d	The recommended t	transmissivity of	9.3E-6 m ² /s was de	rived from the	
	· · · · · · · · · · · · · · · · · · ·		analysis of the CHI quality. The confide	pnase, which sh	ows the best data an	ivity is	
	··· 3• ···	3	estimated to be 6 01	Ξ -6 to 3 0F-5 m ²	/s The flow dimens	ion displayed	
	r	10 °	during the test is 2	The static press	ure measured at tran	sducer depth	
10 ¹ 10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁶		was derived from th	e CHir phase us	ing straight line ext	rapolation in the	
tD/CD			Horner plot to a val	ue of 3282.7 kP	a.		

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]		CHir		
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050410 08:40	
Test section from - to (m):	356.77-376.77 m	Responsible for			Jörg Böhner	
Section diameter, 2·r _w (m):	0,076	Responsible for		Cristi	ian Enachescu	
Linear plot Ο and p		Flow period		Recovery period		
		Indata		Indata		
3000	10.0		2262	inuata		
3550 KLX06_356.77-376.77_050410_1_CHir_Q_r	- a.o	$p_0 (kPa) =$	3302			
3500 -	a.	р _і (кРа) =	3365		2266	
340		р _р (кРа) =	3566	р _ғ (кРа) =	3366	
		$Q_p (m^3/s) =$	1,12E-04			
3 340 2 2	40 [uiu	tp (s) =	1200	t _F (s) =	300	
2 330 8	- 50 KC C C C C C C C C C C C C C C C C C C	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
3300 -	■ ●P section 40	EC _w (mS/m)=				
320-	- ■ P below • Q - 3.0	Temp _w (gr C)=	12,2			
3200 -	_ 20	Derivative fact.=	0,04	Derivative fact.=	0,02	
3150 - -	+ 10					
3100	0,60 0,60 1,00 1,20	Results		Results		
ыары	d time (nj	Q/s $(m^{2}/s)=$	5,5E-06			
Log-Log plot incl. derivates- fl	ow period	T_{M} (m ² /s)=	5,7E-06			
		Flow regime:	transient	Flow regime:	transient	
Baosed time Ihi		dt₁ (min) =	1,54	dt ₁ (min) =	0,82	
10 ² SKB Laxemar / KL2006 266 77 256 77 (25)	. 10, ⁻¹	dt ₂ (min) =	15,34	dt ₂ (min) =	1,35	
	(c) Golder Associates	$T(m^{2}/s) =$	1,1E-05	$T(m^{2}/s) =$	2,5E-05	
• • • • • • • • • • • • • • • • • • •		S (-) =	1,0E-06	S (-) =	1,0E-06	
	10 "	K _s (m/s) =	5.5E-07	K _s (m/s) =	1.3E-06	
	<u>.</u>	$S_{s}(1/m) =$	5.0E-08	S _s (1/m) =	5.0E-08	
	10 ⁻² [0-2]	$C_{(m^{3}/Pa)} =$	NA	$C(m^{3}/Pa) =$	7.4E-10	
≝ ````````````````````````````````````	194 - 194 -	$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	8.2E-02	
10 -1	•	ξ(-) =	3,8	ξ(-) =	19,7	
	40 ¹⁰ 40 ¹¹ 40 ¹²	T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =		
10 10 10	10 10 10	S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	intative paran	ieters.		
		dt ₁ (min) =	1,54	C (m ³ /Pa) =	7,4E-10	
Elapsed time [h]		dt ₂ (min) =	15.34	C _D (-) =	8,2E-02	
10 ² SKB Laxemar / KLOB		T _⊤ (m²/s) =	1,1E-05	ξ(-) =	3,8	
	(c) Golder Associates	S (-) =	1,0E-06			
		$K_s (m/s) =$	5,5E-07			
10	10 ⁻²	S _s (1/m) =	5,0E-08			
	-	Comments:	8		•	
pa da		The recommended	transmissivity of	$11E-5 \text{ m}^2/\text{s}$ was de	rived from the	
	9. 10 ¹ 9.	analysis of the CHi	phase, which sh	ows the best data an	d derivative	
	quality. The confidence range for the interval transmissivity is			ivity is		
· ·	3	estimated to be 7.01	E-6 to 4.0 $E-5$ m ²	/s. The flow dimens	ion displayed	
	10 ⁰	during the test is 2.	The static press	ure measured at tran	sducer depth,	
10 ⁻¹ 10 ⁻² tDrCD	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	was aerived from the	te CHIF phase us	ang straight line exti	rapolation in the	
			ue of 5500.2 Kr	u		

	Test Summary Sheet					
Project:	Oskarshamn site investig	ation	Test type:[1]			
Area:	Laxe	emar	Test no:			3
Borehole ID:	KLX06		Test start:	050410 18:30		
Test section from - to (m):	376.80-396.	80 m	Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	C	0,076	Responsible for		Cristi	an Enachescu
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
KLX06_376.80-396.80_050410_3_SI_Q_r			p ₀ (kPa) =	3535		
3650 -	●P section ▲ P above		p _i (kPa) =	3538		
3800 -	=Q	8	p _p (kPa) =	NA	p _F (kPa) =	NA
		7	Q _p (m ³ /s)=	NA		
3360		- 6 - 6	tp (s) =	21600	t _F (s) =	1200
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		on Rate (Jim	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
Derihol		spojuj 4	EC _w (mS/m)=			
3480 *		l.	Temp _w (gr C)=	12,4		
3400		- 3	Derivative fact.=	0,1	Derivative fact.=	
3380	******	• 2				
		÷1				
3300 0,00 1,00 2,00 3,00 Elapse	4,00 5,00 6,00 7 d Time [h]	∔ o 7,00	Results		Results	
			Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	NA		
			Flow regime:	transient	Flow regime:	transient
Elapsed time [h]			dt ₁ (min) =	0,90	dt ₁ (min) =	NA
10 SKB Laxemar / KLX06 376.80-396.80 / Si	FlowDim Version 2.14b (c) Golder Associates		dt_2 (min) =	4,74	dt ₂ (min) =	NA
		10 0	T (m²/s) =	3,9E-07	T (m²/s) =	NA
10 ¹			S (-) =	1,0E-06	S (-) =	NA
			$K_s (m/s) =$	2,0E-08	$K_s (m/s) =$	NA
9 27 10 °	÷	10 Jane 10 Jan	$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	NA
× · · ·		convoluted	C (m ³ /Pa) =	4,6E-08	C (m³/Pa) =	NA
		10 ⁻²	C _D (-) =	5,1E+00	C _D (-) =	NA
10 -1			ξ(-) =	-0,1	ξ(-) =	NA
	· · · ·	10 -3	0		0	
10 ⁻³ 10 ⁻⁴ tD	10 ^d 10 ^d 10 ⁷		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	leters.	4 05 00
			$at_1 (min) =$	0,90	C (m³/Pa) =	4,6E-08
			$dt_2 (min) =$	4,74	C _D (-) =	5,1E+00
			$T_{T}(m^2/s) =$	3,9E-07	ξ(-) =	-0,1
			S (-) =	1,0E-06		
Not Analysed			$K_s (m/s) =$	2,0E-08		
		$S_s(1/m) =$	5,0E-08			
			Comments:			

Test Summary Sheet						
Project:	Oskarshamn site investigati	on <u>Test type:[1]</u>			CHir	
Area:	Laxem	ar Test no:			1	
Borehole ID:	KLX	06 Test start:			050411 08:32	
Test section from - to (m):	406.83-426.83	m Responsible for		Jörg Böhne		
Section diameter, 2·r _w (m):	0,0	76 Responsible for		Crist	ian Enachescu	
l inear plot Ω and p		test evaluation:		Recovery period		
		Indata		Indata		
4100	0,040	p_0 (kPa) =	3792			
4050 -	0.035	p; (kPa) =	3777			
4000 -		$p_{\rm p}(kPa) =$	4029	p _∈ (kPa) =	3777	
3980 -	• P section	$O_{(m^{3}/s)} =$	2.67E-07	F1 (- 7		
₹ 3900 ·	A Pabove - 0,025	$\frac{d_p(m/s)}{tp(s)} =$	1200	t _F (s) =	1200	
2 2 3850 -	-Q 0,000	Sel S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
	have a second	EC _w (mS/m)=	-,	Sei S (-)-	-,	
	0,015	Temp _w (gr C)=	12.8			
3750 -	0,010	Derivative fact.=	0.05	Derivative fact.=	0.02	
3700 -			.,		•,•-	
3650 -	- 0.005					
3000 0.20 0.40 0.60	280 1.00 1.20 1.40 160	Results		Results		
Elapse	d Time (h)	$O/s (m^2/s) =$	1.0E-08			
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	1.1E-08			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time #	1	dt_1 (min) =	0,93	dt_1 (min) =	*	
10 ² SKB Laxemar / KLX06	FlowDim Version 2.14b	dt_2 (min) =	19,25	dt_2 (min) =	*	
406.83426.837 Uni	(c) Golder Associates	$T(m^2/s) =$	1,1E-08	$T(m^2/s) =$	4,9E-08	
10 1	10 2	S (-) =	1,0E-06	S (-) =	1,0E-06	
8 0 0 0 00 00 00 00 00 00 00 00 00 00 00		$K_s (m/s) =$	5,5E-10	$K_s(m/s) =$	2,5E-09	
		$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08	
0 10 ⁰	10 7	$C (m^{3}/Pa) =$	NA	$C (m^{3}/Pa) =$	6,2E-11	
		$\frac{1}{2} C_{\rm D}(-) =$	NA	$C_{D}(-) =$	6,8E-03	
10 -1	10 °	ξ(-) =	1,6	ξ(-) =	20,9	
10 3 10 4	10 ⁻⁵ 10 ⁻¹	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =		
0		S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	ieters.		
		dt_1 (min) =	0,93	C (m ³ /Pa) =	6,2E-11	
Elapsed time (h)	.1	dt_2 (min) =	19,25	C _D (-) =	6,8E-03	
10 ² SKB Laxemar / KLX06 406 83 426 31 / Chir	FlowDim Version 2.14b	$T_T(m^2/s) =$	1,1E-08	ξ(-) =	1,6	
	(c) doder resoluties	S (-) =	1,0E-06			
	300	$K_s (m/s) =$	5,5E-10			
10 ¹	10 ²	S _s (1/m) =	5,0E-08			
Comments:						
Image: Second se						
$\frac{1}{2}$ The recommended transmissivity of 1.1E-8 m ² /s was derived from the				erived from the		
		analysis of the CHi quality. The confide	phase, which sh	ows the best data and interval transmiss	in derivative	
	3	estimated to be 7.01	E-9 to 3 0F-8 m ²	/s. The flow dimension	sion displayed	
		during the test is 2.	The static press	ure measured at tran	isducer depth,	
10 [°] 10 [°] tD/CD	10 ⁻ 10 ⁻³ 10 ⁴ 10	was derived from the	ne CHir phase us	ing straight line ext	rapolation in the	
Horner plot to a value of 3775.5 kPa.						

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			PI	
Area:	Laxemar	Test no:):			
Borehole ID:	KLX06	Test start:		050411 13:03		
Test section from - to (m):	446.88-466.88 m	Responsible for test execution:		Jörg Böhner		
Section diameter, 2·r _w (m):	0,076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
4500 KLXI	06 446.88-466.88 050411 1 PI Q r	p₀ (kPa) =	4130			
		p; (kPa) =	4132			
4400	● P section ▲ P above - 0,8	p (kPa) =	NA	n⊱(kPa) =	NA	
	□ P bdow -Q • 0,7	$p_p(\mathbf{x}, \mathbf{u})$	NIA		1111	
4300 -		$Q_p (m^2/s) =$		t (a) -	2240	
(e di an	0,6 [rima]	tp (s) =	NA	t _F (S) =	3240	
8 4200 - 	- 0.5 B2	S el S (-)=	1,00E-06	S el S (-)=	1,00E-06	
		EC _w (mS/m)=				
4 100 -	• • 0,3	Temp _w (gr C)=	13,2			
-	- 0.2	Derivative fact.=	NA	Derivative fact.=	0,08	
400 ·						
3900 0,00 0,20 0,40 0,60	0,0	Results		Results		
Ela	psed Time [h]	$\Omega/s (m^2/s) =$	NA		r – – – – – – – – – – – – – – – – – – –	
l og-l og plot incl. derivates- f	low period	$T_{11} (m^2/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt (min) -	NA	dt (min) -	2.22	
10, ⁻⁴ Liapžeo timi 10, ⁻⁴ SKB Laxemar / KLX06	E [n]10 ° FlowDim Version 2.14b	$dt_1(min) =$		$dt_1(min) =$	2,22	
446.88.4965.88 / PI	(c) Golder Associates 3	$u_2(mn) = \frac{2}{2}$	NA	$dl_2 (mm) =$	13,10	
	10 °	$T(m^{2}/s) =$	NA	T (m²/s) =	7,8E-11	
10°		S(-) = -	NA	S(-) = K(m(a)) =	1,0E-00	
	0.3	κ_{s} (m/s) =	NA	κ_{s} (m/s) =	3,9E-12	
	A A A A A A A A A A A A A A A A A A A	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5,0E-08	
	10 " 90	C (m³/Pa) =	NA	C (m³/Pa) =	8,1E-11	
10 -1	0.03	C _D (-) =	NA	C _D (-) =	8,9E-03	
· ·		ξ(-) =	NA	ξ(-) =	-0,1	
	10 -2	2		2		
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³	T _{GRF} (m²/s) =		T _{GRF} (m ⁻ /s) =		
		$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative paran	ieters.		
		dt_1 (min) =	2,22	C (m³/Pa) =	8,1E-11	
		dt_2 (min) =	13,10	C _D (-) =	8,9E-03	
		$T_T(m^2/s) =$	7,8E-11	ξ(-) =	-0,1	
		S (-) =	1,0E-06			
		$K_{s}(m/s) =$	3,9E-12			
Not Analysed		$S_{s}(1/m) =$	5,0E-08			
		Comments:	•		•	
	The recommended analysis of the Pi p to the measurement storage coefficient) when calculating the confidence range for	transmissivity of hase. Considerin t (e.g. specially t and to the analy de derivative and or the transmissive	7.8E-11 m ² /s was c g the inherent uncer he measurement of t rsis process (e.g. nur pressure history eff vity is estimated to h	lerived from the tainties related he wellbore neric distortion ects), the be 3E-11 to 3E-		
		$10 \text{ m}^2/\text{s}$ (the outer z	one transmissivi	ty is considered as 1	nost	
		representative). The	flow dimension	displayed during th	e test is 2. No	
		r				

	Test Su	mmary Sheet				
Project:	Oskarshamn site investigat	tion <u>Test type:[1]</u>			CHir	
Area:	Laxer	nar Test no:				
Borehole ID:	KLX	(06 Test start:		050411 15:1		
Test section from - to (m):	466.89-486.89	m Responsible for		Jörg Böhne		
Section diameter, 2·r _w (m):	0,0	076 Responsible for		Cristian Enachesc		
Linear plot Ω and p		Flow period		Recovery period		
		Indata		Indata		
KLX06 466.89-486.89 050411 1 CHir Q r	0,10	n. (kPa) =	4201	indata		
4500	0.00	$p_0 (kr a) =$	4291			
		$p_i(kPa) =$	4208	n (kPa) -	4260	
4450	P section	$p_p(kPa) =$	4483	р _F (кРа) –	4209	
4400	-Q	$Q_p (m^3/s) =$	6,83E-07			
5 8 439	0.0	tp (s) =	1200	t _F (s) =	1200	
	0.05	s el s [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
400	0.94	⁸ EC _w (mS/m)=				
4250		Temp _w (gr C)=	13,6			
-	0.03	Derivative fact.=	0,05	Derivative fact.=	0,03	
4.00	+ 0, <u>02</u>					
4100		Results		Results		
0,60 0,20 0,40 0,80 Elaps	0,80 1,00 1,20 1,40 1,60 ed Time [h]	$\Omega(a_1(m^2/a)) =$	3 1E-08	Results		
Log Log plot incl. derivator, f	low pariod	Q/S (ff /S) =	3,1E-00 2,2E,09			
Log-Log plot Incl. derivates- In	low period	I _M (m ⁻ /s)=	3,3E-00			
		Flow regime:	transient	Flow regime:	transient	
10_1 ^{.4} Elapsed time	[h]	$dt_1 (min) =$	0,55	$dt_1(min) =$	5,69	
10 ⁴ SKB Laxemar / KLX06 466.89-486.89 / Chi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	13,70	dt_2 (min) =	13,29	
1	10	$T(m^{2}/s) =$	5,1E-08	T (m²/s) =	6,7E-08	
10 1		S (-) =	1,0E-06	S (-) =	1,0E-06	
	-	K_{s} (m/s) =	2,6E-09	$K_s (m/s) =$	3,4E-09	
		$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	5,0E-08	
		C (m ³ /Pa) =	NA	C (m³/Pa) =	5,7E-11	
	10	² C _D (-) =	NA	C _D (-) =	6,3E-03	
10 -1		ξ(-) =	4,7	ξ(-) =	7,5	
	10	4				
10.6 10.7	10 ⁸ 10 ⁹ 10 ¹⁰	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =		
10 10 1	D	$S_{GRF}(-) =$		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected repres	entative paran	neters.		
		dt_1 (min) =	5,69	C (m ³ /Pa) =	5,7E-11	
		dt_2 (min) =	13,29	$C_{D}(-) =$	6,3E-03	
Elapsed time	[h]	$T_{T}(m^{2}/s) =$	6,7E-08	ξ(-) =	7,5	
SKB Laxemar / KLX06 466.89-486.89 / Chir	FlowDim Version 2.14b (c) Golder Associates 10	S (-) =	1.0E-06	5()		
		$K_{a}(m/s) =$	3 4E-09			
10 1	10	2 S (1/m) =	5.0E-08			
· · · · · · · · · · · · · · · · · · ·	A	$O_{s}(mn) =$	0,0⊏-00		<u> </u>	
	Alter and	comments.		2		
G N	10	The recommended transmissivity of 6.7E-8 m^2/s was derived from the			rived from the	
		analysis of the CH	IF phase, which si	nows the dest data a	ivity is	
10 -1		 estimated to be 3.0 	E-8 to 9 0E-8 m ²	/s The flow dimens	sion displayed	
during the test was 2. The static pressure measured at transducer de				ansducer depth,		
		was derived from t	he CHir phase us	ing straight line ext	rapolation in the	
10 [°] 10 ¹ tD/	10 ⁴ 10 ³ 10 ⁴	Horner plot to a va	lue of 4264.7 kP	a. The derived trans	missivity of the	
		Si phase is 6.9E-8	m^2/s .			

	Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]	S				
Area:	Laxemar	Test no:			2		
Borehole ID:	KLX06	Test start:	050411		050411 16:58		
Test section from - to (m):	466.89-486.89 m	Responsible for	r Jörg		Jörg Böhner		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for		Crist	ian Enachescu		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
KLX06 466.89-486.89 050411 2 S	10 r	p ₀ (kPa) =	4292				
430	● P section ◆ 9	p _i (kPa) =	4268				
	■ P below + 8 ■Q	p _p (kPa) =	4268	p _F (kPa) =	4263		
4300	- 7	Q_{2} (m ³ /s)=	1,67E-04				
	*6 Z	tp(s) =	43200	t _F (s) =	1200		
4 4 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	2 5 50 (Benel	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06		
D ave the second se		EC _w (mS/m)=		00.0()			
4200 -		Temp _w (gr C)=	8,9				
	+ 3	Derivative fact.=	0,07	Derivative fact.=	NA		
4150 -	+ 2						
4100	800 10,00 12,00 14,00	Results		Results	•		
Elapse	d Time (h)	Q/s $(m^{2}/s)=$	NA				
Log-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	NA				
		Flow regime:	transient	Flow regime:	transient		
Elapsed time [h]		dt ₁ (min) =	28,72	dt ₁ (min) =	NA		
10 ² SKB Laxemar / KLX06	1D_1 FlowDim Version 2.14b	dt ₂ (min) =	97,66	dt ₂ (min) =	NA		
466.89-486.89 / Si	(c) Golder Associates	T (m²/s) =	7,7E-08	T (m²/s) =	NA		
10	,	S (-) =	1,0E-06	S (-) =	NA		
	50 ⁰	$K_{s}(m/s) =$	3,9E-09	K _s (m/s) =	NA		
· · ·	• •	S _s (1/m) =	5,0E-08	S _s (1/m) =	NA		
g 10°		C (m³/Pa) =	NA	C (m³/Pa) =	NA		
	10 ⁻¹	C _D (-) =	NA	C _D (-) =	NA		
10 -1		ξ(-) =	2,6	ξ(-) =	NA		
	• 10 ⁻²						
-	10 ⁸ 10 ⁹	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$			
ມ ເບິ່ງ ເບິ່ງ	10 10	S _{GRF} (-) =		S _{GRF} (-) =			
		$D_{GRF}(-) =$		D _{GRF} (-) =			
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.			
		dt ₁ (min) =	28,72	C (m ³ /Pa) =	NA		
		dt_2 (min) =	97,66	C _D (-) =	NA		
		$T_{T}(m^{2}/s) =$	7,7E-08	ξ(-) =	2,6		
		S (-) =	1,0E-06				
Not Analysed		$K_s (m/s) =$	3,9E-09				
		$S_{s}(1/m) =$	5,0E-08				
		oonnients.					

Test	t Sumn	nary Sheet			
Project: Oskarshamn site inve	stigation	Test type:[1]			CHir
Area: I	Laxemar	Test no:			1
Borehole ID:	KLX06	Test start:	050412 0		050412 08:44
Test section from - to (m): 486.90-5	506.90 m	Responsible for	Jörg Böhne		
Section diameter, 2·r _w (m):	0,076	Responsible for		Cristi	an Enachescu
l inear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
	0,10	p₀ (kPa) =	4456	indutu	
KLX06_486.90_900_90412_1_CHIr_Q_r	- 0,09	p; (kPa) =	4438		
€ P secion A P abore	- 0,08	$p_{\rm p}({\rm kPa}) =$	4648	p₌ (kPa) =	4452
4700 - BP below	0,07	$O_{(m^{3}/s)} =$	5.25E-07	PF ()	
	- ^{0,06} =	tp(s) =	1200	t _F (s) =	1200
	Rate [wi	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
	Injection	$EC_w (mS/m) =$,		,
		Temp _w (gr C)=	13,7		
4600 -	- 0,03	Derivative fact.=	0,03	Derivative fact.=	0,02
438	- 0,01				
200 0.00 1.00 1.50 2.00	0,00	Results		Results	
Elapsed Time (h)		$Q/s (m^2/s) =$	2,5E-08		
Log-Log plot incl. derivates- flow period		T_{M} (m ² /s)=	2,6E-08		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (h)		dt ₁ (min) =	0,22	dt_1 (min) =	7,13
10 ⁻² SKB Laxemar / KLX06 SKB Laxemar / KLX06 An GULOR 90 / Cbl FlowDir Version	n 2.14b	dt_2 (min) =	0,46	dt ₂ (min) =	18,90
(c) soluer resou	10 ²	T (m ² /s) =	1,3E-08	T (m²/s) =	1,1E-08
10 1		S (-) =	1,0E-06	S (-) =	1,0E-06
5 v 4 64 64 64 64 64 64 64 64 64 64 64 64 6	10 1	$K_s (m/s) =$	6,5E-10	K _s (m/s) =	5,5E-10
a state of the second se		$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	5,0E-08
	147 (mini)	C (m ³ /Pa) =	NA	C (m³/Pa) =	5,3E-11
	10 2	C _D (-) =	NA	C _D (-) =	5,8E-03
10 ⁻¹	Į,	ξ(-) =	2,4	ξ(-) =	0,7
	10	- (2)		- (2)	
10 ⁴ 10 ⁵ 10 ⁵ 10 ⁷	10 ^a	$I_{GRF}(m/s) =$		$I_{GRF}(M/S) =$	
		$D_{ORF}(-) =$		$D_{ORF}(-) =$	
Log-Log plot incl. derivatives- recovery period		Selected represe	ntative paran	eters.	
		$dt_1(min) =$	7,13	$C(m^3/Pa) =$	5,3E-11
Elapsed time (h)		dt_2 (min) =	18.9	$C_{D}(-) =$	5.8E-03
10 ⁻²	en 2.14b	$T_{T}(m^2/s) =$	1,1E-08	ξ(-) =	0,7
(c) Golder Asso	ciates 10 °	S (-) =	1,0E-06		
10		$K_s (m/s) =$	5,5E-10		
A STREET BURGE	10 2	S _s (1/m) =	5,0E-08		
and the second sec		Comments:			
	-10 ¹	The recommended t	ransmissivity of	$1.1E-8 \text{ m}^2/\text{s}$ was de	rived from the
	analysis of the CHir	phase (outer zo	ne), which shows th	e best data and	
10-1	Į	derivative quality. T	The confidence r	ange for the interval	transmissivity
	10 °	is estimated to be 7.	0E-9 to 3.0E-8	m ⁻ /s. The flow dime	nsion displayed
10 [°] 10 [°] 10 [°] 10 [°]	10 4	was derived from th	e CHir phase us	ing straight line extr	apolation in the
10 CO 10 CO		Horner plot to a val	ue of 4415.2 kP	a.	

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			3	
Borehole ID:	KLX06	Test start:	050413 15:3			
Test section from - to (m):	506.92-526.92 m	Responsible for test execution:		Jörg Böh		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Crist	an Enachescu	
Linear plot Q and p	•	Flow period		Recovery period		
4830	1,20	Indata		Indata		
	KLX06_506.92-526.92_050413_3_CHir_Q_r	p ₀ (kPa) =	4592			
4800	1.8	p _i (kPa) =	4594			
4750	● P section 1,6 ● P above	p _p (kPa) =	4795	p _F (kPa) =	4609	
4700 -	■ P below = 1.4 =Q	Q _p (m ³ /s)=	8,02E-06			
₹	12	tp (s) =	1800	t _F (s) =	1800	
	1.0 g	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
4600 ·	- 0,8	EC _w (mS/m)=				
4550 -	- 0,8	Temp _w (gr C)=	14,1			
4500		Derivative fact.=	0,05	Derivative fact.=	0,02	
4-450	=					
4400 0,00 0,20 0,40 0,80 0,80 Eise		Results		Results		
		Q/s (m²/s)=	3,9E-07			
Log-Log plot incl. derivates- f	low period	T _M (m²/s)=	4,1E-07			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time	[ħ]	dt ₁ (min) =	7,80	dt ₁ (min) =	*	
10 2 SKB Laxemar / KLX06 506.92-526.92 / Chi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	23,03	dt_2 (min) =	*	
	•	T (m²/s) =	3,4E-07	T (m²/s) =	4,8E-07	
10 1	<u> </u>	S (-) =	1,0E-06	S (-) =	1,0E-06	
	110	$K_s (m/s) =$	1,7E-08	$K_s (m/s) =$	2,4E-08	
10° · · · · · · · · · · · · · · · · · · ·	5	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08	
1 (gg)		C (m³/Pa) =	NA	C (m³/Pa) =	2,8E-08	
	10-1	$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	3,1E+00	
10-1	•••••	ξ(-) =	-1,5	ξ(-) =	-0,6	
L	•	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
10 ⁻² 10	0 10 ⁴ 10 ⁵	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives	recovery period	Selected represe	intative param	ieters.		
		dt ₁ (min) =	7,8	C (m³/Pa) =	2,8E-08	
Elapsed tim	- (h)	dt ₂ (min) =	23,03	C _D (-) =	3,1E+00	
10 ⁻³ 10 ⁻² SKB Laxemar / KLX06	10, ⁻¹ 10, ⁰ 10, ¹ FlowDim Version 2.14b	$T_{T}(m^{2}/s) =$	3,4E-07	ξ(-) =	-1,5	
506.92-526.92 / Chir	(c) Golder Associates	S (-) =	1,0E-06			
10 1		$K_s (m/s) =$	1,7E-08			
		$S_{s}(1/m) =$	5,0E-08			
	10	Comments:			-	
	ead Lood	*: IARF not measur	ed	2		
a set of the set of th	10 ¹ d	The recommended to	transmissivity of	$3.4E-7 \text{ m}^2/\text{s}$ was de	rived from the	
		analysis of the Chi j quality. The confide	ence range for the	ows the best data and e interval transmiss	a derivative	
	E 10 °	estimated to be 1 01	E-7 to 7.0E-7 m ²	/s. The flow dimens	ion displayed	
		during the test is 2.	The static press	ure measured at tran	sducer depth,	
10 ⁻¹ 10 ⁰ tD	10 ⁻¹ 10 ⁻² 10 ⁻³	was derived from th	e CHir phase us	ing straight line extr	rapolation in the	
Horner plot to a value of 4586.5 kPa						

Test Summary Sheet						
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir	
Area:	Laxema	ar Test no:			1	
Borehole ID:	KLX0	6 Test start:			050414 08:24	
Test section from - to (m):	546.97-566.97 r	n Responsible for test execution:			Jörg Böhner	
Section diameter, $2 \cdot r_w$ (m):	0,07	6 Responsible for		Crist	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
	- 20	Indata		Indata		
KLX06_546.97-566.97_050414_1_CHir_Q_r		p ₀ (kPa) =	4937			
5150	18	p _i (kPa) =	4922			
5100	P section 16 A P above D below	p _p (kPa) =	5124	p _F (kPa) =	4932	
5050 -	-Q 14	$Q_{p} (m^{3}/s) =$	2,02E-04			
500- 2		tp (s) =	1200	t _F (s) =	1200	
450	10 ut	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
9 400		EC _w (mS/m)=				
	-	Temp _w (gr C)=	14,8			
4800	-	Derivative fact.=	0,06	Derivative fact.=	0,04	
4750	-2					
4700 0,00 0,20 0,40 0,66 0,86	1,00 1,20 1,40 1,60	Results		Results		
Elapse	d Time (h)	Q/s (m^{2}/s)=	9,8E-06			
Log-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	1,0E-05			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time (h)		dt ₁ (min) =	4,02	dt ₁ (min) =	10,95	
10 ² SKB Laxemar / KL X06 set or set or set or 100	FlowDim Version 2.14b	dt ₂ (min) =	17,20	dt ₂ (min) =	18,78	
346.37-306.37 / Cill	(c) Goder Associates	T (m²/s) =	1,2E-05	T (m²/s) =	9,1E-06	
10 1	10 -1	S (-) =	1,0E-06	S (-) =	1,0E-06	
		$K_s (m/s) =$	6,0E-07	$K_{s}(m/s) =$	4,6E-07	
		$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	5,0E-08	
10 °	10 ⁻²	C (m ³ /Pa) =	NA	C (m³/Pa) =	7,3E-09	
		² C _D (-) =	NA	C _D (-) =	8,0E-01	
10 -1	10 3	ξ(-) =	-1,0	ξ(-) =	2,4	
		$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =		
10 10 to	10 10	S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	ieters.		
		dt_1 (min) =	4,02	C (m ³ /Pa) =	7,3E-09	
Elapsed time [h	1) 	dt_2 (min) =	17,2	C _D (-) =	8,0E-01	
10 SKB Laxemar / KLX06 546.97-566.97 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_{T} (m^{2}/s) =$	1,2E-05	ξ(-) =	-1,0	
		S (-) =	1,0E-06			
10 1		$K_s (m/s) =$	6,0E-07			
		$S_s(1/m) =$	5,0E-08			
	10 ⁻¹	The recommended in analysis of the Chi j quality. The confide estimated to be 9.0I during the test is 2.	transmissivity of phase, which sho ence range for th E-6 to 3.0E-5 m ² The static press of CHir phase we	f 1.2E-5 m ² /s was de ows the best data and the interval transmiss c/s. The flow dimens ure measured at tran	rived from the d derivative ivity is ion displayed sducer depth, ranglation in the	
10 ² 10 ⁷ IBVCD	10 ⁻² 10 ⁻³ 10 ⁻⁴	Horner plot to a val	ue of 4917.8 kP	a.		

	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050414 10:42	
Test section from - to (m):	566.98-586.98 m	Responsible for		Jörg Böhne		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:		Crist	an Enachescu	
Linear plot Q and p		Flow period	A	Recovery period		
· · ·		Indata		Indata	1+	
KLX06_566.98-586.98_050414_1_CHir_Q_r	0,14	p₀ (kPa) =	5101		I	
530 -		p; (kPa) =	5099			
5300-	P section	$p_{r}(kPa) =$	5294	p _⊏ (kPa) =	5104	
5250 -	A P above ■ P below	$\rho_{p}(\dots \alpha)$	3 50F-07	PF ()		
	0,10	$Q_p (\Pi /S) =$	5,50E 07	t _r (s) =	2400	
	0.05	(p(3)) =	1 00E 06	$(3) = 0^{*}(3)$	1 00E 06	
		SelS (-)= EC (mS/m)=	1,00E-00	Sel S (-)=	1,0012-00	
⁸ 5100	0,08		15.1		 	
5050 -	- 004	Temp _w (gr C)=	15,1		0.02	
5000-		Derivative fact.=	0,08	Derivative fact.=	0,02	
4360	0.02					
		-		-		
4800 0,00 0,20 0,40 0,80 0,80 Elaps	1.00 1.20 1.40 1.60 1.60 2.00 aed Time [b]	Results		Results		
		$Q/s (m^2/s)=$	1,8E-08			
Log-Log plot incl. derivates- f	ow period	T _M (m²/s)=	1,8E-08			
		Flow regime:	transient	Flow regime:	transient	
10, ⁻⁴ Elapsed time	: [b] [0] ²	dt ₁ (min) =	9,47	dt ₁ (min) =	6,48	
10 ² SKB Laxemar / KLX06 566-98-586.98 / Chi	FlowDim Version 2.14b (c) Golder Associates	$dt_2 (min) =$	19,77	dt_2 (min) =	18,25	
		$T(m^{2}/s) =$	1,2E-08	T (m²/s) =	1,0E-08	
10 1	10 ²	S (-) =	1,0E-06	S (-) =	1,0E-06	
		$K_s (m/s) =$	6,0E-10	K _s (m/s) =	5,0E-10	
io		S _s (1/m) =	5,0E-08	S _s (1/m) =	5,0E-08	
	10 ¹ IIII IIII	C (m ³ /Pa) =	NA	C (m³/Pa) =	1,4E-10	
· · · · · · · · · · · · · · · · · · ·	• • • • • •	C _D (-) =	NA	C _D (-) =	1,5E-02	
10 -1	10 °	ξ(-) =	-1,1	ξ(-) =	1,0	
		$T_{CPF}(m^2/s) =$		$T_{CPF}(m^2/s) =$		
10 ⁰ 10 ¹	10 ² 10 ³ 10 ⁴	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.		
0 01		dt₁ (min) =	9,47	$C(m^{3}/Pa) =$	1,4E-10	
Elapsed time (h	a	dt_2 (min) =	19.77	$C_{n}(-) =$	1.5E-02	
10 ² SKB Laxemar / KLX06 566.98-98.68 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_{12}(m^{2}/c) =$	1 2F-08	ε ₍₋₎ =	-1 1	
	300	S(-) =	1,2E 00	_ ([_]) ح	.,.	
	10 ⁻²	K (m/s) =	6.0E-10		╂────┤	
10 1	Stand on Call of the Training of the Stand o	$R_{s}(11/3) =$	5.0E-08		┫────┤	
A TOM TOM AND A TOM AND AT	30 	Commente:	0,0⊏-00		<u> </u>	
and and a second second	- 10 1 - 10 1			2/ 1		
10 0	50 6	The recommended	transmissivity of	f 1.2E-8 m ⁻ /s was de	rived from the	
//·	3	confidence range for	phase, which sh	insmissivity is estim	ated to be 8 0E-	
		9 to 3.0E-8 m^2/s . The	he flow dimension	on displayed during	the test is 2	
	10 °	The static pressure	measured at tran	sducer depth, was d	erived from the	
10 [°] 10 [°] 10 [°]	10 ⁻² 10 ⁻³ 10 ⁻⁴	CHir phase using st value of 5083.0 kPs	raight line extra	polation in the Horn	er plot to a	

Project: Oskarshamn site investigation Test type:[1] Area: Laxemar Test no: Borehole ID: KLX06 Test start: 05041 Test section from - to (m): 607.06-627.06 m Responsible for test execution: Jörg Section diameter, 2·rw (m): 0,076 Responsible for test evaluation: Cristian End Linear plot Q and p Flow period Recovery period Indata Indata p ₀ (kPa) = 5414 p ₀ (kPa) = NA p_0 (kPa) = NA Indata p ₀ (kPa) = NA Indata p_0 (kPa) = NA Indata p ₀ (kPa) = NA Indata p_0 (kPa) = NA Indata Indata Indata Indata p_0 (kPa) = NA Indata Indata <td< th=""><th>PI 1 4 15:07 Böhner chescu 1200 ,00E-06</th></td<>	PI 1 4 15:07 Böhner chescu 1200 ,00E-06
Area:LaxemarTest no:Borehole ID:KLX06Test start:05041Test section from - to (m):607.06-627.06 mResponsible for test execution:Jörg test execution:Section diameter, 2·rw (m):0,076Responsible for test evaluation:Cristian Ena test evaluation:Linear plot Q and pFlow periodRecovery periodImdataIndataImdataIndata p_0 (kPa) =5414 p_0 (kPa) =NA p_p (kPa) =NA p_p (kPa) =NA p_p (kPa) =NA p_p (s) =1,00E-06 p_p (s) = <t< th=""><th>1 4 15:07 Böhner chescu 1200 ,00E-06</th></t<>	1 4 15:07 Böhner chescu 1200 ,00E-06
Borehole ID: Test section from - to (m): Section diameter, 2·r _w (m): Linear plot Q and p $k_{LX06_607.06-627.06_059414_1.PI_Q.r}$ f_{uadred} $f_{$	4 15:07 Böhner chescu 1200 ,00E-06
Test section from - to (m):607.06-627.06 mResponsible for test execution:JörgSection diameter, 2·rw (m):0,076Responsible for test evaluation:Cristian Ena test evaluation:Linear plot Q and pFlow periodRecovery periodImage: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):0,076Responsible for test evaluation:Cristian Ena test evaluation:Image: section diameter, 2·rw (m):0,076Responsible for test evaluation:Cristian Ena test evaluation:Image: section diameter, 2·rw (m):0,076Responsible for test evaluation:Cristian Ena test evaluation:Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Cristian Ena test evaluation:Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Cristian Ena test evaluation:Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Cristian Ena test evaluation:Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Image: section diameter, 2·rw (m):Cristian Ena test evaluation:Image: section diameter, 2·rw (m):Image:	Böhner chescu
Section diameter, 2·rw (m): 0,076 Responsible for test evaluation: Linear plot Q and p Flow period Recovery period Indata Indata μ_{p} (kPa) = NA μ_{p} (kPa) = NA μ_{p} (kPa) = NA μ_{p} (kPa) = NA μ_{p} (s) = NA	chescu
Linear plot Q and p Flow period Recovery period Indata p_0 (kPa) = NA p_p (kPa) = NA	1200 ,00E-06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1200 ,00E-06
$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ $	1200 ,00E-06
$ \begin{array}{c} & & & \\ & $	1200 ,00E-06
$p_{p}(kPa) = NA \qquad p_{F}(kPa) = NA$	1200 ,00E-06
$Q_{p} (m^{3}/s) = NA$ $\frac{Q_{p} (m^{3}/s) = NA}{t_{F} (s) = 1,00E-06} S el S^{*}(-) = 1$	1200 ,00E-06
$\frac{1}{t_{F}} = \frac{1}{t_{F}} = $	1200 ,00E-06
Sel S [*] (-)= 1,00E-06 Sel S [*] (-)=	,00E-06
€ EC _w (mS/m)=	
Temp _w (gr C)= 15,7	
•••• Derivative fact.= Derivative fact.=	
e e e e e e e e e e e e e e e e e e e	
Eupard Time [N] $O/s (m^2/s) = NA$	
Log-Log plot incl. derivates- flow period T., (m ² /s)= NA	
Flow regime: transient Flow regime: transient $Flow regime$	ent
dt_1 (min) = NA dt_1 (min) =	2.43
$\frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{10^{-1}} 10$	14.27
$\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^$	3F-11
S(-) = NA $S(-) = NA$	0E-06
$K_{c}(m/s) = NA = K_{c}(m/s) =$,0 <u> </u> ,7E-12
$r_{s}(1.00) = NA = S_{s}(1/m) = NA$,
$g_{q_{10}}^{0}$	9F-12
$C_{\rm D}(-) = NA$ $C_{\rm D}(-) = NA$	1E-03
$\xi_{\mu^{-1}} = \frac{\xi_{\mu^{-1}}}{\xi_{\mu^{-1}}} = \frac{\xi_{\mu^{-1}}}{\xi_{\mu^{-1}}} = \frac{\xi_{\mu^{-1}}}{\xi_{\mu^{-1}}}$	5.5
	-,-
$T_{app}(m^2/s) = T_{app}(m^2/s) = T_{a$	
$\frac{1}{10} \frac{1}{10} \frac$	
$D_{GPF}(-) = D_{GPF}(-) =$	
Log-Log plot incl. derivatives- recovery period Selected representative parameters.	
$dt_1 (min) = 2.43 C (m^3/Pa) =$),9E-12
dt_2 (min) = 14.27 C_D (-) =	.1E-03
$T_{-}(m^2/s) = 9.3E-11\xi(-) = 0$	5.5
S(-) = 1.0E-06	- / -
K_{s} (m/s) = 4.7E-12	
Not Analysed $S_s(1/m) = 5.0E-08$	
Comments:	
The recommended transmissivity of $9.3E-11 \text{ m}^2/\text{s}$ was derived analysis of the Pi phase. Considering the inherent uncertainties to the measurement (e.g. specially the measurement of the well storage coefficient) and to the analysis process (e.g. numeric di when calculating the derivative and pressure history effects), th confidence range for the transmissivity is estimated to be $5E-11$ $10 \text{ m}^2/\text{s}$ (the outer zone transmissivity is considered as most representative). The flow dimension displayed during the test is static pressure could be derived.	rom the related fore tortion to 4E-

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX06	Test start:			050414 17:04	
Test section from - to (m):	627.10 - 647.10 m	Responsible for test execution:			Jörg Böhner	
Section diameter, 2·r _w (m):	0,076	Responsible for		Cristi	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata	*****	Indata		
	KLX06_627.10-647.10_050414_1_CHir_Q_r	p₀ (kPa) =	5568			
5750	- 0.9	p _i (kPa) =	5555			
5700	P section 0.8	p _p (kPa) =	5755	p _F (kPa) =	5554	
9990	© P below - 0,7	$Q_{p} (m^{3}/s) =$	5,50E-06			
5 ***	4.05	tp(s) =	1200	t _F (s) =	3600	
500 State	0.5 B	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
9 5 8 500	05 94 4 04	$EC_w (mS/m) =$,		,	
		Temp _w (gr C)=	15,9			
5450 5400		Derivative fact.=	0,06	Derivative fact.=	0,07	
5350	- - a1					
5300		Results		Results		
E	apsed Time (h)	$\Omega/s (m^2/s) =$	2,7E-07			
Log-Log plot incl. derivates-	flow period	$T_{M}(m^{2}/s) =$	2,8E-07			
	i	Flow regime:	transient	Flow regime:	transient	
Element to	ma (h)	dt_1 (min) =	1,73	dt_1 (min) =	20,15	
10 ² SKB Laxemar / KLX06	10 (1) 10 ° 2 10 10 10 ° FlowDim Version 2.14b	dt_2 (min) =	13,69	dt_2 (min) =	50,87	
627.10-647.107 CH	(c) Golder Associates	$T(m^2/s) =$	4.9E-07	$T(m^2/s) =$	4.4E-07	
		S (-) =	1,0E-06	S (-) =	1,0E-06	
10	•	$K_s(m/s) =$	2,5E-08	$K_s (m/s) =$	2,2E-08	
		$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5.0E-08	
1,1db), 10 10 10		$C_{\rm (m^3/Pa)} =$	NA	$C_{(m^{3}/Pa)} =$	5,6E-10	
*	10-1	$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	6,2E-02	
10 ⁻¹		ξ(-) =	4,4	ξ(-) =	14,1	
	• 10 ⁻²					
10,7 1	• 10 ^{°°} 10 ^{°°} 10 ^{°°}	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =		
	Ω.	S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives	- recovery period	Selected represe	ntative paran	neters.		
		dt_1 (min) =	1,73	C (m³/Pa) =	5,6E-10	
Elapsed time	(h) .10, ⁻²	dt_2 (min) =	13,69	C _D (-) =	6,2E-02	
10 SKB Laxemar / KL.X06 627.10.647.10 / Chir	FlowDim Version 2.14b (c) Golder Associates	$T_T(m^2/s) =$	4,9E-07	ξ (-) =	4,4	
	300	S (-) =	1,0E-06			
22.2.2.2.2		$K_s (m/s) =$	2,5E-08			
10	10 ⁻	S _s (1/m) =	5,0E-08			
		Comments:	-			
¹ α 10 ⁻⁰ 	CD 10 ² 10 ² 10 ² 0 ²	The recommended transmissivity of 4.9E-7 m ² /s was derived from the analysis of the CHi phase, which shows the clearest radial flow and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 6.0E-7 m ² /s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5551.2 kPc				
			i die monier plo	i ili a value 01 3331.	2 NF d.	

Test Summary Sheet							
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir	
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KI	_X06	Test start:			050415 08:32	
Test section from - to (m):	647.11-667.	11 m	Responsible for test execution:			Jörg Böhner	
Section diameter, $2 \cdot r_w$ (m):	C),076	Responsible for		Cristi	ian Enachescu	
Linear plot Q and p			Flow period		Recovery period		
8000-		0.26	Indata		Indata	1+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0	
-	KLX06_647.11-667.11_050415_1_CHir_Q_r		p ₀ (kPa) =	5713			
5960			p _i (kPa) =	5705			
5000	€ P section	0,20	p _p (kPa) =	5915	p _F (kPa) =	5708	
5850	▲ P above ■ P below		$Q_{p} (m^{3}/s) =$	1,14E-06			
- 5800 - 	:	0,15 E	tp (s) =	1200	t _F (s) =	1200	
5750	:	on Rate (Jun	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
5700		oj330(ul) 0,10	EC _w (mS/m)=				
			Temp _w (gr C)=	16,2			
3600 ·		0,05	Derivative fact.=	0,07	Derivative fact.=	0,06	
5500	-						
5500 0,00 0,20 0,40 0,60	0.80 1.00 1.20 1.40 1.6	0,00	Results		Results		
Ela	sed Time [h]		Q/s $(m^{2}/s)=$	5,3E-08			
Log-Log plot incl. derivates- f	low period		T _M (m ² /s)=	5,6E-08			
			Flow regime:	transient	Flow regime:	transient	
Elapsed tim	e [ħ]		dt ₁ (min) =	3,43	dt ₁ (min) =	4,95	
10 ² SKB Lavemar / KLX06	FlowDim Version 2.14b	1	dt_2 (min) =	15,52	dt ₂ (min) =	9,82	
047.11-007.117 Gil		10 2	T (m ² /s) =	6,0E-08	T (m²/s) =	9,5E-08	
10 1		4	S (-) =	1,0E-06	S (-) =	1,0E-06	
0 ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰		10 1	$K_s (m/s) =$	3,0E-09	$K_s (m/s) =$	4,8E-09	
	•		$S_{s}(1/m) =$	5,0E-08	S _s (1/m) =	5,0E-08	
10 ° 11 °	man have been a second and a second and a second	0,[mim])(p	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1,6E-10	
		1/4.(1	C _D (-) =	NA	C _D (-) =	1,8E-02	
10 1	•	-	ξ(-) =	1,4	ξ(-) =	4,5	
		10 -1					
L	·····.	1	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
10 ³ 10 ⁴	10 ⁵ 10 ⁶ 10	,	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives	- recovery period		Selected represe	ntative paran	ieters.		
			dt ₁ (min) =	3,43	C (m³/Pa) =	1,6E-10	
Elapsed time (r			dt_2 (min) =	15,52	C _D (-) =	1,8E-02	
10 ² SKB Laxemar / KLX06 647.41.667.41.(Cb)r			$T_{T}(m^{2}/s) =$	6,0E-08	ξ(-) =	1,4	
	(0) 10	3	S (-) =	1,0E-06			
	-		$K_{s}(m/s) =$	3,0E-09			
10 1		,	S _s (1/m) =	5,0E-08			
b Surray	10	2	Comments:			•	
1 g d		(b-p0) [ke	The recommended	transmissivity of	$6.0E-8 \text{ m}^2/\text{s}$ was de	rived from the	
10 [°]	a a a a a a a a a a a a a a a a a a a	-pd-d	analysis of the CHi	phase, which sh	ows the clearest radi	ial flow and	
	10	1	best data and deriva	tive quality. The	e confidence range f	or the interval	
	1.		transmissivity is est	imated to be 4.0	E-8 to 9.0E-8 m^2/s .	The flow	
	3		aimension displayed	a during the test was derived fro	is 2. The static press on the CHir phase in	sure measured	
10 10 10 tD/CD	יטר 10 ⁻ 10",		line extrapolation in	the Horner plot	t to a value of 5702.	8 kPa.	
			· · · · · · · · · · · · · · · ·	- r.c.			

Test Summary Sheet						
Project:	Oskarshamn site investigat	tion <u>T</u>	Test type:[1]			PI
Area:	Laxer	mar T	Fest no:			1
Borehole ID:	KL>	X06 T	Fest start:			050415 10:40
Test section from - to (m):	667.09-687.09	9 m F te	Responsible for est execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,0	076 F te	Responsible for est evaluation:		Crist	an Enachescu
Linear plot Q and p		F	low period		Recovery period	
6200 -	- 1.0 	, li	ndata		Indata	
KLX06_667.09-687.09_050415_1_PI_Q_r	•	р	o ₀ (kPa) =	5868		
6 100 ·	• 0.9 • P section	° p	o _i (kPa) =	NA		
	▲ P above 0,8 ■ P below	p	o _p (kPa) =	NA	p _F (kPa) =	NA
- 000	•0 • •	, C	Q ₀ (m ³ /s)=	NA		
e a	0,0	_ t	p(s) =	NA	t _F (s) =	1800
5000	0.5	Rate (Imi	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06
		Ē	EC _w (mS/m)=	-		
5800 -	•	T	Temp _w (gr C)=	16,4		
	- 03	° Г	Derivative fact =	NA	Derivative fact =	0.07
5700	0.2	2			20	•,•,
-	0.1	,				
5000	• 5	Results		Results	·
Und the Und the Elegan	od Time (h)		$2/c_{1}(m^{2}/c) =$	NA		
l og-l og plot incl. derivates- fl	ow period		$\frac{1}{2}$ (11/5)-	NA		
			I _M (III 75)–	transient	Flow regime:	transient
		' d	t_{ℓ} (min) =	NA	dt_{ℓ} (min) =	19.28
Elapsed time [h]		0	$t_1(\min) =$	NA	$dt_1(min) =$	32.26
Laxemar / KLX06 667.09-687.09 / PI	(c) Golder Associates 10 ⁻¹		$\pi_2(1111) =$	NA	$\frac{dt_2}{dt_2}$ (mm) =	5 6E 10
	0.03		$(m^{-}/s) =$	NA	I (m ⁻ /s) =	5,6E-10
		с И	S(-) =	NA	S(-) = K(m(a)) = 0	1,0E-00
10 °	* 10 ⁻²	, r	X_{s} (ffl/s) =	NA	κ_{s} (m/s) =	2,8E-11
a · · · · · · · · · · · · · · · · · · ·		dpressur	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5,0E-08
	0.003		C (m [°] /Pa) =	NA	C (m³/Pa) =	8,1E-11
10 -1	10 -3	, ° C	∠ _D (-) =	NA	$C_D(-) =$	8,9E-03
	3E-4	ې ،	; (-) =	NA	ξ(-) =	-2,7
		Т	$\Gamma_{GRE}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
10 U tD	10 10	S	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		C	$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives-	recovery period	9	Selected represe	ntative param	leters.	
		d	$dt_1 (min) =$	NA	C (m ³ /Pa) =	8,1E-11
		d	$dt_2 (min) =$	NA	$C_{D}(-) =$	8,9E-03
		T	$\Gamma_{T}(m^{2}/s) =$	5,6E-10	ξ(-) =	-2,7
		S	S(-) =	1,0E-06		· · · ·
		ĸ	$K_s(m/s) =$	2,8E-11		
Not Analysed		S	$S_{s}(1/m) =$	5,0E-08		
	laijoea	c	Comments:			<u>.</u>
		T a n p e d	The recommended the malysis of the Pi phenomenator in the process (e.g. numeric process (e.g. numeric process (e.g. numeric process the history effects estimated to be 2E-thuring the test is 2.	ransmissivity of lase (outer zone) l to the measurer wellbore storag ic distortion whe ects), the confide 10 to 1E-9 m ² /s. No static pressu	$5.6E-10 \text{ m}^2/\text{s}$ was c b). Considering the irment (e.g. specially e coefficient) and to en calculating the de- ence range for the tr The flow dimension re could be derived	lerived from the herent the the analysis rivative and ansmissivity is displayed

Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			2
Borehole ID:	KLX06	Test start:			050415 13:52
Test section from - to (m):	687.12-707.12 m	Responsible for test execution:	Jörg Bö		
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for test evaluation:	Cristian Enache		
Linear plot Q and p		Flow period		Recovery period	
		Indata	<u></u>	Indata	-1
• 0168	KLX06_687.12-707.12_050415_2_CHir_Q_r	p ₀ (kPa) =	6023		
6250 -	e00	p _i (kPa) =	6023		
6200 ·	P Section 0,05 P above	$p_{\rm p}(kPa) =$	6230	p _⊏ (kPa) =	6097
6 150 -	■ P below - Q 007	$O_{1}(m^{3}/c) =$	1 02E-07	PF ()	,
- eno	0.06	$Q_p (\Pi /S) =$	1,02E 07	t _r (s) =	1200
- 29		(p(3)) =	1 00E 06	$(-1, 0^*)$	1 00E 06
		SelS (-)= EC (mS/m)=	1,00E-00	Sel S (-)=	1,001-00
≜ _{e∞o} .	0.04	$EC_w (IIIS/III) =$	167		
5950 -	- 003	Temp _w (gr C)=	16,7		0.04
5000-	- 0,02	Derivative fact.=	0,08	Derivative fact.=	0,04
5850	0.01				
690		-		-	
0,00 0,10 0,20 0,30 0,40 Ei	0.50 0.80 0.70 0.80 0.90 1,00 spsed Time [N]	Results	1 05 00	Results	
		$Q/s (m^2/s)=$	4,8E-09		
Log-Log plot incl. derivates-	flow period	T _м (m²/s)=	5,0E-09		
		Flow regime:	transient	Flow regime:	transient
10 ⁻³ Elapsed tim	xe [h]	dt ₁ (min) =	7,50	dt_1 (min) =	*
10 ² SKB Laxemar / KLX06 687.12.707.12 / Chi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	16,68	dt_2 (min) =	*
	a marked Sile	$T(m^{2}/s) =$	2,2E-09	T (m ² /s) =	4,0E-08
10 1	10 ²	S (-) =	1,0E-06	S (-) =	1,0E-06
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$K_s (m/s) =$	1,1E-10	$K_s (m/s) =$	2,0E-09
	- E10 '	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08
	• [[viui]] [b	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	7,4E-11
· .	10 th	$C_{D}(-) =$	NA	$C_{D}(-) =$	8,2E-03
10 -1	10 °	ξ(-) =	0,2	ξ(-) =	1,3
	l l	5()	,	5()	,
		$T_{app}(m^2/s) =$		$T_{and}(m^2/s) =$	
10 ² 10	tD 10 ⁴ 10 ⁵	$S_{CPE}(-) =$		$S_{CPE}(-) =$	
		$D_{CRF}(-) =$		$D_{CRF}(-) =$	
l og-l og plot incl. derivatives	- recovery period	Selected represe	ntative paran	eters	
		dt. (min) =	7.5	$C(m^3/D_2) =$	7 4F-11
Flansed time	161	dt_1 (min) =	1,5	C (m /Pa) =	8 2E 03
10 ² 10 ⁻³ 10 ⁻²		$u_{12}(mm) =$	2 25 00	CD(-) -	0,2L-03
687.12-707.12 / Chir	(c) Golder Associates	$I_{T}(m^{-}/s) =$	2,2E-09	ς(-) =	0,2
		S (-) =	1,0E-06		
	10 ²	$K_s (m/s) =$	1,1E-10		
¹⁰	iteration and the second se	$S_{s}(1/m) =$	5,0E-08		
		Comments:			
	96 	*: IARF not measur	red		. 10 1
10 °		analysis of the CUI	mansmissivity of	(2.2E-9 m2/s was d	erived from the
	3	derivative quality	The confidence	ange for the interva	l transmissivity
		is estimated to be 1.	.0E-9 to 6.0E-9	m2/s. The flow dim	ension
10° 10'	10 [°]	displayed during the	e test is 2. The s	tatic pressure measu	ired at
tD/C	ں	transducer depth wa	as not calculated	due to the tight for	mation.

Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX06	Test start:			050415 15:22
Test section from - to (m):	707.15-727.15 m	Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
KLX06_707.15-727.15_050415_1_CHir_Q_r	620	p ₀ (kPa) =	6169		
6360 -	P section A P above	p _i (kPa) =	6169		
•	P below - 0,16	$p_{\rm p}({\rm kPa}) =$	6370	p₌ (kPa) =	6255
6330	-	O_{1} (m ³ /o)=	1.62E-07	PF (0200
6230 ·	a12	$Q_p (m/s) =$	1,02E-07	t _r (s) =	1200
- da annes	- • • • • • • • • • • • • • • • • • • •	(p(3)) =	1 00E 06	$(3)^{*}$	1 00E 06
		Sel S (-)= EC (mS/m)=	1,00E-00	Sel S (-)=	1,00E-00
етао -	0.08	$EC_w (IIIS/III) =$	16.0		
	0,06	Temp _w (gr C)=	16,9		0.02
e 100	0,04	Derivative fact.=	0,05	Derivative fact.=	0,02
esso	9.02				
6000 0,00 0,20 0,40 0,60 0,50 Elapi	1,00 1,20 1,40 1,60 1,80 ed Time [N]	Results	-	Results	
		Q/s (m ² /s)=	7,9E-09		
Log-Log plot incl. derivates- f	ow period	T _M (m ² /s)=	8,3E-09		
		Flow regime:	transient	Flow regime:	transient
40 ⁻⁴ Elapsed time	(b) 10 ⁻² 10 ⁻¹ 10 ⁰	dt ₁ (min) =	6,97	dt ₁ (min) =	*
10 ² SKB Laxemar / KLX06 707.15-727.15 / Chi	FlowDim Version 2.14b (c) Golder Associates	dt_2 (min) =	14,83	dt ₂ (min) =	*
		$T(m^{2}/s) =$	2,4E-09	T (m²/s) =	4,5E-09
10 1	10 ²	S (-) =	1,0E-06	S (-) =	1,0E-06
	and a state of the	$K_s (m/s) =$	1,2E-10	$K_s (m/s) =$	2,3E-10
*		S _s (1/m) =	5,0E-08	S _s (1/m) =	5,0E-08
10 °	rotation 17	C (m ³ /Pa) =	NA	C (m³/Pa) =	2,9E-10
		C _D (-) =	NA	C _D (-) =	3,2E-02
10 1	10 °	ξ(-) =	2,2	ξ(-) =	1,8
		$T_{opr}(m^2/s) =$		$T_{opc}(m^2/s) =$	╂────┤
10 ⁻¹ 10 [°]	10 ¹ 10 ² 10 ³	$S_{GRF}(-) =$		$S_{GRF}(-) =$	
		$D_{GRE}(-) =$		$D_{GRE}(-) =$	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	eters.	
		dt_1 (min) =	6.97	C (m ³ /Pa) =	2,9E-10
		dt_2 (min) =	14.83	$C_{D}(-) =$	3.2E-02
Elapsed time (h)		$T_{\tau}(m^2/s) =$	2.4E-09	٤(-) =	2.2
SKB Laxemar / KLX06 707.15.727.15 / Chir	FlowDim Version 2.14b (c) Golder Associates 300	S(-) =	1.0F-06	5()	_,_
		$K_{a}(m/s) =$	1,02 00		
	10 III	$S_{2}(1/m) =$	5.0E-08		
10	30	Comments:	0,02 00		
a		*· IARF not measure	ed		
	10 ¹ 00 -	The recommended	transmissivity of	$2.4E-9 \text{ m}^2/\text{s was def}$	rived from the
10 °		analysis of the CHi	phase (outer zor	ne), which shows the	e best data and
	ľ	derivative quality.	The confidence r	ange for the interva	l transmissivity
	10 °	is estimated to be 2	.0E-9 to 7.0E-9	m^2/s . The flow dime	ension displayed
10 ° 10 '	10 ² 10 ³ 10 ⁴	during the test is 2.	The static press	ure measured at tran	sducer depth
tDrCD		was not calculated of	iue to the tight f	ormation.	

Test Summary Sheet						
Project:	Oskarshamn site investiga	tion	Test type:[1]			CHir
Area:	Laxer	mar	Test no:			1
Borehole ID:	KLX06		Test start:			050415 17:48
Test section from - to (m):	727.19-747.19 m		Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,0	076	Responsible for test evaluation:		Cristi	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
8800	. 02	0	Indata		Indata	
- KLX06	_727.19-747.19_050415_1_CHir_Q_r	-	p₀ (kPa) =	6312		
esso - 8	- 0.18	8	p _i (kPa) =	6303		
esoo e	• P section	6	$p_{n}(kPa) =$	6522	p _F (kPa) =	6306
8450 -	▲ P above + 0,14	4	Ω_{-} (m ³ /s)=	7,67E-07		
- 6400 ·	=Q	2	$d_p (m/3)^{-}$	1200	t₌ (s) =	7200
	- 01	C Rato [Ilmin]	S ol S [*] ()-	1 00E-06	S ol S [*] ()-	1 00E-06
4 00 H		Injection	5 er 3 (-)- FC (mS/m)=	1,002.00	3 el 3 (-)-	1,002.00
° e300	0.02	8	Temp (ar C)=	17.2		╂────┤
6250	- 0,04	6	Derivative fact -	0.04	Derivative fact -	0.02
6200	- 0.0-	4	Derivative lact	0,04	Derivative lact	0,02
e 150 -	- 0.01	2				<u> </u>
8100		0	Beaulte		Beaulte	
0,00 0,50 1,00 15 Elaj	0 2,00 2,50 3,00 psed Time [h]		Results	0.45.00	Results	
			Q/s (m²/s)=	3,4E-08		
Log-Log plot incl. derivates- f	low period		T _M (m²/s)=	3,6E-08		<u> </u>
			Flow regime:	transient	Flow regime:	transient
10 ⁻³ Elapsed tim	ne (h) 10. ⁻¹ 10. ⁰		$dt_1(min) =$	1,50	dt_1 (min) =	*
10 2 SKB Laxemar / KLX06 727.19-747.19 / Chi	FlowDim Version 2.14b		dt_2 (min) =	15,93	dt_2 (min) =	*
	(-)	10 ²	T (m²/s) =	2,6E-08	T (m²/s) =	4,3E-08
10 1			S (-) =	1,0E-06	S (-) =	1,0E-06
			$K_s (m/s) =$	1,3E-09	$K_{s} (m/s) =$	2,2E-09
· · · · · · · · ·	11	10 ¹	$S_{s}(1/m) =$	5,0E-08	$S_s(1/m) =$	5,0E-08
dk) 10 °	الم المجمع المحمد محمد محمد محمد محمد محمد محمد محمد	/d/ [min]	C (m ³ /Pa) =	NA	C (m³/Pa) =	1,6E-10
	1 447 1	о 19.(1	C _D (-) =	NA	C _D (-) =	1,8E-02
10 -1			ξ(-) =	-0,9	ξ(-) =	1,2
	·					
		IO ⁻¹	$T_{GRF}(m^2/s) =$		$T_{GRE}(m^2/s) =$	
10 ¹ 10 ²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ tD		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot incl. derivatives	- recovery period		Selected represe	ntative paran	ieters.	
			dt ₁ (min) =	1,5	C (m ³ /Pa) =	1,6E-10
			dt_2 (min) =	15,93	$C_{\rm D}(-) =$	1,8E-02
Elapsed time (1) 		$T_{T}(m^2/s) =$	2,6E-08	ξ(-) =	-0,9
SKB Laxemar / KLX06 727.19-747.19 / Chir	FlowDim Version 2.14b (c) Gidder Associates		S (-) =	1.0E-06	5()	· · · ·
	10 3		$K_{s}(m/s) =$	1.3E-09		
			$S_{a}(1/m) =$	5.0F-08		
10 1	300		Comments:	0,02 00		<u> </u>
B See	10 ²	[69]	*· IARF not measur	ed		
a section of the sect		-p0, (p-p0),	The recommended	transmissivity of	$f 2.6E-8 m^2/s$ was de	rived from the
10 0	30	đ	analysis of the CHi	phase, which sh	ows the best data an	d derivative
			quality. The confide	ence range for th	e interval transmiss	ivity is
			estimated to be 1.01	E-8 to 5.0E-8 m ²	/s. The flow dimens	sion displayed
10 " 10 "	10 ⁻² 10 ⁻³ 10 ⁻⁴		during the test is 2.	The static press	ure measured at tran	sducer depth,
tD/Ct	'		was derived from the	the CHIr phase us	ang straight line extr	rapolation in the
				ue 01 0304.2 KP	u	

	Test Sum	mary Sheet				
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			SI	
Area:	Laxema	r Test no:			2	
Borehole ID:	KLX0 ⁴	6 Test start:			050415 21:45	
Test section from - to (m):	727.19-747.19 n	n Responsible for test execution:		Jörg Böhn		
Section diameter, $2 \cdot r_w$ (m):	0,07	6 Responsible for	or Cristian Ena			
Linear plot Q and p		Flow period		Recovery period	1	
	Indata		Indata			
KLX06_727.19-747.19_050415_2_SI_Q_r	1.0	p ₀ (kPa) =	6313			
6450 -	• 0,9 • P section	p _i (kPa) =	6305			
6400	■ Factore ■ P below = Q	$p_{p}(kPa) =$	6313	p _F (kPa) =	6306	
	- 0,7	$\Omega_{\rm p}$ (m ³ /s)=	NA	, ,		
e330 -	- 0.6	$\frac{dp}{dp}$ (m / s) =	32400	t _F (s) =	1200	
	1.5 o Date	S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
Dawin cie		$EC_w (mS/m) =$	· · ·		,	
620.		Temp _w (gr C)=	17,2			
8200 -	- 0,3	Derivative fact.=	0,04	Derivative fact.=	NA	
	**************************************		· · · ·			
8 150 -	- 0,1					
6100 0,00 1,00 2,00 3,00 4,00 5(0,0 30 6,60 7,60 8,00 9,00 10,00	Results		Results	1	
	FA	$Q/s (m^2/s)=$	NA			
Log-Log plot incl. derivates- flo	w period	$T_{M} (m^{2}/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time [h]		dt ₁ (min) =	33,93	dt ₁ (min) =	NA	
10 ² 5KB Laxemar / KLX06 7 5KB Laxemar / KLX06		dt_2 (min) =	344,16	dt_2 (min) =	NA	
		$T(m^{2}/s) =$	4,0E-08	T (m²/s) =	NA	
10 1	10	S (-) =	1,0E-06	S (-) =	NA	
· · · · · · · · · · · · · · · · · · ·		$K_s (m/s) =$	2,0E-09	K _s (m/s) =	NA	
	10 °	_a S _s (1/m) =	5,0E-08	S _s (1/m) =	NA	
gd 10 °		C (m ³ /Pa) =	4,6E-08	C (m³/Pa) =	NA	
	10 ⁻¹	$C_{\rm D}(-) =$	5,1E+00	C _D (-) =	NA	
10 -1		ξ(-) =	-0,2	ξ(-) =	NA	
	•					
1	^{10 °}	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
10 ⁻ 10 ⁻ 10 ⁻ 10	10 " 10 " 10 '	S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives- i	recovery period	Selected represe	entative paran	neters.		
		dt_1 (min) =	33,93	C (m ³ /Pa) =	4,6E-08	
		dt ₂ (min) =	344,16	C _D (-) =	5,1E+00	
		$T_T (m^2/s) =$	4,0E-08	ξ(-) =	-0,2	
		S (-) =	1,0E-06			
		K_{s} (m/s) =	2,0E-09			
Not An	alysed	$S_{s}(1/m) =$	5,0E-08			
	•	Comments:	-			

Test Summary Sheet					
Project:	Oskarshamn site investigation	on <u>Test type:[1]</u>			Pi
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX	06 Test start:			050416 08:51
Test section from - to (m):	747.22-767.22	m Responsible for test execution:			Jörg Böhner
Section diameter, $2 \cdot r_w$ (m):	0,01	76 Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
	•	Indata		Indata	
KLX06 747 22-767 22 050416 1 PL Q r		p ₀ (kPa) =	6456		
e750	•P section	p _i (kPa) =	6457		
e700 -	▲P above ● ■P below ● 4	$p_{p}(kPa) =$	NA	p _∈ (kPa) =	NA
eeso -	-" •	$O_{(m^3/s)} =$	NA	F1 (- 7	
	•	$\frac{Q_p(m/s)}{tn(s)} =$	NA	tr (s) =	2460
	Comma de la com		1.00E-06		1.00E-06
		S el S (-)= EC (mS/m)=	1,001-00	Sel S (-)=	1,002-00
ă eso		$EC_w (IIIS/III) =$	17.4		
e450	2°	Temp _w (gr C)=	17,4	Derivetive feet -	0.05
e-00 -	1	Derivative Tact.=	0	Derivative fact.=	0,05
6350	1				
6330		Deculto		Beaulte	
0,00 0,20 0,40 0,60 Elaps	0,60 1,00 1,20 1,40 sed Time [h]	Results	NT 4	Results	
		Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- fl	ow period	$T_M (m^2/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
Elapsed time [h]	ا • • • • • • • • • • • • • • • • • • •	dt₁ (min) =	NA	dt ₁ (min) =	*
10 Laxemar / KLX06 747.22-767.22 / Pl	FlowDim Version 2.140 (c) Golder Associates	dt_2 (min) =	NA	dt_2 (min) =	*
	3	T (m²/s) =	NA	T (m²/s) =	1,2E-10
		S (-) =	1,0E-06	S (-) =	1,0E-06
10 °	0	$K_{s} (m/s) =$	NA	$K_s (m/s) =$	6,1E-12
	in the second	S _s (1/m) =	NA	S _s (1/m) =	5,0E-08
		C (m ³ /Pa) =	NA	C (m³/Pa) =	3,0E-10
10-1	10 -1	⁸ C _D (-) =	NA	C _D (-) =	3,3E-02
		ξ(-) =	NA	ξ(-) =	-2,2
	0.03				
10 ⁻² 10 ⁻¹	10 [°] 10 ¹ 10 ²	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =	
Ð		$S_{GRF}(-) =$		S _{GRF} (-) =	
		$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	12,37	C (m³/Pa) =	3,0E-10
		dt_2 (min) =	40,81	C _D (-) =	3,3E-02
		$T_T (m^2/s) =$	1,2E-10	ξ(-) =	-2,2
		S (-) =	1,0E-06		
		$K_{s}(m/s) =$	6,1E-12		
Not Analysed		S _s (1/m) =	5,0E-08		
		Comments:	-		
		*: IARF not measur	red		
		The recommended	transmissivity of	$1.2E-10 \text{ m}^2/\text{s was c}$	derived from the
		analysis of the Pi p	hase. Considerin	g the inherent uncer	tainties related
		to the measurement	t (e.g. specially t	he measurement of t	the wellbore
		storage coefficient)	and to the analy	sis process (e.g. nui	ects) the
		confidence range for	or the transmissiv	vity is estimated to h	be 6E-11 to 3E-
		$10 \text{ m}^2/\text{s}$. A flow dir	nension of 2 was	assumed. No static	pressure could
		be derived.			

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	Test no:			1	
Borehole ID:	KLX06	Test start:			050417 16:15	
Test section from - to (m):	907.49-927.49 m	Responsible for			Jörg Böhner	
Section diameter, 2·r _w (m):	0,076	Responsible for		Crist	ian Enachescu	
Linear plot O and p		test evaluation:		Pasavanu parios		
Linear plot Q and p		Flow period		Recovery period		
7800 D	0,10		7565	inuala		
750	689	$p_0 (kPa) =$	/ 303			
	- 0.08	р _і (кРа) =	/510		7511	
7700 -		$p_p(RPa) =$	/ /45	р _F (кРа) =	/511	
7650		Q _p (m ³ /s)=	3,67E-07		1000	
	0.08 11	tp (s) =	1200	t _F (S) =	1200	
8 7600- 94	- 0.05 2 5 8	S el S (-)=	1,00E-06	S el S (-)=	1,00E-06	
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.04	EC _w (mS/m)=	10.0			
	0.03	Temp _w (gr C)=	19,3			
7900	0.02	Derivative fact.=	0,04	Derivative fact.=	0,02	
740	- ani					
7400 0,00 0,20 0,40 0,60 Elaps	0,80 1,00 1,20 1,40 0,00 ed Time [b]	Results		Results		
		Q/s (m ² /s)=	1,5E-08			
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	1,6E-08			
	Flow regime:	transient	Flow regime:	transient		
10 3 Elapsed time	[h] 10. ⁻¹ 10. ⁰	dt_1 (min) =	2,44	dt ₁ (min) =	*	
10 ² SKB Laxemar / KLX05 907.49-927.49 / Chi	FlowDm Version 2.14b (c) Golder Associates	dt_2 (min) =	17,10	dt ₂ (min) =	*	
	-	$T(m^{2}/s) =$	1,6E-08	T (m²/s) =	5,5E-08	
10 5	10 2	S (-) =	1,0E-06	S (-) =	1,0E-06	
		$K_s (m/s) =$	7,8E-10	K _s (m/s) =	2,7E-09	
	to ¹	S _s (1/m) =	5,0E-08	S _s (1/m) =	5,0E-08	
100 ⁰	light friend	C (m³/Pa) =	NA	C (m³/Pa) =	6,0E-11	
· · · ·		C _D (-) =	NA	C _D (-) =	6,6E-03	
10 -1		ξ(-) =	1,3	ξ(-) =	15,2	
10 3 10 4	10 ⁵ 10 ⁶	$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =		
tr	5	S _{GRF} (-) =		S _{GRF} (-) =		
		$D_{GRF}(-) =$		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.		
		$dt_1 (min) =$	2,44	C (m³/Pa) =	6,0E-11	
		dt_2 (min) =	17,10	C _D (-) =	6,6E-03	
10 2 5KB Laxemar / KLX06		$T_{T}(m^{2}/s) =$	1,6E-08	ξ(-) =	1,3	
907.49-927.49 / CHir	(c) Golder Associates	S (-) =	1,0E-06			
300		$K_s (m/s) =$	7,8E-10			
10.1	S _s (1/m) =	5,0E-08				
A set and a set of the	No. Contraction of the second s	Comments:	-		-	
of of	30 E	*: IARF not measur	red			
The recommended transmissivity of 1.6E-8 m ² /s was					erived from the	
** *	analysis of the CHi	phase, which sh	ows the best data an	d derivative		
	3	estimated to be 8 01	F-9 to 4 OF 8 m^2	's The flow dimension	ion displayed	
		during the test is 2.	The static press	ure measured at tran	sducer depth.	
10 ⁰ 10 ¹ 10ICD	10 ² 10 ³ 10 ⁴	was derived from th	ne CHir phase us	ing straight line ext	rapolation in the	
		Horner plot to a val	lue of 7508.7 kP	a		

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050418 08:42	
Test section from - to (m):	927.50-947.50 m	Responsible for test execution:			Jörg Böhner	
Section diameter, $2 \cdot r_w$ (m):	0,076	Responsible for		Cristi	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
8000	1 020	Indata		Indata		
	-	p ₀ (kPa) =	7658			
·	■ ●P section ■ ▲P above ■	p _i (kPa) =	7647			
7900	Q 0,16	p _p (kPa) =	7857	p _F (kPa) =	7680	
7850	0,14	Q _p (m ³ /s)=	7,22E-07			
⊊ ⁷⁸⁰⁰ . D	0.12 	tp (s) =	1200	t _F (s) =	1200	
58 97750- €		S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
4 7700 -	800 800	EC _w (mS/m)=				
760		Temp _w (gr C)=	19,5			
7000 -	0.04	Derivative fact.=	0,02	Derivative fact.=	0,02	
7550						
7500 0,00 0,20 0,40 0,60 Elapse	0,60 1,00 1,20 1,40 ed Time [h]	Results		Results		
		$Q/s (m^2/s) =$	3,4E-08			
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	3,5E-08			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time []	^م ا	$dt_1 (min) =$	3,63	dt_1 (min) =	6,83	
10 SKB Laxemar / KLX06 927.50-947.50 / Chi	FlowDim Version 2.14b (c) Golder Associates	$dt_2 (min) =$	16,26	$dt_2 (min) =$	13,27	
	30	$T(m^{2}/s) =$	1,6E-08	$T(m^2/s) =$	2,6E-08	
	5	S(-) =	1,0E-06	S (-) =	1,0E-06	
10 °	and and a constant	K_{s} (m/s) =	8,0E-10	K_{s} (m/s) =	1,3E-09	
10001	3	$S_{s}(1/m) =$	5,0E-08	$S_{s}(1/m) =$	5,0E-08	
1.0001		C (m³/Pa) =	NA	C (m³/Pa) =	9,1E-11	
10 -1	~ ~	$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	1,0E-02	
	0.3	ζ(-) =	-2,5	ζ(-) =	1,3	
	10 ⁻¹	$T_{GPE}(m^2/s) =$		$T_{CPE}(m^2/s) =$		
. 10 ⁻¹ 10 ⁰ 10	10 ^{° 1} 10 ^{° 2} 10 ^{° 2}	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
Log-Log plot incl. derivatives-	recovery period	Selected represe	intative paran	neters.		
		dt ₁ (min) =	6,83	C (m ³ /Pa) =	9,1E-11	
Elapsed time [h]	1,	dt ₂ (min) =	13,27	C _D (-) =	1,0E-02	
10 ² SKB Laxemar / KLX06 927.50-947.50 / CHir	FlowDim Version 2:14b (c) Golder Associates	$T_{T}(m^{2}/s) =$	2,6E-08	ξ(-) =	1,3	
	300	S (-) =	1,0E-06			
		$K_s (m/s) =$	1,3E-09			
10 ¹	10 ²	S _s (1/m) =	5,0E-08			
8 second second	30 E	Comments:	-	=		
		The recommended analysis of the CHin derivative quality. T is estimated to be 8 during the test is 2. was derived from the Horner plot to a val	transmissivity of phase (outer zc Che confidence r .0E-9 to 4.0E-8 The static press he CHir phase us ue of 7652.2 kP	f 2.6E-8 m^2/s was de one), which shows th range for the interval m^2/s . The flow dime ure measured at tran- sing straight line extr a.	rived from the e best data and transmissivity nsion displayed sducer depth, rapolation in the	
		Horner plot to a val	ue of 7652.2 kP	a.		

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX06	Test start:			050307 08:59	
Test section from - to (m):	260.00-265.00	Responsible for test execution:		Stephan Rohs		
Section diameter, 2·r _w (m):	0,076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
2440 KLX06_260.00-265.00_050307_1_CR	wr_Q_r.xls	p₀ (kPa) =	2397		I	
2420	- 9	p; (kPa) =	2400		<u> </u>	
j	- 8	$p_{r}(kPa) =$	2351	p _⊏ (kPa) =	2398	
2400	7	O_{1} (m ³ /o)=	1 35E-04	PF ()	2000	
-		$Q_p (m/s) =$	1,551-04	t_ (s) =	79800	
4 2380 - 1 1 1	P section ↓ P above •	(p(s)) =	1,00E.06	(F(3)) =	1.00E.06	
bio lo Pere	5 2 5 2 	S el S (-)=	1,00E-06	S el S (-)=	1,00E-06	
§ 2360	4	EC _w (mS/m)=				
2340	3	Temp _w (gr C)=	11			
		Derivative fact.=	0,12	Derivative fact.=	0,12	
2320 -	-1					
2300	o	Results		Results	<u> </u>	
0,00 10,00 20,00 30,00 Elaps	40,00 50,00 60,00 70,00 80,00 ed Time [h]	Ω/s (m ² /s)=	NA			
Log-Log plot incl. derivates- fl	ow period	U/S (11/S) =	NΔ		╂────┤	
		Flow regime:	transient	Flow regime:	transient	
		dt (min) -		t low regime.	0.79	
El apred time (h	10,°	$dt_1 (min) =$	256.90	dt_1 (min) =	679.00	
SKB Lavemar / KLX06 260.00-265.00 / Cw	(c) Golder Associates	$u_2(11111) =$	230,80	$u_2(1111) =$		
		I (m ⁻ /s) =	1,3E-05	l (m ⁻ /s) =	1,0E-04	
•••	30	S (-) =	1,0E-06	S (-) =	1,0E-06	
10 1	- 10 ¹	$K_s (m/s) =$	2,6E-06	$K_s (m/s) =$	2,1E-05	
8		$S_s(1/m) =$	2,0E-07	$S_s(1/m) =$	2,0E-07	
	3 de arc	C (m³/Pa) =	1,0E-07	C (m³/Pa) =	2,9E-08	
10 *	· · · · · ·	C _D (-) =	1,1E+01	C _D (-) =	3,1E+00	
	10 [°]	ξ(-) =	17,2	ξ(-) =	12,1	
	0.3					
10 ¹ 10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁶	$T_{GRF}(m^2/s) =$		T _{GRF} (m ² /s) =		
tlycb		S _{GRF} (-) =		S _{GRF} (-) =		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.		
		dt_1 (min) =	2,78	C (m ³ /Pa) =	2,9E-08	
Elapad time [h	ا 	dt_2 (min) =	678,00	$C_{D}(-) =$	3,1E+00	
10 SKB Laxemar /KLX06 260.00-265.00 / Crwr	FlowDim Version 2.14b (c) Golder Azoci attes	$T_{T}(m^{2}/s) =$	1,0E-04	ξ(-) =	12,1	
	10	S (-) =	1,0E-06			
·	30	$K_{c}(m/s) =$	2.1E-05			
10 ¹		$S_{a}(1/m) =$	2.0F-07		╂────┤	
	10 ¹ ត	Commente	2,52 07		└───┤	
		The recommended :	transmissivity of	$f = 1.0E / m^2/s$ was d	arived from the	
10 *	3 ga	analysis of the CRw	vr phase, which s	shows the best data a	and derivative	
		quality. The confide	ence range for th	e transmissivity is e	stimated to be	
· · · · · · · · · · · · · · · · · · ·		8.0E-5 to 3.0E-4 m	2/s. The flow di	mension displayed d	uring the test is	
	0.3	2. The static pressu	re measured at th	ransducer depth, wa	s derived from	
10 ¹ 10 ² 10 ³ 10/00	10 ⁴ 10 ⁵ 10 ⁶	the CHwr phase usi value of 2399.4 kPa	ng straight line e a.	extrapolation in the l	Horner plot to a	

	Test Summ	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]	CRwr			
Area:	Laxemar	Test no:	1			
Borehole ID:	KLX06	Test start:	050310 18:56			
Test section from - to (m):	558.20-563.20 m	Responsible for test execution:	Stephan Rohs			
Section diameter, 2·r _w (m):	0,076	Responsible for test evaluation:		Cristian Enachescu		
Linear plot Q and p		Flow period	Recovery period			
500 KLX06_558.20-563.20_050310_1_CRwr_Q_r		Indata		Indata		
		p ₀ (kPa) =	4901			
4850 -	▲P above 4.5 ■P below	p _i (kPa) =	4884			
	4.0	p _p (kPa) =	4748	p _F (kPa) =	4831	
	- 3.5	$Q_{p} (m^{3}/s) =$	6,68E-05			
To be a constrained of the constraint of the con		tp(s) =	479400	t _F (s) =	85020	
		S el S [*] (-)=	1,00E-06	S el S [*] (-)=	1,00E-06	
		EC _w (mS/m)=		00.0()		
		Temp _w (gr C)=	14,5			
13		Derivative fact.=	0,05	Derivative fact.=	0,05	
-10						
-	- 0,5					
4700		Results	•	Results		
Elapse	1 Time (b)	Q/s (m ² /s)=	NA			
Log-Log plot incl. derivates- flo	ow period	T_{M} (m ² /s)=	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt ₁ (min) =	2,4	dt ₁ (min) =	1,2	
1000 Log-Log Match - Second flow period Pi 4886 kPa T1 122-05 m2/s S1 106-06 - S S1 106-07 - S s -17 - r1 S15 m 515 m		dt ₂ (min) =	300,0	dt ₂ (min) =	48,0	
		T (m ² /s) =	1,2E-05	T (m²/s) =	1,1E-05	
		S (-) =	1,0E-06	S (-) =	1,0E-06	
		$K_s (m/s) =$	2,4E-06	K _s (m/s) =	2,2E-06	
		S _s (1/m) =	2,0E-07	S _s (1/m) =	2,0E-07	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2,2E-09	
		$C_{D}(-) =$	NA	$C_{D}(-) =$	2,4E-01	
		ξ(-) =	-1,7	ξ(-) =	-3,3	
0.01 0.1 1	10 100 1000	$T_{GRE}(m^2/s) =$		$T_{GRE}(m^2/s) =$		
Etap	sea unite (ms)	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
		D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot incl. derivatives-	elected representative parameters.					
		dt ₁ (min) =	1,20	C (m ³ /Pa) =	2,2E-09	
10000		dt ₂ (min) =	48,00	C _D (-) =	2,4E-01	
Log-Log Match - Recovery period		$T_{T}(m^{2}/s) =$	1,1E-05	ξ(-) =	-3,3	
Pi 4881 kPa	•	S (-) =	1,0E-06			
T2 8.3E-07 m2/s S1 1.0E-06 - S2 5.7E-06 -		$K_s (m/s) =$	2,2E-06			
s -3.3 - P 100 r1 347 m		S _s (1/m) =	2,0E-07			
Charles and the charles of the charl		Comments:				
10 ·	and the state of t	The recommended transmissivity of 1.1E-5 m2		1.1E-5 m2/s was de	erived from the	
· · · · · · · · · · · · · · · · · · ·	analysis of the CRwr phase (inner zone), which shows good data and derivative quality. The confidence range for the transmissivity is estimated to be 6.0E-6 to 3.0E-5 m2/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHwr phase using straight line extrapolation in					
1						
0.0001 0.001 0.01 Ela						
		the Horner plot to a	value of 4881.0	kPa.		

Character	SICADA designation	Explanation	Dimension	Unit			
Variables, constants							
A _w		Horizontal area of water surface in open borehole, not including area of signal cables, etc.	[L ²]	m ²			
b		Aquifer thickness (Thickness of 2D formation)	[L]	m			
В		Width of channel	[L]	m			
L		Corrected borehole length	ĨL]	m			
Lo		Uncorrected borehole length	ĨLĨ	m			
L		Point of application for a measuring section based on its	ĨLĨ	m			
٢		centre point or centre of gravity for distribution of transmissivity in the measuring section					
1		Test section length	ri 1	m			
dl		Step length Positive Flow Log - overlapping flow logging		m			
		(step length, PFL)	L=J				
r		Radius	[L]	m			
r _w		Borehole, well or soil pipe radius in test section.	[L]	m			
r _{we}		Effective borehole, well or soil pipe radius in test section. (Consideration taken to skin factor)	[L]	m			
r _s		Distance from test section to observation section, the shortest distance.	[L]	m			
r _t		Distance from test section to observation section, the interpreted shortest distance via conductive structures.	[L]	m			
r _p		Dimensionless radius $r_0 = r/r_{ee}$	_	-			
7		Level above reference point	ri 1	m			
7.		Level for reference point on borehole		m			
Z ₁		Level for test section (section that is being flowed) upper		m			
←wu		limitation	[-]				
Z _{wl}		Level for test section (section that is being flowed), lower limitation	[L]	m			
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m			
Zou		Level for observation section, upper limitation	[L]	m			
Zol		Level for observation section, lower limitation	liLi	m			
Zos		Level for sensor that measures response in observation	liLi	m			
		section					
		Eveneration	rl ³ //T l ²)1	ma ma la c			
E		Evaporation:	[L'/(I L)]	mm/y,			
		hydrological hydget:	гі ³ /ті	m ³ /s			
ст			[L 7]	mm/v			
		Evapolialispitation		mm/d			
		hydrological hydget:	[] ³ /T]	m^3/s			
P		Precipitation	$[1^{3}/(T + 2)]$	mm/v			
·				mm/d			
		hydrological budget:	[L ³ /T]	m^3/s			
R		Groundwater recharge	$[L^{3}/(T L^{2})]$	mm/y.			
				mm/d,			
		hydrological budget:	[L ³ /T]	m³/s			
D		Groundwater discharge	$[L^{3}/(T L^{2})]$	mm/y,			
		5		mm/d,			
		hydrological budget:	[L ³ /T]	m³/s			
Q _R		Run-off rate	[L ³ /T]	m³/s			
Qp		Pumping rate	[L ³ /T]	m³/s			
Q		Infiltration rate	[L ³ /T]	m³/s			
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s			
Q ₀		Flow in test section during undisturbed conditions (flow	[L ³ /T]	m³/s			
	1	ו איייצאיין איייצאיי		1			
Q _p		Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s			
--	--------	---	--	--------------------------			
		Stabilised pump flow in flow logging.					
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s			
Q ₁		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s			
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s			
				3,			
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L°/1]	m [°] /s			
ΣQ_0	SumQ0	Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)	[L°/T]	mĭ/s			
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L ³ /T]	m³/s			
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{r2}	[L ³ /T]	m³/s			
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma \Omega_{r} \Sigma \Omega_{r}$	[L ³ /T]	m³/s			
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole,	[L ³ /T]	m³/s			
q		Volumetric flow per flow passage area (Specific	([L ³ /T*L ²]	m/s			
V		Volume	rı ³ 1	m ³			
V		Water volume in test section	[∟] [1 ³ 1	m^3			
V _w V _n		Total water volume injected/pumped during perturbation	[L_] [I ³]	m ³			
۰p		phase.	L- J				
V		Velocity	$([L^{3}/T^{*}L^{2}])$	m/s			
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$	([L ³ /T*L ²]	m/s			
t		Time	[T]	hour,mi			
to		Duration of rest phase before perturbation phase	(TT)	s			
t _p		Duration of perturbation phase. (from flow start as far as	[T]	s			
t_		Duration of recovery phase (from p_{r} to p_{r})	<u>гт</u> т	s			
t₁ t₂ etc		Times for various phases during a hydro test		hour mi			
"			[.]	n,s			
đt		Phase respectively.	[1]	S			
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S			
t _D		$t_{\rm D}$ = T·t / (S· $r_{\rm w}^2$). Dimensionless time	-	-			
p		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa			
D _a	1	Atmospheric pressure	[M/(LT) ²]	kPa			
p _t		Absolute pressure; $p_t=p_a+p_a$	[M/(LT) ²]	kPa			
pg		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ²]	kPa			
p ₀		Initial pressure before test begins, prior to packer	[M/(LT) ²]	kPa			
Di		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa			
			L	···· 🗠			
Df		Pressure during perturbation phase	$[M/(LT)^{2}]$	kPa			
p _f D _s		Pressure during perturbation phase. Pressure during recovery.	$[M/(LT)^{2}]$ $[M/(LT)^{2}]$	kPa kPa			
p _f p _s p _p		Pressure during perturbation phase. Pressure during recovery. Pressure in measuring section before flow stop.	[M/(LT) ²] [M/(LT) ²] [M/(LT) ²]	kPa kPa kPa			
p _f p _s p _p p _F		Pressure during perturbation phase. Pressure during recovery. Pressure in measuring section before flow stop. Pressure in measuring section at end of recovery.	[M/(LT) ²] [M/(LT) ²] [M/(LT) ²] [M/(LT) ²]	kPa kPa kPa kPa			

dp	Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa
dp _f	$dp_f = p_i - p_f$ or $p_f = p_i - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase, dp. usually expressed positive	[M/(LT) ²]	kPa
dps	$dp_s = p_s - p_p \text{ or } = p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dpp	$dp_p = p_i - p_p$ or $p_p = p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F	$dp_F = p_p - p_F$ or $p_F = p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н	Total head; (potential relative a reference level) (indication of h for phase as for p). H=h _e +h _p +h _v	[L]	m
h	Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=he+hp	[L]	m
h _e	Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p	Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v	Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S	Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
Sp	Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀	Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i	Level above reference level in measuring section before start of flow.	[L]	m
h _f	Level above reference level during perturbation phase.	[L]	m
h _s	Level above reference level during recovery phase.	[L]	m
h _p	Level above reference level in measuring section before flow stop.	[L]	m
h _F	Level above reference level in measuring section at end of recovery.	[L]	m
dh	Level difference, drawdown of water level between two points of time.	[L]	m
dh _f	$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s	$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p	$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F	$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w	Temperature in the test section (taken from temperature		°C

		logging). Temperature		
Te _{w0}		Temperature in the test section during undisturbed		°C
		conditions (taken from temperature logging).		-
		Temperature		
Teo		Temperature in the observation section (taken from		°C
- 0		temperature logging). Temperature		
EC.,		Electrical conductivity of water in test section.		mS/m
		Electrical conductivity of water in test section during		mS/m
• ₩0		undisturbed conditions.		
EC _o		Electrical conductivity of water in observation section		mS/m
TDS		Total salinity of water in the test section.	[M/L ³]	ma/L
		Total salinity of water in the test section during	[M/I ³]	ma/l
000		undisturbed conditions.	[
TDS		Total salinity of water in the observation section.	[M/L ³]	ma/l
00			[]	
a		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	$[L/T^2]$	m/s ²
5		gravity)		
π	pi	Constant (approx 3.1416).	[-]	
	F			
r		Residual, r= p _c -p _m , r= h _c -h _m , etc. Difference between		
		measured data (p_m , h_m , etc) and estimated data (p_c , h_c ,		
		etc)		
ME		1 <i>n</i>		
		Mean error in residuals. $ME = -\sum r_i$		
		$n \sum_{i=1}^{n-1} i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
MAE		$1 \frac{n}{2}$		
		Mean absolute error. $MAE = -\sum r_i $		
		n = n		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
RMS		$\left(1,\frac{n}{2}\right)^{0.5}$		
		Root mean squared error. $RMS = \left \frac{1}{2} \sum r_i^2 \right $		
		$\left(n {\underset{i=1}{\overset{r}{=}}} \right)$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured		
		variable considered.		
SDR		Standard deviation of residual.		
		$\begin{pmatrix} 1 & n \end{pmatrix}^{0.5}$		
		$SDR = \left \frac{1}{1 - \sum (r_{i} - ME)^{2}} \right $		
		$\left(n-1\sum_{i=1}^{n-1} n^{i}\right)$		
SEMR		Standard error of mean residual		
		0.5		
		$SEMR - \left(\frac{1}{\sqrt{r}} \left(r - ME \right)^2 \right)$		
		$\int SEMIR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} \left(v_i - ME\right)\right)$		
Daramotor	· · · · · · · · · · · · · · · · · · ·			
	3	Specific capacity s=dp, or s=s = b_{2} -b (open borehole)	$[1]^{2}/[1]$	m²/s
Q/3		Specific capacity $s = up_p$ of $s = s_p = n_0 \cdot n_p$ (open borehole)		111 / 5
D		Interpreted flow dimension according to Barker, 1099	[_]	-
			_ L [−] J	-
dt		Time of starting for semi-log or log-log evaluated	<u>гт</u> 1	s
		characteristic counted from start of flow phase and	1.11	3
		recovery phase respectively		
dta		End of time for semi-log or log-log evaluated	<u>гт</u>	s
		characteristic counted from start of flow phase and	1.,1	
		recovery phase respectively		
L			1	

dtL	Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ	Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
т	Tronomionivity	ri ² / * 1	m^2/c
т Т	Transmissivity according to Move (1967)		$\frac{111}{5}$
Т	Evaluation based on O/s and regression curve between		m^{2}/c
1 Q	Ω /s and T as example see Rhén et al (1997) n 190	[[/]	111 / 5
To	Transmissivity evaluated from slug test	[] ² /T]	m²/s
	Transmissivity evaluated from PFL-Difference Flow	$\left[\frac{1}{L^2}/T\right]$	m^2/s
.0	Meter	[= / .]	
T	Transmissivity evaluated from Impeller flow log	[L ² /T]	m²/s
T _{Sf} , T _{1 f}	Transient evaluation based on semi-log or log-log	ΓL ² /T	m²/s
0 2.	diagram for perturbation phase in injection or pumping.		
T _{Ss} , T _{Ls}	Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.	[L ² /T]	m²/s
Τ _T	Transient evaluation (log-log or lin-log). Judged best	$[L^2/T]$	m²/s
	evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}		_
T _{NLR}	Evaluation based on non-linear regression.	$[L^2/T]$	m²/s
T _{Tot}	Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[L²/T]	m²/s
К	Hydraulic conductivity	[L/T]	m/s
K _s	Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m	Hydraulic conductivity matrix, intact rock	[L/T]	m/s
k	Intrinsic permeability	[L ²]	m
kb	Permeability-thickness product: kb=k·b		m
SB	Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*	Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
	Character as officients (Charactivity)	F 7	
S ©*	Storage coefficient, (Storativity)		-
S S	Theoretical specific yield of water (Specific yield)		-
S _y	unconfined storage. Defined as total porosity (n) minus	[]	-
S _{ya}	Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called S. in literature)	[-]	-
Sr	Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
Sf	Fracture storage coefficient	[-]	-
S _m	Matrix storage coefficient	[-]	-
S _{NLR}	Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}	Judged most representative storage coefficient for particular test section and (in certain cases) evaluation	[-]	-

		time with respect to available data (made by SKB at a		
		later stage).		
S _c		Specific storage coefficient: confined storage.	[1/L]	1/m
<u> </u>		Assumed specific storage coefficient: confined storage	[1/]]	1/m
Uş				1/111
C.		Hydraulic resistance: The hydraulic resistance is an	IT1	9
U,		aquitard with a flow vertical to a two-dimensional		U
		formation. The inverse of c is also called Leakage		
		coefficient $c=h'/K'$ where h' is thickness of the aquitard		
		and K' its hydraulic conductivity across the aquitard		
L		Leakage factor: $L_{c} = (K, h, c_{c})^{0.5}$ where K represents	[]]	m
		characteristics of the aquifer		111
٤	Skin	Skin factor	r 1	
ς κ*	Skin	Accumed akin factor		-
ξî Q	SKIN		[-]	- 3/D
C		Wellbore storage coefficient	[(L1 ⁻)·M ⁻]	m ⁻ /Pa
		$C_D = C \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage		
CD		coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio	[-]	-
		of storage coefficient between that of the fracture and		
		total storage.		
		<u>^</u>		
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
			_	
T _{GRF}		Transmissivity interpreted using the GRF method	$[L^2/T]$	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
Cw		Water compressibility; corresponding to β in	[(LT ²)/M]	1/Pa
		hydrogeological literature.		
Cr		Pore-volume compressibility, (rock compressibility);	[(LT ²)/M]	1/Pa
		Corresponding to α/n in hydrogeological literature.		
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per	[(LT ²)/M]	1/Pa
		volumetric unit of rock obtained through multiplying by		
		the total porosity, n. (Presence of gas or other fluids can		
		be included in c _t if the degree of saturation (volume of		
		respective fluid divided by n) of the pore system of		
		respective fluid is also included)		
nc _t		Porosity-compressibility factor: $nc_t = n \cdot c_t$	$[(LT^2)/M]$	1/Pa
nc _t b		Porosity-compressibility-thickness product: nctb= n·ct b	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
е		Transport aperture. e = n _e ·b	[L]	m
ρ	Density	Density	$[M/L^3]$	$kg/(m^3)$
0	Density-w	Fluid density in measurement section during	$[M/L^3]$	$ka/(m^3)$
1 PW		pumping/injection	'	5,
00	Densitv-o	Fluid density in observation section	[M/L ³ 1	$kg/(m^3)$
0	Density-sp	Fluid density in standpipes from measurement section	IM/L ³ 1	$ka/(m^3)$
PSp U	my	Dynamic viscosity	[M/I T]	Pae
	my	Dynamic viscosity (Eluid density in measurement section		Pae
μw	iny	during numping/injection)		1 9 3
EC-		Eluid coefficient for intrinsic permeability transferonce of	[1/ T]	1/(me)
		F to K: K=ECk: ECa a/a		17(113)
FC		$ \mathbf{x} \mathbf{v} \mathbf{v}, \mathbf{v} = \Gamma \mathbf{v}_{\mathbf{x}} \cdot \mathbf{y} \mu_{\mathbf{w}}$	[N//T ² ² 1	Do/m
rus		r nun coemcient for porosity-compressibility, transierence		г a/III

		of c_t to S_s ; $S_s = FC_s \cdot n \cdot c_t$; $FC_s = \rho_w \cdot q$		
Index on K	T and S		1	
S		S' semi-log		
1				
f		Pump phase or injection phase, designation following S		
•		or I (withdrawal)		
s		Recovery phase designation following S or L (recovery)		
NIR		NI R: Non-linear regression. Performed on the entire test		
		sequence perturbation and recovery		
М		Move		
GRE		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		
measl		Measurement limit. Estimated measurement limit on		
measi		parameter being measured (T or K)		
		parameter being medbared (1 or 10)		
т		.ludged best evaluation based on transient evaluation		
Tot		Judged most representative parameter for particular test		
100		section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
e		Effective property (constant) within a domain in a		
0		numerical groundwater flow model		
Index on p	and Q			
0		Initial condition undisturbed condition in open holes		
i		Natural "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal flowing		
		phase)		
s		Recovery shut-in phase		
p		Pressure or flow in measuring section at end of		
٢		perturbation period		
F		Pressure in measuring section at end of recovery period		
m		Arithmetical mean value		
C		Estimated value. The index is placed last if index for		
0		"where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for		
		"where" and "what" are used. Measured value		
Some misc	ellaneous index	res on p and h		
w		Test section (final difference pressure during flow phase		
		in test section can be expressed dpwg: First index shows		
		"where" and second index shows "what")		
0		Observation section (final difference pressure during flow		
		phase in observation section can be expressed dpop;		
		First index shows "where" and second index shows		
		"what")		
f		Fresh-water head. Water is normally pumped up from		
		section to measuring hoses where pressure and level are		
		observed. Density of the water is therefore approximately		
		the same as that of the measuring section. Measured		
		groundwater level is therefore normally represented by		
		what is defined as point-water head. If pressure at the		
		measuring level is recalculated to a level for a column of		
		water with density of fresh water above the measuring		
		point it is referred to as fresh-water head and h is		
		indicated last by an f. Observation section (final level		
		during flow phase in observation section can be		
		expressed h _{opf} ; the first index shows "where" and the		
		second index shows "what" and the last one		
		"recalculation")		

Borehole: KLX06	

APPENDIX 5

SICADA data tables

SKB	(Simplified version v1.2) SICADA/Data Import Template SKB & Ergodata AB 2004												
File Identity Created By Created		Jörg Böhner 2005.05.30											
Activity Type		KLX06 KLX06 - Injection t	test			Project							
Activity Informa	ation					Additional Activ	vity Data						
		Γ				C10	P20	P200	P220	R110	R25	R90	
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	Field crew manager	Field crew	Person evaluating data	Field Notes ID	Report	Quality plan	
KLX06	2005.03.03 08:00	2005.04.21 09:00	106,38	987,50		Golder	Jörg Böhner, Stephan Rohs	Jörg Böhner, Stephan Rohs, Mesgena Gebrezghi, Philipp Wolf	Cristian Enachescu, Jörg Böhner, Stephan Rohs				

Table		plu_s_hole	e_test_d
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
mean_flow_rate_qm	I FLOAT	m**3/s	Arithmetic mean flow rate of the pumping/injection
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped(positive) or injected(negative) water
dur_flow_phase_tp	FLOAT	S	Time for the flowing phase of the test
dur_rec_phase_tf	FLOAT	S	Time for the recovery phase of the test
initial_head_hi	FLOAT	m	Initial formation head, see table description
head_at_flow_end_h	FLOAT	m	Hydraulic head at end of flow phase, see table description
final_head_hf	FLOAT	m	Hydraulic head at end of recovery phase, see table descript.
initial_press_pi	FLOAT	kPa	Initial formation pressure. Actual formation pressure
press_at_flow_end_	I FLOAT	kPa	Pressure at the end of flow phase, see table description.
final_press_pf	FLOAT	kPa	Final pressure at the end of the recovery, see table descr.
fluid_temp_tew	FLOAT	oC	Section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Section fluid el. conduvtivity, see table description
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC, see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application

							formation t			mean flow r	flow rate e	value tv		a measi	tot volume
idcode	start date	stop date	secup	seclow	section no	test type	vpe	start flow period	stop flow period	ate om	nd ap	pe ap	a measi l	u	vp
	2005.04.02.17:03:00	2005 04 02 19:34:00	106.38	206.38		3	1	2005 04 02 18:47:10	2005.04.02.19:17:10	3 64F-04	3 22E-04	0	1.6667E-08	8.3333E-04	6.56E-01
KI X06	2005 04 03 10:16:00	2005 04 03 12:37:00	206.52	306 52		3	1	2005 04 03 11:35:07	2005 04 03 12:05:17	3 54E-04	3 43E-04	0	1,6667E-08	8.3333E-04	6.37E-01
KLX06	2005.04.03 14:20:00	2005.04.03 16:03:00	306.68	406.68		3	1	2005.04.03 15:21:26	2005.04.03 14:51:36	2.68E-04	2.50E-04	0	1.6667E-08	8.3333E-04	4.83E-01
KLX06	2005.04.03 17:33:00	2005.04.03 23:08:00	406.83	506.83		3	1	2005.04.03 18:36:39	2005.04.03 19:06:49	2.00E-06	1.83E-06	0	1.6667E-08	8.3333E-04	3.60E-03
KLX06	2005.04.04 09:33:00	2005.04.04 12:08:00	506.92	606.92		3	1	2005.04.04 10:36:09	2005.04.04 11:06:19	2.22E-04	2.05E-04	0	1.6667E-08	8.3333E-04	4.00E-01
KLX06	2005.04.04 13:36:00	2005.04.04 15:37:00	607,06	707,06		3	1	2005.04.04 14:34:59	2005.04.04 15:05:09	6,67E-06	6,17E-06	0	1,6667E-08	8,3333E-04	1,20E-02
KLX06	2005.04.04 17:04:00	2005.04.05 01:08:00	707,15	807,15		3	1	2005.04.04 18:36:09	2005.04.04 19:36:19	5,45E-05	3,96E-05	0	1,6667E-08	8,3333E-04	9,81E-02
KLX06	2005.04.05 09:30:00	2005.04.05 13:01:00	807,31	907,31		3	1	2005.04.05 11:29:35	2005.04.05 11:59:45	2,88E-06	2,02E-06	0	1,6667E-08	8,3333E-04	5,19E-03
KLX06	2005.04.05 14:30:00	2005.04.05 16:36:00	887,48	987,48		3	1	2005.04.05 15:34:06	2005.04.05 16:04:16	1,42E-06	1,22E-06	0	1,6667E-08	8,3333E-04	2,55E-03
KLX06	2005.04.07 09:07:00	2005.04.07 10:43:00	106,38	126,38		3	1	2005.04.07 10:00:55	2005.04.07 10:21:05	3,70E-04	3,45E-04	0	1,6667E-08	8,3333E-04	4,44E-01
KLX06	2005.04.07 11:26:00	2005.04.07 14:17:00	126,42	146,42		3	1	2005.04.07 13:35:17	2005.04.07 13:55:27	4,47E-07	3,88E-07	0	1,6667E-08	8,3333E-04	5,36E-04
KLX06	2005.04.07 14:56:00	2005.04.07 16:28:00	146,44	166,44		3	1	2005.04.07 16:00:50	2005.04.07 16:21:00	7,88E-06	7,60E-06	0	1,6667E-08	8,3333E-04	9,46E-03
KLX06	2005.04.07 17:08:00	2005.04.07 18:34:00	166,47	186,47		3	1	2005.04.07 18:02:47	2005.04.07 18:52:57	3,30E-04	3,15E-04	0	1,6667E-08	8,3333E-04	3,96E-01
KLX06	2005.04.08 08:44:00	2005.04.08 10:05:00	186,49	206,49		3	1	2005.04.08 09:32:41	2005.04.08 09:52:51	2,77E-04	2,75E-04	0	1,6667E-08	8,3333E-04	3,32E-01
KLX06	2005.04.08 11:19:00	2005.04.08 12:58:00	206,52	226,52		3	1	2005.04.08 12:16:45	2005.04.08 12:36:55	9,72E-05	9,45E-05	0	1,6667E-08	8,3333E-04	1,17E-01
KLX06	2005.04.08 13:53:00	2005.04.08 15:36:00	226,56	246,56		3	1	2005.04.08 15:04:19	2005.04.08 15:24:29	1,33E-04	1,29E-04	0	1,6667E-08	8,3333E-04	1,60E-01
KLX06	2005.04.08 16:26:00	2005.04.08 17:53:00	246,62	266,62		3	1	2005.04.08 17:16:04	2005.04.08 17:36:14	3,50E-04	3,42E-04	0	1,6667E-08	8,3333E-04	4,20E-01
KLX06	2005.04.09 10:01:00	2005.04.09 11:22:00	266,64	286,64		3	1	2005.04.09 10:45:24	2005.04.09 11:05:34	4,65E-05	4,38E-05	0	1,6667E-08	8,3333E-04	5,58E-02
KLX06	2005.04.09 12:09:00	2005.04.09 13:32:00	286,68	306,68		3	1	2005.04.09 13:00:28	2005.04.09 13:20:38	2,56E-05	2,44E-05	0	1,6667E-08	8,3333E-04	3,70E+02
KLX06	2005.04.09 14:16:00	2005.04.09 15:35:00	306,68	326,68		3	1	2005.04.09 15:03:06	2005.04.09 15:23:16	6,48E-05	6,20E-05	0	1,6667E-08	8,3333E-04	7,78E-02
KLX06	2005.04.09 16:16:00	2005.04.09 17:36:00	326,69	346,69		3	1	2005.04.09 17:04:38	2005.04.09 17:24:48	1,22E-04	1,16E-04	0	1,6667E-08	8,3333E-04	1,46E-01
KLX06	2005.04.09 18:11:00	2005.04.09 19:37:00	346,74	366,74		3	1	2005.04.09 18:55:08	2005.04.09 19:15:18	1,44E-04	1,37E-04	0	1,6667E-08	8,3333E-04	1,72E-01
KLX06	2005.04.10 08:40:00	2005.04.10 09:52:00	356,77	376,77		3	1	2005.04.10 09:25:58	2005.04.10 09:46:08	1,18E-04	1,12E-04	0	1,6667E-08	8,3333E-04	1,41E+01
KLX06	2005.04.10 13:14:00	2005.04.10 14:50:00	376,80	396,80		3	1	2005.04.10 13:52:57	2005.04.10 14:23:07	5,13E-06	4,65E-06	0	1,6667E-08	8,3333E-04	9,24E-03
KLX06	2005.04.10 15:31:00	2005.04.10 17:58:00	391,80	411,80		3	1	2005.04.10 17:05:45	2005.04.10 17:25:55	1,67E-04	1,02E-06	0	1,6667E-08	8,3333E-04	2,00E-01
KLX06	2005.04.11 08:32:00	2005.04.11 10:02:00	406,83	426,83		3	1	2005.04.11 09:20:07	2005.04.11 09:40:17	3,03E-07	2,67E-07	0	1,6667E-08	8,3333E-04	3,64E-04
KLX06	2005.04.11 10:48:00	2005.04.11 12:18:00	426,86	446,86		3	1	2005.04.11 11:36:21	2005.04.11 11:56:31	2,73E-07	2,56E-07	0	1,6667E-08	8,3333E-04	3,28E-04
KLX06	2005.04.11 13:03:00	2005.04.11 14:40:00	446,88	466,88		4	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
	2005.04.11 15:15:00	2005.04.11 10:55:00	400,89	486,89		3	1	2005.04.11 10:13:04	3,85E+04	7,08E-07	6,83E-07	0	1,0007E-08	8,3333E-04	8,50E-04
	2005.04.12 06.44.00	2005.04.12 12.02.00	400,90	506,90		3	1	2005.04.12 11.20.16	2005.04.12 11.40.20	1.67E.04	5,25E-07	0	1,0007E-08	0,3333E-04	7,42E-04
	2005.04.13 15.39.00	2005.04.13 17.22.00	526.04	520,92		3	1	2005.04.13 10.20.44	2005.04.13 10:30.34	6 92E 07	6.27E.07	0	1,0007E-08	0,3335E-04	9.20E-01
	2005.04.13 18.08.00	2005.04.13 20.21.00	546.97	566.97		3	1	2005.04.13 18.39.01	2005.04.13 19.19.11	2 16E-04	0,27E-07	0	1,0007E-08	8,3333E-04	2.50E-04
KLX06	2005.04.14 10:42:00	2005.04.14 10:00:00	566.98	586.98		3	1	2005.04.14 03.21.20	2005.04.14 03.41.00	4 82E-07	3 50E-07	0	1,0007E-00	8 3333E-04	5 78E-04
KLX06	2005.04.14 13:25:00	2005.04.14 12:44:00	587.02	607.02		-	1	2005.04.14 11.42.51	-	- 4,02L-07	5,502-07	-1	1,0007E-08	8.3333E-04	- 3,702-04
KLX06	2005.04.14 15:07:00	2005.04.14 14:00:00	607.02	627.06		4	1	_	-	-	_	-1	1,0007E-00	8.3333E-04	-
KLX06	2005.04.14.17:04:00	2005.04.14.19:31:00	627 10	647 10		3	1	2005 04 14 18:04:50	2005 04 14 18:30:00	5 87E-06	5 50E-06	0	1,6667E-08	8.3333E-04	7 04E-03
KLX06	2005.04.15 08:32:00	2005.04.15 10:07:00	647.11	667.11		3	1	2005 04 15 09:25:50	2005.04.15 09:46:00	1.25E-06	1.14E-06	0	1.6667E-08	8.3333E-04	1.50E-03
KLX06	2005.04.15 10:40:00	2005.04.15 11:57:00	667.09	687.09		4	1		-	-,	-	-1	1.6667E-08	8.3333E-04	
KLX06	2005.04.15 13:52:00	2005.04.15 14:50:00	687,12	707,12		3	1	3,85E+04	3,85E+04	1,72E-07	1,02E-07	0	1,6667E-08	8,3333E-04	2,06E-04
KLX06	2005.04.15 15:22:00	2005.04.15 17:07:00	707,15	727,15		3	1	2005.04.15 16:25:43	2005.04.15 16:45:53	3,15E-07	1,62E-07	0	1,6667E-08	8,3333E-04	3,78E-04
KLX06	2005.04.15 17:48:00	2005.04.15 21:00:00	727,19	747,19		3	1	3,85E+04	3,85E+04	9,00E-07	7,67E-07	0	1,6667E-08	8,3333E-04	1,08E-03
KLX06	2005.04.16 08:51:00	2005.04.16 10:17:00	747,22	767,22		4	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
KLX06	2005.04.16 10:54:00	2005.04.16 13:38:00	767,25	787,25		3	1	2005.04.16 12:16:30	2005.04.16 12:36:40	6,25E-05	4,25E-05	0	1,6667E-08	8,3333E-04	7,50E-02
KLX06	2005.04.16 14:19:00	2005.04.16 15:21:00	787,28	807,28		-	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
KLX06	2005.04.16 17:33:00	2005.04.17 00:32:00	807,31	827,31		3	1	2005.04.16 18:10:00	2005.04.16 18:30:10	2,02E-06	6,33E-07	0	1,6667E-08	8,3333E-04	2,42E-03
KLX06	2005.04.17 08:42:00	2005.04.17 09:59:00	827,33	847,33		3	1	2005.04.17 09:32:00	2005.04.17 09:52:10	1,98E-06	1,92E-06	0	1,6667E-08	8,3333E-04	2,38E-03
KLX06	2005.04.17 10:29:00	2005.04.17 12:05:00	847,39	867,39		3	1	2005.04.17 11:23:20	2005.04.17 11:43:30	2,17E-07	2,00E-07	0	1,6667E-08	8,3333E-04	2,60E-04
KLX06	2005.04.17 12:42:00	2005.04.17 13:42:00	867,46	887,46		-	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
KLX06	2005.04.17 14:29:00	2005.04.17 15:33:00	887,48	907,48		-	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
KLX06	2005.04.17 16:15:00	2005.04.17 17:58:00	907,49	927,49		3	1	2005.04.17 17:16:15	2005.04.17 17:36:25	3,95E-07	3,67E-07	0	1,6667E-08	8,3333E-04	4,74E-04
KLX06	2005.04.18 08:42:00	2005.04.18 10:12:00	927,50	947,50		3	1	2005.04.18 09:29:55	2005.04.18 09:50:05	9,23E-07	7,22E-07	0	1,6667E-08	8,3333E-04	1,11E-03
KLX06	2005.04.18 11:01:00	2005.04.18 12:09:00	947,50	967,50		-	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	-
KLX06	2005.04.18 13:29:00	2005.04.18 14:37:00	967,50	987,50		-	1	-	-	-	-	-1	1,6667E-08	8,3333E-04	
KLX06	2005.03.07 08:59:00	2005.03.10 08:15:00	260.00	265.00		1	1	2005.03.07 10:17:00	2005.03.09 11:30:00	1.35E-04	1.35E-04	0	1,6667E-08	8,3333E-04	2.37E-01
KLX06	2005.03.10 18:56:00	2005.03.17 08:19:00	558.20	563.20		1	1	2005.03.10 19:28:00	2005.03.16 08:42:00	6.25E-05	6.28E-05	0	1,6667E-08	8,3333E-04	3.00E+01
KLX06	2005.03.17 16:07:00	2005.03.23 07:08:00	776.20	781.20		1	1	2005.03.17 16:41:00	2005.03.23 07:08:00	1.95E-05	1.97E-05	0	1,6667E-08	8,3333E-04	9.59E-00

seclow

206,38

306,52

406,68

506,83

606,92

707,06

807,15

907,31

987,48

126,38

146,42

166,44

186,47

206,49

226,52

246,56

266,62

286,64

306,68

326,68

346,69

366,74

376,77

396,80

411,80

426,83

446,86

466,88

486,89

secup

106,38

206,52

306,68

406,83

506,92

607,06

707,15

807,31

887,48

106,38

126,42

146,44

166,47

186,49

206,52

226,56

246,62

266,64

286,68

306,68

326,69

346,74

356,77

376,80

391,80

406,83

426,86

446,88

466,89

se_tp

idcode

KLX06

KLX06

KLX06

KLX06 KLX06

KLX06

KLX06 KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

KLX06

dur_flow_pha	dur_rec_pha	initial_head_	head_at_flow_e	final_head_h			final_press_p	fluid_temp_	fluid_elcond_	fluid_salinity_	_t fluid_salinity_t			
se_tp	se_tf	hi	nd_hp	f	initial_press_pi	press_at_flow_end_pp	f	tew	ecw	dsw	dswm	reference	comments	lp
1800	90	0		13,06	1874	1886	1875	10,3						156,
1800	180	0		14,88	2764	2823	2767	11,4						256,
1800	60	0		15,39	3625	3743	3625	12,6						356,
1800	1440	0		13,19	4442	4658	4436	13,8						456,
1800	360	0		12,98	5236	5437	5241	15,4						556,
1800	180	0		14,55	6010	6211	6015	16,7						657,
1800	2160	0		13,15	6728	6948	6717	17,9						757,
1800	360	0		12,29	7398	7598	7403	19,1						857,
1800	180	0		13,07	7886	8078	7893	19,9						937,
1200	120	0		14,17	1179	1198	1180	9,4						116,3
1200	120	0		13,77	1359	1589	1358	9,6						136,4
1200	30	0		14,06	1534	1747	1533	9,8						156,4
1200	60	D		14,06	1711	1769	1711	10,1						176,4
1200	60	D		14,00	1886	2085	1886	10,2						196,4
1200	120	C		14,22	2062	2263	2062	10,3						216,5
1200	60	D		14,20	2240	2441	2240	10,7						236,5
1200	90	D		14,34	2417	2549	2416	11,0						256,6
1200	90	D		14,41	2589	2790	2589	11,2						276,6
1200	60	D		14,55	2765	2966	2765	11,4						296,6
1200	60	D		14,66	2937	3138	2938	11,7						316,6
1200	60	D		14,69	3110	3310	3110	11,9						336,6
1200	120	D		14,90	3281	3482	3282	12,1						356,7
1200	30	D		14,74	3365	3566	3366	12,2						366,7
1800	150	D		13,44	3538	3739	3540	12,5						386,
1200	180	D		-	3662	3893	3718	12,6						401,
1200	120	D		13,23	3777	4029	3777	12,8						416,8
1200	120	D		12,43	3940	4172	3939	13,0						436,6
-	324	D		-	4132	-	-	13,2						456,8
1,20E+03	1,20E+0	3		12,19	4268	4483	4269	13,6						476,8
1200	120	C		10,87	4438	4648	4452	13,7						496.
1,80E+03	1,80E+0	3		11,81	4594	4795	4609	14,1						516,9
1200	360	D		12,75	4760	4988	4758	14,4						536,9
1200	120	D		12.91	4922	5124	4932	14.8						556.9
1200	240	D		13.60	5099	5294	5104	15.1						576.9
-		-		-	-		-	15.4						597.0
-	120	b		-	-	-	. -	15.7						617.0
1200	360	0	1	13 79	5555	5755	5554	15.9		1				637
1200	120	2		13 70	5705	5915	5708	16,0		1			1	657 1
	120	~ 1	1	10,70	5705	0010		10,2	1	1	1	1	1	1 007,1

KLX06	486,90	506,90	1200	1200	10,87	4438	4648	4452	13,7	496,9
KLX06	506,92	526,92	1,80E+03	1,80E+03	11,81	4594	4795	4609	14,1	516,92
KLX06	526,94	546,94	1200	3600	12,75	4760	4988	4758	14,4	536,92
KLX06	546,97	566,97	1200	1200	12,91	4922	5124	4932	14,8	556,97
KLX06	566,98	586,98	1200	2400	13,60	5099	5294	5104	15,1	576,98
KLX06	587,02	607,02	-	-	-	-	-	-	15,4	597,02
KLX06	607,06	627,06	-	1200	-	-	-	-	15,7	617,06
KLX06	627,10	647,10	1200	3600	13,79	5555	5755	5554	15,9	637,1
KLX06	647,11	667,11	1200	1200	13,70	5705	5915	5708	16,2	657,11
KLX06	667,09	687,09	-	1800	-	-	-	-	16,4	677,09
KLX06	687,12	707,12	1,20E+03	1,20E+03	-	6023	6,23E+03	6,10E+03	16,7	697,12
KLX06	707,15	727,15	1200	1200	-	6169	6370	6253	16,9	717,15
KLX06	727,19	747,19	1,20E+03	7,20E+03	14,64	6303	6,52E+03	6,31E+03	17,2	737,19
KLX06	747,22	767,22	-	2460	-	6457	-	-	17,4	757,22
KLX06	767,25	787,25	1200	3600	13,40	6584	6803	6597	17,7	777,25
KLX06	787,28	807,28	-	-	-	-	-	-	17,9	792,28
KLX06	807,31	827,31	1200	21600	14,58	6880	7079	6899	18,2	817,31
KLX06	827,33	847,33	1200	300	14,21	6999	7223	7000	18,4	837,33
KLX06	847,39	867,39	1200	1600	14,43	7135	7349	7135	18,6	857,39
KLX06	867,46	887,46	-	-	-	-	-	-	18,9	877,46
KLX06	887,48	907,48	-	-	-	-	-	-	19,1	897,48
KLX06	907,49	927,49	1200	1200	13,31	7510	7745	7511	19,3	917,49
KLX06	927,50	947,50	1200	1200	15,41	7647	7857	7680	19,5	937,5
KLX06	947,50	967,50	-	-	-	-	-	-	19,7	957,5
KLX06	967,50	987,50	-	-	-	-	-	-	19,9	977,5
KLX06	260.00	265.00	175392	79800	14,16	2400	2351	2398	11,0	262.50
KLX06	558.20	563.20	479400	85020	12,20	4884	4748	4831	14,5	560.70
KLX06	776.20	781.20	490740	77400	13,89	6529	6317	6506	17,6	778.70

Table		plu_s_hole	_test_ed1
	Р	LU Single hole tests, pumpir	ng/injection. Basic evaluation
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
start date			Date (vymmdd hhimmiss)
stop date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no		number	Section number
formation type	CHAR		Formation type code 1: Rock 2: Soil (superficial deposits)
lp	FLOAT	m	Hydraulic point of application
seclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m**2/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m**2/s	Tranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1: I Q <lower i="" meas.limit,1:="" q="">upper meas.limit.</lower>
transmissivity move	FLOAT	m**2/s	Transmissivity TM based on Move (1967)
bc tm	CHAR	2.0	Best choice code. 1 means Tmoye is best choice of T, else 0
_ value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m**2/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Interpreted formation thickness repr. for evaluated T/TB
width_of_channel_b	FLOAT	m	B:Interpreted width of formation with evaluated TB
tD L moost th	FLOAT	m**3/s	I B: I = transmissivity, B= width of formation, see description
u measl th	FLOAT	m**3/s	Estimated upper meas, limit of evaluated TB see description
sb	FLOAT	m	SB:S=storativity.B=width of formation.1Dmodel.see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m**2/s	T=transmissivity, 2D model, see table description
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR	m**0/o	Best choice code. 1 means TT is best choice of T, else 0
i_measi_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated 1, see table descr.
storativity s	FLOAT	111 2/3	2D model for evaluation of S=storativity.see table descript.
assumed_s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
leakage_koeff	FLOAT	1/s	K'/b':2Dmodel evaluation of leakage coefficient,see desc.
hydr_cond_ks	FLOAT	m**2/s	Ks:3D model evaluation of hydraulic conductivity, see desc.
value_type_ks	CHAR		0:true value,-1:Ks <lower meas.limit,1:ks="">upper meas.limit,</lower>
I_meas_limit_ks	FLOAT	m**2/s	Estimated lower meas limit for evaluated Ks, see table desc.
u_meas_mmi_ks	FLOAT	1/m	Ss:Specific storage 3Dmodel evaluation see table descr
assumed ss	FLOAT	1/m	Assumed Spec.storage,3D model evaluation,see table des.
_ с	FLOAT	m**3/pa	C: Wellbore storage coefficient
cd	FLOAT		CD: Dimensionless wellbore storage constant
skin	FLOAT		Skin factor
stor_ratio	FLOAT		Storativity ratio
Interflow_coeff	FLUAT	<u>,</u>	Interporosity flow coefficient
dt2	FLOAT	s	Estimated start time of evaluation, see table description
transmissivity t ilr	FLOAT	m**2/s	T ILR Transmissivity based on None Linear Regression
storativity_s_ilr	FLOAT		S_ILR=storativity based on None Linear Regression, see
value_type_t_ilr	CHAR		0:true value,-1:T_ILR <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_ilr	CHAR		Best choice code. 1 means T_ILR is best choice of T, else 0
c_ilr	FLOAT	m**3/pa	Wellbore storage coefficient, based on ILR, see descr.
Ca_IIr skip ilr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
stor ratio ilr	FLOAT		Storativity ratio based on Non Linear Regression, see desc.
interflow_coeff_ilr	FLOAT		Interporosity flow coefficient based on Non Linear Regr
transmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Gen.Rad. Flow,see
value_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_grf	CHAR		Best choice code. 1 means T_GRF is best choice of T, else 0
storativity_s_grf	FLOAT		S_GRF:Storativity basd on Gen. Rad.Flow, see table descri.
now_aim_gr		no unit	Flow dimesion based on Gen. Rad.Flow. Interpretation model
error flag	CHAR	no_unit	If error flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)

							formation_t		seclen_cl	I spec_	capacity_	value_type_	transmissivit	value_type_t		transmissivity_		value_typ	hydr_cond_
idcode	start_date	stop_date	secup	seclow	section_no	test_type	уре	lp	ass	q_s		q_s	y_tq	q	bc_tq	moye	bc_tm	e_tm	moye
KLX06	2005.04.02 17:03	3 2005.04.02 19:34	106,38	206,38		3	1	156,38	100)	2,63E-04	0				3,42E-04	0	0	3,42E-06
KLX06	2005.04.03 10:16	2005.04.03 12:37	206,52	306,52		3	1	256,52	100)	5,70E-05	0				7,43E-05	0	0	7,43E-07
KLX06	2005.04.03 14:20	2005.04.03 16:03	306,68	406,68		3	1	356,68	100)	2,08E-05	0				2,70E-05	0	0	2,70E-07
KLX06	2005.04.03 17:33	3 2005.04.03 23:08	406,83	506,83		3	1	456,83	100)	8,33E-08	0				1,08E-07	0	0	1,08E-09
KLX06	2005.04.04 09:33	3 2005.04.04 12:08	506,92	606,92		3	1	556,92	100)	9,98E-06	0				1,30E-05	0	0	1,30E-07
KLX06	2005.04.04 13:36	2005.04.04 15:37	607,06	707,06		3	1	657,06	100)	3,01E-07	0				3,92E-07	0	0	3,92E-09
KLX06	2005.04.04 17:04	2005.04.05 01:08	707,15	807,15		3	1	757,15	100)	1,77E-06	0				2,30E-06	0	0	2,30E-08
KLX06	2005.04.05 09:30	2005.04.05 13:01	807,31	907,31		3	1	857,31	100)	9,89E-08	0				1,29E-07	0	0	1,29E-09
KLX06	2005.04.05 14:30	2005.04.05 16:36	887,48	987,48		3	1	937,48	100)	6,22E-08	0				8,10E-08	0	0	8,10E-10
KLX06	2005.04.07 09:07	2005.04.07 10:43	106,38	126,38		3	1	116,38	20)	1,78E-04	0				1,86E-04	0	0	9,30E-06
KLX06	2005.04.07 11:26	2005.04.07 14:17	126,42	146,42		3	1	136,42	20)	1,66E-08	0				1,73E-08	0	0	8,65E-10
KLX06	2005.04.07 14:56	2005.04.07 16:28	146,44	166,44		3	1	156,44	20)	3,50E-07	0				3,66E-07	0	0	1,83E-08
KLX06	2005.04.07 17:08	3 2005.04.07 18:34	166,47	186,47	•	3	1	176,47	20)	5,35E-05	0				5,58E-05	0	0	2,79E-06
KLX06	2005.04.08 08:44	2005.04.08 10:05	186,49	206,49		3	1	196,49	20)	1,36E-05	0				1,42E-05	0	0	7,10E-07
KLX06	2005.04.08 11:19	2005.04.08 12:58	206,52	226,52		3	1	216,52	20)	4,61E-06	0				4,82E-06	0	0	2,41E-07
KLX06	2005.04.08 13:53	2005.04.08 15:36	226,56	246,56		3	1	236,56	20)	6,28E-06	0				6,57E-06	0	0	3,29E-07
KLX06	2005.04.08 16:26	2005.04.08 17:53	246,62	266,62		3	1	256,62	20)	2,54E-05	0				2,65E-05	0	0	1,33E-06
KLX06	2005.04.09 10:01	2005.04.09 11:22	266,64	286,64		3	1	276,64	20)	2,14E-06	0				2,24E-06	0	0	1,12E-07
KLX06	2005.04.09 12:09	2005.04.09 13:32	286,68	306,68		3	1	296,68	20)	1,19E-06	0				1,25E-06	0	0	6,25E-08
KLX06	2005.04.09 14:16	2005.04.09 15:35	306,68	326,68		3	1	316,68	20)	3,03E-06	0				3,17E-06	0	0	1,59E-07
KLX06	2005.04.09 16:16	2005.04.09 17:36	326,69	346,69		3	1	336,69	20)	5,70E-06	0				5,96E-06	0	0	2,98E-07
KLX06	2005.04.09 18:11	2005.04.09 19:37	346,74	366,74		3	1	356,74	20)	6,66E-06	0				6,97E-06	0	0	3,49E-07
KLX06	2005.04.10 08:40	2005.04.10 09:52	356,77	376,77		3	1	366,77	20)	5,46E-06	0				5,71E-06	0	0	2,86E-07
KLX06	2005.04.10 13:14	2005.04.10 14:50	376,80	396,80		3	1	386,80	20)	2,27E-07	0				2,37E-07	0	0	1,19E-08
KLX06	2005.04.10 15:31	2005.04.10 17:58	391,80	411,80		3	1	401,80	20)	4,35E-08	0				4,55E-08	0	0	2,28E-09
KLX06	2005.04.11 08:32	2005.04.11 10:02	406,83	426,83		3	1	416,83	20)	1,04E-08	0				1,09E-08	0	0	5,45E-10
KLX06	2005.04.11 10:48	3 2005.04.11 12:18	426,86	446,86		3	1	436,86	20)	1,08E-08	0				1,13E-08	0	0	5,65E-10
KLX06	2005.04.11 13:03	2005.04.11 14:40	446,88	466,88		4	1	456,88	20)	#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.11 15:15	2005.04.11 16:55	466,89	486,89		3	1	476,89	20)	3,12E-08	0				3,26E-08	0	0	1,63E-09
KLX06	2005.04.12 08:44	2005.04.12 12:02	486,90	506,90		3	1	496,90	20)	2,45E-08	0				2,57E-08	0	0	1,29E-09
KLX06	2005.04.13 15:39	2005.04.13 17:22	506,92	526,92		3	1	516,92	20)	3,91E-07	0				4,09E-07	0	0	2,05E-08
KLX06	2005.04.13 18:08	3 2005.04.13 20:21	526,94	546,94		3	1	536,94	20)	2,70E-08	0				2,82E-08	0	0	1,41E-09
KLX06	2005.04.14 08:24	2005.04.14 10:03	546,97	566,97		3	1	556,97	20)	9,86E-06	0				1,03E-05	0	0	5,15E-07
KLX06	2005.04.14 10:42	2005.04.14 12:44	566,98	586,98		3	1	576,98	20)	1,76E-08	0				1,84E-08	0	0	9,20E-10
KLX06	2005.04.14 13:25	5 2005.04.14 14:30	587,02	607,02		-	1	597,02	20)	#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.14 15:07	2005.04.14 16:17	607,06	627,06		4	1	617,06	20)	#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.14 17:04	2005.04.14 19:31	627,10	647,10		3	1	637,10	20)	2,70E-07	0				2,82E-07	0	0	1,41E-08
KLX06	2005.04.15 08:32	2005.04.15 10:07	647,11	667,11		3	1	657,11	20)	5,33E-08	0				5,58E-08	0	0	2,79E-09
KLX06	2005.04.15 10:40	2005.04.15 11:57	667,09	687,09		4	1	677,09	20)	#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.15 13:52	2005.04.15 14:50	687,12	707,12		3	1	697,12	20)	4,82E-09	0				5,04E-09	0	0	2,52E-10
KLX06	2005.04.15 15:22	2005.04.15 17:07	707,15	/27,15		3	1	/1/,15	20)	7,89E-09	0				8,25E-09	0	0	4,13E-10
KLX06	2005.04.15 17:48	2005.04.15 21:00	727,19	747,19		3	1	/3/,19	20)	3,43E-08	0				3,59E-08	0	0	1,80E-09
KLX06	2005.04.16 08:51	2005.04.16 10:17	747,22	/6/,22		4	1	757,22	20		#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.16 10:54	2005.04.16 13:38	767,25	787,25		3	1	777,25	20)	1,90E-06	0				1,99E-06	0	0	9,95E-08
KLX06	2005.04.16 14:19	2005.04.16 15:21	787,28	807,28		-	1	797,28	20)	#NV	-1				#NV	0	-1	#NV
KLX06	2005.04.16 17:33	3 2005.04.17 00:32	807,31	827,31		3	1	817,31	20)	3,12E-08	0				3,27E-08	0	0	1,64E-09
KLX06	2005.04.17 08:42	2005.04.17 09:59	827,33	847,33		3	1	837,33	20)	8,39E-08	0				8,78E-08	0	0	4,39E-09
KLX06	2005.04.17 10:29	2005.04.17 12:05	847,39	867,39		3	1	857,39	20		9,17E-09	0				9,59E-09	0	0	4,80E-10
KLX06	2005.04.17 12:42	2005.04.17 13:42	867,46	887,46		-	1	8/1,46	20	1	#INV	-1				#NV	0	-1	#NV
KLX00	2005.04.17 14:28	2005.04.17 15:33	887,48	907,48		-	1	897,48	20		#INV	-1				#NV	0	-1	
	2005.04.17 16:15	2005.04.17 17:58	907,49	927,49		3	1	917,49	20		1,53E-08	0				1,60E-08	0	0	0,UUE-10
KLX00	2005.04.18 08:42	2005.04.18 10:12	927,50	947,50		3	1	937,50	20	<u></u>	3,37E-08	0				3,53E-08	0	U	1,77E-09
KLX06	2005.04.18 11:01	2005.04.18 12:09	947,50	967,50		-	1	957,50	20	-	#INV	-1				#NV	0	-1	#NV
	2005.04.18 13:25	2005.04.18 14:37	907,50	987,50		-	1	911,50	20		#INV	-1				#IN V #NIV	0	-1	#INV
	2005.03.07 08:55	2005.03.10.08:15	200.00	205.00		1	1	202,50	5	-	#INV	-1				#IN V #NIV	0	-1	#INV
	2005.03.10 18:50	2005.03.17.08:19	558.20	503.20		1	1	270,70	5	-	#INV	-1				#IN V #NIV	0	-1	#INV
	2003.03.17 16:07	2005.03.23 07:08	//0.20	/01.20	1	1	1	110,10	5	וי	#INV	- 1			L	#INV	U	- 1	#INV

			formation_width	width_of_cha		I_measl_t			assumed_	leakage_fa	transmissi	value_typ		I_measl_		storativity_	assumed_	leakage_k	hydr_cond_
idcode	secup	seclow	_b _	nnel_b	tb	b	u_measl_tb	sb	sb	ctor_lf	vity_tt	e_tt	bc_tt	q_s	u_measl_q_s	s	s	oeff	ks
KLX06	106.38	206.38									2.13E-04	0	1	1.00E-04	4.00E-04	1.00E-06	1.00E-06		
KLX06	206.52	306.52									1.29E-04	0	1	6.00E-05	3.00E-04	1.00E-06	1.00E-06		
KLX06	306,68	406,68									2,86E-05	0	1	1,00E-05	8,00E-05	1,00E-06	1,00E-06		
KLX06	406,83	506,83									8,99E-08	0	1	6,00E-08	2,00E-07	1,00E-06	1,00E-06		
KLX06	506,92	606,92									1,12E-05	0	1	2,00E-05	8,00E-06	1,00E-06	1,00E-06		
KLX06	607,06	707,06									4,47E-07	0	1	3,00E-07	6,00E-07	1,00E-06	1,00E-06		
KLX06	707,15	807,15									6,51E-07	0	1	5,00E-07	1,00E-06	1,00E-06	1,00E-06		
KLX06	807,31	907,31									9,08E-08	0	1	5,00E-08	2,00E-07	1,00E-06	1,00E-06		
KLX06	887,48	987,48									5,73E-08	0	1	4,00E-08	8,00E-08	1,00E-06	1,00E-06		
KLX06	106,38	126,38									1,80E-04	0	1	8,00E-05	3,00E-04	1,00E-06	1,00E-06		
KLX06	126,42	146,42									2,17E-08	0	1	9,00E-09	4,00E-08	1,00E-06	1,00E-06		
KLX06	146,44	166,44									5,92E-07	0	1	3,50E-07	8,00E-07	1,00E-06	1,00E-06		
KLX06	166,47	186,47									5,91E-05	0	1	3,00E-05	8,00E-05	1,00E-06	1,00E-06		
KLX06	186,49	206,49									4,69E-05	0	1	3,00E-05	8,00E-05	1,00E-06	1,00E-06		
KLX06	206,52	226,52									6,78E-06	0	1	3,00E-06	1,00E-05	1,00E-06	1,00E-06		
KLX06	226,56	246,56									1,31E-05	0	1	8,00E-06	4,00E-05	1,00E-06	1,00E-06		
KLX06	246,62	266,62									3,55E-05	0	1	4,00E-05	1,00E-04	1,00E-06	1,00E-06		
KLX06	266,64	286,64									4,36E-06	0	1	2,00E-06	8,00E-06	1,00E-06	1,00E-06		
KLX06	286,68	306,68									2,15E-06	0	1	9,00E-05	4,00E-06	1,00E-06	1,00E-06		
KLX06	306,68	326,68									4,21E-06	0	1	1,50E-06	7,00E-06	1,00E-06	1,00E-06		
KLX06	326,69	346,69									9,99E-06	0	1	7,00E-06	3,00E-05	1,00E-06	1,00E-06		
KLX06	346,74	366,74									9,33E-06	0	1	6,00E-06	3,00E-05	1,00E-06	1,00E-06		
KLX06	356,77	376,77									1,09E-05	0	1	7,00E-06	4,00E-05	1,00E-06	1,00E-06		
KLX06	376,80	396,80									2,96E-07	0	1	8,00E-08	6,00E-07	1,00E-06	1,00E-06		
KLX06	391,80	411,80									4,15E-08	0	1	1,00E-08	8,00E-08	1,00E-06	1,00E-06		
KLX06	406,83	426,83									1,11E-08	0	1	7,00E-09	3,00E-08	1,00E-06	1,00E-06		
KLX06	426,86	446,86									1,27E-08	0	1	7,00E-09	3,00E-08	1,00E-06	1,00E-06		
KLX06	446,88	466,88									7,78E-11	0	1	3,00E-11	3,00E-10	1,00E-06	1,00E-06		
	400,09	400,09									5,05E-06	0	1	3,00E-06	9,00E-04	1,00E-06	1,00E-06		
	400,90	506,90									1,10E-00	0	1	7,00E-09	3,00E-00	1,00E-06	1,00E-06		
	506,92	520,92									3,40E-07	0	1	1,00E-07	7,00E-07	1,00E-06	1,00E-06		
KLX06	546.97	566.07									2,97E-00	0	1	9.00E-06	0,00E-08	1,00E-00	1,00E-00		
KLX06	566.98	586.98									1,20E-03	0	1	3,00E-00	3,00E-03	1,00E-00	1,00E-00		
KLX06	587.02	607.02									#NV	0	1	1.00E-03	1.00E-00	#NIV	#NV		
KLX06	607,02	627.06									9.30E-11	0	1	5.00E-11	4 00E-10	1.00E-06	1.00E-06		
KLX06	627,10	647.10									4.92E-07	0	1	2.00E-07	6.00E-07	1.00E-06	1.00E-06		
KLX06	647.11	667.11									5.99E-08	0	1	4.00E-08	9.00E-08	1.00E-06	1.00E-06		
KLX06	667.09	687.09									7.97E-10	0	1	2.00E-10	1.00E-09	1.00E-06	1.00E-06		
KLX06	687.12	707.12									2,19E-09	-1	1	1,00E-09	6.00E-09	1,00E-06	1,00E-06		
KLX06	707,15	727,15									1,42E-08	-1	1	2,00E-09	7,00E-09	1,00E-06	1,00E-06		
KLX06	727,19	747,19									2,57E-08	-1	1	1,00E-08	5,00E-08	1,00E-06	1,00E-06		
KLX06	747,22	767,22									1,22E-10	0	1	6,00E-11	3,00E-10	1,00E-06	1,00E-06		
KLX06	767,25	787,25									6,36E-07	0	1	5,00E-07	2,00E-06	1,00E-06	1,00E-06		
KLX06	787,28	807,28									#NV	0	1	1,00E-13	1,00E-11	1,00E-06	1,00E-06		
KLX06	807,31	827,31									1,16E-09	0	1	4,00E-09	3,00E-08	1,00E-06	1,00E-06		
KLX06	827,33	847,33									2,13E-07	0	1	9,00E-08	5,00E-07	1,00E-06	1,00E-06		
KLX06	847,39	867,39									1,07E-08	0	1	8,00E-09	4,00E-08	1,00E-06	1,00E-06		
KLX06	867,46	887,46									#NV	0	1	1,00E-13	1,00E-11	#NV	#NV		
KLX06	887,48	907,48									#NV	-1	1	1,00E-13	1,00E-11	#NV	#NV		
KLX06	907,49	927,49									5,48E-08	0	1	8,00E-09	4,00E-08	1,00E-06	1,00E-06		
KLX06	927,50	947,50									1,59E-08	0	1	9,00E-09	5,00E-08	1,00E-06	1,00E-06		
KLX06	947,50	967,50									#NV	0	1	1,00E-13	1,00E-11	1,00E-06	1,00E-06		
KLX06	967,50	987,50									#NV	0	1	1,00E-13	1,00E-11	1,00E-06	1,00E-06		
KLX06	260.00	265.00									1,03E-04	0	1	6,00E-05	3,00E-04	1,00E-06	1,00E-06		
KLX06	558.20	563.20									1,10E-05	0	1	6,00E-06	3,00E-05	1,00E-06	1,00E-06		
KLX06	776.20	781.20				1					6,60E-07	0	1	6,00E-07	1,00E-06	1,00E-06	1,00E-06		

				l_meas_limit_k	u_meas_limit_k	spec_stora						interflow_			transmissivi	storativity	value_type		
idcode	secup	seclow	value_type_ks	s	s	ge_ss	assumed_ss	с	cd	skin	stor_ratio	coeff	dt1	dt2	ty_t_ilr	s_ilr	_t_ilr	bc_t_ilr	c_ilr
KLX06	106,38	206,38						3,67E-08	4,05E-02	-5,29E+00			18	186					
KLX06	206,52	306,52						2,04E-08	2,25E-02	4,29E+00			48	1164					
KLX06	306,68	406,68						8,01E-09	8,83E-03	-4,12E-01			204	1794					
KLX06	406,83	506,83						1,84E-10	2,03E-04	8,30E-01			132	1542					
KLX06	506,92	606,92						1,97E-08	2,17E-02	-1,56E+00	1		324	1722					
KLX06	607,06	707,06						9,62E-10	1,06E-03	2,22E+00			516	1560					
KLX06	707,15	807,15						4,89E-08	5,39E-02	-5,40E+00			1314	2694					
KLX06	807,31	907,31						9,27E-09	1,02E-02	-1,15E+00	1		#NV	#NV					
KLX06	887,48	987,48						5,22E-10	5,75E-04	-8,66E-01			600	840					
KLX06	106,38	126,38						1,80E-08	1,98E-02	-3,56E+00			444	1038					
KLX06	126,42	146,42						1,95E-10	2,15E-04	3,16E+00			54	396					
KLX06	146,44	166,44						1,60E-10	1,76E-04	3,86E+00			114	876					
KLX06	166,47	186,47						5,99E-09	6,60E-03	-2,09E+00			18	228					
KLX06	186,49	206,49						1,51E-09	1,66E-03	1,35E+01			150	1116					
KLX06	206,52	226,52						1,17E-09	1,29E-03	1,19E+00			36	96					
KLX06	226,56	246,56						4,89E-10	5,39E-04	4,59E+00			288	1014					
KLX06	246,62	266,62						1,70E-08	1,87E-02	0,00E+00			36	60					
KLX06	266,64	286,64						1,04E-09	1,15E-03	4,72E+00			66	1086					
KLX06	286,68	306,68						5,87E-11	6,47E-05	3,34E+00			66	1062					
KLX06	306,68	326,68						6,53E-10	7,20E-04	6,70E-01			186	948					
KLX06	326,69	346,69						9,17E-10	1,01E-03	2,39E+00			66	1044					
KLX06	346,74	366,74						2,88E-10	3,17E-04	5,90E-01			60	702					
KLX06	356,77	376,77						7,41E-10	8,17E-04	3,80E+00			90	918					
KLX06	376,80	396,80						8,72E-09	9,61E-03	1,25E+00			882	1536					
KLX06	391,80	411,80						4,15E-09	4,57E-03	3,20E-01			594	1152					
KLX06	406,83	426,83						6,21E-11	6,84E-05	1,62E+00			54	1158					
KLX06	426,86	446,86						5,57E-11	6,14E-05	2,34E+00			48	930					
KLX06	446,88	466,88						8,03E-11	8,85E-05	-9,53E-02			132	786					
KLX06	466,89	486,89						5,72E-11	6,30E-05	4,67E+00			36	822					_
KLX06	486,90	506,90						5,32E-11	5,86E-05	7,40E-01			426	1134					_
KLX06	506,92	526,92						2,75E-08	3,03E-02	-1,53E+00			468	1380					_
KLX06	526,94	546,94						1,70E-10	1,87E-04	1,40E+00			90	396					_
KLX06	546,97	566,97						7,30E-09	8,05E-03	-9,60E-01			240	1032					_
KLX06	566,98	586,98						1,36E-10	1,50E-04	-1,06E+00			570	1188					
KLX06	587,02	607,02						#NV	#NV	#NV			#NV	#NV					
KLX06	607,06	627,06						9,90E-12	1,09E-05	5,53E+00			144	858					
KLX06	627,10	647,10						5,56E-10	6,13E-04	4,38E+00			102	822					
KLX06	647,11	667,11						1,57E-10	1,73E-04	1,40E+00			204	930					
KLX06	667,09	687,09						8,07E-11	8,89E-05	-2,73E+00			#NV	#NV					_
KLX06	687,12	707,12						7,42E-11	8,18E-05	1,90E-01			450	1002					_
KLX06	707,15	/2/,15						2,90E-10	3,20E-04	2,16E+00			12	18					_
KLX06	727,19	747,19						1,63E-10	1,80E-04	-8,90E-01			90	954					_
KLX00	747,22	767,22						3,00E-10	3,31E-04	-2,17E+00			744	2448					_
KLX06	767,25	/8/,25						3,52E-08	3,88E-02	-5,20E+00			450	990					-
KLX00	187,28	807,28							#INV				#INV	#INV					-
KLX00	807,31	827,31						6,89E-09	7,59E-03	-5,44E+00			102	990					
	027,33	047,33						5,00E-11	0,20E-05	9,30E+00			102	020					-
	047,39	007,39						4,03E-11	5,52E-05	2,45E+00			54 #NIV	#NIV					
	007,40	007,40						#IN V #NIV/	#INV #NIV/	#INV #NIV/			#INV #NIV	#INV #NIV			-		+
KI YOS	007,40	007,40						#INV	#INV	#INV 1 50E±04			#INV #NIV	#INV #NIV/			-		+
KLX06	907,49	921,49							1 08=-04	-2 45E+00	1		#INV	#INV				1	+
KI YOS	921,50	067 E0						9,00E-11 #NIV	1,00E-04	-2,40E+00 #NN/	1		400 #NIV	/ 90 #NI\/			-		+
KLX06	947,50	907,30						#INV #NIV	#NV	#INV #NIV/			#NV	#INV #NIV		-	-	+	+
KI X06	00,100	265,00						2 585-00	πiNV 2.84⊑_02	πι¥ν 1 21⊑⊥01			πINV 167	#INV ///620		+	-	-	+
KI X06	558 20	563.00						2,000-00	2,0+L-02	-3 30 =+00			70	2850			+		+
KI X06	776.20	781.20						7 005-09	2,42E-03	-5,000+00			3600	2000			+		+
	110.20	701.20		1	1	l	1	1,000-00	1,120-02	-0,000000	1	1	3000	20000	1	1	1	1	1

dcode	secup	seclow	cd_ilr	skin_ilr	stor_ratio_ilr	interflow_coeff_ilr	transmissivity_t_grf	value_type_t_grf	bc_t_grf	storativity_s_grf	flow_dim_grf	comment	ri-index	ri-value
KLX06	106,38	206,38											0	258,8981456
KLX06	206,52	306,52											0	322,9954945
KLX06	306,68	406,68											0	221,6361232
KLX06	406,83	506,83											0	52,47941191
KLX06	506,92	606,92											0	175,3289138
KLX06	607,06	707,06											1	78,365682
KLX06	707,15	807,15											0	298,2187235
KLX06	807,31	907,31											-1	74,40215191
KLX06	887,48	987,48											0	46,89080539
KLX06	106,38	126,38											0	286,6299273
KLX06	126,42	146,42											0	30,03435714
KLX06	146,44	166,44											0	68,64103666
KLX06	166,47	186,47											0	153,4211662
KLX06	186,49	206,49											0	144,8043538
KLX06	206,52	226,52											-1	51,29237429
KLX06	226,56	246,56											0	105,2703903
KLX06	246,62	266,62											0	191,8305606
KLX06	266,64	286,64											0	113,0771957
KLX06	286,68	306,68											0	94,7573752
KLX06	306,68	326,68											0	112,0918227
KLX06	326,69	346,69											0	139,121669
KLX06	346,74	366,74											0	136,7646373
KLX06	356,77	3/6,//											0	142,187046
KLX06	376,80	396,80											0	70,69227602
KLX06	391,80	411,80											0	35,31957193
KLX06	406,83	426,83											0	25,40002546
KLX06	426,86	446,86											0	26,26965308
KLX06	446,88	466,88											-1	5,248478162
	466,89	486,89											0	39,78299936
	486,90	506,90											1	6,989160771
	506,92	526,92											0	73,18444202
	526,94	546,94											0	32,4857217
	540,97	500,97											0	145,0400520
	500,90	500,90											0	25,73052295
	507,02	627.06											-	7 694650022
	627.10	647.10											0	7,004000922
	647.11	667.11											0	29 71220295
	667.00	697.00											1	1 704652505
	697.12	707 12											1	2 45422503
	707.15	707,12											1	2,45425505
(1 X06	707,15	747 10							1				1	31 33180684
(1 X06	747 22	767 22							1				1	11 77525/21
(LX06	767.25	787.25							1			-	1	69 88237070
	707,23	807.28											-	03,00237373
(LX06	807.31	827.31							1			-	1	98 3227058
	827 33	847 33											0	53 1616324
	847.39	867.39											0	25 16803746
(1 X06	867.46	887.46							1					20,10000740
(LX06	887 48	907 48							1					-
(LX06	907 49	927 49							1				0	27.61126675
(LX06	927 50	947 50							1				1	3,166295088
(LX06	947 50	967 50							1				-	
(LX06	967.50	987.50							1				-	-
KLX06	260.00	265.00							1				0	3013.887106
KLX06	558.20	563.20							1		1	1	1	246.8381063
KLX06	776.20	781.20											-1	345,5373609
	1	-									1 · · · · · · · · · · · · · · · · · · ·	1		